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Abstract

Quantum information and quantum computers have enabled us to write algorithms, - quantum
algorithms - that in some cases display a speedup with respect to their classical counterpart. As

machine learning is becoming of upmost importance not only for our every-day-life and for scientific
research, it is natural to inquire if we could use methods from quantum information to speed up
machine learning’s processes. In this Thesis, we review a model of a quantum perceptron, a key
component for modern neural networks, and simulate its time evolution to characterize behavior.
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Introduction

The idea of a ‘quantum computer’ dates back to 1982 [1] when Richard Feynman proposed to use a
computer based on the laws of Quantum Mechanics, i.e. the quantum computer, to simulate quantum
systems as this task is very hard to perform using classical computers. Feynman, in fact, believed that
such a machine, being based on Quantum Mechanics’ laws, would be much more suitable for the task.
Researchers who started testing this idea in the 1990s, found that it was indeed possible to achieve a
quantum simulation of a quantum system. To this day this remains one of the main fields of possible
application of Quantum Information.

Another field of application would be ‘Quantum Algorithms’, i.e. algorithms written to run on
quantum computers. Their relevance is due to the possibility, thanks to them, of tackling what would
be difficult1 problems in classical information, all thanks to properties derived directly from Quantum
Mechanics (such as the fact that pure states are length-one vectors in a Hilbert space) some of which
will be recalled in Chapter 1.

Quantum Algorithms that exhibit a gain in the time of computation, thanks to quantum informa-
tion, are said to experience a ‘quantum speedup’. To show how these quantum speedups are obtained,
let us consider the example of the quantum search algorithm. This enables us to search in an unsorted
database of N entries in time proportional to

√
N , rather than in time proportional to N (what we can

do classically) [2]. Although the speedup might not seem that impressive in this case, in many others,
among which we mention the important (as it is at the base of many others quantum algorithms)
Quantum Fourier Transform (QFT) case, the speedup is exponential [3, 2]. There are, however, some
problems with the quantum speedup. Although it is true that the QFT exhibit an exponential speedup
compered to its classical counterpart, i.e. the Fast Fourier Transform (FFT), the process of readout
of the output (needed if we want to extract any information, as will be recalled in Chapter 1) of the
algorithm introduces a slow down that cancels the speed of the QFT, resulting in a time of execution
of the same order of the one of FFT. Not only that, also the process of inputting data in the quantum
computer might be very slow. A possible solution to this latter problem is using what is known as
‘quantum random access memory’ (qRAM for short) [4]. These problems hinder not only the QFT
algorithm, but many others. Still, there are quantum algorithms, such as Shor’s one, that offer an
exponential advantage compared to their classical version.

The field we are focusing on in this Thesis, is Quantum Machine Learning. Since learning is the
process of using past experiences to gather knowledge, the goal with machine learning is to program a
machine (a computer) to learn from input data. We then aim to use the knowledge just acquired, to
exploit (efficiently) tasks otherwise impossible as spam filters for emails and pattern recognition [5].

Consider the problem of the spam email filter. If we wanted to write a program to do just so, we
would need a database containing emails we regard as spam. The database will be gradually filled up
by emails that the user marks as spam. Every time a new email arrives, the program will sequentially
scan the database looking for an identical email; if there is one, the new email is marked as spam,
if there is not an identical email, the program does nothing. We remark that it takes a one word
difference for the program to fail. On the other hand, the machine learning approach is to train the
computer to recognize frequently-used words in the emails marked as spam by the user. If a new email
contains too many of these words, it is moved to the spam section.

Thanks to its ability at recognizing patterns in data, machine learning is very effective when it comes

1Here difficult is intended as algorithmic complexity, i.e. the computational resources needed to solve the problem
scale as a super polynomial with the dimension of the problem.
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Introduction

to analyzing data in, for example, high energy physics where, quoting [6], "The process to determine
the particle characteristics depends on track reconstruction and their fitting, this process is governed
by pattern recognition methods performed on offline data and no doubt machine learning techniques
contribute a lot.". Because of this, quantum machine learning is an intriguing new subject, possibly
exploiting a speed up in the calculation. Not only that, as pointed out in [2], classical machine learning
methods recognize the patterns that they produce. So, if quantum processor could generate patterns
difficult for classical ones, perhaps they could also identify patterns difficult for classical algorithms.

What we are most interested in in this Thesis are quantum perceptrons. In fact what we are going
to review and perform a classical simulation of the model of a quantum perceptron proposed in [7].
The Thesis is organized as follows:

Chapter 1 We present the elements of quantum information that are necessary to comprehend what
will be presented in Chapter 2. In particular, we are going to briefly introduce the concepts
of qubit, gate and multiple qubits gates. The last section of the chapter is dedicated to the
description of Hypergraph states. In particular, we will review the procedure needed to produce
them, as we will make use of it in Chapter 2.

Chapter 2 After a brief description of a classical perceptron, we will build step-by-step the quantum
algorithm proposed in [7] to implement a perceptron on a quantum computer.

Chapter 3 After a concise introduction of the Cirq library, we will show, again by following [7], how
to apply the quantum algorithm from Chapter 2 to pattern recognition. We will then present
the results we obtained by simulating the quantum algorithm on a classical computer using the
tools provided by the aforementioned Cirq library, using both 2 and 6 qubits.

vi



Chapter 1

Quantum Information Theory

In this chapter we give a brief recall to the basic notions of quantum information which will be exploited
in Chapter 2: the qubit, single and multiple quantum gates.

In the last section we define Hypergraph states, describing what they are, and how to generate
them using the gates previously introduced.

1.1 Qubit

The fundamental entity of both classical computation and classical information is the bit. The classical
bit is typically represented by a binary digit, namely a number which can either be 0 or 1. We refer to
the value of these two numbers as ‘states’ in the sense that a bit whose value is 0 (1) will be in state
0 (1). We would like to stress that a bit is always either in state 0 or state 1 and, to know its state,
we need to measure it. This is the key process that enables us to access the information stored in the
bit: if the state of the bit is unknown to us, once we measure it, the information in our possession
increases. Finally, the state of a classical bit is not influenced by a measurement, namely it does not
change due to the measurement.

The same role in quantum information and quantum computation is played by the so-called
‘qubit’ [3]. In the remaining of this section, we will give a mathematical description of a qubit,
independently of any possible physical realization. By doing so, what we will say can be generalized
to any quantum computer such as the ones using the polarization states of a photon, either vertical of
horizontal, or the two states of an electron in an atom. For both more examples and further detail, we
redirect to [3].

Coming back to our general description of a qubit, its state can be described, according to rules of
Quantum Mechanics (QM), and using Dirac notation, as

|ψ〉 = α |0〉+ β |1〉 with α, β ∈ C s.t. |α|2 + |β|2 = 1. (1.1)

In (1.1), the kets |0〉 and |1〉 form what is known as the ‘computational basis’ of the Hilbert space1 C2,
i.e. the Hilbert space of a qubit.

Since the (pure) state of a qubit is represented by a norm-one vector in C2, it can always be written
in terms of the linear combination of other states, where the only constraint comes from the norm-one
condition. This property, known as ‘superposition’, is one of the crucial differences between qubits
and bits. Indeed, while the state of a bit is always, as already stated, either 0 or 1, we can clearly see
from (1.1) that |ψ〉, which is a legitimate qubit-state, is neither |0〉 nor |1〉, but a superposition of the
two.

As for the bit, if we want to access the information stored in the qubit, we need to measure it.
According to QM’s rules, once we measure the qubit in a given basis, we either find result 0, with
probability |α|2, or result 1, with probability |β|2. We remark that it is from this interpretation of |α|2
and |β|2 as outcome probabilities that we can justify the requirement of normalization. Furthermore,

1A Hilbert space is a (real or complex) vector space endowed with an inner product, that induces a norm function,
with respect to which the space is complete.
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1.1. Qubit 1. Quantum Information Theory
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Figure 1.1: Bloch sphere for a qubit |ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉

this interpretation means that by repeating many times the same measurement with the same (known)
input state, we find that the probabilities of obtaining either 0 or 1 are equal, respectively, to |α|2 and
|β|2. Concerning the state after the measurement, according to QM, it is different, in principle, from
the one we had before. Indeed, suppose we measure a qubit, initially in state |ψ〉, and we obtain result
0 (1); then the state after the measurement occurred is |0〉 (|1〉). This process is known as ‘collapse’ of
the wave function.

Given the restrictions on α and β, we may rewrite |ψ〉 = α |0〉+ β |1〉 as:

|ψ〉 = eiγ
(
cos

θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)

(1.2)

where θ, ϕ, γ ∈ R. As we know from QM, we can neglect the global phase eiγ as it is not observable,
obtaining:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (1.3)

The angles, θ and ϕ can be interpreted as spherical coordinates on the so called ‘Bloch sphere’, depicted
in Figure 1.1.

Though θ and ϕ are real numbers, and thus in theory we could store an unlimited amount of data
using just them and one qubit, as we already recalled, once we measure a qubit, we only find either 0
or 1, with no trace left of the two angles. Despite that, since, according to QM, the time evolution of
an isolated quantum system is unitary, if we do not measure the qubit, the evolution does keep track
of both of θ and ϕ. This is one key aspect to keep in mind when writing quantum algorithms in order
to make them efficient.

1.1.1 Multiple qubit system

We move now to consider a system with more than just one qubit. Although we will restrict to the
case of 2 qubits, what we will say can easily be generalized to the case of N qubits. We will make use
of the concept of tensor product, represented by ⊗, since, as we know from QM, the phase space of a
two qubits system is the tensor product of the two single qubit’s Hilbert spaces. The computational
basis for the new Hilbert space C2 ⊗C2 is { | 00〉, | 01〉, | 10〉, | 11〉 }, where |00〉 ≡ |0〉 ⊗ |0〉 ≡ |0〉 |0〉.
The most general state, expressed in this basis is |ψ〉 = α00 |00〉 + α01 |01〉 + α10 |10〉 + α11 |11〉 with
|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1.

Given two qubits, we can now choose whether to measure just one or both of them. If we choose to
measure both the qubits, the possible results are similar to the case of the single qubit case, namely we
will get output x ∈ { 00, 01, 10, 11 } with outcome probability |αx|2, leaving the qubit in state |x〉. If,
however, we decide to measure just one of the two qubits, say the first one, and we get result 0, whose
outcome probability is |α00|2+ |α01|2, the state after the measurement occurred must be α00|00〉+α01|01〉√

|α00|2+|α01|2
.

2



1.2. Quantum gates 1. Quantum Information Theory

1.2 Quantum gates

Quantum gates are linear unitary operators that enable us to describe the manipulation of a set of
isolated qubits. The unitarity condition, that is the only constraint on linear operators to be considered
“good” gates, derives from the necessity of |ψ′〉 = U |ψ〉, where U is just a generic gate, to be the state
vector of a qubit, namely to have norm equal to 1.

As what we are going to do with gates is to construct circuits to perform algorithms, we present
here the series of conventions that are used to draw such circuits. A circuit is supposed to be read from
left-to-right, each wire drawn represents a wire in the quantum computer; gates are generally drawn
as rectangles. The initial state, if nothing is said otherwise, is supposed to be all |0〉s.

1.2.1 Single qubit gates

We begin by introducing the gate performing the analogue of the classical NOT gate, which is the only
non-trivial classical single bit gate. Such gate, which will be indicated by either NOT or X, acts on the
computational basis as follows: NOT |0〉 = |1〉 and NOT |1〉 = |0〉. The action on linear combinations
of these two elements of the basis, such as on |ψ〉 in (1.1), can be calculated by exploiting the linearity
of the gate.

Using the vector-space nature of C2, we can express the computational basis, and therefore the
state |ψ〉 = α |0〉+ β |1〉, as follows

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
⇒ |ψ〉 =

(
α
β

)
. (1.4)

Using this notation, the NOT gate is represented by the following 2× 2 matrix

X =

(
0 1
1 0

)
. (1.5)

Where we used the letter X because the matrix in (1.5) is the same as σx, one of the Pauli matrices2.
It is worth noting that the matrix representation is not unique to the X gate; the action of every gate
on a single qubit can be summarized by a 2× 2 unitary matrix acting on a two complex-components
vector.

Three other fundamental single-qubit gates are the Z and Y gates and, last but certainly not least,
the so called ‘Hadamard’ gate which will be referred to as H. Their explicit matrix form, in the
computational basis, is the following

Z =

(
1 0
0 −1

)
Y =

(
0 −i
i 0

)
H =

1√
2

(
1 1
1 −1

)
. (1.6)

The Z gate acts as follows on the elements of the computational basis Z |0〉 = |0〉 and Z |1〉 = − |1〉,
whereas the Hadamard gate’s action is

H |0〉 = |0〉+ |1〉√
2
≡ |+〉 H |1〉 = |0〉 − |1〉√

2
≡ |−〉 . (1.7)

The main reason for its importance, is what happens to a state of N -qubits when we apply to each
an Hadamard; let’s begin with just two qubits. What we are trying to evaluate is

H⊗2 |0〉1 |0〉2 = H |0〉1H |0〉2 =
(
|0〉1 + |1〉1√

2

)(
|0〉2 + |1〉2√

2

)
=

1

2

(
|0〉1 |0〉2 + |0〉1 |1〉2 + |1〉1 |0〉2 + |1〉1 |1〉2

)
.

(1.8)

Thanks to (1.8), we see that applying H⊗2 to |0〉 |0〉 (≡ |00〉) yields a superposition of the states of the
computational basis. Before generalizing what we just said to the case of N -qubits, let us introduce a

2The Pauli matrices are: σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
.
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1.3. Quantum Hypergraph States 1. Quantum Information Theory

(a) CNOT’s circuit

U

(b) C-U circuit

Figure 1.2: Circuital representation of some gates.

rather useful notation. Recalling the conversion algorithm from binary to decimal base and vice versa,
we could write

1

2

(
|00〉+ |01〉+ |10〉+ |11〉

)
=

1

2

3∑
x=0

|x〉 . (1.9)

Now the generalization of (1.8) to the case of N -qubits is trivial

H⊗N |0 . . . 0︸ ︷︷ ︸
N times

〉 ≡ H⊗N |0〉⊗N =
1√
2N

2N−1∑
x=0

|x〉 . (1.10)

1.2.2 Multiple qubits gate

One of the most relevant classes of multiple-qubit gates is that of the controlled gates; an example
is the controlled-not gate (CNOT) which, in its simplest form, is a two-qubit gate. The two bits on
which the CNOT operates are known as ‘controlled’ qubit and ‘target’ qubit respectively. The CNOT
applies a NOT gate to the target qubit if the controlled one is in state |1〉, while does nothing if the
state is |0〉. Its matrix form is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (1.11)

the basis being

|00〉 =


1
0
0
0

 |01〉 =


0
1
0
0

 |10〉 =


0
0
1
0

 |11〉 =


0
0
0
1

 . (1.12)

Another form to express it is3 CNOT = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10|. Its circuital repre-
sentation is shown in Figure 1.2a.

Given a gate U , it is possible to define its controlled-version C-U whose action is similar to that of
the CNOT, the difference being the application of U , instead of the NOT, if the state of the controlled
qubit is |1〉. The circuital representation is depicted in Figure 1.2b. One example of this kind of gate
is the controlled-Z gate CNZ, where N is the number of the involved qubits; this gate acts on the
state in which all qubits are in state |1〉, changing the sign of its coefficient. That is,

αCNZ |1 . . . 1〉 = −α |1 . . . 1〉 . (1.13)

1.3 Quantum Hypergraph States

Since we will need them in the next chapter, we are going to briefly present Hypergraph states and
show how we can generate them. For further details, see [8]. We are going to proceed by steps: starting
from the simplest case of Graph states, moving on to k-uniform Hypergraph states, to finally arrive at
Hypergraph states.

3We recall, in the case of dimension 2 for convenience, that |0〉 〈0| = (1 0)

(
1
0

)
=

(
1 0
0 0

)
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4
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2

1

Figure 1.3: Diagram of the graph g2 = { 5, E } (left side) with the corresponding graph-state-generating-circuit
(right side). For each qubit starting from state |+〉 there is a vertex, and the vertical line with two dots
connecting two qubits is a C2Z gate. Here E = { (1, 2), (2, 3), (3, 4), (4, 5), (3, 5), (2, 5) } and, as you can see, the
number of elements of E is equal to 6, namely the number of edges in the graph or, in the Graph state, the
number of C2Z gates.

Let us begin by giving an informal definition of what a mathematical graph is. A mathematical
graph g2 = {V,E } is a set of a fixed number of ‘vertices’ V and a set of ‘edges’ E, where each edge in E
connects exactly, namely no more, no less, 2 vertices in V ; i.e. E ⊆ V ×V . The subscript “2” underlines
this property of the edges. For example, g2 = { 5, E } with E = {(1, 2), (2, 3), (3, 4), (4, 5), (3, 5), (2, 5)}
(see the left side of Figure 1.3) is a graph with 5 vertices and 6 edges, each connecting 2 vertices.

The formalism of graphs can be used to define a class of quantum states called graph states. In
our analogy, vertices are represented by qubits in the state |+〉, see (1.7), while edges by C2Z gates,
see (1.13), where the superscript “2” plays the same role of the subscript one in the mathematical
graph. A Graph state is usually depicted by |g2〉 and obtained as follows

|g2〉 =
∏

{ i1,i2 }∈E

C2Zi1,i2 |+〉
⊗n (1.14)

where { i1, i2 } ∈ E means that vertex i1 and i2 in the graph are connected by an edge, namely the
C2Z gate will be applied to the qubits corresponding to the vertices i1 and i2. In order to clarify,
recalling the example g2 = { 5, E }, its corresponding Graph state would be

|g2〉 = C2Zi1,i2C
2Zi2,i3C

2Zi2,i5C
2Zi3,i5C

2Zi3,i4C
2Zi4,i5 |+〉i1 |+〉i2 |+〉i3 |+〉i4 |+〉i5 .

See the right side of Figure 1.3 for its circuit. The order in which we apply the C2Zi1,i2 gates is
irrelevant as they commute.

We now move to k-uniform Hypergraphs. A k-uniform Hypergraph is indicated with gk = {V,E },
where V is the same as before, while now E ⊆ V ×· · ·×V , namely, it is the set of ‘hyperedges’, that are
nothing but edges connecting more than 2 vertices. In our case, being this a k-uniform Hypergraph,
each hyperedge connects exactly k vertices from V . The quantum analogue, known as Hypergraph
states, are then obtained as follows

|gk〉 =
∏

{ i1,...,ik }∈E

CkZi1...ik |+〉
⊗n (1.15)

where now CkZ acts on the k states that correspond to the vertices connected by a hyperedge; these
are indicated by { i1, . . . , ik } ∈ E.

Finally, Hypergraphs are denoted by g≤n = {V,E }, where V is the same set of vertices. In
this case, contrary to the one of k-uniform Hypergraphs, the hyperedges can connect any number k
of vertices up to n, i.e. 1 ≤ k ≤ n, with n being the number of vertices in our Hypergraph. The
Hypergraph states are then denoted by

|g≤n〉 =
n∏
k=1

∏
{ i1,...,ik }∈E

CkZi1...ik |+〉
⊗n . (1.16)

We remark two things regarding the product on k from (1.16): first, note that if we remove it, we
get back (1.15); this is just because Hypergraphs, and so Hypergraph states, can be seen as various

5
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Figure 1.4: On the left we see the diagram corresponding to the Hypergraph g≤5 = { 5, E },
while on the right side we have the circuit used to generate the corresponding Hypergraph state.
Concerning the left side, we see that in this particular example, we have 5 vertices and E =
{ (1, 2), (2, 3), (3, 4), (4, 5), (3, 5), (2, 5), (1, 2, 5), (1, 2, 3, 4, 5) }; in particular we thus have 8 hyperedges. Because
of this, on the right side we have 5 qubits, all starting in state |+〉, and 8 CkZ gates, 6 with k = 2, 1 with k = 3
(the one drawn in red) and, finally, one with k = 5 (the one drawn in blue).

k-uniform Hypergraphs where k varies from 1 to m, where m is the maximum number of vertices
connected by a hyperedge. Second, note that the aforementioned product goes from 1 to n even
though we can build a Hypergraph state in which any hyperedge connects m vertices with m < n. We
can do this because for k from m + 1 to n, there will not be any hyperedge, meaning no more CkZ
will be applied, thus leaving the Hypergraph state unchanged. See Figure 1.4 for an example of both
the diagram of a Hypergraph, as well as the circuit generating the corresponding Hypergraph state.

Hypergraph states are relevant to us because it is possible to prove that every state of N qubits of
the form

|ϕ〉 = 1√
2N

2N−1∑
x

(−1)f(x) |x〉 with f(x) : { 0, 1 }N → { 0, 1 }

is an Hypergraph state, thus, to generate it, we can use the gates in (1.16).

6



Chapter 2

Quantum perceptron

In this chapter we are presenting the quantum algorithm we are going to use to implement a perceptron
on a quantum computer; we will follow [7]. Before presenting the quantum algorithm we will introduce
what a perceptron is.

2.1 Perceptron

The perceptron, i.e. the first model of a classifier [9], was proposed by Rosenblatt in 1957 [10]. Its basic
component is an artificial neuron whose simplest (and first) model was proposed in 1943 by McCulloch
and Pitts [11]. The neuron compares the input, stored in the components of what is known as ‘input
vector’ i, with the weights stored in the components of the ‘weight vector’ w. It then outputs a yes/no
kind-of answer (respectively 1/0) using the basic scheme of operation that is depicted in Figure 2.1: it
computes i ·w + b (this how the comparison is performed) where i is the real input vector (1), w is
the weight vector (2) whose components are also real but predetermined via a training procedure and,
finally, b is the bias term1(3).

i→
m−1∑
j=0

ijwj + b (2.1)

The output of the neuron is sign(i ·w + b) (4) where sign(x) is the sign function.
Since a single neuron is able to only give yes/no as an answer, it is not very powerful in terms of

computation, for this reason, Rosenblatt’s model contains multiple neurons. They are organized in
layers, the input of layer l + 1 being the output of layer l; the final layer, i.e. the one whose output is
presented to the user, is a single-neuron-layer. To determine the correct weight-vector’s components,
Rosenblatt proposed to fix the weights of all the layers but the last one; then, determine the weights of
the last neuron through training. If the number of layers is n, this process is equivalent to considering
as input, rather than the vectors ij ∈ I, the vectors zi ∈ Z, where Z is the space to which the
output of the neurons in layer n−1 belongs to. So, starting from the training set (i1, y1), . . . , (im, ym),
where yj is the label of ij , namely the value we aim to get as output from the perceptron if we feed it
with input ij , the transformed input will be (z1, y1), . . . , (zm, ym). Now, at each step k in the training
procedure, an element of this latter sequence is fed into the perceptron. Supposing of having completed
the training algorithm up to the element (zk, yk) in the training sequence, and denoting by wk the
weight-vector at step k, the training algorithm is the following:

1. If the element (zk+1, yk+1) in the training sequence is classified correctly, i.e. if

yk(wk · zk+1 + b) > 0,

then wk+1 = wk;

2. If the classification is not correct, i.e. if

yk+1(wk · zk+1 + b) < 0,

1The bias can always be merged in the scalar product by setting im = 1 and wm = b

7



2.2. Quantum perceptron 2. Quantum perceptron

i0 w0

i1 w1

im−1 wm−1

∑
j wjij output

(1) (2) (3) (4)

Figure 2.1: Scheme of the neuron model by McCulloch and Pitts. i0, i1, . . . , im−1 are the components of the input
vector (1), while w0, w1, . . . , wm−1 are the ones of the weight vector (2). The neuron works by confronting the
input and weight vector via the scalar product (3) outputting the answer via the sign function (4), represented
by the graph in the red circle.

then wk+1 = wk + yk+1zk+1;

3. In the first step w1 = 0.

2.2 Quantum perceptron

In our quest to finding a quantum algorithm for implementing a perceptron, we will restrict ourselves
to the case where both input and weight vectors’ components are either ±1, i.e. ij , wj ∈ {−1, 1 }.
Moreover, we will examine the case of a single neuron where the output is either 1 or 0 (yes/no
answers). First we write both the input and weight vector quantum counterparts. To do this, we recall
that, as the components of weight and input vectors can only be wj , ij ∈ {−1, 1 }, and the number of
components in the vector representation of a N qubits system is 2N , we can write

|ψi〉 =
1√
2N

2N−1∑
j=0

ij |j〉 |ψw〉 =
1√
2N

2N−1∑
j=0

iw |j〉 with ij , wj ∈ {−1, 1 } , (2.2)

where |ψi〉 serves the role of the input vector, while |ψw〉 serves the role of the weight vector. By using
this technique, we exploit the exponential advantage in the memory required to store the input and
weight vectors since we just require N qubits to store a number of bits equal to m = 2N . From now
on, if not stated otherwise, we will always consider m ≡ 2N .

Having established the form of |ψi〉, we just need a gate, lets call it Ui, which takes as input the
usual starting-state for any quantum algorithm, i.e. |0〉⊗N , and outputs |ψi〉. In principle, any unitary
matrix with the vector i in the first column is adequate for this. We are not going to propose any
explicit form for Ui for the moment as this is will be done in Section 2.3. A possible alternative to
this step in the future, as for now it represent a difficult technological problem [2], might come from
the execution of a call to a quantum RAM (qRAM) [4] where the |ψi〉 was previously stored. Since,
however, this is not the main concern of this Thesis, we will not go into detail in explaining what a
qRAM really is.

The next step in our algorithm is to compute the inner product between |ψi〉 and |ψw〉. We can do
this efficiently by recalling that 〈ψi|U †U |ψw〉 = 〈ψi|ψw〉 for any U unitary. Choosing the gate Uw in
such a way that

Uw |ψw〉 = |1〉⊗N = |m− 1〉 , (2.3)

the computation of the scalar product becomes trivial. Once again, this task can be performed by any
unitary matrix having w in the last row, and, as before, we will examine the particular form of Uw in
Section 2.3. Knowing how Uw acts on |ψw〉, to determine the result of the said inner product, we just
need to compute

Uw |ψi〉 =
2N−1∑
j=0

cj |j〉 ≡ |ϕi,w〉 with
2N−1∑
j=0

|cj |2 = 1, (2.4)
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|0〉

|0〉

|0〉

Ui Uw

|0〉 Ancilla

Figure 2.2: Scheme of the circuit for the quantum perceptron model. Ui is the gate generating the state |ψi〉
such that its components (representing the state in the computational basis) are the same of i; while Uw is
the gate computing the inner product 〈ψi|ψw〉, where |ψw〉 is the vector with the same components as w. The
ancilla qubit is needed to measure the value of this scalar product.

where the coefficients cj depend on the particular form of Uw. Exploiting the unitariety of Uw, we can
write

〈ψi|ψw〉 = 〈ψi|U †wUw |ψw〉 = 〈ϕi,w|m− 1〉 = cm−1. (2.5)

We remark that having cm−1 = 1 corresponds to |ψi〉 = |ψw〉, namely having the same state both in
input and in output. Computing now the same inner product directly from (2.2), we get

〈ψi |ψw〉 =
1

2N

2N−1∑
k,j

ikwj 〈j | k〉 =
1

2N

2N−1∑
k,j

ikwjδk,j =
1

m
i ·w. (2.6)

Comparing (2.5) with (2.6), we se that w · i, namely exactly what the classical perceptron computes
in order to produce its output, is equal to m 〈ψw|ψi〉, that is w · i = m 〈ψw|ψi〉. To get the value of
the inner product on the right-hand side of the latter formula, we use an ancilla qubit and a multi-
controlled NOT gate with all the qubits on which Ui and Uw act upon, working as controlled qubits,
and the ancilla working as the target one; see Figure 2.2. This yields

CNOT
(
|ϕi,w〉 ⊗ |0〉a

)
= CNOT

(
m−1∑
j=0

cj |j〉 ⊗ |0〉a

)
=

m−2∑
j=0

cj |j〉 ⊗ |0〉a + cm−1 |m− 1〉 ⊗ |1〉a (2.7)

where the qubit with subscript a is the ancilla one.
Thanks to this, by measuring the ancilla qubit, we are now able to estimate the value of cm−1 or,

better, |cm−1|2 since we know that we find output |1〉 (what we refer-to as ‘activated perceptron’) with
probability |cm−1|2. Moreover, as the probability of obtaining an active perceptron depends on the
squared-modulo of cm−1, the anti-parallel vectors of i and w give us the same result; this is a trivial
consequence of the invariance of a quantum state under a global phase factor.

The measurement also introduces the non-linearity required to output functions in the classical
perceptron model. This is particularly relevant when it comes to neural networks, where, if the output
function of every perceptron were to be linear, all of the layers of perceptrons constituting the network
would be equal to a single perceptron, as the combination of multiple linear transformation remains a
linear transformation.

2.3 Implementation of the gates

We are going to consider two particular methods for the implementation of Ui and Uw: the “brute
force” method and a method based on quantum Hypergraph states. Lets start with the brute force
one.
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We will omit the ancilla-qubit from this as it does not affect what we are about to say. As we are
starting from the state |0〉⊗N , in order to prepare |ψi〉, we first need to achieve an equal superposition
of all the elements of the computational basis (ESECB), namely we need something similar to what
we have done in (1.10). We then need to introduce the minus signs in the right places in order to
reproduce a given vector i. For this, we use multiple signs flip gates, where the action on |j′〉 of a sign
flip gate SFN,j is

SFN,j |j′〉

{
|j′〉 if j 6= j′

− |j′〉 if j = j′
. (2.8)

We already know that, for any number of qubits N such that m = 2N , CNZ corresponds to SFN,m−1,
see (1.13), whereas a single Z gate corresponds to SF1,1. In order to explain how to obtain all the
others SFN,j , allow us to consider an example. The method we will use can then be generalized to the
case of N qubits. Suppose we are in the case with N = 3 qubits and, starting from

1√
8

7∑
k=0

|k〉 , (2.9)

we would like to only flip the sign of |6〉 ≡ |110〉, leaving the others signs unchanged. We cannot use
C3Z as this would flip the sign of |7〉 ≡ |111〉, nor can we use Z applied to one of the first two qubits,
as this would add a phase to all the other states where the qubit to which we have applied Z is in state
|1〉. What we do instead is:

1. Use 1⊗ 1⊗NOT to flip the third qubit’s state thus transforming |6〉 ≡ |110〉 into |7〉 ≡ |111〉;
2. Apply the C3Z to transform |111〉 into − |111〉, while leaving all the other states unchanged;

3. Finally, reapply 1⊗ 1⊗NOT to transform − |111〉 into − |110〉 ≡ − |6〉.

This procedure works because NOT ≡ NOT−1, and C3Z only changes the amplitude of the state |111〉,
leaving the others unchanged. Generalizing this idea to the case of N qubits, we get

SFN,j = Oj C
NZ Oj with Oj =

N−1⊗
l=0

(NOTl)1−jl , (2.10)

where jl indicates the l-th digit in the binary representation of the number j, and (NOT)0 = 1. For
example if j = 4 and N = 3 then j0 = 0, j1 = 0 and j2 = 1 as 1002 converts to2 410.

Now, we need to find the form of gate Uw. Keeping in mind that Uw must be such that Uw |ψw〉 =
|1〉⊗N , if we find a gate exploiting the transformation from |ψw〉 into the balanced superposition
|ψ0〉

(
= H⊗N |0〉⊗N

)
, we could then apply H⊗N to |ψ0〉 to get |0〉⊗N , and finally NOT⊗N to achieve

|1〉⊗N . Using a scheme to clarify what we said we obtain

|ψw〉 −→ |ψ0〉
H⊗N

−−−→ |0〉⊗N NOT⊗N

−−−−−→ |1〉⊗N . (2.11)

Basically we need to invert the process |ψ0〉 → |ψw〉. Since this process makes use of the sign flip gates
from (2.10), and all these gates are the inverse of themselves, we can just use the appropriate sign flips
taking |ψ0〉 to |ψw〉, and this will also compute the change from |ψw〉 to |ψ0〉.

A more efficient strategy consists in using a Hypergraph-states-generating-subroutine (HSGS), as
|ψi,w〉 coincide with this class of states; see Section 1.3. After the initial H⊗N needed to set all of
the qubit’s states to the state |+〉, we have to introduce the appropriate minus signs to reproduce the
input/weight vector (in the following we will only refer to the input vector). To achieve this task,
we first check whether in |ψi〉 there are any components with just one qubit in state |1〉, i.e. states
like |0 . . . 010 . . . 0〉, requiring the minus sign. If so, we apply a Z gate to the designed qubit. We
repeat the process until there are no-more of such components. Now, for k = 2, . . . , N , we apply a

2In this the subscripts 2 and 10 are used to indicate the basis in which the numbers are expressed; 2 meaning binary
while 10 decimal
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|0〉

|0〉

|0〉

|0〉

a

H⊗N

Z

Z

Z

Z

Z

Z

Z

H⊗N X⊗N

Ui Uw

Figure 2.3: An example of the circuit for a perceptron in the case of N = 4 qubits. The input vector has
components i0 = i10 = −1 while ij = 1 for j 6= 0, 10; on the other hand, the weight vector has components
w0 = w1 = −1 and wj = 1 for j = 2, . . . , 15. We employed the HSGS for the building of both Ui and Uw. We
recall that CkZ gates are depicted as vertical lines with black dots, while the X gate is just another name for
the NOT one.

similar procedure, the difference being the application of CkZ instead of Z, for any component in the
expression of |ψi〉 with k qubits in state |1〉 for which the corresponding component ij of vector i is
equal to −1. What we are saying is: once we fixed the value of k, we check if any of the states in |ψi〉
with exactly k qubits (which may not be adjacent) in state |1〉 need a minus sign and this was not
already placed by one of previous steps. If so, we apply CkZ gate to the qubits in need.

In all of the steps of this process, we might introduce some undesired minus signs that we need
to get rid of. In order to achieve that, we simply apply the necessary CkZ gates, where k is now the
number of qubits in state |1〉 in the components of |ψi〉 which exhibit the undesired minus sign. As
CkZ acts as the identity on the components with a number of qubits in state |1〉 smaller than k, once
we reach k = N , we obtain the desired |ψi〉. The same process can be applied to the building of Uw.

Let us consider a simple example to clarify the procedure we examined. Suppose we are in the case
of N = 2 qubits, and that we aim to reproduce vector i = (1, 1,−1, 1) starting from |ψi〉 = 1√

4

∑3
j=0 |j〉.

Following the procedure, we act as follows:

1. We check whether the states |01〉 or |10〉 need a minus sign by looking at the components ij for
j = 20, 21 of vector i. Since i2 = −1, and this component in the vector-representation of the
state |ψi〉 corresponds to the state |10〉, see (1.12), we apply the gate Z ⊗ 1 to |ψi〉. This yields
(omitting the normalization factor)

(Z ⊗ 1) |ψi〉 = |00〉+ |01〉 − |10〉 − |11〉 ≡ |ψ′i〉 .

As the coefficient multiplying |01〉 is 1 and i1 = 1, we move on to considering the states with
both qubits in state |1〉;

2. Due to the previous step, we see that the coefficient of the state |11〉 is −1. Because of this, if it
was i3 = −1, we would not need to act in any way on |ψ′i〉 and the procedure would terminate
here. However, since we have i3 = 1, we need to change the state |11〉’s coefficient from −1 to 1.
To achieve this, we apply a C2Z gate to |ψ′i〉 obtaining

C2Z |ψ′i〉 = |00〉+ |01〉 − |10〉+ |11〉 .

As we can see, the procedure has produced the correct input state for the algorithm.

Finally, we remark that, because of the invariance of the output |cm−1|2 of the quantum algorithm
under a global−1 factor, i.e. using |ψi〉 instead of− |ψi〉 does not affect the final output of the algorithm,
the number of independent signs in |ψi〉 is 2N−1 rather than 2N . The same can be said regarding |ψw〉.
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Chapter 3

Numerical simulation

In this chapter, after a concise presentation of the Cirq library, we are going to present the results we
obtained by running our algorithm using the said software. We reproduce some of the results shown
in [7] and then we will apply the algorithm to an original case.

3.1 Cirq library

Quoting [12], “Cirq is a software library for writing, manipulating, and optimizing quantum circuits and
then running them against quantum computers and simulators. Cirq attempts to expose the details
of hardware, instead of abstracting them away, because, in the Noisy Intermediate-Scale Quantum
(NISQ) regime, these details determine whether or not it is possible to execute a circuit at all.”.

Considering a given fixed number of qubits, circuits in Cirq are made of Moments, namely a collection
of Operations all occurring at the same abstract time slice. An Operation consist in applying a gate
to a certain subset of the said qubits; see Figure 3.1 for a scheme describing this structure.

Regarding the qubits, Cirq offers two kinds of geometrical structures: GridQubits and LineQubits.
In the former, the qubits are organized in a 2d lattice, whereas in the latter they are grouped in a 1d
lattice; one arrangement has to be chosen over the other depending on the particular problem we are
studying. We will adopt the LineQubits.

Moment

Operation

Figure 3.1: Cirq typical circuit structure. Operations are actions operating on subset of qubits, the most
frequent operations are gates; Moments are a collection of operations all happening at the same abstract time
slice.

3.2 Numerical simulation

We are going to start with two qubits to test the algorithm in a simple scenario. As stated in Section 2.2,
having 2 qubits enables us to represent vectors with 22 = 4 components and, since each component
can either be 1 or −1, we have 24 different inputs to analyze and to compare with as many different
weights.

To help visualizing all these different inputs and weights, we will represent them by using images:
each image is made of 2 × 2 = 4 pixels (one for each bit) and each one can be either black or white,
depending on the value of the corresponding bit. The conversion-procedure for going from vector i
(w) to the corresponding image is the following:
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n0 n1

n2 n3
4 =

0 1

0 0
6 =

0 1

1 0

Figure 3.2: Images obtained from input/weight vectors. Here, to find the input vector i corresponding to
the number ki, we first compute the binary conversion, namely (ki)2 = {n0, n1, n2, n3 } and then exploit the
relation ij = (−1)nj to find the components of the vector. The numbers inside the pixels are there just to help
comprehending the procedure bringing from ki to the image.

1. We label each pixel from left to right and from top to bottom with a number nk whose value is
either 0 or 1. As we show in Figure 3.2, we represent the bits whose value is 0 with a back pixel
and those with value 1 with a white pixel;

2. Since at each pixel corresponds a component of i (w), we impose that ij = (−1)nj (wj = (−1)nj );

3. We assign to each input (weight) vector a number, let’s call it ki (kw), which is the decimal
conversion of the string {n0, n1, n2, n3 }.

For instance, in the case of ki = 6, we have {n0, n1, n2, n3 } = { 0, 1, 1, 0 } thus, recalling that
ij = (−1)nj , we obtain i = (1,−1,−1, 1).

We now describe the algorithm we wrote using the Cirq library’s tools and that we used to produce
the outputs we will later present. The inputs provided by the user are ki, kw and the number of qubits
N . The program then converts ki and kw into the respective vectors using the procedure described
above. Once this is completed, the program generates Ui and Uw exploiting the HSGS from the end of
Section 2.3. Finally, the program applies the required CNOT gate and the measurement on the ancilla
qubit. The output of the program is the number of times, out of the n repetitions, that 1 and 0 come
out. In the following we fixed n = 10000.

In order to test the algorithm, we ran it for each pair (ki, kw) for ki, kw = 0, . . . , 15; the results are
shown in Figure 3.3. Looking at the histogram, we can see that for any value of w, the perceptron is
able to identify (namely those for which we have output |cm−1|2 = 1) the vectors i such that1 i = ±w.
In all the other cases, the output of the perceptron is either in the range ]0.24, 0.26[, or equal to 0.
We remark that for all possible combinations, the output of the perceptron |cm−1|2 is in agreement
with (2.6).

Furthermore, from the histogram we clearly see that our algorithm is symmetric under the swap
of the input and the weight vectors. Moreover, the appearance of the diagonal going from (0, 14) to
(14, 0) is related to symmetry under a global −1 factor multiplying either the weight or the input
vector1.

In order to test the quantum algorithm with a higher number of qubits, we set N = 6 and check
the capability of one neuron to recognize the letters of the alphabet. To do this, we used2 8× 8 pixels
images to portray the letters, and run the algorithm for any possible combination of letters. As before,
we organized the results we obtained in a histogram, see Figure 3.4. On one axis of the histogram
there are the letters (in alphabetical order) corresponding to the number ki, while on the other axis
there are the ones corresponding to the number kw still ordered in alphabetical order.

The results confirm what we expected: the neuron is activated (|cm−1|2 = 1) for input and weight
vectors corresponding to identical letters, while it remains (almost) perfectly inactive (|cm−1|2 = 0) in
the majority of the other cases. There are, however, instances in which the neuron does mix up the
letters with |cm−1|2 going from ∼ 0.1 to 0.87. This is the case for letters having similar representations
in the 8 × 8 pixels images, such as the pair (G,O). Due to this, if we aim to know whether the
letter we provided to the algorithm is or is not the same as the one represented by the weight vector,
we cannot state that the neuron is successful because of the non-neglectable outputs for letters that
are not the same. If, however, we want to identify a letter given to us, we can compare the results
obtained by iterating over all the letters in the alphabet represented by weights, then chose the vector

1The ±, as pointed out in Section 2.1, is due to the output of the perceptron being equal |cm−1|2 = 1. We remark
that going from i to vector −i corresponds to inverting black and white pixels in the image representation of the said
vector. The same applies for the weight vector.
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Figure 3.3: Histogram showing the output of the algorithm for all possible combinations of ki and kw using 2
qubits.
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Figure 3.4: Histogram showing the output of the algorithm for all possible combinations of letters.

corresponding to the letter producing the highest result for |cm−1|2. Because of this, we can state that
the neuron is indeed able to read a message.

2This is because the number of components i or w we can represent with 6 qubits is 26 = 64 and 82 = 64.
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Conclusions

In this Thesis we have given a review of the most basic concepts of quantum information. With the
idea of exploiting them in the quantum algorithm, we then moved on to the presentation of Hypergraph
states, starting first from Graph states, to then move on to uniform Hypergraph states to finally arrive
at the description of Hypergraph states.

After that, we reviewed the concept of a classical perceptron, and of a quantum algorithm to
implement one on a quantum computer. We applied what we learned about Hypergraph states in the
subroutine used to generate the initial states necessary for the algorithm to work. We showed that
the algorithm guarantees an exponential advantage with respect to its classical counterpart by using
N qubits to represent 2N bits.

To test the algorithm, we used the tools provided by the Cirq library to perform a classical sim-
ulation of the aforementioned algorithm. We first started with 2 qubits; we represented the different
input and weight vectors via images of 4 pixel, in order to demonstrate a pattern-recognition capabil-
ity. We found that the algorithm works as expected, producing the correct outputs to be in perfect
agreement with its classical version. We then increased the number of qubits to 6, and tested the
neuron’s capability to recognize letters and found once again that the neuron is successful.

Further development of what we have presented could be implementing an algorithm for multiple-
layer neural networks: indeed, the single-neuron model used here, more specifically the McCulloch and
Pitts neuron model, is not a powerful computational tool as we already know from classical machine
learning. Neural networks, and more specifically feedforward ones, cope with the lack of computational
power by organizing many neurons in layers, where the outputs of the neurons of layer l are the inputs
of the ones of layer l + 1. The non-linearity in the output of the neurons, required for the correct
working of neural networks, could be achieved in the quantum model by using two ancilla qubits: one
to be measured, so to introduce the said non-linearity, the other one used to pass the output to the
subsequent neuron.

In summary, we have discussed a quantum algorithm for implementing a classical perceptron on a
quantum computer and tested it through a classical simulation using the Cirq library. We have shown
that the algorithm here discussed guarantees an exponential advantage over the classical one as the
number of the required bits is concerned, by representing 4 bits using just 2 qubits and 64 bits using
just 6 qubits.
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