
Università degli Studi di Padova

Department of Information Engineering

Bachelor Thesis in

Information Engineering

PID control of electrodes movements in
submerged arc furnaces

Supervisor: Bachelor candidate:
Prof. Damiano Varagnolo Enrico Miotto

Università di Padova 1216484

Co-Supervisor:
Manuel Sparta

NORCE Norwegian Research Centre

Academic Year 2021/2022
Graduation date: July 20, 2022

≪”Unglücklich das Land, das keine Helden hat!” [...]

”Nein. Unglücklich das Land, das Helden nötig hat.”≫

(Bertolt Brecht, Lebens des Galilei)

ii

iii

Abstract

One of the most widely employed control technique is PID - i.e., Pro-

portional, Integrative, Derivative control. Its popularity is due to its

simplicity, robustness, and being a model-free approach, which allow

it to be applied to nonlinear systems for which model-based control,

requiring a system model with good generalization capabilities, may

be a too complicated task. Summarizing, if obtaining a good model

is difficult, the PID model-free control strategy may be a viable one.

However finding suitable PID settings so to ensure good closed loop

control performance by experimenting on a physical system could be

a daunting task (especially if the plant costs hundreds of millions of

Euro). Employing a simulator as a substitute of the physical sys-

tem for this task may then be useful; i.e., one may compare the re-

sults based on real measures and the simulator, tune the controller

on the simulator, and have some expectations of the behaviour of the

controlled system once from the simulation realm one moves to the

physical one.

In this thesis we thus consider the situation above, i.e., starting from

finite elements and finite volumes simulators (two of the most common

approaches to modelling a system) to tune PID controllers that will

after be used in real life. However, both approaches may be computa-

tionally and software demanding, and trial and error tuning of PIDs

based on such models may take too much time.

The approach we chose on this Thesis is then to exploit meta models,

i.e., models of models that have been obtained by opportune statis-

tical analyses of the data obtainable from the physics-based models

above, and whose computational requirements are only a fraction of

the original ones, trading though off accuracy of the results (in the

sense of how well the meta models model the original systems).

The goal of this thesis is then to show how one may implement and

tune simple PID controller based on meta models that simulate the

electrical conditions in submerged arc furnaces. In this situation the

controller acts on the electrode’s position in order to keep constant an

output value (such as electrode’s resistance, power etc.). We thus test

the approach on this specific system, and focus on comparing (and

iv

understanding) the results that one obtains with specific process noise

based on Perlin Noise (a specific type of dynamic disturbance that

accurately represents the smooth variations typical of furnaces inputs

during the day).

We discovered that such a controller is effective when it has to handle

a limited number of noisy inputs. If noise is to be applied to all input

variables, it is better to turn to more advanced control techniques. On

the other hand, the simplicity and efficiency of this implementation

allow it to be versatile and effective in many cases. A final important

aspect that has been observed is the sizing of the time interval that

the controller uses to scan the various steps. Despite the objective dif-

ficulties in determining it accurately, through a number of simulations

we were able to estimate it with a good approximation, which allows

us to have both a clean control and a good calculation speed.

This work has been developed in collaboration with NORCE - Nor-

wegian Research Centre as part of their project SAFECI, ”Electrical

Conditions in Submerged Arc Furnaces – Identification and Improve-

ment”, with financial support from The Research Council of Norway

(Project number 326802) and the companies Elkem, Eramet Norway,

Finnfjord, and Wacker Chemicals Norway.

Contents

1 Brief introduction to PID 1

1.1 Introduction . 1

1.1.1 Proportional action . 3

1.1.2 Integral action . 3

1.1.3 Derivative action . 3

1.2 Windup . 3

1.2.1 Avoid windup . 4

1.3 Pseudo code . 5

2 Submerged arc furnaces simulator 7

2.1 Introduction . 7

2.2 The furnace . 7

2.3 Input Output variables . 8

2.4 Meta Model code’s structure . 10

2.4.1 MainMetaModel.py . 10

2.4.2 MetaModelClass.py . 10

2.4.3 NoiseFunction.py . 11

2.4.4 PlotFunctions Metamodel.py 11

3 The Controller 13

3.1 Introduction . 13

3.2 Controller Operation . 14

3.2.1 Integral term and windup 14

3.2.2 Maximum and minimum electrode’s height management . 15

3.3 Time Interval design . 16

3.4 Further Improvements . 18

4 Noise 19

4.1 Introduction . 19

v

vi CONTENTS

4.2 Perlin Noise . 19

4.2.1 Usage . 20

4.2.2 Gradients . 22

4.3 Fractal Noise . 23

4.4 Implementation . 24

4.4.1 Perlin Noise implementation 25

4.4.2 Fractal Noise implementation 25

5 Simulations 27

5.1 Introduction . 27

5.2 Simulation 1 . 29

5.3 Simulation 2 . 30

5.4 Simulation 3 . 32

5.5 Simulation 4 . 34

5.6 Conclusions . 36

6 Code 37

Bibliography 43

Chapter 1

Brief introduction to PID

1.1 Introduction

First, the theory concerning PID controllers will be introduced from an intuitive

point of view. More mathematical details can be found in other treatises (see [1]

[9]), but for this Thesis everything concerning PID controllers applied to linear

systems is irrelevant. Submerged arc furnaces are highly non-linear and complex

systems. In such cases, the PID control is calibrated by means of simulations or

techniques that are outside the scope of this discussion. For this reason, we will

focus mainly on the heuristic idea behind PID control, avoiding mathematical

overload.

The PID controller is a control algorithm with a predefined structure, which

is calibrated by changing the value of certain parameters. Due to its simplicity

of use, combined with appreciable effectiveness in various fields of application,

it is by far the most widely used control algorithm in industrial applications.

Mathematically speaking, the PID controller is a dynamic system that processes

an input signal, called ”error” (obtained as the difference between the reference

and the controlled variable e(t) = r(t) - y(t)) then giving as output a control

signal u(t).

1

2 Chapter 1. Brief introduction to PID

Figure 1.1: PID block diagram

The success of PIDs is mainly due to:

• Remarkable effectiveness in regulating a wide range of industrial processes

(thermal, mechanical, etc.);

• Possibility of being made with different techniques (mechanical, hydraulic,

electronic both analog and digital, etc.);

• Relative ease of calibration of working parameters since their use does not

require from the operator a detailed knowledge of the process to be con-

trolled;

• Good effectiveness/cost ratio because in the presence of unavoidable noise

conditions or inappropriate calibration errors, the effectiveness of the con-

trol law decays, so the use of other, more refined control systems would be

useless, as their performance would become comparable to that of PIDs;

• Ductility in their use; in fact, they are often used to achieve more articulated

configurations to meet complex requirements.

The PID controller in its basic form, has a structure comprising the sum of

three control terms

u(t) = KP · e(t) +KI ·

∫
t

0
e(τ)dτ +KD ·

de(t)
dt

The parameters that identify the PID therefore are KP, KI and KD and they

are called also controller degrees of freedom.

Below are brief explanations of the role of each of the three components of

the PID. For more details, please refer to [1] and [2].

1.2 Windup 3

1.1.1 Proportional action

The effect of proportional action depends on the error computed by the difference

between the setpoint value and the current output value. If the error grows, then

the proportional action gives a stronger contribution to reduce the entity of it.

An higher value of Kp increases the speed of the system, but also the oscillations.

It is important to remember that there is always a steady state error in

proportional control. It decreases when Kp is augmented, but the oscillations

increase too.

1.1.2 Integral action

The Integral action depends on the value of error’s integral. The main character-

istic of this part of the control is that it eliminates the steady state error given

by the Proportional part. Integral term is increased if the error is positive and

decreases if the error is negative. For that reason, it could explode if the actuators

have limits on their action. This phenomena is known as ”windup” and it will be

discussed more in detail in the next section.

1.1.3 Derivative action

The last action is the Derivative one. Its value is computed using the error’s

derivative and an opportune constant Kd.

It is sensitive to rapid changes in error, and tries to anticipate them. The

effect is a reduction in signal fluctuations around the setpoint, while the offset is

not affected.

It is necessary to be careful with calibration, because this effect could make

the system unstable. Often in controllers Kd is very small or completely absent,

especially if the system to be controlled is not subject to sudden changes.

1.2 Windup

Windup is a non linear phenomenon caused by the interaction of integral action

and saturation. When the actuators have limitations, it may happen that the

control variable reaches the actuator limits. In this way the feedback loop is

broken and the system runs as an open loop because the actuator will remain

at its limit. If a controller uses the integrating action, the error will continue to

4 Chapter 1. Brief introduction to PID

Figure 1.2: An example of the three actions of a PID controller

be integrated. The integral term may become very large (it ”winds up”). After

that, things return normal only if the error has opposite sign for a long period.

Consequently there may be large transients when the actuator saturates.

1.2.1 Avoid windup

One of the simplest techniques which allow to handle windup is stopping the

integral action whenever the output saturates. This approach is similar to that

followed in the early phases of feedback control. The integral action was inte-

grated with the actuator, by having a motor drive the valve directly. Integration

stopped when the valve stopped. Procedures that implement this scenario are

called Incremental Algorithms.

Many alternative methods are used in order to limit this bad effect, such as

Setpoint Limitation, which introduces limits on the setpoint variations, so the

controller output never reaches the actuator limits. The windup caused by noise

is not avoided by this choice. The last method, which is implemented in the

controller considered in this Thesis, is Back-Calculation and Tracking.

When the output saturates, the integral term in the controller is recomputed

so that its new value gives an output at the saturation limit. In this way, the

integral term growth is bounded and can not explode.

1.3 Pseudo code 5

1.3 Pseudo code

PIDs are simple and intuitive. The following pseudo-code shows principal opera-

tions required to implement such controllers. Note that the integral component is

not allowed to surpass the limit and it is equal to the maximum output accepted

when there is saturation. The output is bounded too.

Algorithm 1 PID algorithm

Input: setpoint, measured value, dt, max out
Output: output
1: last error ← 0
2: integral ← 0
3: start:
4: error ← setpoint−measured value
5: integral ← integral + error ∗ dt
6: if integral > max out then
7: integral ← max out
8: end if

9: derivative← (error − last error)/dt
10: output← Kp ∗ error +Ki ∗ integral +Kd ∗ derivative
11: if output > max out then
12: output← max out
13: end if

14: last error ← error
15: wait(dt)
16: goto : start

6

Chapter 2

Submerged arc furnaces simulator

2.1 Introduction

The online simulator considered in this thesis, [7], was developed by NORCE and

implements a metamodel for submerged arc furnaces, based on the statistical

analysis of the results of a physics-based model (e.g., based on the finite element

method). Once the parameters of interest have been identified from the finite

element model and an input and output database produced from it, a surrogate

linear model is produced using Partial Least Square Regression, PLSR. Some

details about the system considered and the parameters of interest are given

below.

2.2 The furnace

An example of the furnace taken as a reference in the development of the sim-

ulator. The diameter is 10.5 metres and the height 5.8 metres. The electrodes

have a diameter of 1.55 metres and are arranged in an equilateral triangle with

a distance between the centres of 3.8 metres. The electrodes have the ability to

move vertically. A change in their position results in a change in the behaviour of

the furnace because the resistance of the current paths in the furnace is modified.

The controller developed for this thesis acts on this parameter to control the sys-

tem. The behaviour of the system is very complex, which is why a simple PID

controller whose constants can be adjusted through repeated simulations. The

main aim of this Thesis is to provide an easy-to-use and reliable controller that

allows multiple tests to be performed based on the behaviour detected through

the metamodel. With such data, comparisons can eventually be made with ex-

7

8 Chapter 2. Submerged arc furnaces simulator

perimental measurements to ascertain the reliability of the simulations. For more

details on the parameters used for the simulator, please refer to [8].

Figure 2.1: Submerged arc furnace scheme [8].
The colors encode the resistivity of the different zones.

2.3 Input Output variables

The various parameters considered as inputs but on which the controller cannot

act on:

• I1: current in the first electrode [kA];

• I2: current in the second electrode [kA];

• I3: current in the third electrode [kA];

• CW T: Crater wall thickness [cm];

• σ cw: crater wall conductivity [S/m];

• σ SiC12: conductivity of the SiC banks separating electrodes 1-2 [S/m];

• σ SiC23: conductivity of the SiC banks separating electrodes 2-3 [S/m];

• σ SiC31: conductivity of the SiC banks separating electrodes 3-1 [S/m];

2.3 Input Output variables 9

• σ arc: the arc in the crater cavity is modelled as a resistive element, whose

conductivity is the same of the ionized atmosphere equal to 7000 S/m.

The system inputs on which the controller has freedom to act are:

• z1: position of the first electrode [m];

• z2: position of the second electrode [m];

• z3: position of the third electrode [m];

The list of main outputs is as follows. The controller can be called upon to

maintain a certain value of any of these parameters, as will be explained in detail

below.

• P tot: total active power [MW];

• Q tot: total reactive power [MVAR];

• R tot: total resistance [mΩ];

• X tot: total reactance [mΩ];

• cosphi: power factor;

• Psh tot: steel shell power [MW];

• P roof: steel roof power [MW];

• Pcw tot: total power crater walls [MW];

• Psic tot: total power SiC [MW];

• Phc tot: total power hot charge [MW];

• Pcc tot: total power cold charge [MW];

• Psic 12: power SiC electrode 1-2 [MW];

• Psic 23: power SiC electrode 2-3 [MW];

• Psic 31: power SiC electrode 3-1 [MW];

Finally, some local outputs, calculated for each electrode, are considered.

This makes it possible, with three controllers, to act locally on the electrodes to

keep certain outputs constant, which can also be chosen differently from electrode

to electrode.

10 Chapter 2. Submerged arc furnaces simulator

• electrode’s active power [MW];

• electrode’s reactive power [MVAR];

• electrode’s resistance [mΩ];

• electrode’s reactance [mΩ];

• electrode’s voltage [V];

• electrode’s power crater [MW];

• electrode’s power crater walls [MW];

2.4 Meta Model code’s structure

The meta-model simulator is organised in the following files:

• MainMetaModel.py

• MetaModelClass.py

• NoiseFunctions.py

• PlotFunctions_Metamodel.py

These files were created and designed by Mads Fromreide and provided to be

adapted to the present discussion. Any modifications made will be listed below

and their function will be outlined in broad terms.

2.4.1 MainMetaModel.py

MainMetaModel.py is the executable file, which allows simulating the operation

of the furnace and choosing which input quantities will be noisy. No significant

changes have been made to it.

2.4.2 MetaModelClass.py

MetaModelClass.py is the class that constitutes the actual simulator. It allows a

metaModel object to be created and provides the Simulatemethod that simulates

the operation of the furnace, based on the meta-model, in a given time frame.

In this file, certain parameters of interest can be set, such as the limits of the

2.4 Meta Model code’s structure 11

electrode positions, the setpoints of the output quantities to be controlled, the

maximum speed of the electrodes, the initial values of the currents, electrode

positions and the various inputs, and the amplitudes of the various errors on

the inputs. The time interval and the value of dt are provided as input to the

constructor of the class and can then be inserted into the executable file in which

the metaModel object is created. It is also possible to set a Boolean flag to true

to make the controller intervene during the execution of the Simulate method.

2.4.3 NoiseFunction.py

NoiseFunction.py contains the functions that manage the creation of noise and

the operation of the controller that is the subject of this Thesis. This source file

has been heavily modified in order to include all the necessary functionality. The

controller_function is designed to be called at each iteration of the loop in

the Simulate function of MetaModelClass.py. Its features will be explained in

more detail in Chapter 3. It relies on a number of other minor functions that

handle the various issues that may arise during control. The Noise function deals

with modelling certain types of noise to be applied to the various input quantities.

Mainly in this discussion we will focus more on Perlin Noise and Fractal Noise,

which will be discussed in more detail in Chapter 4.

2.4.4 PlotFunctions Metamodel.py

PlotFunctions Metamodel.py consists of a number of useful functions for printing

and graphing the various quantities involved such as currents, powers, etc. The

only changes made concern the addition of functions that manage the plotting of

certain outputs not previously considered.

12 Chapter 2. Submerged arc furnaces simulator

Figure 2.2: Drawing showing a submerged arc furnace.
The Si process - Drawings, by T. Hannesson, 2016, Elkem Iceland.

Chapter 3

The Controller

3.1 Introduction

The controller studied in this thesis is of the PID type. It has been implemented

in the Python language, following the algorithm already outlined in Chapter

1. First its input/output specification will be exposed, the operation will be

discussed later. The function signature that simulates the controller’s behaviour

is as follows:

controller_function(output_type,

setpoint, last_value_out, z, dt, integral, lastError,

maxSpeed, zmin, zmax, kp, Ki, Kd).

The function accepts the following mandatory inputs:

• output type: the type of output needed (e.g. power, resistance, etc.);

• setpoint: setpoint that the PID will try to achieve;

• last value out: last measured output value;

• z: last position of the electrode [m];

• dt: time interval between two passes [s];

• integral: integral of the past error;

• lastError: last value of the error;

• maxSpeed: maximum speed which the electrode can reach [cm/h];

13

14 Chapter 3. The Controller

• zmin, zmax: minimum/maximum height [m];

• Kp, Ki, Kd: proportional/integral/derivative gain.

The function returns three values, one of which is the required output (in the

case of this controller it is the new position of the electrode being considered),

the other two are used to update the integral component and the measured error,

they are therefore numerical values required to keep the controller up-to-date

during its operation.

• z + dh: updated position of the electrode;

• integral: updated value of error’s integral;

• lastError: updated value of the error for the next iteration.

3.2 Controller Operation

First, the controller calculates the error between the setpoint value and the last

measured value of the output to be controlled. It is necessary that the integral

term and the error value have already been initialised in order to be able to

perform all necessary operations. For this reason, these values must be set to

zero before starting a simulation. In the case of this Thesis, it was decided

to initialise the controller parameters within the Simulate() function, in the

MetaModel.py source file, which contains the class that deals with the operation

of the meta-model.

3.2.1 Integral term and windup

The integral term is to be initialised outside the controller function, and is to be

kept up-to-date using the second output of the function. Once the error has been

calculated, the integral term is updated and an anti-windup check is performed

using the function:

clamp(value, lower, upper).

This function checks whether a given value has exceeded certain limits given

as an argument. The integral component, even if the position of the controlled

electrode reaches the limit given by zmax or zmin, continues to increase or de-

crease if not handled. In fact, it depends on the measured error which, when

3.2 Controller Operation 15

the controller saturates, continues to be calculated and may increase even though

the limits have already been reached. This phenomenon, as explained in the first

chapter, is known as windup. In the present implementation of the controller, this

has been remedied firstly by calculating the maximum allowed height variation,

called dh max.

This value also depends on the maximum permitted electrode speed, which

in the present discussion is 75 cm/h.

Through the value dh max, it is possible to calculate the contribution of the

integrative part and ensure that it is never greater in absolute value than dh max.

By doing so, the integral term will stop growing once a certain limit is reached

and the windup phenomenon will be very limited.

In order to obtain this result, the function clamp is invoked as follows:

integral += Ki*error*dt

integral = clamp(integral, -dh_max, dh_max).

It can be seen that the clamp function not only checks that the integral value

is contained within the bounds, but also returns the correct value if it exceeds

them, i.e. dh max or -dh max.

3.2.2 Maximum and minimum electrode’s height

management

It is important to note the presence of limits necessary for the correct operation

of the controller. As mentioned earlier, electrodes can reach a maximum and

minimum height, which are 0.10 m and 0.75 m respectively. These limits are

respected through the intervention of the function:

isPositionValid(z,dh,zmin,zmax).

The returned value is a boolean, which thus makes it possible to determine

whether the electrode height limits have been exceeded. If this is the case, the

height control will be interrupted and the height will remain fixed at the maximum

or minimum limit. This ’lock’ will only intervene if the controller, in addition to

having reached the limit, calculates an increase or decrease in height such that

this limit is further exceeded. In the event that it attempts to move back to

values within the limits, the position will not be locked but will be allowed to

move to valid values.

Once the various checks on the windup and electrode positions have been car-

ried out, the clamp function is invoked one last time to ensure that the maximum

permitted speed is not exceeded. Finally, the value of lastError is updated with

16 Chapter 3. The Controller

the error just calculated and the three required outputs are returned.

3.3 Time Interval design

An input that greatly affects the performance of the controller is the time interval

value dt. A smaller value leads to greater accuracy and speed of response, but also

to a higher cost in terms of computation. It is not easy to estimate the optimal

value of this parameter. For linear systems, whose time constants are known,

it must be 1/20th of the slowest mode. The furnace considered in this Thesis

is strongly non-linear, so some tests were preferred to find a trade-off between

computational complexity and controller efficiency.

As a first simulation, we focused on the first of the three electrodes. The sys-

tem was simulated for a number of iterations equivalent to 24 hours of operation,

in the absence of noise on all inputs. The output to be controlled chosen was the

electrode resistance, with a setpoint of 0.7 mΩ. Only the value of dt was varied,

from 10 s to 90 s. All other parameters were kept constant at intermediate values

between those possible in the online simulator. As limits, zmin = 0.1 m, zmax

= 0.75 m and as maximum electrode speed 75 cm/h were set. The simulation

results are shown in the figure 3.1. A loss of performance of the controller can

clearly be seen, albeit very small.

Figure 3.1: dt variation without noise

As a second step, noise was introduced on the first electrode current and

the test was repeated. The noise used is Fractal Noise, the way in which it

was generated will be explained in Chapter 4 of this discussion. The maximum

amplitude of this noise in the simulation was 8 kA. This time, the difference in

3.3 Time Interval design 17

performance as dt increases was much more visible. Both the noisy current used

and the result with regard to resistance control can be seen in figure 3.2.

(a) (b)

Figure 3.2: dt variation with noisy current

The same noise was maintained and this time dt was made to vary between

1 s and 9 s. Below is the result of the processing, and a zoom to observe the

differences in more detail. It can be seen that the performance is better than

the previous simulation, but that above a certain value the improvement starts

to be reduced. It is also useful to point out that a small value of dt corresponds

to a large computation time, due to the greater number of iterations performed.

It should also be anticipated that, as constructed, Fractal Noise begins to be

computationally expensive the larger the number of samples required. This aspect

will be dealt with in more detail later on.

(a) (b)

Figure 3.3: Smaller values of dt

In conclusion, it can be seen that the performance of the controller starts to

be very poor for dt values greater than 10 seconds. It must be considered that

18 Chapter 3. The Controller

noise can actually be added to all the system input parameters listed in Chapter 2.

By doing so, performance may be even worse than in previous simulations, where

the only noisy parameter was current. On the other hand, it is not advisable to

keep the value of dt too low, given the high number of iterations for which the

simulator was designed. For this reason, a dt value of around 10 s was considered

a good compromise.

3.4 Further Improvements

Many things can still be improved. For example, the controller uses the position

of the furnace electrodes as input and output. Instead, the quantities to be

controlled and kept constant can be chosen from the outputs listed in Chapter

2. The quantity controlled and the quantity to be controlled do not therefore

belong to the same domain. For this reason, it would be advisable to provide

the controller with an error mapping, which allows different domains to talk to

each other. This would also help in view of the fact that the electrodes saturate

in position, and thus to achieve a more proportionate control by mapping the

position range with the range possessed by the output variable. This would limit

the saturation phenomenon.

Finally, when the noisy inputs become multiple, the controller often incurs

the phenomenon of position saturation. This is due to the fact that the only

parameter on which it can act is the height of the electrodes, and this is often not

sufficient to properly control the behaviour of the furnace. It is therefore optimal

to switch to a higher control level when saturation of the electrode positions

occurs, thus allowing more sophisticated controllers to act and returning control

to the PID once the saturation effect is extinguished.

In the industrial plant, this is addressed by changing the tapping position on

the transformers that feed currents into the systems. This is not implemented in

the current simulator and will not be discussed further.

Chapter 4

Noise

4.1 Introduction

The controller illustrated above is also designed to work in the event that noise

affects the input parameters of the furnace during its operation. Consequently, it

was decided to use a particular type of noise, which is very common in image pro-

cessing due to its characteristics of regularity and apparent randomness, despite

being a completely deterministic noise. Such noise is called Perlin Noise [4, 5]

and was proposed by Ken Perlin in 1985, after which it has become increasingly

popular in many engineering, computer and artistic applications.

4.2 Perlin Noise

Perlin Noise, as already mentioned, is very popular for image processing and the

development of multimedia applications. Its characteristic is to simulate very well

elements found in nature such as rough surfaces, depressions, flames, mists or sea

surfaces. It owes this to its very regular appearance that very faithfully recreates

what happens in the real world. Considering a rock surface, for example, a distant

observer can detect depressions and roughness, but if the observer approaches two

infinitesimal points they will be very close to each other and at an almost identical

level. Consequently, when large overall variations but almost zero variations in an

if concentrated in a short space/time interval are needed, adopting Perlin Noise

can be a useful expedient.

19

20 Chapter 4. Noise

4.2.1 Usage

Perlin Noise can be created in various dimensions. For example, using two dimen-

sions, it can be used to recreate smoke or a rough surface. In three dimensions, it

is widely used to reproduce landscapes full of depressions and reliefs, or wave-like

motions. The case that is of interest in this discussion is in one dimension.

Figure 4.1: Example of three-dimensions Perlin Noise [4]

Figure 4.2: Example of three-dimensions Perlin Noise [4]

Figure 4.3: Example of two-dimensions Perlin Noise [4]

4.2 Perlin Noise 21

The aim was to add noise to the input quantities to the furnace, listed in

Chapter 2. These quantities are one-dimensional signals, functions of time and

considered constant. For example, the current flowing in the electrodes is an

input having a certain value which is changed neither by the controller nor by

external agents, and which is subject to noise within a certain range and which

is desired to be as random as possible but at the same time very smooth.

A dedicated python library named perlin-noise [6] was used, which allows

various parameters of the noise to be set, such as the number of octaves or the

starting seed of the noise. The function that will be illustrated below makes it

possible to create a noisy signal with a maximum amplitude and an indicative

’frequency’ that is predetermined. An example of a noisy signal created in this

manner can be seen below.

Figure 4.4: One dimensional Perlin Noise

It can clearly be seen that the noise thus obtained has the characteristics

listed above, but is still not optimal for modelling the physical noise to which

the various input parameters of the furnace are subjected. The main problem

concerns the handling of octaves, which will be discussed in more detail in the

next subsection. Evident is the presence of zeros whose positions divide the time

axis into equal parts. Such a systematic nature of this phenomenon undermines

the naturalness one wishes to achieve. Moreover, the perturbations are in any case

22 Chapter 4. Noise

too regular and oscillatory in form. For this reason it was decided to implement

Fractal Noise, based on Perlin Noise but with certain peculiarities. It will be

explained in section 4.3.

4.2.2 Gradients

Perlin Noise is also called Gradient Noise, as it relies on the use of random

gradients to be calculated.

In the present discussion, we will focus mainly on one- and two-dimensional

Perlin Noise, which can easily be extended to the three- and multi-dimensional

case.

The main parameter to be considered is the number of octaves. This value

represents the number of units into which the space containing the noise is sub-

divided, and is therefore equivalent to the number of intervals into which the

time axis is subdivided in the one-dimensional case treated in this thesis. In two

dimensions, on the other hand, the number of octaves is the number of intervals

into which the two main axes of the two-dimensional space into which the Perlin

Noise is to be drawn are divided.

Figure 4.5: One dimensional Perlin Noise octaves and gradients

4.3 Fractal Noise 23

Once the number of octaves and thus the grid has been chosen, a random

gradient of unit length is associated with each of its nodes. In the latest versions of

Perlin Noise, this gradient is chosen from a defined number of possibilities instead

of the infinite number of unit gradients that can be associated with a point. In

the one-dimensional case, gradients can only have one direction coinciding with

the one axis, the temporal axis, and two directions, i.e. to the right and to the

left. Then for each point that does not belong to the grid nodes, the nearest node

is considered and the scalar product between the distance from it and its gradient

is calculated. Once all the scalar products have been calculated, the results are

interpolated with a polynomial function of appropriate degree.

Once this procedure is understood, it can be deduced that the presence of

zeros dividing the time axis into equal parts is due to the fact that at grid nodes,

the distance to the nearest node is zero. The scalar product therefore results in

zero. Furthermore, the case in which I have the minimum possible value is when

the gradients are outside the distances of the considered interval, while I have the

maximum value if the gradients are directed inwards.

4.3 Fractal Noise

The noise that will be described in this section is widely used, in one dimension, to

recreate the tremors of an earthquake detected by a seismograph, or the random

stroke of a pen on a sheet of paper. It is appreciated for its naturalness and

apparent randomness, and is created from Perlin Noise, the characteristics of

which were discussed in the previous section.

Fractal noise is noise that can be obtained by adding different noise com-

ponents created with Perlin Noise. These components differ in the number of

octaves and amplitude. The larger amplitude component has fewer octaves, and

behaves as if it were the carrier. The other components have an increasing num-

ber of octaves as the amplitude decreases. In this way, irregularities with a higher

’frequency’ will have a smaller modulus, while the more regular ones will make

up the bulk of the noise amplitude. An example of fractal noise is the one in the

image 4.6, obtained by summing 4 components of Perlin Noise with a duration

of 24 h of number of octaves 4, 8, 16, 32 respectively and amplitudes 1, 0.5, 0.25

and 0.125 and redeemed to 8.

This type of noise is better than Perlin Noise for modelling disturbances in

submerged arc furnaces. The rises and falls are very unpredictable, but at the

24 Chapter 4. Noise

Figure 4.6: One dimensional Fractal Noise

same time gradual and irregular. The only shortcomings are of a computational

nature. In fact, more Perlin Noise is required to create this noise, which translates

into a greater complexity the more components are required. In the present

discussion, we have chosen to keep 4 components as in the example image 4.6

scaled in the same way. The number of octaves of the carrier can instead be

chosen by the user, as can the maximum amplitude of the noise. More details on

the implementation can be found in the next section.

4.4 Implementation

In this section, the noise implementation in the file NoiseFunction.py will be

discussed. The function that handles all implemented noise types is:

Noise(noisemodel, T, dt, f, A)

This function accepts the following values as input:

• noisemodel: string which represents the type of noise chose (e.g. sine, perlin,

fractal);

• T: length of simulation time [s];

• dt: time interval between two passes [s];

• f: frequency of noise carrier [Hz];

4.4 Implementation 25

• A: noise amplitude;

The output returns a vector of length equal to the number of samples (T/dt)

containing for each element the noise value selected by ”noisemodel” at that

instant in time. This vector can be of the desired amplitude and frequency thanks

to the parameters ”f” and ”A”, and can then be added to the measurements of

the various quantities to be noisemodelled.

First, the Noise function creates the time vector t of the appropriate length

and initialises a vector of zeros that will then contain the noise produced. Next,

the control on ’noisemodel’ intervenes, allowing the right shape of the noise to be

chosen. Below is a brief explanation of the implementation of Perlin Noise and

Fractal Noise.

4.4.1 Perlin Noise implementation

The noise is created through the PerlinNoise function belonging to the perlin noise

library. An object of type PerlinNoise is created by a dedicated constructor, the

argument of which allows the number of octaves to be entered. As far as octaves

are concerned, their amount is calculated by multiplying the total time T by the

frequency f. In fact, it has been assumed that the frequency of a PerlinNoise can

be roughly represented by the number of octaves in the time unit.

Once this is done, the noise vector is calculated. The object of type Perlin-

Noise accepts real numbers as arguments, providing the desired noise values. A

scan is then made of as many elements as necessary to fill the noise vector. If

integers are supplied as arguments, the result returned by the PerlinNoise object

is zero. To remedy this, values between 0 and 1 are provided by means of a scaling

operation. The noise thus obtained is then adjusted to the desired amplitude A.

4.4.2 Fractal Noise implementation

Fractal Noise is obtained by adding 4 Perlin Noise of appropriate parameters.

To do this, 4 objects of type PerlinNoise are created, with an increasing number

of octaves (they are doubled each time). The amplitudes of the 4 noises are

gradually reduced by halving them each time. The component with the largest

amplitude is considered the carrier, and its number of octaves is calculated as in

the previous section by multiplying T by f. One cycle allows these 4 components

to be added together and generate the noise vector. At each iteration, a real

number between 0 and 1 is given as the argument of the 4 noises, similar to

26 Chapter 4. Noise

the Perlin Noise seen previously. It is useful to consider that each component

has a multiple or submultiple number of octaves with respect to the others. For

this reason and because of what was said in this chapter on Perlin Noise, even

summing the 4 noises would still have zeros dividing the time axis. To overcome

this problem, shifts are randomly generated which cause each of the 4 components

to be out of phase with respect to the others. The result is that the zeros are no

longer present systematically but randomly in the noise. Again, once the basic

noise has been obtained, scaling is performed in order to obtain a signal of the

desired maximum amplitude.

Chapter 5

Simulations

5.1 Introduction

This chapter will show four simulations in which the controller responds to inputs

affected by both Perlin Noise and Fractal Noise, in order to provide an idea of a

possible calibration of the constants Kp, Kd and Ki. As previously mentioned, no

advanced control techniques for non-linear systems were used in order to optimise

the controller, due to the great complexity of the system and since this was beyond

the scope of the present discussion, which is limited to implementing a generic

PID controller and a particular type of noise that will not necessarily be coupled

in the future.

With regard to the various simulation parameters, the following list shows all

the values used in each of the simulations.

• controller’s parameters:

– Kp = 0.07;

– Ki = 0.000008;

– Kd = 0.00000005;

– output type = ’Resistance’;

– setpoint = 0.7 mΩ

– dt = 10 s;

– maxSpeed = 75 cm/h;

– zmin = 0.1 m;

– zmax = 0.75 m.

27

28 Chapter 5. Simulations

• starting default parameters:

– default z1 = 0.3 m;

– default z2 = 0.325 m;

– default z3 = 0.29 m;

– default I1 = 116 kA;

– default I2 = 116 kA;

– default I3 = 116 kA;

– default CW T = 25 cm;

– default sigma arc = 383.33 S/m;

– default sigma CW = 300 S/m;

– default sigma SiC12 = 60 S/m;

– default sigma SiC23 = 60 S/m;

– default sigma SiC31 = 60 S/m;

– default sigma coldCharge = 15 S/m;

– default sigma hotCharge = 15 S/m;

– default sigma lining = 1000 S/m.

• noise’s amplitudes:

– ERR I1 = 8 kA;

– ERR I2 = 8 kA;

– ERR I3 = 8 kA;

– ERR CW T = 15 cm;

– ERR SIGMA CW = 100 S/m;

– ERR SIC12 = 40 S/m;

– ERR SIC23 = 40 S/m;

– ERR SIC31 = 40 S/m;

• noise carrier periods:

– I1, I2, I3: 6 h;

– CW T: 1 h;

5.2 Simulation 1 29

– sigma CW: 20 minutes;

– sigma SiC12, sigma SiC23, sigma SiC31: 6 h.

• total time of simulation: 24 h.

These parameters have not been varied from time to time in order to enable

the simulations to be compared with each other. The simulations differ firstly by

the type of noise used (Perlin or Fractal) and secondly by the number of input

quantities to which this noise was applied. For both Perlin and Fractal, there is

one simulation with only the three noisy electrode currents, and a second with

noise on most of the system’s inputs. A discussion of the results can be found in

the relevant sections.

5.2 Simulation 1

This section will discuss the behaviour of the PID controller applied to the sub-

merged arc furnace, with the currents I1, I2 and I3 of the three electrodes affected

by Perlin-type noise. Below, some graphs will illustrate the noisy inputs and the

results obtained.

Figure 5.1: Noisy currents

The pattern of electrode positions on which the PID acts is shown in figure

5.2. The resistance value of the three controlled electrodes is shown in figure 5.3.

The result is quite satisfactory, response times are very fast and the controller

never goes into saturation, maintaining a minimal error at steady state.

30 Chapter 5. Simulations

Figure 5.2: electrode’s positions

Figure 5.3: resistance

5.3 Simulation 2

In this case, in addition to the noise on the currents, sigma CW, CW T, and

SiC12, SiC23, SiC31 became noisy. Below are graphs illustrating the noisy trends

of the main inputs (in order not to burden them with too many pictures, it was

decided not to attach the SiC trends). It is worth noting the rapidity of variation

of sigma CW, which has a carrier period of only 20 minutes, compared with the

daily duration it is supposed to simulate.

This time the results are not as good as before. Several noisy inputs lead to

unpredictable variations in the resistance parameter to be controlled, and in cases

where effects due to different parameters overlap, it is very easy for the controller

to go into saturation. It should be noted, however, that with the anti-windup

control once the controller exits the saturation zone, it settles more easily than

5.3 Simulation 2 31

Figure 5.4: noisy currents

Figure 5.5: Crater Wall Thickness

Figure 5.6: sigma CW

it would if this technique were not employed.

Below are graphs of the trend in electrode positions, on which the saturation

32 Chapter 5. Simulations

phenomenon can be observed, and the resistance trend, which in this case is not

satisfactory. Further on, considerations will be made on possible solutions to

remedy this problem.

Figure 5.7: electrode’s position

Figure 5.8: resistance

5.4 Simulation 3

Completely mirroring simulation 1, only the currents of the three electrodes were

made noisy. In this case, however, the implemented Fractal Noise was applied.

The currents are shown in figure 5.9.

Also similar to what was seen in the first section, the figures for the position

of the electrodes and the resistance’s value are shown below.

5.4 Simulation 3 33

Figure 5.9: noisy currents

Figure 5.10: electrode’s positions

Figure 5.11: resistance

It is immediately noticeable that, although the results are acceptable, the

controller struggles much more with Fractal Noise than with Perlin Noise. This

34 Chapter 5. Simulations

is due to the fact that the Fractal Noise is much more jagged, as a result the

electrodes are subject to continuous changes in direction and position, often very

fast. This effect already anticipates the fact that adding noisy parameters will

lead to a very poor result when using Fractal Noise with this controller.

5.5 Simulation 4

The last simulation resembles the second one presented above, except that in this

case Fractal Noise was used on the input variables (thus, in addition to the three

currents, the three SiCs, sigma CW and CW T). As before, the input graphs are

available from figure 1 to figure 4. Next, the two graphs depicting the electrode

positions and the resistance trend can be found.

Figure 5.12: noisy currents

Figure 5.13: Crater Wall Thickness

5.5 Simulation 4 35

Figure 5.14: sigma CW

Figure 5.15: electrode’s positions

Figure 5.16: resistance

As can be seen, the result cannot be said to be satisfactory. There is a strong

saturation especially in the position of electrode 2. This leads to intervals where

36 Chapter 5. Simulations

the electrode is at its highest but in practice its resistance is not properly con-

trolled. This result is in line with what has already been mentioned in simulation

3. Fractal Noise is much more difficult to control than Perlin.

5.6 Conclusions

Some conclusions can be drawn from the previous four simulations. First, the

results were satisfactory as long as the number of noisy parameters was reduced.

Increasing the inputs subject to noise, as was easily expected, results in more dif-

ficult controllability. Furthermore, Fractal Noise proved to be much more difficult

to control than Perlin. This too was easy to assume, since each Fractal is a sum

of four different Perlin Noises. It should be considered in addition that one of the

noisy parameters that make control more difficult is sigma CW. Its period is very

short, only 20 minutes, so when the noise is created, the associated octaves in

both the Fractal and Perlin will be very small. This noise is therefore abrupt and

difficult to follow optimally, also considering the fact that the electrodes must be

subjected to a well-established speed limit. In the end, it is advisable to accom-

pany the PID controller with some type of more advanced control, which allows

it to be optimised to this type of noise. Furthermore, if the controller has access

only to the electrode positions, it would be good to introduce another additional

controller that intervenes when saturation occurs as it is done in the industrial

plan with the tapping of the transformers. Such improvements can be made with

a deeper understanding of the furnace meta model than is present in this Thesis.

Please refer to a more detailed discussion for any future improvements.

Chapter 6

Code

Here is the code of the source file ’NoiseFunctions.py’ containing all functions

concerning the implemented controller and noise.

1 # -*- coding: utf -8 -*-

2 """

3 Created on Fri Mar 25 09:44:14 2022

4

5 @author: mafr

6

7 Noise function modified on Tue Apr 26 21:23 2022 by Enrico Miotto

8

9 This script contains a Noise function , a controller function

10 and some functions used by the controller during its operation.

11

12 The noisemodel has three mode:

13 sine: creates a sinewave vector

14 perlin: creates a Perlin noise vector

15 fractal: creates a fractal noise vector

16

17 The noise is currently added as an array with noisedata for the

complete

18 time series to be simulated. This should be changed.

19

20

21 """

22

23 import numpy as np

24 from perlin_noise import PerlinNoise

25 from random import random

26

27

37

38 Chapter 6. Code

28 def Noise(noisemodel ,T,dt ,f,A):

29 """

30 Noise function

31

32 Parameters

33 ----------

34 noisemodel : type of noise (e.g. sine , perlin , fractal ...);

35 T : length of simulation time [s];

36 dt : time interval between two passes [s];

37 f : frequency of noise ’s carrier component [Hz];

38 A : noise ’s amplitude;

39

40 Returns

41 -------

42 noise : vector that contains the required noise

43 (it is full of zeros if noisemodel is not valid).

44

45 """

46

47 t = np.arange(0,T,dt)

48 noise = np.zeros(len(t))

49

50 if noisemodel == ’sine’:

51

52 noise = A*np.sin(2*np.pi*f*t)

53

54 elif noisemodel == ’perlin ’:

55

56 perl = PerlinNoise(octaves=int(T*f))

57 y = [perl((i*dt)/T) for i in range(int(T/dt))]

58 scaleFactor = max(abs(max(y)), abs(min(y)))

59 noise = A*(np.asarray(y)/scaleFactor)

60

61 elif noisemodel == ’fractal ’:

62

63 noise = []

64 numberOctav = int(T*f)

65 noise1 = PerlinNoise(octaves=numberOctav)

66 noise2 = PerlinNoise(octaves=numberOctav *2)

67 noise3 = PerlinNoise(octaves=numberOctav *4)

68 noise4 = PerlinNoise(octaves=numberOctav *8)

69

70 shift1 = 0.5* random ()

71 shift2 = 0.5* random ()

39

72 shift3 = 0.5* random ()

73 shift4 = 0.5* random ()

74

75 for i in range(int(T/dt)):

76 noise_val = noise1(shift1 + (i*dt)/T)

77 noise_val += 0.5* noise2(shift2 + (i*dt)/T)

78 noise_val += 0.25* noise3(shift3 + (i*dt)/T)

79 noise_val += 0.125* noise4(shift4 + (i*dt)/T)

80 noise.append(noise_val)

81

82 noise = np.asarray(noise)

83 scaleFactor = max(abs(max(noise)), abs(min(noise)))

84 noise = A*(noise/scaleFactor)

85

86 elif noisemodel == ’file’:

87 temp = np.fromfile("FractalNoise.dat", dtype=float)

88

89 noise = temp [0:T:dt]

90

91 return noise

92

93

94

95 def controller_function(output_type ,

96 setpoint ,

97 last_value_out ,

98 z,

99 dt ,

100 integral ,

101 lastError ,

102 maxSpeed ,

103 zmin ,

104 zmax ,

105 Kp = 0.07,

106 Ki = 0.000008 ,

107 Kd = 0.00000005):

108 """

109 Created on Tuesday April 19 20:09 2022

110

111 @author Enrico Miotto

112

113 Implementation of a PID controller which acts on electrode ’s

position.

114

40 Chapter 6. Code

115 Parameters

116 ----------

117 output_type : the type of output needed

118 (e.g. power , resistance , ecc ...);

119 setpoint : setpoint that the PID will try to achieve;

120 last_value_out : last measured output value;

121 z : last position of the electrode [m];

122 dt : time interval between two passes [s];

123 integral : integral of the past error;

124 lastError : last value of the error;

125 maxSpeed : maximun speed that the electrode can reach [cm/

hour];

126 zmin : minimum height [m];

127 zmax : maximum height [m];

128 Kp : The value for the proportional gain Kp;

129 Ki : The value for the integral gain Ki;

130 Kd : The value for the derivative gain Kd.

131

132 Returns

133 -------

134 z + dh : updated position of the electrode;

135 integral : updated value of error ’s integral;

136 lastError : updated value of the error for the next

iteration.

137

138 """

139

140 error = setpoint - last_value_out

141 dh_max = (maxSpeed * dt) / 360000 # [m]

142

143 # INTEGRAL

144 # updates the integral of the error which will be returned

145 integral += Ki * error * dt

146 integral = clamp(integral , -dh_max , dh_max) #avoid integal

windup

147

148 # DERIVATIVE

149 derror = error - lastError

150

151 # dh is the quantity to add to the electrode ’s height

152 dh = error * Kp + integral - (derror / dt) * Kd # [m]

153

154 # checks if the controller has to act on the position

155 if not isPositionValid(z, dh , zmin , zmax):

41

156 dh = 0

157

158 # checks if the max speed is reached

159 dh = clamp(dh , -dh_max , dh_max)

160

161 # updates the error which will be returned

162 lastError = error

163

164 return z + dh , integral , lastError

165

166

167 def isPositionValid(z, dh , zmin , zmax):

168 """

169

170 Created on Thursday April 28 15:50 2022

171

172 @author Enrico Miotto

173

174 function that checks if the position of one electrode is

valid.

175

176 Parameters

177 ----------

178 z : actual position of the electrode;

179 dh : further increment/decrement of the position;

180 zmin : minimum height;

181 zmax : maximum height.

182

183 Returns

184 -------

185 true if the position is valid , false otherwise.

186

187 """

188 return (z >= zmin and z <= zmax) or (z < zmin and dh > 0) or

(z > zmax and dh < 0)

189

190 def clamp(value , lower , upper):

191 """

192 Created on Mon May 23 11:59 2022

193

194 @author Enrico Miotto

195

196 function that checks if a quantity has exceeded

197 its upper or lower bound.

42 Chapter 6. Code

198

199 Parameters

200 ----------

201 value : TYPE

202 DESCRIPTION.

203 lower : lower bound.

204 upper : upper bound.

205

206 Returns

207 -------

208 value if it’s between the bounds ,

209 higher or upper bound otherwise.

210

211 """

212 if value is None:

213 return None

214 elif (upper is not None) and (value > upper):

215 return upper

216 elif (lower is not None) and (value < lower):

217 return lower

218 return value

Listing 6.1: Didascalia.

References

[1] Åström K. J., Control System Design, 2002.

[2] Cecchin F., Regolatori PID autotunig per il controllo della temperatura, 2014.

[3] Monsen I., Bachelor Thesis, 2022.

[4] Perlin K., An Image Synthesizer, 1985.

[5] Perlin K., In the beginning: The Pixel Stream Editor, Retrieved June 30,

2022.

[6] perlin-noise, https://pypi.org/project/perlin-noise/, version 1.12.

[7] SAFECI - Silicon Furnace Electrical Conditions Metamodel, https://

safeci.web.norce.cloud/, v.2022.05.25.

[8] Sparta M., Fromreide M., Risingg̊ard v. K., Halvorsen S. A., Electrical con-

ditions in submerged arc furnaces: an online simulator, 2022.

[9] Testolin G., Controllori PID e tecniche ”anti wind-up”, 2013.

[10] Value Noise and Procedural Patterns: Part 1,

https://www.scratchapixel.com/lessons/procedural-generation

-virtual-worlds/procedural-patterns-noise-part-1/

simple-pattern-examples,

last consultation 30/06/2022.

43

