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Introduction 

 

The use of Fiber Reinforced Polymer (FRP) composites, as internal 

reinforcement, for concrete structural elements is a widespread practice in many 

countries, in substitution of conventional steel reinforcement. Due to their 

durability, high strength-to-weight ratio, and good fatigue properties, fiber 

reinforced polymers (FRP) are considered an advantageous alternative to steel for 

internal reinforcement of concrete structures. However, the FRP reinforcement 

presents some differences when compared to steel reinforcing bars, such as a 

lower modulus of elasticity and a linear elastic stress–strain diagram up to rupture, 

which implies a lack of plastic behavior. Existing experimental programs stressed 

a reduction of the shear strength of concrete members reinforced longitudinally 

with FRP bars compared to specimens with the same ratio of steel reinforcement 

(1). While flexural mechanisms are clearly established, there is not a consensus 

among the engineers and scientists about how to predict, for design purposes, the 

shear strength of FRP reinforced concrete beams. It is commonly accepted that the 

shear strength in a RC beam is composed by the contribution of several 

mechanisms, which can be summarized in:  

a) the shear resisted by the compressed concrete chord; 

b) the friction forces developed along the crack length, which are contrary to 

the relative displacement of both crack faces (aggregate interlock); 

c) the residual tensile strength existing between inclined cracks, which acts as 

a tie of the truss mechanism jointly with the compression chord, the tensile 

reinforcement and the concrete compression struts; 

d) the shear strength provided by the longitudinal reinforcement (dowel 

action). 
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The relative contribution of each mechanism changes as the load increases: 

in general, c) and d) are small compared to the contribution of the other 

mechanisms. In the absence of stirrups, the only constrain to the downwards 

vertical displacement of the longitudinal reinforcement is provided by the 

concrete cover. For high load levels, splitting of the concrete cover takes place 

under the vertical component of the concrete struts, dramatically reducing the 

dowel action and the residual tensile stresses in the web between cracks. 

Furthermore, cracks width increase as the load increases, reducing the friction 

along the crack length. In elements without stirrups this effect is especially 

relevant, since cracks are not crossed by any reinforcement, except the flexural 

bars, which constrains the relative movements between their surfaces.  

In the case of FRP reinforced beams without stirrups, these effects are 

more remarkable than in steel reinforced ones, since the modulus of elasticity of 

CFRP and GFRP bars are significantly lower than that of steel bars. 

Consequently, crack widths are bigger and the bars shear stiffness is lower, thus 

reducing both the aggregate interlock and the dowel action mechanisms. 

Therefore, in FRP reinforced elements, the shear strength provided by the 

longitudinal reinforcement can be neglected. An important mechanism of shear 

transfer at high load levels is the shear force carry by the compressed concrete 

zone where the compressive stresses increases as the load increases. Since the 

lower modulus of elasticity of FRP reinforcing bars influences both the level of 

concrete compressive stresses and the neutral axis depth under flexure, this 

parameter must be taken into account in order to evaluate the ultimate shear 

capacity. Alkhrdaji et al. (2) concluded that the shear strength was proportional to 

the amount of longitudinal reinforcement. In addition, Tureyen and Frosch (3),  

El-Sayed et al. (4) (5), and Alam and Hussein (6) observed that the shear strength 

of FRP reinforced elements is proportional to the axial stiffness of the longitudinal 

reinforcement.  

Shear design equations of FRP reinforced concrete beams without stirrups 

have been developed and many of them have been included in the shear 
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provisions of the Codes of Practice. Most of the formulations were developed 

modifying existing equations for shear design of concrete members with steel, 

taking into account the difference in modulus of elasticity (CNR-DT 203/2006 

(7), ACI440.1R-06 (8), CAN/CSAS6-02 (9) and CAN/CSAS6-06 (10), JSCE 

(11)). The ACI 440.1R-06 guideline is based on the work of Tureyen and Frosch 

(3) and considers the axial stiffness of the FRP through the depth of the 

compression block using a cracked section analysis. Previous analysis of the 

existing formulations concluded that most of the current guidelines provide 

conservative values of the concrete shear strength (experimental to theoretical 

ratios around 2). The CSA S6-06 Addendum contained the best balance of 

accuracy, the CNR-DT203 produced unreliable results and ACI-440.1R-06 and 

JSCE are very conservative. The differences between the experimental and 

theoretical results can be explained by the fact that the shear design equations for 

elements without transverse reinforcement are not always supported on solid 

theories that explain the observed behavior, but mainly they are empirically based, 

by adjustments of equations to experimental results.  
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Objectives 

 

The purpose of this work is to study the safety level of seven reinforced 

concrete bridges without shear reinforcement. Analyzed bridges belong to the 

Spanish catalogue realized by Casado (12) in 1942 with the aim to suggest some 

standard solutions for cross section geometry and reinforcement amount in order 

to give a design guideline in a country so far lacking of adequate design codes.  

The flexural reinforcement with Carbon Fiber Reinforced Polymer bars, it 

will be designed according to Italian guideline CNR-DT 203/2006 (7). Then, a 

simple model for the prediction of the shear strength of FRP reinforced concrete 

beams and one-way slabs without shear reinforcement is utilized. The method 

proposed by Marí et al. (13) is based on the principles of structural mechanics and 

on the experimentally observed behavior of FRP RC beams at shear-flexural 

failure. Simple design formulation is provided, which explicitly account for those 

parameters governing the shear strength, such as the concrete tensile strength, the 

amount of longitudinal reinforcement ratio and the ratio between the elastic 

modulus of the longitudinal reinforcement and the concrete. 

A reliability-based analysis it will be conducted to calculate the probability 

of failure of the seven reinforced concrete bridges. In order to calculate the 

probability of failure a Monte Carlo simulation is performed. The aim was to 

solve the limit state function, which involves all the variables belonging to the 

general problem         as random variables, each of which with its 

statistical properties. Monte Carlo simulation allow to simulate a large number of 

trials. The Marí’s formulation is set within the simulation including the basic 

variables which affects the shear strength. Eventually, the results obtained are 

compared with those obtained according to Italian guideline CNR-DT 203, and to 

the American ACI 440.1R-06 . 
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Chapter 1  

Fiber Reinforced Polymer for RC 
structures 

1.1. FRP as internal reinforcement 

The use of Fiber Reinforced Polymer (FRP) composites, as internal 

reinforcement, for concrete structural elements is a widespread practice in many 

countries, in substitution of conventional steel reinforcement. There are several 

reasons that make the use of FRP bars preferable to conventional steel ones. The 

peculiar characteristic of FRP materials of not being susceptible to corrosion 

phenomena makes their use particularly suitable in different situations, such as for 

marine structures as well as structures exposed to harsh environments. 

Furthermore, glass FRP composites (GFRP) are non-conductive and therefore can 

be used effectively when stray currents are an issue, as in the case of structures 

serving rail transportation. In the building industry, the use of this technology can 

be adopted for the construction of building slabs for civil or industrial use. The 

reasons that lead to choosing FRP in this case can be related not only to durability 

issues, but also to the possibility of taking advantage of specific properties of 

composite materials, such as magnetic transparency. The latter is of fundamental 

importance in the construction of hospital rooms to avoid interference where 

Magnetic Resonance Imager (MRI) units are located. There are further attractive 

and promising uses of composites materials in the building of temporary 

structures and tunnel covering. 

Several international guidelines are currently available supporting the 

design, construction and control of such structures. The main documents are 

issued by the fib (“FRP Reinforcement for reinforced concrete structures”, 2005, 

Task Group 9.3); the American Concrete Institute (ACI 440.1R-06, 2006, “Guide 
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for the design and construction of concrete reinforced with FRP bars”); the two 

documents published by the Canadian Standard Association (CAN/CSA-S6-02, 

2002, “Design and construction of building components with Fiber-Reinforced 

Polymers”, and CAN/CSA-S6-06, 2006, “Canadian high bridge design code”); the 

document of Japan Society of Civil Engineers (JSCE, 1997, “Recommendation 

for design and construction of concrete structures using continuous Fiber 

Reinforcing Materials”) and the most recent document of the Italian National 

Research Council (CNR-DT 203/2006, 2006, “Guide for the design and 

construction of concrete structures reinforced with Fiber-Reinforced Polymer 

bars”). From a theoretical perspective, there are no conceptual differences in 

relation to the classical theory of steel reinforced concrete elements. What does 

need to be taken into account, is the different mechanical behavior of FRP 

material, whose constitutive law is fundamentally linear elastic up to failure. 

Therefore the methods assuming plastic redistribution capability are not 

applicable. Moreover, the nearly complete lack of ductility displayed by FRP 

reinforced concrete structures shall be taken into account for applications in 

seismic field. In such cases, the design spectrum shall be derived from the elastic 

spectrum by setting the structural factor to an appropriate value to account for the 

elastic behavior shown by an element reinforced with FRP bars. 

 

1.2.  Properties of Composite Materials 

Composite materials exhibit the following characteristics: 

 They are comprised of two or more materials (phases) different in nature 

and “macroscopi-cally” distinguishable.  

 At least two phases have physical and mechanical properties quite 

different from one another, such to provide FRP material with different 

properties than those of its constituents.  

Fiber-reinforced composites with polymeric matrix satisfy both 

characteristics given above. In fact, they consist of both organic polymeric matrix 
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and reinforcing fibers. For structural applications the most utilized are the glass 

fibers (GFRP), carbon fibers (CFRP) and aramid fibers (AFRP). FRP bars 

properties, such as high temperature performances, corrosion resistance, dielectric 

properties, flammability and thermal conductivity are mainly derived from the 

properties of their components. 

The matrix is considered an isotropic material, while the reinforcing phase 

(with the exception of glass fiber) is an anisotropic material (different properties 

in different directions). The defining characteristics of FRP materials are as 

follows: 

 Geometry: shape and dimensions; 

 Fiber orientation: the orientation with respect to the symmetrical axes of 

the material; when random, the composite characteristics are similar to an 

isotropic material isotropic”). In all other cases the composite is 

considered an anisotropic material; 

 Fiber concentration: volume fraction, distribution (dispersion). 

 

1.3. FRP bars 

FRP reinforcement is available in different forms such as; bars, grids, 

prestressing tendons, and laminates to serve a wide range of purposes. This work 

focuses on using FRP bars (Fig. 1.1) as an internal reinforcing material for 

concrete members (FRP-RC). The main characteristics of FRP bars, can be 

summarized as follows: 

 high durability, in particular elevated resistance to corrosion; 

 high strength-to-weight ratio; 

 good fatigue properties; 

 high properties as thermic and electric insulator. 
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FRP are characterized by a unidirectional array of fibers, generally having 

a volume fraction ranging between 50% and 70%. Therefore, composites are in 

most cases a non-homogeneous and anisotropic material. 

The fibers exhibit high tensile strength and stiffness and are the main load 

carrying element. The resin offers high compressive strength and binds the fibers 

into a firm matrix. The additives help to improve the mechanical and physical 

properties as well as the workability of composites. The GFRP is the least 

expensive but has lower strength and significantly lower stiffness compared to 

other alternatives. CFRP is the stiffest, most durable, and most expensive one. 

AFRP has improved durability and excellent impact resistance.  

 

 

Fig. 1-1: FRP bars available on the market (CNR-DT203/2006). 

 

 

  



19 
 

Chapter 2   

A model for the prediction of the shear 
strength 

2.1. RC shear strength 

While flexural mechanisms are clearly established, there is not a consensus 

among the engineers and scientists about how to predict, for design purposes, the 

shear strength of FRP reinforced concrete beams. As observed in existing 

experimental programs, concrete members reinforced longitudinally with FRP 

bars show a reduction of the shear strength compared to specimens with the same 

ratio of steel reinforcement.  

As is commonly know, the shear strength in reinforced concrete beam is 

composed by the contribution of several mechanisms whose relative importance 

changes as the load increases. In general, the residual tensile strength existing 

between inclined cracks, which acts as a tie of the truss mechanism jointly with 

the compression chord, the tensile reinforcement and the concrete compression 

struts, and the shear strength provided by the longitudinal reinforcement (dowel 

action) are small compared to the contribution of the others mechanisms like the 

shear resisted in the uncracked compressed zone of the beam, and the interface 

forces developed along the crack length (aggregate interlock). 

In the absence of stirrups, the only constrain to the downwards vertical 

displacement of the longitudinal reinforcement is provided by the concrete cover. 

For high load levels, splitting of the concrete cover takes place under the vertical 

component of the concrete struts, thus drastically reducing the dowel action and 

the residual tensile stresses in the web between cracks.  



20 
 

Furthermore, cracks width increase as the load increases, reducing the 

friction along the crack length. In elements without stirrups this effect is 

especially relevant, since cracks are not crossed by any reinforcement, except the 

flexural bars, which constrains the relative movements between their surfaces. 

In the case of FRP reinforced beams without stirrups, these effects are 

more remarkable than in steel reinforced ones, since the modulus of elasticity of 

FRP bars are significantly lower than that of steel bars. Consequently, crack 

widths are bigger and the bars shear stiffness is lower, thus reducing both the 

aggregate interlock and the dowel action mechanisms. Therefore, in FRP 

reinforced elements, the shear strength provided by the longitudinal reinforcement 

can be neglected. 

An important mechanism of shear transfer that becomes relevant at high 

load levels is the shear force carry by the compressed concrete zone where the 

compressive stresses increase as the load increases. Since the lower modulus of 

elasticity of FRP reinforcing bars influences both the level of concrete 

compressive stresses and the neutral axis depth under flexure, this parameter must 

be taken into account in order to evaluate the ultimate shear capacity, as will be 

seen in detail in this chapter. 

The main objective of the existing experimental programs on the study of 

the shear strength of FRP reinforced members without transverse reinforcement is 

to study\ the effect of the reinforcement amount and stiffness on the shear strength 

of FRP reinforced elements. Some authors concluded that the shear strength was 

proportional to the amount of longitudinal reinforcement. In particular, some 

observed that the shear strength of FRP reinforced elements is proportional to the 

axial stiffness of the longitudinal reinforcement. 

In this chapter is presented a simple model for the prediction of the shear 

strength of FRP reinforced concrete beams and one-way slabs without shear 

reinforcement, proposed by A. Marí et al. (13). The method is based on the 

principles of structural mechanics and on the experimentally observed behavior of 
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FRP RC beams at shear-flexural failure. Simple design equations are provided, 

which explicitly account for those parameters governing the shear strength, such 

as the concrete tensile strength, the amount of longitudinal reinforcement ratio and 

the ratio between the elastic modulus of the longitudinal reinforcement and the 

concrete.  

 

2.2. Basis of the proposed method 

The main hypothesis, based on experimental observations, of the method 

presented in this chapter is that just before failure, the main mechanism that 

contributes to the shear strength of the beam is the shear carried by the concrete 

compression chord, neglecting, at this stage, the contributions of the rest of 

mechanism mentioned in Section 3.1. 

The studied model is based on the experimental analysis of the behavior of 

an FRP reinforced concrete beam without transverse reinforcement, subjected to 

an increasing point load. A typical inclined crack pattern, as well as normal and 

vertical shear stresses are produced. By increasing the load, cracks propagate and 

open, and the normal and shear stresses increase and progressively migrate 

towards the uncracked concrete compression chord (Fig. 2-1).  

 

 

Fig. 2-1: Evolution of stresses distribution in a cracked section near the support 
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The tensional state at any point of this chord is characterized by normal 

and shear stresses coming from the bending moment. Thus, the principal 

compressive (    and tensile (   ) stresses produced by this tensional state are, 

according to the Mohr’s circle for stresses: 

       
  
 
   

  
 
 
 

    ( 2.1 ) 

 

The shear stresses c and t are the shear stresses that take place at the 

fibers of the concrete chord where the principal stresses reach respectively the 

concrete compressive and tensile strengths: 

           
  
   

 ( 2.2 ) 

           
  
   

 ( 2.3 ) 

 

Two failure modes can be defined (according to Park et al. (14)). Tensile 

failure mode that is considered to take places when the principal tensile stress at 

any point of the concrete chord reaches the tensile strength                   . 

Compressive failure mode, instead, is assumed to occur when the principal 

compressive stress reaches, at any point of the concrete chord, the compressive 

strength                  . Since the concrete compressive strength takes 

values more than ten times greater than those of the tensile concrete strength, the 

load level necessary to produce the compressive failure, in general, is much higher 

than that necessary to produce tensile failure.  

Furthermore, since the normal stresses at any section increase with the 

bending moment increases, according to Eq. ( 2.2 ) and ( 2.3 ), in simple 

supported beams, tensile failure is expected to occur  in sections near the support, 
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while compression failure is expected to occur in sections closer to  the center 

span. 

For the reasons above mentioned, in the studied model it is assumed that 

the ultimate shear capacity in FRP reinforced concrete beams without shear 

reinforcement is associated to the tensile failure at a critical section placed near 

the support. Thus, to evaluate the principal tensile stress at any fiber of the 

compression chord of a section, which depends on the bending moment acting on 

the section, it’s necessary to determine the depth of the compression chord.  

For this purpose and in order to obtain at which fiber of the concrete chord 

the maximum principal compressive and tensile stresses takes place, it is first 

needed to assume distributions for the normal and shear stresses along the 

compression chord depth. 

It is hence supposed that compressed concrete follows a parabolic stress-

strain law with a given modulus of elasticity in the origin,   , and horizontal slope 

for the strain   , when the stress σ reaches the compression strength fc. The peak 

strain    is assumed to be a function of Ec and fc so that, is sufficiently captured 

the behavior for low and medium stress levels: 

 
      

   

  
 
  

  
   ( 2.4 ) 

 
   

    
  

 ( 2.5 ) 

 

As a consequence of the hypothesis made about the contributions of each 

mechanism just before failure, the shear stress below the neutral axis must be 

zero. Furthermore, a parabolic distribution of the shear stress on the concrete 

compression chord can be assumed, with zero values at both end fibers (Fig. 2-2). 
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Fig. 2-2: Distribution of normal and shear stresses at failure at the concrete compression chord. 

 

2.2.1. Neutral axis depth and compression concrete stresses 

In order to evaluate the depth of the concrete compression chord, which is 

assumed to be equal to the neutral axis depth in flexure in cracked state, a non-

linear sectional analysis must be performed and it can be obtained through a 

iteratively process. For this reason, the neutral axis depth is firstly obtained 

assuming a linear stress-strain law for concrete in compression, and subsequently 

corrected by a factor, to account the influence of the non-linear concrete stress-

strain. Thus, for sections with only tensile reinforcement the depth of the neutral 

axis can be written  by the following expression: 

   
 

 
      

  
 

 ( 2.6 ) 

 
   

  
 
            

 

    
  ( 2.7 ) 

 

Where    is the neutral axis depth calculated assuming a linear stress 

distribution, which depends on the modular ratio         and on the 

reinforcing ratio            . The subscript r indicates the variables referred 

to the FRP reinforcements, b and d are the section width and the effective depth, 

respectively. The neutral axis depth is calculated by multiplying the above-

mentioned value by the factor     . Such correction factor is obtained solving the 

sectional analysis for different levels of the non-dimensional applied moment 

           
    and for different values of the equivalent modular ratio . 
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The higher is the applied moment and the lower is the modular ratio, the higher is 

the neutral axis correction factor, as shown in Fig. 2-3. 

Furthermore, a stress correction factor should be calculated to be applied 

to the concrete stresses obtained assuming a linear behavior for concrete in 

compression. This factor is lower as the lower is the modular ratio and the higher 

is the applied moment (Fig. 2-4). Thus, for low values of the modular ratio, the 

depth of the neutral axis increases and the maximum concrete stress decreases in 

respect of those values obtained by a linear concrete stress distribution, as can be 

seen in Fig. 2-5.  

 

 

Fig. 2-3: Neutral axis correction factor       
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Fig. 2-4: Concrete stress correction factor. 

 

Nevertheless, it is possible to see that for the fibers of the concrete compression 

chord around the mid-height of the neutral axis depth, the concrete stresses are 

practically equal. Indeed, observing the stress correction factor, obtained for 

different values of the modular ratio and different applied moment levels, at mid-

height of the neutral axis depth, this is practically constant and equal to 1 (Fig. 2-6). 

Such result is relevant since the maximum principal tensile stress in the concrete 

chord take place at around mid-height of the neutral axis depth and therefore no 

stress correction is needed. 

 

 

Fig. 2-5: Neutral axis depth and maximum concrete stress 
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2.2.2. Position of the maximum principal tensile stress 

The distribution of the principal tensile stresses along the concrete chord 

(expressed in non-dimensional terms) is shown in Fig. 2-7. It can be observed how 

the position of the maximum principal tensile stress is not very sensitive to the 

relative distance of the cross section to the support             and tends to 

takes place at a relative height          as the section approaches the support. 

A reasonable lower value equal to           is taken into account in the 

proposed model, which corresponds to the end of the discontinuity region at the 

support        .  

 

 

Fig. 2-6: Stress correction factor at mid height of the neutral axis. 
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Fig. 2-7: Distribution of principal tensile stresses at the concrete chord. 

 

2.3. Shear strength of FRP reinforced concrete beams 

Once the position where the maximum principal tensile stress takes place 

       is know, where the distance y is measured from the neutral axis, it can 

be written the expression of the parabolic shear stress distribution along the 

concrete chord: 

 
     

  
         

  
 

 
 
  

  
  ( 2.8 ) 

 

By integrating the shear stresses along the compression chord and substituting  the 

expression for    ( 2.3 ), it can be obtained the value of the shear force carried by 

the concrete chord when the principal tensile stress reaches the concrete tensile 

strength    : 

               
 

 

 
      

           
 

       

           
    

  
   

 ( 2.9 ) 
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   is the concrete normal stress at a distance        from the neutral axis. For 

the particular case of         , Eq. ( 2.9 ) becomes: 

     
       

                 
    

  
   
                   

  
   

 ( 2.10 ) 

 

At the distance           the normal concrete stress is obtained assuming a 

linear concrete stress distributions, as follows: 

               
  

        

             
 

      

             
 ( 2.11 ) 

 

where         is the maximum compressive stress at the top fiber of the section 

calculated by imposing the rotational equilibrium of the section. At last, the 

maximum shear force carried by the compression chord is: 

                            
      

                 
 ( 2.12 ) 

 

the neutral axis depth is expressed by correcting the value obtained assuming a 

linear stress distribution with the correction factor, as seen previously. 

 

2.4. Shear design equations 

As already mentioned, the failure mode considered occurs in sections near 

the support and more specifically, the critical section is assumed to be placed at 

the tip of the crack initiated closer to the support (section “B” in Fig. 2-8).  The 

abscissa of the critical section is that corresponding to the point where the first 

flexural crack starts (   ), plus the drift of the crack produced by the combination 

of normal and shear stresses (D). According to experimental observation this 
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value can be assumed as         , where d represents the effective height of 

the section. 

For the considered simple supported beam subjected to an increasing point load, 

the value of the bending moment at the critical section will be (Fig. 2-8): 

                                   ( 2.13 ) 

 

where     
    

 
     is the cracking bending moment of the section. 

 

Fig. 2-8: Position of the critical section in tensile failure mode 

 

By substituting the expression for the bending moment into Eq. ( 2.12 ), which 

expresses the tensile shear failure condition, and putting it in non-dimensional 

form, is obtained: 

     
    

       
               

 
  

       
 
 
 
 

            

           
 ( 2.14 ) 

 

which results to be a second order polynomial equation. 
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When shear failure occurs, the bending moment at the critical section is rather low 

and can be estimated conservatively in about two to four times the cracking 

moment. In the model utilized is assumed a value of                  . 

Solving the second order equation for different values of the neutral axis depth 

        and for two different values of the correction factor      corresponding 

to the values of the modular ratio       and    , it can be observed that the 

non-dimensional shear strength results to be an almost linear function of the 

relative neutral axis depth in flexure, as shown in Fig. 2-9. 

 

 

Fig. 2-9: Non-dimensional shear strength for given values of  

 

Therefore, the non-dimensional shear strength can be written as a linear 

expression that takes into account also the modular ratio α as follows: 

 
     

    
       

                
  
 
       ( 2.15 ) 

 

It can be observed, by means Eq. ( 2.7 ), that the higher is the reinforcement 

amount ρ, the higher is the shear strength, since the neutral axis depth increases. 

The above formulation can be extended to the case of uniformly distributed load 

by introducing a parabolic bending moment law into Eq. ( 2.12 ), since the 
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assumption made about the critical section in beams subjected to point loads is 

still valid for a uniformly distributed load. Indeed, in beams subjected to this type 

of loading, the shear force decreases linearly with the distance to the support, 

while the bending moment increases according to a parabolic law, so the closer to 

the center span, the higher is the shear capacity. In the contest of this work, for the 

sake of simplicity, it will not be taken into account the different distribution of the 

applied load with respect to the point loads considered in the model and the 

formulation presented in this chapter will be utilized. 
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Chapter 3  

Description of the studied bridges 

3.1. Studied bridges 

For the reliability analysis it will be performed a simulation in order to 

recreate a large number of tests on bridge structures. Seven different reinforced 

concrete bridges are considered. These are not existing bridges, but they are 

designed by considering the most common typologies of existing bridges in Spain, 

built in the 1940’s. Indeed these bridges belong to a bridge national catalogue 

realized by C.F. Casado (12) in Spain in the 1942. The aim of the author was 

those to suggest some standard solutions for the cross section geometry and 

reinforcement amount, in order to give a design guideline in a country lacking of 

adequate design codes. For this reason, nowadays in Spain, existing bridges 

present, in the most of cases, those suggested characteristic. 

For the aims of this work, it has been taken only the geometric 

characteristic of the cross sections and the concrete properties, while the flexural 

reinforcement is here designed according to CNR-DT 203/2006 (7). 

Two different typologies of bridges are analyzed: 

 four girder bridges; 

 three slab bridges. 

In order to simply the references to each bridge, the following notion will be 

utilized. The first letter indicates the typologies of its cross section: “B” stands for 

“beam” and indicates girder bridges; whereas “S” that stands for “slab”, indicates 

slab bridges. Then, the first letter is followed by numbers, which represent the 

span lengths in meters. Two digits are related for simply supported bridges and 
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four digits for continuous bridges. Eventually the last two letters “RC” state the 

material of the bridge, which is reinforced concrete. The characteristic 

compressive strength is taken equal to 20 MPa, which represents a quite low value 

for compressive strength, this because at that time no better materials were 

available. 

 

3.2. Girder bridges 

The four girder bridges are simply supported and have the same width of 

the cross section which counts six principal beams. The bridges differ in span 

length and height of principal and transverse beams. There are three transverse 

beams, one at the mid span and two at the ends. The common characteristic for 

girder bridges are resumed in Table 3-1. 

 

 Symbol Value Unit 

Total bridge width B 9,35 m 

Carriageway width  w 8,00 m 

Left sidewalk width  bl 0,80 m 

Right sidewalk width  br 0,55 m 

Base thickness  ts 0,20 m 

Sidewalk heigth  hs 0,20 m 

Pavimentation thickness  tp 0,08 m 

Table 3-1: Geometric characteristic of the cross section. 
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Fig. 3-1: B10RC (dimensions in m). 

 

 

 

 

 

 

Fig. 3-2: B12RC (dimensions in m). 
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Fig. 3-3: B16RC (dimensions in m). 

 

 

 

 

 

Fig. 3-4: B20RC (dimensions in m). 
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3.3. Slab bridges 

Also for slab bridges, the section geometry is taken from the national 

catalogue by introducing little modifications. Only one of the slab bridges is 

simply supported, while the others two are continuous bridges with three spans. 

S10RC and S1015RC differ in cross section only for slab height. S1520RC 

present some differences on the shape of the cross section.  

 

 Symbol Value Unit 

Total bridge width B 12,00 m 
Carriageway width  w 10,00 m 
Left sidewalk width  bl 1,00 m 
Right sidewalk width  br 1,00 m 
Base thickness  ts 0,15 m 
Sidewalk heigth  hs 0,20 m 
Pavimentation thickness  tp 0,08 m 

Table 3-2: Common geometric characteristics of cross section for S10RC and S1015RC. 

 

 

 

 Symbol Value Unit 

Total bridge width B 11,00 m 
Carriageway width  w 10,00 m 
Left sidewalk width  bl 0,50 m 
Right sidewalk width  br 0,50 m 
Base thickness  ts 0,20 m 
Sidewalk heigth  hs 0,20 m 
Pavimentation thickness  tp 0,08 m 

Table 3-3: Geometric characteristic of cross section for S1520RC. 
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Fig. 3-5: S10RC (dimensions in m). 

 

 

 

 

 

Fig. 3-6: S1015RC (dimensions in m). 
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Fig. 3-7: S1520RC (dimensions in m). 
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Chapter 4  

Bridges reinforcement design 

4.1. Basis of design 

Bridges design is conducted according to CNR-DT 203/2006, “Guide for 

the Design and Construction of Concrete Structures Reinforced with Fiber-

Reinforced Polymer Bars”. For the flexural design at the ultimate limit state it is 

required that the factored ultimate moment Msd and the flexural capacity Mrd of 

the FRP reinforced concrete element satisfy the following inequality: 

         ( 4.1 ) 

 

The ultimate limit state analysis of FRP reinforced concrete sections relies on the 

following fundamental hypotheses: 

 Cross-beam sections remain plane after deflection so that can be adopted a 

linear strain diagram; 

 Perfect bond exists between the FRP bars and concrete; 

 Concrete does not react to tensile stresses; 

 Contribution in compression of the FRP bars to the flexural capacity is 

neglected; 

 Constitutive laws for concrete are accounted for according to the current 

code NTC 08;  

 FRP is considered a linear-elastic material up to failure. 

It is assumed that flexural failure takes place when one of the following condition 

is met: 
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 Concrete in compression reaches the maximum compressive strain    , 

taken equal to 0,0035 according to NTC 08 (15); 

 Tensile FRP bars reach the maximum tensile strain    , computed from 

the characteristic value, as defined in Section 4.2.2. 

Hence, with the reference to the illustrative scheme shown in Fig. 4-1, two types of 

failure may be accounted for, depending upon whether the ultimate FRP strain or  

the concrete compressive strain is reached: 

 

Fig. 4-1: Failure modes of FRP reinforced concrete section. 

 

Failure occurring in area 1 is attained by reaching the design strain in the 

FRP bars: any strain diagram corresponding to such failure mode has its fixed 

point at the limit value of     . For the hypothesis of linear strain diagram the 

following relationship can be written: 

        
 

     
     ( 4.2 ) 

        ( 4.3 ) 
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where, εc and εf  are respectively the concrete strain at compression side and the 

FRP strain at the centroidal fiber of bars. 

Failure occurring in area 2 takes place due to concrete crushing, while the 

ultimate strain of FRP has not been attained yet: in this case is fixed the maximum 

concrete compressive strain    . Also in this case, for the linearity of the 

deformation, it can be written: 

        ( 4.4 ) 

 
       

     

 
     ( 4.5 ) 

 

where the symbols are illustrated in Fig. 4-1. 

The reinforcements for the studied bridges is designed taking into account 

a failure mode with the neutral axis in area 1, by reaching the designed ultimate 

strain in FRP bars. The principles are the same than those for ordinary RC beams 

design. Neutral axis depth x is calculated from strain compatibility and internal 

force equilibrium, then the resisting moment is obtained by the rotational 

equilibrium around a certain point of the section. 

 

4.2. Materials 

4.2.1. Concrete 

According to the current building code (15), design at ULS can be 

conducted by assuming a simplified distribution of the normal stresses for 

concrete, such as a “stress-block”, either the failure is reached by crushing of 

concrete or rupture of the FRP bars. 

 

4.2.2. CFRP 

Since the FRP bars have a linear elastic behavior up to failure, their 

stresses may be computed as the product of the pertaining strain by the FRP 
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modulus of elasticity. The ultimate design strain     is computed from the 

characteristic tensile strain    , as follows: 

 
           

   

  
 

 
( 4.6 ) 

where the coefficient 0,9 accounts for the lower ultimate strain of specimens 

subjected to flexure as compared to those subjected to standard tensile tests,    

represents the environmental conversion factor whose values are shown in Fig. 4-2 

and    is the partial factor for FRP bars. For ultimate limit states    shall be set 

equal to 1,5. 

 

 

Fig. 4-2: Table 4-1 CNR-DT 203/2006, values for the environmental conversion factor. 

 

4.3. Design calculations 

For the resolution of the equilibrium equations necessary to solve the 

design problem, a spreadsheet has been utilized. 

 

FORCES EQUILIBRIUM 

         ( 4.7 ) 
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where Nc and Nf  represent compressive and tensile forces in concrete and 

FRP bars, respectively. The two unknowns are the position of the neutral axis x 

and the area Af  of FRP bars. Thus, the neutral axis depth is calculated for 

increasing values of FRP reinforcement amount. 

 

ROTATIONAL EQUILIBRIUM 

The flexural capacity can be determined by imposing the rotational equilibrium at 

any point of the section. In  

 
    

 

   
              ( 4.8 ) 

 

where: 

    is a partial factor covering uncertainties in the capacity model; in this 

case such factor shall be set equal to 1; 

    is the area of concrete in compression and     the compressive 

strength; 

 d is the effective depth and   is a coefficient which indicates the position 

of the compressive force compared to the neutral axis depth x. 

 

Once the neutral axis depth x is calculated, the resistant moment is easily 

determined. The design amount of FRP reinforcement is that for which        

       . 

 

4.3.1. Minimum reinforcement 

The amount of longitudinal FRP reinforcement in tension shall not be less 

than the minimum value that satisfies the equation            , where     is 

the cracking moment. Moreover, for elements without transverse reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided such that: 
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      ( 4.9 ) 

 

While the former results always satisfied due to the very low value for 

   , the latter is much more restrictive with respect to the flexural reinforcement 

amount previously determined. 

 

4.4. Shear strength 

The shear verifications of FRP reinforced concrete members shall be 

carried out at ultimate limit state only. The shear strength for the analyzed bridges 

is determined according to Italian guideline CNR-DT 203/2006, to the American 

one ACI 440.1R-06 and according to the model proposed by A. Marí et al. 

4.4.1. CNR-DT 203/2006 

Shear capacity of FRP reinforced members without stirrups can be 

evaluated as follows: 

                         ( 4.10 ) 

 

where        represents the concrete contribution to shear capacity, and         is 

the concrete contribution corresponding to shear failure due to crashing of the 

web, as reported by NTC 2008 (15). The latter always assumes much higher 

values, hence only the        will be considered here. 

       can be computed as follows: 

 
            

  

  
 
   

                      ( 4.11 ) 

 

with the limitation        
  
 
   

    . 
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The following symbols have been introduced in the equation ( 4.11 ): 

    and   , represent the Young’s modules of elasticity of the FRP  and 

steel bars, respectively, expressed in N/mm2; 

     is the design shear stress, in N/mm, defined as             ; 

 k in the case where no more than 50% of the bottom reinforcement is 

interrupted, shall be assumed as          , where d is in m; 

 the parameter             shall not be assumed larger than 0.02. 

 

4.4.2. ACI 440.1R-06 

According to the American guideline approach, a strength reduction factor 

  is given for reducing nominal shear capacity. Such factor of 0.75 is taken by 

ACI 318-05 for steel reinforced concrete members and can be used also for FRP 

reinforcement:  

     ( 4.12 ) 

 

For FRP reinforced members the nominal shear strength    is equal to the 

shear resistance provided by concrete   . ACI 440.1R-06 in its formulation takes 

into account the influence of the axial stiffness on the concrete shear strength. 

The concrete shear capacity  of flexural members using FRP reinforcement 

can be evaluated according the following expression: 

 
   

 

 
   

       ( 4.13 ) 

 

where     is the specified compressive stress of concrete, corresponding to 

characteristic value;    is the width of the web in mm, and c is the neutral axis 

depth in cracked sections, computed as: 
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      ( 4.14 ) 

 
               

 
      ( 4.15 ) 

 

Equation ( 4.13 ) accounts for the axial stiffness of the FRP reinforcement 

trough the neutral axis depth c, which depends on the reinforcement ratio    and 

on the modular ratio         . 
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Chapter 5  

Structural reliability analysis 

5.1. Reliability and probability of failure 

A number of definitions of the term “reliability” are used in literature and 

in national and international documents. Reliability can be defined as the ability 

of a structure to comply with given requirements under specified conditions 

during the intended life, for which it was designed.  

For structures or structural components, the requirements which must be 

satisfied are termed by a limit state, that can be defined as (Eurocode 0, sections 

3.1-3.5 (16)): 

 Ultimate limit state (ULS). It aims to the capacity for avoiding collapses,  

equilibrium loss and serious full or partial failures that could affect safety 

of people or lead to important economics losses, as well as relevant 

environmental and social damages. 

 Serviceability limit state (SLS). It assures performances referred to 

operating conditions and it concerns the functioning of the structure or 

structural members under normal use, the comfort of people and the 

appearance of the construction works. 

 

The “violation” of a limit state corresponds to the reaching of an 

undesirable condition for the structure. The aim of structural reliability analysis 

consists indeed in the calculation and prediction of the probability of this limit 

state violation, that is the probability of failure P , here understood in a very 

general sense which denotes simply any undesirable state of a structure. 
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Therefore, in quantitative sense reliability r may be expressed as the complement 

of the probability of failure and thus can be defined as the probability of survival: 

        ( 5.1 ) 

 

In this work, it will be referred to the probability of failure, in terms of the 

probability of breaching of the ultimate limit state (as defined above, according to 

Eurocode 0) 

 

5.2.  The limit state function 

It is assumed that the limit state can be defined by means of a limit state 

function, which involves, in its simplest form, two terms, the load effects S and 

the resistance R, as follows: 

         ( 5.2 ) 
 

Thus, the safety of a structure is represented in terms of its resistance and 

load effects, which are two uncertain quantities, described by random variables 

with a known probability density function:       and        respectively. In this 

sense, as well know, a structure or a structural member is considered to fail when 

its resistance R is less than the load effect S acting on it. Therefore, the probability 

of failure can be expressed as: 

             ( 5.3 ) 
 

   and   , together with the joint density function          are shown in 

Fig. 5-1 in which, the failure domain D is represented, so that the probability of 

failure becomes: 
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     ( 5.4 ) 

 

 

 

Fig. 5-1: Joint density function  
  
     , marginal density function     and     and   failure domain D, 

(Melchers (17)) 

 

When R and S are independent                     . If     the 

structure is in the safe domain, otherwise it is in the unsafe and fails. 

In a generalized form, if X is the vector of the basic variables, then 

resistance and loads can be expressed as         and         , so that the 

limit state function became: 

                      ( 5.5 ) 

. 

Particularly, when the random variables defining the problem are many: 
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 ( 5.6 ) 

 

where       is the joint probability density function for the n vector X of 

basic variables. 

In reality, resistance and loads are generally functions of time. This 

implies that the uncertainty of prediction of both   and   increases with time and 

the probability density functions        and        change. Since the parameter 

standard deviation ( ) increases, their curves become wider and flatter. Moreover, 

the mean value may change with time, because resistance tends to decrease, while 

loads tend to increase (Fig. 5-2). 

 

Fig. 5-2: Schematic time dependent reliability problem (Melchers (17)). 

 

Usually it is assumed that neither   nor   is a function of time and the 

behavior of the structure is observed under a single load application. However, 

since there are loads, as the live load, that are applied more than once, their effect 

over the time should be considered by assuming for example a Gumbel or Frechet 

distribution. This allows to neglect the time effect in the reliability calculations, 

even if this simplification is not always possible. 
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5.3. The reliability index 

An equivalent standard reliability measure is the reliability index β which 

is related to the probability of failure by the following relationship: 

          ( 5.7 ) 

 

where   is the cumulative distribution function of the Standardized 

Normal distribution, so that the relation between    and   can be easily determined. 

Indeed, if the limit state function follows a normal distribution, as it is generally possible 

to assume thanks to the central limit theorem, the probability of failure can be written as: 

                     
    
  

  ( 5.8 ) 

 

and thus, the reliability index can be defined as: 

  
  
  

 ( 5.9 ) 

 

where    is the mean value of the limit state function and    the standard 

deviation. 

 

Fig. 5-3: Reliability index β (Schneider, J. (18)). 
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In Fig. 5-3, where the notation    is utilized in place of    , it can be seen as 

index β represents how many time the standard deviation of the variable limit 

state function Z (also called safety margin) sets between zero and the mean value 

of the function. When the standard deviation    is higher than the mean value, the 

safety margin is crossed and the structure or structural component fails. 

It should be emphasized that the failure probability Pf and the reliability 

index β represent equivalent reliability measures with one to one mutual 

correspondence given by ( 5.7 ) and numerically illustrated in Table 5-1. 

Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 

β 1,3 2,3 3,1 3,7 4,2 4,7 5,2 

Table 5-1: Relationship between the failure probability Pf and the reliability index β. 

 

In EN 1990 (Eurocode 0) the basic recommendation concerning a required 

reliability level is often formulated in terms of the reliability index β related to a 

certain design working life. 

 

5.4. Evaluation of the structural reliability 

Equation ( 5.6 ) can be solved by different methods, which are mainly 

grouped into two categories: 

 Integration and simulation methods; 

 Second-moment and transformation methods. 

 

5.4.1. Integration and simulation methods 

The principal hypothesis is that the probability density function of each 

basic variable is known and not approximated. If R and S follow a normal 
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distribution, then the integration region can be represented by a linear limit state 

function and the integral of equation ( 5.6 ) can be solved even if n-dimensional. 

 

                           ( 5.10 ) 

 

Most of the time, limit state functions are not linear, therefore it is 

preferable to proceed with another method, called Monte Carlo simulation. This 

method introduces approximate numerical solutions to the probability integral and 

can be applied to problems with limit state functions  ( ), which may have any 

form. Monte Carlo simulation will be later illustrated in detail, being chosen for 

the calculation of the probability of failure of the studied bridges. 

 

5.4.2. Second-moment and transformation methods 

This time, the principle hypothesis is that the probability density function 

itself is simplified. In the so-called First Order Second Moment method (FOSM), 

each variable appearing in the limit state function is expressed by its two first 

moments (mean value and standard deviation of its probability distribution). 

Therefore, it is assumed to be a Normal distribution even if it is not (in fact, the 

only distribution that can exactly be represented by its mean value and standard 

deviation is the Normal distribution). This leads to the calculation of a probability 

of failure that is “nominal”, precisely because to assume a variable described only 

by its two first moments, unless it has a normal distribution, means to make an 

approximation. The procedure is iterative and consists mainly in to approximate 

the limit state function  ( ) with a linear function, after transforming all the basic 

variables to their standardized form  (0,1) (Fig. 5-4). 
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Fig. 5-4: Limit state function G(x) and linearized state function GL(X)in the domain of basic variables. 

 

The transformation or First Order Reliability method (FORM) differs from 

the former because more information about the basic variables are known. These 

information should be incorporated in the reliability analysis and this can be done 

by transforming non normal distributions into equivalent normal-distributions. It 

is done transformed at the so called “design point” and the procedure is more 

complex than that of the FOSM method. 

Eventually there is the so-called Second Order Reliability method (SOR) 

which is basically equal to the FOR method, with the difference that the limit state 

function  ( ) is approximated with a second order function and no more simply 

linearized. 

 

5.5. The Monte Carlo simulation 

The two physicists John von Neumann and Stanislaw Ulam were 

investigating in radiation shielding at Los Alamos scientific laboratory (1946) 

when they had the idea to solve a problem of lack of data by inventing the so 
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called Monte Carlo simulation, which takes its name from the famous Monte 

Carlo Casino. 

This method is largely used for structural reliability. It consists in sampling 

each random variable      that appears in the limit state function to give a sample 

value    that is briefly to simulate artificially a large number of experiments. 

Indeed in the limit state function, resistance and loads are assumed as random 

values with a specific statistical distribution. Depending on their combination the 

function will result greater or lower than zero. To apply the Monte Carlo 

simulation means to simulate a certain number N of hypothetical trials, so that the 

probability of failure can be easily calculated as: 

 
   

      

 
 ( 5.11 ) 

 

 where n is the number of trials which    . Number N depends on the wanted 
accuracy. 

 

5.5.1. Generation of random numbers 

Generally basic variables acting in the structural reliability problem follow 

a non-uniform distribution. Their sample values are called “random varieties” and 

can be found by different mathematical techniques. The most common procedure 

used is the “inverse transform” method. It is known that the cumulative 

distribution function        of a basic variable    assumes a value between zero 

and one. The inverse transform method consists in generating a uniformly 

distributed random number ri included in the interval (0,1) and equating this to 

      : 

           ( 5.12 ) 
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If the inverse function           exists, the sample value    can be 

found, as shown in Fig. 5-5: 

 

Fig. 5-5: Inverse transform method for generation of random varieties (17). 

 

In order to generate the random variable , a pseudo random generator 

(PRNG) can be used, that is available in all computers systems. The word 

“pseudo” indicates that numbers are generated by a formula ant therefore they are 

not properly random values, even if they follow a sequence which repeats after a 

long cycle interval. 

Hence Monte Carlo methods using PRNG are called more correctly “Quasi 

Monte Carlo methods”. 

 

5.6. Basic variables 

Basic variables concurring in the structural reliability problem can be 

divided, as already seen,  into: 

 resistance variables; 

 load variables. 
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5.6.1. Resistance variables 

Structural resistance can usually be expressed in the following form: 

            ( 5.13 ) 
 

where: 

    is the nominal resistance; 

 M indicates the model uncertainty variable and it is called “professional” 

or “modelling” factor. This term summarizes the effect of the 

simplifications introduced by the mathematical model assumed in order to 

evaluate the resistance of the structure or structural component. For good 

models it results    , but generally developed models are conservative, 

so that usually    . Moreover the coefficient of variation is of a few 

percent if the model is good (e.g. bending resistance models), whereas for 

poor models (e.g. shear resistance models) its value sets between 10% and 

20%; 

 F indicates material properties (strength, elastic modulus,…) . They should 

generally be derived from standardized tests (mostly tension and 

compression tests), performed under specified conditions. These tests have 

to be planned in order to get a realistic description of the material 

performance in real applications. The frequency of negative values is 

normally zero, hence material variables can be generally represented by a 

log-normal distribution; 

 D indicates dimensions and derived quantities. This term can be important 

in concrete, because it is more easy to introduce dimensional variability, 

for example in the concreting phase. Generally dimensional variables can 

be modeled by normal or log-normal distributions. The standard deviations 

are of the order of magnitude of the dimensional tolerances, therefore the 

coefficient of variation (mean value/standard deviation) is higher for 

smaller dimensions.  
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5.6.2. Load variables 

Loads are the most uncertain variables in structural reliability, thus, 

appropriate model should be developed in order to represent their values. Loads, 

as already mentioned, are assumed to vary with time and so, they should be 

represented as a stochastic process. Loads can be divided into two groups: those 

due to natural phenomena (wind, waves, snow, earthquakes, ...), and those due to 

man-imposed effects (dead loads and live loads). For the former are usually 

available observations of the phenomena over a period of time and maxima values 

are generally identified and used for modeling extreme value distributions. For the 

latter, long term data are often insufficient and statistical properties of the load 

distribution must be determined mathematically. In this work, it will be dealt the 

loads due to man-imposed effects, which will take part into the simulation. 

Dead loads are the sum of self-weight and permanent loads. The self-

weight is essentially constant during the life of the structure and there is just a 

small tendency to increasing because of some factors, such as deformation of the 

shuttering, tolerances, etc.. Generally self-weight in concrete elements is 

represented by a Normal distribution with a bias of 1,05 and a coefficient of 

variation of about 5%. Permanent loads are constant during a long time period 

too, but their coefficient of variation is usually higher than that of self-weight, 

mainly because changes may occur during the lifetime of a structure. 

Live loads in buildings are generally of moderate extent and peaks showed 

by their distributions are mainly due to possible presence of crowds of people. 

The so-called accompanying loads, of low intensity, assume a Lognormal 

distribution. The leading live loads instead, such as the crowd load or traffic load 

for bridges, can well represented by an extreme value distribution (Gumbel, 

Frechet, …). 
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Chapter 6  

Statistical properties of basic variables 

6.1. Introduction 

In order to initiate the MONTE CARLO simulation it is firstly necessary 

define  the main statistical properties of all the variables within in the analysis. 

Statistical properties discussed in this chapter, are taken from a previous thesis 

work (19) except for the elastic modulus of FRP bars, whose characteristics are 

found in the literature (20). 

 

6.2. Statistical properties of the resistance variables 

6.2.1. Concrete compressive strength 

The concrete compressive strength will appear, in the simulation, in the 

expression of the shear strength of the model formulation. It follows a Lognormal 

distribution: 

 

Lognormal distribution 

Characteristic value      [MPa] 20,00 

Bias   1,40 

Coefficient of variation COV 0,15 

Mean value   [MPa] 28,00 

Standard deviation   [MPa] 4,20 

Table 6-1: Main statistical properties of the concrete compressive strength 
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The mean value    and the standard deviation   are calculated as follows: 

        ( 6.1 ) 

        ( 6.2 ) 
 

A random variable x has a lognormal distribution if the transformed variable 

         follows a normal distribution. The mean value and variance of the x 

distribution are defined by ( 6.3 ) and ( 6.4 ): 

 
         

 

 
    ( 6.3 ) 

   
    

    
 
    ( 6.4 ) 

 

Where   and   are respectively, the mean value and the standard deviation 

of the normal distribution of         . 

The value of   and   can be found by inverting the previously equation      

( 6.3 ) and ( 6.4 ):  

 
         

 

 
   ( 6.5 ) 

 
       

  
 
 
 

    ( 6.6 ) 

 

It is obtained: 

Normal distribution 

Mean value   [ln(MPa)] 3,321 

Standard deviation   [ln(MPa)] 0,149 

Table 6-2: Mean value and standard deviation of normal distribution of          
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The probability density function results: 

 
     

 

     
     

 

 
 
     

 
 
 

                                ( 6.7 ) 

 

 

Fig. 6-1: Probability density function of the concrete compressive strength of fc. 

 

 

6.2.2. Modulus of elasticity of FRP 

The CFRP elastic modulus follows a Normal distributions. The 

characteristic parameters are taken from Pilakoutas et al. (20): 

 

Normal distribution 

Coefficient of variation COV 0,05 

Mean value   [MPa] 115000,00 

Standard deviation   [MPa] 5750,00 

Table 6-3: main statistical properties of the CFRP elastic modulus. 
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The mean value of the elastic modulus met in literature would be slightly 

smaller than the value adopted for the FRP bars at the design stage, but no betters 

data are found. 

The probability density function is described in ( 6.8 ) and it is shown in Fig. 6-2 : 

 
     

 

     
     

 

 
 
    
  

 
 

                                ( 6.8 ) 

 

 

Fig. 6-2: Probability density function of Ef. 

 

6.3. Statistical properties of the load variables 

6.3.1. Dead loads 

Dead load refers to self-weight of the materials and to all other permanent 

installations and hence they do not vary significantly during the lifetime of the 

structure. Dead loads can generally be approximated by a Normal distribution. 

The mean is typically almost equal to the nominal load; in this case a bias λ=1,05 

is taken, according to Ellingwood et al. (21). The coefficient of variation generally 
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assumes a value between 0,05-0,10 (18). It is chosen for this work a value of 

COV=0,08. 

In girder bridges the flexural design with FRP reinforcement bars is 

performed by considering a medium acting moment on the single beam, therefore 

the effects of the dead loads that will be considered are those acting on the beam. 

The characteristics values shown in Table 6-4 and Table 6-5, are referred to the shear 

force acting at the supports. For continuous bridges, there are two values 

representing the shear force acting at the middle and lateral supports (Table 6-5). 

 

GIRDER BRIDGES B10RC B12RC B16RC B20RC 

Characteristic value Vpk [kN] 92,75 121,80 190,40 273,00 

Bias   1,05 1,05 1,05 1,05 

Coefficient of variation COV 0,08 0,08 0,08 0,08 

Mean value    [kN] 97,39 127,89 199,92 286,65 

Standard deviation    [kN] 7,79 10,23 15,99 22,93 

Table 6-4: Statistical properties of dead load acting on girder bridges. 

 

 

SLAB BRIDGES 
S10RC S1015RC S1520RC 

lateral 
support 

lateral 
support 

middle 
support 

lateral 
support 

middle 
support 

Characteristic value Vpk [kN] 1356,87 1109,24 2507,85 1200,06 2225,00 

Bias   1,05 1,05 1,05 1,05 1,05 

Coefficient of variation COV 0,08 0,08 0,08 0,08 0,08 

Mean value    [kN] 1424,71 1164,70 2633,24 1260,06 2336,25 

Standard deviation    [kN] 113,98 93,18 210,66 100,81 186,90 

Table 6-5: Statistical properties of the dead load acting on slab bridges. 
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The equation which describes the probability density function is those 

already seen for Normal distribution of Ef ( 6.8 ). 

The probability density function of the dead load acting on B10RC is 

represented in Figure 6.9. 

 

Fig. 6-3: Probability density function of Vp [B10RC]. 

 

 

Fig. 6-4: Probability density function of Vp [S10RC]. 
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6.3.2. Live loads 

For traffic loads the important random variable is the magnitude of the 

largest extreme load that occurs during a specified reference period for which the 

probability of failure is calculated. For the analyzed bridges the reference period is 

of 50 years and the largest extreme follows one of the asymptotic extreme value 

distributions (Gumbel, Frechet). A Gumbel distribution is chosen.  

The Gumbel distribution is also called Extreme value distribution type I 

and its cumulative distribution function is expressed as follows: 

                                                        ( 6.9 ) 

 

The distribution is characterized by two parameters: the mode u and a 

measure of the dispersion . Such parameters are related to the mean value    and 

to the standard deviation   :  

 
     

 

 
 ( 6.10 ) 

 

Where                 is the Euler’s constant.  

 can be defined by the following: 

   
 

    
 ( 6.11 ) 

 

In this case, only the nominal value and the COV are known. Thus, the 

mean value and standard deviation can be defined in a way a slightly more 

laborious, as explained below. 

Nominal value is  those calculated according to the Eurocode, which 

corresponds to the 95% fractile for a 50 years reference period (return period of 

1000 years). According to (22) is taken        . The high value of the COV 

takes into consideration the traffic variability, which depends on the type of 
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studied road (e.g. a second class road, a local road, etc. ), together with eventual 

amplifications of the loads and the girder distribution. Once the COV is known, 

the value of the bias   can be extrapolated from the equation of the cumulative 

probability of the Gumbel distribution: 

 

                                                                 ( 6.12 ) 

  

                 
 

         
          

 

 
                 ( 6.13 ) 

 

It is obtained a bias equal to        . Once defined this values, it is 

easy to determine                         and eventually u and . 

 

GIRDER BRIDGES B10RC B12RC B16RC B20RC 

Characteristic value Vtk [kN] 184,06 194,26 212,38 228,96 

Bias   0,723 0,723 0,723 0,723 

Coefficient of variation COV 0,20 0,20 0,20 0,20 

Mean value    [kN] 133,08 140,45 153,55 165,54 

Standard deviation    [kN] 26,62 28,09 30,71 33,11 

Dispersion   [1/kN] 0,048 0,046 0,042 0,039 

Mode u [kN] 121,10 127,81 139,73 150,64 

Table 6-6: Statistical properties of the traffic loads acting on girder bridges. 
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SLAB BRIDGES 
S10RC S1015RC S1520RC 

lateral 
support 

lateral 
support 

middle 
support 

lateral 
support 

middle 
support 

Characteristic value Vtk [kN] 1137,50 1268,12 1534,54 1414,80 1664,71 

Bias   0,723 0,723 0,723 0,723 0,723 

Coefficient of variation COV 0,20 0,20 0,20 0,20 0,20 

Mean value    [kN] 822,41 916,85 1109,47 1022,90 1203,59 

Standard deviation    [kN] 164,48 183,37 221,89 204,58 240,72 

Dispersion   [1/kN] 0,008 0,007 0,006 0,006 0,005 

Mode u [kN] 748,39 834,32 1009,61 930,83 1095,25 

Table 6-7: Statistical properties of the traffic loads acting on slab bridges. 

 

For illustrative purposes, the probability density function of the traffic load 

acting on B10RC and S10RC is represented in . 

                                                           ( 6.14 ) 

 

 

Fig. 6-5: Probability density function of Vt for B10RC. 

 

0,00 

0,01 

0,01 

0,02 

0,02 

0,03 

0,03 

0 25 50 75 100 125 150 175 200 

f(
x)

 

Vt [kN] 

Gumbel distribution - B10RC 



70 
 

 

Fig. 6-6: Probability density function of Vt for S10RC. 

 

6.4. Statistical properties of the model error 

The accuracy of the proposed model (13) has been verified by comparing 

the model predictions with the results of 144 tests on CFRP and GFRP reinforced 

concrete beams or one-way slabs. According to Collins (23), the authors 

considerer asymmetric the distribution of the values              and a 

Lognormal distribution is assumed. 

The results obtained by the proposed method for the prediction of the shear 

strength are very good, in terms of mean value and coefficient of variation of the 

ratio between the experimental and the predicted values. Such correlation is 

shown in Fig. 6-7. 

Similarly to what was seen earlier for the Lognormal distribution of the 

concrete compressive strength, by ( 6.5 ) and ( 6.6 ), can be defined the mean 

value   and the standard deviation   of the normal distribution         , where 

x is the model error variable. 
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Fig. 6-7: Correlation between the test value and the prediction value by the studied model (13). A tolerance 
of 15 % has been represented. 

 

 

In Table 6-8 are presented the main statistical characteristics of the model error: 

 

Lognormal distribution 

Coefficient of variation COV 0,15 

Mean value   [MPa] 28,00 

Standard deviation   [MPa] 4,20 

Mean value   0,15 

Standard deviation   0,08 

Table 6-8: Statistical properties of the model error ρ. 

 

Thereby, the probability density function results (Fig. 6-8): 
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                                ( 6.15 ) 

 

 

Fig. 6-8: Probability density function of the model error ρ. 
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Chapter 7  

Setting of the Monte Carlo simulation 

7.1. The general Limit State Function 

To calculate the probability of failure of the bridges longitudinally 

reinforced with FRP bars, a Monte Carlo simulation is performed. Once defined R 

as the resistance and S as the load effects acting on the sections, the limit state 

equation can be written in a generic form as: 

                        ( 7.1 ) 

 

Resistance and loads are assumed as random variables with a specific 

probability distribution, whose statistical properties are discussed in detail in 

Chapter 6.  In particular: 

        is the shear strength calculated according to the formulation 

proposed by the studied model (13); 

   is the model error (discussed in section 6.4); 

    is the shear force due to dead load (as sum of the self-weight and no 

structural permanent loads), acting on the bridges cross-sections closely to 

the support; 

    is the shear force due to the traffic load acting at the support. 

 

The shear strength results to be a function of the two basic variable    and 

  , respectively, the concrete compressive strength and the Young’s modulus        

( 7.2 ):  
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                           ( 7.2 ) 

 

According to the formulation proposed by Marí ( 2.15 ), the modulus of 

elasticity of the reinforcing bars affects considerably the shear strength. The 

higher is the modular ratio  between the FRP and the concrete modulus, the higher 

is the shear strength, because the neutral axis    depth increases with the 

parameter      ( 2.7 ).  

 
     

    
       

                
  
 
        

 
   

  
 
            

 

    
   

 

   is the modular ratio between the FRP and the concrete modulus: 

 
  

  

  
 ( 7.3 ) 

 

   is a basic variable, whose statistical properties are described in section 

6.2.2. Instead, the concrete modulus is computed, according to the relation 

provided by the Eurocode (Table 3.1, Eurocode 2), which allows to define the 

secant modulus of elasticity as a function of the mean value of compressive 

strength. Substituting the value of the random varieties of the variable    in place 

of the mean value, a series of random values of the elastic modulus are obtained: 

 
       

  
  
 
   

 ( 7.4 ) 
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7.2. Implementation of the Monte Carlo simulation 

Once all the variables taking part into the simulation are known, it is 

generate from them a series of random varieties, which simulates a certain number 

of fictitious trials. Since the principal parameters of each variable distributions are 

known, a random value of each variable defined in the previous sections can be 

generated artificially.  

The simulation is performed in a spreadsheet: it is possible to reproduce 

fictitious values assumed by the cumulative distribution function of each variable 

by means of the function “CASUAL”, which allows to simulate uniformly 

distributed numbers between zero and one. Then, by using an inverse cumulative 

distribution function, it can be calculated a value of the random variety. This 

method takes the name Inverse transform method. This is done automatically by 

Excel for some distributions such as the Normal and Lognormal, once the 

principal parameters are introduced as input data (the mean value   and the 

standard deviation  ). For the Gumbel distribution instead, it is necessary to 

manually derive the inverse cumulative function.  

It is obtained: 

 
  

              

 
                              ( 7.5 ) 

 

where        is the cumulative distribution function ( 6.12 ). 

Once defined these basic steps, it is possible to calculate the model shear 

strength, as schematically illustrated in Fig. 7-1.  
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Fig. 7-1: Basic variables and steps for the computation of the shear strength provided by the model.  

 

When the shear strength are calculated and random varieties of the load 

variables are generated, it is possible to set the limit state function ( 7.1 ) and thus, 

performs the simulations: 

                    
    

       
         

       
      

                  
     

       
         

      
      

                 
      

      
        

      
     ( 7.6 ) 
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N simulations are performed. If the limit state function is bigger than zero, 

then the structure is in the safe domain    , otherwise it is in the unsafe domain 

   .  

In order to count how many times a failure occurs, the Excel IF function is 

used: the function returns a value equal to 1 if    , 0 if    . Eventually all 

the failures are summed, so that the probability of failure can be calculated: 

    
 

 
 ( 7.7 ) 

 

where n is the number of failures and N the number of trials performed. 

 

7.2.1. Convergence of the simulation 

The accuracy of the probability estimates, needless to say, depends heavily 

on the number of simulations. To assess this accuracy, it should be noted that the 

estimated probability, P, is a random variable itself whose mean,   , and 

coefficient of variation COV are related to the theoretically correct probability 

     , by (Nowak and Collins, 2000 (24)):  

 
                        

       
        

 ( 7.8 ) 

 

Knowing that      , although unknown, is relatively small and assuming 

that the sample size N, is large enough so that        , Equations ( 7.7 ) and      

( 7.8 ) can be combined as:  

 
    

 

   
 ( 7.9 ) 
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Which is used as the indicator of accuracy in this study. Strictly, to 

calculate the probability of failure, each simulation should be repeated until 400 

events of failure are recorded (N
f
=400) which corresponds to a         , a 

variation deemed small enough to ensure an adequate precision of the 

calculations. The total number of required simulations hence, should vary 

approximately from         (if         ) to                          

(if         ), certainly increasing as the probability of failure decreases. 

Nonetheless, it has been verified the convergence of    for one of the bridges 

analyzed (B10RC), reinforced with the minimum amount of longitudinal 

reinforcement (         ) according to CNR-DT 203 provisions. It has been 

calculated the probability of failure on increasing the number of simulations up to 

        (Table 7-1 and Fig. 7-2). It has been chosen to perform the simulations 

up to       trials, obtaining a good accuracy of the results due to the magnitude 

of the probability of failure. 

 

 

 

 

 

 

 

 

 

Table 7-1: Values of the probability of failure for  B10RC (with minimum reinforcement) on increasing the 
number of simulations N. 

 

B10RC - Amin 
Number of 

simulation N 

Probability 

of failure Pf 

10000 1,260% 

50000 1,324% 

100000 1,346% 

500000 1,279% 

1000000 1,279% 

5000000 1,291% 
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Fig. 7-2: Convergence of Pf on increasing of number of trials N. 

 

 

7.3. Probability of failure 

The probability of failure for each analyzed bridge is calculated both 

considering bridges reinforced with flexural reinforcing FRP bars,  and bridges 

reinforced with the minimum amount required by CNR-DT 203 for elements 

within shear reinforcement            .  

 

7.3.1. Girder bridges 

In Table 7-2 are shown the values of probability of failure for girder bridges 

reinforced with the two different  amount of FRP reinforcement. Results obtained 

are rather different: indeed, probability of failure differs by one or two orders of 

magnitude in the two cases analyzed. This result is quite obvious, since the 
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minimum amount of FRP reinforcement provided  by the Italian guideline is far 

greater than that obtained by a flexural design Table 7-3. 

 

Girder bridges 

Probability of failure 

Flexural 

reinforcement 

Minimum 

reinforcement 

B10RC 18,56% 1,28% 

B12RC 25,92% 1,14% 

B16RC 18,57% 0,52% 

B20RC 25,85% 0,36% 

Table 7-2: Probability of failure for girder bridges. 

 

 

 

  Flexural 

reinforcement 

Probability 

of failure 

Minimum 

reinforcement 

Probability 

of failure 

B1
0R

C
 ρ 0,0062 

18,56% 

0,0111 

1,28% A [mm2] 1990 3582 

n° of bars 10 18 

B
12

R
C

 ρ 0,0051 
25,92% 

0,0102 

1,14% A [mm2] 1990 3980 

n° of bars 10 20 

B1
6R

C
 ρ 0,0052 

18,57% 

0,0105 

0,52% A [mm2] 2388 5572 

n° of bars 12 28 

B2
0R

C
 ρ 0,0046 

25,85% 

0,0104 

0,36% A [mm2] 3184 6766 

n° of bars 16 34 

Table 7-3: Probability of failure and amount of FRP reinforcement for girder bridges. 
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Probability of failure for bridges reinforced with flexural reinforcement 

assumes values immoderately high, for this seems reasonable the minimum 

reinforcement amount provided by the CNR-DT 203; nonetheless, such limit does 

not provide a sufficient safety level. Indeed girder bridges present a probability of 

failure on the order of    
 

   
 

 

   
 , which is lower, taking into account the 

type of the structures, for which a reasonable value of the reliability can be 

assumed around the order of magnitude of    
 

   
 

 

   
. 

 

7.3.2. Slab bridges 

Results show nonuniform values of the probability of failure for the three 

types of slab bridges analyzed. For continuous bridges, (S1015RC, S1520RC) 

probability of failure is calculated for both sections corresponding to the lateral 

and middle support   (Table 7-4).  

 

Slab bridges 

Probability of failure 

Flexural 

reinforcement 

Minimum 

reinforcement 

S10RC  0,08% 0,00% 

S1015RC 
lateral support 0,08% 0,00% 

middle support 8,49% 0,00% 

S15200RC 
lateral support 42,27% 0,22% 

middle support 92,40% 23,83% 

Table 7-4: Probability of failure for slab bridges. 

 

 In general, it can be observed that probability of failure assumes values 

lower than those obtained for girder bridges, except for S1520RC. Even, S10RC 
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and S1015RC reinforced with the minimum amount, present a zero probability of 

failure. According to this, it would be tempted to state that slab bridges provide a 

higher shear strength than girder bridges. Indeed, shear strength provided by the 

formulation of the studied model is related to the dimensions of the cross section, 

and for this reason high values of shear strength are obtained. Such issue could be 

confirmed observing the results obtained for S1520RC. The latter presents a 

lightened cross-section, and this may be the reason for which the probability of 

failure is very high. 

 

7.3.3. Further considerations 

The values of probability of failure are graphically compared with the 

ratios          , where     and     are respectively the shear force acting on the 

supports of each beams, calculated according to the Eurocode, and the shear 

strength calculated according to the two different guidelines and to the model 

analyzed. It is know that, the inverse of the above ratio is taken as a safety factor. 

Therefore, representing in a graph, where the x-axis shows the probability of 

failure and the axis of ordinates the ratio         , it is expected that the higher is 

the probability of failure Pf the higher is the ratio        . 
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Fig. 7-3: Pf –          , where      is calculated according to the model formulation. 

 

 

 

Fig. 7-4: Pf –          , where      is calculated according to CNR-DT203/2006. 
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Fig. 7-5: Pf –          , where      is calculated according to ACI440.1R-06. 

 

The trend shown in the three graphs confirms what supposed above. What 

changes is the value of the ratio        . Values of the shear strength     

determined with the American guideline are the lower, as it can be seen by the 

higher values of        . The model provides values closer to unity. 

 

 

Fig. 7-6: Shear strength calculated according the two Guideline and to the model formulation. 
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Conclusions 

 

A reliability-based analysis was performed to calculate the probability of 

failure of seven reinforced concrete bridges without shear reinforcement. The 

bridges analyzed belong to the Spanish catalogue in which are described the most 

common typologies of existing bridges in Spain. This catalogue was realized with 

the aim to suggest some standard solutions for cross section geometry and 

reinforcement amount in order to give a design guideline in a country so far 

lacking of adequate design codes. Here only the geometric characteristics are 

taken.  

The flexural reinforcement has been designed “ex novo”, by utilizing 

Carbon Fiber Reinforced Polymer bars, according to Italian guideline CNR-DT 

203/2006. The latter provides a minimum amount of longitudinal reinforcement 

for elements that no present transverse reinforcement. Such provision seems 

consistent with the results obtained. Indeed, the shear strength offered by studied 

bridges reinforced with only flexural reinforcement, calculated both according to 

CNR-DT 203, to the American ACI 440.1R-06 or to the formulation proposed by 

Marí et al, is much lower than acting shear forces. Nonetheless, providing the 

minimum amount of longitudinal reinforcement required, which results in all of 

cases far greater than the flexural amount, a higher shear strength is obviously 

obtained, but not sufficient, with the exception of some cases. The formulation of 

the model appears to be the most sensitive to the amount of reinforcement and 

thus is one which provides the higher values of the shear strength, as states the 

ratio        . Indeed, the main assumption of the model is to consider that, just 

before failure, the shear force is primarily resisted by the un-cracked concrete 

compression head. Therefore, the higher is the reinforcement amount, the higher 

is the shear strength of the beam, because the depth of the concrete compression 

chord increases with the increment of reinforcement. The lower values of the 
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shear strength instead, are provided by the American ACI440.1R-06, which 

confirms to be the more conservative, in line with the experimental results 

presented in the studied model. 

Reliability-based analysis states what has been said so far. In order to 

calculate the probability of failure a Monte Carlo simulation is performed. The 

aim was to solve the limit state function, which involves all the variables 

belonging to the general problem         as random variables, each of which 

with its statistical properties. The Marí’s formulation is set within the simulation 

including the basic variables which affects the shear strength. It has been 

performed the simulation for the two amounts of reinforcement corresponding to 

the simply flexural reinforcement and the minimum amount. Probability of failure 

obtained for the bridges reinforced with the former assumes values  unacceptable, 

in line with what has been said before, that no make sense to comment. From 

here, the imposition of CNR-DT 203 to provide a minimum amount of 

longitudinal reinforcement.  

Girder and slab bridges reinforced with the minimum amount present 

different values of the probability of failure. The reliability level offered by the 

former is not sufficient, above all taking into account the typology and its related 

importance of the structures at issue. Instead, slab bridges with solid cross-section 

present a probability of failure close to zero. In fact, for these bridges, the shear 

strength was much greater than acting shear force. Differently, the slab bridge 

with lightened cross-section presents a probability of failure extremely high 

although the section is reinforced with the minimum amount. This is due to the 

fact that it has been taken into account an effective width of the cross-section 

which is quite small and this may be the reason why the probability of failure is so 

high. In conclusion, it is not possible to utilize slab bridges with lightened cross-

section without shear reinforcement. The same applies to girder bridges which no 

offer a sufficient level of safety, related to the class of such structures for which a 

higher reliability level is required. Instead, the solid slab sections are very safe to 

shear, even without reinforcement. 
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Annex A 

Design of the bridges according to       
CNR-DT 203/2006 

The bridges object of study, already introduced in Section, are here 

described in detail. Are specified the characteristics of the materials, both of 

concrete and FRP bars used for the flexural design, as well as the loads acting on 

the bridges. Traffic loads are calculated according to EN 1991-2 (Eurocode 1: 

Actions on structures - Part 2: Traffic loads on bridges.). Acting moment and 

shear force for continuous bridges are determined by means of a software FEM. 

A-I. Materials 

A-I-I. Concrete 

 Symbols Values Units 

Characteristic compressive strength fck 20,00 MPa 

Partial factor α 0,85  

Partial safety factor γc 1,5  

Design value fcd 11,33 MPa 

Mean value of compressive strength fcm 28,00 MPa 

Mean value of tensile strength fctm 2,21 MPa 

Characteristic tensile strength fctk(0,05) 1,55 MPa 

Design value of tensile strength fctd 1,03 MPa 

Secant modulus of elasticity Ecm 29962 MPa 

Design value of the elastic modulus Ecd 24968 MPa 

Specific weight ρ 25,00 kN/m3 

Table 0-1: Characteristics of concrete, calculated according NTC 08 
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A-I-II. CFRP Carbon Fiber Reinforced Polymer bars 

Carbon Fiber Reinforced Polymer bars are utilized as longitudinal 

reinforcement of the bridges analyzed. The CFRP characteristics are taken from a 

manufacturer factsheet. 

 Symbols Values Units 

Nominal diameter Φ 15,9 mm 

Nominal cross-section area Ab 199 mm2 

Ultimate tensile strength ffk 1103 MPa 

Tensile modulus of elasticity Ef 124 GPa 

Elongation at ultimate strain εfk 0,89 % 

Partial factor γf 1,5  

Environmental conversion factor ηa 1,0  

Conversion factor for long-term effects ηl 1,0  

Maximum tensile strain εfd 0,53 % 

Design value of tensile strain ffd 662,16 MPa 

Table 0-2: Characteristics of CFRP bars: nominal values are taken from manufacturer factsheet, design 
values are calculated according CNR-DT 203. 

 

A-I-III. Paving 

In order to calculate the permanent load acting on the bridges, it is 

assumed a value of the specific weight of the road paving: 

Specific weight ρ 20,00 kN/m3 
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A-II. Bridges 

A-II-I. B10RC 

 

Fig. 0-1: B10RC  cross-section (dimensions in m). 

 

 

A-II-I-I. Geometric characteristics of the cross sections 

 Symbols Values Units 

Span length L 10,00 m 

Total bridge width B 9,35 m 

Carriageway width lc 8,00 m 

Left sidewalk width bl 0,80 m 

Right sidewalk width br 0,55 m 

Beams width b 0,35 m 

Beams depth h 0,80 m 

N° of beams n 6  

Slab depth ts 0,20 m 

Sidewalk depth hs 0,20 m 

Paving  depth tp 0,08 m 

Total area of the cross section At 3,82 m2 
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A-II-I-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 95,50 kN/m 

Paving gp 12,80 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 111,30 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 8,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 2,00  

Width of the remaining area wr 2,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

qrk 5,00 kN/m 

qfk 3,38 kN/m 

q 42,88 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 500,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-I-III. Actions 

 Acting moment 

Characteristic values mid span 

Acting moment due to g [kNm] 1391,25 

Acting moment due to q [kNm] 535,94 

Acting moment due to Q [kNm] 2200,00 

Total acting moment Msd [kNm] 4127,19 

 

Total factored moment Mtot 5571,70 kNm 

n° of beams n 6,00  

Average moment for  each beam Msd 928,62 kNm 
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Fig. 0-2: Maximum acting moment at mid span. 

 

 

 

 

 Acting shear force 

Characteristic values lateral support 

Acting shear force due to g [kN] 556,50 

Acting shear force due to q [kN] 214,38 

Acting shear force due to Q [kN] 890,00 

Total shear force Vsd [kN] 1660,88 

 

Total factored moment Vtot 2242,18 kN 

n° of beams n 6,00  

Average moment for  each beam Vsd 373,70 kN 
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Fig. 0-3: maximum shear force acting at the support. 

 

A-II-I-IV. Flexure design 

In order to design the flexural reinforcement, it will be considered the 

single T shape beam: 

Depth of the web hw 800,00 mm 

Width of the web bw 350,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 1500,00 mm 

Total height h 1000,00 mm 

Effective depth d 920,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 10 1990 77,51 1161,21 
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According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 18 3582 139,52 2016,65 

   

 

A-II-I-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 120,05 136,45 

ACI440.1 R-06 96,18 123,65 

MODEL 211,35 284,53 
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A-II-II. B12RC 

 

Fig. 0-4: B12RC cross-section (dimensions in m). 

 

 

A-II-II-I. Geometric characteristics of the cross sections 

 Symbols Values Units 

Span length L 12,00 m 

Total bridge width B 9,35 m 

Carriageway width lc 8,00 m 

Left sidewalk width bl 0,80 m 

Right sidewalk width br 0,55 m 

Beams width b 0,35 m 

Beams depth h 1,00 m 

N° of beams n 6  

Slab depth ts 0,20 m 

Sidewalk depth hs 0,20 m 

Paving  depth tp 0,08 m 

Total area of the cross section At 4,24 m2 
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A-II-II-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 106,00 kN/m 

Paving gp 12,80 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 121,80 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 8,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 2,00  

Width of the remaining area wr 2,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

qrk 5,00 kN/m 

qfk 3,38 kN/m 

q 42,88 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 500,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-II-III. Actions 

 Acting moment 

Characteristic values mid span 

Acting moment due to g [kNm] 2192,40 

Acting moment due to q [kNm] 771,75 

Acting moment due to Q [kNm] 2700,00 

Total acting moment Msd [kNm] 5664,15 

 

Total factored moment Mtot 7646,60 kNm 

n° of beams n 6,00  

Average moment for  each beam Msd 1274,43 kNm 
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Fig. 0-5: Maximum acting moment at mid span. 

 

 

 

 

 Acting shear force 

Characteristic values lateral support 

Acting shear force due to g [kN] 730,80 

Acting shear force due to q [kN] 257,25 

Acting shear force due to Q [kN] 908,33 

Total shear force Vsd [kN] 1896,38 

 

Total factored moment Vtot 2560,11 kN 

n° of beams n 6,00  

Average moment for  each beam Vsd 426,69 kN 
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Fig. 0-6: maximum shear force acting at the support. 

 

A-II-II-IV. Flexure design 

In order to design the flexural reinforcement, it will be considered the 

single T shape beam: 

Depth of the web hw 1000,00 mm 

Width of the web bw 350,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 1500,00 mm 

Total height h 1200,00 mm 

Effective depth d 1120,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 10 1990 77,51 1424,75 
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According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 20 3980 155,02 2747,37 

   

 

A-II-II-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 141,69 162,19 

ACI440.1 R-06 107,37 144,88 

MODEL 233,97 330,30 
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A-II-III. B16RC 

 

Fig. 0-7: B16RC cross-section (dimensions in m). 

 

 

A-II-III-I. Geometric characteristics of the cross sections 

 Symbols Values Units 

Span length L 16,00 m 

Total bridge width B 9,35 m 

Carriageway width lc 8,00 m 

Left sidewalk width bl 0,80 m 

Right sidewalk width br 0,55 m 

Beams width b 0,35 m 

Beams depth h 1,40 m 

N° of beams n 6  

Slab depth ts 0,20 m 

Sidewalk depth hs 0,20 m 

Paving  depth tp 0,08 m 

Total area of the cross section At 5,08 m2 
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A-II-III-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 127,00 kN/m 

Paving gp 12,80 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 142,80 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 8,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 2,00  

Width of the remaining area wr 2,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

qrk 5,00 kN/m 

qfk 3,38 kN/m 

q 42,88 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 500,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-III-III. Actions 

 Acting moment 

Characteristic values mid span 

Acting moment due to g [kNm] 4569,60 

Acting moment due to q [kNm] 1372,00 

Acting moment due to Q [kNm] 3700,00 

Total acting moment Msd [kNm] 9641,60 

 

Total factored moment Mtot 13016,16 kNm 

n° of beams n 6,00  

Average moment for  each beam Msd 2169,36 kNm 
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Fig. 0-8: Maximum acting moment at mid span. 

 

 

 

 

 Acting shear force 

Characteristic values lateral support 

Acting shear force due to g [kN] 1142,40 

Acting shear force due to q [kN] 343,00 

Acting shear force due to Q [kN] 931,25 

Total shear force Vsd [kN] 2416,65 

 

Total factored moment Vtot 3262,48 kN 

n° of beams n 6,00  

Average moment for  each beam Vsd 543,75 kN 
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Fig. 0-9: Maximum shear force acting at the support. 

 

A-II-III-IV. Flexure design 

In order to design the flexural reinforcement, it will be considered the 

single T shape beam: 

Depth of the web hw 1400,00 mm 

Width of the web bw 350,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 1500,00 mm 

Total height h 1600,00 mm 

Effective depth d 1520,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 12 2388 93,01 2329,94 
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According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 28 5572 217,03 5076,44 

   

 

A-II-III-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 193,17 221,88 

ACI440.1 R-06 147,74 199,21 

MODEL 322,29 455,55 

 

 

 

 

 

 

 



111 
 

A-II-IV. B20RC 

 

Fig. 0-10: B20RC cross-section (dimensions in m). 

 

A-II-IV-I. Geometric characteristics of the cross sections 

 Symbols Values Units 

Span length L 20,00 m 

Total bridge width B 9,35 m 

Carriageway width lc 8,00 m 

Left sidewalk width bl 0,80 m 

Right sidewalk width br 0,55 m 

Beams width b 0,35 m 

Beams depth h 1,80 m 

N° of beams n 6  

Slab depth ts 0,20 m 

Sidewalk depth hs 0,20 m 

Paving  depth tp 0,08 m 

Total area of the cross section At 5,92 m2 
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A-II-IV-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 148,00 kN/m 

Paving gp 12,80 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 163,80 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 8,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 2,00  

Width of the remaining area wr 2,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

qrk 5,00 kN/m 

qfk 3,38 kN/m 

q 42,88 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 500,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-IV-III. Actions 

 Acting moment 

Characteristic values mid span 

Acting moment due to g [kNm] 8190,00 

Acting moment due to q [kNm] 2143,75 

Acting moment due to Q [kNm] 4700,00 

Total acting moment Msd [kNm] 15033,75 

 

Total factored moment Mtot 20295,56 kNm 

n° of beams n 6,00  

Average moment for  each beam Msd 3382,59 kNm 
 



114 
 

 

Fig. 0-11: Maximum acting moment at mid span. 

 

 

 

 

 Acting shear force 

Characteristic values lateral support 

Acting shear force due to g [kN] 1638,00 

Acting shear force due to q [kN] 428,75 

Acting shear force due to Q [kN] 945,00 

Total shear force Vsd [kN] 3011,75 

 

Total factored moment Vtot 4065,86 kN 

n° of beams n 6,00  

Average moment for  each beam Vsd 677,64 kN 
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Fig. 0-12: Maximum shear force acting at the support. 

 

A-II-IV-IV. Flexure design 

In order to design the flexural reinforcement, it will be considered the 

single T shape beam: 

Depth of the web hw 1800,00 mm 

Width of the web bw 350,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 1500,00 mm 

Total height h 2000,00 mm 

Effective depth d 1920,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 16 3184 124,02 3917,23 
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According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 34 6766 263,54 7375,39 

   

 

A-II-IV-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 244,88 285,89 

ACI440.1 R-06 180,57 256,56 

MODEL 392,38 586,53 
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A-II-V. S10RC 

 

Fig. 0-13: S10RC cross-section (dimensions in m). 

 

A-II-V-I. Geometric characteristics 

 

 

 

 

 Symbols Values Units 

Span length L 10,00 m 

Total bridge width B 12,00 m 

Carriageway width lc 10,00 m 

Left sidewalk width bl 1,00 m 

Right sidewalk width br 1,00 m 

Slab depth h 0.85 m 

Sidewalk depth hs 0,15 m 

Paving depth tp 0,08 m 

Total area of the cross section At 10,07 m2 
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A-II-V-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 252,38 kN/m 

Paving gp 16,00 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 271,38 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 10,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 3,00  

Width of the remaining area wr 1,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Lane 3 100,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

q3k 7,50 kN/m 

qrk 2,50 kN/m 

qfk 5,00 kN/m 

q 49,50 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 600,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-V-III. Actions 

 Acting moment 

 mid span 

Acting moment due to g [kNm] 4579,45 

Acting moment due to q [kNm] 835,31 

Acting moment due to Q [kNm] 3564,00 

Total acting moment Msd [kNm] 8978,77 
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Fig. 0-14: Maximum acting moment at mid span. 

 

 

 

 

 Acting shear force 

 lateral support 

Acting shear force due to g [kN] 1831,78 

Acting shear force due to q [kN] 334,13 

Acting shear force due to Q [kN] 1201,50 

Total shear force Vsd [kN] 3367,41 
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Fig. 0-15: Maximum shear force acting at the support. 

 

A-II-V-IV. Flexure design 

A simplified T shape section is considered: 

Depth of the web hw 800,00 mm 

Width of the web bw 9000,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 12000,00 mm 

Total height h 1000,00 mm 

Effective depth d 920,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 78 15522 75,57 9067,43 
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According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 18 83182 404,99 38143,22 

   

 

A-II-V-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 2731,88 3416,78 

ACI440.1 R-06 1491,71 3046,73 

MODEL 3259,90 6938,65 
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A-II-VI. S1015RC 

 

Fig. 0-16: S1015RC cross-section (dimensions in m). 

 

A-II-VI-I. Geometric characteristics 

 

 

 

 

 Symbols Values Units 

Span length L 35,00 m 

Total bridge width B 12,00 m 

Carriageway width lc 10,00 m 

Left sidewalk width bl 1,00 m 

Right sidewalk width br 1,00 m 

Slab depth h 1,15 m 

Sidewalk depth hs 0,15 m 

Paving depth tp 0,08 m 

Total area of the cross section At 12,62 m2 
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A-II-VI-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 315,38 kN/m 

Paving gp 16,00 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 334,38 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 10,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 3,00  

Width of the remaining area wr 1,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Lane 3 100,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

q3k 7,50 kN/m 

qrk 2,50 kN/m 

qfk 5,00 kN/m 

q 49,50 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 600,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-VI-III. Actions 

 Acting moment 

 mid span middle support lateral span 

Acting moment due to g [kNm] 5550,18 7788,75 3013,28 

Acting moment due to q [kNm] 1011,94 1234,52 711,69 

Acting moment due to Q [kNm] 3499,57 2089,43 2984,99 

Total acting moment Msd [kNm] 10061,69 11112,70 6709,96 
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Fig. 0-17: Maximum acting moment at mid span. 

 

 

 

 

 

Fig. 0-18: Maximum acting moment at the middle support (negative moment). 

 

 



127 
 

 

 

Fig. 0-19: Maximum acting moment at the lateral span. 

 

 

 

 

 

 Acting shear force 

 middle support lateral support 

Acting shear force due to g [kN] 3385,60 1497,48 
Acting shear force due to q [kN] 533,01 308,40 
Acting shear force due to Q [kN] 1538,62 1403,53 

Total shear force Vsd [kN] 5457,23 3209,41 
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Fig. 0-20: maximum shear force acting at the middle support. 

 

 

 

 

 

Fig. 0-21: Maximum shear force acting at the lateral support. 
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A-II-VI-IV. Flexure design 

A simplified T shape section is considered: 

Depth of the web hw 1100,00 mm 

Width of the web bw 8900,00 mm 

Depth of the flange hf 200,00 mm 

Width of the flange bf 12000,00 mm 

Total height h 1300,00 mm 

Effective depth d 1220,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 68 13532 65,88 10636,45 

middle support 74 14726 96,67 11424,86 

lateral span 44 8756 42,63 6949,82 

 

According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 546 108654 529,02 65443,97 

middle support 546 108654 713,28 62115,53 

lateral span 546 108654 529,02 65443,97 
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A-II-VI-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 3455,01 4476,20 

ACI440.1 R-06 1323,30 3988,76 

MODEL 3066,74 9080,59 

middle support 

CNR DT-203 3516,53 4476,20 

ACI440.1 R-06 1664,98 3988,76 

MODEL 3705,01 9080,59 
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A-II-VII. S1520RC 

 

Fig. 0-22: S1520RC cross-section (dimensions in m). 

 

A-II-VII-I. Geometric characteristics 

 

 

 

 

 Symbols Values Units 

Span length L 50,00 m 

Total bridge width B 11,00 m 

Carriageway width lc 10,00 m 

Left sidewalk width bl 0,50 m 

Right sidewalk width br 0,50 m 

Slab depth h 1,40 m 

Sidewalk depth hs 0,20 m 

Paving depth tp 0,08 m 

Total area of the cross section At 8,14 m2 
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A-II-VII-II. Loads 

 Permanent Loads 

DEAD LOADS Symbols Values Units 

Reinforced concrete gRC 203,50 kN/m 

Paving gp 16,00 kN/m 

Guard Rail ggr 3,00 kN/m 

Total distributed Dead Load g 222,50 kN/m 

 

Partial factor γG 1,35  

 

 Variable Loads: Road Traffic Actions 

Notional lanes Symbols Values Units 

Carriageway width lc 10,00 m 

Width of notional lanes wc 3,00 m 

n° of notional lanes ni 3,00  

Width of the remaining area wr 1,00 m 

 

 TS UDL 

Load Model 1 Qik [kN] qik [kN/m2] 

Lane 1 300,00 9,00 

Lane 2 200,00 2,50 

Lane 3 100,00 2,50 

Remaining area 0,00 2,50 

 

Load Model 4   

Crowd loading qfk [kN/m2] 2,50 
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TRAFFIC LOADS (UDL) 

Symbols Values Units 

q1k 27,00 kN/m 

q2k 7,50 kN/m 

q3k 7,50 kN/m 

qrk 2,50 kN/m 

qfk 2,50 kN/m 

q 47,00 kN/m 

 

TRAFFIC LOADS (TS) 

Symbols Values Units 

Q 600,00 kN 

 

Partial factor γQ 1,35  

 

 

 

A-II-VII-III. Actions 

 Acting moment 

 mid span middle support lateral span 

Acting moment due to g [kNm] 6257,81 9783,05 4823,42 

Acting moment due to q [kNm] 1762,50 2242,78 1499,48 

Acting moment due to Q [kNm] 4923,72 2690,28 4617,18 

Total acting moment Msd [kNm] 12944,03 14716,11 10940,08 
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Fig. 0-23: Maximum acting moment at mid span. 

 

 

 

 

 

Fig. 0-24: Maximum acting moment at the middle support (negative moment). 
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Fig. 0-25: Maximum acting moment at the lateral span. 

 

 

 

 

 

 Acting shear force 

 middle support lateral support 

Acting shear force due to g [kN] 3003,75 1620,08 

Acting shear force due to q [kN] 688,04 436,22 

Acting shear force due to Q [kN] 1559,32 1473,26 

Total shear force Vsd [kN] 5251,11 3529,56 
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Fig. 0-26: Maximum shear force acting at the middle support. 

 

 

 

 

 

Fig. 0-27: Maximum shear force acting at the lateral support. 
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A-II-VII-IV. Flexure design 

A simplified T shape section is considered: 

Depth of the web hw 1350,00 mm 

Width of the web bw 2450,00 mm 

Depth of the flange hf 250,00 mm 

Width of the flange bf 11000,00 mm 

Total height h 1600,00 mm 

Effective depth d 1520,00 mm 

 

 

FLEXURAL 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 68 13532 71,87 13297,72 

middle support 86 17114 408,12 14912,49 

lateral span 58 11542 61,30 11382,56 

 

According to CNR-DT 203/06, for elements without shear reinforcement, 

sufficient longitudinal FRP reinforcement in tension shall be provided that 

               .   

 

MINIMUM 

REINFORCEMENT 

n° of 

bars 

reinforcement 

area     

[mm2] 

neutral 

axis depth 

[mm] 

Resisting 

Moment 

[kNm] 

mid span 188 37412 198,71 35193,23 

middle support 188 37412 892,18 26603,74 

lateral span 188 37412 198,71 35193,23 
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A-II-VII-V. Shear strength 

 

 
flexural 

reinforcement 
[kN] 

minimum 
reinforcement  
(CNR-DT203) 

[kN] 

lateral support 

CNR DT-203 1278,35 1536,73 

ACI440.1 R-06 842,27 1370,30 

MODEL 1822,35 3120,73 

middle support 

CNR DT-203 1319,36 1536,73 

ACI440.1 R-06 955,37 1370,30 

MODEL 2073,15 3120,73 
 

 

 

 



 
 

 

 


