

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale Corso di Laurea in Ingegneria Meccanica

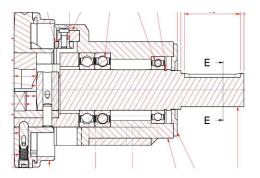
Relazione per la prova finale VERIFICA STRUTTURALE DI SUPPORTI PER ALBERI ESPANSIBILI PER LA PRODUZIONE DELLA CARTA

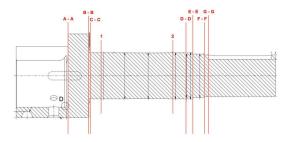
Tutor universitario: Prof. Alberto Campagnolo

Laureando: Leonardo Marin

Padova, 22/09/2023

Un componente specifico di un settore particolare


Obiettivo: Verifica strutturale di supporti rotanti per alberi espansibili per la produzione della carta.


- Storia dei produttori
- Interazione Alberi- Supporti
- Analisi preliminare
- Verifiche

L'azienda SVECOM P.E.

1954 Fondazione

PICCOLO ESPANSIBILE

1968 Nuova sede SVECOM P.E. 1986
Filiale negli USA
GOLDENROD CORP.

OGGI

Business unit:

- Svecom dispositivi espansibili
- Svecom power energy
- Svecom ski
- Svecom coating and lamination
- Svecom elevator
- Avogadro energy

Mission: Creare sistemi per l'avvolgimento e svolgimento personalizzati, semplici e innovativi.

INTERAZIONE ALBERO - SUPPORTO

ALBERO ESPANSIBILE

Mandrino con un sistema di espansione del diametro per la movimentazione di bobine

SCOPO:

Avvolgere e svolgere tutto ciò che si può immagazzinare su bobina

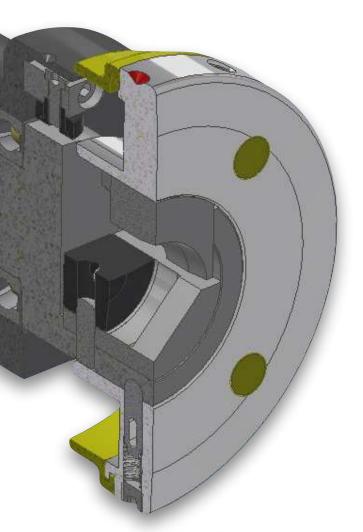
SUPPORTO ROTANTE

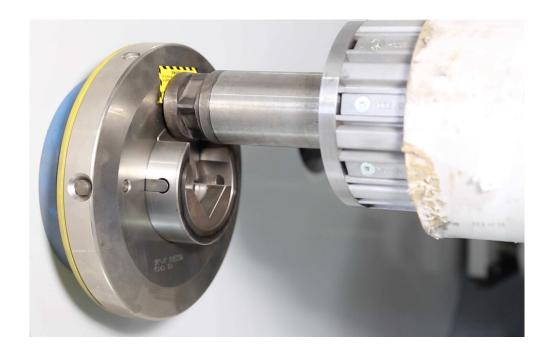
Supporto per il montaggio di alberi espansibili su linee di produzione

Brevettato da SVECOM P.E.

SCOPO:

Rendere più veloci e sicure le operazioni di carico e scarico



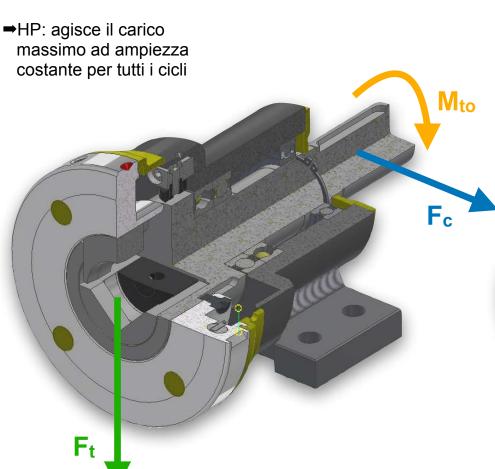

→ Interazione Albero - Supporto

Con un accoppiamento <u>Quadro - Tondo</u> si assicura:

- Trasmissione della coppia
- Centraggio dell'albero

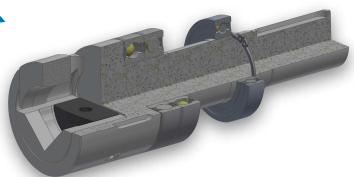
Il sistema richiede l'interazione con un operatore per la chiusura e l'apertura.

Analisi preliminare supporto 926KLPP1


Portata massima (coppia) [N]	30.000
Tiro cinghia [N]	1.000
Torsione massima [Nm]	1.300
Velocità massima [rpm]	1.500
Diametro alberino [mm]	50

Sollecitazioni:

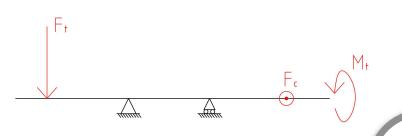
- Peso Bobina
- Momento torcente
- Tiro cinghia di trasmissione

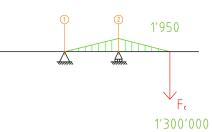

Organi sensibili:

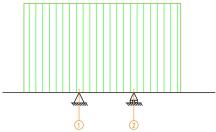
- Albero
- Cuscinetti
- Linguetta
- Giunzione bullonata

La resistenza dell'albero è essenziale per l'integrità del supporto in esercizio

Si studia l'albero con uno schema di <u>trave in appoggio</u>




Verifiche Statiche dell'albero


M_f X - Y

1'207'500 $\sigma_{id} = \sqrt{\sigma_f^2 + 3 \cdot \tau_{M_t}^2}$

 $\sigma_{f} \tau_{M_t}$

Caratteristiche Acciaio C43

σ _R [MPa]	570
σ _s [MPa]	360
σ∞,-1 [MPa]	295

 $\sigma_{\!\scriptscriptstyle S}$

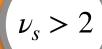
STATO DI SOLLECITAZIONE

 $M_f M_t$

Si ricava momento flettente e torcente per le sezioni più caricate.

STATO DI TENSIONE

Si ricavano le tensioni definendo la tensione monoassiale equivalente.

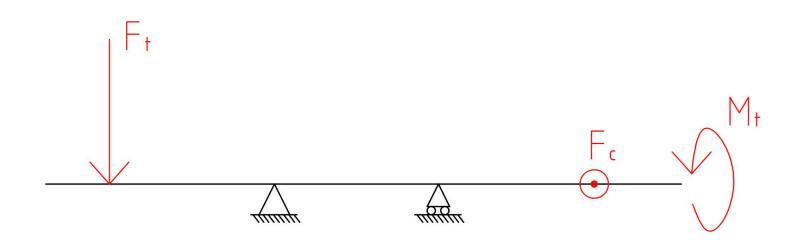

MATERIALE

Ricerca delle caratteristiche del materiale da normativa

Processo operativo

SICUREZZA

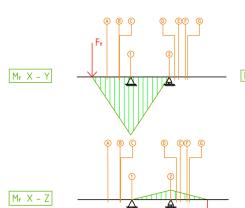
Dalla tensione monoassiale equivalente si ricava il coefficiente di sicurezza

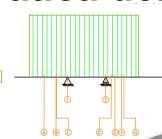


Parametri Principali

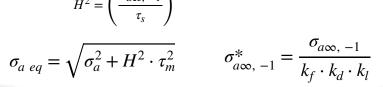
MATERIALE: C43			
σ _R [MPa]	τ _R [MPa]		
σ _s [MPa]	τ _s [MPa]		
σ _{∞,-1} [MPa]	τ∞,-1 [MPa]		

STATO DI SOLLECITAZIONE				
TORSIONE:	M _{t0} [Nmm]			
TAGLIO:	Ft [N]			
	F _c [N]			
FLESSIONE:	M _{f S} [Nmm]			
	M _{f D} [Nmm]			

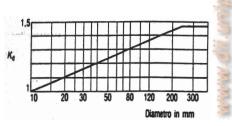

STATO DI	TENSIONE			
d _i [r	mm]			
W _f [mm ³]	σ _f [MPa]			
W _t [mm ³] τ _{Mt} [MPa]				
σ _{id} [I	MPa]			
Vs	[/]			



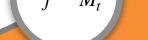
Verifiche a Fatica dell'albero

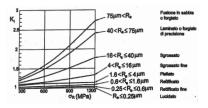



 \mathcal{X}

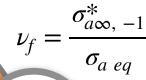


$$H^2 = \left(\frac{\sigma_{a\infty, -1}^*}{\tau_s}\right)^2$$


$$\sigma_{a\ eq} = \sqrt{\sigma_a^2 + H^2 \cdot \tau_m^2}$$

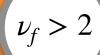


VERIFICHE STATICHE LOCALI


Come in precedenza si verificano staticamente le sezioni.

VERIFICHE A FATICA LOCALI

Dai disegni costruttivi si ricavano i valori per la ricerca dei fattori.


SEZIONI CRITICHE

Vengono selezionate le sezioni più critiche dell'albero.

Processo operativo

SICUREZZA

Dalla tensione limite corretta si ricava il coefficiente di sicurezza in tensione.

Parametri Principali

R [mm]

d [mm]

D [mm]

D/d [/]

R/d [/]

a [mm]

q [/]

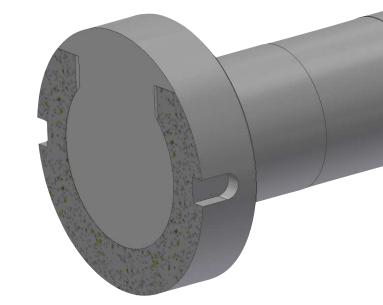
k_{tn} [/]

k_f [/]

k_d [/]

kı [/]

 $\sigma^*_{a\infty,-1}$ [MPa]


σ_a [MPa]

τ_m [MPa]

H² [/]

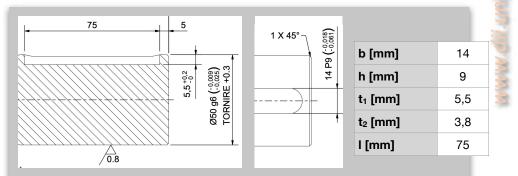
 $\sigma_{a \, eq}$ [MPa]

v_f [/]

CUSCINETTI E ORGANI DI COLLEGAMENTO

Cuscinetti

- Tipologia cuscinetti
- Verifica dinamica
- *→ Durata Cuscinetti*

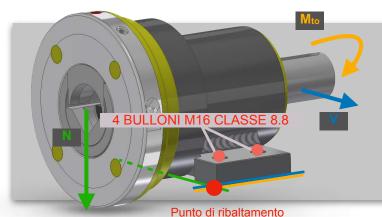

SKF 62112Z / 60112Z

• Verifica statica
$$C_0 = s_0 \cdot P_0 < C_{0 \ cuscinetto}$$

$$L_{10} = \left(\frac{C}{P}\right)^p$$

$$L_{10\ h} = \frac{L_{10} \cdot 10^6}{60 \cdot n}$$

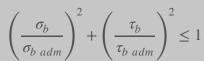
Linguetta

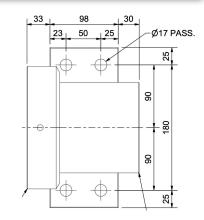


- Verifica a pressione
- Verifica a taglio
- → Resistenza Linguetta

n –	M_{t_0}	. < n
<i>p</i> –	$\frac{d_0}{2} \cdot t_1 \cdot l$	$ \geq p_{adm}$

$$\tau = \frac{2 \cdot M_{t_0}}{d_0 \cdot b \cdot l} \le \tau_{amm}$$

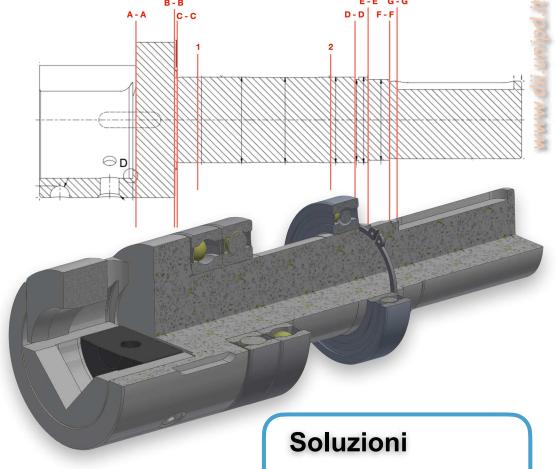

Giunzione bullonata



- Momento ribaltante $N_i = \frac{M_R}{n_f \cdot \sum y_i^2} \cdot y_i$ Verifica ad attrito
- Verifica a taglio
- → Solidità della Giunzione

$$\begin{cases} V_f \le V_{f, N} \\ N \le 0.8 \cdot N_s \end{cases}$$

$$\sigma_b \quad \bigvee^2 \quad \int \tau_b \quad \bigvee^2$$


CONCLUSIONI FINALI

Conclusioni

Componenti a contatto con operatori

	SEZIONE A - A	SEZIONE B - B	SEZIONE C - C	SEZIONE 1	SEZIONE 2	SEZIONE D - D	SEZIONE E - E	SEZIONE F-F	SEZIONE G - G
v _s [/]	11,9	6,6	4,2	3,6	5,2	4,4	4,4	3,9	2,8
	>	>	>	>	>	>	>	>	>
	2	2	2	2	2	2	2	2	2
V _f [/]	5,4	1,8	1,5	١	١	4,1	4,2	3,8	2,7
	>	>	>	١	١	>	>	>	>
	2	2	2	V	١	2	2	2	2
	_	VERIFICA CUSCINETTI					VERIFICA I	INGUETTA	
	SX DX					p [MPa]	115	<	1.
	30	109	18.263			τ [MPa]	45 <		20
C ₀ [N]	30.	109	10.	200					
	•	<	13	<		VERII	VERIFICA GIUNZIONE BULLONATA		
	29.000		21.200			Taglio	0,263	<	1
Les Del	32	01	82			V _f [N]	127	<	14.536
L _{10h} [h]	32	41		2		N [N]	9.435	<	56.000

Andando ad analizzare i risultati analitici forniti dalle verifiche si può dire che:

L'utilizzo prolungato alle massime condizioni di carico porterebbe ad un'usura precoce dei cuscinetti e ad una probabilità più alta di cedimento per fatica delle sezioni più critiche.

→ Alle condizioni normali di carico il supporto si può considerare verificato.

Raggi di curvatura

· Cuscinetti a rulli

· Linguetta superiore

Relazione per la prova finale VERIFICA STRUTTURALE DI SUPPORTI PER ALBERI ESPANSIBILI PER LA PRODUZIONE DELLA CARTA

Grazie per l'ascolto

Tutor universitario:

Prof. Alberto Campagnolo

Laureando:

Leonardo Marin

Padova, 22/09/2023