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Abstract

In the last years, especially with the coronavirus pandemic, the ecommerce had in

creased such as never before. Analyzing the ecommerce orders, we can assert that they

are generally small in batch and with strong demand’s variability, while the ecommerce

warehouses are large in quantity and the customer wish a very short delivery time and

low prices. For all this reason, order fulfillment can be quiet challenging for warehouses

and for the logistics we are used to.

This paper has such as primary objective to analyze the RMFSs with different manage

ments where it changes the warehouse store policy. In particular, it analyze two different

layouts with two different kind of pod: multi product pods, where it is stored a various type

of items, without special assignment, monoproduct pods, where it is possible to store

only one kind of items, and with these pods we analyze two different layout: a random

layout where the pods are stocking in a random position and an classbased policy lo

cation where the pods have a precise place decide in according with his class contents.

After a brief introduction part about warehouse system, with a special focus on picking

operations, it describes the RMFSs, the general simulation methodology we study the

three methodology described previously for understanding the performance and the best

solutions.
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Introduction

In recent years, consumers’ buying behavior has changes, more people prefer to buy and

sell in digital stores from the comfort of their sofa or in the comfort of their houses.

The last data of eCommerce, for Italy only for the 2022, published by NetComm [1] show

that the online purchases amount to thirtyfour billions of euro, whit an increase of 10%

over the 2021, with a little decrease with respect to the forecast [2].

This growth confirms the trend in eCommerce, bringing the incidence of online sales

around 11% of total sales, thanks to food and other typical gourmet products, design

furniture, home living and beauty such as reported in Table 1.

Apparel Food and grocery Home living Beauty Total Online
Growth +10% +17% +14% +8% +10%

Amount 5,6 billion 4,8 billions 3,9 billions 1,2 billions 34 billions

Table 1: Amount and Growth in eCommerce 2022 respect 2021 [3]

.

The main trend in eCommerce is increasingly related with the optimization of processes,

supply chain and logistic management, and all that, not only to create a better experience

for the customers, but especially to keep costs down: energy costs, inflation, geopolitical

instability and supply chain crisis as the last months require.

The COVID19 pandemic has increased the variety and the frequency of customers pur

chase while the companies augmented their investment on digital technology looking for

ward to the socalled industry 4.0. Browsing the Internet you can find various data on

ecommerce, such as that 38% of online shoppers will abandon their order if delivery

takes more than a week [4].

From a logistics point of view, all of these information mean great challenges: enormous

increase of orders and stored materials, smaller handling batches with almost the same

quantity of products sold and short order management time and short delivery time.
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For all the previous reasons is it easy to understand why there is the need to explore

the new challenges for the warehouse management, finding new strategies for material

handling operations and storing policies, looking for optimization of the process.

To solve the inefficiency of traditional picking processes and to improve the performance

of the warehouse, in the first years of twentieth century, RMFS was born.The robotic mo

bile fulfillment systems are not well investigate in the literature, yet. For this reason, this

work aimes to analyze their performance, within three different managements. In Chap

ter 1 we analyze the warehouse in general, with a special focus on picking process and

smart warehouses.

In Chapter 2, we analyze the robotic mobile fulfillment systems, his history and function

ality and some information about the study about the RMFS performance.

Going on into the paper, it is possible to find a brief introduction about the simulation

model, in Chapter 3, and, in the second part of this work we start to talk about the simula

tion model (Chapter 4), his verification and validation (Chapter 5), his results in Chapter 6

and, in the Chapter 7 what may be the future work related.
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1 Warehouse

Warehouses are an important, and in the same time also critical, player in supply chains.

According to Kearney et al. (2004), warehousing contributed to about 20% of the surveyed

companies’ logistics costs in 2003 [5]. Warehouse assumes different meanings: they are

commonly used for storing and buffering products at and between point of origin and point

of consumption, but are used also as distribution centers that indicates transhipment,

crossdock or platform centre. We can summarize their main purposes in:

1. Storing raw materials, semifinished products and exceeded materials;

2. Reduce demand variability through the use of stock;

3. Increase the customer satisfaction with a lower transportation leading time;

These aspects empathize the competitive advantages for companies and it allows to un

derstand the importance of optimization inside the process in the supply chains.

For a better understanding of the topic, in section 1.1 we will briefly analyse the ware

house management and the operations done inside, with a special focus on picking pro

cess, while in section 1.3 we shortly introduce the main aspects of smart warehouses that,

more and more, the companies choose from an industry 4.0 perspective.

1.1 Warehouse management
Warehouse management is the art of control and coordination of the daybyday activities

within a warehouse to ensure the efficiency and effectiveness for all operations inside a

warehouse [6].

With warehouse management, usually, several different processes are considered. It is

possible to classify them as:

1. Warehouse layout design and optimization: is an essential strategic decision

related with storage space for goods, for working space. The main areas inside a

warehouse are for receiving stock, staging, storing, picking, packing, shipping and

for the offices.

A simulative study with three different managements 3



2. Goods acceptance and receipt: all the activities from delivery notification to stor

age process, such as good acceptance, good receipt and good inspection for quality

checks;

3. Storage: this kind of task can be done handily (manual storage systems) or us

ing automatic systems and comprise the identification of the different articles and

decision about their location;

4. Picking and packing: in this part of the processes, it is possible to include all the

decision, about the fulfillment policies and the material flow to get the correct product

at the end of the operation;

5. Shipment: here we found all the activities of packing and delivery of the goods that

are leaving the warehouse.

6. Optimizing internal processes and improving overall warehouse performance:

these activities may concern themanagement stock, the policies of warehouseman

agement and the constant control of KPIs.

In all part of these it necessary to improve the overall quality of service, productivity and

efficiency while minimizing costs and failures.

1.1.1 Optimization in warehouse

Optimization is the process of making a system more effective by adjusting the different

variables inside it for the achievement of economical, technical and organizational goals.

It is important also to consider others problems that occurs during the different processes,

especially, taking into consideration that an error during the picking process, increases the

total cost with new activities such as:

• Accepting returns;

• Labour cost due to manual handling and checking of the returned item;

• Picking the replacement item;

• Repacking;

• Redelivery;
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• Administration costs.

Figure 1.1: Warehouse activities as a percentage of warehouse costs [7]

The analysis reported in Skerlic et al. about the distribution cost for each different opera

tions show that the most labourintensive and timeintensive process is the order picking,

which accounts for 36% of the total costs, but some authors estimate this value being at

around 50% [7]. It is very easy to understand why the picking process is considered one

of the most critical and why several authors focus their analysis and research work.

1.2 Picking process
The picking is the act of collection components and items from a storage area to fulfill an

order aimed to satisfy a (internal or external) customer request.

The most common objective of order picking systems is to maximize the service level

subject to resource constraints such as labour, machine and capital, where the service

level is a combination of a variety of factors such as average and variation of order delivery

time, order integrity and accuracy. [Goetschalckx and Ashayeri, 1989].

This definition allowed to go forward in the picking process comprehension and it is useful

to split it in seven different tasks:

1. Travelling to, between and from pick locations;

2. Searching for pick locations;

3. Researching and bending to access pick locations;

Robotic Mobile Fulfillment Systems 5



4. Extracting items from storage location;

5. Documenting picking transactions;

6. Sorting items into orders;

7. Packing the items.

Also monitoring the performance of these is very important inside warehouses and can

be done with seven different categories reported in table 1.1 where some measurement

for monitoring are also indicated.

Measurements

Time
Lead time
Picking time
Request information time

Throughput

Human factors
Cognitive learning
Ergonomic evaluation
Picking errors

Quality Order fill rate
Picking accuracy

Flexibility

Operational efficiency Picking productivity
Resource utilization

Costs

Investment
Maintenance costs
Order processing
Inventory costs

Table 1.1: Performance categories and their measures parameters [8]

The analysis on the performance of those activities is extremely useful, in particular if we

look at the measurements of time and costs. With the first measurements it possible to

consider also indefinite submeasurements of time for activities such as travel, research

of components, request of information, extracting, counting, sorting and documenting but,

basically, the only one that add value in the process is the extracting task.

In particular, according with Bartholdi and Hackman (2005) ”Travel time is waste. It costs

labour hours but does not add value” and the research’s work of Tompkins et al. (2003),

showed in fig. 1.2, estimates it as the 50% of the total picking time.
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Figure 1.2: Typical distribution of an order picker’s time [9]

There are different thing which may be implemented in order to improve the time perfor

mance in picking process, for example [9]:

• Documenting: automate the information flow, with solution as computer aided order

picking, automatic identification systems, lightaided order picking, RFID systems;

• Reaching. The best location for the workers the waist level: system such vertical

carousel, Miniload and personabroad AS/RS are perfect solutions;

• Sorting. These activities depends by the picking policies, and, in particular, if one

picker is assigned per order and one order per tour it is possible to eliminate;

• Searching: it is possible to reduce these time with picktolight systems that it il

luminate the pick locations or with solutions able to bringing the pick locations to

picker, or taking the picker to pick location (stocktopick solutions or personabroad

AS/RS)

Thanks to these strategies is possible to reduce the ”wasted” time overall the activity, but

on travel time (or travel distance) they do not have a significant impact, therefore still the

focus in optimization process.

The second important aspect in optimization is the total costs, which may include both

investment and operational costs, such as show in table 1.1.
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In particular, objectives which are often taken into consideration in warehouse design and

optimization are [10]:

• minimize the throughput time of order;

• minimize the overall throughput time;

• maximise the space;

• maximise the use of equipment;

• maximise the use of labour;

• maximise the accessibility to all items.

These are examples, and obviously is necessary to find a tradeoff between them; dur

ing the years, a lot of different picking solutions have been developed, each of them to

optimize one or more of these variables.

1.2.1 Types of Order Picking Systems

Order picking involves the process of clustering and scheduling the customer orders, as

signing stock on locations to order lines, releasing orders to the floor, picking the articles

from storage locations and the disposal of the picked articles. As a warehouse function,

order picking arises because incoming articles are received and stored in (largevolume)

unit loads while customers order small volumes (lessthanunit loads) of different articles.

Typically, thousands of customer orders have to be processed in a distribution warehouse

per day and it attracts a lot of interest in research. Year after year a lot of different options

have been developed, both manual and automated.

Jaghberr et al [8], during the 2020, have classified the existing OPS types that distin

guishes it according to whether a human, robot, or no picker is used as shown in the

fig. 1.3.

Figure 1.3: Classification of OPS types [8].

All the categories have some solutions that are completely manual, partially automated
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or fully automated. Human picker OPSs can be distinguished in pickertoparts, mainly

manual systems where the picker moves around the warehouse to catch the components

and in partstopicker systems, partly automated, where the picker is stationary and robots

carry the articles in the picking station. With the same concept, in OPSs with a robotic

picker, robots that move inside the warehouse area are found able to carry the items in

the picking station whereabouts the human picker complete the operation with batching

or possible packing. The last group of OPSs are fully automated whit no human or robot

performing the picking.

Getting down to the details [10] [8]:

Human picker:
The majority of warehouses employ humans for order picking and, such as mention be

fore, there are two logical subdivision: pickertoparts and partstopick.

PickerToParts

This is the most common system [11] and it sees the picker walking or driving along the

aisles to pick items from storage racks or bins (binshelving storage). We can distinguish

two types of pickertoparts systems: with walking operator (lowlevel) or with man on

board of a lifting orderpick truck or crane (highlevel).

It is possible to find several mission policies:

• Single order picking;

• Batch picking;

• Multibatch picking;

• Cluster picking;

• Wave picking;

• Zone picking.

PartsToPicker

Partstopicker systems include automated storage and retrieval systems (AS/RS), using

mostly aislebound cranes that retrieve one or more unit loads (pallets or bins; in the

latter case the system is often called a miniload) and bring them to a pick position (i.e. a

depot). At this position the order picker takes the required number of pieces, after which

the remaining load is stored again. This type of system is also called a unitload or end

ofaisle orderpicking system. Examples of those automatic systems are:

• Automated storage and retrieval systems (AS/RS): unit load, Miniload, shuttle
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• Vertical lift modules (VLM);

• Conveyors;

• Carousels;

• Robot partstopicker OPSs.

Robot picker:
In this case the picker is a robot that autonomously picks the needed components. As the

human picker, it can be moved to reach the parts or still fixed in a station, and also here

we found robotstoparts and partstorobot with the same logical.

Picker less (automated picking)
This is a process completely automated where the parts are selected and extracted using

dispensers, vibrofeeder or other systems as Aframes.

1.3 Smart warehouse
In recent years, also in the logistics sector the technology have led to disruptive growth

in order to respond at high efficiency and accuracy requirements. The concept of smart

warehouse is used in very different fields: ecommerce, emergency departments, manu

facturing and every kind of warehouses which needs to improve the customer satisfaction

and reduce cost and errors.

According with Zhen at al. [12] the basic characteristics of smart warehouses are:

• Information interconnection: it is the base of smart warehouses and operational

management and it is based on technology derived from:

– Internet of Things (IoT),

– Cyberphysical system (CPS),

– Other emerging technology,

All the information thus obtained can be shared, processed and saved by numerous

operations and thus produce extra values.

• Equipment automation: describes the characteristics at strategic and tactical level.

It represent the technical support of the smart warehouse, in fact, they can reach

high automation levels for all warehouse activities. It allows to improve warehouse

productivity while reducing the need for manual labor. The operations management
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of smart warehouses, usually, are focused on strategiclevel decisions for the equip

ment characteristics and on tacticallevel decisions for product characteristics en

abling a holistic view of technology and improving the precision of decisionmaking.

• Process integration: is one of the requirements in a smart warehouse. It tries to

implement overall planning among various processes and focuses on the problem

arising. In other words the objective of process integration is to achieve coordination

and reduce, until their complete elimination, the discordance in warehouse operation

management.

• Environmental sustainability: day by day sustainability increases its importance,

for develop a smart warehouse we must focus on different aspects, not only on

cost, such as energy cost, but also on carbon emission. All the perspectives in

operations management must should should take these factors into consideration

and be implement in an ecofriendly way.

Zhen at al. create a conceptual framework as shown in Figure 1.4. Here it is possible to

see how the information interconnection is the base of smart warehouse, which provides

information exchange channel and support for the warehouse system. The sustainability

of the warehouse can be reached by exploiting the equipment automation and the process

integration that are two pillars. The first one aims automatic operation through the design,

deployment of automation and support at strategic and tactical levels, while the second

one aims to control and coordinate al the activities and technologies in the warehouse. At

the end, it is possible to define the warehouse operation management such as the theme

through the four perspectives.

The previous four characteristics confer to smart warehouse the follow four attributes:

1. Intelligence: the information technologies allow to realize intelligent decisionmaking

on common logistics problems;

2. Flexibility: the smart logistics has a higher degree of flexibility due to its more

accurate demand forecasting, better optimization of inventory and more efficient

transportation routing;
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3. Integration of logistics: the use of technologies enable centralized management

and strengthens the coordination of different logistics processes;

4. Selforganization: the realtime monitoring and intelligence decisionmaking per

mit the logistic system to work without significant human intervention

Figure 1.4: Conceptual framework of a smart warehouse. [12]

1.3.1 Information interconnections
In today’s warehouse practice, RFID, warehousemanagement system (WMS), augmented

reality (AR), reinforced learning, and other emerging technologies enhance the intercon

nection between different processes and entities [Dou et al., 2015; Bottani and Vignali,

2019; Sartoretti et al., 2019]. Interconnection technology provides ways to establish ware

house information collection and exchange, which could be a leading factor for future

warehouse development. IoT and CPS technologies, including Radio frequency, pick to

light, and pick by voice, are commonly used in the warehouse picking process.

The major affecting factors for selecting automatic identification technology include orga

nizational, operational, structural, resources, external, environmental, and technological

factors [Hassan et al., 2015].

RFID
RFID is the first technology for automatic object identification and data collection based

on radio waves. Among the interconnection technologies, RFID is considered a choice

for positioning, identifying, information interaction and warehouse management in smart

warehouses [12]
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The application mainly focuses on inventory tracking, localization and warehouse man

agement with a significantly impacts on the warehouses’ communications. The main part

in RFID systems are:

• Tags: that are attached to product at the item level instead of the pallet level;

• Antenna: that are able to read the radio waves

• Reader: that collect and elaborate information from antenna.

Figure 1.5: RFID working schema [13]

There are two types and they differ in the power source: active RFID systems have tags

with their own transmitter and power source, mostly a battery or solar cell, while in passive

RFID the antenna send a radio wave to tag that activeted it.

WMS

WMS is a computerize database that allow the warehouse control and optimization. Usu

ally it include process as receiving, storage, order picking, packing and shipping.

1.3.2 Equipment Automation

Inside a warehouse, usually, the operations are a laborintensive activity and the manag

ing of it has become a critical problem for performances.

Automation allow to reduce the manual labor, the costs and the errors. Automated parts

topicker OPSs have become more and more popular for warehouse operations (Tappia

et al., 2019) and his increase is significant. The mainly systems are:

• AS/RS: are computer, and robotaided, systems that can retrieve items or store them

in specific locations
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• AGV: is a driverless material handling system for movement inside the warehouse

area;

• RMFS, also called KIVA system, is an automated, partstopicker picking system

able to carry the racks with products toward warehouse and his stations.

Usually the parameters that the managers took into considerations for the automation

decisions are multiple: acceleration/deceleration and speed for AS/RS systems, robot

driving behaviour and battery capacity for RMFSs because it influence the warehouse’s

design and the performance of the systems. Other important decisions are the tactical

ones, such as the storage policies.

1.3.3 Process integration

All the decisions inside a warehouse are logically interrelated and we can analyze four

topics: order processing, location assignment, resource allocation and differentiated ser

vice and blocking rearrangement and conflictfree routing. Orders usually contain the

demand information and attributes and the order sequencing determines the sequence of

processing it.

Order batching is one way to reduce the inefficiency of picking, thanks to the union of

different order. The opposite approach is the split order, that it plan to divide the order in

two or more parts for picking, with different pickers that fulfill it. These second approach

is the the one use, usually, in RMFS systems.

One important decision is about the location of the different items inside the racks of the

warehouse. As always the objective of this decision is to minimizing travel time or the

number of visits for each location.

1.3.4 Environmental sustainability

The smart warehouses use a lot of automation and this results in a higher consumption

of energy compared by a traditional, manual, warehouse and, consequently, higher costs

and higher carbon emission in nature.

These factors make us understand the importance of goals in sustainability, such as en

ergy efficiency, cost reduction, throughput time minimization and the main decisions that

the warehouse management can be able to take are:
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• Trying to minimize the energy consumption with system able to improve picking

efficiency and with a proper storage assistment;

• Work on the schedule of the various operations in the warehouse and find the best

strategy about sequencing and scheduling.
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2 Robot Mobile Fulfillment Systems

”The beauty of our system is that you don’t have to walk over to the shelves to get things—

the shelves come to you.”. With these words, in 2008, Raffaello D’Andrea, one of the

inventor of Kiva robotic, define the concept of Robot Mobile Fulfillment System.

With Robotic Mobile Fulfillment (RMF) system we mean a system where robots are able

to lifting and carrying movable shelves called pods in the warehouse area or transport

them to the pickers, who work in ergonomically designed workstations.

This kind of warehouse are very useful for ecommerce warehouses or in every type of

warehouse where it is found large assortment of small products and the demands consists

of a multi line smallquantity order. The system are flexible is operations and it is possible

to add more movable shelves and autonomous mobile robots (AMRs). [14]

In this chapter we analyze briefly the born and the evolution of RMFS systems form the

beginnings to present days. In section 2.2 we speak about the different areas and the

two main process that is possible to find in this kind of warehouse, while in section 2.3 we

examine the main decisions for the RMFSs. At the end of this chapter, in section 2.4 we

investigate the parameters for the performance evaluation

2.1 RMFSs’ history
In the first years of the third millennium, the use of ecommerce has considerably in

creased, leading companies to research more efficient systems for warehouses man

agement and picking operations performance improvement, in order to reduce costs and

inefficiency.

In fact, ecommerce orders require to handle smaller quantity of materials, with a higher

frequency in really short delivery time, as the customers want. For the aforementioned

reasons, in 2003, Mick Mountz et al. started to study a new concept that led to the birth

of Robotic Mobile Fulfillment Systems.

Mountz, together with Peter Wurman and Raffaello D’Andrea, founded the Kiva System, a

company that pioneered the use a RMFSs in warehouses and facilities. This new systems
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are able to fix the inefficiency related to long walking distances for the pickers, or, from

a different point of view, are able to reduce picking operation’s long time and high cost.

The investors trusted in Kiva System, to the extent that they invested around $1.6 Million

to help the company foundation and, a few years after, in 2009, the company to became

the 6th fastest growing company in the US thanks to the ecommerce market growth and

the important role that these system play in it. This innovative systems achieved the real

success and a large dissemination when Amazon.com Inc. decided to buy Kiva in 2012

for $775 Million. [15] With the acquisition, the Kiva Systems has changed his name in

Amazon Robotics and it has stop selling the AGVs and the warehouse software systems,

but not the developing it.

2.1.1 RMFS in current days

Today, ten years after the Kiva acquisition, Amazon counts more than 520.000 robotic

drive unit that are perfectly integrated with workers and the systems around.

On June 2022, the company presented a new fully autonomous vehicle able to guarantee

safety for the workers thanks to special sensors, and this means that the specific areas

where the AGV has to stay is not required. Another innovation, always developed by

Amazon, is a Containerized Storage System to increase the performance, the safety and

the comfort of workers. This new system is able to move a mobile box from and inside

the various shelves where it is put. This robot, connected with a software, can find a

container with a needed product, figure out how to move it to the employee and pick up

the container once the employee has retrieved the product. This cuts down the need for

employees to reach, bend or climb to retrieve items. [16].

Looking outside the Amazonworld, after the Kiva Systems’ acquisition a lot of new providers

created very similar technology to cover the marketplace. Iam Robotics, Locus Robotic,

6 River Systems or InVia Robotics are only some examples that were evolved.

2.2 Solution overview
It is possible to say that RMFS is a very easy concept, with a complex software that

manage all the components. There are two main processes: the replenishment operation

that allow to store the items in the shelves and the picking operation that is useful to get

the components to fulfill customers’ orders, in the middle that found the AGVs who carry
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the shelves between this stations and the warehouse.

To describe, in detail, how this system works is helpful to use the fig. 2.1 that Xie et al

elaborate from the Patent Application of Mounts at al..

2.2.1 Areas in warehouse

In fig. 2.1 there are three physical areas:

1. Picking area

This area is reserved to picking stations and usually it’s collocated close to the stor

age area. Each station basically needs: space, to host the pods from which the

picker handles the items, human operator and some system, such as a conveyor to

move outside the station the items collected.

We can describe the flow in this area: the pods arrive in front of the picker, wait that

the operator remove the articles that are previously ordered and after the shelves

leave the area.

2. Replenishment Area

For the correct functionality of the system, pods must have a minimum quantity of

components stored inside. For this reason there is also the replenishment area to

refill the shelves. Also in this area, we need some space to host the pods during the

operation and one human worker, or smart robots, to do the activities.

3. Storage Area

The storage area is the place dedicate to stock the pods when they are not in move

ment, or in the previous stations. Here it is possible to find full, half full or empty

shelves that are waiting for one robots to be carry in the correct areas.

Figure 2.1: Basic layout of an RMF system [17]
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2.2.2 Process overview

Figure 2.1 tracks the two main processes that happen in this kind of warehouse: retrieval

and storage operations. The first one, retrieval process, refers to the replenishment pro

cess or the picking process. With these two different operations, after the arrival of re

plenishment or picking order, the AGVs raise the selected pods in their location and carry

it in the station to store units inside or to pick the components in the order lines. The other

process, called precisely storage process, means the operations by which AGVs bring

the pods in the storage area, usually restricted to workers.

Figure 2.2: The process inside a warehouse with RMFS

In general, we can say that robots could navigate on the gridpaths through the ware

house using a waypoint system or stay in the their homestation if they have no pods to

carry. Their performances impact in significant manner on the entire warehouse. For this

reason, Xie et al. resume the [18] where Merschformann et al. analyze very well the

decision problems [17].

2.3 Decision Problems in RMFS

Asmentioned in chapter 1 there are three levels in the warehousemanagement decisions:

strategic, tactical and operational. These three decision are repeated also in an RMFS

warehouse and as represented also in fig. 2.3. Merschformann et al., in 2019, analyze

the operational level and structure the decision problems in four different steps:
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Figure 2.3: Hierarchical overview of decision problems and their relations [18].

1. Order Assignment (OA): that provides the assignment of orders to workstations;

2. Task Creation (TC), that means the creation of tasks for the robots;

3. Task Allocation (TA), namely the allocation of duties to robots;

4. Path Planning (PP), precisely the creation of the paths along which the robots will

move.

2.3.1 Order Assignment

The order assignment means the pick order assignment (POA) and the replenishment

order assignment (ROA) mentioned in table 2.1.

Abb. Name Description Trigger

POA Pick Order Assign
ment

Choosing a pick order
from the backlog

When the order is fulfilled,
creating space for the next as
signment

ROA Replenishment
Order Assignment

Selection of the replen
ishment station for com
pletion the operation

When the replenishment or
der is created and one or
more stations have capacity
left after the RPS assignment

Table 2.1: Details of Order Assignment (OA) [18]
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2.3.2 Task Creation

Thanks to fig. 2.3, we can see that also the creation task can be split, in fact this step

include Pod Selection (PS), with Pick Pod Selection PPS and Replenishment Pod Selec

tion RPS and Pod Storage Assignment (PSA). In general, this stage allows to understand

which assignment has to be selected for transportation based on the orders inside the sys

tems, such as picking, replenishment and storage. The TC uses the order assignment to

select suitable pods and subsequently convert this in movement between storage area

and workstations.

Abb. Name Description Trigger

PS Pod Selection
Select the suitable pod
for complete the opera
tions



PPS Pick Pod Selection
Selection of pod to
transport to a picking
station

When an AGV for pick station
needs a new task

RPS Replenishment Pod
Selection

Select a pod for the
next replenishment op
eration

When the replenishment or
der is created in the system
and it has sufficient capacity
left

PSA Pod Storage Assign
ment

Choosing a storage lo
cation for a pod

When a pod leaves aworksta
tion

Table 2.2: Details of Task Creation (TS) [18]

2.3.3 Task Assignment and Path Planning

The TA creates the right sequence of tasks for the robots to execute and with that is also

necessary to define the path planning algorithms. This last part was well investigated in

[19] where L. Luo et al. determine the best path policy based on the general layout of

storage area.

2.4 Performance of RMFSs
For the evaluation of RMFS’ performance we have to consider a lot of different parameters

and the study of literature may help. In 2020, Jaghbeer et al. presented a systematic

review and content analysis to understand the most relevant performance OPSs [8]. In

particular, for RMFS it is important to examine the performance of robotic parttopicker

OPSs that are summarized in table 2.3
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Performance categories Studied performance aspects

Throughput
Throughput (Bauters et al. 2016; Lamballais, Roy,
and De Koster 2017; Lamballais Tessensohn, Roy,
and De Koster 2020; Roy et al. 2019

Lead Time

Average order cycle time (Ekren and Heragu 2010;
Lamballais, Roy, and De Koster 2017)

Picking time (Xue, Dong, and Qi 2018; Zou, Xu, and
De Koster 2018)

Throughput time (Yuan and Gong 2017; Roy et al.
2019)

Human factors

Ergonomics (Lee, Chang, and Choe 2017; Hanson,
Medbo, and Johansson 2018)

Operator training (Hanson, Medbo, and Johansson
2018)

Quality Picking accuracy (Hanson, Medbo, and Johansson
2018)

Flexibility Flexibility (Hanson, Medbo, and Johansson 2018)

Operational efficiency

Robot utilisation (Lamballais, Roy, and De Koster
2017)

Uptime (Hanson, Medbo, and Johansson 2018)
Collisionfree paths (Kumar and Kumar 2018)
Waiting times for vehicles (Ekren and Heragu 2010)
Average utilisation of vehicles and lifts (Ekren and
Heragu 2010)

Efficiency (Zhao et al. 2019)
Picker and robot utilisation (Wang, Chen, and
Wang 2019)

Robot travel time (Wang, Yang, and Li 2019)

Costs Costs (Boysen, Briskorn, and Emde 2017 ; Li et al.
2017)

Table 2.3: Performance aspects in literature’s studies [8].

2.4.1 Throughput

In detail, the studies in literature reported in table 2.3 about throughput analyze it such as:

• Beuters et al., in 2016, analysed the performance of RMFSs capable of lifting and

moving inventory pods and compare them with the performance of AS/RSs, found

ing that the RMFSs’ throughput is higher and it’s depends by the number of AGVs

and by the number of SKUs for each rack;
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• Lamballais et al., in 2017, found thanks to a model, that the maximum throughput is

affected by the location of workstations;

• Roy et al., in 2019, did an analysis about the effect of robot assignment strategies

on throughput.

• Lamballais et al., in 2020, discovered that the throughput increases when spread

ing inventory across multiple pods and when there is an optimal ratio between the

number of different stations and when the pod is replenishment before it is empty;

2.4.2 Lead time

In particular for the lead time the studies conducted about it examine the followed aspects:

• Ekren et al., in 2010, investigated the effects of warehouse height and footprint in

average cycle time;

• Lamballais et al., in 2017, using models were able to estimate average cycle time

in RMFS systems;

• Yuan et al., in 2017, did the evaluation for the throughput time of an RMFS by com

paring two robotsharing policies and thier effects;

• Xue et al, in 2018, created a comparative analysis with three different picking strate

gies and studied the effects on picking time and the travelled distance for each

robots;

• Zoe et al., always in 2018, studied the battery management strategies;

• Roy et al., in 2019, analyzed the robot assignment strategies and their effects on

throughput.

2.4.3 Human Factors

The only two studies that Merschformann found research the follow aspects:

• Lee et al., in 2017, did evaluations about the ergonomics in RMFS that have higher

risk factors than AS/RSs;

• Hanson et al., in 2018, studies the performances and the link between it and design,

with a focus on ergonomics and operator training.
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2.4.4 Quality and flexibility

The studies conduct by Hanson et al. found that robot design with regard to sensors and

battery management strategies affects RMFS flexibility.

2.4.5 Operational efficiency

Operational efficiency is addressed by different authors:

• Ekren et al., in 2010, studied the effect of warehouse height and footprint on the wait

ing times for vehicles and the average utilisation of vehicles and lifts in an AVS/RS.

• Lamballais et al., in 2017, estimated robot utilisation in RMFS;

• Hanson et al., in 2018, found a correlation between the uptime of robot sensors and

battery management strategy as well as between robot sensors and operational

efficiency;

• Kumar et al., in 2018, developed a robot routing algorithm that results in a collision

free path for RMFSs;

• Zhao et al., the follow year, found that order sequencing affects efficiency in AVS/RSs;

• Wang et al., always in 2019, found that the routing strategy in RMFSs affects picker

and robot utilisation;

• Wang et al., in the same research, found that different RMFS layouts affect robot

travel time.

2.4.6 Costs

The costs were invesigated by:

• Boysen, Briskorn, and Emde in 2017;

• Li et al. always in 2017.
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3 Simulation Approach

Since we are children playing with games, simulation is part of our lives. During a simu

lation, it is possible for players to imitate a process, a life or another situation. In general,

it can be said that the simulation is used to model, improve design and management of

different kind of systems with many levels of detail.

In companies, university and organizations the simulation is a tool that may give a sig

nificant benefit in several fields and helps in the study of real functions. Before concrete

application, a simulation helps to maximize the performance, finding optimization or dis

covering new features, with less costs and less constraints compared to the concrete

application. A key advantage of simulation modeling is that it has the capability of mod

eling the entire system and its complex interrelationship. The representational power of

simulation provides the flexible modeling that is required for complex processes. More

over, its results take into account the interaction of all important parameters. [20]

In this chapter we will try to understand the main characteristics of simulation and why it

is useful in different fields. In section 3.3 we will analyze the problem solving approach

and the general simulation methodology and while in section 3.4 we will try to understand

and analyze the output of simulation modeling. The last section of this chapter introduces

Anylogic™.

3.1 Simulation
The most common definition of simulation refers to the process of translating a conceptual

model of some system thanks to special software program. A simulationmodel represents

a system involving a set of real or hypothetical elements interconnected to give the sys

tems an overall identity and behavior. Systems can be of different kinds: from atoms

in a molecule to physical models such as flight simulators or roleplaying game, they all

have one main characteristic: they describe and capture the most important relationships

among the elements inside the model.

One of the main advantages of simulation is to offer to researches the ability to extend

A simulative study with three different managements 27



knowledge or real or hypothetical systems and collect and analyze data. A most clear

definition of computer simulation is defined by Ravindran et al. in 1987 as ”a numerical

technique for conducting experiments on a digital computer which involves logical and

mathematical relationship that interact to describe the behavior of a system over time.”

Before getting into details, it is useful to define systems and their classification.

”A system is a composite of people, products and process that provide a capability to sat

isfy states needs. A complete system includes facilities, equipment, materials, services,

data, skilled personnel and techniques required to achieve, provide and sustain system

effectiveness.” [Air Force Systems Command 1991]

Figure 3.1: System Classification [20]

In simulation there are two different points of observation during the time: 1 Discrete

event and 2 continuous. In the first mentioned, the observations are gathered at a se

lected point in time when certain changes, called events, take place in the system. In

the continuous simulation, instead, the observation have to be continuous in time, or de

scribed for all points in time.

The second level of systems classification is based on the evolution. In static systems

time is not a significant factor and in particular it is possible to say that the state does not

evolve over time. On the contrary, in the dynamic systems the state change over time.

The last categorization subdivides the systems by the variables in the process: systems

that can be called deterministic, when the variables are not governed by underlying ran

dom process; and systems that are defined stochastic, when only some of the variables
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are governed by underlying random processes.

In particular, in simulation the considered systems are stochastic, meaning the time change

continuously at discrete points, or in other words at events.

3.1.1 Randomness in simulation

When talking about reallife actions, the process does not have always the same time,

even though the activities are the same, and it translates in events that occur at a random

fashion in time. To convert this into the simulation world we talk of phenomenons as

random variables governed by a probability distribution, and this last one is decided thanks

to real data, usually historical ones, or using plausible assumptions.

3.2 Why simulation?
Manson et al., in 2020, have identified some advantages and challenges of simulation

[21]. In particular, they consider simulation as a ”third way” of doing science since it

mixes induction and deduction. With induction, they mean the generalization from em

pirical observation to theory, while with the deduction the test of theory against empirical

observations.

3.2.1 Advantages of simulation

1. Ability to model possible outcomes for situation that do not exist in reality, situations

exist in the future or that are dangerous and expensive to perform directly in the

reality;

2. Facility to combine mathematical, logical and natural language;

3. Utilization of simulation as tool to create knowledge;

4. Capability to integrate a large amount of data and information on relationships be

tween elements in a systems;

5. Ability to incorporate random noise or a range of values for individual parameters in

a way that is unavailable to mathematics;

6. Potential to examine the effects of changing inputs on outcomes and the amount of

possibilities of these;

7. Less costs than real systems implementation;
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8. Capability to study a systems in modules, and possibility to use divideandconquer

strategy to solve problems;

9. Possibility to share a simulation model and simulation results;

10. Possibility to chose the abstraction level, it’s easier to develop a simulation model

than an analytical model. It typically requires less thought, and the development

process is scalable, incremental, and modular.

3.2.2 Simulation’s challenges

1. Required to calibrate, verify and validate the model. This means that the model has

to fit with model and theory, determine whether the model runs well and compare

the structure and output with different data from calibration process;

2. Simulation could be incorrect, mainly in case of errors and poor programming;

3. Simulation model creates a large number of outputs and it means that someone

have to analyze it;

4. Simulation require a large amount of data;

5. Result depends strongly from input data;

6. Simulation returns only approximations, estimates. In other words, it do not get

exact answers.

3.3 Simulation methodology

3.3.1 Problem solving

A simulation methodology is a particular set of procedures based on the general precepts

of solving a problem through systems analysis as follows:

1. Define the problem;

2. Establish measures of performance for evaluation;

3. Generate alternative solutions;

4. Rank alternative solutions;

5. Evaluate and iterate during process;
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6. Execute and evaluate the solution.

It is also called DEGREE methodology from the first letter of the six steps. The step

number one is useful to solve the right problem, and, once this is done, to define the right

performances’ measures coherently with the problem (step two). Steps number three

and four are used to look and evaluate multiple solutions, and are helpful to find the best

solution. The last two remaining steps are the evaluation and the iteration during the

process and the execution and the evaluation of the solution. Iterations are an important

concept in analysis needed to recognizes if the problem solving process can be repeated

until the desired degree of modeling fidelity has been achieved.

3.3.2 General simulation methodology

When we talk about simulation, the DEGREE problem solving methodology needs to be

slightly adapted to the simulation, or in other words adapted to how simulation interacts

with the overall problem solving process [20].

In particular, the DEGREE methodology evolves, as it can be seen in Figure 3.2 into six

main phases and some underphases for each step:

1. Problem Formulation

(a) Define the problem;

(b) Define the system;

(c) Establish performance metrics;

(d) Build conceptual model;

(e) Document model assumptions;

2. Simulation Model Building

(a) Model translation;

(b) Input data modeling;

(c) Verification;

(d) Validation;

3. Experimental Design and Analysis
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(a) Preliminary Runs;

(b) Final experiments;

(c) Analysis of results;

4. Evaluate and Iterate

(a) Documentation;

(b) Model manual;

(c) User manual;

5. Implementation.

Problem formulation

The problem formulation is the fist step and also one of the most important: the five sub

phases are useful to understand what needs we have to solve. The output of the problem’s

definition is called also problem definition statement and is a narrative discussion of the

problem: it has to be accurate, concise and to contain all the assumption that the analyst

wants to explore and also the goal of the study.

When the problem is well defined, it is necessary to define the system with his boundaries,

and, usually, it is helpful to use one pictorial representation of the major elements.

The third step of problem definition, requests to define metrics to do the analysis of the

system performance with which the alternative scenarios need to be compared. Here

quantitative statistic measures for the model, quantitative measures for the system (e.g.

cost/benefits) and qualitative assessments are included. The focus should be placed

on the performance measures that are considered to be the most important to system

decisionmakers and tied directly to the objectives of the simulation study. When all the

previous activities end, it is possible to create a conceptual model that is a graphical

description of the problem, the process and represents practical steps that need to be

translated into a computer representation. Generally context diagrams, activity diagrams

or software engineering diagrams are used. Lastly, at the end of all these activities, it is

fundamental to organize all the information, in order to help other people to understand

the problem and do the final evaluations.
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Figure 3.2: General Simulation Methodology [20]

Simulation model building

In the simulation model building phase, the second main phase of the whole process, al

ternative systems configurations are developed thanks to the previously developed con

ceptual models to evaluate the alternative solutions that need to be verified, validated

and prepared for analysis. As seen in the previous steps, the model translation has to

be moved into input data modeling, verification and validation. In details, the input data

preparation concerns the data analysis to determine if data are enough and to classify

them into several areas.
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The verification is performed to determine whether the program performs as intended.

Usually to do it we search errors in the simulation code, in logical or other failure. To

improve the model debugging it is possible to stress the model with a sensitivity analysis

or/and testing the individual modules within the code.

The validation is used to determine whether or not the simulation model adequately repre

sents the real system. In fact, the correct input data permit to replicate the real situations

as we want to demonstrate in the simulation projects.

Experimental design and analysis

After the overmentioned phases the model use begins to perform experiments that in

vestigate the topic of the project. The three step in this phase are Preliminary run, final

experiments and analysis of results. The first one should be performed to set the sta

tistical parameters associated with the main experiment and should be used to generate

benchmark statistics of current system operation.

The experiment have to be replicated to generate comparative statistic, especially if the

data model have stochastic characteristics, which involves a continuous process, as a

cycle.

This is very important where there are a significant number of design factors that can affect

the performance of the system replicated with the simulation model and it is important to

use the formal experimental design or advantage output analysis techniques as statistical

concepts applications.

Evaluate and iterate

The system decision maker have to define is also the specific criteria to evaluate the

model and how to use the simulation results in order to analyze and rank the scenarios.

Each of them, in fact, have multiple performance measures that tradeoff against each

other. If data are not enough it is necessary to iterate the simulation run. In this phase is

also important to document the solution: a good documentation consist in two main parts.

• Technical manual which can be used by the same analyst or by others and is very

important for software reusability and portability;

• User manual used by the normal person not analyst, usually not too much expert in

programming and in simulation.
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In each documents we have to be clear and simple.

3.4 Output analysis
Rossetti in ”Simulation Modeling and Arena” [20] presents also a methodology to examine

the output data.

As referred chapter 7 of his book, the inputs in a simulation are random, hence also the

outputs are random, precisely a sequence of pseudorandom numbers.

For this reason it is important to understand how the simulation works to control it and

perform some advantages during the decision making process.

Ripley, in 1987, gave a precise definition of pseudorandom number that is a deterministic

sequence of number having the same relevant statistical properties as a truly random

number and for this reason we can use the statistic to generate the inputs.

3.4.1 Output analysis using replications

Simulation is like a mathematical function with specific parameters in a random distribu

tion, or, with other words, the output is a combination of the actual performance of the

system and some noise, steaming from the randomness of your system.

This noise have influence on output and on the KPIs that we decide to evaluate in an

unknown degree, and, for these reason, it is useful to appeal to replications. Replication

is a simulation run with the same inputs but with parameters change, with the right data

distribution, in each run. A good method to visualize the effect of the noise on the output

result is plotting it as in Figure 3.3 where we see that the KPI in the reality is floating due

the parameter noise.
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Figure 3.3: Generic KPI example
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This simple diagram clearly outlines that addressing that randomness of one’s output is

key to establish the best possible foundation for decision making. If only one experimental

run is simulated and it is assumed that this single run’s output result is representative, the

risk is to make decision based on a KPI that most likely will lead to wrongful decision.

Multiple replications and reporting of the output result(s) as across replication statistics

will allow to direct the noise from the randomness expressing the actual performance of

the system. This is only possible with the continuous across replications mean of KPI,

calculated for each replication i=1, ..., 100 by eq. (3.1)

X̄i =

∑i
j−1Xj

i
(3.1)
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Figure 3.4: Graph illustrating the across replication mean of the KPI

In fig. 3.4, the benefit of multiple replications using the across replication KPIs for decision

making is visualized: here the randomness is addressed to instead visualize the actual

system performance.

3.4.2 Number of replications

To ensure confidence in decision making process multiple replication and cross replication

statistics are required, but it is necessary to define the correct numbers of replications.

To do this three different approaches are introduce by Rossetti (2015) and Sheldon Ross

(2013).

The first step is to define the confidence level for decision making that we could define

as the variation across the mean of the KPI. We define the required halfwidth, h as the
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value that are able to satisfy the condition reported in eq. (3.2)

h ≤ ϵ (3.2)

where εis the error that we consider acceptable.

Halfwidth method

The first approach described by Rossetti (2015) is based on the normal distribution and

the related tdistribution: when the value distribution of a random variable follow the nor

mal distribution it is possible to use the tdistribution to define the required confidence

in the reported mean value across independent samples. To calculate it, the Rossetti’s

method (2015) requires a pilot experiment with ten, fifthteen or twenty replications to get

an estimation for the standard deviation. With this estimation, it is necessary also to cal

culate the halfwidth in the pilot experiment, h0 as in eq. (3.3).

h0 = t1−(α/2),n0−1
s0√
n0

(3.3)

With this initial halfwidth the required number of replications,n, became as eq. (3.4)

n ∼= n0

(
h0
h

)2

(3.4)

Iterative process

The second approach above mentioned is an iterative process introduced by Ross, in

2013. That approach is focused on limiting the standard deviation observed in a large

pilot experiment.

To use this method, the first task is to define the accepted standard deviation h, while

the second step is to conduct a pilot experiments with n0 replications and its standard

deviation. The last required element is then the multiplying factor based on your required

confidence level and accepted risk, α. The multiplying factor is calculated as in eq. (3.5)

Φ−1
(
1− α

2

)
(3.5)

With the multiplying factor calculated, the comparison made to determine whether or not

the n0 replications are enough to ensure a standard deviation below the threshold value
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is illustrated in eq. (3.6)
Φ−1

(
1− α

2

)
s

√
n0

< h (3.6)

If the eq. (3.6) is satisfied, n0 will ensure (1α)% confidence in the fact that the average

KPI value calculated across the replications will not have a standard deviation of more

than h. The method must be iterate until the eq. (3.6) is satisfied.

Single formula

The iterative process require an unknown number of different experiments. To counter

this, a single formula, based on the standard normal distribution and an initial estimate

of std. deviation can be derived from Rossetti (2015) and Ross (2013). It is therefore

possible to utilise the single formula seen in eq. (3.7)

n >

(
Φ−1

(
1− α

2

)
s

h

)2

(3.7)

where s is the initial estimator of the standard deviation observed and it is necessary to

conduct a pilot experiments as in the Halfwidth Method and it is possible to use it if n is

bigger than fifty (n ≥ 50).

These three different approaches to calculate the required number of replications to en

sure confidence in your decision making have now been introduced. Which method to

use will depend on one’s preferences and practical setup.

3.5 Anylogic™
AnyLogic™ is the leading simulation software for business applications, utilized worldwide

by over 40% of Fortune 100 companies and developed by the AnyLogic Company (former

XJ Technologies). AnyLogic™ models enable analysts, engineers, and managers to gain

deeper insights and optimize complex systems and processes across a wide range of

industries in different fields: markets and competition, healthcare, manufacturing, supply

chains and logistics, retail, business processes, social and ecosystem dynamics, defense,

project and asset management, pedestrian dynamics and road traffic, IT and aerospace

are some examples of that [22].

One of the advantages of AnyLogic™ is that it offers a free license for students, that,
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however, has some limitations to it, such as:

• Maximum of 10 agent types in one model;

• Maximum of 200 embedded agents/blocks in one agent;

• Maximum of 200 dynamically created agents.

It supports agentbased, discrete event, and system dynamics simulation methodologies

and it is crossplatform simulation software that works on Windows, mac OS and Linux.

Figure 3.5: Methods in simulation modeling with discreteevent modeling. [22]

3.5.1 Discrete event modeling
A discreteevent simulation (DES) models the operation of a system as a (discrete) se

quence of events in time. The idea of that is this: the modeler considers the system being

modeled as a process anwhich can then be presented graphically as a process flowchart.

Each block represent operations with specific characteristics (delay, queues, etc.) and

each event occurs at a particular instant in time and marks a change of state in the sys

tem. Between consecutive events, no change in the system is assumed to occur; thus

the simulation time can directly jump to the occurrence time of the next event, which is

called nextevent time progression.

Most business processes can be described as a sequence of separate discrete events.

For example, one service system of a bank department, as in fig. 3.6, it’s consisting of an

automatic teller machine and teller lines. ATM provides people with a quick selfservice

for cash. More complex transactions, e.g. paying bills, are completed by tellers, allowing
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customers more time without inconveniencing those customers looking for quick cash. To

simulate this, discreteevent simulation is often chosen.

Figure 3.6: Example of simulation model of a bank with discrete event modeling [23].

Discreteevent simulation focuses on the processes in a system at a medium level of

abstraction. Discreteevent simulation modeling is widely used in the manufacturing, lo

gistics, and healthcare fields.

3.5.2 Agentbased modeling
Agentbased modeling focuses on the individual active components of a system. This is in

contrast to both the more abstract system dynamics approach, and the processfocused

discreteevent method.

Figure 3.7: Example of agent based simulation model of epidemic [23].

With agentbased modeling, active entities, known as agents, must be identified and their
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behavior defined. They may be people, households, vehicles, equipment, products, or

companies, whatever is relevant to the system. Connections between them are estab

lished, environmental variables set, and simulations run. The global dynamics of the

system then emerge from the interactions of the many individual behaviors.

3.5.3 System Dynamics

System dynamics is a highly abstract method of modeling. It ignores the fine details of

a system, i.e. the individual properties of people, products, or events, and produces a

general representation of a complex system. These abstract simulation models may be

used for longterm, strategic modeling and simulation. For example, a telephone network

planning a marketing campaign may simulate and analyze the success of new data plan

ideas without having to model individual customer interactions, as shown in fig. 3.8

Figure 3.8: Example of system dynamics model of a new product diffusion [23].
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4 My model

Simulation is a very strong tool to recreate environmental and company processes. In

particular, the main focus of this work is the study of robotic mobile fulfillment systems

with the aim to conduct experiments in a virtual environmental and find the best optimiza

tion of the RMFS’s process.

As mentioned before, each simulation modeling requires a correct methodology. My

model is developed following the general simulation methodology explained in ”Simulation

modeling and Arena” [20] : this chapter is, then, organized in the same way. In particular,

I focused on the fist four steps of the general simulation methodology, since the last two

phases are not within the scope of the study and therefore will not be elaborated.

4.1 Problem formulation

4.1.1 Define the problem

As an ecommerce retailer, it is of general interest to offer a high service level to their

customers at the lowest operational cost. This means that the retailers must provide

an effective delivery policy but with the lowest cost of resources as possible. Thus, it

is desired to find a good tradeoff between the resources supplied and the service level

offered. For these reasons, the objective of this simulation study becomes as follows:

• Investigate how a change in the replenishment policies and the storage policies can

affect the system order throughput time;

• Comparing the performance measurement for the different scenarios;

• Find the best ratio between pods and robots inside a RMFS’s warehouse.

In particular, my study is focused on a system with fixed layout and different replenishment

policies, such as:

1. Monoproduct: each items are storage only in one pods;

2. Multiproduct: we can find the items in random position inside the pods, and the
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pods have random collocation in the warehouse;

3. Product organized by classes: the items are placed in the pods according to a

class based policy.

These learning objectives can be related to either the tactical level for replenishment level

and replenishment policies and the operational level for the realtime decisions. The de

fined system will use the FIFOmethod to decide which order will be served next, however,

this can potentially weaken the overall performance since a pod may be used for multiple

orders already in the system.

4.1.2 Define the system

In chapter 2, the high complexity and flexibility in the setup of an RMFS were disclosed

based upon the literature review. Thus, it is required to define many of the tactical and

operational decision problems in the RMFS environment when setting up the simulation

model.

Figure 4.1: System diagram of my model

To create mymodel it was necessary to simplify the real RMFS, to make the systemmodel

easier: the model has now only two inputs, pieces required by the orders and the clients’

ID orders, while the unique output is the packed order.

Inside the system there are the replenishment, the picking, the storage and the packing

process. To fulfill the orders the core operation is the picking process, where workers

standing in their own picking station, collect the correct pieces from the movable shelves

carried by AGVs. After this, the pod is carried in the storage area or in the replenishment

workstation, according to the space available inside them.

Every two hours of operation the robots need to be recharged by dedicated recharge
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stations for 5 minutes [15].

4.1.3 Assumption and simplifications in my model

During the work, I had to do some assumptions and simplification of the real RMFS sys

tem, in order to be able to replicate it with Anylogic™.

In particular, in my model, I assumed that the system is:

• Stochastic: the parameters, such as the process time in each operation, cannot be

entirely predicted, and for this reason it follows stochastic distribution;

• Dynamic: that means that the state variables change over time;

• Discrete and the state variable change at discrete set of points in time.

Regarding the others parameters and decision for my model, in according with Merschfor

mann (2019) [18], I created the same layout reported in fig. 4.2. The figure illustrates the

setup of the fulfilment warehouse from a top view. It shows the replenishment stations,

with yellow circles, where the workers replenish the pods with new inventory and the

picking stations, the red rhombuses, where the workers pick product units to fulfill orders.

Among these stations the storage area where the pods are stored in blocks of 2x4 pods

can be seen.

Figure 4.2: A top view of an RMFS layout [18]

One robot carries one pod at a time from the storage area, via the maneuvering area,

to the buffer area of the destination workstation. During the picking process the oper
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ator picks for multiple unfinished/incomplete pick orders at the same time, following the

FIFO policy for orders. For both operations, replenishment and picking, the robots need to

stop with a pod at a waypoint, that represent the access point of the workstation. Travel in

the aisles is singledirectional to avoid gridlock and reduce congestion [18]. In my system,

pods have a different storage location according to the storage policies: this meaning that

when a pod, after either serving the picker or visiting the replenishment station, returns to

storage location, it returns in:

• Generic nearest free location, if the model runs the first or the second scenarios

abovementioned, as in fig. 4.3a;

• Nearest free location in a precise area location decided over the kind of product that

it contains if the software simulate the third scenario, as in fig. 4.3b.

(a) (b)

Figure 4.3: 4.3a  Layout with random pod location 4.3b  Layout with ABC storage policy.

For my study I also chose that each pod have 60 slots where it is possible to stock only

one item, this means that each pods can can hold a maximum of 60 articles.
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(a) (b)

Figure 4.4a  Example of pod in Amazon Inc™  4.4b  Layout of a picking station [24]

Regarding the mobile robots, it applies that they carry the pods in the storage area after

each picking, unless the pod requires a replenishment operation or it requires to recharge

for 5 minutes after two hour’s running, [15], operation that is done automatically at its own

special charging station.

To estimate the time distribution of picking and replenishment operations I watched a video

published by Amazon Tours [25] and I found the value reported in table 4.3 and visualized

in fig. 4.5 while for the lifting and storing time I used another video, published by 6ème, in

2017, about Kiva Robots [26]. The final result I decided to use is a triangular distribution

for the picking (fig. 4.5a) and replenishment time (fig. 4.5b). This since the triangle is the

most common distribution when there are not too many information and data about the

true distribution [27].
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(a) Picking time distribution
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(b) Replenishment time distribution

Figure 4.5: Time distribution in my model

4.1.4 Establish performance metrics

With the model created I will investigate the effect on performance metrics of four aspects:
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1. The optimal ratio between AGVs and pods in the warehouse. In particular, my pur

pose is to analyze the ratio to conduct a more generic study on RMFS, not focused

only in my model;

2. Different strategies of allocation of the seventyfour different SKUs onmobile shelves.

Each pod can be dedicated to a unique kind of article or have a random mix of that;

3. Different strategies of storage location of pods inside the warehouse: random posi

tion or position defined by the SKU’s class.

4. The optimal level of replenishment for the shelves, from pods always full to pods

completely empty before being filled.

To conduct these analysis, I collect performance metrics, as those shown in table 4.1.

Performance’s metrics Description

ρAGV AGVs utilization
pick

1 Average time to pick one order in station 1

ρpick1 Picking station 1 utilization

Tpick2 Average time to pick one order in station 2

ρpick2 Picking station 2 utilization

Trepl1 Average time to complete the replenishment in station 1

ρrepl2 Replenishment station 1 utilization

Trepl2 Average time to complete the replenishment in station 2

ρrepl2 Replenishment station 2 utilization

Torderwait Average time that the orders wait

Torderelab Average time to elaborate the orders

Tordertot Average order throughput time

ωpod Average distance that each pod travelled

ξpod Replenishment level for pods

εrepl Total visit in replenishment stations

εpick Total visit in picking stations

εbatt Total number of recharging

Table 4.1: Performance’s metrics
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4.1.5 Build conceptual model

Themodel created has four main areas, based on the same layout proposed in Merschfor

mann’s research [18];:

1. The picking area with 2 picking stations;

2. The replenishment area with 2 replenishment stations;

3. The storage area, which hosts the 120 pods;

4. The charging area, created for the recharging of the AGVs.

My final layout is figured in fig. 4.6. With picking area and replenishment area the queue

space are also highlighted: here the pods wait their turn in the workstations.

As mentioned before, When one AGV runs for more than 2 hours, it is automatically

redirected in the charging area. The traffic area is necessary to avoid the collisions and

to give enough space to AGVs carried by robots.

Figure 4.6: Representation of layout in my model, with focus on different areas.

In simulation is also important to define the entities, that Rossetti (2016) defined as objects

of interest within a simulation whose activities are being modelled, and the resources, that
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are the operating objects which constraint the flow of the entities [20].

My system has such entities:

1. Stocked materials that are modelled as SKUs inside the pods. A full pod contains at

maximum 60 SKUs. The items are stored inside the pods by the workers according

to the replenishment policy of the scenario and are collected by the picker, sent in

the packing station and packed with other articles inside the order;

2. Order list that are the SKUs ordered by the customers. They can have form 1 to 5

lines and each line has only one items.

And it has the following resources:

1. Workers in replenishment stations and in picking stations, called also pickers, stand

at their own workstation and wait the pods behind a special gate. This gate open

only if there is a pod in front of that, for the safety of human operator. Each operator

is able to elaborate only one piece at a time;

2. Robots. They are autonomous robots that can move inside the storage areas or

in the charging area and their main role is to carry the mobile shelves between the

storage area and the correct right station.

At the end, the interactions between entities and resources are described by processes.

We can define them as a sequence of actions that an entity requires to complete an

activity. A process is associated with an entity and represents a sequence of states that

the entity experiences over a span. A process description describes the general process

that an entity experiences as it moves through the system [20].

The model used has 3 main processes:

1. Replenishment. The replenishment of shelves is necessary for the correct function

ing of the system. This operation happens if the pod is under the minimum storage

level after the operation of picking;

2. Storage: the storage is the task that allows to stock the pods in the specific area of

the fulfillment center. The shelves return in the storage area after the picking, or the

replenishment operation, in the nearest free location;
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3. Picking: the picking from pods allow to get the right articles to fulfill the order. When

an order arrives in the system, the software matches it with the pod or the pods

containing the required articles. After this, one free AGV carries the mobile shelves

in the picking station, and when the operation finishes, the storage process is exe

cuted.

4.1.6 Document model assumptions

The last step of the first phase of General simulation methodology, reported in section 3.3,

is the document model assumptions.

In particular, to create my model I assumed:

• If the scenario provides that the content of the pod is mixed, then the software create

randomly the SKUs inside of that;

• For each SKU removed from the system, new material arrives in the queue of re

plenishment station and allowing the pod to be refilled;

• The orders are elaborated following a FIFO policy. This means that the model is not

able to elaborate priorities;

• One order is still in elaboration until all the lines are picked;

• A new order waits for the completion of the previous one;

• Orders have from 1 to 5 lines;

• A pod has maximum of 60 SKU and a variable minimum, according with the sce

nario;

• Pod storage location is random;

• The robots can run only along the paths in the storage area, AGV storage area and

charging area;

• The robot have to charge after 2 hours of working;

• The system choose the right station where there are less waiting pods;

• Stop for breakdown or failures of machines are not included;

• The SKUs to refill the pods arrive in a common area for both replenishment station;

Robotic Mobile Fulfillment Systems 51



• Mobile robots are chosen randomly;

• Pods after picking process can return in the storage area or go in the replenish area;

• Pods after replenishment process always return in the storage area;

• When an order arrives, the software matches SKUs and pods that are not involved

in others operations;

• The order’s packing waits that all the lines are picked;

• The order database is created randomly and the distribution of SKUs in all orders

follow an exponential distribution, as reported in appendix A;

• There is no correlation of SKUs’ type in different lines of the same order.

4.2 Simulation model building
After the first phase, the general simulation methodology provides the translation from the

conceptual part into a computer simulation model.

4.2.1 Model translation

In Anylogic™, the agents of the model are created by source blocks and then flow through

the block diagram, that represent a specific role and part of the process. These allow to

”transform” the agents and make it possible to do the task they are built to.

For each part of the process presented in section 4.1.5 I grouped the blocks together

according to the process they are involved in.

Pods’ management process

This process is part of the core of the RMFS simulation model that I created.

(a) Storage process (b) Move out process

Figure 4.7: Process flowchart of all the pod management process in my model.
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In fig. 4.7a there are two Source blocks1:

• PodSource: where the software creates the 120 agents that represent the pods;

• ItemInitial: where the different SKUs are created and subsequently stored in pods.

This operation is only a formal one, and in particular, is necessary to recreate the

three different scenarios with the same block.

After these the pods are lifted and carried in the storage area (PodWarehouseWait). This

block represent the real storage area mentioned before in section 4.1.5. Here each pod

have his node.

The flow that start with block ReturnInWarehouse allows the pods to return in the storage

area after the picking and replenishment process.

In fig. 4.7b what happens when an order arrive is represented: the pod which contains

the largest number of products ordered is taken from the warehouse by a mobile robot

and carried in the picking station with the lowest number of pods in the queue.

If there are not mobile shelves that contains all the SKUs in the order’s line, then the

software chooses the lowest number of pods possible for fulfill it.

To do this, each block contains a lot of java coding lines, as it can be seen in the example

reported in listing 4.1.

1 // add lines of order inside in OrderContent (collection)

2 OrderContent(agent);

3

4 // add the same inside a collection that represent the items have to collect

5 OrderTypeCollection.addAll(agent.OrderContent);

6

7 // Function to move the pod with the largest number of products in the

OrderContent collection (based on priority)

8 for (Pod p : PodInWarehouse) {

9 // for each order try to find one pod with the item inside

10 for (int o=0; o < OrderTypeCollection.size(); o++) {

11 // if there is -> pod have priority > 1

12 if (p.contentItems.contains(OrderTypeCollection.get(o))) {

13

1All block, their functionality and examples of coding are described on Anylogic™ website. In particular
the blocks that I used are part of Process modeling library (in lightblue) and Material handling library (in
purple) [28]
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14 while (p.contentItems.contains(OrderTypeCollection.get(o)) &&

OrderTypeCollection.size() >=1) {

15 p.priority = 1 + p.ProductsToPick.size();

16 p.ProductsToPick.add (OrderTypeCollection.get(o));

17 OrderTypeCollection.remove(o);

18 break;

19 } // end while loop

20

21 PodWarehouseWait.free(p);

22 } // end if (p.contentItems.contains(o)) loop

23

24 } // end for type loop

25 }

Listing 4.1: Example of coding in pod management process.

Picking process
The main process for the fulfillment of the orders is the picking process.

Figure 4.8: Process flowchart of order management and picking process in my model.

The process starts when an order comes and stays in queue until the pod (or pods) arrive

in the station and the picker collect the SKUs.

It is possible to describe the agent that represent the order as a truck: the pickup block,

permits to load on it the different SKUs before it leaves the system. In particular, the block

called IsOrderFulfill creates a loop that finish when all the order’s items are picked.

The orders are generated at precise time and the information that they have are:
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• Time: when the order arrives in the system. The database follows an exponential

distribution, with more orders in special time slots, such as evening and lunch time;

• ID order: a unique identification number for each order;

• Number of lines, that represent the number of articles in the order;

• SKUs: the kind of articles that were ordered.

Compared to the complexity of what described above, the real picking phase is simpler.

The blocks PickingStation1 and PickingStation2 permit the pods to enter in the picking

area, where they find PodPickingQueue which represents a real queue for exceeding

mobile shelves that have not enough space to be carried in front of the gates (Pick1 and

Pick2) where the picker collect the SKUs.

The picker’s work is modelled with two blocks, delay and dropoff: the first one is neces

sary to reproduce the operation time, while the second one removes the items useful to

fulfill the order from pods. I used two blocks to model that process because the dropoff

block do the operation instantaneously.

When all the articles are collected, the AGV moves the mobile shelves out of the station

and the pods have two different possibilities: return directly to the storage area or go in

the replenishment area. The decision is based on their replenishment level according to

the minimum replenishment level.

Replenishment process

For each SKU removed from the system it is necessary to refill it and this operation is

done in the replenishment process, reported in fig. 4.9.

Figure 4.9: Process flowchart of replenishment process in my model.
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In fig. 4.9 the first two flowcharts (in the uppert part) show pods that follow a flow very sim

ilar to picking process. When mobile shelves arrive in the replenishment area, (see sec

tion 2.2.1) if there is another one in front of the worker, they wait in the queue (PodQueueRe

plenishment) and after that they are carried in the replenishment station.

The main differences with the picking process are:

• Operational time: the replenishment is a bit slower, in fact in real Amazon ware

house, the items are stocked with a random storing policy, that means each SKU

does not have a precise storage location, but the articles are closets where there is

free space [25];

• Each operator puts articles on the shelves, while with the picking they collect SKUs

from it.

The SKUs arrive in the station with conveyors that are able to carry the correct code ac

cording with pod’s station destination. This part of the process change for each scenarios:

1. Scenario 1: the SKUs arrive in the station randomly disregarding the contents of the

pod,

2. Scenario 2 and scenario 3: the SKUs arrive in the station according to the contents

of the pod.

Important is to remember that each code that arrives in the stations is previously removed

by the pod, with a picking process. When the refill process is done, the pod returns in the

storage area following the storage policy.

Charging Process

Figure 4.10: Process flowchart of recharging process in my model.

When a mobile robot runs for two hours it has to charge for 5 minutes [15], and this con

dition was recreate with the flow in fig. 4.10.

In particular, I created this because the library that I used to control the mobile robots

in each process does not concern functions such as interruptions, maintenance or fail
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ures [28]. To solve this inconvenience, with special javacoding, I created a function that

moves the robot in this part of the flow and, in particular, in charging station when the

running maximum time is reached. Through this sequence the software makes the robot

unavailable for charging time, in other words it is as if the robot was busy doing another

operation.

Arrival of items and packing process

The last two processes that I create are the arrival of SKUs in the warehouse and the

packing process. In fig. 4.11 the SKUs that are necessary for the replenishment process

Figure 4.11: Process flowchart of SKus’ arrival in my model

and mentioned in fig. 4.9 are created according to the scenario that is running. After the

first accumulation area the SKUs are moving by the conveyors and, thanks to SelectRSta

tion, they arrive near the operator.

The second process, the packing, is very easy. In fact, the orders leave the order pro

cess management only when all the lines are picked. Thanks to this the packing process

is modelled with different delay blocks: BoxSelection, Canning, PackingClosing and La

belling.

Figure 4.12: Process flowchart of packing operation in my model

These model includes more than 32000 coding lines, in part coded directly, in part coded

by the software with the blocks. All those lines are aimed at reproducing the complexity

of the activities that I described in the previous pages.
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4.2.2 Input data modelling

The model I built has 3 types of data in input:

• Fixed parameters that are the general parameters that never change during the

simulation, and are certain data collect by papers, books, catalogues or establish

by me with some assumptions;

• Stochastic parameters: some data aren’t certain, or could be variable such as the

human operations. For that reason I model it such as statistical distribution, and their

value will change continuously according to the chosen distribution (section 4.1.3);

• Variable parameters. These are the parameters that have effects on performance of

the system and it will be investigated during the simulation to find the optimal result.

All before mentioned parameters are synthesized in the following tables.

Parameter Value Unit

Simulated duration 7 days

Number of replications 152

Size of order backload 1400 orders

N° of aisles 6

N° of crossaisles 4

Storage locations 120

N° of pods 120

Layout 2x5 blocks

N° of unit replenishment order from 1 to 60 items

Space in each pod 60 articles

Picking stations 2

Max pieces size 29 x 50 x 15 cm

Pod size 1 x 1 x 1.8 m

Robot size 25 x 60 x 10 cm

Robot acceleration 0.8 m/s2

Robot deceleration 0.3 m/s2

2The calculations are reported in Appendix B.1.1
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Parameter Value Unit

Robot maximum velocity 1.5 m/s

Minimun distance between robots 1.5 m

Time between robot two charging period 2 hours

Time for recharging 5 minutes

Time for packing 120 seconds

Collision timeout collision 1 seconds

Class A storage locations 24

Class B storage locations 44

Class C storage locations 52

Number of possible different SKUs 74

Table 4.2: Fixed parameters’ summary

Parameter Value Unit

Time for lifting and storing a pod normal(0.8,15) seconds

Time for picking a component from pods triangular(10,46,15) seconds

Time for putting a component in pods triangular(16,54,33) seconds

Initial inventory level triangular(60, 80, 100) percentage

Table 4.3: Stochastic parameters’ summary

Parameter Value Step

n° of robots from 5 to 35 1

Level of replenishment from 0 to 1 0.1

Table 4.4: Variable parameters’ summary
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5 Verification and validation

In previous section 3.3 I mentioned the validation and the verification of the model that

are necessary before the experimental design can be initialed. It is most importance to

determine whether the developed model accuracy represent the actual system.

The first step, in accordance to the general simulation methodology [20], is to verify

whether the model performs as intended. Rossetti emphasises the importance of per

forming model debugging, whereas Law introduced eight different techniques which sup

plement by each other forms the verification of a simulation model [29].

5.1 Literature review
Such as explained in the previous chapters the RMFS are not well investigated yet, in

particular, the first researchers started to publish papers around 20102012.

Yuan et al. [30] conduct some researches about the comparison with a class based policy

where products are stored in the same pod if it have a strong correlation, and they validate

their model with an ABC class in a normal warehouse with a dynamic simulation.

Lamballais and De Koster [31] tried to find an optimization with three decisions variables:

(i) the number of pods per SKU; (ii) the ratio of the number of pick stations to replenishment

stations; and (iii) the replenishment level per pod. Their results show that throughput per

formance improves substantially when inventory is spread across multiple pods, when an

optimum ratio between the number of pick stations to replenishment stations is achieved

and when a pod is replenished before it is completely empty.

Gong et al. [32] created a simulative model based on customers classes (such as pre

mium and normal customers) and their purchased. They used a Markov models to study

this.

Xie et al. [17] conduct studyes on slit orders and optimizing operation with a special fo

cus on the assignment of pods and orders to stations with a MIPmodel (MixedInteger

Programming model). Merschformann, Lamballais and de Koster [18] simulate both pick
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and replenishment process, study the order assignment, pod selection and pod storage

assignment with multiple decision rules per problem. They use also a popularity of the

SKUs with an exponential distribution with parameter λ=1/2 to emulate a ABC curve.

5.2 Verification of my model
For the verification part I followed the Law suggestions [29] and in particular I used the

technique 1 to 4.

5.2.1 Technique 1
The first technique recommends starting with a moderately detailed model and then grad

ually increase the complexity, instead of developing an immediately complexmodel, which

could lead to a tedious and extremely difficult process of determining the location of po

tential error in the program. Thus, the model was initially developed for each process and

using randoms values and parameters. This mean that only part have in a first version

the very basically functionalities: the robots carried a random pod without correlation with

his contents, the picking was developed such as a picking of the same number of SKU

that are ordered (and not kind of articles ordered), etc.. Gradually, when the process is

working I start to code more, and add the functionalities and that means a continuous

process of implementation with subprograms and gradually enhance of level of detail.

5.2.2 Technique 2
The second technique advises having more than one person reviewing the computer pro

gram, preventing the writer of a particular subprogram from getting stuck when debugging

or wrongly being convinced that a statement is correct. The flowchart of each process was

deeply discuss with my cosupervisor prof. Allan Larsen and more than one coded func

tion was discuss with the Anylogic Support. In particular, that last one, is very important

because Anylogic provide a very high level of coding, more than that I was able to learn

in these months at DTU.

5.2.3 Technique 3
This technique states that the simulation model should be tested under a variety of input

parameters (random parameters create by the software) and then ensure that the different

outputs are reasonable and behave as expected. The model has, therefore, been run with

various resource settings seeking to both stressing the system but also ensuring that an

62 Robotic Mobile Fulfillment Systems



increase of resources resulted in an improved model output. The system was furthermore

stresstested by increasing the demanded orders. The demand has been increased until

more 3000 SKUs in a day. These is more or less the same amount elaborated in one week

in my scenarios and it guaranteed to test the system to it limits, and thus, ensure that it

will not reach a deadlock. The demand has been increased by a reasonable percentage,

where the output acted as intended.

5.2.4 Technique 4

It is here dealt with the problematics of debugging a DES program, and Law [29] states

that one of the most powerful techniques for this is the socalled trace. By incorporating

a trace the programmer is meant to display the state of the system after each event has

occurred, and the exact content to display can vary from case to case. The general

purpose for this is to enable the programmer to compare the state variables or certain

statistical counter with hand calculations to see if the system behaves as intended. This

has been implemented for each subprogram, so the changes in the system’s state for

the different calls of event could be controlled and verified. This technique has, amongst

other things, resulted in the clarifications of the need of statement four in the process of

determining, which event to be executed next. By displaying the state of the system after

the execution of each event, it was made clear that the system could reach a deadlock if

an order was being served by a picker and the next pod, which the order needed before

becoming completed, was busy serving another order. This has been circumvented by

incorporating that an order, which is initiated and currently handled by a picker, always can

take over a pod serving another order not being handled by a picker yet. Even though this

technique has its clear advantages for debugging codes, it also has some shortcomings.

It is not always clear which information to display to highlight the error when the simulation

is run, and some particular errors might not occur in the short simulation run. This can

entail that the simulation has to be run multiple times and therefore, can this technique

become quite timeconsuming.

5.3 Validation of my model
The second step of determining the accuracy of the developed simulation model is to val

idate whether the model representation of the real system is accurate or not.
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This part is usually done by presenting the model and its results to the persons involved

with the system being studied, where a critical review of the model should take place and

model outputs should be compared with outputs of the real system. Since this has not

been an opportunity, the model’s output has been collated with information about system

performance gathered from different sites. When it is not possible to include different

subjectmatter experts or the personnel involved with the system, it is important to use

one’s intuition and experience to critically review the model output.

Therefore, it is relevant to mention the cooperation with prof. Allan Larsen and his critical

reviews and intakes on the model. This is a part of the results validation, which also can

be complemented by the use of animation. When simulating in generalpurpose program

ming language this is not as easily accessible as if e.g. simulating in AnyLogic where this

is an integrated part of the system. To see how the state of the system changed throughout

the simulation, different statements were therefore displayed, and the text output helped

to a ”visual” understanding of what exactly happens when the different events are called.
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6 Results and my own analysis

In this chapter I will present my own experiments with the model and results. After the

creation of the model described in chapter 4, I can finally conduct experiments and bring

some conclusions.

The final input I used during the scenarios can be found in section 6.1 . In section 6.1.1

I investigate the problems of the initial settings of my model while in the last section final

results of the simulation are reported.

First of all, I want to resume what has been described in section 4.1.5 and what I decided

to investigate, focusing in particular on two aspects:

• Different strategies of allocation of SKU on pods:

– Multi SKUs on each pods, with a random storage;

– Same SKU on pod;

• Different strategies of allocation of pod in the storage area:

– Pods are stored without a fixed location in warehouse;

– Storage is made according to the commodity class contained in the pod.

These two aspects have allowed me to create three different scenarios:

1. Scenario 1: Pods are stored with a random position in warehouse, and each pod is

refilled with multi SKUs;

2. Scenario 2: Pods have a random location in the storage area, but each pod has

only one SKU,

3. Scenario 3: Pods contains only one SKU and have a specific location according

with the commodity class.
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6.1 Final inputs
The orders represent the main input of an ecommerce system. In particular, for my anal

ysis I used a order database created following the process reported in appendix A.1, the

result of which, is in fig. 6.1

Figure 6.1: First orders in my model

The orders’ timing follows an exponential distribution during days with λ=7.2 that are able

to satisfy the 500 orders/day (appendix A.1)

6.1.1 Problems and adjustments

One of the main problems of the simulation model is the congestion in the first model de

veloped. It is possible to define congestion of robots as the crowding of robots in an area

of the layout. When it happens the robots do not continue their travel and the system

results blocked. This phenomenon terminates the simulation and the results are incor

rect. To resolve that, I mention I worked hard with coding, paths and blocks in Anylogic:

in particular, from the first layout with only one AGV storage area I created 4 different

areas which recreate the same function (fig. 4.6): I used the ”restricted area” block, to

allow a limited number of AGVs to travel certain paths, I decrease the minimum distances

between robots to 1m and 20 cm, when the mobile robots carry the pods and I increased

the frequency with which the software calculates possible collisions. The real algorithm

is able to avoid this kind of problems before they occurs, but it is more complex and com

plicated than mine. My solution, maybe, is far form that, but it’s working for most of my

experiments.

In the reality, if a congestion happens, the intervention of a specialized technician and a
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short system’s breakdown will be necessary to solve it.

Other observed problems are related to the order database but it has been solved before

the latest analysis. The first problem occurs when there are two or more orders at the

same time, the second when there are orders as in fig. 6.2.

Figure 6.2: A wrong schedule orders database.

The problem of orders which have the same time is related to the software: for Anylogic

it is impossible to create 2 agents (in this case, the orders) at the same moment. I solved

this issue by editing by hand the time database.

The second problem detected, on the contrary, is generated when the same item is called

twice but not in consequential order (referring to the figure, the ”Console” items is called,

then the ”tshirt” item is called and then again the ”Console” has to be picked). This creates

a problem in the algorithm since the code is not able to detect that the item is called twice

in a non consequent line. Once the pod that contains the ”console” has been assigned

to the picking station, the software search the ”tshirt” to do the same operation but it is

not able to update the number of ”console” that have to be picked, since in the order the

two elements are interrupted by the ”tshirt” item and the PPS for the first ”console” has

already been launched. To solve this I checked all the orders lines and run the model

multiple times to find the wrong sequence or the picking stops. In these case the SKUs

should be near and not with other SKUs in the middle.

6.2 Scenario analysis
The first analysis of the scenarios compares the AGV’s utilization with the total time to

complete the orders. This kind of analysis is the perfect compromise between the needs

of the company and the desire of customers. In fact, the enterprises want to maximize

the utilization of mobile robots in order to reduce cost and increase the income with more

order’s fulfill, while the customers want a short lead time between the order and his deliv

ery.

Other analyses involve the number of times pods are transported to workstations and how
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long they travel around the warehouse: this data allow to understand how to minimize not

only the number of times the pod is transported and the time it is one the move, but it is

also fundamental to reduce the charging time of mobile robots.

All simulations were successful in completing orders, so we do not analyze the total num

ber of orders fulfilled during the period analyzed, but only the average time to complete

each order.

In the end, all of these analysis were done for each replenishment level.

6.2.1 Analysis methodology

In order to do a concrete and most accurate analysis I tried to define a ”scientific” method

ology to find the best solution, and for this reason, I searched some parameters that are

useful to conduct this study. I choose the following parameters:

• Cost of one mobile robot. When a company implements a system like the RMFS

or, more simply, a system with AGVs, forklift, etc. to carry the component or pickers

around the warehouse, it has to do a very huge investment. In particular, to create

a warehouse with mobile robots, Kiva System could cost around [15]

– from $1 to $2 million for a ”startup kit” of robots,

– from $2 to $4 million for a typical warehouse setup with 50100 robots,

– From $15 to $ 20 million for a large warehouse operation with 5001000 robots.

This kind of investment considers a complete set of mobile robots including the

management’s software, so I searched also other information in order to define the

cost of each mobile robot that is a variable cost. Following the online articles, paper

and catalogues, the estimation of cost for one AGV can be around $27.000 [33].

In my model, for the analysis I considered only the variable cost which follow:

CAGV = $27.000 · nrobots (6.1)

• Cost of noncompletion of the order: Data show that the average value of each

order executed on Amazon is around $78 (Quora, 2018). I consider that, in one day,
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theoretically, it is possible to fulfill a number of order equal to:

Oday
T =

24 · 60
min(T bestfulf)

(6.2)

Where min(Tbestfulf) is the minimum average time to fulfill one order across all con

figurations. For each combination, instead, I calculate the orders that can actually

be satisfied as:

Oday
R =

24 · 60
T fulf

(6.3)

where Tfulf is the average time to complete the orders with the combination under

analysis. Using the eq. (6.2) and the eq. (6.3) it is possible to find the cost that

arises, understood as lost income, as:

Co =
{
Oday

T −Oday
R
}
· $78 =

{
24 · 60

min(T bestfulf)
− 24 · 60

T fulf

}
· $78 (6.4)

• Cost of battery recharging andAGVmaintenance. The first cost, battery recharg

ing, can be calculated using the simple physics formulas in a wireless charging

process. The AGV that I before mentioned has a battery of 40Ah and 48V (DC).

Knowing these parameters, the cost for the recharging is:

B = p · η · dollars
kWh

=
(48 · 40)
1000

· 1.15 · 0, 637 · 5

60
· ebatt = 1.172$ · ebatt (6.5)

Where η is the normal efficiency during a wireless recharging process, the unit cost

of energy is 0.637 $ for each kWh (PUN  Prezzo Unico Nazionale (Italy)  August

2022) and εbatt is the total number of recharges.

In one year the eq. (6.5) becomes:

CB
year =

CB · 365
2

(6.6)

I divided all by two considering that the available metrics refer to two days.

Assuming there is a preventive maintenance policy, for the maintenance the cost is
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around $ 9500 for each mobile robot [33].

CM = 9500 · nrobots · years (6.7)

Considered all these costs, and the usual 5 years guarantee for mobile robots and 500

orders/day for 5 years also, the final formula to find the best tradeoff is:

min {CAGV + CO + CB + CM} (6.8)

And substituting the numerical values, the eq. (6.8) becomes:

min

{
nrobots · (27.000 + 9500 · 5) +

{
24 · 60

min(T bestfulf)
− 24 · 60

T fulf

}
· $7117500] + [213.89 · ebatt]

}
(6.9)

6.3 Scenario 1
This scenario is the one Amazon.com™ and other big ecommerce companies claim to

use. In particular, they call it ”Random Stow” and is the scenario where the storage de

cision is based on the free space within the mobile shelf [25]. Starting from the same

assumption, I began to analyze the system replicating these conditions.

In particular, the first brief analysis of the data shows that the maximum utilization of AGVs

occurs when 5 mobile robots are in the system and when the minimum level required be

fore the replenishment is 20%. That result is not enough: following the studies reported

in section 2.4 it is important to investigate throughput, lead time, quality, human factors,

flexibility, efficiency and cost.

As for quality, taking into account how the system is constructed, I assumed it is always

100%, which means it is not possible for the operator to pick up a wrong item, since the

human factor usually depends on the workstation’s layout who is fixed and for that reason

is not investigate in this study.

The result reported in table 6.1 shows also that the average utilization of workers is low:

this depends on the number of mobile robots that carry the pods, given that while they

move the pods from one point to another inside the storage area, the picker does not

work. But if there was a lower number of robots, then it would not be possible to carry
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Performance’s metrics Description Average Value

ρAGV AGVs utilization 89.97 %

ρpick Picking stations utilization 26,60 %

ρrepl Replenishment stations utilization 16.48 %

Torderwait Time that the orders wait 1.084

Torderelab Time to elaborate the orders 3.864

Tordertot Order throughput time 4.948

εrepl Total visit in replenishment stations 2445

εpick Total visit in picking stations 3580

εbatt Total number of recharging 45

Table 6.1: Model output with 5 mobile robots and a minimum replenishment level when
the pod are at 20% in scenario 1.

other pods in the workstations. When looking at the AGV’s average utilization, it can be

seen that it is lower than 100%: this is caused mainly by the fact that the value returned

by the software takes into consideration also the moments when there are not orders to

fulfil and considers the mobile robot as free also during the battery’s recharging timing.

Taking in consideration what I mentioned in section 2.4 and section 6.2.1 I tried to trans

form all the parameters in a cost.

Using the eq. (6.9) the solution with 5 mobile robots and a minimum refill level as 20%,

after 5 years, have a total cost of more than 47 millions of dollars.

The best solution, found with the eq. (6.9), instead, allows to fulfill one order in 2,302

minutes, and cost 112.2 % less compared to the first solution reported. The combination

necessary to reach this result is to have 10 mobile robots and a replenishment level equal

to 50%. Data of table 6.2 shows lower average throughput time to order fulfill, a better

utilization of workers and less number or recharges.

Comparing this two outputs, it is possible to see also that the pods come in the picking

station more times when there are 10 mobile robots: that depends on the stow inside

the mobile shelves. In fact, as per assumption in section 4.1.6 the pods contain random

SKUs, and that influences the result.
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Performance’s metrics Description Average Value

ρAGV AGVs utilization 81.15 %

ρpick Picking stations utilization 68.17 %

ρrepl Replenishment stations utilization 38.54 %

Torderwait Time that the orders wait 0.784

Torderelab Time to elaborate the orders 2.518

Tordertot Order throughput time 2.302

εrepl Total visit in replenishment stations 1826

εpick Total visit in picking stations 3408

εbatt Total number of recharging 75

Table 6.2: Model output with 10 mobile robots and a minimum replenishment level when
the pod are at 50% in scenario 1.

Despite the less mobile robots’ utilization, the second solution allows to elaborate the

44.14% more orders, and that has a strong impact on the possibles incomes of the com

pany.

Performance’s metrics 5 AGVs 10 AGVs Variation

ρAGV 89.97 % 81.15 % 6.29 % ↓

ρpick 26.60 % 68.17 % +100.74 % ↑

ρrepl 16.48 % 38.54 % +85.46 % ↑

Torderwait 2.084 0.784 63,69 % ↓

Torderelab 2.864 1.518 22.62 % ↓

Tordertot 4.948 2.302 44.14 % ↓

εrepl 2445 1826 25.32 % ↓

εpick 3580 3408 4.81 % ↓

εbatt 45 75 +66,66 % ↑

Table 6.3: Model output comparison
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Analyzing with more detail the data in table 6.4 we see that the most strong impact is

the orders’ value. In fact, the lower time the order waits before his elaboration, and the

lower time to pick all the lines, are translate with more orders that can be elaborate during

the day, and these, replicated for 5 years have a great impact on the final result. The

utilization level reported in table 6.3 permits to have a margin for the maintenance of the

robots without a strong impact on performances. Looking to other data that the software

returns, with the same replenishment level and 9 AGVs (for example, if we have one mo

bile robots in maintenance) the utilization grows up to 82.92% while the order throughput

still remains around 2 minutes and 30 seconds (2.469 minutes) allowing to elaborate 7%

order less.

Costs 5 AGV 10 AGV Varation

AGV cost 135’000 $ 270’000 $ 135’000 $

Maintenance 237’500 $ 475’000 $ 237’500 $

Charging 38’500 $ 64’167 $ 25’667 $

Orders’ Value 41’431’000 $ 88’978’000 $ 47’547’000 $

Total 41’841’500 $ 89’787’167 $ 47’945’667 $

Table 6.4: Projection of costs during 5 years
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Figure 6.3: Cost and utilization graph with a replenishment when the pods contains less
than 50% of their maximum capacity.
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With a 81.15% of mobile robot’s utilization and considering that the workers are not com

pletely exploited, it is also possible to increase a bit the number of order during the days

from the 500 order/day considered in the analysis that I realized.

6.4 Scenario 2
The second scenario plans to leave the policy of returning pods to the storage area un

changed, but it changes what each mobile shelves contains. From the previous analysis

is possible to see that all the different combinations of mobile robots with the different

replenishment level have a same huge number of transportation in the picking stations.

This is the most intuitive result and the outputs confirm this. In fact, for each different

SKUs in order’s line the mobile robots have to carry a different pod in the stations in order

to fulfill them.

Another easy consideration is related to the visits in the replenishment station, that is

lower than in the first scenario. This result depends from the content of the pods, as it is

less frequent that their supply level drops under the minimum replenishment level if they

contains only one kind of articles.

Conducting analysis’s steps similar to the previous ones, the combination with the higher

average AGV utilization is the one with 5 mobile robots and the 50% as the limit before

the need for pod refill.

Performance’s metrics Description Average Value

ρAGV AGVs utilization 98.20 %

ρpick Picking stations utilization 39.16 %

ρrepl Replenishment stations utilization 25.48 %

Torderwait Time that the orders wait 2.406

Torderelab Time to elaborate the orders 3.985

Tordertot Order throughput time 5.391

εrepl Total visit in replenishment stations 1222

εpick Total visit in picking stations 7330

εbatt Total number of recharging 93

Table 6.5: Model output with 5 mobile robots and a minimum replenishment level when
the pod are at 50% in scenario 2.
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As reported in table 6.5 it is possible to see that the AGV’s utilization is very high: exces

sive to be sustainable (considering that they need some maintenance, there are possibil

ities of breakdowns, etc.) while the pickers and the other workers have a low utilization.

The average order throughput is higher than the one in scenario 1 and this has an impor

tant consequence on the final performance of the system and also doubles the number

of required recharges.

Performance’s metrics Mix content Same Content Variation

ρAGV 89.97 % 96.84 % +7,09 % ↑

ρpick 26.60 % 39.38 % +48.05 % ↑

ρrepl 16.48 % 31.50 % +91.14 % ↑

Torderwait 2.084 2.317 +11.18 % ↑

Torderelab 2.864 3.314 +15.71 % ↑

Tordertot 4.948 5.631 +13.80 % ↑

εrepl 2445 1955 +20.05 % ↑

εpick 3580 7330 +104.75 % ↑

εbatt 45 91 +102 % ↑

Table 6.6: Model output comparison with 5 AGV e replenishment level equal to 20%.

Performance’s metrics Mix content Same Content Variation

ρAGV 86.57 % 98.20 % +11.84 % ↑

ρpick 29.36 % 45.16 % +34.98 % ↑

ρrepl 15.68 % 25.48 % +38.46 % ↑

Torderwait 1.960 2.406 +22.75 % ↑

Torderelab 2.861 3.985 +15.65 % ↑

Tordertot 4.821 5.3991 +10.70 % ↑

εrepl 1521 1222 24.47 % ↓

εpick 3041 7330 +58.51 % ↑

εbatt 42 93 +54.83 % ↑

Table 6.7: Model output comparison with 5 AGV e replenishment level equal to 50 percent.
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table 6.6 and table 6.7 report the comparison between the scenario with 5 AGVs and refill

level when the pod contains less than 20% of his maximum capacity and the hypotesys

with 5 AGVs and refill level when the pod contains less than 50% of his maximum ca

pacity. For each comparison, their percentage variation is also reported . The growth

of all the parameters of utilization, time order throughput and the increment of number

of charging reduce the number of orders that the system can elaborate every day with a

strong impact on possible company’s incomes.

Costs 10 AGV  Scenario 1 13 AGV  Scenario 2 Variation

AGV cost 270’000 $ 351’000 $ 81’000 $

Maintenance 475’000 $ 617’500 $ 142’500 $

Charging 64’167 $ 72’723 $ 8’106 $

Orders’ Value 88’978’000 $ 63’210’498 $ 25’767’502 $

Total 89’787’167 $ 64’251’721 $ 25’535’446 $

Table 6.8: Comparison of projection of costs during 5 years between the two scenarios
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Figure 6.4: Cost and utilization graph with a replenishment when the pods contains less
than 50% of their maximum capacity across the two different scenarios.

Using the eq. (6.9), the best solution with each pods refilled with the same kind of articles,

is the combination of 13 AGVs and a refill level equal to 50%: the orders are satisfied in

2.746 minutes (+16,17% respect the best combination in scenario 1).
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This solution increase, not only the total time to fulfill orders, but also the number of mobile

robots that are required. Looking the fig. 6.4 it is also possible to make considerations

similar to those made in section 6.3: a lower number of mobile robots have higher average

utilization and higher costs. The last results are caused by the high time that the order wait

before his elaboration: the few AGVs are not able to carry all the pods that are necessary

to fulfill the order in the same time and this is translated to a significant impact on the

average orders’ elaboration time and on the mobile robots’ utilization.

Another possible consideration when looking at the data in fig. 6.4 is that the trend of the

cost curve is similar between the two scenarios, but shifted upward and to the right; this

can prove the goodness of the results obtained and of the elaboration.

6.5 Scenario 3
The third, and last, scenario that I analyzed modifies the second one, keeping that the

SKUs are not spread across the pods, but varying their warehouse storage location ac

cording to an ABC class based logic (appendix A.1).

As for the previous cases the maximum utilization of mobile robots occurs when the ful

fillment center, that is replicated in simulation, has only 5 AGV and a replenishment level

equal to 50% of total capacity of pods.

The comparison of data for this scenario has to be done with both the previous scenario,

in order to return the most complete analysis and give an allaround solution that allows

to do right conclusions.

6.5.1 Comparison with scenario 1

The data in table 6.9 show a general increment of the main performance’ metrics such as

the average utilization of mobile robots, the average time necessary to fulfill the orders

and the number of transports performed to the picking and replenishment stations. A re

sult that is less in line with these increments is the average waiting time for an order, the

orders wait less in the queue, but stay more in elaboration. To check this result I increased

the number of replication to 30 in order to reduce it, given the small value of only about 10

seconds, probably due to the presence of stochastic values for pickup and replenishment

operations.
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Performance’s metrics Mix content Stocking with ABC policy Variation

ρAGV 86.57 % 94.58 % +8.47 % ↑

ρpick 29.36 % 25.84 % 13.62 % ↓

ρrepl 15.68 % 11.07 % 4.22 % ↓

Torderwait 1.960 1.762 11.23 % ↓

Torderelab 2.861 3.583 +20.15 % ↑

Tordertot 4.821 5.345 +9.80 % ↑

εrepl 1521 3141 +51.57 % ↑

εpick 3041 7330 +58.51 % ↑

εbatt 42 71 +40.85 % ↑

Table 6.9: Model output comparison with 5 AGV e replenishment level equal to 50%.

Costs 5 AGV  Scenario 1 5 AGV  Scenario 3 variation

AGV cost 135’000 $ 135’000 $  $

Maintenance 237’500 $ 237’500 $  $

Charging 35’933 $ 60’317 $ 24’384 $

Orders’ Value 41’431’000 $ 39’840’000 $ 1’591’000 $

Total 41’841’500 $ 40’272’817 $ 1’568’683 $

Table 6.10: Comparison of projection of costs during 5 years between the two scenarios

Returning to the overall result, in general, it is possible to say that a overall deterioration

in metrics is present, consistent with what has already been found in the analysis of the

second scenario: it is necessary to have more time to fulfill the orders and to use more

resources.

Replicating the process performed previously, the cost with this configuration becomes

the one reported in table 6.10. The main difference, also in this case, is given by the total

orders’ value, which is confirmed the most important parameter of comparison. Evaluat

ing the solution that processes an order most quickly, we find the following combination:
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12 AGV with a replenishment level equal to 50%.

With this solution, we found a 76,71% of average AGV’s utilization, lower with respect

to the first scenario (with 10 AGVs), and 4.977 minutes in average to fulfill all the lines

contained in the different orders. The others metrics useful to conduct the comparison

are reported in table 6.11.

It is possible to see that the workers have a bigger utilization, and this is related to the

Performance’s metrics Description Average Value

ρAGV AGVs utilization 76.71 %

ρpick Picking stations utilization 57.85 %

ρrepl Replenishment stations utilization 35.44 %

Torderwait Time that the orders wait 1.994

Torderelab Time to elaborate the orders 2.983

Tordertot Order throughput time 4.997

εrepl Total visit in replenishment stations 1745

εpick Total visit in picking stations 7330

εbatt Total number of recharging 82

Table 6.11: Model output with 12 mobile robots and a minimum replenishment level when
the pod are at 50% in scenario 3.

higher number of operations that they have to do: they have a lower number of items to

be stored or picked from the same pod, but a largee number of pods where they have to

do these operations and this mean that the operators work for more time.

In table 6.12 it is possible to see the main difference between the best solution of sce

nario 1 and the best solution of scenario 3 which results worst in losses scoring around $

47’636’000. The economic value is obtained with the over mentioned eq. (6.9), while in

fig. 6.5 it is possible to see the graphical comparison useful to understand the differences

between average utilization of mobile robots and final costs.

The costs of the third scenario result higher, and are at their lowest when we use 13 mo

bile robots. This ”minimum cost” is calculated using the best combination between mobile

robots and replenishment level of the third scenario.
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Performance’s metrics Mix content Stocking with ABC policy Variation

ρAGV 81.15 % 76.71 % 5.79 % ↓

ρpick 68.17 % 57.85 % 17.83 % ↓

ρrepl 38.54 % 35.44 % 8.74 % ↓

Torderwait 0.784 1.994 +60.59 % ↑

Torderelab 2.518 2.983 +15.59 % ↑

Tordertot 3.302 4.997 +33.92 % ↑

εrepl 1826 1745 4.64 % ↓

εpick 3408 7330 +53.51 % ↑

εbatt 75 82 +8.54 % ↑

Table 6.12: Model output comparison between best solution in scenario 1 and scenario
3.
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Figure 6.5: Cost and utilization graph with a replenishment when the pods contains less
than 50% of their maximum capacity across the two scenarios in analysis.

6.5.2 Comparison with scenario 2

The comparison between the third and the second scenario shows that the results are

closer with respect to the previous comparison. In particular, it is possible to see that

there is not much difference between the overall performances of this two policies, even

if the hypotesys in which the pods have a random location in the warehouse return the
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worst results. The comparison’s data between the best solutions in the second and the

third scenario, also reported in table 6.13 confirm that. Specifically, in the table 6.13 I

added the average time that each pod travelled for each picking operation, a good metric

that is possible to use to understand in a better way the main difference between these

two scenarios. While there are not many differences in mobile robots’ utilization, oper

ators’ workload and global timing, if the pods have a random location in the warehouse

storage area they travel for more time (+43.17%) .

Metrics Random storage Stocking with ABC pol. Variation

nAGV 13 12 7.70 % ↓

ρAGV 78.71 % 76.73 % 2.61 % ↓

ρpick 48.93 % 57.85 % +15.42 % ↑

ρrepl 34.97 % 35.44 % +1.33 % ↑

Torderwait 2.109 1.994 8.27 % ↓

Torderelab 2.918 2.983 +2.18 % ↑

Tordertot 5.027 4.997 1.01 % ↓

εrepl 1915 1745 9.74 % ↓

εpick 7330 7330  % ≡

εbatt 87 82 6.1 % ↓

ωpod 2.965 2.071 43.17% ↓

Table 6.13: Model output comparison between best solution in scn. 2 and scn. 3.

Another consideration that can be made is the following: the outputs show that there

is more or less the same utilization of mobile robots, but to have the same order time

throughput with the random location it is necessary to have one more AGV. This result

is transformed not only in a higher initial investment for the buying, but also in more ex

penses for maintenance and charging and, moreover, can also increase the possibilities

of collisions.
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Figure 6.6: Cost and utilization graph with a replenishment when the pods contains less
than 50% of their maximum capacity across the second and the third scenarios.

Costs Scenario 1 Scenario 2 Scenario 3

nAGV 10 13 12

Replenishment level 50% 50% 50%

AGV cost 270’000 $ 351’000 $ 324’000 $

Maintenance 475’000 $ 617’500 $ 570’000 $

Charging 64’167 $ 72’723 $ 69.728 $

Orders’ Value 88’978’000 $ 40’776’606 $ 41’186’652 $

Total 89’787’167 $ 41’867’233 $ 42’801’728 $

Table 6.14: Costs’ projection during 5 years between the three scn. using the best com
bination.

In fig. 6.6 it is possible to see that the cost curve has a really similar trend in all the

3 scenarios, but scenario 2 presents the higher costs. on the contrary, if we focus on

the average utilization of mobile robots, it is easy to see that the lowest utilization level

emerges in the third scenario.

The projection of costs, reported in table 6.14 confirms that the second scenario is the

worst, despite the similar performances compared to the third one since it needs one mo
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bile robots more.

Using the method explained in section 6.2.1 to comparing the three scenarios we obtain

the values in table 6.14.
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Figure 6.7: Utilization graph with a replenishment when the pods contains less than 50%
of their maximum capacity across the three different scenarios.
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Figure 6.8: Cost graph with a replenishment when the pods contains less than 50% of
their maximum capacity across the three different scenarios.

From the fig. 6.7, in reality, we see that all three scenarios exploit AGVs quite well, but the

sum of the effects of other parameters performances greatly affect the order throughput

outcomes. The result just mentioned can be easily observed in fig. 6.7, where it is possible

also to see that the third scenario is completely located halfway between the results of
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scenario 1 and scenario 2, despite the fact that in any case, the first scenario has the best

performances, with a huge saving and the minimum number of mobile robots.

In conclusion, resuming the objective of this study described in section 4.1.1 , the best

ratio between the number of mobile robots and pods is near to 10% and the replenishment

level required to have the best performance is 50%.
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7 Conclusions

The aim of this thesis was to analyze the performances of RMFS through a simulating

project to better understand one of themost innovative picking system, specifically a semi

automatic picking system partstopicker. This kind of system is revolutionizing the logistic

since 2012, right after the acquisition of Kiva System by Amazon.com™, and since then

is increasingly used by companies, especially for ecommerce.

For its ability to optimize processes, the topic has been studied several times in the last

years, but the subject has so many applications that some aspects are still not developed

in the scientific literature. making difficult to conduct allround studies.

These are some of the motivations that led me to investigate the robot mobile fulfilment

systems: I started to conduct researches in the literature, watched videos and read blogs

and articles. At the end of this part, I studied the RMFs performances by a discrete

event simulative model that I build with a software called Anylogic™. In general, the

simulating approach is very useful to study systems and gives the opportunity to monitor

how performances change by changing parameters, and makes it possible to replicate in

a virtual environment what might happen in reallife situations. Hence the reasons why

simulation is more and more used in the last years.

Starting from the literature study I realized that there were not papers that analyze in the

deep themes such as the management of the pods’s content. Considering that it was very

difficult to find real data about this kind of system I decided to create random databases

and make some assumptions that helped me simplify the problems before starting with

the model development.

The study was developed in three steps:

1. Study of the literature about warehouses in general, with a special focus on ware

house that use solution such as the RMFS;

2. Define the objectives of the study:

• Investigate how a change in the replenishment policies and the storage policies
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can affect the system order throughput time;

• Comparing the performance measurement for the different scenarios;

• Find the best ratio between pods and robots inside a RMFS’s warehouse.

3. Develop the model and conduct the analysis of its results.

The model aims to analyze three different types of SKU storage management and pod

storage location management according to the following scenarios:

• Scenario 1: Pods are stored with a random position in warehouse, and each pod is

refilled with multi SKUs;

• Scenario 2: Pods have a random location in the storage area, but each pod has

only one SKU,

• Scenario 3: Pods contains only one SKU and have a specific location according

with the commodity class.

The assumptions made and the madeup data do not allow me to validate the simulative

model by comparing the results, but after the analysis it was possible to affirm that the

findings are not far from the reality.

The system was studied varying the number of mobile robots and the refill level of the

pods. The minimum number of AGVs is 5 because under this value the system had a

high utilization of this resource and long order throughput. Considering that I wanted

to find a tradeoff between the AGV’s utilization and the time to pick all the lines in the

different orders, I search a scientific methodology to compare the performance’s metrics

that I collected with the simulation.

The results that I found allow us to affirm that the best replenishment level, regardless of

storage policies, is 50%. That allow a perfect tradeoff between the time that the operator

uses to do the refill and the unavailability of articles when they are required. As affirmed

before, this result is consistent with the studies performed by Lamballais et al. (2020) [31]

and permit to consider good mine result, despite level of approximation used.

Going on with the studies, I discovered that the best management achieved for each

fulfill center is when the SKUs are spread across the different pods. That increases the

possibilities for one pod to contain all the articles that are present in the order and this
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mean less AGV utilization, less waiting time and less pod travel. The saving data from

this results increase the number of orders that can be processed. This result is, also,

confirmed in Lamballais et al studies. A limit of this study is that I was not able to create a

full study that spread articles of the same commodity classes across the pods. From the

results that the simulation returns, considering also how the order database was created,

probably, this assumption would not have strong impact on the final output.

At the end, I discovered that the best ratio between the mobile robots number and the

pods present in the warehouse is equal to 8%. This value, however, probably is correct

only if the fulfill center have the same characteristics of this simulation model.

As mentioned before, the results explained before are in line with some studies conducted

in the past, but never demonstrated in a similar way.

7.1 Future works

As a future developments, I suggest continuing studying performances of these systems,

in particular, in terms of throughput, lead time and AGV utilization that are the most impor

tant performance’s metrics for both the customers and the companies. This kind of study

should be conducted considering also human factors, important for the workers wellness

and their safety on the workplace.

The methodology I tried to build, could be implemented by considering the utilization of

the resources (workers, pickers and mobile robots), the discounting of order’s value and

the value of the articles really ordered. Another useful consideration is relevant to the

input data: for good work and to obtain more accuratd results, it would be necessary to

have real information from companies that has implemented RMFS in their warehouses.

Regarding the simulative model that I developed, unfortunately, it was not possible to de

velop a flawless model and it presents some weakness, reported in section 6.1.1 At the

conclusion of this work, the forloop is not the best way to replicate what the real manage

ment software realizes. The biggest limits of this algorithm are two: the inability to read all

the order before the lines’s splitting and the the incapacity to upload the assigment of the

tasks. The last suggestion is to conduct similar study but with other simulation software,

such as Arena, Simul8, or more generic software as Matlab or Phyton.

This should allow to compare results from different simulation’s methodology and also to
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use the ”library functions” that Anylogic does not have. Moreover, it would possible to

linger more on the results analysis and less on the system modeling.
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A Input data

A.1 Order database

A.1.1 Ecommerce orders

During 2022 Amazon.com™ publish some general information about his fulfillment cen

ters [16]: they state more than 520.000 mobile robots in all warehouses.

Searching online others information, I discovered that there are from 2000 to 5000 pods

in each Amazon™ fulfillment center, and each mobile shelf is able to contain more or less

2000 SKUs.

In 2018, the data about ecommerce orders for each day reported from 20000 to 40000

for the only italian market [4].

Starting from these publish data1, I try to create a good input database for my model.

During 2018, Amazon.com™ has 185 fulfillment centers, in all the world, and only 7 of

that in Italy.

Range Average value

Number of fulfillment centers in the world (2018) 185 

Number of fulfillment centers in Italy (2018) 7 

Number of fulfillment centers in the world (2022) 305 

Number of fulfillment centers in Italy (2022) 15 

Number of mobile robots (2022) 520.000 

Quantity of pods in each warehouse (2018) 20005000 3500

Number of mobile robots in each fulfillment center2  1700

Number of SKUs storable in each pod 2000 

Ecommerce orders for each day 20.000  40.000 30.000

Table A.1: General information about ecommerce’s orders

1I ask data during the Amazon Tour and directly to Amazon.com™ offices, but for internal policies, they
cannot answer me with more precious information. However they confirmed that the data that I use are, with
not to much approximations, correct.

2Found such as 520.000 divided by 305
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From the data reported in table A.1 I have actualized the ecommerce data for 2018 to

date using the economic growth publish by Amazon.com™ in his quarterly results [34]

and reported in table A.2

Year Total ecommerce orders Growth3 Increment

2018 30.000

2019 36.600 + 22% + 6.600

2020 50.140 + 37% + 13.540

2021 60.670 + 21% + 10.530

2022 65.000 + 8% + 4.330

Table A.2: Ecommerce orders/day increment based on Amazon.com™ growth

Scaling now the value founded with the number of fulfillment centers in Italy in 2022, I got

that each elaborate approximately 4320 orders/day. Now, from the same data reported in

table A.1 compared with the dimension of my model summarized in table A.3, I discover

that my model have to elaborate more or less 145 orders/day.

My model Ratio between warehouses

Number of mobile robots Under study

Ratio between mobile robots and pods Under study

Quantity of pods in warehouse 120 2.91%

Number of SKUs storable in each pod 60 3,33%

Ecommerce orders for each day 500 11,54%

Table A.3: Fulfilment centers comparison

In order to follow the forecast growth of ecommerce orders in the current year I increase

the value found in 500 orders/day.

This allow also to get lower the error create with these approximations and more closer

to ecommerce reality.

94 Robotic Mobile Fulfillment Systems



A.1.2 Time distribution

The orders’ timing follow an exponential distribution during days with λ=36 that are able

to satisfy an average time between orders of 2/2.5 minutes. Each order can have from

1 to 6 lines, one piece for line, and the majority of the order will have only three lines.

To model the generation of order’s lines I chose the triangular distribution represented in

fig. A.1. In total, the workers pick 3735 elements across two days simulation.

Figure A.1: Distribution of order’s lines

A.1.3 Final order’s database

The lines for each order was generated randomly between 1 and 5 whit Excel, while the

SKUs’ distribution follow an exponential distribution (λ= 1/2) as fig. A.2. The three classes

Figure A.2: Orders distribution with class subdivision.

are defined such as:

1. Class A: 6 SKUs that represent approximately the 20% of the total number access

and that they constitute around of 50% of the total quantity stored in my model;

2. Class B: 25 SKUs that represent approximately the 37% of the access and that they

constitute around of 30% of the total quantity stored in my model;
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3. Class C: 43 SKUs that represent approximately the last 45% of the access and that

they constitute the 12% of the total quantity stored in my model.

The precise data of class division using ABC logic are given in the follow table A.4.

Class Total SKUs ordered Cumulative stock index Cumulative Access Index

A 2030 21.67% 53.90%

B 1225 30.83% 28.37%

C 480 44.17% 12.25%

Total 3735 100% 100%

Table A.4: Cumulative Stock Index e Cumulative Access Index for orders in my model
across two days simulation.
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B Output

B.1 Simulation results

B.1.1 Replication calculation

For find the optimal value of the KPIs that are define in section 4.1.4 I use the methods

explained in section 3.4.1. In particular, for the first analysis each scenario run with 15

replications, such as Rossetti advises [20]. Considering all the metrics that the model

returns reported in table B.1 Using the Halfwidth method, with an halfwidth = 0.1 and

a Confidence Interval = 95%, I found that are necessary, in order to have a good results,

12.04 replication (eq. (B.1)). This calculation confirm that the first results obtained with

15 replication is enough.

h0 = t1−(5%/2),14
0.05√
15

= 0.09n ∼= n0

(
h0
h

)2

= 15 •
(
0.09

0.10
)

)2

= 12.04 (B.1)

Analyzing the same values with a practical approach we found fig. B.1, where is possible

to see that the average value is very stable after the first 10th replications.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.9

0.91

0.92
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Va
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Figure B.1: Value and average across the 15 replications.
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