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Summary

The thesis was conducted during a period of six months at the University of Cali-

fornia of Santa Barbara in collaboration with Prof. F. Bullo and the PhD student

Florian Dörfler. An article was submitted for the European Control Conference

2013-Zurig.

In this thesis we revisit the classic slow coherency and area aggregation ap-

proach to model reduction in power networks. The slow coherency approach is

based on identifying sparsely and densely connected areas of a network, within

which all generators swing coherently. A time-scale separation and singular pertur-

bation analysis then results in a reduced low-order system, where coherent areas

are collapsed into aggregate variables.

Here, we study the application of slow coherency and area aggregation to first-

order consensus systems and second-order power system swing dynamics. We

unify different theoretic approaches and ideas found throughout the literature, we

relax some technical assumptions, and we extend existing results. In particular,

we provide a complete analysis of the second-order swing dynamics – without

restrictive assumptions on the system damping.
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1
Introduction

A power network is a large-scale and complex dynamical system. Here the attribute

“complex” refers to both rich dynamics of the individual system component as well as

their non-trivial interaction through the network. In order to tackle this complexity

for analysis, control design, and monitoring schemes, it is of interest to construct

reduced-order models which preserve the dynamics of interest.

In this work, we are interested in electromechanical inter-area dynamics, which

are associated with the dynamics of power transfers and involve groups of genera-

tors oscillating relative to each other. In a heavily stressed grid, poorly damped

inter-area oscillations can even become unstable, as seen in the blackout of August

10, 1996 in the Western American network Venkatasubramanian and Li (2004).

To achieve a better understanding of the complex inter-area dynamics of a

large-scale power grid, a natural approach is to collapse groups of coherent ma-

chines into single equivalent machines and study the dynamics of such a reduced

model. Intuitively, these coherent groups can be identified as strongly connected

components of the weighted graph, and entire geographic areas of a power grid can

be aggregated to single equivalent models.

The approach outlined above has been refined in the pioneering work on slow
coherency by Chow et al., see the seminal papers Chow (1982); Chow and Kokotović
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(1985); Chow, Cullum, and Willoughby (1984); Date and Chow (1991); Chow, Alle-

mong, and Kokotović (1978) among others. Slow coherency theory considers power

network models, such as the RTS 96 in Figure 5.1, that are naturally partitioned

into areas, which are internally densely connected and weakly connected to each

other. Next, aggregate variables are defined for each area corresponding to the

area’s center of mass (or inertia). These aggregate variables describe the collective

area dynamics, and they are complemented by a set of local variables representing

the incoherency within the areas. A singular perturbation analysis shows that the

long-term inter-area dynamics are determined by the aggregate variables.

The reduced-order model is the system resulting from the singular perturbation

analyzis composed only by the aggregate variables. There are several advantages

of reducing the order of the model

• Model Identification: the real network can have an intractable number of

nodes, therefore a chaotic formulation;

• Simpler and efficient protocols can be used for routing and broadcasting

within an aggregate area;

• Data storage requirement is modest;

• Less computation;

• Less states in the system to control.

A recent application of slow coherency theory is measurement-based identification

of the aggregate models for monitoring and control purposes Chakrabortty, Chow,

and Salazar (2011).

Consider for example the Western Systems Coordinating Council (WSCC)

represented in figure fig: PowerNetworkWSCC, thus roughly represent the power

network of the west coast of the United States.

The black dots are a pure illustrative approximations of the generators existing.

In such a network there can be thousands or even millions of nodes and it is clear

how hard it would be to study the associated model. Whereas, a model composed

by 9 states, one for each area, approximating the original one would render the

analyzis feasible. It is on this reasoning that this project is based.



3

Figure 1.1: 9-Areas partitioning of the Western Systems Coordinating Council.

Literature review. The problem of aggregation and slow coherency has at-

tracted tremendous scientific interest in networked control and power systems.

In Chow (1982) and Chow and Kokotović (1985) the foundations of area ag-

gregation are laid out for first and second-order linear interconnected systems

with diffusive coupling. The authors determined a rigorous method to trace the

dynamic of a large power network into an explicit singular perturbation form

system. Moreover, they started the analysis of the resulting aggregate system,

which is the object of interest in our work.

These networked systems correspond to either consensus dynamics Bullo,

Cortés, and Martínez (2009); Garin and Schenato (2010) or the electromechanical

swing dynamics of network-reduced power systems Sauer and Pai (1998); Dörfler
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and Bullo (2011).

Recently, the methods developed in Chow (1982); Chow and Kokotović (1985)

have been extended to non-linearly coupled first-order systems Bıyık and Arcak

(2007).

The second-order case has been heavily investigated in the context of power

systems Chow et al. (1984); Date and Chow (1991); Chow and Kokotović (1985);

Chow et al. (1978); Chow (1982). In Chow et al. (1984) a sparsity-based technique

is developed to identify coherent areas, and in Date and Chow (1991) the singular

perturbation and aggregation presented in Chow and Kokotović (1985) has been

further refined. The articles Chow and Kokotović (1985); Date and Chow (1991);

Chow et al. (1984) do not take the system damping into account, which is a

technically inconvenient obstacle in the aggregation analysis.

In Chow et al. (1978), a singular perturbation analysis of a second-order dissi-

pative system was carried out, but the resulting slow and fast systems are required

to have high frequency oscillations. Thus, some strong structural conditions on the

initial system have to be met.

The recent Mallada and Tang (2011) deals with second order systems with

damping and it points out the relations between damping, power scheduling and

line impedances. The damping of the system is also related to some characteristics

of the Laplacian matrix and its fundamental for the stability of the system, these

reasons contributed to our interest in the analyzis of general second order systems.

Finally, in Chow (1982) an approach to second-order dissipative systems is

presented, which is based on a restrictive uniform damping assumption and on an

incomplete analysis.

Contribution In this paper, we review the different existing approaches Chow

(1982); Chow and Kokotović (1985); Chow et al. (1984); Date and Chow (1991);

Chow et al. (1978); Bıyık and Arcak (2007) to slow coherency in a unified language.

We analyze the two cases of first-order consensus dynamics and second-order

swing dynamics in power networks. We combine and extend the existing analysis

approaches, and we remove some technical assumptions commonly made in the lit-

erature, such as regularity assumptions and assumptions on the graph connectivity.

We also formally extend the existing theory to weighted graphs.
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More importantly, we provide a complete and detailed analysis of area aggre-

gation for the second-order case with damping. The resulting aggregate model

equals the one proposed in Chow (1982); Chow et al. (1978), but we do not assume

restrictive structural constraints or uniform damping.

Finally, motivated by remarks in Chow and Kokotović (1985), we identify the

reduced aggregate models as generalized consensus systems Bullo et al. (2009);

Olfati-Saber, Fax, and Murray (2007) with multiple time constants (in the first-

order case), aggregate damping and inertia matrices (in the second-order case),

and possibly adverse interactions among the aggregate nodes (corresponding to

negative coupling weights).

We illustrate our developments with simulations of the RTS 96 system and of

random densely connected graphs generated with routines based on Erdös-RÃl’nyi

algorithm.

Thesis organization Chapter 2 presents the problem setup and summarizes

the area aggregation process for consensus systems. In particular, we define

mathematically the concept of sparsely connected area and we perform the sin-

gular perturbation analyzis together with the description of the multi time-scale

separation, which is one of its major properties.

Chapter 3 identifies the aggregate model as a generalized Laplacian system

and states the convergence to the same consensus point of the original and of the

reduced order system.

Chapter 4 extends the results from the first-order consensus dynamics to the

second-order swing equations. The analyzis followed is the same also for the second

order dynamic, therefore in this chapter, all the mathematical issues which appear

passing through this more complicated system are demonstrated and explained.

Chapter 5 illustrates our theoretical results with simulation studies. The

simulations test both an official power network the RTS96 which is naturally

created with the structure of sparse connected areas and with several random

networks that we implemented.

Finally, chapter 6 concludes the thesis describing the major results obtained.

The remainder of this chapter recalls some preliminaries and introduces some

notation.
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Preliminaries and notation

Vectors and matrices: Let 1n and 0n be the n-dimensional vectors of unit and zero

entries, respectively. Let In ∈Rn×n be the n-dimensional identity matrix.

For a symmetric matrix A = AT ∈Rn×n we write A Â 0, A º 0, A ≺ 0, and A ¹ 0 if

A is positive definite, positive semidefinite, negative definite, negative semidefinite,

respectively.

Given an array {xi}i∈1,...,n, let x ∈Rn be the associated vector, and let diag(x) ∈
Rn×n be the associated diagonal matrix.

Sets: Given a discrete set X, denote its cardinality by |X|.
Algebraic graph theory: Consider a connected, undirected, and weighted graph

G = (V,E,W), where V= 1, . . . ,n is the set of nodes, E⊂V×V is the set of undirected

edges, and W =WT ∈Rn×n is the adjacency matrix with entries wi j > 0 if {i, j} ∈E
and wi j = 0 otherwise.

What is the physical meaning of the weights on the edges is not really the point

of our work, but the reader can think to them as electrical impedances, since we

are working with power networks.

An electrical impedances is the complex ratio of the voltage over the current in an

alternating current (AC) circuit and it is formed by a real part, the resistance, and

an imaginary part the reactance.

Z = |Z|e jθ, with |Z| = |R+ iX |.

where R is the resistance, X is the reactance and θ is the phase between the two.

Throughout the paper, we implicitly assume that all nonzero edge weights are

uniformly non-degenerate and bounded, that is, there are w,w ∈R such that

0< w ≤ wi j ≤ w , ∀ {i, j} ∈E .

The following graph matrices and their properties will be of interest to us

Biggs (1994). The degree matrix D ∈ Rn×n is the diagonal matrix with elements

dii =∑n
j=1, j 6=i wi j. The Laplacian matrix L = LT ∈Rn×n is defined by L = D−W , and

it satisfies L º 0 and L1n = 0n. Defined component-wise the weighted Laplacian
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matrix is:

l i, j ¬


−w(i, j) if i 6= j and {i, j} ∈E
|∑n

j=1 w(i, j)| if i = j

0 otherwise

If a number ` ∈ 1, . . . , |E| and an arbitrary direction is assigned to each edge

{i, j} ∈E, the (oriented) incidence matrix B ∈Rn×|E| is defined component-wise by

Bk`¬


1 if node k is the sink node of edge `

−1 if node k is the source node of edge `

0 otherwise

For x ∈ Rn, the vector BT x has components xi − x j corresponding to the oriented

edge from j to i.
If diag({wi j}{i, j}∈E) is the diagonal matrix of edge weights, then

L = Bdiag({wi j}{i, j}∈E)BT .

If the graph is connected, then Ker(BT)=Ker(L)= span(1n) and all n−1 non-

zero eigenvalues of L are strictly positive.
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2
Aggregation and Slow Coherency

In this chapter, we introduce the problem setup in slow coherency analysis and

present a brief yet complete analyzis of time-scale separation and area aggregation.

In the problem setup we mainly characterize the dynamics of the network.

The other sections illustrate the procedure to transform these dynamics into the

standard singular perturbation form which yields the aggregate system.

2.1 Mathematical models and problem setup

Consider a connected, undirected, and weighted graph G = (V,E,W) with n nodes,

Laplacian matrix L, and incidence matrix B.

Associated to this graph, we consider two different dynamical systems. The

first system is the widely adapted consensus protocol Bıyık and Arcak (2007); Chow

and Kokotović (1985); Olfati-Saber et al. (2007). Considers n autonomous agents.

Each agent i ∈ 1, . . . ,n is equipped with a local state variable xi, and the agents

exchange their states according to the first-order consensus dynamics

ẋ =−Lx . (2.1)
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A spectral analysis Olfati-Saber et al. (2007) of the consensus dynamics (2.1)

reveals that asymptotically all agents synchronize to a common consensus state,

that is, limt→∞ xi(t) = limt→∞ x j(t) = x∞ ∈ R for all i, j ∈ 1, . . . ,n. In particular, the

asymptotic consensus state is given by x∞ =∑n
i=1 xi(0)/n.

A natural extension of the first-order consensus protocol (2.1) to a second-

order mechanical system can be achieved as follows. With each node i ∈ 1, . . . ,n,

we associate an inertia coefficient Mi > 0 and a damping coefficient D i > 0. Let

M ∈Rn×n and D ∈Rn×n be the diagonal matrices of inertia and damping coefficients,

and consider the second-order dissipative consensus dynamics

Mẍ =−Dẋ−Lx . (2.2)

Our enabling application of interest for the second-order consensus dynamics (2.2)

is given by the electromechanical swing dynamics of large-scale electric power

networks Sauer and Pai (1998); Chow (1982); Chow and Kokotović (1985); Date

and Chow (1991); Chow et al. (1978, 1984). Here each node i ∈ 1, . . . ,n corresponds

to a synchronous generator or a load (modeled as a synchronous motor) with inertia

Mi damping D i, and rotor angle xi, and L is the incremental admittance matrix,

arising from a Jacobian linearization and Kron reduction Dörfler and Bullo (2011)

of the nonlinear power network dynamics. For the remainder of the paper, we refer

to system (2.2) simply as power network dynamics.

In the following, we will assume that the graph G is partitioned in r areas, that

is, V = ⋃r
α=1Vα with Vα being the node set of area α. We denote the number of

nodes in area α by mα = |Vα|.
The edge set of area α is given by Eα =E

⋂
{Vα×Vα}.

We assume that the partition is such that each subgraph (Vα,Eα) is connected

for α ∈ 1, . . . , r.

Finally, we define the internal set edge Eint by Eint =⋃r
α=1Eα and the external

edge set Eext by Eext =E\Eint. Notice that E=Eint ∪Eext.

Accordingly, define the external adjacency matrix WE ∈ Rn×n with elements

wE
i j = wi j if {i, j} ∈Eext and the internal adjacency matrix by W I =W −WE ∈Rn×n.

The associated degree matrices are DE ∈Rn×n with dE
ii =

∑n
j=1, j 6=i wE

i j and D I ∈
Rn×n with elements dI

ii =
∑n

j=1, j 6=i wI
i j.

Finally, define the internal Laplacian LI = D I −W I ∈ Rn×n and the external
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Laplacian LE = DE −WE ∈Rn×n. By construction, we obtain

L = LI +LE . (2.3)

Accordingly, define BI and BE as the incidence matrices B associated to LI =
BI diag({wi j}{i, j}∈Eint)BI and LE = BE diag({wi j}{i, j}∈Eext)BE, respectively.

In the following, we will be particularly interested in the case, where each of the

r areas is internally densely connected, and distinct areas are sparsely connected

among another.

Given such a partition of the graph, it is reasonably to expect that nodes within

each area strongly interact with each other and quickly synchronize their states

xi(t) according to the inner-area dynamics induced by LI . On the other hand, we

also expect that nodes from disjoint areas interact only weakly, and the long-term

behavior of (2.1) and (2.2) will depend mostly on inter-area dynamics induced by

LE rather than inner-area dynamics.

In the following sections we make this intuition precise and formalize the

particular notions of dense and sparse connections, time-scale separation, as well

as inter-area and inner-area dynamics.

Example

Throughout this Chapter we consider a simple example graph, partitioned with

sparse and densely connected areas, with the intention of illustrating the theoreti-

cal results we are going to achieve and help the reader in better understanding

them.

Considering the graph in Figure 2.1 and implementing it in Matlab with random

initial conditions, the nodes obey to dynamics (2.1) and their evolution on time

looks like Figure 2.2.

Figures 2.1 and 2.2 show the reasoning behind determining an aggregate model.

All the coloured lines represent the dynamic of one single node until they collapse,

in a single line, which represents the dynamic of one area. In this example all

the nodes within an area reach the same value in a short time, which can be

considered negligible respect to the time needed for the all system to reach the

global consensus. This is why an aggregate model of 3 states instead of 13 seems
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Figure 2.1: 3-Areas and 13-nodes
graph.

Figure 2.2: Evolution of the graph
with first order dynamics

reasonable for this graph.

In addition, notice that the area composed by nodes 1 to 4 (the green ones)

in Figure 2.1 is less internally connected compared to the other two areas. This

corresponds to the dynamic of the nodes which aggregate in the lowest group of

Figure 2.2. The time needed by these nodes to aggregate is longer than in the

other areas, this result coincides with the common results in consensus problems

where the agents achieve consensus faster accordingly with an increasing coupling

between them.

2.2 Characterization of connectivity and sparsity

We quantify the trade-off of internally densely connected and externally sparsely

connected areas by two numerical parameters: a node parameter and an area

parameter.

Node parameter For each area α ∈ 1, . . . , r and each node i ∈ Vα, define the

internal degree cI
α,i and the external degree cE

α,i by

cI
α,i =

∑
{i, j}∈Eα wi j and cE

α,i =
∑

{i, j}∈Eext
wi j .
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those in words are:

cI
αi = the sum of the weighted internal connections of node i in area α,

cE
αi = the sum of the weighted external connections of node i in area α.

The node parameter d is then given by the worst-case ratio of the internal and

external degree over all nodes and areas:

d =
maxα∈1,...,r,i∈Vα cE

α,i

minα∈1,...,r,i∈Vα cI
α,i

= cE

cI . (2.4)

If condition d ¿ 1 holds, it means that each node has stronger connections with

the other nodes within its own area than the connections with the other nodes

belonging to different areas.

Area Parameter For each area α ∈ 1, . . . , r, define the internal edge weight γI
α

and the external edge weight γE
α by

γI
α =

∑
{i, j}∈Eα wi j and γE

α =∑
{i, j}∈Eext

wi j .

those in words are:

γI
α = the total sum of the weighted internal connections over all nodes within

area α,

γE
α = the total sum of the weighted external connections over all nodes within

area α.

Analogously to the node parameter, we aim to define an area parameter by the

worst-case ratio of the internal and external edge weight. Notice that γI
α ≥ mcI ,

with m =minα(mα), and mα is the number of node in area α.

We define the area parameter δ by

δ= maxα∈1,...,r γ
E
α

mcI = γE

mcI (2.5)

If condition δ¿ 1 holds, it means that each area has dense internal connections

and sparse external connections.

The two parameters d and δ characterize and quantify the trade-off between
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connectivity inside the areas and among separate areas.

In this paper, we assume that the graph G is partitioned such that d ¿ 1 and

δ¿ 1, see for instance the RTS 96 power network example in Figure 5.1, which

accordingly to the weights on the connecting lines respects the conditions required.

We refer to Chow (1982); Chow et al. (1984) for constructive algorithms to

identify such a partitioning.

We use the graph in Figure 2.1, to show a concrete example of the node and

area parameter.

For simplicity we assume unitary weighted all the external connections and

with weight 5 all the internal connections in the graph.

The graph has in total 13 nodes and three areas of 4,5,4 nodes, respectively. In

order to compute the node parameter we obtain cI = 1×5, cE = 1 and it follows

d = cE

cI = 0.2. (2.6)

Analogously, for the area parameter we obtain γI = 4×4, m= 4, γE = 2×1 and it

follows

δ= γE

mcI = 0.1 (2.7)

Both the parameters satisfy our requirements and the network has three internally

dense, sparse connected areas.

2.3 Time-scale separation and singular
perturbation analysis

In the following, we will focus on the first-order consensus dynamics (2.1) and

decompose them into fast local dynamics within each area and network-wide slow

motions between the areas. We will postpone the analysis of the second-order

power network dynamics (2.2) to Chapter 4.
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Slow inter-area motion To describe the slow inter-area motion, we define the

slow aggregate variable yα ∈R by the center of mass of area α:

yα =
∑

i∈Vα

xαi
mα

= 1
mα

1T
mα

xα, α ∈ {1, . . . , r} (2.8)

where xαi is the ith component of x for i ∈Vα and xα = [xα1 , . . . , xαmα
]T . Accordingly,

y ∈Rr is the concatenated vector of slow aggregate variables defined by

y= M−1
a UT x (2.9)

where Ma = diag(m1, . . . ,mr) ∈Rr×r and U = blkdiag(1m1 , . . . ,1mr ) ∈Rn×r.

Fast inner-area motion The fast inner-area motion is given by a weighted

difference between the state of the nodes in each area, and different metrics have

been proposed for this weighted difference Chow and Kokotović (1985); Bıyık and

Arcak (2007). Here, we present the definition from Bıyık and Arcak (2007) and

define the fast local variable zα ∈Rmα−1 of area α as

zα =Qαxα , α ∈ 1, . . . , r , (2.10)

where the matrix Qα ∈Rmα−1×mα is defined by

Qα =


−1+ (mα−1)v 1−v −v . . . −v

−1+ (mα−1)v −v 1−v . . . −v
...

...
...

. . .
...

−1+ (mα−1)v −v −v . . . 1−v

 (2.11)

with

v := mα−p
mα

mα(mα−1)
< 1. (2.12)

Accordingly, let Q = blkdiag(Q1, . . . ,Qr) ∈ Rn−r×n, and let z ∈ Rn−r be the vector of

fast variables zα defined by

z =Qx (2.13)

Compared to other choices of fast variables Chow and Kokotović (1985), the con-

struction in (2.10) features the following convenient properties.
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Lemma 2.3.1. (Properties of Qα)
Consider the matrix Qα in (2.10). The matrix Qα features zero row sums and
orthonormal rows, that is

Qα1mα = 0

QαQT
α = Imα−1 .

In order to have a better understanding of what represent (2.13), we explicit

zαi , which is the state referred to the i− th node in area α, with i ∈ {1, . . . ,mα}.

zαi = xαi − xα1 −v
∑

j∈Vα
xαj +mαvxα1

= xαi − xα1 +v
∑

j∈Vα
(mαxα1 − xαj )

= v
∑

j∈Vα, j 6=i+1
(mαxα1 − xαj )+ (mαxα1 − xαi )(v−1)

(2.14)

Therefore, each zαi is the sum of weighted differences between the first node and

each other node within the area, weighting differently the difference which involves

the i− th node.

From (2.9) and (2.13), we obtain the transformation of the original state x into

the aggregate and local variables: [
y
z

]
=

[
C
Q

]
x , (2.15)

where C = M−1
a UT . Due to Lemma 2.3.1, the inverse of the transformation (2.15)

is explicitly given by

x =
([

C
Q

])−1 [
y
z

]
=

[
U QT

][
y
z

]
(2.16)

By means of the coordinate transformation (2.15)-(2.16), the dynamics (2.1)

read in local and aggregate variables as[
ẏ
ż

]
=

[
A11 A12

A21 A22

][
y
z

]
, (2.17)
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where we used the fact that LIU = 0n and the shorthands

A11 =−CLEU , A12 =−CLEQT ,

A21 =−QLEU , A22 =−Q(LI +LE)QT .
(2.18)

The submatrices in (2.18) are obtained using the Laplacian decomposition (2.3)

and from the fact that C and U span the left and right nullspace of LI , respectively.

Lemma 2.3.2. (Order relations I)
The ∞-norms (row sums) of the submatrices in (2.18) satisfy

‖A11‖∞ = ‖CLEU‖∞ ∈O(cIδ) ,

‖A12‖∞ = ‖CLEQT‖∞ ∈O(cIδ) ,

‖A21‖∞ = ‖QLEU‖∞ ∈O(cI d) ,

‖A22‖∞ = ‖Q(LI +LE)QT‖∞ ∈O(cI)

Proof. The order of the norms of submatrices A11, A12, and A21 can be proved

analogous to Chow and Kokotović (1985).

In the following we focus the submatrix A22. By construction in (2.18) and by

applying the triangle inequality

‖A22‖∞ ≤ ‖QLIQT‖∞+‖QLEQT‖∞ .

The order of ‖QLEQT‖∞ can be proved noting from the definition of Laplacian

matrix that ‖LE‖∞ = 2cE. Moreover, in Bıyık and Arcak (2007) it is proved thatp
2 ≤ ‖Q‖∞ ≤ 2 and from (2.11) and (2.12) we can state that 1 ≤ ‖QT‖∞ ≤ m with

m =maxα{mα}. Therefore it follows

‖QLEQT‖∞ ≤ ‖Q‖∞‖LE‖∞‖QT‖∞ ≤ 4mcE = 4mcI d .

Regarding ‖QLIQT‖∞ we know, from the definition of Laplacian matrix, that

‖LI‖∞ = 2cI = 2kcI where cI = maxα∈1,...,r,i∈Vα cI
α,i and k = cI /cI > 1. Thus, we

obtain

‖QLIQT‖∞ ≤ ‖Q‖∞‖LI‖∞‖QT‖∞ ≤ 4mkcI .

In Bıyık and Arcak (2007), it is shown that ‖QBI‖∞ > c̃I , where c̃I
α,i is defined as the
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number of internal links of node i in area α, c̃I =minα∈1,...,r,i∈Vα c̃I
α,i. Consequently,

it holds that c̃I ≥ cI /ω, and we obtain a lower bound of ‖QLIQT‖∞ as

‖QLIQT‖∞ = ‖(QBI)diag({wi j}{i, j}∈Eint)(QBI)T‖∞
>ω‖QBI(QBI)T‖ >ωc̃I ≥ cIω/ω.

Since ‖QLEQT‖∞ ∈ O(cI d), since ‖QLIQT‖∞ ∈ O(cI), and since d ¿ 1, we have

that ‖A22‖∞ is of the same order as ‖QLIQT‖∞, namely O(cI).

In comparison with the corresponding result in Chow and Kokotović (1985),

Lemma 2.3.2 provides an upper bound on ‖A22‖∞ without additional assumptions,

such as placing a lower bound on |Eα|. Specifically, they require that each node is

connected to at least 3/4 of all the other nodes within the same area.

The order relations in Lemma 2.3.2 on the sub-matrices in the transformed

dynamics (2.17) is helpful to our analyzis for several reasons:

• it determines a relation between the sub-matrices and the parameter d and δ;

• it guarantees for d and δ sufficiently small that the norms of A11, A12, A21

are smaller than the norm of A22;

• it suggests a two time-scale separation of the dynamics into the fast time

scale

t f = cI t

and the slow time scale

ts = δt f = δcI t ;

• it suggests a rescaling of the submatrices as follows:

A11 = A11

cIδ
, A12 = A12

cIδ
,

A21 = A21

cI d
, A22 = A22

cI .

(2.19)
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Notice that all sub-matrices A i j are scale-free, that is, each ‖A i j‖∞ ∈O(1) for

i, j ∈ {1,2}. This means that the sub-matrices A i j are (2.4) and (2.5) independent,

they are not affected by variations of these two parameters.

Remark 2.3.3. The scale-free property of sub-matrices A i j is a necessary condition

because the singular perturbation analysis impose equal to zero the singular

parameter which in our case is δ, see Khalil (2002). Therefore the sub-matrices in

(2.17) cannot depend on this parameter.

Necessary condition for the future singular perturbation theorem 2.4.1 is the

non singularity of A22.

Lemma 2.3.4. (Regularity)
The matrix A22 is non-singular.

Proof. In order to show this property of A22 we show that it is strictly negative

definite, which is a sufficient condition to have the invertibility of the matrix.

Since L º 0, LI º 0, and LE º 0, we have that QLIQT º 0, QLEQT º 0, and

A22 =−Q(LI +LE)QT ¹ 0.

Furthermore, since ker(LI) = ker(Q) = U and dim(ker(LI)) = dim(ker(Q)) = r,

we obtain QT x ⊥ ker(LI) for each x ∈ Rn−r and xTQLIQT x > 0 for each x 6= 0n−r.

Thus, QLIQT Â 0 and A22 =−Q(LI +LE)QT ≺ 0.

Consequently, A22 is nonsingular.

In comparison to the analogous results in Chow and Kokotović (1985) and in

Bıyık and Arcak (2007), Lemma 2.3.4 shows the non singularity of A22 without

additional assumptions such as d ¿ 1.

2.4 Singular Perturbation Analyzis

By rescaling the submatrices in (2.17) as in (2.19) and rescaling time as ts = δt f ,

the system (2.17) can be equivalently rewritten in singular perturbation standard
form 

d y
dts

= A11 y+ A12z ,

δ
dz
dts

= dA21 y+ A22z .
(2.20)
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Considering the graph in Figure 2.1 its evolution on time assuming model (2.20)

looks like Figure 2.3.

Figure 2.3: Evolution of the system in a singular perturbation standard form

We can see that the model induce three slow motions and several fast motions

respect to the converging time. Indeed, the scope of the singular perturbation form

is to determine a unique variable for each area, which approximate the motion of

all the nodes within the area and the remaining variables describe the aggregation

process of the nodes.

The standard singular perturbation analysis is rigorously explained in (Khalil,

2002, Section 11), here it is only reported the applicative aspect of that theory

with the only scope to illustrate qualitatively the process. The reader is invited to

deepen the study in the appropriate book.

Considering (2.20) we want to account as negligible the dynamic of the fast

motion and therefore the singular perturbed parameter δ is imposed equal zero,

which is an acceptable approximation because of δ¿ 1. The second equation

of (2.20) becomes an algebraic equation which has solution z = −dA−1
22 A21 and

replaced it in the first equation yields the slow reduced system (defined for the
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slow aggregate variable y and in the scale ts) as

d ys

dts
= (A11 −dA12A−1

22 A21)y= A0 y , ys(0)= y(0) . (2.21)

The corresponding fast boundary layer system (defined for the fast local variable z
and in the scale t f ) is obtained as

dz f

dt f
= A22z , z f (0)= z(0)+dA−1

22 A21 y(0) . (2.22)

Tikhononov’s Theorem (Khalil, 2002, Theorem 11.2) applied to the singularly

perturbed system (2.20) then yields the following result.

Theorem 2.4.1. (Singular perturbation approximation I) Consider the sin-
gularly perturbed system (2.20) with solution denoted by

(
y(ts), z(ts)

)
, the boundary

layer system (2.22) with solution denoted by z f (t f ), as well as the slow reduced
system (2.21) with solution ys(ts).

There exist δ∗,d∗ > 0 such that for all 0 < δ≤ δ∗, 0 < d ≤ d∗ the slow and fast
motions of (2.20) are (2.21) and (2.22), respectively, and their solutions approximate
the solution of (2.20) as follows:

y(ts)= ys(ts)+O(δd) ,

z(ts)=−dA−1
22 A21 ys(ts)+ z f (t f )+O(δd) .

(2.23)

Proof. The proof can be found in (Chow and Kokotović, 1985, Theorem 3.1).

The statements of Theorem 2.4.1 are shown in Figure 2.4 with example in

process of graph in Figure 2.1.

In Figure 2.4 are compared the evolution of (2.21), green lines and of (2.20) blue

lines. There is almost an overlapping between (2.21) and the three slow motions

of model (2.20), therefore the aggregate model in this case approximates precisely

the full-order model. This means that the parameter δ and d are sufficiently small

to have an acceptable error between the two systems.

The process described in this chapter and in particular Theorem 2.4.1 were

already known in literature. Our work up-to-dated the notation used, improved the

analyzis combining the analyzis of Chow and Kokotović (1985) and the definition
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Figure 2.4: Comparison between the evolution of the slow approximating motion of the
theorem and of the singular perturbation standard form

of fast motion defined in Bıyık and Arcak (2007) and relaxed both the assumptions

to have A22 non singular and with infinite norm bounded.

The general idea of what we did so far can be summarized as:

ẋ =−Lx =⇒
{

ẏ= A11 y+ A12z
δż = A21 y+ A22z

=⇒ ẏ= A0 y

Thus is, starting from a Laplacian consensus dynamic of the first order with an

high number of variables, possibly thousands or millions we achieved the singular

perturbation standard form and we proved the existence of an approximating

reduced-order model with possibly tens of variables.

The purpose of the Chapter 3 is to study the reduced-order model (2.21) ob-

tained.



23

3
Properties of the Aggregate Model

In this Chapter, we analyze the properties of the aggregate model (2.21), where

each area is collapsed into a single aggregate node.

In Chapter 2, we demonstrated the error order of the approximation of the

full-order model with the aggregate model. Now we will characterize the aggregate

model on its own.

3.1 Aggregate Model

The system matrix of the aggregate model (2.21) can be rewritten in an insightful

way by defining

La¬UTLEU ,

LI
a¬UTLEQT(QLQT)−1QLEU ,

Lred¬ La −LI
a .

(3.1)
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Lemma 3.1.1. (Reformulation of the aggregate model I)
The aggregate model (2.21) reads equivalently as

Ma
d ys

dt
=−Lred ys . (3.2)

Proof. The lemma follows from the identities

(cIδ)A11 = Ā11 =−M−1
a (UTLEU)=−M−1

a La

(cIδ)dA12A−1
22 A21 == Ā12 Ā−1

22 Ā21 =−M−1
a UTLEQT(QLQT)−1QLEU

=−M−1
a LI

a .

which yield the system matrix

A0 = Ā0

cIδ
=−M−1

a Lred

cIδ
(3.3)

Replacing (3.3) in (2.21) and changing the time scale from ts to t, system (3.2)

follows.

Notice that the aggregate model (3.2) is presented in time scale t. This for-

mulation avoids the dependency on the parameter δ, and it will illuminate the

connections between the aggregate model (3.2) and the original model (2.1).

An interesting result would be that reducing the order of the network, the

system obtained still present a Laplacian consensus dynamic.

What we will see is that the aggregate model share many similarities with a Lapla-

cian dynamics and it retains all the major properties.

3.2 Analyzis of the Aggregate Model State Matrix

The analyzis is organized as follows: matrices La and LI
a are characterized singu-

larly, then their properties are combined to define the matrix Lred and finally, we

state a convergence result connecting the aggregate and the original model.

Definition 3.2.1 (Generalized Laplacian matrix).
Matrix A ∈ Rn×n is a generalized Laplacian matrix if it is symmetric, positive
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semidefinite, it features a simple zero eigenvalue and it has zero row and column

sums.

Notice that a generalized Laplacian matrix necessarily has positive diagonal

elements, but compared to a conventional Laplacian matrix it may have also

positive off-diagonal elements corresponding to negatively weighted edges in the

associated graph.

Theorem 3.2.2. (Characterisation of the matrices La and LI
a)

Consider the matrices La, LI
a defined in (3.1), respectively. The following properties

hold:

1. La is a Laplacian matrix;

2. LI
a is a symmetric and positive semidefinite matrix with zero row and column

sums.

Proof. In order to prove the two statements we show that all the properties of the

Laplacian matrix hold for La and for LI
a hold only the listed properties.

• First, observe that LE º 0 and QTLQ Â 0, see the proof of Lemma 2.3.4.

Since both matrices La and LI
a in (3.1) are constructed as product matrices

of the form ATBA with B º 0 and symmetric, it readily follows that both

La and LI
a are symmetric and positive semidefinite. In fact it holds that

ATBA = ATBT A = (ATBA)T .

• Second, since LEU1r = LE1n = 0n, it follows that both La and LI
a have zero

row and column sums.

By now, we proved statement 2) and showed that La is symmetric, positive

semidefinite matrices, and feature zero row and column sums.

• Third, consider a vector x ∈Rr \span(1r).

Notice that Ux = [x11T
m1

, . . . , xr1T
mr

]T ∈ Rn and Ux ∈ span(1n) if and only if

x ∈ span(1r). Since ker(LE) = span(1n), it readily follows that x = 1r spans

the nullspace of La, and the zero eigenvalue of La is simple.

• Furthermore, observe that the off-diagonals of La are non-positive. Thus, La

is Laplacian matrix. This completes the proof of statement 1).
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Remark 3.2.3. We like to show the reader that, adding an assumption to the

analyzis, theorem 3.2.2 can be extended proving that the vector x = 1r is the

eigenvector for LI
a referred to the simple zero eigenvalue.

Assume that at least one node in the graph does not have any external connec-

tion. Likewise to the third point of the proof of theorem 3.2.2 we obtain:

LEUx =


∑r

i=1 xi
∑

j∈Vi LE
1, j

...∑r
i=1 xi

∑
j∈Vr LE

r, j

 . (3.4)

Due to the assumption at least one row of LE is of all zero, therefore there is

at least one zero element in (3.4). Moreover, for the connectivity of the graph in

the same area of that node there is at least one node with an external connection,

therefore there is at least one non zero element in (3.4). We can now conclude that

LEUx 6∈ columnspan(U).

Matrix LI
a is a generalized Laplacian matrix.

The assumption made is really general and it probably holds for many of the

large-scale networks characterised as Section 2.2 requires. Whereas, the property

of LI
a achieved is not necessary for our work, therefore we decided to not add an

usefulness assumption. Anyway this property could be useful for further analyzis.

ä
In the following, we term the matrix Lred = La −LI

a in (3.2) as the reduced
Laplacian matrix. This terminology is justified by the following results.

Theorem 3.2.4. The Reduced Laplacian Matrix Lred defined in (3.1) is a general-
ized Laplacian matrix.

Proof. The proof that Lred is symmetric and feature zero row and column sums

follow readily from theorem 3.2.2.

In order to prove positive semidefiniteness of Lred and that it features a simple

zero eigenvalue, we invert the coordinate transformation (2.15)-(2.16) to obtain

−L =
[
U QT

]
Ā

[
M−1

a UT

Q

]
=

[
M−1

a UT

Q

]T

F

[
M−1

a UT

Q

]
,
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where we defined F = blkdiag(Ma, I(n−r)×(n−r))Ā. Notice that F is necessarily sym-

metric since it is congruent to L. Since −L ¹ 0 with simple zero eigenvalue and

since the matrix [UM−1
a , QT] is of full rank (it equals the transpose of the non-

singular transformation matrix in (2.15)), we obtain that F ¹ 0 and F features a

simple zero eigenvalue.

Next, recall that the Schur complement of Ā with respect to its (2,2)-block

equals −M−1
a Lred:

A11 − A12A
−1
22 A21 =−(CLEU −CLEQT(Q(L)QT)−1QLEU)=−M−1

a Lred.

Thus, the Schur complement of F with respect to its (2,2)-block equals −Lred, that

is, F11 −F12F−1
22 F21 =−Lred.

Since F is negative semidefinite, it follows by the closure properties of the

Schur complement (Zhang, 2005, Chapter 4) that its Schur complement is negative

semidefinite as well.

Furthermore, the Haynsworth inertia additivity formula (Zhang, 2005, Equa-

tion (0.10.1)) yields that the inertia of the matrix F (that is, the number of positive,

negative, and zero eigenvalues) equal the inertia of F22 plus the inertia of its

Schur complement F11−F12F−1
22 F21. Since F22 is nonsingular, it necessarily follows

that the Schur complement F11 −F12F−1
22 F21 = −Lred features exactly one zero

eigenvalue.

In summary, Lred is symmetric, it has zero row and column sums, and it is

positive semidefinite with simple zero eigenvalue. Hence, Lred is a generalized

Laplacian matrix.

Remark 3.2.5. (Graphs associated to the reduced Laplacian matrices) The

reduced Laplacian is obtained as the difference of the Laplacians La and LI
a. The

matrix La is the Laplacian corresponding to the aggregate graph, where each area

is collapsed into a single node.

The matrix LI
a shows the contribution of the area-internal topology and weights

to the reduced Laplacian Lred. Whereas La is a Laplacian matrix with positive

edge weights, the matrix LI
a itself as well as Lred can possibly feature negative

edge weights. Hence, the reduced system can possibly feature adverse interactions.
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ä
So far, we identified the aggregate model (2.21) as a generalized Laplacian

dynamics which share several properties with the Laplacian dynamics of the full-

order model (2.1). This identification allow us to use the known results for these

consensus dynamics which can be find for example in Olfati-Saber et al. (2007) and

yield the following asymptotic convergence result.

Corollary 3.2.6. (Consensus convergence)
Consider the aggregate model (3.2) and the original consensus model (2.1).

The following statements hold:

1. The aggregate model (3.2) synchronizes exponentially to

ys∞ ·1r =
∑r
α=1 mαyα(0)∑r

α=1 mα
·1r .

2. The consensus model (2.1) synchronizes exponentially to

x∞ ·1n =
∑n

i=1 xi(0)
n

·1n .

Moreover, we have that ys∞ = x∞.

Proof. Theorem 3.2.2 implies stability of the aggregate model (3.2) with respect

to the agreement subspace 1r. To find the particular consensus value ys∞, we

pre-multiply the model (3.2) on both sides by the vector 1T
r . By considering the

Laplacian properties 1T
r Lred = 0T

r , we arrive at 1T
r Ma ẏs(t)= 0, or equivalently

1T
r Ma ys(t)=

r∑
α=1

mαysα(t)= const. ∀ t ≥ 0.

By equalizing the previous equation for the two particular cases t = 0 and t →∞,

we obtain
r∑

α=1
mαysα(0)=

r∑
α=1

mαysα(t →∞) .

Thus, we obtain the explicit consensus point

lim
t→∞ ys(t)= ys∞ =

∑r
α=1 mαysα(0)∑r

α=1 mα
(3.5)
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The same analogous reasoning applied to (2.1) yields that

lim
t→∞x(t)= x∞ =

∑n
i=1 xi(0)

n

Finally, the equality ys∞ = x∞ follows from the calculation

ys∞ =
∑r
α=1 mαyα(0)∑r

α=1 mα
=

∑r
α=1 mα

∑
j∈Vα

xαj (0)
mα∑r

α=1 mα

=
∑r
α=1

∑
j∈Vα xαj (0)∑r

α=1 mα
=

∑n
i=1 xi(0)

n
= x∞ ,

where we applied definition (2.8) in the second equality.

Notice that Theorem 2.4.1 and Corollary 3.2.6 together guarantee that at

each instant, in the infinite interval of time, the full-order system (2.20) and the

aggregate model (3.2) cannot be far one to each arbitrarily. This gives intuitively

a condition also in the rate of convergence of the two systems. The difference

between the time needed by system (2.20) and system (3.2) to reach the consensus

is O(δd).

The analyzis of the graphs modelled with dynamic (2.1) is yet complete. Chapter

4 is dedicated on the analyzis of mechanical swing dynamics (2.2).
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4
Aggregation in Power Networks

In the following chapter, we extend the results derived in the Chapters 2 and 3

from the first-order consensus system (2.1) to the second-order system (2.2), which

models the electromechanical swing dynamics of an interconnected power grid.

Using the same order utilized in Chapters 2 and 3, we will face several mathe-

matical issues arising from the complex dynamics involved. In the following, we

focus more on how to solve these mathematical issues than explaining redundantly

why we do each step.

4.1 Singular Perturbation Analyzis

Analogous to Section 2.2, we define the quantities d and δ as in (2.4) and (2.5).

We deviate from the first-order model (2.1) by accounting for different generator

inertia coefficients, and we define the slow aggregate variable by

y= Cax = M−1
a UT Mx ,
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where the matrices Ma and Ca are redefined as follows

Ma¬UT MU and Ca = M−1
a UT M

Thus, yα corresponds to the center of inertia angle of the area α. We maintain the

fast local variable z =Qx and obtain[
y
z

]
=

[
Ca

Q

]
x ,

[
ẏ
ż

]
=

[
Ca

Q

]
ẋ .

The inverse coordinate transformation then reads as

x =
[
U M−1QT(QM−1QT)−1

][
y
z

]
.

This inverse transformation is the extension of (2.16) accounting for non-identical

inertia coefficients, and it has been presented in Date and Chow (1991) with a

different matrix Q.

Accordingly, we also define the diagonal matrix

Da¬UTDU ∈Rr×r (4.1)

representing the aggregate damping of each area.

The power network dynamics (2.2) can then be equivalently reformulated in

the fast and slow variables as
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[
ÿ
z̈

]
=

[
Ca

Q

]
ẍ =

[
Ca

Q

][
−M−1Dẋ−M−1Lx

]

=
[

Ca

Q

](
−M−1D

[
U M−1QT(QM−1QT)−1

][
ẏ
ż

]

−M−1L
[
U M−1QT(QM−1QT)−1

][
y
z

])

=−
[

CaM−1DU CaM−1DM−1QT(QM−1QT)−1

QM−1DU QM−1DM−1QT(QM−1QT)−1

][
ẏ
ż

]

−
[

CaM−1LU CaM−1LM−1QT(QM−1QT)−1

QM−1LU QM−1LM−1QT(QM−1QT)−1

][
y
z

]

=−
[

M−1
a DaCaU M−1

a DaCaM−1QT(QM−1QT)−1

QM−1DU QM−1DQT

][
ẏ
ż

]

−
[

M−1
a UTLU M−1

a UTLM−1QT(QM−1QT)−1

QM−1LEU QLM−1QT(QM−1QT)−1

][
y
z

]

=−
[

M−1
a Da 0r×(n−r)

QM−1DU QM−1DQT

][
ẏ
ż

]

−
[

M−1
a La M−1

a UTLEM−1QT(QM−1QT)−1

QM−1LEU QM−1LM−1QT(QM−1QT)−1

][
y
z

]

(4.2)

Where are used the following simplifying identities

CaM−1D = M−1
a DaCa,

CaU = Ir,

QU = 0n−r×r .

The submatrices which multiply the vector
[
yT , zT]T in (4.2) have a similar struc-

ture to those in (2.18). To see this, analogously to matrix Q, we define

Q̃¬ (QM−1QT)−1Q
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satisfying similar properties

QM−1Q̃T = In−r

Q̃U = 0n−r×r.

The definition of the submatrices follows

Ã11 =
−M−1

a La

cIδ
, Ã12 =

−M−1
a UTLEM−1Q̃T

cIδ

Ã21 = −QM−1LEU
cI d

, Ã22 = −QM−1LM−1Q̃T

cI .
(4.3)

These matrices share several properties with the correspondent for the first-order

case, some of them are stated in the following lemma.

Lemma 4.1.1. (Order relations and regularity II) The ∞-norms (row sums) of
the submatrices in (4.3) satisfies

‖Ã11‖∞ ∈O(cIδ) ,

‖Ã12‖∞ ∈O(cIδ) ,

‖Ã21‖∞ ∈O(cI d) ,

‖Ã22‖∞ ∈O(cI) .

Moreover, the matrix Ã22 is non-singular.

Proof. Notice that the ∞−norm of Q̃T is upper bounded by a constant since Q̃T

is the product of constant ∞−norms matrices. Moreover, we have that ker(Q̃) =
ker(Q). The proof of Lemma 4.1.1 follows then along analogous lines as the proofs

of Lemma 2.3.2 and 2.3.4.

Analogous to the first-order system (2.1), we apply a change of time scale to

bring the model (4.2) to singular perturbation standard form. For the double

integrator system (4.2), the time scales to describe the fast and the slow motion are

t f = cI t , ts =
p
δt f =

p
δcI t .

The natural procedure for what we have seen in Chapter (2) is to rewrite system
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(4.2) in an explicit singular perturbation form. Whereas, for a second-order system

this form cannot be achieved directly, the system is rewritten in a state space form

and several mathematical issues appears. For the best of our knowledge (4.2) has

never been identified as a singular perturbed system.

Lemma 4.1.2. (Power network model in singular perturbation standard
form) Consider the power network dynamics (2.2) rewritten as in (4.2), the matrices
in (4.3) and the parameters δ and d defined in (2.5) and in (2.4), respectively.
System (4.2) then reads equivalently as

d
dts


ȳ
˙̄yp
δzp
δż

=


0 Ir

cI 0 0

Ã11 −D̃1 Ã12 0

0 0 0 In−r
cI

dÃ21 −
p
δQM−1DU

cI Ã22 −QM−1DQT

cI




ȳ
˙̄y
z
ż

, (4.4)

where
[
ȳT , ˙̄yT]T = [

yT , ẏT /
p
δ
]T and the submatrix D̃1 = M−1

a Da

cI
p
δ

converges to a
bounded and positive definite diagonal matrix as δ→ 0.

Proof. The proof consist of two main steps, in the first one is shown the computation

which yields system (4.2) to the form (4.4), in the second one it is proved the limit

boundedness of D̃1 and of matrix
p
δQM−1DU

cI .

Regarding the first step.

System (4.2) written in state space form reads

d
dt


y
z
ẏ
ż

=


0r 0r×n−r Ir 0r×n−r

0n−r×r 0n−r 0n−r×r In−r

cIδÃ11 cIδÃ12 −M−1
a Da 0r×n−r

cI dÃ21 cI Ã22 −QM−1DU −QM−1DQT




y
z
ẏ
ż


Changing the time-scale in ts =

p
δcI t, we arrive at

d
dts


y
z
ẏ
ż

=


0r 0r×n−r Ir

Ir
cI
p
δ

0r×n−r

0n−r×r 0n−r 0n−r×r
In−r
cI
p
δp

δÃ11
p
δÃ12 −M−1

a Da

cI
p
δ

0r×n−r
dÃ21p

δ

Ã22p
δ

−QM−1DU
cI
p
δ

−QM−1DQT

cI
p
δ




y
z
ẏ
ż
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The slow and fast variable corresponds to the concatenated vectors
[
yT , ẏT]T

and
[
zT , żT]T respectively. The system can be rewritten pre-multiplying the fast

variable by the singular perturbation parameter
p
δ.

d
dts


yp
δz
ẏp
δż

=


0r 0r×n−r

Ir
cI
p
δ

0r×n−r

0n−r×r 0n−r 0n−r×r
In−r
cIp

δÃ11
p
δÃ12 −M−1

a Da

cI
p
δ

0r×n−r

dÃ21 Ã22 −QM−1DU
cI −QM−1DQT

cI




y
z
ẏ
ż



The dependency on δ of the matrix of the system results incompatible with the

singular perturbation theory which impose δ = 0. The problem is solved with a

change of the reference frame.

Applying a general diagonal change of coordinates as:
ȳ
z̄
˙̄y
˙̄z

=


a 0 0 0

0 b 0 0

0 0 e 0

0 0 0 f




y
z
ẏ
ż

=


ay
bz
e ẏ
f ż


where a,b, e, f are three arbitrary constants, we obtain:

d
dts


ȳp
δz̄
˙̄yp
δ ˙̄z

=


0 0 aIr

ecI
p
δ

0

0 0 0 bIn−r
f cI

e
p
δÃ11
a

e
p
δÃ12
b −M−1

a Da

cI
p
δ

0
d f Ã21

a
f Ã22

b 0 −QDQT

cI




ȳ
z̄
˙̄y
˙̄z


The solution a = b = f = 1, e = 1p

δ
corresponding to the change of variables

[
ȳT zT ˙̄yT żT

]T =
[

yT zT ẏT /
p
δ żT

]T

.

simplifies the dependency on
p
δ of almost all the submatrices and results in
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system

d
dts


ȳp
δz̄
˙̄yp
δ ˙̄z

=


0 0 Ir

cI 0

0 0 0 In−r
cI

Ã11 Ã12 −M−1
a Da

cI
p
δ

0

dÃ21 Ã22 −
p
δQM−1DU

cI −QM−1DQT

cI




ȳ
z̄
˙̄y
˙̄z


which yields (4.4).

Regarding the second step.

In the following, we show that the two submatrices

D̃1 =
M−1

a Da

cI
p
δ

, D̃2 =
p
δQM−1DU

cI

remain bounded as δ→ 0.

Clearly, we have that D̃2 → 0 when δ→ 0 since
p
δ/cI → 0 and QM−1DU does

not depend on δ. In the following, we show that the submatrix D̃1 converges to a

bounded and positive definite diagonal matrix K ∈Rr×r as δ→ 0.

The problem is that δ is composed by three parameters which affect D̃1 differ-

ently, therefore the analyzis must be extended to the asymptotic variation of each

parameter. We substitute the definition of δ in D̃1 and obtain

D̃1 =
M−1

a Da

cI
p
δ

=
pm

p
cI

√
γE

M−1
a Da .

Notice that the diagonal positive definite matrix M−1
a Da does not depend on δ and

it does not affect the asymptotic behaviour.

The limit δ→ 0 is equivalent to at least one of three possible limit processes:

δ→ 0 ⇐⇒


γE → 0

m →∞
cI →∞

(4.5)
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Recall the lower and upper bound of these three parameters:

w <cI < mw, (4.6a)

cI /w <m < cIw, (4.6b)

w <γE ¿ mcI , (4.6c)

where (4.6a)-(4.6b) follow from the definition of cI , and (4.6c) follows from the

definition of γE and the condition δ¿ 1.

The convergence D̃1 → K is proved by contradiction in two steps. First, assume

that D̃1 converges to the zero matrix, then, at least one of the following conditions

must occur:

D̃1 → 0 ⇐⇒


γE →∞
m → 0

cI →∞
(4.7)

The first two cases in (4.7) can be discarded since they contradict hypothesis (4.5).

The third case can be discarded, since inequality (4.6a) shows that cI →∞ implies

that
√

m/cI becomes constant. Thus, we conclude that D̃1 does not converge to the

zero matrix as δ→ 0.

Next, assume that the diagonal elements of D̃1 diverge, then at least one of the

following conditions must occur:

D̃1 →∞ ⇐⇒


γE → 0

m →∞
cI → 0

(4.8)

The first and the third conditions can be discarded since they contradict (4.5),

(4.6a), and (4.6c). The second condition can be discarded since (4.6b) shows that√
m/cI must be a finite number.

Thus, D̃1 does not diverge as δ→ 0.

System (4.4) has the same structure as system (2.20), and a singular perturba-
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tion analysis yields the slow reduced system

d
dts

[
ȳs

˙̄ys

]
= (R11 −R12R−1

22 R21)s =
[

0 Ir
cI

Ã0 −D̄1

][
ȳs

˙̄ys

]
,

[ ȳs(0) ˙̄ys(0)]T = [ ȳ(0) ˙̄y(0)]T , (4.9)

where Ã0 = Ã11 −dÃ12 Ã−1
22 Ã21, D̄1 = limδ→0

M−1
a Da

cI
p
δ

is a bounded and positive defi-

nite diagonal matrix, and

R11 =
[

0 Ir
cI

Ã11 −D̄1

]
, R12 =

[
0 0

Ã12 0

]
,

R21 =
[

0 0

dÃ21 0

]
, R22 =

[
0 In−r

cI

Ã22 −QM−1DQT

cI

]
.

The corresponding fast boundary layer system is obtained as

d
dts

[
z f

ż f

]
= R22

[
z f

ż f

]
[

z f (0)

ż f (0)

]
=

[
z(0)

ż(0)

]
+dR−1

22 R21

[
ȳ(0) ,
˙̄y(0)

]
.

(4.10)

The analog of Theorem 2.4.1 is then as follows:

Theorem 4.1.3. (Singular perturbation approximation II) Consider the sin-
gularly perturbed system (4.4) with solution denoted by

(
ȳ(ts), ˙̄y(ts), z(ts), ż(ts)

)
, the

boundary layer system (4.10) with solution denoted by z f (t f ), ż f (t f ), as well as the
slow reduced system (4.9) with solution ȳs(ts), ˙̄ys(ts).

There exist δ∗,d∗ > 0 such that for all 0 < δ≤ δ∗, 0 < d ≤ d∗ the slow and fast
motions of (4.4) are (4.9) and (4.10), respectively, and their solutions approximate
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the solution of (4.4) as follows:[
ȳ(ts)
˙̄y(ts)

]
=

[
ȳs(ts)
˙̄ys(ts)

]
+O(

p
δd) ,

[
z(ts)

ż(ts)

]
= dR−1

22 R21

[
ȳs(ts)
˙̄ys(ts)

]
+

[
z f (t f )

ż f (t f )

]
+O(

p
δd) , (4.11)

=
[
−dÃ−1

22 Ã21 0

0 0

][
ȳs

˙̄ys

]
+

[
z f (t f )

ż f (t f )

]
+O(

p
δd) . (4.12)

Proof. The proof coincide with the proof of Theorem 2.4.1

The resulting equation (4.11) and (4.12) of theorem (4.1.3) show nicely the

analogy to the singular perturbation of the first order, but they can be rewritten in

a more clear form as

y(ts)= ys(ts)+O(
p
δd),

˙̄y(ts)= ˙̄ys(ts)+O(
p
δd),

z(ts)=−dÃ−1
22 Ã21 ys(ts)+ z f (t f )+O(

p
δd)

ż(ts)= ż f (t f )+O(
p
δd)

The statements of Theorem 4.1.3 are shown in Figures 4.1, proceeding the ex-

ample started for the first-order Laplacian dynamic based on the graph represented

in Figure 2.1.

In Figure 4.1 the magenta lines represent the slow motions of the singular

perturbed system (4.4) and the green lines the aggregate model (4.15). The approx-

imation is very precise, thus means that the values of δ and d computed in Section

(2.2) are sufficiently small to guarantee accurate results also for systems of the

second order.
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Figure 4.1: Comparison of the evolution on time of the fast motions of system in the
singular perturbation form and the boundary layer system

4.2 Aggregate Model

In analogy to the first-order aggregate model (3.2), the system matrix of the second-

order aggregate model (4.9) can be rewritten in an insightful way.

We define matrices Ã0, L̃a, L̃I
a with the same definition of (2.21) and (3.1), but

considering (4.3) instead than (2.19).

L̃a¬UTLEU ,

L̃I
aUTLEQ̃(QM−1LQ̃)−1QM−1LEU ,

L̃red¬ (L̃a − L̃I
a) , (4.13)

Ã0 =−M−1
a L̃red/(cIδ) . (4.14)

where H¬UTLEM−1QT .

Lemma 4.2.1. (Laplacian properties of the aggregate model II) The Re-

duced Laplacian Matrix for the second order system L̃red ¬ L̃a − L̃I
a is a generalized

Laplacian matrix.
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Proof. The proof can be done adapting Theorem 3.2.2 to L̃a and L̃I
a.

Notice that L̃a = La. It follows that L̃a is a Laplacian matrix.

Moreover, L̃I
a has the same properties of LI

a, as we can see defining H ¬
UTLEM−1QT and observing:

L̃I
a = H(QM−1QT)−1(QM−1LM−1QT(QM−1QT)−1)−1HT

= H(QM−1QT)−1(QM−1QT)(QM−1LM−1QT)−1HT

= H(QM−1LM−1QT)−1HT

From Lemma 2.3.4 follows QM−1LM−1QT Â 0, which implies L̃I
a º 0. An analysis

analogous to that of Theorem 3.2.2 then shows that L̃red is a generalized Laplacian

matrix.

Finally, the aggregate model (4.15) is rewritten with the original variables

[yT , ẏT]T and in time scale t. This yields a nice and compact form to express the

aggregate model.

Theorem 4.2.2. (Reformulation of the aggregate model II) Let Ma =UT MU
and Da =UT MU be the aggregate inertia and damping matrices. Then the aggre-
gate model (4.9) reads equivalently as

Ma ÿ=−Da ẏ− L̃red y , (4.15)

where L̃red is a generalized Laplacian matrix.

Proof. In analogy to Lemma 3.1.1, we obtain that

Considering (4.14), system (4.9) reads equivalently as

d
dts

[
ȳs

˙̄ys

]
=

 0 Ir
cI

−M−1
a L̃red
cIδ

−M−1
a Da

cI
p
δ

[
ȳs

˙̄ys

]
.

The change of variables
[
yT

s , ẏT
s
]T = [

ȳT
s ,

p
δ · ˙̄yT

s
]T yields

d
dts

[
ys

ẏs

]
=

 0 Ir
cI
p
δ

−M−1
a Lred

cI
p
δ

−M−1
a Da

cI
p
δ

[
ys

ẏs

]
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Finally, the change of time-scale t = ts/(cIpδ) yields

d
dt

[
ys

ẏs

]
=

[
0 Ir

−M−1
a Lred −M−1

a Da

][
ys

ẏs

]
thus is the state space version of system (4.15).



44 Aggregation in Power Networks



45

5
Simulations

We validated the theoretical developments in this thesis with several test-graphs

created on purpose by Matlab routines based on Erdos̈-Rényi algorithm and with

the RTS 96 power network model shown in Figure 5.1.

5.1 Simulation Results for RTS 96 Power System

The first validating network is the RTS 96, which presents a structure suitable

with the characteristics required in Section (2.2), see Figure 5.1.

The RTS 96 consists of r = 3 areas and n = 33 generators obeying the swing

dynamics (2.2), the algebraic load flow is absorbed into the network parameters

through Kron reduction Dörfler and Bullo (2011), and the initial angles and fre-

quencies are chosen to be aligned within each area.

For illustrative purposes, we slightly increased the nominal generator damping

constants (to reduce large oscillation amplitudes resulting in cluttered plots) and

weakened the inter-area line connections by a factor 0.5 in the linearized model

(corresponding to a steady state with large inter-area power transfers) resulting in

δ= 0.3955.
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Figure 5.1: Illustration of RTS 96 power network with three areas. Here the square
nodes are the generators and the circles the load buses of the network.

All the initial conditions x(0) are clustered, accordingly to the area, in order to

have more readable plots but this is noa a necessary condition.

The detailed simulation results are reported in Figure 5.2 and Figure 5.3.

Figure 5.2 shows the evolution on time of system (2.2) and it can be observed

that generators within an area swing coherently. This confirm graphically the

aggregation theory for nodes strongly connected, as the ones inside one area, and

rends the idea why we consider all the nodes in area as a single node.

Figure 5.3 shows the comparison between the aggregate model (4.9) and the

singular perturbation model (4.4).

Despite the fact that δ is not infinitesimally small, the reduced model (4.9)

accurately approximates the aggregate behavior of the original model (4.4).

Anyway, accordingly to the theory presented, reducing further the weights on

the external connections of the graph, and therefore δ, the reduced-order system

(4.9) would approximate better the singular perturbed model (4.4).
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Figure 5.2: Evolution of RTS 96 power network dynamics. All nodes within an area are
plotted with the area color indicated in Figure 5.1.

Figure 5.3: Evolution of aggregate variable y(ts) in original model (4.4) of each area
(plotted with the area color indicated in Figure 5.1) and the aggregate variable ȳ(ts) in

the reduced model (4.9) (plotted in black).

5.2 Simulation Results for 13-nodes and 3-areas
graph

Several random networks generated with routines based on Erdös-Rényi model

and respecting the characteristics described in Section (2.2) has been successfully

tested, confirming the theory proved in this paper.

The basic process to generate these graphs is:

• generate as many random graph as the number of areas desired

• assign to each node a low connecting probability with nodes of different areas
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• guarantee or test that the whole graph is connected

Among all the example graphs tested we present the results with graph in

Figure (5.4), which is the same showed in the previous chapters as an illustrative

guide of the theoretical results obtained. In this way the analyzis of this graph is

complete.

Figure 5.4: 3-Areas and 13-nodes graph.

Figure 5.5 compares the evolutions of the aggregate model (4.15) green lines

and the singular perturbed system (4.4) blue lines. The values of the parameters

δ= 0.1 and d = 0.2 are sufficiently small to guarantee an error between the two

systems which is infinitesimal respect the amplitude of the signal, see Figure

5.6. The black lines in Figure 5.5, represent the original system (2.2) which being

a second-order system presents oscillations. Notice that the slow motions, by

definition, are the center of mass of these oscillations.

In Figure 5.7 the fast motions of (4.4), magenta lines, are compared with the

boundary layer system (4.10), blue lines. Again the approximation is very accurate.

The error between the two can be seen in Figure 5.8.

Notice that the oscillations of (2.2) in Figure 5.5 last as long as the fast motions

in Figure 5.7. This means that the contributions of each single node affect the

system just for that short amount of time, after that the nodes within the same

area aggregate and behave in the same way.
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Figure 5.5: Comparison of the evolu-
tion on time of the mechanical swing
equation, the slow motions of the sys-
tem in the singular perturbation form

and the aggregate model

Figure 5.6: Error between the slow
motions of the system in the singular
perturbation form and of the aggregate

model

Figure 5.7: Comparison of the evolu-
tion on time of the fast motions of sys-
tem in the singular perturbation form

and the boundary layer system

Figure 5.8: Error between the fast mo-
tions of the system in the singular per-
turbation form and the boundary layer

system
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6
Conclusion

We studied area aggregation and model reduction of first-order consensus and

second-order power network dynamics based on slow coherency.

We unified different solutions found in the literature on slow coherency and

area aggregation, we relaxed some technical assumptions, and we extended earlier

results considering weighted graphs. In particular, for the second-order power

network dynamics we provided a complete analyzis without any restriction on the

inertia and on the damping of the system.

Finally, we identified the corresponding reduced aggregate models for both first-

order and second-order dynamics as generalized Laplacian systems with multiple

time constants, aggregate damping and inertia matrices, and possibly adverse

interactions. These reduced-order systems retain all the stability properties of

Laplacian consensus dynamics and we showed their asymptotic convergence to the

same consensus point of the original full-order systems.

Our results provide a solid method to obtain a reduced-order model for the

network, an interesting future research direction is to design a control for these

models and determine a way to relief it to the original network redistributing the

control inputs of each area to each one of its own nodes.

In this direction, we suggest a graph-theoretic analysis relating the Laplacian of
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the original model and the generalized Laplacian of the reduced aggregate model.

We are deeply convinced that a deeper understanding of the inter-area dynamics

serves as a solid foundation for future control design.
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Cri, che ha sempre organizzato serate e vacanze nella sua casa in campagna

e mi ha fatto divertire tantissimo! In tutte le occasioni trascorse, mi ha sempre

mostrato la sua amicizia!

Dezu e Matteo..super! Purtroppo, le occasioni di vederci negli ultimi anni non

sono state tante, ma ogni volta è stata speciale..tanto divertimento ma anche

grandi chiacchierate che mi hanno segnato profondamente!

Diane e lele, non solo coppia che stimo ma anche persone che apprezzo molto

per quello che mi hanno mostrato in questi anni.

Dimi, imprevedibile amico con cui ho condiviso tanto e nonostante periodi in cui

non siamo riusciti a sentirci molto è sempre riapparso quando avevo bisogno di lui.

Gasta, inummerovali sono i momenti per cui vorrei ringraziarti, dalle chiac-

cherate nel confessionale alle infinite partite a ping pong alle vacanze omosessuali

fatte insieme!indubbiamente tra quelli che hanno segnato di più i miei ultimi 10

anni di vita!

SB friends!! Dome, Filippo, Iris, Marghe e Mattia..quei sei mesi sono stati

probabilmente il periodo all estero più bello che io abbia fatto anche grazie a voi!

dai bbq sulla spiaggia, alle cene insieme, alle pause caffe e ai pranzi insieme!e

grazie a tutti gli altri nostri amici che abbiamo trovato là!!
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