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Chapter 1

Introduction

1.1 The mesoscopic level

Any physical system can be described in two ways considering a macroscopic or a microscopic
point of view. For example, a gas confined in a box can be thermodynamically described defining
a temperature and a pressure. In this case we are considering a macroscopic point of view, since
the involved observables are indeed macroscopic. On the other hand, the gas is made by a huge
numbers (say N) of interacting particles. Each particle has a velocity and a position at each
time. These observables, that are microscopic, are described (ignoring quantum aspect) by the
Newton equations. If we could solve them we would obtain a gas interpretation equivalent to the
macroscopic one. But, usually in physics most systems are too complicated to be solved by the
Newton equations. In this case the dynamics is practically unpredictable.

Therefore, theoretically the two interpretations are equivalent, but practically their gap is un-
fillable. During the nineteenth century, due to Gibbs, a new theory began to rise in order to
create a bridge between microscopic and macroscopic worlds, the Statistical Mechanics. The idea
is to define two different kind of states: the microstate referred to the Newtonian/Hamiltonian
dynamics and the macrostate referred to the macroscopic observables. As formulated within ther-
modynamics, the macrostate of an ideal gas in equilibrium is described by a small number of
state functions such as energy E, temperature T , pressure P , and N . The space of macrostates
is considerably smaller than the phase space spanned by microstates. Therefore, there must be a
very large number of microstates corresponding to the same macrostate. The description of each
microstate requires an enormous amount of information. Rather than following the evolution of an
individual microstate, statistical mechanics examines an ensemble of microstates corresponding to
a given macrostate. It aims to provide the probabilities for the ensemble. Therefore the starting
point is the microscopic world (the phase space), from it we obtain a probability density in order to
describe the macroscopic observables. These results are strictly related to the macroscopic world
via the fluctuations. For example if we consider a canonical ensemble we suppose the energy of the
system could fluctuate, but macroscopically the energy of a equilibrium gas is fixed. Given that
the number of particles is huge there is no contradiction, since with increasing N the fluctuation
intensity tends to zero.

In the end, the purpose of statistical mechanics is twofold: on the one hand to describe the
macroscopic world, and derive its physical behavior, starting from the microscopic level. On the
other hand, statistical mechanics makes more predictions than thermodynamics, because it also
describes the deviations (fluctuations) from the average behavior. The statistical mechanics is a self
contained probabilistic approach to equilibrium macroscopic properties of large numbers of degrees
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CHAPTER 1. INTRODUCTION 6

of freedom. In this definition reported in [12], there is a fundamental and, meanwhile, constraining
word: equilibrium. This theory is valid only if the system of particles is at equilibrium. What
happens if the system is not at equilibrium? Thermodynamically (and macroscopically) there is
a theory developed by Onsager for systems close to equilibrium [13]. Furthermore under some
assumptions a nonequilibrium system can be described as sum of weakly interacting equilibrium
subsystems. Microscopically, the Newtonian equations are still not solvable. Therefore again we
are interested in finding a gap filling interpretation using stochastic processes.

As we have said the interaction between the particles makes the microscopic motion equations
not solvable. This lack of knowledge can be probabilistically interpreted. In other words, the
interaction can be seen as a random force acting on the probe and therefore its evolution can be
described by a random variable. Evidently it is an approximation, but it becomes reasonable if
we expect that not every detailed aspect of that dynamics is relevant for the macroscopic world.
Most models in nonequilibrium statistical mechanics based on it are reduced descriptions, since
they do not contain all the information of the macroscopic world. On the other hand, to be able
to describe fluctuations from the typical macroscopic behavior, a more detailed description than
the macroscopic one is needed. We then say that we are working on the mesoscopic level.

One should think of a mesoscopic model as describing a small system, for which the description
is not detailed enough to be Newtonian, but is not big enough for the law of large numbers to
apply. Fluctuations around the statistical averages are important. As a consequence a model
describing a mesoscopic system can be a stochastic process. A stochastic process is therefore a
very important tool in nonequilibrium statistical processes. An important part of the present
day research is therefore committed to finding ‘recipes’ for defining stochastic processes that are
physically relevant. One way to do this is via the local detailed balance assumption, which will
be discussed in the next chapters, and is used throughout this text. In this part we will treat the
jump processes. In the second one we will develop the diffusive processes. Though these processes
present different characteristics, they both describe mesoscopic level dynamics.

1.2 Nonequilibrium examples

Before starting to present the stochastic calculus we want to introduce the nonequilibrium regime
via examples:

• Consider a material (e.g. a metal rod) connected to a hot environment at one end and to
a cold environment at the other end. Energy flows from the hot side to the cold side. The
environments at different temperatures are “frustrating” the system and, on the appropriate
time-scale where the conflicting reservoirs remain each at equilibrium keeping their temper-
atures fixed, a stationary heat current will be maintained in the system. Note however that
heat will be flowing in/out of these reservoirs changing their energy. That gives rise to an
entropy flux. Statistical mechanics wants to derive the transport equations (such as the
Fourier law) and to understand also the more microscopic nature of thermal conductivity.

• In an electrical circuit, charges are displaced and these currents are usually created by an
external source such as a battery. The battery works to displace electric charges maintaining
a current which itself causes Joule heating in any resistor. That is a way of heat dissipation
into the environment. There will also be fluctuations and noise on the potential and current
over and through a resistor. Untill the difference of potential is maintained in the circuit,
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the system (the charged particle) are kept out of equilibrium and entropy is produced, via
the Joule effect.

• At the membrane of a biological cell, currents of ions are passing through pores due to
gradients in electrical and/or chemical potential. These are influenced by the environment
and are subject to fluctuations. Also within the cell there is transport and dissipation driven
e.g. by the ATP-concentration. As we are dealing with active matter (e.g. molecular motors),
there may be features in the relation between fluctuations and response of the currents that
differ significantly from the case of passive elements as in the previous examples.

An important property of nonequilibrium systems, in contrast to equilibrium, is that time plays an
important role. First of all because nonequilibrium processes are irreversible: an arrow of time is
introduced. The question of how irreversibility emerges when going from the reversible microscopic
world to the macroscopic world was already discussed by Boltzmann himself. Apart from that,
it seems clear that nonequilibrium systems are by their very nature dynamical. This is because
systems are either out of equilibrium because they are driven from equilibrium and are in some
stationary regime in which there are particles or heat currents present, or because they are in
the process of relaxing to equilibrium (or to a stationary state). This means that not only the
microstates themselves are important, but also the way in which they change in time. Generally,
we distinguish three ways for systems to be out of equilibrium:

• First, systems that are in the process of relaxing to equilibrium: when a parameter deter-
mined by the environment changes, like temperature or volume, the system always needs
some time to relax to that new equilibrium state. For example, when a hot cup of coffee is
placed in a room at room temperature, heat will start to flow from the coffee to the air of the
room. After some time the coffee and the air will relax to a new equilibrium state: the coffee
cools down to room temperature. Before that time, however, the coffee is not in equilibrium
with the room, and the process is not reversible, this regime is called the transient regime.
Here we observe the system undergoing important changes in time. Currents are growing
or are disappearing. Phase segregation takes place or some order parameter relaxes to a
stationary value. If it was reversible, then we would not be surprised to observe heat to flow
spontaneously from the air to the coffee, heating it up again.

• Secondly there are systems that are driven from equilibrium by what we call time-independent
forces. Usually after a relaxing time such systems converge to a stationary time-independent
regime. For open and driven systems, we can have stationary profiles in density and currents.
We speak then of the nonequilibrium steady state. The steady state regime for nonequilib-
rium systems has been drawing more attention only over the last 50 years or so. Note that all
the examples we have presented converge to a stationary regime, if the temperature reservoirs
(or the difference of potential or the chemical potential) are constant in time.

• Thirdly when time-dependent forces act on the system, it cannot converge to a stationary
solution. We can for example imagine that the magnetic field on a ferromagnet is periodic.
The behavior of such systems is also an important business of nonequilibrium physics. We
apply time–dependent control or parametrization on the system. It could be in the form of
a time–dependent external field or a time–dependent volume etc. All the time the system
probably wants to relax to a condition corresponding to the instantaneous values of the
parameters. In other words, the system gets frustrated by its always lagging behind the
external situation.
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1.3 Outline and preview of the results

The framework of this thesis is nonequilibrium. In the previous Section we have presented three
examples of nonequilibrium regime. But in those cases after a relaxing time the system converges
to a stationary state. What we are interested to study is the third way of being out of equilibrium,
the time-dependent one. In particular we are interested in studying the periodic regime in which
the system is kept out of equilibrium by a periodic force. We expect the system, after a relaxing
time, will converge to a kind of stationary state. Evidently it could not be time-independent, but
it should depend periodically in time.

1.3.1 Part I

In the first part we will study a particular case of Markovian time-dependent processes: the jump
processes with continuous time. The evolution takes place through instantaneous transitions or
“jumps” from a state to another, with exponentially distributed waiting times. This kind of process
is characterized by two quantities that we will describe in the following:

• a distribution that gives at any time the probability of being in a certain state

• a matrix that gives the transition rates between the states. These rates determine the
probability to stay in a certain state for a certain time and the probability to jump in
another state.

In Chapter 2, using this kind of processes, we will study the entropy production, characteristic of
nonequilibrium regime. It is very interesting since it is the link between the physics of nonequi-
librium regime and mathematics of the stochastic processes. In order to do this we will present
the local detailed balance principle, extension to nonequilibrium of detailed balance relation for
time-independent Markov chains. While, in Chapter 3, we will study the linear response theory for
jump processes for time-dependent potential perturbation. The linear response theory is an useful
tool in order to study complex systems. In fact a complex system, even unsolvable, can be seen as
a simpler system plus a perturbation. Expanding the perturbation to the first order, it is possible
to study the perturbed dynamics in function of the unperturbed one. The aim of response theory
is to predict and to characterize systematically the response of a system when it is perturbed in
some way. The idea is explained in Chapter 3. The response formula for nonequilibrium systems
depends on two terms, one is called entropic and it is related to the entropy flux from the system to
the environment produced, the second is called frenetic and it depends on the dynamical activity
(we will describe these two terms in the following). If the perturbation is time-dependent a new
entropic term appears.

1.3.2 Part II

In the second part we will study another case of Markovian time-dependent processes: the diffusive
process. For this kind of processes, the evolution takes place via a continuous stochastic trajectory
given at any time by the Langevin equation. According to the Markovian logic it is possible to
determine the value of the process at time t+dt only knowing the value at time t. This is what the
Langevin equation does. It is made by two contributions: one deterministic that depends on the
forces acting on the system, one stochastic that depends on the environment action on the system
that is probabilistically interpreted in agreement with what we have said about the mesoscopic
level.
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In Chapter 5 we will describe the meaning of the Langevin equation starting from the equi-
librium regime, and we will extend it to nonequilibrium in Chapter 6. In this Chapter we will
derive the Langevin equation for a probe particle embedded in a nonequilibrium fluid obtaining an
expression for the friction perceived by the probe interacting with the fluid (nonequilibrium second
fluctuation-dissipation relation). In order to do this, we will start in Chapter 5 from the equilib-
rium case: the motion of a probe particle embedded in an equilibrium fluid (equilibrium Brownian
motion) introducing the equilibrium version of fluctuation-dissipation relation. At equilibrium it is
equivalent to the Einstein-Smoluchowski relation that relates the friction and the noise perceived
by the probe particles to the temperature of the fluid. This result is very important in order to
explain why at equilibrium the properties of the probe particle can be derived from the surround-
ing fluid. The purpose is to extend it to the nonequilibrium case introducing the local detailed
balance principle explained in 2.2.2. This principle allows to extend some equilibrium relation to
the nonequilibrium framework with some considerations. Moreover, in Chapter 5, we will study
the entropy production along the trajectories explaining the difference between stationarity and
not-stationarity in the context of the diffusive processes.



Part I

Jump Processes

10



Chapter 2

Formalization of the problem

2.1 Markov dynamics

As said in the introduction in the following chapters we will develop some tools in order to describe
complex systems with probabilistic approaches. Since we will work at the mesoscopic level we will
have to start from the microscopic world, as done for the Statistical Mechanics. The difference is
that now we will not consider statistical ensemble of microstates in the phase space, but we will
study directly the evolution of the motion in the phase space, taking as fundamental ingredient the
trajectory that, for example, a particle makes. This trajectory will be described using stochastic
processes. In particular, in this part we will consider discrete stochastic processes that can assume
a finite number of value. Consider a stochastic process xt that can assume values from a discrete
set S, suppose that xt describes the position of a particle at time t. Its evolution is stochastic and
it is determined by probability density Pt (x). At any time, it gives the probability of assuming a
certain value. The Pt (x) must satisfy:

• Pt (x) ≥ 0 ∀x ∈ S

•
∑

x∈S
Pt (x) = 1 ∀t

• it must be differentiable and integrable with respect to t

Nevertheless, if we suppose that the values of xt at different times are not independent, this
procedure can be really complicated since we should take into account all the dynamics evolution
in order to find the probability Pt (x). This approach is very complicated, especially if at each time
the position is affected by all the previous times. To go through this problem, an approximation
is usually adopted.

A dynamics is called Markovian if, given where the probe is at time s, the future evolution
(t > s) depends only on the system at time s and it does not depend on its previous history. In
other words, once known the present, the future is independent of the past. A system that satisfies
this condition is said memoryless. In fact, consider n values x1 . . . xn assumed by xt at time t1 . . . tn
chronologically arranged. The probability that xt, using the Markov approximation, assumes all
these values during its evolution is given by:

P (x1, t1; x2, t2; . . . ; xn, tn | x0, t0) = P (x1, t1 | x0, t0)P (x2, t2 | x1, t1) . . . P (xn, tn | xn−1, tn−1)

where the conditional probability is defined by:

11
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P (x2, t2 | x1, t1) = Prob {xt2 = x2, given xt1 = x1} (2.1.1)

In the following we will present with a mathematical approach the Markovian approximation and
its properties.

2.1.1 Master equation

We consider a stochastic variable xs that can assume m values from the set S = {1, . . . , m}.
We want to describe its evolution as an inhomogeneous continuous-time Markov chain on the
set of states S. This approach can be used to describe several physical problems in the Markov
approximation: for example the states can represent the position or velocity of a brownian particle
moving in a fluid, or the direction of all the spins in a configuration for the Ising model. The
starting point for any jump process is the master equation for the states:

dPt (x)

dt
=
∑

y #=x

[Pt (y)kt (y, x)− Pt (x) kt (x, y)] (2.1.2)

where x is one of the m states. It gives the probability Pt (x) at any time t. We have a system of
m equations plus the condition of probability conservation. Generally, the probability evolution of
being in a state depends on all the other states. The master equation can be written in a vectorial
form introducing the matrix Lt:

dPt

dt
= PtLt (2.1.3)

where Lt is called backward generator. This equation can be formally solved:

Pt = P0e
´ t
0 dsLs (2.1.4)

where P0 is the initial distribution (we are going to call it µ). Since the transition rates depend
on time, the matrix cannot be extracted from the integral. For example, the probability that the
system will be in state y at time t if it was in x at time t = 0 is:

Pt [xt = y | x0 = x] =
(

e
´ t
0 ds Ls

)

xy

To calculate it, we have to integrate the matrix elements, get the exponential of the new matrix
´ t

0 dsLs and finally take the desired matrix element.

2.1.2 Backward generator

Given that the set of states is discrete, the evolution is meant as a sequence of configurations in
each of which the system assumes one of the m values with a certain probability. It is determined
by the matrix associated to the Markov chain.

Lt =

























−
∑

x #=1
kt (1, x) kt (1, 2) kt (1, 3) . . . kt (1, k)

kt (2, 1) −
∑

x #=2
kt (2, x) kt (2, 3) . . . kt (2, k)

kt (3, 1) kt (3, 2) −
∑

x #=3
kt (3, x) . . . kt (3, k)

...
...

. . .
...

kt (k, 1) kt (k, 2) kt (k, 3) . . . −
∑

x #=k

kt (k, x)
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The off-diagonal elements are called transition rates:

kt (x, y) = Lt (x, y) x %= y

The diagonal elements are minus the so called escape rates:

λt (i) =
∑

x #=i

Lt (i, x) (2.1.5)

It is important to note that all the rows sum to zero:
∑

x

Lt (i, x) = 0 (2.1.6)

The transition rates describe how the system evolves. So, the choice of the matrix is based on
the model with which we want to describe a physical phenomenon. Note that if the backward
generator is time dependent a stationary distribution cannot exist. By definition a stationary
distribution is found by putting the left-hand side of (2.1.2) equal to zero. But if the right-hand
side is time-dependent this is not possible. We will consider a class of Markov process that cannot
relax to stationarity in order to study nonequilibrium.

2.1.3 Transition rates

We assumed that the transition rates could depend on time (this is the origin of inhomogeneity).
It assures that the system cannot be at equilibrium. Physically we can imagine that there is an
external force that keeps it out of equilibrium and prevents it from converging to an invariant
distribution. In addition such dependence on time makes impossible even the existence of a sta-
tionary state obtained from the master equation. It is useful to parametrize the transition rates
∀ x, y ∈ S:

kt (x, y) = at (x, y) e
Ft(x,y)

2 (2.1.7)

The opposite transition has rate:

kt (y, x) = at (x, y) e
−Ft(x,y)

2 (2.1.8)

with at (x → y) = at (y → x) time-symmetric and Ft (x → y) = −Ft (y → x) time-antisymmetric:

• at is called reactivity of the transition and it gives its intensity, for this reason it is always
not negative unless the transition is forbidden. Usually it is also called kinetic contribution
since it has similarities with mechanical kinetic energy. In fact the kinetic energy for a probe
moving with velocity v is Ek = 1

2mv2 regardless to the sign of the velocity, therefore it is
invariant under time-reversal.

• Ft is called the drive of the transition because it gives probabilistically the direction. In fact,
at any time, Ft can facilitate a transition to the detriment of the opposite one. This is due
to its antisymmetry.

Generally we do not assume anything on the two functions. The ratio

kt (x, y)

kt (y, x)
= eFt(x,y) (2.1.9)
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does not depend on the reactivity, it depends only on the direction of the transition. It is interesting
to note that Ft (x, y) cannot always be written in function of a potential if the number of states is
bigger than 2. To demonstrate it we can consider a three states system. In fact, if for example we
take S = {0, 1, 2}, possible values of Ft (x, y) are:

Ft (0, 1) = −Ft (1, 0) Ft (0, 2) = −Ft (2, 0) Ft (1, 2) = −Ft (2, 1)

If Ft (x, y) could be written as a potential we would have:

Ft (0, 1) = Ut (0)− Ut (1) Ft (0, 2) = Ut (0)− Ut (2) Ft (1, 2) = Ut (1)− Ut (2)

Then, if we consider:

Ft (0, 1) + Ft (1, 2) = Ut (0)− Ut (1) + Ut (1)− Ut (2) = Ut (0)− Ut (2) = Ft (0, 2)

In this case there is a condition between the values assumed by Ft (x, y) and then the function
cannot be general at all.

2.1.3.1 Example: periodic transition rates

Now we want to consider the case in which the time-dependence of the transition rates is periodic.
For example:

kt (x, y) = A cos (ωxyt)

where ωxy is the oscillation frequency for a particular transition. In general there is a different
frequency for each transition. Since the rates are periodic we expect that also the backward
generator will be periodic, but its period T depends on all the transition frequencies, since T is
the greatest common divisor of all them. Using the (2.1.4) we can relate the periodicity of the
backward generator to the probability. In fact the integration and the exponentiation are two
operations that do not modify the periodicity of the matrix Lt. Then if we call:

Mt = e
´ t
0 ds Ls

We expect that:
Lt+T = Lt =⇒ Mt+T = Mt

From this result it is easy to note that also the probability Pt is periodic. Therefore there is
no an asymptotic behavior in the long-time limit, but the probability evolves in the same way
for each time interval [t, t+ T ]. For this reason the periodic time-dependence situation can be
thought as the “stationary” state of the time-dependent Markov processes though, obviously, it is
not stationary at all. It is interesting to demonstrate it with calculations. Nevertheless, to solve
the master equation for a generic number of states is not analytically possible, therefore we have
solved it for a two states system and simulated it for a generic number of states.

2.1.3.2 Example: two states system with periodic rates

For a two states system with S = {0, 1} the master equation is:
{

dPt(0)
dt

= Pt (1)βt − Pt (0)αt
dPt(1)

dt
= Pt (0)αt − Pt (1)βt
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Using the conservation of probability:

dPt (0)

dt
= (1− Pt (0))βt − Pt (0)αt = − (αt + βt)Pt (0) + βt

To do it we have to multiple both sides by a function rt

rt
dPt (0)

dt
+ rtPt (0) (αt + βt) = rtβt

rt
dPt (0)

dt
+ Pt (0)

drt
dt

= rtβt

If we call:

{

drt
dt

= rt (αt + βt)
dgt
dt

= d
dt
(rtPt (0))

We can now solve the equation for gt:

gt = rtPt (0) = r0P0 (0) +

ˆ t

0

rsβsds

The equation for rt is easily solvable:

rt = r0e
´ t
0 (αs+βs)ds

If we insert the expression for rt in equation for Pt (0) we can find:







Pt (0) = e−
´ t
0 (αs+βs)ds

(

P0 (0) +
´ t

0 βs e
´ s
0 (ατ+βτ )dτ ds

)

Pt (1) = e−
´ t
0 (αs+βs)ds

(

P0 (1) +
´ t

0 αs e
´ s
0 (ατ+βτ )dτ ds

)

As we could expect there is no stationary solution in which the probabilities are time-independent.
If we consider the periodic case:

αt = α0 + ε cosωt βt = β0 − ε cosωt

We assume that ε is small, so ∀t the transition rates are positive. We will find:






Pt (0) = e−(α0+β0)t
(

P0 (0) +
´ t

0 (β0 − ε cosωs) e(α0+β0)s ds
)

Pt (1) = e−(α0+β0)t
(

P1 (0) +
´ t

0 (α0 + ε cosωs) e(α0+β0)s ds
)

Solving the integral:






Pt (0) = e−(α0+β0)t
(

P0 (0) +
β0

α0+β0

(

e(α0+β0)t − 1
)

− εe(α0+β0)t (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2 + ε (α0+β0)

(α0+β0)
2+ω2

)

Pt (1) = e−(α0+β0)t
(

P0 (1) +
α0

α0+β0

(

e(α0+β0)t − 1
)

+ εe(α0+β0)t (α0+β0) cos ωt+ω sinωt

(α0+β0)
2+ω2 − ε (α0+β0)

(α0+β0)
2+ω2

)

(2.1.10)
Finally we obtain:
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Pt (0) = e−(α0+β0)t
(

P0 (0)− β0

α0+β0
+ ε (α0+β0)

(α0+β0)
2+ω2

)

+ β0

α0+β0
− ε (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2

Pt (1) = e−(α0+β0)t
(

P0 (1)− α0
α0+β0

− ε (α0+β0)

(α0+β0)
2+ω2

)

+ α0
α0+β0

+ ε (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2

If t increases the first term tends to zero exponentially. We have obtained a periodic expression
for the probabilities:

{

Pt (0) =
β0

α0+β0
− ε (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2

Pt (1) =
α0

α0+β0
+ ε (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2

(2.1.11)

In this periodic solution the current between the two state is:

J0,1 (t) = ε cosωt+ 2ε (α0 + β0)
ω sinωt+ (α0 + β0) cosωt

(α0 + β0)
2 + ω2

As we could expect the current is not zero, otherwise the system will be in equilibrium, but it is
periodic. We have described the system when the transition rates are periodic, but only the case
in which αt and βt depend on cosine. It would be interesting to study the case in which αt depends
on cosine and βt depends on sine. This situation is difficult as regards the calculations, so we will
treat a simpler dependence.

αt = α0 + εf (t) βt = β0 + εg (t)

We suppose that the f and g can assume only two values (±1) and that they change at fixed time
τ , like a square wave. To simulate the phase displacement of the sine respect to cosine we suppose
that when f (t) assumes value +1 , g (t) assumes value −1 . We can give an analytic expression of
the function with the Θ of Heaviside.

f (t) = Θ (τ − t)−Θ (t− τ) + 2
n
∑

k=1

(−1)k+1Θ (t− (k + 1) τ)

g (t) = Θ (t− τ) + 2
n
∑

k=1

(−1)k Θ (t− (k + 1) τ)

Where n is the number of times that f and g change value (nτ = t). If we put this expression in
the probabilities equation:







P0 (t) = e−
´ t
0 (αs+βs)ds

(

P0 (0) +
´ t

0 βs e
´ s
0 (ατ+βτ )dτ ds

)

P1 (t) = e−
´ t
0 (αs+βs)ds

(

P1 (0) +
´ t

0 αs e
´ s
0 (ατ+βτ )dτ ds

)

Firstly we note that:

e−
´ t
0 (αs+βs)ds = e

−
´ t
0

(

α0+β0+εΘ(τ−s)−εΘ(s−τ)+2ε
n
∑

k=1
((−1)k+1+(−1)k)Θ(s−(k+1)τ)+εΘ(s−τ)

)

ds

e−
´ t
0 (αs+βs)ds = e−(α0+β0)te−ετ
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P1 (t) = e−(α0+β0)te−ετ

[

P1 (0) +

ˆ t

0

[α0 + ε (Θ (τ − s)−Θ (s− τ))] e(α0+β0)seετds

]

−e−(α0+β0)te−ετ

ˆ t

0

(

2
n
∑

k=1

(−1)k Θ (s− (k + 1) τ)

)

e(α0+β0)seετds

Solving the integral:

P1 (t) = e−(α0+β0)te−ετ

[

P1 (0) +
α0e

ετ

α0 + β0

(

e(α0+β0)t − 1
)

+ εeετ
ˆ τ

0

e(α0+β0)s ds

]

−

−εe−(α0+β0)t

[

ˆ t

τ

e(α0+β0)s ds+ 2
n
∑

k=1

(−1)k
ˆ t

(k+1)τ

e(α0+β0)s ds

]

Then:

P1 (t) = e−(α0+β0)te−ετ

[

P1 (0) +
α0e

ετ

(α0 + β0)

(

e(α0+β0)t − 1
)

+
εeετ

α0 + β0

(

e(α0+β0)τ − 1
)

]

−

−εe−(α0+β0)t

[

e(α0+β0)t − e(α0+β0)τ

α0 + β0
+

2

α0 + β0

n
∑

k=1

(−1)k
(

e(α0+β0)t − e(α0+β0)(k+1)τ
)

]

P1 (t) = e−(α0+β0)te−ετ

[

P1 (0)−
α0e

ετ − 2εe(α0+β0+ε)τ + εeετ

α0 + β0

]

+
1

α0 + β0

(

α0 − ε− 2ε
n
∑

k=1

(−1)k
)

+

+
2ε

α0 + β0
e(α0+β0)(τ−t)

n
∑

k=1

(−1)k e(α0+β0)kτ

The second contribution depends on n:

• n even →
n
∑

k=1
(−1)k = 0 =⇒ α0−ε

α0+β0

• n odd →
n
∑

k=1
(−1)k = −1 =⇒ α0+ε

α0+β0

The third contribution:

2εe(α0+β0)(τ−t)

α0 + β0

n
∑

k=1

(−1)k e(α0+β0)kτ =
2εe2(α0+β0)τ

α0 + β0

e−(α0+β0)t

e(α0+β0)kτ + 1

(

(−1)n e(α0+β0)t − 1
)

2εe(α0+β0)(τ−t)

α0 + β0

n
∑

k=1

(−1)k e(α0+β0)kτ =
2εe2(α0+β0)τ

α0 + β0

[

(−1)n − e−(α0+β0)t

e(α0+β0)τ + 1

]

Finally:

P1 (t) = e−(α0+β0)te−ετ

[

P1 (0)−
α0e

ετ − 2εe(α0+β0+ε)τ + εeετ

α0 + β0
− 2εe2(α0+β0)τ

α0 + β0

1

e(α0+β0)τ + 1

]

+
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+
1

α0 + β0

(

α0 − ε− 2ε
n
∑

k=1

(−1)k +
(−1)n 2εe2(α0+β0)τ

e(α0+β0)τ + 1

)

P0 (t) = e−(α0+β0)te−ετ

[

P0 (0)−
β0e

ετ − εe(α0+β0+ε)τ

α0 + β0
+

2εe2(α0+β0)τ

α0 + β0

1

e(α0+β0)τ + 1

]

+

+
1

α0 + β0

(

β0 + ε+ 2ε
n
∑

k=1

(−1)k − (−1)n 2εe2(α0+β0)τ

e(α0+β0)τ + 1

)

The dependence on time is in the n. The g and f are periodic of period 2τ . We can note that also
the probabilities are periodic:

t+ 2τ = nτ + 2τ ⇒ n+ 2

In fact, add two terms in the sum does not contribute because the result is zero. And in the last
term there would be an irrelevant factor 1.

2.1.3.3 Example: covariance in the long time-limit

Now we want to study the correlation of the process at different time. It will be useful in the
following. If we consider a two states system (0,1) with periodic transition rates:

αt = kt (0 → 1) βt = kt (1 → 0)

such that:
αt = α0 + ε cosωt βt = β0 − ε cosωt

where ε is a small parameter in order to have positive transition rates. The solution of the
associated master equation is (2.1.10). In the long-time limit the solution converges to a periodic
state given by (2.1.11). Here the long-time limit has to be physically thought. In fact this limit
for a trigonometric function does not exist. To avoid this mathematical difficulty we consider a
time long enough (related to characteristic time τ = (α0 + β0)

−1) to make the exponential go to
zero. Now consider a stochastic process xt ∈ {0, 1}. We want to evaluate 〈x0; xt〉.

〈x0; xt〉 =
∑

x,y

xP0 (x) yP (y, t | x, 0)−
∑

x

xP0 (x)
∑

y

yP (y, t | x, 0) = P0 (1)P (1, t | 1, 0)

〈x0; xt〉 = P0 (1)P (1, t | 1, 0)− P0 (1)Pt (1)

This covariance is zero if the conditional probability P (1, t | 1, 0) converges to P (1, t).

P (1, t | 1, 0) = e−(α0+β0)t
(

1− α0
α0+β0

− ε (α0+β0)

(α0+β0)
2+ω2

)

+ α0
α0+β0

+ ε (α0+β0) cosωt+ω sinωt

(α0+β0)
2+ω2

P (1, t | 1, 0) → α0

α0 + β0
+ ε

(α0 + β0) cosωt+ ω sinωt

(α0 + β0)
2 + ω2

= P (1, t)

Even if the dynamics is periodic in the long-time limit the covariances tend to zero. It could seem
strange since for the periodic dynamics any time interval has a superior extreme given by the
period. Here the independence of the average values is a property of the periodic steady state that
after many periods produces a kind of harmonization.
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2.1.4 Trajectories

The evolution of xs is described as a sequence of configurations in a time interval [0, t]. Such
sequence is called a trajectory ω : [0, t] → S. Obviously it is stochastic given that:

• the transition times are exponentially distributed and they depend on escape times

• the value that the system assumes after a transition is probabilistic and it depends on the
transition rates. In fact from the backward generator we can obtain the jump matrix which
has zero in the diagonal and the probability of making a jump in each of the off-diagonal
elements.

Now we want to write the probability for a generic trajectory. Since the dynamics is Markovian
the probability of a trajectory is given as a product of the probability of the individual transitions:

P (ω) ∝ µ (C0) e
−λt1 (C0)t1kt1 (C0, C1) e

−λt2 (C1)(t2−t1)kt2 (C1, C2) . . . ktn (Cn−1, Cn) e
−λt(Cn)(t−tn)

where for Ci we mean the configurations. C0 is the initial configuration, so µ (C0) is the initial
distribution that gives the probability that the trajectory starts from a particular state at time
t = 0. In addition, the times ti are the moments in which there is a transition, or rather a change
of configuration. In this notation we have assumed that during the interval [0, t] there would be n
jumps. Obviously this number is stochastic (Poisson) and function of time. The right continuity
assures that after a jump the system is in the new state. The trajectory probability can be written
as:

P (ω) =
N(t)
∏

0≤s≤t

ks (xs−, xs) e
−
´ t
0 λs(xs−)ds (2.1.12)

where s represents the jumping times in the interval [0, t]. Now we want to explain why we have
introduced an integral. If we consider all the exponentials:

exp [− [λt1 (C0) t1 + λt2 (C1) (t2 − t1) + λt3 (C2) (t3 − t2) + . . .+ λt (Cn) (t− tn)]]

In each term there is a difference between two jumping times (except for initial time). If we sum
all the contributions, through differences we will gather all the time interval [0, t], for this reason
this sum can be written as an integral. We used xs− for the value of the variable before the jump
because we assumed the right continuity of the trajectory. If fact, since the trajectory is a sequence
of discrete configurations, it cannot be a smooth and a continuous curve. So we assumed that, if
at time t = s there is a transition:

xs− %= xs xs = xs+

Note that we have indicated the probability of being in x at time t as Pt (x), while the trajectory
probability with P (ω). They are different since the first one does not take into account how the
system arrives in x at t.
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2.2 Entropy

2.2.1 Shannon entropy

Since the rates are time-dependent, the system is out of equilibrium (even without a perturbation),
there will be an entropy production. To understand it, consider a solution Pt (x) of the master
equation (2.1.2), for any state x ∈ S and for any time t. We introduce the probability current
between two states x and y:

Jt (x, y) = [Pt (x) kt (x, y)− Pt (y) kt (y, x)] (2.2.1)

The Shannon entropy at time t is:

St = −
∑

x

Pt (x) lnPt (x) (2.2.2)

For now this is only a mathematical definition. But first of all we have to understand why we
used the Shannon entropy in order to describe the system entropy. We will give an answer for
equilibrium regime towards extending to nonequilibrium. In (2.2.2) a probability appears, to
interpret it we suppose there are N independent copies of the system we want to study described
by the processes

{

Xj
t

}

j=1,...,N
. We are interested in how many of those copies are in a particular

state x ∈ S. To determine it we have to sum a delta function over all the copies. If the j-th copy
is in x therefore that system contributes to the sum. If we divide it by the number of copies we
obtain a probability distribution.

ν (x) =
1

N

N
∑

j=1

δXj ,x

The probability Pt (x) in (2.2.2) must be thought in this sense. Since the system is at equilibrium,
if N tends to infinite, we expect that ν (x) will converge to ρeq, the equilibrium distribution for
the law of large numbers. Now we can ask what is the probability to find a certain distribution
µ (x). In order to determine it we can use the large deviation principle:

P

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

∼ e−NS(µ|ν) (2.2.3)

where the rate is given by the relative entropy between probability distributions ν and µ on S,
set of states of the processes. The relative entropy has a particular physical meaning. Suppose
a thermodynamic system is at equilibrium, if we perturb it in any way, it will relax to a new
equilibrium, producing an amount of entropy. This amount is given by the relative entropy.
Therefore here ν and µ are invariant distributions.

S (µ | ν) =
∑

x∈S

µ (x) ln

(

µ (x)

ν (x)

)

(2.2.4)

Now we want to demonstrate that the relative entropy has this expression. Since we are considering
equilibrium system, ν (x) is a stationary distribution. We consider N repetition of the process Xj

t ,
at time t, by definition the invariant distribution does not depend on time, therefore we can forget
about the time. It is heuristically possible to demonstrate (2.2.4) using a combinatory calculation.
In fact, this problem is equivalent to answer the question “In how many ways can I put N particles
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in M boxes?” where now the N is the repetition, and M is the number of states. This problem
was solved by Boltzmann in order to obtain a statistical mechanics interpretation of entropy - see
[10]. Now instead of evaluating the volume in the phase space we have to calculate the probability
referred to the distribution ν (x), for this reason instead of the cells volume ωj in which is divided
the phase space, we use the probability of being in a certain state (in analogy with the cells).
Therefore we can say:

P

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

=
N !

(Nµ (x1))! . . . (Nµ (xk))!
ν (x1)

Nµ(x1) . . . ν (xk)
Nµ(xk)

Here Nµ (x1) gives the number of system copies that are in the first state (x1). If we apply the
logarithm

lnP

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

= ln
N !

(Nµ (x1))! . . . (Nµ (xk))!
+N

∑

x

µ (x) ln ν (x)

Since N is big we can use the Stirling approximation:

lnm! , m lnm−m

Therefore:

lnP

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

, ln
N !

(Nµ (x1))! . . . (Nµ (xk))!
+N

∑

x

µ (x) ln ν (x)

lnP

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

, lnN !−
∑

x

ln (Nµ (x))! +N
∑

x

µ (x) ln ν (x)

lnP

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

, N lnN −N −N
∑

x

µ (x) ln (Nµ (x))+
∑

x

Nµ (x) +N
∑

x

µ (x) ln ν (x)

Using the distribution normalization the two couples of terms cancel out and it remains:

lnP

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

, −N
∑

x

µ (x) ln
µ (x)

ν (x)

If we divide by N we obtain (2.2.3) with (2.2.4). S (µ | ν) measures the discrepancy between µ
and ν. It is always not negative and it is zero if and only if µ = ν. In order to demonstrate that
S (µ | ν) ≥ 0, we can write it as:

S (µ | ν) =
∑

x∈S

ν (x)φ

(

µ (x)

ν (x)

)

=

〈

φ

(

µ (x)

ν (x)

)〉

ν

where φ (y) = y ln y and the average value is made with respect to ν. If we use the Jensen’s
inequality (since φ (y) here is a convex function):

〈φ〉 ≥ φ (〈x〉)
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But:
〈

µ (x)

ν (x)

〉

ν

=
∑

x∈S

ν (x)
µ (x)

ν (x)
= 1

For the normalization condition of the probability distributions. Therefore φ (〈x〉ν) = 0. This
result does not depend on µ and ν. In order to obtain (2.2.2) we are interested in the entropy due
to the evolution with respect to the probability µ (x). We can derive it from the relative entropy
if we assume that ν is the uniform distribution. If ν (x) = 1

N
, ∀x ∈ S then:

S (µ | ν) =
∑

x∈S

µ (x) lnµ (x)− 1

N

∑

x∈S

µ (x)

S (µ) ,
∑

x∈S

µ (x) lnµ (x)

since in the N big limit the constant contribution tends to zero. Note that if ν converges to the
Maxwell-Boltzmann equilibrium distribution ρeq =

e−βU(x)

Z
, with system potential energy U (x) and

partition function Z, in the N → ∞ limit we expect:

P

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

∼ e−NS(µ|ρeq)

Therefore:

S (µ | ρeq) =
∑

x∈S

µ (x) lnµ (x)− β
∑

x∈S

µ (x)U (x) +
∑

x∈S

µ (x) lnZ

S (µ | ρeq) =
∑

x∈S

µ (x) lnµ (x) + β

[

∑

x∈S

µ (x)U (x) + kBT lnZ

]

S (µ | ρeq) = β

[

∑

x∈S

µ (x)U (x) + kBT
∑

x∈S

µ (x) lnµ (x)− F eq

]

(2.2.5)

The first term in the braket is the average energy of the system with respect to the distribution
µ, the second is minus the Shannon entropy due to (2.2.2). Therefore the first two terms are
〈U〉µ − kBTS (µ) that is the free energy of the system with respect to the distribution µ (here the
Boltzmann constant appears because the entropy defined in (2.2.2) is dimensionless). This shows
that the decrease in free energy towards its minimum F eq is equivalent to the decrease of relative
entropy in the relaxation towards equilibrium. If we insert (2.2.5) in (2.2.3) we obtain:

P

[

1

N

N
∑

j=1

δXj ,x = µ (x)

]

∼ e−Nβ[F(µ)−Feq ]

We have demonstrated that S (µ | ν) ≥ 0, therefore:

F (µ) ≥ F eq

F eq represents the minimal free energy possible for the system, according to the second law of
thermodynamics. Using many independent copies of the system (the independence is necessary for
the law of large numbers application) we have defined an entropy for the system at equilibrium.
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The extension to nonequilibrium is quite easy since we can take the independent copies of the
system despite of equilibrium or nonequilibrium. Evidently in this case the probability distribution
µ could depend on time. Furthermore if the transition rates are time-dependent a stationary
distribution does not exist, therefore it could be meaningless to study the law of large numbers
for ν. As we have seen for the two states system even a time-dependent not stationary dynamics
(periodic) could converge to a particular regime. In this sense the relative entropy has still sense.
If for example we consider a periodic dynamics, we can measure the relative entropy between two
different “stationary” periodic state.

Taking the time-derivative of (2.2.2) we get:

dSt

dt
= −

∑

x

dPt (x)

dt
lnPt (x)−

∑

x

dPt (x)

dt

Using (2.1.2), the second term is zero for the conservation of probability, so:

dSt

dt
=
∑

x,y

Jt (x, y) lnPt (x)

Using the antisymmetry of the current and the freedom of changing the name of the variable, we
can rewrite it as:

dSt

dt
=

1

2

∑

x,y

Jt (x, y) ln
Pt (x)

Pt (y)

dSt

dt
=

1

2

∑

x,y

Jt (x, y) ln
Pt (x) kt (x, y)

Pt (y) kt (y, x)
− 1

2

∑

x,y

Jt (x, y) ln
kt (x, y)

kt (y, x)

Here we have multiplied and divided by the ratio of rates. Now we can use (2.1.9) in the second
term:

dSt

dt
=

1

2

∑

x,y

Jt (x, y) ln
Pt (x) kt (x, y)

Pt (y) kt (y, x)
− 1

2

∑

x,y

Jt (x, y)Ft (x, y)

2.2.2 Local detailed balance

To give a physical meaning to this formula we have to introduce the local detailed balance. The
detailed balance is a characteristic of systems at thermodynamic equilibrium. In fact it is related
to the time reversal and it requires the existence of an invariant distribution. Its expression is, for
each couple x, y ∈ S:

ρeq (y)k (y, x) = ρeq (x) k (x, y) (2.2.6)

where ρeq is the invariant distribution. Evidently we have to consider time-independent rates for
an equilibrium system. According to the Markov processes theory the link between the time-
reversal property and the detailed balance relation is made by the invariant distribution existence.
Therefore, first of all, we demonstrate that if the distribution λ (x) , x ∈ S and L, backward
generator, are in detailed balance then λ is invariant for L.

(λL)x =
∑

y∈S

λ (y)L (y, x)

Using (2.2.6):
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(λL)x =
∑

y∈S

λ (x)L (x, y) = λ (x)
∑

y∈S

L (x, y) = 0

By definition of backward generator. If a Markov process xt admits a stationary distribution λ then
the reverse process x̂t = xT−t is Markov too with the same invariant distribution and a backward
generator L̂, that can be obtained from L with:

λ (y) L̂ (y, x) = λ (x)L (x, y)

for each couple x, y ∈ S. The demonstration presents many technical issues and it can be found is
Section 3.7 of [11]. Note that the theorem requires two more assumptions:

• the process must be irreducible. In other words there is no absorption state, from which the
escape probability is zero once arrived here (in this case, the backward generator would have
a row of zeros in correspondence to that state). Since we are considering the convergence to
equilibrium it would be meaningless to consider not irreducible process.

• the process must be not-explosive. This condition is more subtle since it requires that in
a finite time the process could not make infinite jumps. According to a theorem that can
be found again in [11] any process with a finite and countable set of states cannot explode.
Therefore in this case we can ignore this assumption.

According to what we have said if a distribution satisfies the detailed balance relation the process
is reversible. The expression of ρeq in (2.2.6) is known since the system is described at equilibrium
by a Maxwell-Boltzmann distribution, then:

ρeq (x) =
e−βU(x)

Z
where Z is the partition function obtained by:

Z =
∑

x

ρeq (x)

Then the ratio of rates:
k (x, y)

k (y, x)
= e−β∆U = eβQ = e

∆S
kB (2.2.7)

where Q is the heat exchanged from the system to the environment (for this reason it has the
opposite sign respect to the energy difference) and ∆S is the change in entropy of the reservoir due
to the transition x → y. This equation describes the principle of maximum entropy for equilibrium
systems (second principle of thermodynamics) because it says that the transition producing an
entropic increase is probabilistically favorite. Note that, using (2.1.9) for time-independent rates:

∆S = kB ln
k (x, y)

k (y, x)
= kBF (x, y)

we can say that the driving force of the transition multiplied by kB is actually the entropy. What
we have written is valid only at equilibrium where ρeq is the Maxwell-Boltzmann distribution.
Therefore, it is clear that it can be no longer valid for out-of-equilibrium systems.

In this case, an extension exists and it is properly called local detailed balance since it is based
on the assumption that locally in time and in space the system has a dynamics that is detailed



CHAPTER 2. FORMALIZATION OF THE PROBLEM 25

balanced. The locality is referred to the way of studying thermodynamically an out-of-equilibrium
system. Consider for example a system in which the temperature is not constant. It can be
seen as a system in contact with two reservoirs which are themselves in equilibrium at different
temperatures T1 and T2. This assumption is restricted to the case in which the reservoirs only
interact with the system, not between each others. Moreover the coupling between system and
reservoirs should be sufficiently weak and the reservoirs sufficiently big, such that the reservoirs
stay at equilibrium throughout the process. Microscopically the system never interacts with the
two baths at the exact same time. Therefore we can imagine that during the transition it will
interact before with the first reservoir and later with the second one. Until the system interacts
with the first reservoir it satisfies the detailed balance relation since there is interaction with only
one heat bath at a fixed temperature T1. And the same is valid for the second reservoir. Therefore
time by time the system satisfies a detailed balance relation like (2.2.7) that must be local since it
depends parametrically on time:

kt (x, y)

kt (y, x)
= e

∆St
kB (2.2.8)

Given that we are interested in considering inhomogeneous Markov processes, we have put the
time dependence on the rates as done the in the previous Section. Therefore:

∆St = kB ln
kt (x, y)

kt (y, x)
= kBFt (x, y)

Locally the driving force is the entropic flux from the system to the environment due to transition
x → y divided by kB. Now, it is interesting to note that (2.2.8) can be thought as a contribution
to a trajectory with respect to the opposite one. According to (2.1.12) the trajectory probability
can be written as the product of all the transitions. If we consider the ratio of (2.1.12) over the
probability of making the opposite trajectory we will have a product of terms like (2.2.8). Since the
entropic flux contribution for each step appears in the exponential from this ratio we will obtain
the total entropic flux exchanged from the system to the environment during the trajectory ω.
Evidently it does not describe all the trajectory probability. In fact equation (2.1.12) says that
also the exponentials of escape rates contribute to P (ω), but this contribution does not appears
in the ratio of the trajectory probability over the probability of the opposite trajectory, because

it is a symmetric contribution. In fact in e−
´ t
0 λs(xs−)ds we can substitute xs− with xs without any

problem. The local detailed balance does not allow to understand all the dynamics, but gives an
important contribution to understand the physical meaning.

In conclusion, we do a consideration. We have described a locally condition of detailed bal-
ance considering a system in contact with a several reservoirs at different temperatures in order
to describe a not-constant temperature environment. Obviously, this is not the only possibility of
considering a nonequilibrium system, therefore we expect there will be a local detailed balance also
for nonequilibrium system in which the temperature is constant. The detailed balance condition
is equivalent the thermodynamic equilibrium that is given by thermal, mechanical and chemical
equilibrium. The system is no longer at equilibrium if just one of these three equilibrium condi-
tions is not satisfied. Under the already explained considerations we can consider a not constant
chemical potential system as if it is interacting with different probe reservoirs. For the pressure
this interpretation is stranger, because it is meaningless speaking about a pressure reservoir. We
can go through this problem assuming that all the mechanical work made by the environment on
the system is automatically transformed in heat exchanged.
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2.2.3 Entropy contributions

According to these considerations, if we consider the expression of the transition rates (2.1.7), we
can interpret - as for the equilibrium system - the Ft (x, y) in the ratio rates (2.1.9) as the entropy

flux S
(e)
t (x, y) during the transition x → y at time t from the system to the environment. Then:

dSt

dt
=

1

2

∑

x,y

Jt (x, y) ln
Pt (x) kt (x, y)

Pt (y)kt (y, x)
− 1

2

∑

x,y

Jt (x, y)βtQt (x, y) (2.2.9)

where we have introduced the heat flux from the system to the environment. Now we want to
understand the meaning of these two contributions:

• The first term is always not negative because it is like (A−B) ln A
B

, which is positive for any
A and B, given that A ≥ 0 and B ≥ 0, by definition. These terms can be interpreted as the
production of entropy. It gives the irreversible contribution to the entropy change.

diSt

dt
=

1

2

∑

x,y

Jt (x, y) ln
Pt (x) kt (x, y)

Pt (y)kt (y, x)
(2.2.10)

• According to the first principle of thermodynamics, heat flux is related to energy difference
∆U = Ut (y)− Ut (x) of the system before and after the transition and to the work done on
the system Wt (x, y):

Qt = Ut (x)− Ut (y) +Wt (x, y)

Conventionally we impose that Qt is positive when it goes from the system to the environ-
ment. Therefore it must have the opposite sign respect to the energy difference. The work
can be thought as an antisymmetric external force. Since the heat is multiplied for βt -
that is the inverse of the temperature - we have an entropy flux. The current multiplied
for the entropy flux gives a probabilistic interpretation of the entropy flux. This term can
be interpreted as the entropy exchange between the system and the environment and it is
positive when the heat flux is from the system to the environment.

deSt

dt
=

1

2

∑

x,y

Jt (x, y)βt [Ut (x)− Ut (y) +Wt (x, y)] (2.2.11)

Now we want to manipulate the entropy flux term.

deSt

dt
=

1

2

∑

x,y

Pt (x) kt (x, y)βt [Ut (x)− Ut (y)]−
1

2

∑

x,y

Pt (y)kt (y, x)βt [Ut (x)− Ut (y)] +

+
1

2

∑

x,y

Pt (x) kt (x, y)βtWt (x, y)−
1

2

∑

x,y

Pt (y)kt (y, x)βtWt (x, y)

If we change the sign of the first term of difference energy it is easy to see that the two energy
contributions are equal. If we use the antisymmetry of work we will find that also the work terms
are equal. Then:

deSt

dt
= −βt

∑

x,y

Pt (x) kt (x, y) [Ut (y)− Ut (x)] + βt

∑

x,y

Pt (x) kt (x, y)Wt (x, y)
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By definition, for any function ft (x):

Ltft (x) =
∑

y

kt (x, y) [ft (y)− ft (x)] (2.2.12)

Then the entropy flux can be written as:

deSt

dt
= −βt

∑

x

Pt (x)LtUt (x) + βt

∑

x,y

Pt (x) kt (x, y)Wt (x, y) (2.2.13)

Since the average value of a function ft (x) at time t is

〈ft〉µ =
∑

x

Pt (x) ft (x) (2.2.14)

we have

deSt

dt
= −βt 〈LtUt〉µ + βt

∑

x

〈kt (xt, x)Wt (xt, x)〉µ (2.2.15)

The average value is made with respect to the probability Pt (x) summing on all the states and µ
is the initial distribution P0. If we multiple equation (2.1.3) by the function Ut and sum over all
the states:

∑

x

d

dt
(Pt (x)Ut (x)) =

∑

x

[

dPt (x)

dt
Ut (x) +

∂Ut (x)

∂t
Pt (x)

]

=
∑

x

[

Pt (x)LtUt (x) +
∂Ut (x)

∂t
Pt (x)

]

We obtain the average value at time t:

d

dt
〈Ut〉µ = 〈LtUt〉µ +

〈

∂Ut

∂t

〉

µ

(2.2.16)

because we have to take into account the explicit dependence on time of the energy. So the changing
of average energy with respect to the time is given by two contributions: the first describes the
variation due to the transitions, while the second describes the variation due to the explicit time
dependence. Then the entropy flux will become:

deSt

dt
= βt

[

− d

dt
〈Ut〉µ +

〈

∂Ut

∂t

〉

µ

+
∑

x

〈kt (xt, x)Wt (xt, x)〉µ

]

(2.2.17)

What we have found is the change in entropy of the heat bath. If we want the system entropy flux
variation, we just need to take the opposite of what we have found because we have assumed that
the sum of system and environment is a close system and then the outgoing energy flux is zero.
Since the first contribution (2.2.10) is always positive, we can say:

dSt

dt
≥ βt

[

d

dt
〈Ut〉µ −

〈

∂Ut

∂t

〉

µ

−
∑

x

〈kt (xt, x)Wt (xt, x)〉µ

]

(2.2.18)

Here, he first term is the change in energy, the last two terms in the bracket can be interpreted
as the work made on the system by the environment. Note that if we integrate the entropy, the
change in energy will depend only on initial and final time, as we expect. In the bracket there is
the heat flux. For this reason (2.2.18) can be thought as a nonequilibrium extension to Clausius
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theorem. If the work could be written as a potential the expression would be easier since the work
contribution would be of the same form as the energy one using (2.2.12). We would just need to
define a new potential function Ut = Ut −Wt and the entropy production would be:

dSt

dt
≥ βt

[

d

dt
〈Ut〉µ −

〈

∂Ut

∂t

〉

µ

]

Therefore note that the time-derivative of the Shannon entropy is:

dSt

dt
=

diSt

dt
+

deSt

dt

where here deSt

dt
is the change in entropy of the system due to the environment. The Shannon

entropy gives the entropy of the system. If the system reaches a stationary solution the Shannon
entropy is constant (given that the probability of the process is no longer time-dependent). But
this condition does not assure that the other terms are zero. It is true if and only if the system
is isolated, in this case the entropy flux is zero and the system is at equilibrium. Otherwise the
system reaches a nonequilibrium stationary state in which all the entropy produced (represented
by diSt

dt
) is taken out from the system under the shape of entropy flux.

2.2.4 Quasi-static limit

If the transition rates change very slowly there is a characteristic time τ over which they are almost
constant and then, time-independent. If the time τ is bigger than the relaxation time of the system
to equilibrium that depends on the rates:

τ . max
t

{

1

λt

}

the system can relax to equilibrium and it is possible to describe it approximately with the invariant
distribution corresponding to a fixed time. The time τ is strictly related to the changing of the
rates, in fact to describe the slowness of the changing we have to parameterize the rates introducing
a small parameter ε.

kε
t (x, y) := kεt (x, y) ε =

1

τ

When ε is small we are considering the quasi-static limit. The advantage of studying it is that
at any fixed time t the probability of being in a state can be approximated by the invariant
distribution ρt at that time plus a correction O (ε).

Pt (y) = ρt (y) +O (ε) (2.2.19)

This expression does not describe an evolution of the probability, it must be thought as an infinite
and dense sequence of equilibrium states. Note that ρt is the solution:

ρtLt = 0

If we substitute (2.2.19) in the current expression (2.2.1) we obtain:

Jt (x, y) = (ρt (x) +O (ε)) kt (x, y)− (ρt (y) +O (ε)) kt (y, x)

Jt (x, y) = ρt (x) kt (x, y)− ρt (y) kt (y, x) +O (ε) (kt (x, y)− kt (y, x))
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Given that the invariant distribution satisfies detailed balance.

Jt (x, y) = O (ε) (kt (x, y)− kt (y, x)) (2.2.20)

The first contribution to the current is of order ε, therefore for each couple of state x and y the
current between them is zero plus a correction. This is a characteristic of the equilibrium solution
of the stationary master equation (2.1.3). Now, if we consider (2.2.9)

diSt

dt
=

1

2

∑

x,y

O (ε) [kt (x, y)− kt (y, x)] · ln
[

(ρt (x) +O (ε)) kt (x, y)

(ρt (y) +O (ε)) kt (y, x)

]

diSt

dt
=

1

2

∑

x,y

O (ε) [kt (x, y)− kt (y, x)] ·
[

ln

(

1 +
O (ε)

ρt (x)

)

− ln

(

1 +
O (ε)

ρt (y)

)]

Now if we expand the logarithms:

diSt

dt
=

1

2

∑

x,y

O
(

ε2
)

[kt (x, y)− kt (y, x)] ·
[

1

ρt (x)
− 1

ρt (y)

]

(2.2.21)

By definition the invariant distribution cannot be zero for any state, otherwise there would be a
state in which it is impossible to arrive. Then the chain will be no longer irreducible, but this is a
necessary condition for the invariant distribution existence.

We can observe that the irreversible contribution to entropy production is of order ε2. Instead
the second contribution, the reversible one, is of order ε. Then the first term is negligible compared
to the second one. This is what we would expect in the quasi-static limit. If the dynamics changes
slowly at any time the system can relax to equilibrium and then there will not be an irreversible
contribution due to the fact that for an infinitesimal transformation from a equilibrium state the
entropy production is zero. This stochastic result is an approximation because ε cannot be zero,
otherwise the system would be in equilibrium and then there would not be entropy production at
all. Note that this result is in agreement with the Clausius theorem (2.2.18). In thermodynamics
a quasi-static transformation assures that TdS = δQ that is what we have found up to order ε2.

In thermodynamics a quasi-static transformation is ideal, but it is an useful tool since it allows
to approximate, almost always, a real transformation with an reversible one. The “almost” is due
to the fact that all the reversible processes are quasi-static, but not every quasi-static process is
also reversible. If, for example, a dissipative force acts on the system, despite the evolution may
be slow, however there will be energy dissipation and therefore irreversibility. The quasi-static
limit approximation, or rather equation (2.2.19) can be demonstrated, we will do for a two states
system, since it is more explicit.

2.2.4.1 Example: two states system

We have seen that the probabilities at time t for a two states system are:






Pt (0) = e−
´ t
0 (αs+βs)ds

(

P0 (0) +
´ t

0 βs e
´ s
0 (ατ+βτ )dτ ds

)

Pt (1) = e−
´ t
0 (αs+βs)ds

(

P0 (1) +
´ t

0 αs e
´ s
0 (ατ+βτ )dτ ds

) (2.2.22)

Consider now the transition rates depending on the parameter ε:

αε
t := α (εt) βε

t := β (εt)
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Using (2.2.19) we want to approximate the probability of being in 0 at time t:

P ε
t (0) = ρt (0) +O (ε) =

βt

αt + βt

+O (ε) (2.2.23)

for any fixed time t and with the assumption that at time t = 0:

P ε
0 (0) = ρ0 (0) =

β0

α0 + β0
(2.2.24)

For simplicity, we are going to call αε
t + βε

t = f ε
t . Then we want to obtain at the first order:

P ε
t (0) =

β0 + β̇0εt

f0 + ḟ0εt
+O (ε)

Starting from the (2.2.22):

P ε
t (0) = e−

´ t
0 fε

s ds

(

P ε
0 (0) +

ˆ t

0

βs e
´ s
0 fε

τdτ ds

)

Now we can expand the rates to the first order

P ε
t (0) = e−

´ t
0(f0+εsḟ0)ds

(

P ε
0 (0) +

ˆ t

0

(

β0 + β̇0εs
)

e
´ s
0 (f0+ετ ḟ0)dτ ds

)

P ε
t (0) = e−f0te−

εt2

2 ḟ0

(

P ε
0 (0) +

ˆ t

0

(

β0 + β̇0εs
)

ef0se
εs2

2 ḟ0 ds

)

Now we can expand the second exponential to the first order using the smallness of ε

P ε
t (0) = e−f0t

(

1− εt2

2
ḟ 0

)(

P ε
0 (0) +

ˆ t

0

(

β0 + β̇0εs
)

ef0s
(

1 +
εs2

2
ḟ 0

)

ds

)

(2.2.25)

Solving the integrals we obtain

β0

ˆ t

0

ef0sds+ εβ̇0

ˆ t

0

s ef0sds+ ε
ḟ 0β0

2

ˆ t

0

s2ef0sds+O
(

ε2
)

=

=
β0

f0

(

ef0t − 1
)

+
εβ̇0

f 2
0

ef0t (f0t− 1) +
εβ̇0

f 2
0

+ ε
ḟ 0β0

2f 3
0

ef0t [f0t (f0t− 2) + 2]− ε
ḟ0β0

f 3
0

+O
(

ε2
)

If we insert the result of integral in (2.2.25):

P ε
t (0) = e−f0t

(

1− εt2

2
ḟ 0

)

P ε
0 (0) + e−f0t

(

1− εt2

2
ḟ0

)

{

β0

f0

(

ef0t − 1
)

+
εβ̇0

f 2
0

ef0t (f0t− 1)

}

+

+e−f0t

(

1− εt2

2
ḟ 0

)

{

εβ̇0

f 2
0

+ ε
ḟ0β0

2f 3
0

ef0t [f0t (f0t− 2) + 2]− ε
ḟ0β0

f 3
0

+O
(

ε2
)

}

Then:

P ε
t (0) = e−f0t

[

P ε
0 (0)−

β0

f0
+

ε

f 3
0

(

β̇0f0 − ḟ 0β0

)

− εt2

2
ḟ 0

(

P ε
0 (0)−

β0

f0

)]

+
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+
β0 + β̇0εt

f0
+ ε

[

1

f 3
0

(

ḟ0β0 − β̇0f0

)

− β0ḟ0
f 2
0

t

]

+O
(

ε2
)

Using the initial condition (2.2.24):

P ε
t (0) =

β0 + β̇0εt

f0
+ ε

[

(

1− e−f0t

f 3
0

)

(

ḟ0β0 − β̇0f0

)

− β0ḟ0
f 2
0

t

]

+O
(

ε2
)

As we can see the expression found is different from the desired one. But if we consider the
stationary distribution for the state 0 (2.2.23) expanded to the first order:

ρt (0) ,
β0 + β̇0εt

f0 + ḟ0εt
=

β0 + β̇0εt

f0

(

1 + ḟ0
f0
εt
) =

β0 + β̇0εt

f0

(

1− ḟ0
f0
εt

)

+O
(

ε2
)

If we consider terms to order ε:

β0 + β̇0εt

f0 + ḟ0εt
=

β0 + β̇0εt

f0
− β0ḟ0

f 2
0

εt+O
(

ε2
)

It is easy to note that the last term just found appears in the bracket in the probability expression.
Finally:

P ε
t (0) =

β0 + β̇0εt

f0 + ḟ0εt
+ ε

[(

1− e−f0t

f 3
0

)

(

ḟ0β0 − β̇0f0

)

]

+O
(

ε2
)

Consider now, the entropy production in the quasi-static limit approximation for a two states
system. If we use (2.2.23) we obtain:

dSt

dt
=

1

2
O
(

ε2
)

(αt − βt) ·
[

(αt − βt) (αt + βt)

αtβt

]

+O (ε) (αt − βt) [Ut (1)− Ut (0)] (2.2.26)

Note that there is Ut since for a two states system any function Wt (x, y) can be written as a
potential. For a two states system cannot exist a nonequilibrium steady state, therefore the
invariant distribution can be only an equilibrium one. In fact equation (2.2.23) can be written as
a Maxwell-Boltzmann equilibrium distribution using (2.1.9):

ρt (0) =
βt

αt + βt

=
1

βt

βt
(

1 + αt

βt

) =
1

1 + e−βt[Ut(1)−Ut(0)]
=

e−βtUt(0)

e−Ut(0) + e−βtUt(1)
=

e−βtUt(0)

Zt

where the Zt is the partition function at fixed time t. This is true only in the two states system
since only in this situation the Ft (x, y) of equation (2.1.9) can be always written as a potential.



Chapter 3

Linear response theory

Usually, detailed balance or time-independence are not enough to describe properly the physical
phenomena. Consider for example the brownian motion of a probe. If we suppose that its evolution
is memoryless we can describe it with a random walk model. If the motion is purely diffusive we
expect that the transition rates of going in one direction or in the opposite one will be the same.
In this case the problem is analytically solvable. But, if we suppose that the probe feels the effect
of an external force, the transition rates will depend on this force and generally on time. Now the
problem has became more difficult and usually not solvable.

Under the assumption that the external force is small, we can consider it as a perturbation to
the initial system. This procedure allows to relate the perturbed system to the unperturbed one
starting from the probability:

Ph (ω) = e−A(ω)P (ω) (3.0.1)

where Ph (ω) and P (ω) are respectively the probabilities that describe the perturbed and the
unperturbed trajectories and A (ω) is the relation between them, called excess action. We introduce
the “excess” because it takes into account only the contributions due to the perturbation. Using
(3.0.1), we can solve the average values of quantities for the system perturbed as average values
for the initial one. Therefore, the key point of the perturbation theory is the excess action. We are
going to expand it to the first (or linear) order to describe how the average values change with the
perturbation. From the modification of average values we will deduce how the system responds to
the perturbation. This approach is called linear response theory.

There are different types of perturbation and to understand the differences we are going to
explain how a perturbation modifies the transition rates. Many aspects and assumptions will be
introduced in the following Sections, but at this level we expect that the transition rates for the
perturbed system can be written as a function of the old ones. Then:

kh
t (x, y) = kt (x, y) e

βtht
2 Vt(x,y) (3.0.2)

Where Vt (x, y) is a generic function of time and a pair of states. This function can be:

• antisymmetric Vt (y, x) = −Vt (x, y)
we have said that a generic transition rate can be written as the product of a symmetric term
called reactivities at (x, y) and an antisymmetric one called drift Ft (x, y). If the perturbation
is antisymmetric it modifies the drift contribution:

F h
t (x, y) = Ft (x, y) + βthtVt (x, y) (3.0.3)

32
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This kind of perturbation tends to facilitate some transitions and to obstruct the opposite
ones. Physically it can be interpreted as an external field, for example a magnetic field in
the Ising model.

• symmetric Vt (y, x) = Vt (x, y)
similarly, if the perturbation is symmetric it modifies the reactivity contribution:

aht (x, y) = at (x, y) e
βtht
2 Vt(x,y) (3.0.4)

Given the transitions x → y and y → x, this type of perturbation acts in the same way
on both. Therefore it must be a perturbation without a preferential direction. A physical
example can be the increasing of the pressure or the temperature of a gas in a volume.

• mixed symmetry
This kind of perturbation can be viewed as the sum of a symmetric part ft (x, y) and a
antisymmetric part gt (x, y). Then it will modify both the reactivities and the drift. This is
the most general kind of perturbation, in fact:

Vt (x, y) = gt (x, y) + ft (x, y) (3.0.5)

Then:
kh
t (x, y)

kt (x, y)
= e

βtht
2 ft(x,y)e

βtht
2 gt(x,y) (3.0.6)

where:
aht (x, y) = at (x, y) · e

βtht
2 ft(x,y)

F h
t (x, y) = Ft (x, y) + βthtgt (x, y)

A special type of perturbation that we are going to study is the potential one. In this situation
the perturbation can be written as a potential that depends only on one state at a time:

Vt (x, y) = Vt (y)− Vt (x)

Also for a potential perturbation we can have the three situations above. Since the potential
perturbation is the most common, we will treat it in depth. We are going to start with the
antisymmetric potential perturbation.

3.1 Antisymmetric potential perturbation

3.1.1 Rates modification

Suppose to apply at time t = 0 a potential time-dependent perturbation htVt (xt) to the system
with ht small. Due to it, the system will no longer evolve with Lt and Pt (x) since the transition
rates will be modified. Then:

Ft (x, y) −→ F h
t (x, y) = Ft (x, y) + βthtVt (y)− βthtVt (x) (3.1.1)

Ft (y, x) −→ F h
t (y, x) = −Ft (x, y) + βthtVt (x)− βthtVt (y) (3.1.2)
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Here Vt (xt) is an observable generally depending on time and on set of states. If we choose
this kind of perturbation, Ft (x, y) - that is antisymmetric - remains antisymmetric. In fact,
F h
t (y, x) = −F h

t (x, y). The transition rates become:

kh
t (x, y) = at (x, y) e

1
2 [Ft(x,y)+βthtVt(y)−βthtVt(x)]

kh
t (y, x) = at (x, y) e

− 1
2 [Ft(x,y)+βthtVt(y)−βthtVt(x)]

We assumed that the perturbation could be potential and antisymmetric, so it does not affect the
reactivities at (x, y), but only the drift Ft (x, y). If we consider the ratio:

kh
t (x, y)

kh
t (y, x)

=
at (x, y) e

1
2 [Ft(x,y)+βthtVt(y)−βthtVt(x)]

at (x, y) e−
1
2 [Ft(x,y)+βthtVt(y)−βthtVt(x)]

= eFt(x,y)+βtht[Vt(y)−Vt(x)]

kh
t (x, y)

kh
t (y, x)

=
kt (x, y)

kt (y, x)
eβtht[Vt(y)−Vt(x)] (3.1.3)

It is interesting to note that in the bracket there is the difference of the perturbation before and
after the transition that can be thought as a heat flux from the reservoir to the system due to the
perturbation. Since it is divided by the temperature of the reservoir it can be interpreted as an
entropic flux. We can think at this perturbation as an external drift. So we can say:

kh
t (x, y) = kt (x, y) e

βtht
2 [Vt(y)−Vt(x)] (3.1.4)

kh
t (y, x) = kt (y, x) e

−βtht
2 [Vt(y)−Vt(x)] (3.1.5)

From now on we are going to call βshs = γs. The transition rates ratio depends only on the
difference of the values of the perturbation before and after the transition, for this reason it is
called a potential perturbation. The probability of the trajectory will be modified:

Ph (ω) =
N(t)
∏

0≤s≤t

kh
s (xs−, xs) e

−
´ t
0 λh

s (xs−)ds (3.1.6)

3.1.2 Excess action

We are interested in the ratio of the two probabilities:

Ph (ω)

P (ω)
=

N(t)
∏

0≤s≤t

kh
s (xs− , xs)

ks (xs−, xs)
e−
´ t
0 [λh

s(xs−)−λs(xs−)]ds

Ph (ω)

P (ω)
=

N(t)
∏

0≤s≤t

e
γs
2 [Vs(xs)−Vs(xs−)]e−

´ t
0 [λh

s(xs−)−λs(xs−)]ds

With (3.0.1) we can study the perturbed system with the unperturbed probability given by solving
the master equation. If we apply the logarithm we obtain the Girsanov formula for excess action:

−A (ω) =
N(t)
∑

0≤s≤t

γs
2
[Vs (xs)− Vs (xs−)]−

ˆ t

0

[

λh
s (xs−)− λs (xs−)

]

ds
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Since we are going to take its average value we can substitute λ
(h)
s (xs−) with λ

(h)
s (xs) without

changing the result. Then:

−A (ω) =

N(t)
∑

0≤s≤t

γs
2
[Vs (xs)− Vs (xs−)]−

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds (3.1.7)

A (ω) is called excess action at time t because it takes into account how the probability of a
trajectory ω changes by adding a small perturbation. Using the expression of the transition rates
we want to manipulate the second term:

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

[

kh
s (xs, x)− ks (xs, x)

]

ds

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

ks (xs, x)

[

kh
s (xs, x)

ks (xs, x)
− 1

]

ds

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

ks (xs, x)
[

e
γs
2 [Vs(x)−Vs(xs)] − 1

]

ds

If we expand the exponential to the first order:

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =
1

2

ˆ t

0

γs
∑

x #=xs

ks (xs, x) [Vs (x)− Vs (xs)] ds+O (γt)

Finally the excess action to the first order:

A(1) (ω) = −1

2

N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +
1

2

ˆ t

0

γs
∑

x #=xs

ks (xs, x) [Vs (x)− Vs (xs)] ds

We note that the sum over the states excludes the state before the jump at time t = s. We can
add also the contribution x = xs in the second sum since we have to take into account also the
Vs (x)− Vs (xs), that vanishes if x = xs. Then:

A(1) (ω) = −1

2

N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +
1

2

ˆ t

0

γs
∑

x

ks (xs, x) [Vs (x)− Vs (xs)] ds (3.1.8)

3.1.3 Average values

If the perturbation modifies the probability we expect that also the average values made on the
trajectory will change. For a general observable Qt (xt):

δ 〈Qt (xt)〉h = 〈Qt (xt)〉hµ − 〈Qt (xt)〉µ =
∑

x

P h
t (x)Qt (x)−

∑

x

Pt (x)Qt (x)

δ 〈Qt (xt)〉h =
∑

x

Pt (x)Qt (x)
(

e−A(x) − 1
)

δ 〈Qt (xt)〉h , −
〈

A(1) (xt)Qt (xt)
〉

µ
(3.1.9)
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δ 〈Qt (xt)〉h is called the generalized susceptibility. In this way we can write the perturbed average
values in function of the unperturbed ones. In fact, with 〈.〉µ we mean the average value made
with the probability Pt (x) with initial distribution µ. Note that the perturbed and unperturbed
average values have the same initial distribution. Then:

δ 〈Qt (xt)〉h ,
〈

Qt (xt)
N(t)
∑

0≤s≤t

γs
2
[Vs (xs)− Vs (xs−)]

〉

µ

−

−
〈

Qt (xt)

ˆ t

0

γs
2

∑

x

ks (xs, x) [Vs (x)− Vs (xs)] ds

〉

µ

3.1.3.1 First contribution

There is a general identity that allows the rewrite the sum in the first contribution:

γtVt (xt)− γ0V0 (x0) =
N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +

ˆ t

0

dγs
ds

Vs (xs) ds+

ˆ t

0

γs
∂Vs (xs)

∂s
ds (3.1.10)

We are going to demonstrate it in the Appendices. The origin of the last term is the explicit
dependence on time of the potential, for this reason we use a partial derivative. It does not act on
the trajectory. This identity allows to rewrite the first term of the susceptibility as:

〈

Qt (xt)
N(t)
∑

0≤s≤t

γs
2
[Vs (xs)− Vs (xs−)]

〉

µ

=
1

2
〈Qt (xt) [γtVt (xt)− γ0V0 (x0)]〉µ−

−1

2

〈

Qt (xt)

ˆ t

0

dγs
ds

Vs (xs) ds

〉

µ

− 1

2

〈

Qt (xt)

ˆ t

0

γs
∂Vs (xs)

∂s
ds

〉

µ

If we introduce:

S (ω) = γtVt (xt)− γ0V0 (x0)−
ˆ t

0

dγs
ds

Vs (xs) ds−
ˆ t

0

γs
∂Vs (xs)

∂s
ds (3.1.11)

Then:
〈

Qt (xt)
N(t)
∑

0≤s≤t

γs
2
[Vs (xs)− Vs (xs−)]

〉

µ

=
1

2
〈Qt (xt)S (ω)〉µ (3.1.12)

S (ω) is the entropy flux produced by the perturbation during the time interval [0, t] along the
trajectory ω, it does not take into account the entropic production due to the nonequilibrium
dynamics. For this reason it is also called excess entropy flux. The first two terms in the entropy
flux describe the reversible contribution, because they depend only on the initial and final values
in relation to the trajectory. If we exclude the temperature βt, it can be thought as an excess of
energy difference of the system. Instead the last two terms in S (ω) are irreversible work and it
depends on the path via the integral. Again, by the first principle of thermodynamics we obtain
the excess heat flux (from the environment to the system) given by the excess difference energy
minus the excess work made by the environment.
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3.1.3.2 Second contribution

If we recall (2.2.12) we can note that it is exactly what is written in the average value of the second
contribution, so:

〈

Qt (xt)

ˆ t

0

∑

x

ks (xs, x)
γs
2
[Vs (x)− Vs (xs)] ds

〉

µ

=
1

2

〈

Qt (xt)

ˆ t

0

γsLsVs (xs) ds

〉

µ

Usually this contribution is called frenetic excess or dynamical activity, because it describes how
much the system is inclined to make transitions (in fact it depends explicitly on transition rates
via the matrix Ls). As we saw, the application of Ls to a function describes how it changes during
a transition in relation to the rates. Finally we obtain:

δ 〈Qt (xt)〉h , 1

2
〈Qt (xt)S (ω)〉µ −

1

2

〈

Qt (xt)

ˆ t

0

γsLsVs (xs) ds

〉

µ

(3.1.13)

It is interesting to note that these two contributions behave differently under time reversal. In
fact, if we consider the trajectory xt−s during the interval [t, 0] the entropic contribution would be
opposite (antisymmetric), instead the frenetic one would be the same (symmetric):

• Consider the entropic term

S (ω) = γtVt (xt)− γ0V0 (x0)−
ˆ t

0

dγs
ds

Vs (xs) ds−
ˆ t

0

γs
∂Vs (xs)

∂s
ds

Now we introduce dynamical time reversal operator θ, it acts on the trajectory in the following
way:

(θω)s = ωt−s

using it, we reverse the time:

S (θω) = γ−tV−t (x−t)− γ0V0 (x0) +

ˆ 0

−t

dγs
ds

Vs (xs) ds+

ˆ 0

−t

γs
∂Vs (xs)

∂s
ds

S (θω) = −
[

γ0V0 (x0)− γ−tV−t (x−t)−
ˆ 0

−t

dγs
ds

Vs (xs) ds−
ˆ 0

−t

γs
∂Vs (xs)

∂s
ds

]

So, if we consider the average value with the observable evaluated at the end of time interval
(and then t = 0):

−
〈

Q0 (x0)

[

γ0V0 (x0)− γ−tV−t (x−t)−
ˆ 0

−t

dγs
ds

Vs (xs) ds−
ˆ 0

−t

γs
∂Vs (xs)

∂s
ds

]〉

µ

The average value is equal to the one calculated from ω except for the minus. Thus we can
say:

〈Q0 (x0)S (θω)〉 = −〈Qt (xt)S (ω)〉

• consider the frenetic term. If we reverse the time the integral does not change sign. In fact:
〈

Qt (xt)

ˆ t

0

γsLsVs (xs) ds

〉

µ

=
1

2

〈

Q0 (x0)

ˆ 0

−t

γsLsVs (xs) ds

〉

µ

〈Q0 (x0) T (θω)〉 = 〈Qt (xt)T (ω)〉
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Therefore the excess action is made by a symmetric contribution and an antisymmetric one. There-
fore:

A (ω) =
T (ω)− S (ω)

2
with:

T (ω) =
A (ω) +A (θω)

2

S (ω) =
A (θω)−A (ω)

2
And then:

δ 〈Qt (xt)〉h , 1

2
〈Qt (xt)S (ω)〉µ −

1

2
〈Qt (xt) T (ω)〉µ (3.1.14)

3.1.3.3 Local detailed balance

The interpretation of the action antisymmetric contribution as entropic flux is due to the local
detailed balance. In the entropy dissertation we have introduced it as a tool to give a physical
meaning to the Shannon entropy. Here we can use it starting from the trajectories probability
ratio. In fact considering the trajectory ω and its opposite θω:

Ph (ω)

P (ω)
=

N(t)
∏

0≤s≤t

kh
s (xs− , xs)

ks (xs−, xs)
e−
´ t
0 [λh

s(xs−)−λs(xs−)]ds

Ph (θω)

P (θω)
=

N(t)
∏

0≤s≤t

kh
s (xs, xs−)

ks (xs, xs−)
e−
´ t
0 [λh

s (xs)−λs(xs)]ds

If we consider the ratio between them:

Ph (ω)

P (ω)
· P

h (θω)

P (θω)
=

N(t)
∏

0≤s≤t

kh
s (xs−, xs)

ks (xs− , xs)

ks (xs, xs−)

kh
s (xs, xs−)

Using the definition of the perturbed transition rates:

kh
s (xs−, xs)

kh
s (xs, xs−)

=
ks (xs, xs−)

ks (xs− , xs)
eγs[Vs(xs)−Vs(xs−)]

we obtain:

Ph (ω)

P (ω)
· P

h (θω)

P (θω)
=

N(t)
∏

0≤s≤t

eγs[Vs(xs)−Vs(xs−)]

The local detailed balance assures:

Ph (ω)

P (ω)
· P

h (θω)

P (θω)
= eS(ω)

where S (ω) is the entropic flux from the system to the environment divided by kB. Therefore:

S (ω) =

N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)]
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3.1.4 Response

The linear response is defined from

δ 〈Qt (xt)〉h ,
ˆ t

0

γsRQ,V (t, s) ds (3.1.15)

with t > s. Consider first the entropic term:

Ent [ω] =
1

2

〈

Qt (xt)

[

γtVt (xt)− γ0V0 (x0)−
ˆ t

0

dγs
ds

Vs (xs) ds−
ˆ t

0

γs
∂Vs (xs)

∂s
ds

]〉

µ

Now we want to obtain the expression of the response for our system. We can rewrite it as:

Ent [ω] =
1

2

ˆ t

0

ds
d

ds

[

γs 〈Qt (xt) Vs (xs)〉µ
]

−

−1

2

ˆ t

0

dγs
ds

〈Qt (xt) Vs (xs)〉µ ds−
1

2

ˆ t

0

γs

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

ds

Taking the time-derivative of the first term:

Ent [ω] =
1

2

ˆ t

0

ds γs
d

ds
〈Qt (xt)Vs (xs)〉µ +

1

2

ˆ t

0

ds 〈Qt (xt) Vs (xs)〉µ
dγs
ds

−

−1

2

ˆ t

0

dγs
ds

〈Qt (xt)Vs (xs)〉µ ds−
1

2

ˆ t

0

γs

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

And then:

Ent [ω] =
1

2

ˆ t

0

ds γs

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

]

Finally:

δ 〈Qt (xt)〉h , 1

2

ˆ t

0

ds γs

[

d

ds
〈Qt (xt)Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

− 〈Qt (xt)LsVs (xs)〉µ

]

(3.1.16)
The final result for the response is:

RQ,V (t, s) =
1

2

[

d

ds
〈Qt (xt)Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

]

− 1

2
〈Qt (xt)LsVs (xs)〉µ (3.1.17)

The response is a correlation between an observable and the perturbation at different times. If the
two variables are very correlated the response is bigger. The time t is fixed and it is the ending time
of the trajectory. Instead the time s is a generic time during the evolution in which we evaluate
the perturbation (not necessarily the initial one).
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3.1.4.1 Comments

For s < t in the frenetic term, it is not possible to apply a time derivative with respect to s if there
is a function that depends on a time t > s. Instead, if s > t:

1

2
〈Qt (xt)LsVs (xs)〉µ =

1

2

d

ds
〈Qt (xt) Vs (xs)〉µ −

1

2

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

The second term would be equal to the first since the response is zero if evaluated for a time
preceding the perturbation one for the causality condition. So we can introduce the Ls operator,
but it cannot be interpreted as a time derivative.

LsVs (xs) =
∑

x

ks (xs, x) [Vs (x)− Vs (xs)]

It is interesting to note that the explicit time-dependence of the potential seems to give another
contribution in the response. But it is not true. In fact in both cases only the dependence on
time of the trajectory gives a contribution. So if there is also an explicit time dependence we must
subtracting it. Actually the importance of this time dependence appears in the entropy flux under
the form of irreversible work done on the system.

In addition also the time-dependence of the transition rates does not modify the structure
of the response formula. Nevertheless it completely changes the reference process without the
perturbation. In fact in the response formula found for time independent processes in [15], the
average values are made on the stationary state. Instead if the rates are time-dependent the
invariant distribution does not exist. Due to it, the problem becomes really more difficult since
usually we do not know the Pt (x) for a not stationary dynamics. There is an approximation that
makes the problem easier. It is the quasi-static limit.

3.1.5 Response close to equilibrium

We want to show that if the system before being perturbed is at equilibrium the response formula
can be manipulated to give the Kubo fluctuation-response theorem. In fact if the system is in
thermodynamic equilibrium we can say:

• the system does not break symmetry of time reversal

• the system is in detailed balance (2.2.6)

• the system is invariant under time translations (note that it would be true also for nonequi-
librium stationary state)

• the rates do not depend on time and neither the backward generator (homogeneous Markov
chain)

• there are no currents between the states

If the system is at equilibrium the average values are made on the invariant distribution ρeq that
can be found from the backward generator solving the linear system ρeqL = 0. If the system is
at equilibrium the trajectory can be interpreted as how the perturbation takes the system out of
equilibrium, obviously remaining close to it, since we consider small perturbations. So the opposite
trajectory describes the converging to equilibrium. Due to Onsager regression principle these two
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evolutions are physically equivalent to spontaneous fluctuation of the system at the equilibrium.
For this reason we have time-reversal symmetry. There are two ways to obtain the Green-Kubo
formula, we are going to explain both. The first is based on the properties of the equilibrium
probability, while the second uses the symmetry of the excess action.

3.1.5.1 First method

Since the system is at equilibrium, the backward generator can no longer depend on time otherwise
there will not be the invariant distribution. And even the observable cannot depend explicitly on
time. Using time reversal symmetry we can write:

〈Q (xt)LV (xs)〉eq = 〈Q (xs)LV (xt)〉eq
Here the average values are made on the invariant distribution ρeq. In fact:

〈Q (xt)LV (xs)〉eq =
∑

x,y,z

ρeq (x)P [xs = y | x0 = x]LV (y)P [xt = z | xs = y]Q (z)

〈Q (xt)LV (xs)〉eq =
∑

y,z

ρeq (y)LV (y)P [xt = z | xs = y]Q (z)

Here we have used the definition of invariant distribution:

∑

x

ρeq (x)P [xs = y | x0 = x] = ρeq (y) (3.1.18)

Then:

〈Q (xt)LV (xs)〉eq =
∑

y,z

ρeq (y)LV (y)Q (z)P [xt−s = z | x0 = y] = 〈Q (xt−s)LV (x0)〉eq

We have demonstrated the invariance under time translations. Now, if we use detailed balance:

ρeq (x)P [xs = y | x0 = x] = ρeq (y)P [xs = x | x0 = y] (3.1.19)

Then:
〈Q (xt−s)LV (x0)〉eq =

∑

y,z

LV (y)Q (z) ρeq (z)P [xt−s = y | x0 = z]

〈Q (xt−s)LV (x0)〉eq =
∑

y,z

Q (z) ρeq (z)LV (y)P [xt−s = y | x0 = z] = 〈Q (x0)LV (xt−s)〉eq

(3.1.20)
Finally, if we use again the invariance under time translations:

〈Q (xt)LV (xs)〉eq = 〈Q (x0)LV (xt−s)〉eq = 〈Q (xs)LV (xt)〉eq
But since t > s we can extract a time derivative due to the definition of L:

〈Q (xt)LV (xs)〉eq =
d

dt
〈Q (xs)V (xt)〉eq

Now we can use the invariance under time translations:
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〈Q (xt)LV (xs)〉eq =
d

dt
〈Q (x0) V (xt−s)〉eq

〈Q (xt)LV (xs)〉eq = − d

ds
〈Q (x0) V (xt−s)〉eq

〈Q (xt)LV (xs)〉eq = − d

ds
〈Q (xs)V (xt)〉eq

Finally, using again the time reversal symmetry:

〈Q (xt)LV (xs)〉eq = − d

ds
〈Q (xt)V (xs)〉eq

Now the response is:

RQ,V (t, s) =
β

2

d

ds
〈Q (xt)V (xs)〉eq +

β

2

d

ds
〈Q (xt) Vs (xs)〉eq = β

d

ds
〈Q (xt) V (xs)〉eq

RQ,V (t− s) = β
d

ds
〈Q (xt−s)V (x0)〉eq

Obviously the response depends on the difference of the two times due to the translational sym-
metry. As we can see, for a perturbation near equilibrium the frenetic contribution is equal to
the entropic. The dynamical activity appears only out of equilibrium because, moving away from
equilibrium, the time reversal symmetry breaking is manifest (the detailed balance formula 3.1.19
is no longer valid). Since the dynamical term is symmetric with respect to time-reversal, it can
give a contribution only if this symmetry is broken. According to it we should expect that the
frenetic would be zero.

3.1.5.2 Second method

We have to start from (3.1.14). Suppose that the perturbation starts to act at time t = 0 on
an equilibrium system. We expect that at time t = 0 the perturbed system will be equal to the
unperturbed one. We can write the susceptivity:

δ 〈Q (xt)〉h = 〈Q (xt)〉h − 〈Q (xt)〉eq
we can add and subtract 〈Q (x0)〉h. Then:

〈Q (xt)〉h − 〈Q (xt)〉eq ± 〈Q (x0)〉h = 〈Q (xt)−Q (x0)〉h + 〈Q (x0)〉h − 〈Q (xt)〉eq (3.1.21)

This is due to the independence on time of the observable at equilibrium. At equilibrium the
average value are time independent. Furthermore since the perturbation acts from time t = 0 we
can say:

〈Q (x0)〉h = 〈Q (x0)〉
Using these two properties we can eliminate the two average values in (3.1.21). Therefore:

〈Q (xt)〉h − 〈Q (xt)〉eq = 〈Q (xt)−Q (x0)〉h = −
〈

[Q (xt)−Q (x0)]A(1) (ω)
〉

eq
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Note that the observable in the bracket is antisymmetric under time reversal. Now we can study
separately the two contributions:

• symmetric contribution

1

2
〈[Q (xt)−Q (x0)]T (ω)〉eq =

1

2
〈Q (xt) T (ω)〉eq −

1

2
〈Q (x0) T (ω)〉eq

In the first term we calculate the average value between the observable evaluated at the final
time of the the trajectory ω with the frenetic action contribution, while in the second we do
the same for the observable evaluated at the initial time of the the trajectory ω, that is the
final time of the opposite θω during the interval [t, 0]. Therefore, we can write:

1

2
〈[Q (xt)−Q (x0)] T (ω)〉eq =

1

2
〈Q (xt) T (ω)〉eq −

1

2
〈Q (xt) T (θω)〉eq

obtaining an equivalent expression, but T (ω) = T (θω) and then the two terms cancel out.
Therefore the symmetric contribution is zero:

1

2
〈[Q (xt)−Q (x0)] T (ω)〉eq = 0

• antisymmetric contribution

1

2
〈[Q (xt)−Q (x0)]S (ω)〉eq =

1

2
〈Q (xt)S (ω)〉eq −

1

2
〈Q (x0)S (ω)〉eq

If we do the same we obtain:

1

2
〈[Q (xt)−Q (x0)]S (ω)〉eq =

1

2
〈Q (xt)S (ω)〉 − 1

2
〈Q (xt)S (θω)〉

But S (ω) is antisymmetric under time reversal S (θω) = −S (ω). Therefore:

1

2
〈[Q (xt)−Q (x0)]S (ω)〉eq = 〈Q (xt)S (ω)〉

If we consider again the susceptivity:

〈Q (xt)〉h − 〈Q (xt)〉eq = 〈Q (xt)S (ω)〉eq

from which we can obtain the Green-Kubo formula. In conclusion we can say that near to equi-
librium the entropy flux describes completely the linear response to a perturbation.

3.1.6 Response in quasi-static limit

As we have said the probability Pt (x) does not describe a system at equilibrium and usually it is
difficult to calculate since we should solve the master equation for each state. There is a situation
in which it can be well approximated. It is the quasi-static limit. In this limit we can approximate
the probability to be in a state at time t with the stationary distribution at fixed time t plus
a correction. It is equivalent to say that for each fixed time t the dynamics is detailed balance
with corresponding distribution ρt. Or, in other words, ρt satisfies (3.1.19) at time t. We can
interpret it as an instantaneous equilibrium distribution. In the quasi-static limit the solution to
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the time-dependent Master equation converges at each time to the instantaneous ρt. It can be
easily calculated solving the linear system:

ρtLt = 0

Practically we write:
Pt (x) = ρt (x) +O (ε)

This approximation, as we said in 2.2.4, is of order O (ε). Now we consider the response formula
making explicit the average values. If we make this substitution in the response formula:

RQ,V (t, s) =
1

2

d

ds

∑

x,y

Ps (x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x,y

Ps (x)
∂Vs (x)

∂s

(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

−
∑

x,y

Ps (x)LsVs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)

we obtain:

RQ,V (t, s) =
1

2

d

ds

∑

x,y

ρs (x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x,y

ρs (x)
∂Vs (x)

∂s

(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

−
∑

x,y

ρs (x)LsVs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y) +O (ε)

Now the average values are made on the invariant distribution at time s:

RQ,V (t, s) =
1

2

[

d

ds
〈Vs (xs)Qt (xt)〉ρs −

〈

∂Vs (xs)

∂s
Qt (xt)

〉

ρs

− 〈LsVs (xs)Qt (xt)〉ρs

]

+O (ε)

Now the response is easily calculable because we know the invariant distribution. The response
formula is formally equal to the one for time-independent reference process. But there is a deep
difference due to the fact that ρs cannot be thought as an evolution. This formula is correct for
time s fixed. For this reason we cannot use a time translation. In fact consider:

〈Vs (xs)Qt (xt)〉ρs =
∑

x,y

ρs (x) Vs (x)Pt [xt = y | xs = x]Qt (y)

If we do a time translation:

〈Vs (xs)Qt (xt)〉ρs =
∑

x,y

ρ0 (x) V0 (x)P0 [xt−s = y | x0 = x]Qt−s (y) = 〈V0 (x0)Qt−s (xt−s)〉ρ0

The problem is that ρs %= ρs′ with s′ %= s. Therefore if we do a time translation we have changed
the initial distribution. Even in the quasi-static limit the response depends on the two times s
and t independently. We have said that in the quasi-static limit the system is detailed balance at
any fixed time, therefore we expect it satisfies the global detailed balance (3.1.19) time by time.
This consideration is interesting since we want to know if under quasi-static limit approximation
the response formula can be led back to the Kubo one. If we consider again:
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〈Vs (xs)Qt (xt)〉ρs =
∑

x,y

ρs (x) Vs (x)Ps [xt = y | xs = x]Qt (y)

The detailed balance at time s allows:

〈Vs (xs)Qt (xt)〉ρs =
∑

x,y

ρs (y)Vs (x)Ps [xt = x | xs = y]Qt (y)

Now we would to exchange the role of Qt (xt) and Vs (xs) as in (3.1.20). The problem is that
now the observables and the backward generator depend explicitly on time. Otherwise it would
be possible to rewrite the frenetic term as the entropic one with the opposite sign and obtain
a Kubo formula at fixed time. Therefore we conclude that, if the reference Markov process is
inhomogeneous, in the quasi-static limit the probability can be approximated with nonequilibrium
stationary state probability and not with equilibrium one because the response cannot be led back
to Green-Kubo formula.

Furthermore, what we have said does not depend on the time-symmetry of the potential per-
turbation. Then we will obtain the same results in the following Section in which we are going to
study a potential perturbation with generic time symmetry.

3.1.7 Appendix: demonstration of the general identity

To understand the idea of this demonstration it is useful to consider first a simpler trajectory with
two jumps in the interval [0, t]. The jumps happen at time t = t1 and t = t2. So we can write:

γtVt (xt)− γ0V0 (x0) = γt1

[

Vt1 (xt1)− Vt1

(

xt−1

)]

+ γt2

[

Vt2 (xt2)− Vt2

(

xt−2

)]

+

+γtVt (xt)− γt2Vt2 (xt2) + γt2Vt2

(

xt2−

)

− γt1Vt1 (xt1) + γt1Vt1

(

xt1−

)

− γ0V0 (x0)

We have only added and subtracted some terms. Now we can rearrange them:

γtVt (xt)− γ0V0 (x0) = γt1

[

Vt1 (xt1)− Vt1

(

xt−1

)]

+ γt2

[

Vt2 (xt2)− Vt2

(

xt−2

)]

+

+ (γt1 − γ0) V0 (x0) + (γt2 − γt1) Vt1 (xt1) + (γt − γt2)Vt2 (xt2)

+γt1

[

Vt1

(

xt−1

)

− V0

(

xt−1

)]

+ γt2

[

Vt2

(

xt−2

)

− Vt1

(

xt−2

)]

+ γt [Vt (xt−)− Vt2 (xt−)]

We have added and subtracted the terms:

±γt1V0

(

xt−1

)

± γt2Vt1

(

xt−2

)

± γtVt2 (xt−)

Note also that: V
(

xt−1

)

= V (x0). In this way we have three groups of terms:

• γs [Vs (xs)− Vs (xs−)]

• (γs − γs−)Vs− (xs−)
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• γs [Vs (xs−)− Vs− (xs−)]

We can generalize it to a generic number of jumps during the time interval, then:

γtVt (xt)− γ0V0 (x0) =
N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +

+
N(t)
∑

0≤s≤t

(γs − γs−) Vs− (xs−) +
N(t)
∑

0≤s≤t

γs [Vs (xs−)− Vs− (xs−)]

Every group of terms describes the variation of a variable during the jumps. The first term of the
potential is related to its dependence on time of the trajectory, instead the second one is related to
its explicit dependence on time. It is important to note that the first sum is different from the other
two because it takes into account the dependence on time of the trajectory that is discontinuous;
instead the other two sums take into account a continuous dependence on time. So we can write
the last two sums as an integral exactly as we did for the escape rates. So in this case, s, that
indices the transition times, tends to a continuous variable, the sum tends to an integral and the
bracket tends to an incremental ratio of the average value.

γtVt (xt)− γ0V0 (x0) =
N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +

ˆ t

0

ds
dγs
ds

Vs (xs) +

ˆ t

0

ds γs
∂Vs (xs)

∂s

3.2 Mixed-symmetry potential perturbation

In the previous Section we have studied the particular case of a time-dependent potential perturba-
tion: the antisymmetric case. In fact after applying the perturbation, both Ft (x, y) and F h

t (x, y)
are antisymmetric. Now we want to extend it to a more general situation:

Ft (x, y) −→ F h
t (x, y) = Ft (x, y) + 2βtht [bVt (y)− aVt (x)] (3.2.1)

Ft (y, x) −→ F h
t (y, x) = −Ft (x, y) + 2βtht [bVt (x)− aVt (y)] (3.2.2)

where a and b are some constants, by convection we assume that a+ b = 1.

3.2.1 Rates modification

Due to the perturbation there is a modification of the transition rates:

kh
t (x, y) = at (x, y) e

Ft(x,y)
2 eβtht[bVt(y)−aVt(x)] = kt (x, y) e

βtht[bVt(y)−aVt(x)]

kh
t (y, x) = at (x, y) e

−Ft(x,y)
2 eβtht[bVt(x)−aVt(y)] = kh

t (y, x) e
βtht[bVt(x)−aVt(y)]

And:
kh
t (x, y)

kt (x, y)
= eβtht[bVt(y)−aVt(x)] (3.2.3)

Now the F h
t (x, y) is no longer purely antisymmetric and there will be also a symmetric contribution.

It is easy to see it using an equivalent expression:
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kh
t (x, y) = kt (x, y) e

(a+b)βtht
2 [Vt(y)−Vt(x)]e

(b−a)βtht
2 [Vt(y)+Vt(x)] (3.2.4)

kh
t (y, x) = kt (y, x) e

− (a+b)βtht
2 [Vt(y)−Vt(x)]e

(b−a)βtht
2 [Vt(y)+Vt(x)] (3.2.5)

Remembering that a+ b = 1 we note that there are two modifications of the rates:

• antisymmetric: the first exponential is exactly the same as studied in the previous Section.
If a = −b the perturbation is completely symmetric and this contribution is zero.

• symmetric: the second exponential is new and it depends on the sum of the perturbation
evaluated in the states of the transition, for this reason is symmetric. A symmetric pertur-
bation is going to increase or decrease in the same way a transition rate and its opposite,
then this kind of perturbation acts on the reactivities of the transition rates. Therefore we
can consider this exponential as related to at (x, y):

aht (x, y) = at (x, y) e
(b−a)βtht

2 [Vt(y)+Vt(x)]

Obviously if a = b the perturbation will be completely antisymmetric and we will obtain the
same as already seen. In fact adding the condition a+ b = 1 we will find a = b = 1

2 .

If we consider the ratio of the transition rates we will obtain the same as the antisymmetric case
since the symmetric contribution cancels in the ratio:

kh
t (x, y)

kh
t (y, x)

=
at (x, y) e

Ft(x,y)
2 eβtht[bVt(y)−aVt(x)]

at (x, y) e−
Ft(x,y)

2 eβtht[bVt(x)−aVt(y)]
= eFt(x,y)+βtht[Vt(y)−Vt(x)]

Then:

kh
t (x, y)

kh
t (y, x)

=
kt (x, y)

kt (y, x)
eβtht[Vt(y)−Vt(x)] (3.2.6)

All what we have said about the trajectory is still valid. We continue to call βtht = γt. The
transition rates ratio depends only on the difference of the values of the perturbation before
and after the transition, for this reason it is still called a potential perturbation. Due to the
perturbation, the probability of trajectories also gets modified:

Ph (ω) =
N(t)
∏

0≤s≤t

kh
s (xs− , xs) dte

−
´ t
0 λh

s(xs−)ds (3.2.7)

3.2.2 Excess action

We are interested in the ratio of the two probabilities:

Ph (ω)

P (ω)
=

N(t)
∏

0≤s≤t

kh
s (xs− , xs)

ks (xs−, xs)
e−
´ t
0 [λh

s (xs)−λs(xs)]ds

Ph (ω)

P (ω)
=

N(t)
∏

0≤s≤t

eγs[bVs(xs)−aVs(xs−)]e−
´ t
0 [λh

s (xs)−λs(xs)]ds
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Also in this case we can substitute λ
(h)
s (xs−) with λ

(h)
s (xs). If we use (3.0.1):

−A (ω) =
N(t)
∑

0≤s≤t

γs [bVs (xs)− aVs (xs−)]−
ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds (3.2.8)

we found the excess action expression. Using equation (3.2.3) we next investigate the second term:

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

[

kh
s (xs, x)− ks (xs, x)

]

ds

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

ks (xs, x)

[

kh
s (xs, x)

ks (xs, x)
− 1

]

ds

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

ks (xs, x)
[

eγs[bVs(x)−aVs(xs)] − 1
]

ds

If we expand the exponential to first order:

ˆ t

0

[

λh
s (xs)− λs (xs)

]

ds =

ˆ t

0

∑

x #=xs

ks (xs, x) γs [bVs (x)− aVs (xs)] ds+O (γt)

Finally, the excess action to first order is:

−A(1)
t (ω) =

N(t)
∑

0≤s≤t

γs [bVs (xs)− aVs (xs−)]−
ˆ t

0

γs
∑

x #=xs

ks (xs, x) [bVs (x)− aVs (xs)] ds (3.2.9)

We are going to connect this action to the one studied in the antisymmetric case, summing and
subtracting some contributions. Then:

−A(1) (ω) = a

N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)] +
N(t)
∑

0≤s≤t

(b− a) γsVs (xs)−

−b

ˆ t

0

γs
∑

x

Ws (xs, x) [Vs (x)− Vs (xs)] ds− (b− a)

ˆ t

0

γs
∑

x #=xs

ks (xs, x)Vs (xs) ds

−A(1) (ω) = a

N(t)
∑

0≤s≤t

γs [Vs (xs)− Vs (xs−)]− b

ˆ t

0

γsLsVs (xs) ds+

+ (b− a)







N(t)
∑

0≤s≤t

γsVs (xs)−
ˆ t

0

γs
∑

x #=xs

ks (xs, x) Vs (xs) ds







(3.2.10)
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3.2.3 Average values

Recall (3.1.9), if we use the excess action expression the susceptibility at first order we get:

δ 〈Qt (xt)〉h = a

N(t)
∑

0≤s≤t

γs 〈[Vs (xs)− Vs (xs−)]Qt (xt)〉µ − b

ˆ t

0

γs 〈LsVs (xs)Qt (xt)〉µ ds+

+ (b− a)





N(t)
∑

0≤s≤t

γs 〈Vs (xs)Qt (xt)〉µ −
ˆ t

0

γs
∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ ds





The first two contributions are equal to what we have studied in the previous Sections, with the
only difference that the entropic and frenetic terms do not have the same factor. But, we remember
the antisymmetric case, a = b = 1

2 .

δ 〈Qt (xt)〉h = a 〈St (ω)Qt (xt)〉µ − b

ˆ t

0

γs 〈LsVs (xs)Qt (xt)〉µ ds+

+ (b− a)





〈

N(t)
∑

0≤s≤t

γsVs (xs)Qt (xt)

〉

µ

−
ˆ t

0

γs
∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ ds



 (3.2.11)

Now we want to write the first contribution in the bracket as an integral. Since it is a finite sum
over the jump times it cannot be written as an integral. In fact it is as if during the time interval
[0, t] we consider only some points corresponding to the jumping times. Then we can introduce a
stochastic integral over Poisson events. We need to define a stochastic measure dks (x, y) - that
depends on time and on set of states - over the time interval [0, t] and over the trajectory ω that
is equal to 1 when there is the transition x → y at time s and it is zero otherwise. Since there is a
average value in the contribution, we will be interested in the average value of this measure with
the observable Qt (xt) over all the possible trajectories:

〈

N(t)
∑

0≤s≤t

γsVs (xs)Qt (xt)

〉

µ

=

ˆ t

0

γs 〈dks (xs−, xs) Vs (xs)Qt (xt)〉µ (3.2.12)

Now we want to calculate the average value in the integral. So, by definition of average value we
have to sum over all the states. In fact, generally:

〈At (xt)Bs (xs)〉µ =
∑

x,y,x0

µ (x0)Ps [xs = x | x0]Bs (x)Pt [xt = y | xs = x]At (y)

Using equation (2.1.4):

〈At (xt)Bs (xs)〉µ =
∑

x,y

Ps (x)Bs (x)
(

e
´ t
s dτ Lτ

)

xy
At (y)

Then:

〈dks (xs−, xs) Vs (xs)Qt (xt)〉µ =
∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x) ds Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)
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Since in the average value there are three elements we must have three sums. The sum indexed by
x′ is referred to the transition at time s because of which the system jumps from xs− to xs. Then:

〈

N(t)
∑

0≤s≤t

γsVs (xs)Qt (xt)

〉

µ

=

ˆ t

0

ds γs
∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y) (3.2.13)

Therefore the susceptibility is:

δ 〈Qt (xt)〉h = a 〈St (ω)Qt (xt)〉µ − b

ˆ t

0

γs 〈LsVs (xs)Qt (xt)〉µ ds+

+ (b− a)

ˆ t

0

ds γs









∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ









3.2.4 Response

Recall (3.1.15), we find the response:

RQ,V (t, s) = a

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

]

− b 〈Qt (xt)LsVs (xs)〉µ +

+ (b− a)









∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x)Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ









The first two terms of susceptibility give the response studied in the antisymmetric case. Now if
we make explicit the last average value in the bracket:

∑

x #=xs

〈ks (xs, x)Vs (xs)Qt (xt)〉µ =
∑

x,y
x′ #=x

Ps (x) ks (x, x
′) Vs (x)

(

e
´ t
s dτ Lτ

)

xy
Qt (y)

We note that it is similar to the other contribution in the bracket. Then:

∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ =

=
∑

x,y
x′ #=x

[Ps (x
′) ks (x

′, x)− Ps (x) ks (x, x
′)]Vs (x)

(

e
´ t
s
dτ Lτ

)

xy
Qt (y)

We can recognize the master equation. Then using (2.1.2):
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(b− a)









∑

x,y
x′ #=x

Ps (x
′) ks (x

′, x)Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)−

∑

x #=xs

〈ks (xs, x) Vs (xs)Qt (xt)〉µ









=

= (b− a)
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s
dτ Lτ

)

xy
Qt (y)

At this point, the following identity is useful:

d

dt
〈Vs (xs)Qt (xt)〉µ −

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

= −
[

d

ds
〈Vs (xs)Qt (xt)〉µ −

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

]

+

+
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s
dτ Lτ

)

xy
Qt (y) + 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ

that we are going to demonstrate in the appendix 1. Then, the response:

RQ,V (t, s) = a

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

]

− b 〈Qt (xt)LsVs (xs)〉µ +

+ (b− a)

[

d

dt
〈Vs (xs)Qt (xt)〉µ −

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

+
d

ds
〈Vs (xs)Qt (xt)〉µ −

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

]

−

− (b− a) 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ
Finally the response formula for t ≥ s :

RQ,V (t, s) = b

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

]

− a
d

dt
〈Vs (xs)Qt (xt)〉µ+

+a

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

+ b

[

〈Vs (xs)LtQt (xt)〉µ − 〈Qt (xt)LsVs (xs)〉µ
]

−

− (b− a) 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ (3.2.14)

3.2.4.1 Comments

In the last two Sections we have studied the response formula when the transition rates depend
on time. Our purpose is to understand how the response will be modified if the reference process
(or rather the unperturbed system) is time-dependent compared with the case in which the refer-
ence is time-independent and therefore a stationary distribution exists. We have seen that if the
perturbation is only antisymmetric (in other words, if it modifies only the transition rate drift)
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the structure of the response formula does not change at all. The time-dependence affects only
the reference process and therefore the probability over which we average. Instead, now, we have
found out that, if the perturbation has also a time symmetric contribution, the response presents
a new term. It takes into account in the correlation also how a transition rate changes between the
two times considered in the response. This contribution is considerable if the rates change much
in the interval [s, t]. It depends on the intensity of the transition rates and not on the drift (in fact
it is evaluated for the same transition at different time), for this reason it can be associated to the
reactivities contribution. This is the reason why it appears only if the perturbation is also sym-
metric. Furthermore, it depends only on the initial and final values, then, if kt (xs, xt) = ks (xs, xt)
it will be zero. For example, this could be the case of periodic time-dependence of the transition
rates. Now we want to show that

• if a = b, antisymmetric perturbation:

RQ,V (t, s) = b

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

− 〈Qt (xt)LsVs (xs)〉µ

]

We obtain the response studied in the previous Section with b = 1
2 . In fact for t > s:

d

dt
〈Vs (xs)Qt (xt)〉µ = 〈Vs (xs)LtQt (xt)〉µ +

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

• if a = −b, symmetric perturbation:

RQ,V (t, s) = b

[

d

ds
〈Qt (xt)Vs (xs)〉µ −

〈

Qt (xt)
∂Vs (xs)

∂s

〉

µ

− 〈Qt (xt)LsVs (xs)〉µ

]

+

+2b
[

〈Vs (xs)LtQt (xt)〉µ − 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ
]

We obtain a response for an antisymmetric perturbation plus another contribution. It is
reasonable that in the symmetric case there is also the antisymmetric contribution since we
can consider the symmetric perturbation

ht [Vt (y) + Vt (x)]

as an antisymmetric one plus another contribution

ht [Vt (y)− Vt (x)] + 2htVt (x)

3.2.5 Appendices

3.2.5.1 Appendix 1: demonstration of the identity

d

dt
〈Vs (xs)Qt (xt)〉µ −

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

= −
[

d

ds
〈Vs (xs)Qt (xt)〉µ −

〈

∂Vs (xs)

∂t
Qt (xt)

〉

µ

]

+

+
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s dτ Lτ

)

xy
Qt (y) + 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ
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If we calculate the contribution with respect to t:

∑

x,y

[

d

dt

(

Ps (x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)

)

− Ps (x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy

∂Qt (y)

∂t

]

=

=
∑

x,y

Ps (x) Vs (x) kt (x, y)
(

e
´ t
s
dτ Lτ

)

xy
Qt (y) = 〈Vs (xs) kt (xs, xt)Qt (xt)〉µ

If we do the same with the contribution for the derivative with respect to s:

∑

x,y

[

d

ds

(

Ps (x) Vs (x)
(

e
´ t
s dτ Lτ

)

xy
Qt (y)

)

− Ps (x)
∂Vs (x)

∂s

(

e
´ t
s dτ Lτ

)

xy
Qt (y)

]

=

=
∑

x,y

[

dPs (x)

ds
Vs (x)

(

e
´ t
s dτ Lτ

)

xy
Qt (y)− Ps (x) Vs (x) ks (x, y)

(

e
´ t
s dτ Lτ

)

xy
Qt (y)

]

=

=
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s dτ Lτ

)

xy
Qt (y)− 〈Vs (xs) ks (xs, xt)Qt (xt)〉µ

Then, if we sum the two terms we obtain:

d

dt
〈Vs (xs)Qt (xt)〉µ −

〈

Vs (xs)
∂Qt (xt)

∂t

〉

µ

+

[

d

ds
〈Vs (xs)Qt (xt)〉µ −

〈

∂Vs (xs)

∂t
Qt (xt)

〉

µ

]

=

=
∑

x,y

[

Ps (x) Vs (x) kt (x, y) +
dPs (x)

ds
Vs (x)− Ps (x) Vs (x) ks (x, y)

]

(

e
´ t
s dτ Lτ

)

xy
Qt (y) =

=
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s
dτ Lτ

)

xy
Qt (y) +

∑

x,y

Ps (x)Vs (x) [kt (x, y)− ks (x, y)]
(

e
´ t
s
dτ Lτ

)

xy
Qt (y) =

=
∑

x,y

dPs (x)

ds
Vs (x)

(

e
´ t
s dτ Lτ

)

xy
Qt (y) + 〈Vs (xs) [kt (xs, xt)− ks (xs, xt)]Qt (xt)〉µ

It is interesting to note that the last average value is due to the transition rates time-dependence.
In fact if they would not depend on time it would be zero. Therefore this contribution appears
only out of equilibrium if the reference process in time-dependent.

3.2.5.2 Appendix 2: Close to equilibrium

Now we want to study what happens to the response formula if the system is near the equilibrium.
All what we have said for the antisymmetric case is still valid. Then:

RQ,V (t, s) = b

[

d

ds
〈Q (xt) V (xs)〉eq − 〈Q (xt)LV (xs)〉eq

]

+ (b− a)
d

dt
〈V (xs)Q (xt)〉eq
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The last contribution in the response formula must be zero since the transition rates are time-
independent. We can rewrite it as:

RQ,V (t, s) = a
d

ds
〈Q (xt) V (xs)〉eq − b 〈Q (xt)LV (xs)〉eq +

+ (b− a)

[

d

ds
〈V (xs)Q (xt)〉eq +

d

dt
〈V (xs)Q (xt)〉eq

]

Now if we use invariance under time translations as we have done in the antisymmetric case the
bracket will cancel since we can substitute the derivative with respect to s with minus the one
with respect to t. Then

RQ,V (t, s) = a
d

ds
〈Q (xt)V (xs)〉eq − b 〈Q (xt)LV (xs)〉eq

We can use again the same procedure to get:

RQ,V (t, s) = (a+ b)
d

ds
〈Q (xt) V (xs)〉eq

As we expect near the equilibrium the response is given only by the antisymmetric contribution
since near equilibrium the system is invariant under time reversal and then a symmetric pertur-
bation that acts on reactivities cannot modify the system.
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Diffusion processes
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Chapter 4

Continuous Markov processes

4.1 General Features

4.1.1 Stochastic processes

Consider a stochastic process xt that can assume values from a continuous set S ⊂ Rn. Its evolution
leads to a probability density Pt (x) with respect to dx, measure on S. At any time, it gives the
probability of assuming a certain value. The Pt (x) must satisfy:

• Pt (x) ≥ 0 ∀x ∈ S

•
´

S
dxPt (x) = 1 ∀t

• it must be differentiable and integrable with respect to x and t

Again we will consider the Markov approximation. A dynamics is called Markovian if, given where
the probe is at time s, the future evolution (t > s) depends only on the system at time s and it
does not depend on its previous history. In other words, once known the present, the future is
independent of the past. A system that satisfies this condition is said memoryless. In fact, consider
n values x1 . . . xn assumed by xt at time t1 . . . tn chronologically arranged. The probability that
xt, using the Markov approximation, assumes all these values during its evolution is given by:

P (x1, t1; x2, t2; . . . ; xn, tn | x0, t0) = P (x1, t1 | x0, t0)P (x2, t2 | x1, t1) . . . P (xn, tn | xn−1, tn−1)

where the conditional probability is defined by:

P (x2, t2 | x1, t1) dx2 = Prob {xt2 ∈ [x2, x2 + dx2] , given xt1 = x1} (4.1.1)

A Markov process can be either deterministic, meaning that its future is precisely determined by its
present, or stochastic, meaning that its future is only probabilistically determined by its present.
Or more generally it can be a combination of both.

4.1.2 Chapman-Kolmogorov equation

We require some equations to study the Markov dynamics. One of these is the Chapman-
Kolmogorov equation. This equation is valid only under the Markov approximation.

56
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P (x3, t3 | x1, t1) =

ˆ

S

dx2 P (x3, t3 | x2, t2)P (x2, t2 | x1, t1) (4.1.2)

In fact:

P (x3, t3 | x1, t1) =

ˆ

S

dx2 P (x3, t3; x2, t2 | x1, t1)

we have conditioned on intermediate value x2 at time t1 < t2 < t3. Now we can use the definition
of conditional probability:

P (x3, t3 | x1, t1) =

ˆ

S

dx2 P (x3, t3 | x2, t2; x1, t1)P (x2, t2 | x1, t1)

Now if we use the Markov property, we can ignore the condition on x1 in the first probability to ob-
tain (4.1.2). This equation is important because it gives a criterion to choose the probability Pt (x)
such that it satisfies the Markov property. And when the probability is known the Markov process
is completely determined. There is another expression of the Chapman-Kolmogorov equation that
is going to be useful in the following:

P (x, t+∆t | x0, t0) =

ˆ

S

dξ P (x, t +∆t | x− ξ, t)P (x− ξ, t | x0, t0) (4.1.3)

where ξ ∈ S and ∆t is a time interval (not necessarily infinitesimal). It is called forward time
evolution since it studies the behavior of P (x, t | x0, t0) for fixed x0 and t0. Here we are considering
not infinitesimal time, but we will do it in the following Section since we are interested in studying
continuous Markov process for which the dynamics evolves continuously. A possible procedure
is to consider processes that assume different values at each time interval dt (that is thought as
an infinitesimal parameter) and then to study the limit dt → 0. This assumption will put some
condition on the process evolution that we are going to explain.

4.1.3 The Markov Propagator

Suppose that the random variable xt is in x at time t. Then, at a later time t+∆t (not necessarily
infinitesimal) the system will be evolved to some new state. Since the dynamics is Markovian, the
displacement will depend only on xt. Therefore we can define it as:

Ξ (∆t; xt, t) = xt+∆t − xt (4.1.4)

It is also called update relation and ∆t is the time scale of the update (it can be thought as
its sensibility). Obviously Ξ (∆t; xt, t) is a random variable and it is called the propagator of
the process. Like any random variable it is completely determined by its probability density
Π (ξ | ∆t; x, t), that by definition is:

Π (ξ | ∆t; x, t)∆ξ = Prob {Ξ (∆t; x, t) ∈ [ξ, ξ +∆ξ]}

Now we are going to study some properties of the propagator and its probability density:
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4.1.3.1 Moments

By definition the moments are the average values of a random variable powers. For the propagator:

〈Ξ (∆t; x, t)n〉 =
ˆ

S

dξ ξnΠ (ξ | ∆t; x, t) = Bn (x, t)∆t +O (∆t)

Since Ξ (dt; x, t) is a continuous random variable, its probability density must be differentiable and
also integrable, therefore all the moments are well defined functions. The O (∆t) is referred to the
fact that the update formula is correct up to order ∆t. Note that the moments depend on the
value at time t. From what happens at time t we can determine the average displacement at time
t+∆t. Note also that the propagator moments describe the fluctuations of the stochastic process.

4.1.3.2 Connection with Pt (x)

There is a very important relation between the probability density of the propagator and the
probability density of the Markov process. By definition (4.1.1):

P (x+ ξ, t+∆t | x, t)∆ξ = Prob {xt+∆t ∈ [x+ ξ, x+ ξ +∆ξ] , given xt = x}

If we subtract the conditional value x:

P (x+ ξ, t+∆t | x, t)∆ξ = Prob {xt+∆t − x ∈ [ξ, ξ +∆ξ] , given xt = x}

we use the condition xt = x and via the definition (4.1.4) we obtain:

P (x+ ξ, t+∆t | x, t)∆ξ = Prob {Ξ (∆t; x, t) ∈ [ξ, ξ +∆ξ]}

The last equation is the definition of the propagator probability density. Therefore:

Π (ξ | ∆t; x, t) = P (x+ ξ, t+∆t | x, t) (4.1.5)

Therefore Π (ξ | ∆t; x, t) is just the Markov probability density of moving by ξ in time ∆t. This
is meaningful since the Π (ξ | ∆t; x, t) is the probability density of the displacement. Furthermore
the propagator density function is very important because it determines completely the probability
Pt (x) of the process. The moments can be written as:

Bn (x, t)∆t =

ˆ

S

dξ ξn P (x+ ξ, t+∆t | x, t)

4.1.3.3 Connection with C-K equation

Using (4.1.5) and the Chapman-Kolmogorov equation (4.1.2) we can obtain an interesting relation
that allows to put in evidence the Markovian nature of the displacement. Consider the probability:

P (x+ ξ, t+∆t | x, t) =
ˆ

S

dξ1P (x+ ξ, t+∆t | x+ ξ1, t+ a∆t)P (x+ ξ1, t+ a∆t | x, t)

We have in fact demonstrated then the probability Pt (x) satisfies the Chapman-Kolmogorov equa-
tion. Then:

P (x+ ξ, t+∆t | x, t) =
ˆ

S

dξ1P (x+ ξ1 + ξ − ξ1, t+ a∆t + (1− a)∆t | x+ ξ1, t+ a∆t) ·
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·P (x+ ξ1, t+ a∆t | x, t)
Now, using (4.1.5) we can substitute:

P (x+ ξ1 + ξ − ξ1, t + a∆t+ (1− a)∆t | x+ ξ1, t+ a∆t) = Π (ξ − ξ1 | (1− a)∆t; x+ ξ1, t+ a∆t)

And finally:

Π (ξ | ∆t; x, t) =

ˆ

S

dξ1Π (ξ − ξ1 | (1− a)∆t; x+ ξ1, t+ a∆t) · Π (ξ1 | a∆t; x, t)

In this way we have obtained a Chapman-Kolmogorov equation also for the displacement proba-
bility density. And, as we have said, it gives a criterion to choose the expression of Π (ξ | ∆t; x, t).
This result can be written also in function of the displacement:

Ξ (∆t; xt, t) = Ξ (a∆t; xt, t) + Ξ ((1− a)∆t; xt + Ξ (a∆t; xt, t) , t+ a∆t) (4.1.6)

This equation says that the change in the process during a interval (t, t+∆t) must be equal to
the change during the interval (t, t+ a∆t) plus the change during the interval (t+ a∆t, t +∆t)
for any 0 < a < 1. For this reason it is also called the self-consistency equation.

4.1.3.4 Homogeneity

If the Markov process is homogeneous with respect to time and space, it will affect also the
propagator probability density. In fact:

• if xt is temporally homogeneous the propagator probability will not depend on time
Π (ξ | ∆t; x, t) = Π (ξ | ∆t; x)

• if xt is spatially homogeneous the propagator probability will not depend on position
Π (ξ | ∆t; x, t) = Π (ξ | ∆t; t)

• if xt is temporally and spatially homogeneous the propagator probability will not depend on
time and position
Π (ξ | ∆t; x, t) = Π (ξ | ∆t)

There is no situation in which the Π (ξ | dt; x, t) will not depend on ∆t since it is referred to time
interval during which there is the displacement. For this reason the ∆t is isolated from x and t by
an ;

4.1.4 Kramers-Moyal expansion

We know that the Pt (x) must satisfy the Chapman-Kolmogorov equation, that is an integral
equation. Now we want to find a differential equation. The starting point is (4.1.3). We define the
infinitely differentiable function:

f (x) = P (x+ ξ, t+∆t | x, t)P (x, t | x0, t0)

We can evaluate it in x− ξ. Then:

f (x− ξ) = P (x, t+∆t | x− ξ, t)P (x− ξ, t | x0, t0)
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Now we want to expand it around ξ = 0. To do it we can define y = x− ξ and then expand f (y)
around y = x. Therefore:

f (x− ξ) = f (x) +
∞
∑

n=1

(−ξ)n

n!
∇nf (x)

But f (x− ξ) appears in (4.1.3). Therefore we can substitute the expansion of f (x− ξ) in the
integral of equation (4.1.3):

P (x, t+∆t | x0, t0) =

ˆ

S

dξ P (x+ ξ, t+∆t | x, t)P (x, t | x0, t0)+

+
∞
∑

n=1

(−1)n

n!
∇n

ˆ

S

dξ ξnP (x+ ξ, t+∆t | x, t)P (x, t | x0, t0)

In the first term we can extract P (x, t | x0, t0) and the integral gives 1 since the Pt (x) is a proba-
bility density. Then:

P (x, t +∆t | x0, t0)−P (x, t | x0, t0) =
∞
∑

n=1

(−1)n

n!
∇n

[
ˆ

S

dξ ξnP (x+ ξ, t+∆t | x, t)
]

P (x, t | x0, t0)

We can use (4.1.5) and:

P (x, t+∆t | x0, t0)− P (x, t | x0, t0) =
∞
∑

n=1

(−1)n

n!
∇n

[
ˆ

S

dξ ξnΠ (ξ | ∆t; x, t)

]

P (x, t | x0, t0)

Now, in the integral there are the moments and we know that:

P (x, t+∆t | x0, t0)− P (x, t | x0, t0) =
∞
∑

n=1

(−1)n

n!
∇n [Bn (x, t)P (x, t | x0, t0)]∆t

If we divide by time interval ∆t and we take the limit ∆t → 0, in the left-hand side there is an
incremental ratio. Therefore:

∂

∂t
P (x, t | x0, t0) =

∞
∑

n=1

(−1)n

n!
∇n [Bn (x, t)P (x, t | x0, t0)] (4.1.7)

Again we can see that, if the propagator and its probability density are given, it is known also the
evolution of the probability Pt (x) and then the random variable evolution. For the first time here
we have used a infinitesimal time limit, but we have not said anything about the propagator and
the moments yet. We will expect that if we let evolve the system for an infinitesimal time, the
displacement will be small and close to zero. This should be a property of the Markov propagator,
and it does not appear in what we have said till now. In the following chapter we will give some
assumption on the propagator in order to do a meaningful ∆t → 0 limit.

4.2 The propagator

In the previous general treatment we have not said anything about the propagator probability.
Now we want to study its property in order to describe continuous stochastic processes. Again
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we consider the update equation (4.1.4), but now we are interested in infinitesimal update time.
Therefore we consider, Π (ξ | dt; x, t), where now dt is an infinitesimal time interval. To obtain
an expression for it, we have to make some assumptions on the Markov process and therefore
to consider a particular kind of processes. In this Section we are going to study the continuous
Markov process with respect to time and position evolution. To do it we have to assume that:

• Π (ξ | dt; x, t) is a smooth function for all its arguments (dt, x, t).

• Π (ξ | dt; x, t) is practically zero everywhere outside of an infinitesimally small neighborhood
of ξ = 0.

• We want to introduce the Markovian property in the noise. In other words, we expect that
the average value of the stochastic contribution at two times t and t′ is not zero if and only
if t = t′.

4.2.1 Self-consistency of the propagator

Under these conditions the displacement Ξ (dt; xt, t) during the time dt must be infinitesimally
small. Note that till now we have not assumed anything about its values. Assume that at time t
the process is in the state x. We want to study its evolution during the interval [t, t + dt]. Suppose
now that this interval could be divided in n subinterval of equal length dt

n
. Therefore:

ti = ti−1 +
dt

n

with t0 = t and tn = t + dt. Using (4.1.4):

xti − xti−1 = Ξi

(

dt

n
; xti−1 , ti−1

)

If we take a sum over all the subintervals, in the left-hand side we recognize a telescopic series:

n
∑

i=1

xti − xti−1 = xtn − xt0 = xt+dt − xt =
n
∑

i=1

Ξi

(

dt

n
; xti−1 , ti−1

)

Therefore:

Ξ (dt; xt, t) =
n
∑

i=1

Ξi

(

dt

n
; xti−1 , ti−1

)

(4.2.1)

This equation says that the displacement during the interval [t, t+ dt] is given by the sum of all
the displacement during the subintervals. It is a consequence of the Markov dynamics since it
derives from (4.1.6). The propagators Ξi are different random variables since they describe the
displacement in each subinterval. They are not statistically independent since each Ξi depends on
xti−1 . Now we use the smoothness condition of the propagator probability density Π

(

ξ | dt
n
; xti , ti

)

.
If we displace the values of x and t by arbitrary infinitesimal amounts, then there will be only
small changes in the random variable Ξ (dt; xt, t). Therefore in each Ξi we can replace ti−1 by
the infinitesimally close t. Nevertheless there could be a big displacement in the interval of width
dt
n
, but this possibility is practically zero due to the condition imposed on the Π

(

ξ | dt
n
; xti , ti

)

.
Therefore:
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Ξ (dt; xt, t) =
n
∑

i=1

Ξi

(

dt

n
; xt, t

)

(4.2.2)

4.2.2 Propagator average value

Now the Ξi

(

dt
n
; xt, t

)

are n statistically independent variables. By definition, for any succession
(Xi)i∈N of random variables, not necessarily statistical independent:

〈

n
∑

i=1

aiXi

〉

=
n
∑

i=1

ai 〈Xi〉

V ar

[

n
∑

i=1

aiXi

]

=
n
∑

i=1

a2iV ar [Xi] +
n
∑

i #=j

aiaj 〈Xi;Xj〉

with 〈 ; 〉 we mean the covariance. Obviously if the variables are statistically independent the
variance expression becomes simpler, since the covariance is zero. Therefore if we consider (4.2.2):

n
∑

i=1

〈

Ξi

(

dt

n
; xt, t

)〉

= 〈Ξ (dt; xt, t)〉

n
∑

i=1

V ar

[

Ξi

(

dt

n
; xt, t

)]

= V ar [Ξ (dt; xt, t)]

Though the Ξi

(

dt
n
; xt, t

)

act on different intervals, they have the same probability distribution.
Therefore they have the same average value and variance.

n

〈

Ξi

(

dt

n
; xt, t

)〉

= 〈Ξ (dt; xt, t)〉

nV ar

[

Ξi

(

dt

n
; xt, t

)]

= V ar [Ξ (dt; xt, t)]

Now we need a lemma. Given a set, if h (z) is a smooth function of z ∈ S satisfying

h (z) = nh
(z

n

)

(4.2.3)

for any positive integer n, then it must be true that h (z) = Cz, where C is independent of z. To
demonstrate it we have to consider two aspects:

• If we derive (4.2.3) with respect to z

h′ (z) = nh′
( z

n

) 1

n
= h′

(z

n

)

This must be true for any n, even if n → ∞. In fact

lim
n→∞

h′ (z) = lim
n→∞

h′
( z

n

)

= h′ (0)

given that h (z) is continuous. Meanwhile the left-hand side is not changed by the limit.
Therefore:

h′ (z) = h′ (0) = C ∀z ∈ S
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• If we consider the limit

lim
n→∞

h (z)

n
= lim

n→∞
h
( z

n

)

=⇒ h (0) = 0

A smooth function that satisfies these two properties must be of the form h (z) = Cz.

We cannot use the lemma for Ξi

(

dt
n
; xt, t

)

since the propagators of each subintervals are different
functions, but the average values are the same. If we apply the lemma to the average values,
function of dt, we obtain:

〈Ξ (dt; xt, t)〉 = At (xt) dt+O (dt)

V ar [Ξ (dt; xt, t)] = Bt (xt) dt +O (dt)

The correction O (dt) derives from the replacement of ti by t in the propagator. In conclusion:

• by the lemma At (xt) and Bt (xt) are independent of dt functions

• by definition of variance Bt (xt) ≥ 0

4.2.3 The propagator expression

To say more about these two functions we need to find out the expression of Π (ξ | dt; x, t). We
will start from (4.2.2). We have written the propagator as a sum of random variables. We can
use the central limit theorem. Consider a succession of statistically independent random variables
X1 . . . Xn, each distributed according to a common density function which has finite mean and
variance. Consider the variable:

Y =
n
∑

i=1

Xi

In the limit n → ∞, the distribution of Y converges to a Gaussian one. Therefore:

Ξ (dt; xt, t) = N (At (xt) dt, Bt (xt) dt) (4.2.4)

And the probability distribution Π (ξ | dt; x, t) becomes:

Π (ξ | dt; xt, t) =
1

√

2πBt (xt) dt
e
− (ξ−At(xt)dt)

2

2Bt(xt)dt +O (dt) (4.2.5)

It is interesting to note that all the physics is in At (xt) and Bt (xt). Therefore, choosing them
properly we can have a nonequilibrium system. But, even in this case, the distribution of the
displacement is given by a Gaussian.

4.2.4 Consequences on Markov process

We want to put into evidence two properties of Gaussian variables:

• N (m1, σ
2
1) = N (m1, 0) +N (0, σ2

1)
in which the first contribution is deterministic since the variance is zero.

• βN (m1, σ
2
1) = N (βm1, β

2σ2
1)
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Therefore from (4.2.4):

Ξ (dt; xt, t) = N (At (xt) dt, 0) +N (0, Bt (xt) dt)

Ξ (dt; xt, t) = At (xt) dtN (1, 0) +
√

Bt (xt) dtN (0, 1)

Ξ (dt; xt, t) = At (xt) dt+
√

Bt (xt) dtN (0, 1) (4.2.6)

The average values of the propagator probability density allow to comprehend the propagator
itself. Furthermore we can see that it is made by two contributions. The first, depending on the
mean value is deterministic, instead the second is stochastic. In fact, if Bt (xt) would be zero, the
process would be deterministic.

For what we have said, the average values describe also the Markov process, for this reason
At (xt) and Bt (xt) are also called characterizing functions of the process. At (xt) is properly called
drift function because it controls the “drifting of the Gaussian peak. Instead Bt (xt) is called
diffusion function because it controls the “diffusion spreading” of the peak, or in other words, its
width. They depend differently on dt. In fact we expect that the random component, though
infinitesimally small, will be much bigger than the deterministic one. Therefore, why does this
contribution make any difference in the process evolution? The answer lies in the random variable
N that multiplies

√
dt. Since N is equally positive and negative (the Gaussian distribution is

even), the contributions order
√
dt of the fluctuating term over a succession of dt-intervals tend

to cancel each others out. Therefore averagely only the deterministic contribution influences the
dynamics.

4.3 Fokker-Planck equation

Starting from equation (4.2.6) we want to find the moments Bn (x, t) of the propagator:

Ξn (dt; xt, t) =
[

At (xt) dt+
√

Bt (xt) dtN (0, 1)
]n

Using the binomial formula:

〈Ξn (dt; xt, t)〉 = n!
n
∑

k=0
(k even)

[At (xt) dt]
n−k [Bt (xt) dt]

k
2

(n− k)!
(

k
2

)

! 2
k
2

+O (dt)

〈Ξn (dt; xt, t)〉 = n!
n
∑

k=0
(k even)

An−k
t (xt)B

k
2
t (xt) (dt)

n− k
2

(n− k)!
(

k
2

)

! 2
k
2

+O (dt)

Since the power of dt is n − k
2 , it is evident that if n > 2 there is no contribution of order dt.

Therefore we can say that:

B1 (xt, t) = At (xt) +O (dt)

B2 (xt, t) = Bt (xt) +O (dt)
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Bn (xt, t) = O (dt) n ≥ 3

Evidently, this result will simplify the Kramers-Moyal expansion (4.1.7) since only the first two
contributions are not of order O (dt). Therefore:

∂

∂t
P (x, t | x0, t0) = −∇ [At (x)P (x, t | x0, t0)] +

1

2
∇2 [Bt (x)P (x, t | x0, t0)] (4.3.1)

with the condition xt = x. This is called Fokker-Planck equation. Note that this equation is an
approximation due to the sensibility of the update equation. If we write it via components:

∂

∂t
P (x, t | x0, t0) = −

n
∑

i=1

∂

∂xi

[Ai (x, t)P (x, t | x0, t0)] +
1

2

n
∑

i,j=1

∂2

∂xi∂xj

[Bij (x, t)P (x, t | x0, t0)]

The coefficient Ai and Bij may be any real differentiable functions with the sole restriction that
the matrix Bij is taken to be symmetric and must be positive definite. Therefore if we consider
S = R :

∂

∂t
P (x, t | x0, t0) = − ∂

∂x
[A (x, t)P (x, t | x0, t0)] +

1

2

∂2

∂x2
[B (x, t)P (x, t | x0, t0)]

4.3.1 Backward generator

We can rewrite the Fokker-Planck equation as:

∂

∂t
P (x, t | x0, t0) = L+

t P (x, t | x0, t0) (4.3.2)

Introducing the forward generator L+
t . Its adjoint, the backward generator Lt is an operator acting

on functions of the process and of the time. It is defined as:

Ltft (x) = At (x)∇ft (x) +
Bt (x)

2
∇2ft (x)

The expression of the backward generator can be easily got by (4.3.1) using partial integration. In
1-dimensional notation (with S = R):

ft (xt) (Ltgt (xt)) =

ˆ

R

dx ft (x)At (x)
∂gt (x)

∂x
+

ˆ

R

dx ft (x)
Bt (x)

2

∂2gt (x)

∂x2

ft (xt) (Ltgt (xt)) = ft (x)At (x) gt (x)|R −
ˆ

R

dx gt (x)
∂

∂x
(ft (x)At (x))+

+ft (x)
Bt (x)

2

∂gt (x)

∂x |R
− 1

2

∂

∂x
(Bt (x) ft (x)) gt (x)|R +

1

2

ˆ

R

dx gt (x)
∂2

∂x2
(Bt (x) ft (x))

With some boundary conditions we can eliminate the boundary terms and obtain:

ft (xt) (Ltgt (xt)) = −
ˆ

R

dx gt (x)
∂

∂x
(ft (x)At (x)) +

1

2

ˆ

R

dx gt (x)
∂2

∂x2
(Bt (x) ft (x))
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Therefore, for a general manifold S:

ft (xt) (Ltgt (xt)) =

ˆ

S

dx ft (x) (Ltgt (x)) =

ˆ

S

dx
(

L+
t ft (x)

)

gt (x) =
(

L+
t ft (xt)

)

gt (xt)

For the Lt just written we have:

L+
t ft (x) = −∇ [At (x) ft (x)] +

1

2
∇2 [Bt (x) ft (x)]

in agreement with the Fokker-Planck equation.

4.3.2 Density current

If we define the current:

J (x, t | x0, t0) = At (x)P (x, t | x0, t0)−
1

2
∇ [Bt (x)P (x, t | x0, t0)] (4.3.3)

We can write the (4.3.1) as a continuity equation:

∂

∂t
P (x, t | x0, t0) = −∇ · J (x, t | x0, t0) (4.3.4)

that describes the conservation of the probability. If we integrate (4.3.4) with respect to dx:

∂

∂t

ˆ

S

dxP (x, t | x0, t0) = −
ˆ

S

dx∇ · J (x, t | x0, t0) dx = 0

Using the divergence theorem we can write the integral over S as an integral over the border of S
(Σ = ∂S):

ˆ

∂S

dΣ J (x, t | x0, t0) = 0 (4.3.5)

The flow of the current is zero as we expect by a continuity equation. This is due to the convergence
of the probability. For this reason it is not a local conservation of the probability. The flow through
an arbitrary surface is not necessarily zero. In addition, this does not imply that the current must
be zero.

4.3.3 Stationarity

If At (xt) and Bt (xt) do not depend directly on time, it is possible to find a stationary solution:

lim
t→∞

Pt (x | x0) = ρ (x)

In this case the left-hand side of (4.3.4) is zero and therefore:

∇ · J (x | x0) = 0

This condition is different from (4.3.5) because it says that the current flow is zero through an
arbitrary surface in S (even a finite one) and not necessarily through ∂S, therefore it is a local
condition and it assures the local conservation of probability. If S is a simply connected manifold
we can define a potential vector for the probability current:
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∇× C (x) = J (x)

An important consideration is that the current has not to be necessarily constant to assure sta-
tionarity of the probability. Instead, if S = R, the current must be constant. In order to satisfy
the Fokker-Planck equation there are two possibilities:

• the current is a not-zero constant

J = A (x) ρ (x)− 1

2

∂

∂x
[B (x) ρ (x)]

and the process xt admits a nonequilibrium stationary state with a nonzero current.

• the current is zero

A (x) ρ (x)− 1

2

∂

∂x
[B (x) ρ (x)] = 0 (4.3.6)

and the process xt admits an equilibrium stationary state. It satisfies the detailed balance
relation, that is the one just written. It is the equivalent of (2.2.6) for the jump processes.
In this case xt is a reversible process. Note that the detailed balance expression remind the
balance between two currents acting on a system: the first is deterministic and is produced
by an external force (for example the gravity), the second is stochastic and describes the
diffusion flux due to the external force that tends to restore the balance.

4.4 Average dynamics of xt

The best way of considering the moments of the process is using equation (4.1.4). In fact,

xn
t+dt = [xt + Ξ (dt; xt, t)]

n

Via the binomial formula,

xn
t+dt = xn

t +
n
∑

k=1

n!

(n− k)! k!
xn−k
t Ξk (dt; xt, t)

Taking the average value:

〈

xn
t+dt

〉

= 〈xn
t 〉+

n
∑

k=1

n!

(n− k)! k!

〈

xn−k
t Ξk (dt; xt, t)

〉

Now we want to evaluate the average value:

〈

xn−k
t Ξk (dt; xt, t)

〉

=

ˆ

S

dx

ˆ

S

dξ xn−kξk Π (ξ | dt; x, t)P (x, t | x0, t0)

〈

xn−k
t Ξk (dt; xt, t)

〉

=

ˆ

S

dx xn−k

[
ˆ

S

dξ ξk Π (ξ | dt; x, t)
]

P (x, t | x0, t0)

In the bracket there are the moments of the propagator:

〈

xn−k
t Ξk (dt; xt, t)

〉

=

ˆ

S

dx xn−kBk (x, t) dt P (x, t | x0, t0) +O (dt)
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Now we can solve the integral in dx since it is an average value:
〈

xn−k
t Ξk (dt;X (t) , t)

〉

=
〈

xn−k
t Bk (xt, t)

〉

dt+O (dt)

Therefore:
〈

xn
t+dt

〉

= 〈xn
t 〉+

n
∑

k=1

n!

(n− k)! k!

〈

xn−k
t Bk (xt, t)

〉

dt +O (dt)

Again if we know the propagator and its distribution we know also the process. Now we want to
consider some special cases:

4.4.1 Mean value

If we consider n = 1:
〈xt+dt〉 = 〈xt〉+ 〈Ξ (dt; xt, t)〉

where:

〈Ξ (dt; xt, t)〉 =
ˆ

S

dxΞ (dt; x, t)P (x, t | x0, t0)

We have conditioned on xt = x. Now we condition on the propagator Ξt (dt; x, t) = ξ:

〈Ξ (dt; xt, t)〉 =
ˆ

S

dx

[
ˆ

S

dξ ξΠ (ξ | dt; x, t)
]

P (x, t | x0, t0) =

ˆ

S

dxAt (x) dtP (x, t | x0, t0)+O (dt)

Finally:
〈xt+dt〉 = 〈xt〉+ 〈At (xt)〉 dt+O (dt)

Therefore, since dt is infinitesimal we can expand the process and get an incremental ratio:

d

dt
〈xt〉 = 〈At (xt)〉 (4.4.1)

as we expect the average value of the process is controlled by the deterministic contribution.

4.4.2 Correlation

By definition the covariance, or the two-times correlation function, is:

〈xt1 ; xt2〉 = 〈xt1xt2〉 − 〈xt1〉 〈xt2〉

If we take the time-derivative with respect to t2

d

dt2
〈xt1 ; xt2〉 =

d

dt2
〈xt1xt2〉 − 〈xt1〉

d

dt2
〈xt2〉

Using (4.4.1) we obtain:

d

dt2
〈xt1 ; xt2〉 =

d

dt2
〈xt1xt2〉 − 〈xt1〉 〈At2 (xt2)〉

Now we have to calculate the first average value. Consider equation (4.1.4) for xt2 and multiple it
by xt1 and take its average value. Then:

〈xt1xt2+dt2〉 = 〈xt1xt2〉+ 〈xt1Ξ (dt; xt2 , t2)〉
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Now we want to evaluate the last average value

〈xt1Ξ (dt; xt2 , t2)〉 =
ˆ

S

dx1

ˆ

S

dx2

ˆ

S

dξ x1 ξ P (x1, t1 | x0, t0)P (x2, t2 | x1, t1)Π (ξ | dt2; x2, t2)

We have to introduce two values of the process since the system must evolve from x0 to x1 then
from x1 to x2 and the from x2 to x2 + ξ.

〈xt1Ξ (dt; xt2 , t2)〉 =
ˆ

S

dx1 x1 P (x1, t1 | x0, t0)

ˆ

S

dx2

[
ˆ

S

dξ ξΠ (ξ | dt2; x2, t2)

]

P (x2, t2 | x1, t1)

Using the moments definition

〈xt1Ξ (dt; xt2 , t2)〉 =
ˆ

S

dx1 x1 P (x1, t1 | x0, t0)

ˆ

S

dx2At2 (xt2) dt2 P (x2, t2 | x1, t1) +O (dt2)

The last two integrals describe a compound average value. Therefore:

〈xt1Ξ (dt; xt2 , t2)〉 = 〈xt1At2 (xt2)〉 dt2 +O (dt2)

And then:
〈xt1xt2+dt2〉 = 〈xt1xt2〉+ 〈xt1At2 (xt2)〉 dt2 +O (dt2)

Dividing by dt2 and taking the limit dt2 → 0

d

dt2
〈xt1xt2〉 = 〈xt1At2 (xt2)〉 (4.4.2)

Finally:

d

dt2
〈xt1 ; xt2〉 = 〈xt1At2 (xt2)〉 − 〈xt1〉 〈At2 (xt2)〉

4.4.3 Variance

If we consider n = 2:
〈

x2
t+dt

〉

=
〈

x2
t

〉

+
〈

Ξ2 (dt; xt, t)
〉

+ 2 〈xtΞ (dt; xt, t)〉

We have already evaluated the last average value, therefore:
〈

x2
t+dt

〉

=
〈

x2
t

〉

+
〈

Ξ2 (dt; xt, t)
〉

+ 2 〈xtAt (xt)〉 dt+O (dt)

Now we want to evaluate:

〈

Ξ2 (dt; xt, t)
〉

=

ˆ

S

dxΞ2 (dt; x, t)P (x, t | x0, t0) =

ˆ

S

dx

ˆ

S

dξ ξ2Π (ξ | dt; x, t)P (x, t | x0, t0)

Again we can substitute the expression of the second moment:

〈

Ξ2 (dt; xt, t)
〉

=

ˆ

S

dxBt (x) dtP (x, t | x0, t0) +O (dt)

And therefore
〈

Ξ2 (dt; xt, t)
〉

= 〈Bt (xt)〉 dt+O (dt)
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And then:
〈

x2
t+dt

〉

=
〈

x2
t

〉

+ 〈Bt (xt)〉 dt+ 2 〈xtAt (xt)〉 dt+O (dt)

since dt is infinitesimal:
d

dt

〈

x2
t

〉

= 〈Bt (xt)〉+ 2 〈xtAt (xt)〉 (4.4.3)

To obtain the variance:
d

dt
V ar [xt] =

d

dt

[〈

x2
t

〉

− 〈xt〉2
]

= 〈Bt (xt)〉+ 2 〈xtAt (xt)〉 − 2 〈xt〉 〈At (xt)〉

d

dt
V ar [xt] = 〈Bt (xt)〉+ 2 [〈xtAt (xt)〉 − 〈xt〉 〈At (xt)〉] (4.4.4)

Note that using the moments we can know the average dynamics of the process. This is the
evidence of the propagator importance and a consequence of the Markov approximation.

4.4.4 Integral of the process

Usually it is interesting also to evaluate the integral of a process. For example:

yt = y0 +

ˆ t

0

xs ds

In which the process yt is determined by the update equation

yt+dt = yt + xt dt

But note that the update relation does not have the canonical Langevin form: its right side involves
not only yt but also xt. Therefore even if we know yt we cannot say anything about xt. Therefore,
yt by itself, although obviously continuous, is not a Markov process. But since xt and yt together
suffice to determine xt+dt and yt+dt, then the bivariate continuous process (xt, yt) is Markov. If we
consider the average value we can define an ordinary derivative:

d 〈yt〉
dt

= 〈xt〉 (4.4.5)

From which, using a classical integration we can obtain 〈yt〉. For the variance:

d

dt
V ar [yt] =

d 〈y2t 〉
dt

− 2 〈yt〉
d 〈yt〉
dt

=
d 〈y2t 〉
dt

− 2 〈yt〉 〈xt〉

To obtain the first average value we can take:

y2t+dt = y2t + 2ytxtdt+O (dt) (4.4.6)

We have considered terms up to order dt, because it is the limit of the update equation sensibility.
If we take the average value of (4.4.6)

d 〈y2t 〉
dt

= 2 〈ytxt〉+O (dt)

And finally:
d

dt
V ar [yt] = 2 〈ytxt〉 − 2 〈yt〉 〈xt〉 = 2 〈xt; yt〉

Note that we have considered only the average process, and therefore without the stochastic con-
tribution. To study the integral of processes without necessarily taking the average value we have
to introduce the stochastic integration, and we are going to do it in Section 6. In physics, consid-
ering the integral process is very important, an example could be the process vt that describes the
velocity of the probe and xt that describes its position.
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4.5 The Langevin equation

4.5.1 The Wiener process

The Fokker-Planck (4.3.1) is a differential equation for the probability of the process. Now we want
to obtain a differential equation for the continuous process itself. It is called Langevin equation
and it is complementary to the Fokker-Planck one.

Ξ (dt; xt, t) = dxt (dt; xt, t)

Therefore equation (4.1.4) becomes:

dxt (dt; xt) = xt+dt − xt

According to (4.2.6):
dxt (dt; xt) = At (xt) dt+

√

Bt (xt) dtN (0, 1)

The variation of the process is given by a deterministic contribution and by a randomly fluctuating
one. If we unify the last two equations:

xt+dt − xt = At (xt) dt+
√

Bt (xt) dtN (0, 1) (4.5.1)

Here xt and N (0, 1) are statistically independent. From (4.5.1) we can note that xt is continuous
but nowhere differentiable. In fact if we consider the limit dt → 0, then xt+dt → xt assuring the
continuity. While, if we consider:

xt+dt − xt

dt
= At (xt) +

√

Bt (xt)

dt
N (0, 1)

it is evident that, if B %= 0, the second term in the right-hand side is divergent in the limit dt → 0
and dxt

dt
does not exist. Due to the fluctuating term the Langevin equation is not an ordinary

differential equation, but it is a stochastic one. Now we are going to define a:

dWt = N (0, 1)
√
dt

where Wt is a stochastic process called Wiener process. It is a process with At (xt) = 0 and
Bt (xt) = 1. Its properties are:

• it is completely homogeneous

• 〈Wt〉 = x0

there is no exponential decay because there is no friction contribution

• its distribution is a Gaussian with zero mean and dt variance (with B = 1)

• V ar [Wt] = t− t0
this is equivalent to say that (dxt)

2 ∝ dt according to its diffusive nature

• dWt and xt are statistically independent
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As we have done for xt we can write dWt as an increment in dt:

dWt = Wt+dt −Wt ∼ N (0, dt) (4.5.2)

If we divide by dt:
xt+dt − xt

dt
= At (xt) +

√

Bt (xt)
dWt

dt

If we apply the limit dt → 0:

dxt

dt
= At (xt) +

√

Bt (xt) lim
dt→0

dWt

dt

Now we define the white noise form of the Langevin equation

lim
dt→0

dWt

dt
= ξt (4.5.3)

In this way we have defined a differential equation:

dxt

dt
= At (xt) + ξt

√

Bt (xt)

The white noise satisfies two properties:

• zero average value
〈ξt〉 = 0

• 〈ξt1ξt2〉 = δ (t1 − t2)

“White” means that the Fourier transform of the correlation function of the noise, or its spectral
density, is independent of frequency. Defining the white noise, we have formally escaped the
divergence of the stochastic term in the limit dt → 0. But nevertheless dxt

dt
cannot be formally

thought as a derivative. The reason why this derivative is not mathematical well-defined is because
it considers the variation of the process xt in an interval dt, but we know that the stochastic term
change is proportional to

√
dt. Therefore during the time in which we consider the incremental

ratio the process randomly evolves. Since dxt represents the variation of the process during an
infinitesimally small time interval we are going to work with the formally correct:

dxt = At (xt) dt+
√

Bt (xt) dWt (4.5.4)

Note that Bt (xt) describes the intensity of the random process fluctuations. Note that, due
the markovian nature of the Langevin equation, it is presented as a discrete increment of the
process value xt controlled by the parameter dt that describes the sensibility of the evolution. This
equation can naturally be numerically simulated without introducing other errors of computational
approximation. The only approximation is due to the Markovianity and to the dt finite size.

4.5.2 Considerations on the Langevin equation

4.5.2.1 Degrees of freedom reduction

The Langevin equation is an useful tool to study a stochastic system xt, since it derives from
Newton equation and it depends only on the system degrees of freedom. In fact if there would be
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also the degrees of freedom of the environment interacting with the system, the solution would be
much more difficult. Therefore, the obvious question is why can we exclude the environment degrees
of freedom? This procedure is called dynamics reduction and it is based on taking into account the
environment presence as a global interaction with the system. Therefore in the Langevin equation
there will be a term depending on the system degrees of freedom that takes into account all the
environment interaction, instead of a huge number of contributions. The basic idea is to consider
the presence of the system as a perturbation to the environment dynamics. Its response to that
perturbation will be a global contribution that does no longer depend on all the environment
degrees of freedom. We will develop it better in the following Sections.

4.5.2.2 Trajectories

If we consider a stochastic process xt during the interval [0, t], it defines a continuous path ω in the
set of states S. Evidently, the probability of an entire path is different from the probability Pt (x)
that we have introduced in the previous Sections. In fact, Pt (x) gives at any time the probability
of being in state x, but it does not take into account how the system arrives in x at t. The path
probability P (ω) must depend on all the states the system goes through during the time interval.
Evaluating this probability is very difficult and here we use the Markovian approximation. In
fact, if we suppose to divide the interval [0, t] in n subintervals of width dt, we could study each
increment with the Langevin equation. The probability of going from xt to xt+dt is given by the
Wiener process that is the stochastic contribution of the Langevin equation. Since the Wiener
process at time t is statistically independent by its values assumed in the previous times, we can
obtain the probability P (ω) multiplying all the contributions of order dt. We are going to explain
it better in the following Sections. Note that we have found the concept of trajectory also in the
jump processes. The difference is that now S is continuous and therefore the trajectory will no
longer be a discrete sequence of configuration, but indeed a continuous path.

4.5.2.3 Conclusions

In conclusion, the formalism of the continuous Markov process is the most useful to go beyond the
simplest systems, like nonequilibrium ones. We are interested in nonequilibrium systems for which
an invariant distribution does not exist because of an time-dependence in the dynamics. We have
studied it in the context of the jump processes. Now we want to study it in the context of the
diffusion processes. Since in the introduction to Langevin equation we have not had to make any
distinction, we expect that it is valid both for equilibrium and nonequilibrium systems. In fact,
the difference and all the physical meaning is in the two moments At (xt) and Bt (xt).

4.6 Stochastic integrals

In the last Section we have introduced the Langevin equation. It is not an ordinary differential
equation since there is a rapidly and irregularly fluctuating function of time. Therefore it cannot
be solved with the usual tools. Note also that the stochastic contribution is proportional to

√
dt

and, due to it, a time-derivative of the process cannot be defined as we have said in Section 4.5.1.
There are two ways to study the dynamics described by the Langevin equation:

• if we consider the average value of the process, the Langevin equation will become an ordinary
differential equation and we can solve it as we have done in Section 4.4.
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• starting from (4.5.4) we can introduce a stochastic integration that takes into account also
the fluctuating term.

Now we want to treat the second point introducing the stochastic integrals. First of all we want
to explain why they are different from the Riemann ones. Consider ft (xt), function of time and
space. For now xt is not a stochastic process. We want to evaluate the integral:

ˆ t

0

fs (xs) dxs

More correctly, it is a Riemann-Stieltjes integral since it depends on xs function of time but it can
be written easily as a Riemann integral:

ˆ t

0

ds fs (xs) ẋs

To solve this integral we subdivide the interval [0, t] in n subintervals. In each one the function
is constant and then it does not depend on which point it is evaluated along the subinterval.
Therefore, in the limit n → ∞, we approximate with rectangles the area under the curve defining
subintervals of width dt. Now suppose that xt is a stochastic process, for example:

dxt = At (xt) dt+
√

Bt (xt)dWt

First of all we cannot define ẋs because it is not an ordinary time-derivative. The process xt is
continuous but not differentiable. Furthermore, we can note that the first term is proportional to
dt, instead the second one is proportional to

√
dt. Therefore if we subdivide the interval [0, t] in

n subintervals, now the function is no longer constant in a subinterval, because the subinterval
has width dt in the limit n → ∞, but the process variation is proportional to

√
dt that is much

bigger than dt. The stochastic term changes too quickly to assume that the function is constant
in a subinterval. The diffusive nature of the process does not allow to define neither a velocity ẋt

nor an ordinary integration. Using (4.5.4):

(dxt)
2 =

(

At (xt) dt +
√

Bt (xt)dWt

)2
= (At (xt) dt)

2 +Bt (xt) (dWt)
2 + 2At (xt) dt

√

Bt (xt) dWt

(dxt)
2 = Bt (xt) (dWt)

2 +O (dt) = Bt (xt) dt+O (dt)

for the properties of the Wiener process. The increment of position is proportional to the square
root of the time, for this reason the process xt is called diffusive. Note that this result does
not depend on At (xt) and Bt (xt). A way to go beyond this difficulty is to introduce a process
dependence in the function. In this way also fs (xs) is stochastic and its values are probabilistically
determined by the Wiener process at time s. It is now evident that since the stochastic term can
change in a subinterval, the integration depends on the particular choice of the intermediate point
of each subinterval in which we evaluate the function. There are two possible choices:

Itô integral

If we evaluate the function at the beginning of the interval

ˆ t

0

fs (xs) dxs = lim
n→∞

n−1
∑

i=0

fti (xti)
(

xti+1 − xti

)

(4.6.1)
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where t0 = 0 and tn = t. This kind of integration is the most straightforward because it is
consistent with how we have defined the Langevin equation. Now we want to derive a property of
the Itô integration. Consider a function f = ∇g. Its Itô integral is:

ˆ t

0

∇gs (xs) dxs = lim
n→∞

n−1
∑

i=0

∇gti (xti)
(

xti+1 − xti

)

Consider the interval xti+1 − xti , and consider the function gt (xt) evaluated at the end of the
interval. Using a Taylor-expansion we can connect it to the Itô case. Then, up to contributions
O (dt):

gti+1

(

xti+1

)

= gti (xti) +
∂gti (xti)

∂t
(ti+1 − ti) +∇gti (xti)

(

xti+1 − xti

)

+
1

2
∇2gti (xti)

(

xti+1 − xti

)2

Note that:
(

xti+1 − xti

)2
= (dxti)

2

But we have seen that it is proportional to dt. Therefore:

gti+1

(

xti+1

)

= gti (xti)+
∂gti (xti)

∂t
(ti+1 − ti)+∇gti (xti)

(

xti+1 − xti

)

+
Bti (xti)

2
∇2gti (xti) (ti+1 − ti)

Then:

∇gti (xti)
(

xti+1 − xti

)

= gti+1

(

xti+1

)

−gti (xti)−
∂gti (xti)

∂t
(ti+1 − ti)−

Bti (xti)

2
∇2gti (xti) (ti+1 − ti)

If we substitute it in the Itô integral ignoring the O (dt) contributions:

ˆ t

0

∇gs (xs) dxs = lim
n→∞

n−1
∑

i=0

[

gti+1

(

xti+1

)

− gti (xti)−
∂gti (xti)

∂t
(ti+1 − ti)−

Bti (xti)

2
∇2gti (xti) (ti+1 − ti)

]

The first two terms in the right-hand side describe a telescopic series. In fact:

n−1
∑

i=0

gti+1

(

xti+1

)

− gti (xti) = gt1 (xt1)− gt0 (xt0) + gt2 (xt2)− gt1 (xt1) + . . .

n−1
∑

i=0

gti+1

(

xti+1

)

− gti (xti) = gt (xt)− gt0 (xt0)

Instead the other contributions are by definition Itô integrals. Therefore:
ˆ t

0

∇gs (xs) dxs = gt (xt)− gt0 (xt0)−
ˆ t

0

ds
∂gs (xs)

∂s
−
ˆ t

0

ds
Bs (xs)

2
∇2gs (xs)

Given that:

gt (xt)− gt0 (xt0) =

ˆ t

0

dgs (xs)

Finally we can write:

dgs (xs) = ∇gs (xs) dxs +
∂gs (xs)

∂s
ds+

Bs (xs)

2
∇2gs (xs) ds

This result is called Itô Lemma and it is useful to compute the stochastic differential of a function.
It is a kind of chain rule for the ordinary calculus in which the first two terms are the ones expected,
instead the last one is due to the diffusive nature of the process xs.
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Stratonovitch integral

If we evaluate the function in the middle point of the interval

ˆ t

0

fs (xs) ◦ dxs = lim
n→∞

n−1
∑

i=0

f ti+ti+1
2

(

xti + xti+1

2

)

(

xti+1 − xti

)

(4.6.2)

An interesting property of the Stratonovitch integral is its antisymmetry with respect to time
reversal, if the process only describes positions and not velocities. When velocities are involved,
we also have to reverse the signs of the velocities, and the Stratonovitch integral may not be time-
antisymmetric in this case. There is a connection between Itô and Stratonovitch integral. In fact,
consider the sum in (4.6.2), if we expand the function f around xti (that is the beginning of the
interval):

n−1
∑

i=0

[

fti (xti) +∇fti (xti)

(

xti+1 − xti

2

)

+ . . .

]

(

xti+1 − xti

)

Now in the bracket there are only Itô integrals. Again we can use (dxti)
2 ∝ dt. Therefore:

ˆ t

0

fs (xs) ◦ dxs =

ˆ t

0

fs (xs) dxs +
1

2

ˆ t

0

dsBs (xs)∇fs (xs) (4.6.3)

And if we consider again f = ∇g:

ˆ t

0

∇gs (xs) ◦ dxs =

ˆ t

0

∇gs (xs) dxs +
1

2

ˆ t

0

dsBs (xs)∇2gs (xs)

But we have seen:
ˆ t

0

∇gs (xs) dxs = gt (xt)− gt0 (xt0)−
ˆ t

0

ds
∂gs (xs)

∂s
−
ˆ t

0

ds
Bs (xs)

2
∇2gs (xs)

Therefore:
ˆ t

0

∇gs (xs) ◦ dxs = gt (xt)− gt0 (xt0)−
ˆ t

0

ds
∂gs (xs)

∂s
(4.6.4)

From mechanics we know that work should be equal to the integral over a path of the force times
the displacement. But in diffusion systems this definition does not completely specify work, as one
has to choose which stochastic integral to use. However, we also know that the work should be
antisymmetric under time-reversal. Because of this, the work performed by a force Ft (xt) during
ω is defined with a Stratonovitch integral.



Chapter 5

Diffusion processes

5.1 Equilibrium Brownian Motion

Now we want to use the continuous Markov processes theory for a particular case: the nonequi-
librium Brownian motion. Before doing it, we will present the equilibrium case to take confidence
with the formalism. Consider a probe with mass M and velocity vt at time t, it is embedded in an
equilibrium fluid of relatively small particles with mass m with which it can interact (M . m).
We are going to study its extension to nonequilibrium case (especially the not-stationary one).
To do it, we will use the formalism just introduced since the physical aspects depend on At (vt)
and Bt (vt). Therefore to consider a nonequilibrium system we only have to choose the correct
moments. Note that here we have written vt instead of xt since we want to study the velocity of
the probe as a stochastic process.

5.1.1 Langevin equation

The equilibrium Brownian motion is solution of the Fokker-Planck equation with:

A (vt) = −Mγvt B = 2Dv

The term −Mγvt is the frictional force the probe feels, with γ the friction coefficient. Eventually in
At there could be also a conservative potential, for the moment we suppose it zero. Indeed, when the
probe has a velocity, the interaction with particles is not balanced and the probe perceives a bigger
interaction in one direction. The net effect is equal to −Mγvt. The probe feels also a stochastic
interaction due to the thermal agitation of the particles that depends on the fluid temperature in
the mesoscopic description. The intensity of this interaction is given by the diffusion coefficient.
Note that the subscript v means that this diffusion coefficient is referred to the velocity. The
reason for it will be clear in the following. Therefore, the Langevin equation is:

Mdvt = −Mγvtdt+
√

2Dv ξtdt (5.1.1)

Note that ξt is a Gaussian random variable with variance
√
dt and it describes the white noise

perceived by the probe. Dv is the proportionality coefficient between the gradient of the probe
density and the current produced by it, therefore a question would be: if the system is at equilib-
rium, why are we talking about density gradient and current? The answer allows to understand
the meaning of the Langevin equation. It is the result of a perturbation theory. In fact, it describes
the motion of a probe in a system of particles, in this case, at equilibrium. Therefore the probe is

77
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a perturbation to the particles motion. Using the response to this perturbation we can evaluate
the properties of the probe motion as the friction and the diffusion coefficient that affect the probe
dynamics during the transient before the convergence to equilibrium. Since the response takes into
account all the particles, it can be thought as a macroscopic variable with respect to the particles
scale. We will describe it in Section 5.1.2 using a mesoscopic description.

5.1.1.1 Average dynamics

Now we want to study the average dynamics of the Langevin equation (5.1.1). We can proceed in
two ways.

• Using (4.4.1) and (4.4.3):
d

dt
〈vt〉 = −γ 〈vt〉

d

dt

〈

v2t
〉

=
2Dv

M2
− 2γ

〈

v2t
〉

And their solution is:
〈vt〉 = v0e

−γt

〈

v2t
〉

= v20e
−2γt +

Dv

M2γ

where v0 is the initial velocity of the probe. As we expect, since the fluid is at equilibrium,
in long-time limit the average velocity of the probe is zero and the square average tends
to a constant value. In other words, after a long time the probe is in equilibrium with the
fluid. This value is given by the physical nature of the equilibrium fluid that satisfies the
equipartition theorem. According to it:

〈

v2∞
〉

=
kBT

M

where T is the fluid temperature. From this result we conclude that Dv and γ satisfy the
relation:

Dv = γMkBT (5.1.2)

Therefore, according to it, the Langevin equation for the velocity:

dvt
dt

= −γvt +

√

2γkBT

M
ξt

Instead for the average value of the position we can use (4.4.5):

〈xt〉 =
v0
γ

(

1− e−γt
)

We note that in the long time limit the average position does not depend on time.

• If we do in (5.1.1) the substitution:
vt = e−γtφt

In this way we obtain a formal solution:

vt = v0e
−γt +

√

2γkBT

M

ˆ t

0

ds e−γ(t−s)ξs
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This procedure is more useful since we are also interested in the Langevin equation for the
probe position. In fact, from it we can obtain:

〈vt1vt2〉 =
kBT

M

(

e−γ|t2−t1| − e−γ(t1+t2)
)

+ v20e
−γ(t1+t2)

From which:
〈

x2
t

〉

=

ˆ t

0

dt1

ˆ t

0

dt2 〈vt1vt2〉 (5.1.3)

Solving these integrals:

〈

x2
t

〉

=
2kBT

Mγ
t +

kBT

Mγ2

(

4e−γt − 2e−2γt − 3
)

+
v20
γ2

(

e−γt − 1
)2

Note that in this equation there is also a constant term. Since we will consider the long-time limit,
this contribution is irrelevant compared to the one increasing with time. Differently by the average
value, the square average value is linear in time and it is proportional to a constant called position
diffusion coefficient that satisfies the Einstein-Smoluchowski relation:

Dx =
kBT

Mγ
(5.1.4)

If the fluid particles are hard spheres of radius R, the drag is γ = 6πηR, where η is the fluid
viscosity. These results are characteristic of the diffusive motion. From equation (5.1.3) we can
relate the diffusion coefficient Dx to the velocity fluctuation:

Dx = lim
t→∞

1

2

∂

∂t

ˆ t

0

dt1

ˆ t

0

dt2 〈vt1vt2〉

Solving the derivative:

Dx = lim
t→∞

1

2

[
ˆ t

0

dt2 〈vtvt2〉+
ˆ t

0

dt1 〈vt1vt〉
]

Since the two integrals are equivalent:

Dx = lim
t→∞

ˆ t

0

dt′ 〈vtvt′〉

There is a relation between Dx and Dv, it is:

Dx =
Dv

M2γ2
(5.1.5)

Under these considerations, equation (5.1.4) is known as the second fluctuation-dissipation theorem
for equilibrium systems. In fact it relates the friction that describes the energy dissipation and the
diffusion coefficient that describes the fluctuation of the process. In fact, if xt is the probe position
at time t:

〈

(xt − x0)
2〉 ∼

t→∞
2Dxt

Dx and γ are properties of the fluid in which the probe is embedded, they derive from average
values over the fluid dynamic and therefore they do not depend on particles position, they could



CHAPTER 5. DIFFUSION PROCESSES 80

depend on the probe position but in this case the Langevin equation for the probe will be no
longer (5.1.1) and the dynamics will be no longer of equilibrium. Equation (5.1.4) is valid only if
the fluid is at equilibrium since it is based on equipartition theorem. The Fokker-Planck equation
associated to this Langevin equation is:

∂Pt (v)

∂t
= γ

∂

∂v
(vPt (v)) +

Dv

M2

∂2Pt (v)

∂v2

This equation admits a stationary solution, and if we use (5.1.4), it is:

ρ (v) =

√

βM

2π
e−

βMv2

2

which is a Maxwellian distribution. To obtain this solution we have used the detailed balance
relation (4.3.6). Since this relation is valid only at equilibrium, or rather when the velocity is
distributed as a Maxwell-Boltzmann we can say that (5.1.4) is at equilibrium equivalent to the
detailed balance relation. Furthermore, if in (5.1.1) there would have been an external force,
the system could still have been of equilibrium. This is true if and only if the external force is
conservative. In this case in the Maxwell-Boltzmann distribution there would have been another
contribution depending on the potential that produces that force.

5.1.1.2 Over-damped limit

Consider the Langevin equation (5.1.1). Now, we consider a special situation. If the drag coefficient
γ is big enough, the magnitude of the friction force is much bigger than the magnitude of inertia
force:

∣

∣

∣

∣

γ (xt)
dxt

dt

∣

∣

∣

∣

.
∣

∣

∣

∣

M
d2xt

dt2

∣

∣

∣

∣

In other words we are considering the limit γ → ∞ and M → 0 with fixed product Mγ. Under
this condition we can ignore the acceleration term. Therefore:

dxt

dt
=

1

Mγ

√

2Dv ξt

Using (5.1.5) we obtain Dx. According to it the difference between Dx and Dv is evident: Dx is the
position fluctuation intensity, Dv is the velocity fluctuation intensity. By definition, the mobility
is

ν =
1

Mγ
(5.1.6)

It is possible to adopt the over-damped limit for both equilibrium or nonequilibrium dynamics.
We will use it many times in the following.

5.1.2 Equilibrium fluctuation-dissipation relation

As we have said at the end of the previous chapter the Langevin equation is the result of “integrating
out” the degrees of freedom of the environment surrounding the system. In the Section we will
derive, using equilibrium linear response theory, the Langevin equation for a probe embedded in a
equilibrium fluid of interacting particles. We want to describe the probe position with a Langevin
equation. To do this, we need to know how to ignore the particles degrees of freedom and then to
consider the reduced system. We want to find out:
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• the properties of the noise perceived by the probe.

• the expression of the friction in function of particles dynamics. This is also called second
fluctuation-dissipation theorem.

The treatment we will present in this Section is an extension for interacting particle of the Model
presented in Section 1.6 of Zwanzig’s book, [1] for independent particles.

5.1.2.1 Newton equations

We suppose that an external conservative force acts on the probe and that the interaction between
fluid and probe is harmonic (and therefore conservative). The external force can be written as a
potential V (xt) where xt is the position of the probe. We assume that x0 = y and V ′ (y) = 0.
Then y is the equilibrium position (in absence of interaction with the fluid) of the probe in the
long-time limit since it corresponds to the potential minimum. The fluid particles can interact with
each others and with the probe. Then the potential energy for the fluid must take into account
both contributions. Then, if we indicate with Xj

t the position of the j-th probe:

U (Xt, xt) =
∑

j<j′

Φ
(

Xj
t −Xj′

t

)

+
∑

j

ω2
j

2

(

Xj
t −

λj

ω2
j

xt

)2

where X = {Xj} is the set of all the particles coordinates, it is a N -dimensional stochastic process,
if N is the number of particles in the fluid. The energy is time-dependent due to the coupling with
the probe. This coupling modifies also the particles position Xj

t . Here λj is the coupling coefficient
of the j-th degrees of freedom with the probe (generally they can be different for each degree) and
ωj is the oscillation frequency of the j-th particle. We are adopting the weak coupling limit (it is
necessary for the linear response theory), therefore we are assuming the λj are small parameters.
Since the fluid is at equilibrium at temperature T , there is a thermal agitation perceived by the
particles, we are going to indicate it as ξjt . Therefore in a mesoscopic description the noise describes
the interaction with the environment surrounding the fluid.

Mẍt = −V ′ (xt)−
∂U (Xt, xt)

∂x

Ẍj
t = −γjẊ

j
t −

∂U (Xt, xt)

∂Xj
+
√

2γjkBT ξ
j
t

where γj is the friction for the j-th probe. For simplicity we assume m = 1. Since we assumed the
over-damped limit we have Ẍj

t = 0. Therefore we can rewrite the equation for the fluid particles
as:

Ẋj
t = − 1

γj

∂U (Xt, xt)

∂Xj
+

√

2kBT

γj
ξjt

The forces acting on the fluid particles are conservative, necessary condition to be at equilibrium.
Therefore if we take the derivative of the energy we get the equation

• for the probe:
Mẍt = −V ′ (xt)−

∑

j

λj

(

Xj
t − εjxt

)

(5.1.7)
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we have defined the parameter εj =
λj

ω2
j
. Since the coupling is weak, the εj is small for any

particle. The only case in which it could be big is when the frequencies are small, but the
time scale of the particles is much bigger than the probe one, therefore we are excluding this
case.

• for the fluid particles is:

Ẋj
t = −

∑

j<j′

1

γj
Φ′
(

Xj
t −Xj′

t

)

−
ω2
j

γj

(

Xj
t − εjxt

)

+

√

2kBT

γj
ξjt (5.1.8)

The first contribution between the j-th particle and all the others, the second is the interac-
tion with the probe and the third is its stochastic noise.

We will use the linear response to study how the particles react to the probe motion.

5.1.2.2 Expansion of energy

The time scale of probe dynamics is really slower than the particles one, due to the condition
M . m. After a probe position changing xt, the fluid has enough time to equilibrate before the
probe changes again its position. In this way, for each probe position, the fluid will be always at
equilibrium described by a Maxwellian distribution that will depend on xt at fixed time t. Then,
in the ensemble of the fluid, the probe position can be thought as a parameter. This situation is
due also the the weak coupling assumption since it lets us suppose the probe motion evolution will
not affect the fluid so much. Under these considerations, in the energy, the dependence on xt is
not meant as an evolution otherwise the fluid will not be at equilibrium, but as a fixed parameter.
Due to the masses condition and the weak coupling assumption (εj is small) it is reasonable that
the probe position will be close to y for each time. Therefore we can expand the energy around
x = y:

U (Xt, xt) , U (X, y) + (xt − y)
∂U (X, xt)

∂x
|xt=y

Here we are going to introduce time dependence of the x, but as we have said, it has been interpreted
as a fixed time parameter. For simplicity we are going to call:

−∂U (Xt, xt)

∂x
= g (Xt, xt) =

∑

j

λjX
j
t −

λ2
j

ω2
j

xt

The energy evaluated in xt = y is time-independent. We can expand the particles equation.

Ẋj
t = − 1

γj

∂U (X, y)

∂Xj

+ (xt − y)
1

γj

∂g (X, y)

∂Xj

+

√

2kBT

γj
ξjt +O (xt − y) (5.1.9)

due to the possibility of exchanging the derivatives with respect to X and x. Therefore:

Mẍt = −V ′ (xt) +
∑

j

λj

(

Xj
t − εjxt

)

(5.1.10)

Ẋj
t = −

∑

j<j′

1

γj
Φ′
(

Xj
t −Xj′

t

)

−
ω2
j

γj

(

Xj
t − εjy

)

+
λj

γj
(xt − y) +

√

2kBT

γj
ξjt (5.1.11)
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Now the first two contributions describe the motion of the particles: they oscillate around the
probe equilibrium position y interacting with the others. Instead the third term depends on the
probe and it represents the coupling. It can be thought as a small perturbation (small due to the
parameter λj). We are going to use the linear response theory to study the perturbation of the
probe on the particles.

5.1.2.3 Statistical ensemble

The energy is necessary to study the particles using statistical mechanics. In fact, consider the
macroscopic observable:

Xλ =
∑

j

λjX
j (5.1.12)

that takes into account all the particles. From energy expression:

g (X, y) =
∑

j

λj

(

Xj − εjy
)

= Xλ −
∑

j

λ2
j

ω2
j

y (5.1.13)

Therefore Xλ is the potential from which is defined the perturbation. As we know in the response
formula the potential appears rather then the perturbation. For the moment we are considering
the static case in which xt ≡ x. The g (X, xt) already appears in the Newton equation for the
probe via the derivative of energy with respect to x. Due to this contribution, the fluid dynamics
affects the probe one, but it is difficult to study it since it is stochastic via the fluid noise. For this
reason we are interested in its average value:

〈

Xλ
〉

=

´

dX e−βU(X,x)Xλ

´

dX e−βU(X,x)
=

1

Zx

ˆ

dX e−βU(X,x)Xλ

Obviously it depends on the probe position, it is like a parameter in the ensemble integration.
Only if xt is constant it is possible to define a partition function, otherwise the energy would be
time-dependent, and the fluid would be out of equilibrium. We will study the dynamic case using
the considerations about the difference between the two time scales presented at the beginning of
Section 5.1.2.2.

The g (X, y) can be interpreted as the potential perturbation to the dynamics of fluid and of
probe. It is small since it depends on λ. The dynamics not perturbed is the one in which the probe
is at equilibrium in y and the fluid’s particles oscillates around y interacting with each others.

5.1.2.4 Expansion of partition function

We can expand also the partition function:

Zx = Zy +
∂Z (X, x)

∂x
|x=y (x− y)

Then:
∂Z (X, x)

∂x |x=y

=
∂

∂x

[
ˆ

dX e−βU(X,x)

]

|x=y

=

ˆ

dX e−βU(X,y)β g (X, y)

Zx = Zy

[

1 + β 〈g (X, y)〉y (x− y)
]
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The average values 〈〉y are made with respect to Zy, here dX =
∏

j

dXj. Since we have x = y, we

obtain an average value with the equilibrium value of the parameter. Using (5.1.13):

Zx = Zy

[

1 + β
〈

Xλ
〉

y
(x− y)− β (x− y)

∑

j

λ2
j

ω2
j

y

]

And finally

1

Zx

, 1

Zy

[

1− β
〈

Xλ
〉

y
(x− y) + β (x− y)

∑

j

λ2
j

ω2
j

y

]

given that 1
1−ε

, 1 + ε. Instead, for the numerator
ˆ

dX e−βU(X,x)Xλ =

ˆ

dX e−βU(X,y)Xλeβg(X,y)(x−y)

Expanding the exponential to the first order
ˆ

dX e−βU(X,x)Xλ =

ˆ

dX e−βU(X,y)Xλ [1 + βg (X, y) (x− y)]

Using (5.1.13)

ˆ

dX e−βU(X,x)Xλ =

ˆ

dX e−βU(X,y)Xλ

[

1 + β

(

Xλ −
∑

j

λ2
j

ω2
j

y

)

(x− y)

]

ˆ

dX e−βU(X,x)Xλ =

ˆ

dX e−βU(X,y)Xλ + β (x− y)

ˆ

dX e−βU(X,y)
(

Xλ
)2 −

−β (x− y)
∑

j

λ2
j

ω2
j

y

ˆ

dX e−βU(X,y)Xλ

Therefore:

1

Zx

ˆ

dX e−βU(X,x)Xλ =

[

〈

Xλ
〉

y
− β

〈

Xλ
〉2

y
(x− y) + β

〈

(

Xλ
)2
〉

y
(x− y)

]

+O
(

β2
)

Finally:

1

Zx

ˆ

dX e−βU(X,x)Xλ =
〈

Xλ
〉

=
〈

Xλ
〉

y
+ βV ar

[

Xλ
]

y
(x− y) (5.1.14)

5.1.2.5 Kubo Formula

We want to know how the average value of Xλ will change under this perturbation. Given that
the fluid is at equilibrium we can use the Kubo formula:

〈At〉h − 〈At〉 = β

ˆ t

0

ds hs

d

ds
〈V (xs)A (xt)〉 (5.1.15)
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where hs is a small time dependent parameter that gives the intensity of the perturbation de-
scribed by the observable, potential perturbation. In 5.1.11 does not appear explicitly a potential
perturbation, but we can easily write it as:

Ẋj
t = −

∑

j<j′

1

γj
Φ′
(

Xj
t −Xj′

t

)

−
ω2
j

γj

(

Xj
t − εjy

)

+ (xt − y)
1

γj

∂

∂Xj

∑

j

λjX
j
t +

√

2kBT

γj
ξjt

In our situation:

hs = xs − y V (xs) = Xλ
s

given that the perturbation is g (X, xt). The reference process is the one with xt = y. Now the
observable Xλ depends on time. So:

〈

Xλ
t

〉

−
〈

Xλ
〉

y
= β

ˆ t

0

ds (xs − y)
d

ds

〈

Xλ
sX

λ
t

〉

y

There should be also the contribution of order λ2 in the g (X, xt), but in the product it would be
order λ4 and therefore we can ignore it. Note that we obtain the autocorrelation without changing
the equation, in fact:

d

ds

〈

Xλ
sX

λ
t

〉

=
d

ds

[

〈

Xλ
sX

λ
t

〉

y
−
〈

Xλ
s

〉

y

〈

Xλ
t

〉

y

]

+
d

ds

〈

Xλ
s

〉

y

〈

Xλ
t

〉

y

d

ds

〈

Xλ
sX

λ
t

〉

=
d

ds

〈

Xλ
s ;X

λ
t

〉

y
+
〈

Xλ
t

〉

y

d

ds

〈

Xλ
s

〉

y

The last derivative is zero, since the average value at the equilibrium does not depend on time.
Then:

〈

Xλ
t

〉

−
〈

Xλ
〉

y
= β

ˆ t

0

ds (xs − y)
d

ds

〈

Xλ
s ;X

λ
t

〉

y
(5.1.16)

5.1.2.6 Langevin Equation

If we integrate (5.1.16) by partial integration:

〈

Xλ
t

〉

−
〈

Xλ
〉

y
= β (xs − y)

〈

Xλ
s ;X

λ
t

〉

y
|t0 −β

ˆ t

0

ds ẋs

〈

Xλ
s ;X

λ
t

〉

y

Since x0 = y, we have:

〈

Xλ
t

〉

=
〈

Xλ
〉

y
+ β (xt − y)V ar

[

Xλ
t

]

y
− β

ˆ t

0

ds ẋs

〈

Xλ
s ;X

λ
t

〉

y

Now we can use (5.1.14). But it is valid only if xt is constant, otherwise is not possible to define a
partition function, instead in this case xt is a time-dependent stochastic process. Now we remind
the considerations introduced in Section 5.1.2.2. Since the probe time scale is much slower, it is
reasonable to assume that at each time the fluid relaxes to a new equilibrium characterized by
the value xt of the probe. Therefore we can define a equilibrium partition function for each time.
Practically we can add the subscript t in (5.1.14).
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1

Zxt

ˆ

dX e−βU(X,xt)Xλ
t =

〈

Xλ
〉

y
+ βV ar

[

Xλ
]

y
(xt − y)

In this context we can define:

Xλ
t =

〈

Xλ
t

〉

+ ηt (5.1.17)

where ηt measures the fluctuation of this average value and it describes the noise perceived by the
probe produced by all the particles. Now from (5.1.10):

Mẍt = −V ′ (xt) +Xλ
t −

∑

j

λ2
j

ω2
j

xt = −V ′ (xt) +
〈

Xλ
t

〉

+ ηt −
∑

j

λ2
j

ω2
j

xt

Now we can substitute the average value of Xλ expression:

Mẍt = −V ′ (xt) +
1

Zxt

ˆ

dX e−βU(X,xt)Xλ
t −

∑

j

λ2
j

ω2
j

xt − β

ˆ t

0

ds ẋs

〈

Xλ
s ;X

λ
t

〉

y
+ ηt

Now we want to calculate:

1

β

∂

∂x
lnZxt =

1

β

1

Zxt

ˆ

dX e−βU(X,xt)

(

−β
∂U (X, xt)

∂x

)

1

β

∂

∂x
lnZxt =

1

Zxt

ˆ

dX e−βU(X,xt)

(

Xλ −
∑

j

λ2
j

ω2
j

xt

)

=
1

Zxt

ˆ

dX e−βU(X,xt)Xλ
t −

∑

j

λ2
j

ω2
j

xt

Where the free energy
F (xt) = −kBT lnZxt

Finally:

Mẍt = −∂F (xt)

∂x
− V ′ (xt)− β

ˆ t

0

ds ẋs

〈

Xλ
s ;X

λ
t

〉

y
+ ηt (5.1.18)

that is the Langevin equation for the reduced dynamics. In fact we have eliminated integrating
out all the degrees of freedom related to the fluid.

5.1.2.7 Second F-D theorem

It is interesting to note that from Xλ
t =

〈

Xλ
t

〉

+ ηt we can obtain some information on the noise:

〈ηt〉 =
〈

Xλ
t

〉

−
〈

Xλ
t

〉

= 0

The mean in zero as we expect from a noise. Instead the correlation:

〈ηsηt〉 =
〈[

Xλ
s −

〈

Xλ
s

〉] [

Xλ
t −

〈

Xλ
t

〉]〉

=
〈

Xλ
s ;X

λ
t

〉

We have found a relation between the friction and the correlation over the perturbed average value,
but we can solve only the unperturbed ones. Using the smallness of λ we can approximate the
perturbed average values. This is easily understandable using linear response theory given that



CHAPTER 5. DIFFUSION PROCESSES 87

the perturbation depends on Xλ
t and, then, on λ. Therefore the correction would be of order λ3.

We can ignore it.

〈ηsηt〉 ,
〈

Xλ
s ;X

λ
t

〉

y
(5.1.19)

Since the integral in the Langevin equation depends on the velocity we can say that:

〈

Xλ
s ;X

λ
t

〉

y
= γ (t− s)

where γ (t− s) is the macroscopic friction perceived by the probe. Note that it does not depends
only on time t, therefore the integral term in (5.1.18) is not memoryless. We call it memory kernel.
Using (5.1.19) we obtain a relation between the friction and the noise:

β 〈ηsηt〉 = γ (t− s) (5.1.20)

that is the second fluctuation-dissipation relation for a system at equilibrium. Note that using
(5.1.4) we can derive the diffusion coefficient perceived by the probe. Therefore integrating out
the fluid degrees of freedom we know all the probe motion properties.

5.1.2.8 No interacting particles

The Langevin equation (5.1.18) is different from (5.1.1). Evidently in (5.1.18) there are also
conservative forces acting on the probe, but the most important difference is that the latter is not
memoryless. In fact the noise correlation is not a delta function as we would expect from a white
noise. Now we want to demonstrate that (5.1.1) is a not-interacting particles approximation of
(5.1.18). If we consider the expression of Xλ

t in (5.1.19) two sums over the particles appear.

〈ηsηt〉 ,
∑

j

∑

j′

λjλj′

〈

Xj
s ;X

j′

t

〉

y

Since the particles are interacting, the two sums are not independent. Suppose that there is
no interaction. In this case there is no correlation between different particles, therefore we can
eliminate one of the sum.

〈ηsηt〉 ,
∑

j

λ2
j

〈

Xj
s ;X

j
t

〉

y
(5.1.21)

At this level there are two ways in order to demonstrate that the correlation 〈ηsηt〉 is not zero
practically only if s = t:

• Consider equation (5.1.8) with xt = y and not interacting particles. If we calculate Xj
t as we

did in the second point of the Section 5.1.1.1. We obtain:

〈Xs, Xt〉y = e
−

ω2
j

γj
(t+s)

[

X2
0 − 2yX0

λj

ω2
j

+ y2
(

λj

ω2
j

)2

−

√

2kBT

γj

]

+

+

(

e
−

ω2
j

γj
s
+ e

−
ω2
j

γj
t

)(

yX0
λj

ω2
j

− y2
(

λj

ω2
j

)2
)

+ y2
(

λj

ω2
j

)2

+

(

2kBT

γj

)

e
−

ω2
j

γj
|s−t|

Note that the first two couples of terms go to zero exponentially fast if t %= s and the last
one is equal to the one found in Section 5.1.1.1. Note that there is also a constant term, but
it is of order λ2, therefore we can ignore it.
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• If the particles are not interacting all the average values in (5.1.21) are the same for all the
particles. If N is big the noise correlation is a sum of independent term equally distributed.
We can apply the central limit theorem and approximate the noise with a gaussian distri-
bution. This result in the weak coupling limit assures that there is no memory in the noise
correlation and using (5.1.20) we can obtain a memoryless friction kernel.

5.1.3 Mobility

From the model described in the previous Section we have understood that the Langevin equation,
that is based on the environment degrees of freedom reduction, is derived from the linear response
theory. The parameters that appear in the Langevin equation, the friction and the diffusion
coefficient perceived by the probe, are properties of the fluid, and not of the probe. Therefore if we
know how to integrate out the degrees of freedom of the environment we know everything about
the probe motion, even the mobility that is related to the friction via (5.1.6). But, is it actually
true? There is another way to derive the mobility of a particle, using the linear response theory.
Consider a process vt that describes the velocity of a probe particle embedded in an equilibrium
fluid. Suppose to add a constant force E acting only on the probe, for example an electric field if
the probe is electrically charged. The mobility is defined via:

ν =
∂

∂E
〈vt〉E (5.1.22)

where 〈〉E is the average value made the probability, solution of the Fokker-Plank equation with
also the constant force. This mobility definition is more intuitive and it is actually a property
of the particle since we perturb it in order to see how it responds to the perturbation. We can
demonstrate that this mobility is proportional to the friction that appears in the Langevin equation
using (5.1.1). In fact:

M
dvt
dt

= −Mγvt +
√

2Dv ξt + E

If we proceed as in Section 5.1.1.1, we obtain:

Mvt = Mv0e
−γt +

ˆ t

0

ds e−γ(t−s)
(

E +
√

2Dvξs

)

Taking the average value

〈vt〉E = v0e
−γt +

E

M

ˆ t

0

ds e−γ(t−s)

∂

∂E
〈vt〉E =

1

Mγ

(

1− e−γt
)

After few 1
γ

relaxing times the mobility converges to 1
Mγ

, that is the one due to the fluid, as we
expect. Nevertheless, this result is valid only at equilibrium. In fact if we consider a nonequilibrium
system the linear response formula is not the Kubo one, used in Section 5.1.2.5, but it depends
also on a frenetic term. Due to this contribution the mobility given by (5.1.22) is different from
the one given by the fluid. We are going to explain it better in the next Section. In conclusion we
present another definition of the mobility that will be more useful in the over-damped limit:
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ν = lim
t→∞

1

t

∂

∂E
〈xt〉E

It is equivalent, in fact using (5.1.1) in the over-damped limit:

dxt

dt
=
√

2Dx ξt +
E

Mγ

〈xt〉E = x0 +
E

Mγ
t

ν = lim
t→∞

1

t

∂

∂E
〈xt〉E =

1

Mγ

5.2 Nonequilibrium Brownian Motion

If we want to describe the motion of a probe in a nonequilibrium fluid we have to introduce an
external nonequilibrium force acting on the particles. Here the matter is much more difficult
because we want to consider the probe as a perturbation to a reference process that is out of
equilibrium. Evidently we need to obtain a Langevin equation for the fluid in contact with a
reservoir that depends on its external force and then we should use it to obtain a Langevin equation
for the probe. We are going to present the first step in Section 5.2.3 in which we will present the
Langevin equation for a nonequilibrium system embedded in an equilibrium fluid. After that, we
are going to study the second step in Section 6.

5.2.1 Going beyond equilibrium

For now, we are going to study how the Langevin equation and the moments change in a nonequi-
librium context. We will consider a generic system kept out of equilibrium interacting with the
environment. If we want to take the system out of equilibrium, we have to modify the deterministic
contribution. In fact we can imagine that an external and deterministic force Ft (xt) acting on
the system takes it out of equilibrium. Here we are assuming the force depends on time via the
process and explicitly. This is not necessary in order to describe nonequilibrium systems, but for
this treatment we consider the most general situation. If we want to consider a system with not-
constant temperature we would have to modify also the stochastic term, since the noise depends
on temperature. In contrast with the equilibrium case, now we suppose that the moments can
depend directly on time. Usually we are interested in a position-dependent force, for this reason
we define a new process xt that describes the probe position and that is related to vt by:

dxt = vtdt (5.2.1)

Since neither xt nor vt are differentiable, it is not possible to determine a time-derivative. Note
that if the force depends directly on time, it is no longer necessary that the force is not-conservative
to avoid the equilibrium case, since there cannot even exist a stationary distribution. Note that,
conceptually, it is similar to consider time-dependent transition rates for the jump processes.
Therefore the moments become:

At (xt, vt) = Ft (xt)−
∂U (xt)

∂x
−Mγvt
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B (xt) = 2Dv

We have supposed that the diffusion coefficient and the friction are still constant. Note that this is
not the most general case. In fact due to the external force they could be no longer constant. There
would be a diffusion gradient, in other words another external and deterministic force that should
appear in At (xt). If we assume that the friction and the diffusion coefficient are not-constant,
they can create interactions that are not found in the equilibrium process. We suppose that these
interactions are consequence of a nonequilibrium force Ft (xt). Therefore if Ft (xt) would be zero
the friction and the diffusion coefficient would be constant. Note that the friction and the diffusion
coefficient can be not-constant even if Ft (xt) = 0, but in this case the temperature must be not
constant.

5.2.2 Einstein-Smoluchowski relation

We have said that the Einstein-Smoluchowski relation is valid only at equilibrium with constant
diffusion coefficient and friction. Nevertheless to define B (xt) we have used it. In fact we can find
a generalization that is meaningful also if the fluid is out of equilibrium:

Dx (xt) =
kBT

Mγ (xt)
(5.2.2)

that is valid point by point (locally). This relation is a consequence of local detailed balance.
We have introduced it for jump processes and we have described it as the contact between the
mathematical transition rates and the physics. In fact we have shown that the ratio of making
a transition with respect to the opposite one depends on the entropic flux exchanged during
the transition. For the continuous Markov process there are no longer transition rates. Then,
to introduce the local detailed balance, we have to understand how to define the trajectories
probability and even the trajectories themselves. We are going to do it in the following.

But, for now we want to give an intuitive reason for the validity of (5.2.2). The local detailed
balance physical meaning is related to the thermodynamical way of describing nonequilibrium
systems. In fact if a system is out of equilibrium (for example because the temperature or the
pressure is not homogeneous) it can be thought as a sum of two or more subsystems each one
at equilibrium that weakly interacts with each other. Since each part of the system is detailed
balance, or rather, at equilibrium, the equilibrium relations like (5.1.4) are satisfied. Therefore we
can talk about local equilibrium with local equilibrium properties. In this way, we give a physical
meaning to the stochastic contribution in the Langevin equation for a nonequilibrium system.
The new Einstein-Smoluchowski relation is physically different from (5.1.4) because it is no longer
the second fluctuation-dissipation theorem. We will obtain a new expression for it, that will be
more complicated, in the last Section in which we are going to obtain an expression for the drag
coefficient γ (xt). Note that this is true only if the local detailed balance is valid. Otherwise a
correction to Einstein-Smoluchowski relation is necessary.

In order to obtain nonequilibrium we have said that it is not necessary a not-constant diffusion
coefficient and friction. Therefore a constant coefficients version of (5.2.2) exists. Even with
constant parameter the Einstein-Smoluchowski relation is not equal to the second fluctuation-
dissipation relation. In fact the mobility that appears in (5.2.2) is not the mobility of the system
described by the Langevin equation. The mobility is given by (5.1.22) via linear response theory,
but in a nonequilibrium regime the response formula depends also on the frenetic contribution.
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According to it, out of equilibrium the mobility is indeed a property of the probe and it cannot
be derived only by the environment. The interaction with the environment, according to the local
detailed balance, gives the entropy flux from the system to the environment. But it does not
say anything about the dynamical activity that gives its contribution only when the time-reversal
symmetry is broken.

Furthermore, equation (5.2.2) tells us another important aspect of nonequilibrium dynamics
satisfying local detailed balance: the diffusion coefficient and friction fates are related. Note that
the diffusive force does not depend directly on time. Instead the dependence on the process of
the friction is indeed a nonequilibrium aspect. Therefore we could have a system at equilibrium
with a diffusive force if the friction would be constant. But this is impossible because according
to (5.2.2) or they are both constant (equilibrium) or they are both not-constant (nonequilibrium).
In addition if the temperature is time-dependent, according to (5.2.2) the diffusion coefficient and
the friction must depend explicitly on time. The contrary is not true: if the diffusion coefficient
and friction explicit dependence on time is the same, it could be cancelled out causing a time-
independent temperature.

5.2.3 Langevin equation

In this Section we want to obtain a Langevin equation that describes a nonequilibrium system
interacting with an equilibrium environment under the local detailed balance assumption. In
Section 2.2.2 we have said that the local detailed balance could concern any of the three equilibrium
properties (thermal, chemical, mechanics). Therefore even if the temperature is constant, since
the nonequilibrium regime is produced by an external force, the local detailed balance must be
referred to the heat exchanged between system and environment due to the nonequilibrium force.
We suppose that the noise perceived by the system is Gaussian. Furthermore for simplicity we
will work in the over-damped limit. Under these considerations the required Langevin equation is
presented in [2]:

dxt =
1

Mγ (xt)
[Ft (xt)−∇U (xt)] dt+∇Dx (xt) +

√

2D (xt)dWt

We are considering the most general case with not-constant friction and diffusion coefficient. Since
the external force Ft (xt) continues to keep the system out of equilibrium we expect that there will
be no relaxation to equilibrium (in general not even to a nonequilibrium stationary state). Here we
require that the external force does not act on the environment degrees of freedom, otherwise the
fluid will be modified not also by the presence of the probe (that we consider as a perturbation)
but also by the external force. It is a necessary condition to determine the Langevin equation,
because the interaction with the environment degrees of freedom is in the noise term that as we
have said is obtained through the linear response theory. This condition is necessary only out
equilibrium, while at equilibrium only the assumption on the different time scales was necessary.
As the explanation about the nonequilibrium mobility this is a consequence of the frenetic term
that makes more difficult to understand the energy exchange between system and environment.

Since the dynamics of the system is detailed balance with the environment, there is a relation
between Dx (xt) and γ (xt) given by (5.2.2). If we introduce the mobility:

dxt = ν (xt) [Ft (xt)−∇U (xt)] dt+∇Dx (xt) dt+
√

2Dx (xt)dWt (5.2.3)

This is the Langevin equation for the over-damped limit. In this limit the velocity is proportional
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to the external force via the mobility. In this case we have eliminated a process from the equation,
therefore we can study it with (4.3.1). The Fokker-Planck equation associated to (5.2.3) is:

∂Pt (x)

∂t
= − ∂

∂x

[

ν (x)Ft (x)Pt (x)− ν (x)
∂U (x)

∂x
Pt (x) +

∂Dx (x)

∂x
Pt (x)−

∂Dx (x)Pt (x)

∂x

]

∂Pt (x)

∂t
= − ∂

∂x

[

ν (x)Ft (x)Pt (x)− ν (x)
∂U (x)

∂x
Pt (x)−Dx (x)

∂Pt (x)

∂x

]

Note that the inhomogeneity of the diffusion coefficient does not produce new terms in the Fokker-
Planck equation. According to (4.3.2) we have introduced the forward generator L+

t . Here Its
adjoint is called backward generator and it is an operator defined as:

Lt = ν (xt) [Ft (xt)−∇U (xt)] ·∇ +∇Dx (xt) ·∇+Dx (xt) ·∇2 (5.2.4)

Or analogously:
Lt = ν (xt) [Ft (xt)−∇U (xt)] ·∇+∇ (Dx (xt) ·∇)

Therefore the moments of the over-damped process are:

At (xt) = ν (xt) [Ft (xt)−∇U (xt)] +∇Dx (xt)

B (xt) = 2Dx (xt)

5.3 Entropy

The Langevin and Fokker-Planck equations are useful tools in order to study continuous stochastic
processes. In fact their structure does not change if we consider more difficult or more general situ-
ations. If we describe the position of a probe with the process xt we can describe both equilibrium
or nonequilibrium condition, we have only to modify the moments. But they are mathematical
equations and then, in order to make the models that we are going to describe with these equations
physically consistent, we have to introduce more physics in them. For this reason we will obtain
a stochastic entropy depending on the trajectories from the Langevin equation. The entropy is
the most useful physical instrument in order to study and understand nonequilibrium. Consider a
system that can interact thermally with the environment at constant temperature T . Generally,
such a system can be at equilibrium or out of equilibrium. A nonequilibrium system differs from
an equilibrium one for many aspects. Two of the most important are:

• it dissipates continuously energy to maintain the nonequilibrium condition.

• there is no longer invariance under time-reversal

Therefore we have to introduce a quantity that measures the amount of time-reversal breaking
starting from the trajectories.

Sµ (ω) = ln
Pµ (ω)

Pµt (θω)
(5.3.1)
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where θ is the time reversal operator acting on trajectories in the following way:

(θω)s = ωt−s

and µ is the initial distribution for process xs while µt is the initial distribution for the opposite
process xt−s. Sµ (ω) depends on the initial distribution µ and on the trajectory ω. We are interested
in the average values over all the trajectories starting from µ:

〈Sµ (ω)〉µ =

〈

ln
Pµ (ω)

Pµt (θω)

〉

µ

Now it is interesting to note:
〈

Pµt (θω)

Pµ (ω)

〉

µ

=

ˆ

S

dωPµ (ω)
Pµt (θω)

Pµ (ω)
〈

Pµt (θω)

Pµ (ω)

〉

µ

=

ˆ

S

dωPµt (θω) = 1

Because Pµt (θω) is a probability over the trajectories and it is normalized. Therefore:

〈

e−Sµ(ω)
〉

µ
=

〈

Pµt (θω)

Pµ (ω)

〉

µ

= 1

Now, if we use the Jensen inequality (due to the exponential convexity)

〈

e−Sµ(ω)
〉

µ
≥ e−〈Sµ(ω)〉µ

And finally:

〈Sµ (ω)〉µ ≥ 0

Under this consideration we can give a physical meaning to the amount of time-reversal breaking:
it is the entropy production during the time interval [0, t]. We are interested also in the entropy
production rate. In other words, the instantaneous average entropy production.

dSt

dt
= lim

t→0

1

t

〈

ln
Pµ (ω)

Pµt (θω)

〉

µ

If we consider again (5.3.1) we can separate the dependence on the initial distribution:

Sµ (ω) = ln
µ (x0)

µt (xt)

Px0 (ω)

Pxt (θω)

where x0 is the value assumed by the process at time t = 0 and xt is the one assumed at the end
of the trajectory. Then:

Sµ (ω) = ln
µ (x0)

µt (xt)
+ ln

Px0 (ω)

Pxt (θω)

If we take the average values:

〈Sµ (ω)〉µ =

〈

ln
µ (x0)

µt (xt)

〉

µ

+

〈

ln
Px0 (ω)

Pxt (θω)

〉

µ



CHAPTER 5. DIFFUSION PROCESSES 94

It is easy to note that the first contribution in the left-hand side is the Shannon entropy:

〈

ln
µ (x0)

µt (xt)

〉

µ

= −
[
ˆ

S

dxµt (x) lnµt (x)−
ˆ

S

dxµ (x) lnµ (x)

]

Now, if we consider the instantaneous entropy production this contribution becomes the Shannon
entropy change. Starting from the entropy production we have found two contributions, now we
want to give them a physical meaning. Consider a system that can interact thermally with the
environment at constant temperature T . In order to study it, we can define two entropies:

• system entropy (diS): this contribution describes the entropy change in the system. Statis-
tically it is represented by the Shannon entropy via the process probability Pt (x):

Si (t) = −
ˆ

dxPt (x) lnPt (x) (5.3.2)

We have already explained why the system entropy can be described by the Shannon entropy
in Section 2.2.1. Therefore the system entropy corresponds to the first contribution found
from (5.3.1).

• environment entropy (deS): this contribution describes the entropy flux from the system to
the environment. Evidently if the system is isolated this contribution is zero. According
to what we have said we expect that the environment entropy is described by the second
contribution in (5.3.1). A priori this is not evident, we are going to demonstrate it in the
following Section with the local detailed balance assumption.

Summing them we can define the total change of entropy that we have called entropy production:

dS

dt
=

diS

dt
+

deS

dt

What we have said about entropy is equivalent to (2.2.9) as we expect. Note that all these entropies
are adimensional.

5.3.1 Stationarity

A system is in a stationary condition if its probability Pt (x) does not depend on time. But this
is a mathematical definition. A possible physical definition is by the time-independence of the
physical quantities (i.e. currents and entropy). A stationary condition can be of equilibrium or
nonequilibrium, but this distinction is not completely evident from the Fokker-Planck equation.
In fact stationarity condition implies that the current must be constant, but the constant can
be arbitrarily zero or not. Now we are going to explain the distinction between equilibrium or
nonequilibrium stationarity using the entropy. First of all we note that the equilibrium state for
a system is unique because it derives from imposing the maximum entropy condition. Instead
there could exist more than one nonequilibrium stationary states with different entropy values.
According to (5.3.2) the change of system entropy is:

dSi (t)

dt
= −
ˆ

dx
dPt (x)

dt
lnPt (x)−

ˆ

dx
dPt (x)

dt
= −
ˆ

dx
dPt (x)

dt
lnPt (x)

Using the probability conservation the last term is zero. Then:
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dSi (t)

dt
= −
ˆ

dx
dPt (x)

dt
lnPt (x)

It is evident that if:

dPt (x)

dt
= 0 =⇒ dSi (t)

dt
= 0

This condition says that all the entropy produced by the system goes away from the system. But
it does not tells if this entropy is zero or not. If the system is isolated this condition is sufficient
to assure the equilibrium. But in general we have to consider the entropy flux that goes away
from the system. If it is zero the system is at equilibrium with the environment and the total
entropy does not change (the system has reached the maximum value of entropy), otherwise it is
in a nonequilibrium stationary state and the total entropy changes due to the environment entropy
change. Therefore the key is to find the environment entropy expression.

Se (ω) = ln
Px0 (ω)

Pxt (θω)
(5.3.3)

Evidently if the two probabilities are equal, the process is invariant under time reversal and the
system satisfies detailed balance relation (4.3.6). Equation (5.3.3) depends on the trajectory, for
this reason we will take the average value over all the trajectories with initial distribution µ.
Furthermore this result gives the average entropic flux during the interval [0, t], therefore if we
divide it by t and we take the limit t → 0 we obtain an instantaneous average entropy:

deS (t)

dt
= lim

t→0

1

t

〈

ln
Px0 (ω)

Pxt (θω)

〉

µ

5.3.1.1 Equilibrium or nonequilibrium

Now we want to determine Px0 (ω). Consider the Langevin equation:

Mdvt = F (xt) dt−Mγvtdt+
√

2Dv dWt

To have a stationary state the external force must not depend directly on time. This equation
is an update relation that describes the evolution of the process for each infinitesimal interval dt.
All the terms that appear in the Langevin equation are deterministic except for the white noise.
In (4.5.3) we have defined the noise, therefore we can obtain from it the Wiener process dWt.
The equation (5.3.8) is an update relation that describes the evolution of the process for each
infinitesimal interval dt. Evidently, it is in analogy with the sequence of configuration for the jump
processes. Therefore the probability of going from xt to xt+dt and from vt to vt+dt during dt

P (xt+dt, vt+dt | vt, xt) dxtdvt

is determined by:

dWt =
1√
2Dv

[Mdvt − F (xt) dt+Mγvtdt]

Now we can use (4.5.2). We know that the Wiener process follows a Gaussian distribution:

P (dWt) =
1

N
e−

(dWt)
2

2dt
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where N is a normalization constant. If we substitute the expression of dWt:

P (dWt) =
1

N
e−L(vt,xt,dvt)dvtdxt

where:

L (xt, vt, dvt) =
1

4Dvdt
[dvt − F (xt) dt+ γvtdt]

2

Or equivalently

L (xt, vt, dvt) =
dt

4Dv

[

M
dvt
dt

− F (xt) +Mγvt

]2

P (dWt) describes only the probability during the infinitesimal time dt. If we subdivide the time
interval [0, t] in n infinitesimally small time intervals dt we can describe the probability of the
trajectory ω using the probability over each subinterval dt. Here we have to introduce Markov
approximation. In this way, as we have done for the jump processes, the probability Pµ (ω) is
given by a product of probabilities P (dWt). As a consequence of the product we obtain a sum in
the exponential of all the small contributions along the trajectory. Therefore:

Px0 (ω) =
1

Nn
exp







− 1

4Dv

n−1
∑

i=0

[

M

(

vti+1 − vti
)

dt
− F (xti) +Mγvti

]2

dt







(5.3.4)

By definition of Itô integral we can write:

Px0 (ω) =
1

N
exp

{

− 1

4Dv

ˆ t

0

[Mv̇s − F (xs) +Mγvs]
2 ds

}

where N is a new normalization coefficient obtained in the limit n → ∞. If we make explicit the
square:

Px0 (ω) =
1

N exp

{

− 1

4Dv

ˆ t

0

[

(Mv̇s)
2 + F (xs)

2 + (Mγvs)
2 + 2M2γvsv̇s

]

ds

}

·

· exp
{

− 1

4Dv

ˆ t

0

[−2F (xs)Mv̇s − 2F (xs)Mγvs] ds

}

We can rewrite it as:

Px0 (ω) =
1

N exp

{

− 1

4Dv

ˆ t

0

[

(Mv̇s)
2 + F (xs)

2 + (Mγvs)
2 − 2F (xs)Mv̇s

]

ds

}

·

· exp
{

− 1

4Dv

ˆ t

0

2M2γvsdvs +
1

4Dv

ˆ t

0

2F (xs)Mγdxs

}

Since we are interested in studying the time symmetry, we have to pass from Itô to Stratonovitch
integral using (4.6.3). Evidently all the integrals are ds are time symmetric. Instead:

1

4Dv

ˆ t

0

2M2γvsdvs =
1

4Dv

ˆ t

0

2γM2vs ◦ dvs −
γM2

2

ˆ t

0

ds
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For the last integral in dxs:

1

4Dv

ˆ t

0

2MF (xs) γdxs =
1

4Dv

ˆ t

0

2MγF (xs) ◦ dxs −
Mγ

2

ˆ t

0

∇F (xs) ds

We can therefore rewrite the trajectory probability:

Px0 (ω) =
1

N exp

{

− 1

4Dv

ˆ t

0

[

(Mv̇s)
2 + F (xs)

2 + (Mγvs)
2 − 2

F (xs)

M
v̇s − 2DvγM

2

]

ds

}

·

· exp
{

γM

2

ˆ t

0

∇F (xs) ds

}

· exp
{

−βM

2

ˆ t

0

vs ◦ dvs +
β

2

ˆ t

0

F (xs) ◦ dxs

}

We have also used (5.1.2). Now we want to consider the opposite trajectory. The θω initial time
is obviously 0. But if we want to refer xt−s to xs evidently the initial time will be t. Therefore
the first time interval of width dt is tn−1 − tn. It is evident that if we gather a minus for all
the contributions xti+1 − xti we can obtain the first term in (5.3.4). The difference xti+1 − xti is
antisymmetric under time reversal. This is not true for the difference vti+1 −vti because we have to
take into account that if we reverse the trajectory also the velocity values must change. Therefore
this difference is time-symmetric.

Pxt (θω) =
1

N exp

{

− 1

4Dv

ˆ t

0

[

(Mv̇s)
2 + F (xs)

2 + (Mγvs)
2 − 2

F (xs)

M
v̇s − 2DvγM

2

]

ds

}

·

· exp
{

−γM

2

ˆ t

0

∇F (xs) ds

}

· exp
{

βM

2

ˆ t

0

vs ◦ dvs −
β

2

ˆ t

0

F (xs) ◦ dxs

}

We can say that the integral in dxs is antisymmetric just because we have considered the Stratonovitch
interpretation, in fact the force in each subinterval [ti, ti+1] is evaluated in the middle point. Then,
only the last term has changed sign, in fact the force does not change if we invert the time. If we
consider the ratio of Px0 (ω) over Pxt (θω) we obtain:

Px0 (ω)

Pxt (θω)
= exp

{

β

ˆ t

0

F (xs) ◦ dxs − βM

ˆ t

0

vs ◦ dvs
}

By definition (5.3.3):

Se (ω) = β

ˆ t

0

F (xs) ◦ dxs − βM

ˆ t

0

vs ◦ dvs

The entropy flux depends on two terms. The first can be seen as the work made by the external
force. The second one, instead, given the kinetic energy difference of the system between the initial
and the final step of the trajectory. It is a boundary term that depends only on the vt and v0,
therefore choosing the trajectory it could be zero. Therefore the external force is the responsible
of time-reversal symmetry breaking. Now we want to consider some cases:

• If F (xs) = 0, the entropy flux is zero and therefore the system is at equilibrium. This
is meaningful because this case coincides with the Ornstein-Uhlenbeck process in the over-
damped limit. We can conclude that:

Px0 (ω) = Pxt (θω)
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There is no time-reversal symmetry breaking and the probability Pt (x) satisfies detailed
balance (4.3.6) from the Fokker-Planck equation. Evidently if we have to consider a trajectory
that produces a change in the kinetic energy, there would be a not-zero entropy flux. But
only the average entropy flux has a physically meaning. If we take the average values we
have to take into account all the trajectories and surely there would be one that produces
the opposite change in the kinetic energy. Therefore if F (xs) = 0 then 〈Se (ω)〉µ = 0.

• if F (xs) = −∇U (xs) is a conservative force, then:

Se (ω) = −β

ˆ t

0

∇U (xs) ◦ dxs − βM

ˆ t

0

vs ◦ dvs = −β [U (xt)− U (x0)]−
βM

2

[

v2t − v20
]

The entropy flux depends only on the initial and final value of the potential (and of the
kinetic energy). Evidently if we consider U (xt) = U (x0), the entropy flux will be zero and
the system will be at equilibrium. Note that it is in agreement with Fokker-Planck equation.
If the external force in the moment A (xt) can be written as a potential the stationary
equation is solved by a Maxwell-Boltzmann solution. This is not a sufficient condition to
assure equilibrium, but it becomes sufficient if F (xs) is a conservative force.

• If F (xs) is not a conservative force generally we can write it as the sum of a conservative
contribution and a nonconservative one. Therefore using (4.6.4):

Se (ω) = −β

ˆ t

0

[−∇U (xs) +W (xs)] ◦ dxs − βM

ˆ t

0

vs ◦ dvs

Se (ω) = −β [U (xt)− U (x0)]−
βM

2

[

v2t − v20
]

+ β

ˆ t

0

W (xs) ◦ dxs

The first contribution is the system energy change due to the external force, the second one
is always the change in kinetic energy, instead the integral (that is antisymmetric since it
is in the Stratonovitch sense) describes the work made on the system by the environment.
As we can expect Se (ω) is, via the first principle of thermodynamics, the heat exchanged
from the system to the environment multiplied by β. The nonequilibrium force does not act
directly on the environment degrees of freedom, instead it acts indirectly due to the energy
exchange via the entropy flux.

We want to treat the case in which F (xs) = F . A constant force can be derived by a linear
potential and therefore it is conservative, but it is not always true, it depends on the kind of
system we are describing. For example if we consider the diffusion on a circle, F cannot be a
conservative force due to the fact that the manifold (S1) is not simply connected. In this case
the entropy flux is not zero and we are considering a nonequilibrium stationary state with entropy
flux:

Se (ω) = βF

ˆ t

0

dxs = βF (xt − x0)

In fact, if we consider, as a trajectory, a whole circle the entropy flux would be 2βFπ. Note that
this is strictly due to the manifold S1. For example we consider as constant force the gravity acting
on a probe in a box filled by particles. We expect that the probability of finding the particles at the
bottom of the box will be greater. According to the current expression there will be a diffusion force
proportional to probability gradient that tends to equilibrate the probability through a stochastic
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current from the bottom to the top. In the long-time limit these two contributions tend to balance
each others assuring equilibrium and then, no entropic flux. In this example we have supposed that
the external force acts on the probe will not affect the fluid dynamics. As we have said this is an
important requirement. Physically, it is reasonable that the gravity does not act on the particles
because the probe mass is much bigger than the particles one (M . m).

5.3.2 Entropy flux and local detailed balance

In this Section we demonstrate that (5.2.2) is a consequence of assuming local detailed balance
validity. We will proceed in the same way explained in the previous Section, but now we are
considering a Langevin equation like

dxt = νt (xt) [Ft (xt)−∇U (xt)] dt+∇Dt (xt) dt+
√

2Dt (xt)dWt

The probability of going from xt to xt+dt during dt

P (dWt) =
1

N
e−

(dWt)
2

2dt

where N is a normalization constant. If we substitute the expression of dWt:

P (dWt) =
1

N
e−L(xt,dxt)dxt

where:

L (xt, dxt) =
dt

4Dt (xt)

[

dxt

dt
− νt (xt) [Ft (xt)−∇U (xt)]−∇Dt (xt)

]2

P (dWt) describes only the probability during the infinitesimal time dt. If we subdivide the time
interval [0, t] in n infinitesimally small time intervals dt we can describe the probability of the
trajectory ω using the probability over each subinterval dt. Since the dynamics is Markovian the
probability Px0 (ω) is given by a product of probabilities P (dWt) over each independent subinterval.
As a consequence of the product we obtain a sum in the exponential of all the small contributions
along the trajectory.

Px0 (ω) =
1

Nn
exp−







n−1
∑

i=0

1

4Dti (xti)

[

(

xti+1 − xti

)

dt
− νti (xti) [Fti (xti)−∇U (xti)]−∇Dti (xti)

]2

dt







(5.3.5)
By definition of Itô integral

Px0 (ω) =
1

N exp

{

−
ˆ t

0

ds
1

4Ds (xs)
[ẋs − νs (xs) [Fs (xs)−∇U (xs)]−∇D (xs)]

2

}

(5.3.6)

where N is a new normalization constant. Since we are going to consider only the ratio of proba-
bilities of trajectories we are not interested in finding N . We are interested in studying the time
symmetry, then we have to pass from Itô to Stratonovitch integral. Using (4.6.3):

Px0 (ω) =
1

N exp

{
ˆ t

0

dxs ◦
νs (xs)

2Ds (xs)

[

Fs (xs)−∇U (xs) +
∇Ds (xs)

νs (xs)

]}

exp

{
ˆ t

0

dsGs (xs)

}
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we can separate the integral in one antisymmetric under time reversal contribution plus a symmetric
one depending on Gs (xs) function of time and of the process. We do not need to write explicitly
the Gs (xs) since in the ratio of probabilities this contribution cancels out. Now we consider the
opposite trajectory. The θω initial time is obviously 0. But, if we want to refer it to the trajectory
ω, evidently the initial time will be t. Therefore the first time interval of width dt is tn−1 − tn.
It is evident that if we gather a minus for all the contributions xti+1 − xti we can obtain the first
term in (5.3.5). The difference xti+1 − xti is antisymmetric under time reversal.

Pxt (θω) =
1

N
exp

{

−
ˆ t

0

dxs ◦
νs (xs)

2Ds (xs)

[

Fs (xs)−∇U (xs) +
∇Ds (xs)

νs (xs)

]}

exp

{
ˆ t

0

dsGs (xs)

}

If we consider the ratio:

Px0 (ω)

Pxt (θω)
= exp

{
ˆ t

0

dxs ◦
νs (xs)

Ds (xs)

[

Fs (xs)−∇U (xs) +
∇Ds (xs)

νs (xs)

]}

(5.3.7)

If local detailed balance is satisfied, the logarithm of 5.3.7 must be equal to the entropy flux Se (ω)
from the system to the environment along the trajectory ω. Therefore in the exponential there
must be forces divided by kBT . Therefore:

Se (ω) =

ˆ t

0

dxs ◦ βs

[

Fs (xs)−∇U (xs) +
∇Ds (xs)

νs (xs)

]

This implies the validity of (5.2.2).

5.3.3 Entropy excess

5.3.3.1 Beyond stationarity

A nonequilibrium system dissipates continuously energy to maintain the nonequilibrium condition.
In fact the energy to keep the system out of equilibrium is supplied by an external force as work
made on the system. During the time-interval [0, t] the energy input in the system is:

Wt =

ˆ t

0

Fs (xs) ◦ dxs

This energy will cause an entropy production into the system that we are going to call dS. Evidently
this contribution is irreversible and therefore it breaks the time-reversal symmetry of the system. It
corresponds to (5.3.1). An obvious question would be: where does the energy given to the system
go? The answer is heat exchanged from the system to the environment. This heat divided by the
temperature produces an entropic flux deS. Is this contribution representing all the energy input
in the system? Generally it does not, but this question gives origin to an important distinction for
nonequilibrium systems:

• if the entropic flux balances the entropy production the system is in a stationary condition.
All the entropy produced is taken out of the system and the system entropy does not change
in time:

diS

dt
= 0

deS

dt
> 0

The stationary state is a particular regime in which there is no dependence on time as in
equilibrium, therefore there is invariance under time-translations. But, nevertheless there is
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no time-reversal symmetry due to irreversible entropy production and to the currents. In
this case all the energy input into the system will go out as heat exchange and it increases
the environment entropy.

• if the entropic flux does not balance the entropy production the system we cannot talk about
a stationary condition. The system continues to evolve with increasing time and therefore
there is no invariance under time translations. It is evident that since not all the energy put
in the system goes out in the form of entropic flux there will be a variation in the system
energy according to the first principle of thermodynamics. But it could be even more difficult,
for example the excess energy could be used for chemical reactions or phase transitions.

This distinction will be the starting point. In fact, the stationary state has already been studied.
In contrast, what happens far from the stationarity is almost unknown. Therefore, using a Markov
process, we are going to study some properties of the not-stationary dynamics because, as we have
said, the physical opportunities are numerous. We are going to start from the entropic aspect.
We are interested in evaluating the entropy variation due to the presence of an external force in
a system at equilibrium. The way of proceeding is to refer the dynamics with the force to one
without the force and it is similar to what we have done in the last Section. In this Section we will
also demonstrate that (5.2.2) is a consequence of local detailed balance condition for the entropy
flux.

5.3.3.2 Trajectories probability

The starting point is the Langevin equation in the over-damped limit with the external nonequi-
librium force:

dxt = ν (xt) [Ft (xt)−∇U (xt)] dt+∇Dx (xt) dt+
√

2Dx (xt)dWt (5.3.8)

Now the temperature is constant. We are interested in the entropy production due to the external
force Ft (xt) that brings the system out of equilibrium. In fact we suppose that the initial system
is at equilibrium and at time t = 0 the external force starts to act on the system. The energy input
into the system by the environment divided by its temperature is not generally the flux entropy
from the environment to the system (in other words there is no stationary condition). Therefore
we are interested in finding the entropy flux expression. Generally at equilibrium there could be
also an external conservative force produced by the potential U (xt). The probability of going from
xt to xt+dt during dt is determined by:

dWt =
1

√

2Dx (xt)
[dxt − ν (xt) [Ft (xt)−∇U (xt)] dt−∇Dx (xt) dt]

As we have done we can define the P (dWt) with

L (xt, dxt) =
dt

4Dx (xt)

[

dxt

dt
− ν (xt) [Ft (xt)−∇U (xt)]−∇Dx (xt)

]2

As we have done in the previous Section we can obtain Pµ (ω):

Px0 (ω) =
1

Nn
exp







−
n−1
∑

i=0

1

4Dx (xti)

[

(

xti+1 − xti

)

dt
− ν (xti) [Fti (xti)−∇U (xti)]−∇Dx (xti)

]2

dt







(5.3.9)
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By definition of Itô integral:

Px0 (ω) =
1

N exp

{

−
ˆ t

0

ds
1

4Dx (xs)
[ẋs − ν (xs) [Fs (xs)−∇U (xs)]−∇Dx (xs)]

2

}

(5.3.10)

Since we are going to consider only the ratio of probabilities of trajectories we are not interested
in finding N . We can rewrite the exponential argument expanding the square:

Arg [xs] =

ˆ t

0

ds
ẋ2
s + ν2 (xs) [Fs (xs)−∇U (xs)]

2 + (∇Dx (xs))
2 + 2ν (xs)Fs (xs)∇Dx (xs)

4Dx (xs)
−

−
ˆ t

0

ds
2ν (xs)∇U (xs)∇Dx (xs)

4Dx (xs)
−
ˆ t

0

dxs
ν (xs)

Dx (xs)

[

Fs (xs)−∇U (xs) +
∇Dx (xs)

ν (xs)

]

Here we can use (5.2.2):

Arg [xs] =

ˆ t

0

ds

[

ẋ2
s + ν2 (xs) [Fs (xs)−∇U (xs)]

2 + (∇Dx (xs))
2]

4Dx (xs)
+

β

2

ˆ t

0

ds Fs (xs)∇Dx (xs)−

−β

2

ˆ t

0

ds∇U (xs)∇Dx (xs)−
β

2

ˆ t

0

dvs ẋs

[

Fs (xs)−∇U (xs) +
∇Dx (xs)

ν (xs)

]

5.3.3.3 Action

Now we want to compare this probability to the one for the equilibrium dynamics; in other words,
when F = 0. For the equilibrium dynamics as P0

x0
(ω):

P0
x0
(ω) =

1

N exp

{

− 1

4Dx

ˆ t

0

ds [ẋs + ν∇U (xs)]
2

}

At equilibrium condition we have to assume D and ν constant. Also for P0
µ (ω) we can rewrite the

exponential argument:

P0
x0
(ω) =

1

N exp

{

− 1

4Dx

ˆ t

0

ds
[

ẋ2
s + (ν∇U (xs))

2]
}

· exp
{

− ν

2Dx

ˆ t

0

ds ẋs∇U (xs)

}

If we use (5.1.4):

P0
x0
(ω) =

1

N
exp

{

− 1

4Dx

ˆ t

0

ds
[

ẋ2
s + (ν∇U (xs))

2 + 2ẋsν∇U (xs)
]

}

·exp
{

−β

2

ˆ t

0

ds ẋs∇U (xs)

}

Now if we consider the ratio there are some terms equal in both probabilities of trajectories that
can be cancelled out. Therefore:

Pµ (ω)

P0
µ (ω)

= exp

{
ˆ t

0

ds ẋs

[

∇D (xs)

ν (xs)
+ Fs (xs)

]

−
ˆ t

0

dsGs (xs)

}

where:

Gs (xs) =
ẋ2
s + ν2 (xs) [Fs (xs)−∇U (xs)]

2 + (∇Dx (xs))
2

4Dx (xs)
+
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+
2ν (xs) [Fs (xs)−∇U (xs)]∇Dx (xs)

4Dx (xs)
− ẋ2

s + (ν∇U (xs))
2

4Dx

Now we can define the action A (ω) as:

Pµ (ω)

P0
µ (ω)

= e−A(ω) (5.3.11)

In this way:

A (ω) = −β

2

ˆ t

0

ds ẋs

[

∇D (xs)

ν (xs)
+ Fs (xs)

]

+
β

2

ˆ t

0

dsGs (xs) (5.3.12)

Note that we can rewrite is as:

A (ω) = −β

2

ˆ t

0

dxs

[

∇D (xs)

ν (xs)
+ Fs (xs)

]

+
β

2

ˆ t

0

dsGs (xs)

In the action we have Itô integrals. Since we want to write the action as the sum of a symmetric
part and an antisymmetric one, we have to use the Stratonovitch integral. Though the first integral
in the action (5.3.12) seems antisymmetric under time-reversal this is not true. The mistake is to
consider vs as a time-derivative, but we have seen that it is not right. If we write the integral (in the
Itô sense) as done in (4.6.1) we can easily to understand that its symmetry is not defined. In fact
if for ω we have considered the subinterval [ti, ti+1], for θω we should consider the the subinterval
[ti+1, ti]. Therefore the initial value of the function in each subinterval would be different. This is
not true for the Stratonovitch sense because the middle point is the same despite of the direction
in which we go through the subinterval. Using (4.6.3):

ˆ t

0

fs (xs) dxs =

ˆ t

0

fs (xs) ◦ dxs −
1

2

ˆ t

0

dsBs (xs)∇fs (xs)

Therefore:

A (ω) = −β

2

ˆ t

0

dxs ◦
[

∇D (xs)

ν (xs)
+ Fs (xs)

]

+
β

2

ˆ t

0

dsGs (xs)−

−
ˆ t

0

dsDx (xs)∇ ·
(

∇D (xs)

ν (xs)
+ Fs (xs)

)

Now the first integral is antisymmetric. If we introduce the time-reversal operator θ we can
note that the last two integrals are time-symmetric. Therefore we can divide the action in two
contributions:

• time-symmetric T (ω) = A(ω)+A(θω)
2

• time-antisymmetric S (ω) = A(θω)−A(ω)
2

Therefore the action:

A (ω) =
T (ω)− S (ω)

2
with:

T (ω) =
β

2

ˆ t

0

ds

[

Gs (xs)−Dx (xs)∇ ·
(

∇D (xs)

ν (xs)
+ Fs (xs)

)]
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S (ω) =
β

2

ˆ t

0

dxs ◦ Fs (xs)

Where we have defined the effective force:

Fs (xs) =
∇D (xs)

ν (xs)
+ Fs (xs)

that takes into account also the diffusion gradient contribution.

5.3.3.4 Local detailed balance

In the last subsection we have found the functional of the trajectory, depending on the dynamics
with different behavior with respect to time-reversal. Now we want to give them a physical mean-
ing. We have obtained the action referred to a trajectory ω as the ratio between the probability
of the two different dynamics. If we do the same but evaluated for the opposite trajectory and we
calculate the ratio between them:

Pµ (ω)

P0
µ (ω)

·
P0

µ (θω)

Pµ (θω)
= eS(ω)

where S (ω) is the antisymmetric functional in the action. Then the ratio depends only on S (ω).
The assumption of local detailed balance assures that S (ω) is the entropic flux from the system
to the environment due to the nonequilibrium external force. Note that it represents only the
external contribution to the entropy that we have called deS.

S (ω) =
β

2

ˆ t

0

dxs ◦ Fs (xs)

Generally we can write Fs (xs) as:

Fs (xs) = −∇U (xs) +Ws (xs) .

where the first contribution is conservative contribution and the second is not-conservative. There-
fore S (ω):

S (ω) = −β

2

ˆ t

0

dxs ◦ ∇U (xs) +
β

2

ˆ t

0

dxs ◦Ws (xs)

Using (4.6.4) for function that does not depend directly on time:

S (ω) = −β

2
[U (xt)− U (x0)] +

β

2

ˆ t

0

dxs ◦Ws (xs) (5.3.13)

Where the first contribution depends only on the initial and final values of the trajectory and it
describes the variation of the system energy due to the presence of external force. Instead the
second contribution depends on the path via the integral and it describes the work made by the
environment on the system. According to the first principle of thermodynamics, in the right-
hand side of (5.3.13) there is the heat exchanged from the system to the environment divided by
the temperature, that is actually the change in entropy of the environment. Note that the local
detailed balance allows to give a physical meaning to the stochastic evolution, but only for the
antisymmetric contribution.
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In this dissertation we have supposed β constant, but the extension to time-dependent temper-
ature would be straightforward. In fact there would be another work term related to temperature
variation. In conclusion it is interesting to note that to obtain this result we have used (5.2.2).
Equivalently, we can say that, in order to satisfy local detailed balance, the (5.2.2) must be valid.
Therefore equation (5.2.2) is a consequence of the local detailed balance, as we have introduced in
the previous Section.

5.4 Linear response theory

5.4.1 Backward generator

As we have done for the jump processes, now we are interested in studying the perturbation
theory for a diffusive one. In other words, we will apply a potential time-dependent perturbation
htVt (xt) to the system in order to comprehend how it responds. Here Vt (xt) is a time-dependent
observable and ht describes the amplitude of the perturbation. In the jump processes context we
have changed the transition rates (and therefore the backward generator) writing them as function
of the not-perturbed ones. For the diffusive process the perturbation will modify the moments of
the propagator At (xt) and Bt (xt) and consequently also the backward generator. As we can see
the procedure is equivalent. Then we have to write the new backward generator in function of the
old one. In order to do this, we consider the new moments starting from the ones introduced in
4.1:

Ah
t (xt) = At (xt) + νt (xt)ht∇Vt (xt)

Bh
t (xt) = Bt (xt)

A potential perturbation like this is equivalent to the antisymmetric one studied for jump pro-
cesses. In fact we have seen that the perturbed transition rates depend on the perturbation by
the difference Vs (xs) − Vs (xs−). But, since now the dependence on trajectory is continuous this
difference can be expanded and the first not-zero contribution is exactly the space-derivative of
Vs (xs). Furthermore this kind of perturbation does not affect the reactivity (the mobility and
diffusion coefficient in the continuous Markov process) but only the energy. And, since in the
Langevin equation there is a space-derivative of energy, it is clear why there is the gradient of
Vs (xs). Then, the stochastic moment is not modified since we suppose that the perturbation will
not affect the diffusion coefficient and the mobility. Therefore, the perturbed backward generator:

Lh
t = νt (xt) [Ft (xt)−∇U (xt)] ·∇+∇Dt (xt) ·∇+ νt (xt)ht∇Vt (xt) ·∇+Dt (xt)∇2

Lh
t = Lt + νt (xt)ht∇Vt (xt) ·∇ (5.4.1)

Note that now the diffusion coefficient and the mobility depends directly on time. In fact, in order
to consider a time-dependent temperature, it is necessary due to the local detailed balance:

βtDt (xt) = νt (xt)

The perturbation appears in (5.2.3) as the gradient of the potential. For this reason it is a potential
contribution. As we have done for the jump processes we are going to study the perturbed dynamics
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compared with the not-perturbed one. The procedure is equivalent to the one already done for
the entropy production.

5.4.2 Excess action

As we have done for the jump processes we are interested in the ratio of the perturbed probability
over the non-perturbed one. Consider the trajectory probability for the unperturbed dynamics:

Px0 (ω) =
1

N
exp

{

−
ˆ t

0

1

4Ds (xs)
[ẋs − νs (xs)Fs (xs) + νs (xs)∇U (xs)−∇Ds (xs)]

2 ds

}

And the one for the perturbed dynamics:

Ph
x0
(ω) =

1

N exp

{

−
ˆ t

0

1

4Ds (xs)
[ẋs − νs (xs) (Fs (xs)−∇U (xs) + hs∇Vs (xs))−∇Ds (xs)]

2 ds

}

Now consider the ratio, using (5.2.2) with explicit time-dependence:

Ph
x0
(ω)

Px0 (ω)
= exp

{
ˆ t

0

βshs

2

[

ẋs − νs (xs)

(

Fs (xs)−∇U (xs) +
hs

2
∇Vs (xs)

)

−∇Ds (xs)

]

∇Vs (xs) ds

}

We are going to call ϕs = βshs. Now using (5.3.11):

−A (ω) =
1

2

ˆ t

0

dxs ϕs∇Vs (xs)−
1

2

ˆ t

0

dsϕs [νs (xs) (Fs (xs)−∇U (xs))−∇Ds (xs)]∇Vs (xs)+O (hs)

(5.4.2)
We are going to ignore the contribution depending on (∇Vs (xs))

2 because we consider only the
linear terms in hs. As we have done for entropy production we are interested in dividing the action
in a symmetric part and in an antisymmetric one. But, to do it we have to pass from Itô to
Stratonovitch integral. Therefore:

−A (ω) =
1

2

ˆ t

0

dxs ◦ ϕs∇Vs (xs)−
1

2

ˆ t

0

dsϕs [νs (xs) (Fs (xs)−∇U (xs))]∇Vs (xs)+

+
1

2

ˆ t

0

dsϕs∇ (Ds (xs)∇Vs (xs)) +O
(

h2
s

)

We have also added the contribute:

1

2

ˆ t

0

dsϕsνs (xs)Ds (xs)∇2Vs (xs)

But we have included it in the action formula symmetric integral. Therefore we can write the
action to the first order as:

A(1) (ω) = −1

2

ˆ t

0

ϕs∇Vs (xs) ◦ dxs +
1

2

ˆ t

0

dsϕsLsVs (xs) (5.4.3)

In which we have introduced the backward generator. Now we can use (4.6.4), but we have to
modify it, since there is also ϕs is the integral. We can explain how it changes starting from the
Itô integral:

ˆ t

0

∇gs (xs)ϕsdxs = lim
n→∞

n−1
∑

i=0

∇gti (xti)ϕti

(

xti+1 − xti

)
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As we have done we can expand gti+1

(

xti+1

)

and obtain an expression for ∇gti (xti)
(

xti+1 − xti

)

.
Therefore:

ˆ t

0

∇gs (xs)ϕsdxs = lim
n→∞

n−1
∑

i=0

ϕti

[

gti+1

(

xti+1

)

− gti (xti)−
∂gti (xti)

∂t
(ti+1 − ti)

]

−

− lim
n→∞

n−1
∑

i=0

ϕti

Bti (xti)

2
∇2gti (xti) (ti+1 − ti)

The first two terms in the right-hand side should describe a telescopic series, but now there is also
ϕti . In fact:

n−1
∑

i=0

gti+1

(

xti+1

)

− gti (xti) = ϕt0gt1 (xt1)− ϕt0gt0 (xt0) + ϕt1gt2 (xt2)− ϕt1gt1 (xt1) + . . .

Now the terms do not cancel out. The solution is to add and subtract ϕtigti (xti) in the series. In
this way:

n−1
∑

i=0

gti+1

(

xti+1

)

− gti (xti) = ϕtgt (xt)− ϕt0gt0 (xt0)−
n−1
∑

i=0

(

ϕti+1 − ϕti

)

gt1 (xt1)

Therefore:
ˆ t

0

∇gs (xs)ϕsdxs = ϕtgt (xt)− ϕt0gt0 (xt0)−
ˆ t

0

dsϕs

∂gs (xs)

∂s
−

−
ˆ t

0

ds
dϕs

ds
gs (xs)−

ˆ t

0

ds
Bs (xs)

2
ϕs∇2gs (xs)

Finally, to obtain a Stratonovitch integral:

ˆ t

0

∇gs (xs)ϕs ◦ dxs = ϕtgt (xt)− ϕ0g0 (x0)−
ˆ t

0

dsϕs

∂gs (xs)

∂s
−
ˆ t

0

ds gs (xs)
dϕs

ds

If we insert this result in (5.4.3):

A(1) (ω) = −1

2

[

ϕtVt (xt)− ϕ0V0 (x0)−
ˆ t

0

ϕs

∂Vs (xs)

∂s
ds−

ˆ t

0

dϕs

ds
Vs (xs) ds

]

+
1

2

ˆ t

0

dsϕs LsVs (xs)

With (5.2.4) the excess action for a continuous Markov process is:

A(1) (ω) = −1

2

[

ϕtVt (xt)− ϕ0V0 (x0)−
ˆ t

0

ϕs
∂Vs (xs)

∂s
ds−

ˆ t

0

dϕs

ds
Vs (xs) ds

]

+
1

2

ˆ t

0

dsϕs LsVs (xs)

(5.4.4)
Now it is evident that - as for the jump processes - the excess action is made by two contributions:
the first one is entropic since it describes the excess entropic flux from the system to environ-
ment. We said excess entropy flux because in (5.4.4) there is only the entropic flux due to the
perturbation. In fact, since the system is out of equilibrium even without the perturbation, there
will be an entropy production to maintain the system far from equilibrium as we have seen. The
nonequilibrium regime is assured by the external force Ft (xt). Now we want to show that the
first bracket terms in (5.4.4) describe an entropic flux. In fact ϕtVt (xt)− ϕ0V0 (x0) describes the
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energy difference of the system due to the perturbation between the initial and final time of the
trajectory divided by the temperature (via the ϕ), instead the other two terms describe the work
made on the system by the environment again due only to the perturbation, they depend on the
path via the integral. Instead the second contribution, that has the opposite sign, describes the
excess in dynamical activity. As for the jump processes it takes into account how much the system
is inclined to change state. Therefore it depends on the backward generator and on the propagator
moments.

5.4.3 Average values

If the perturbation modifies the probability we expect that also the average values will change.
For a general observable Qt (xt)

δ 〈Qt (xt)〉h = 〈Qt (xt)〉h − 〈Qt (xt)〉µ =

ˆ

dxP h
t (x)Qt (x)−

ˆ

dxPt (x)Qt (x)

δ 〈Qt (xt)〉h =

ˆ

dxPt (x)Qt (x)
(

e−At(x) − 1
)

δ 〈Qt (xt)〉h , −
〈

A(1)
t (xt)Qt (xt)

〉

µ
(5.4.5)

is called the generalized susceptibility. In this way we can write the perturbed average values in
function of the unperturbed ones. In fact, with 〈.〉µ we mean the average value made with the
probability Pt (x) with initial distribution µ. It is important to note that since the process is not
homogeneous in time the initial distribution cannot be stationary at all. Then:

δ 〈Qt (xt)〉h =
1

2

〈[

ϕtVt (xt)− ϕ0V0 (x0)−
ˆ t

0

ϕs

∂Vs (xs)

∂s
ds−

ˆ t

0

dϕs

ds
Vs (xs) ds

]

Qt (xt)

〉

µ

−

−1

2

ˆ t

0

dsϕs 〈LsVs (xs)Qt (xt)〉µ (5.4.6)

5.4.4 Response

The linear response is defined by

δ 〈Qt (xt)〉h ,
ˆ t

0

ϕs RQ,V (t, s) ds

The frenetic term is already written as an integral over time, instead the entropic one does not.
We can note that:

Ent [ω] =
1

2

〈

Qt (xt)

[

ϕtVt (xt)− ϕ0V0 (x0)−
ˆ t

0

ϕs

∂Vs (xs)

∂s
ds−

ˆ t

0

dϕs

ds
Vs (xs) ds

]〉

µ

If we note that:

〈Qt (xt) [ϕtVt (xt)− ϕ0V0 (x0)]〉µ =

ˆ t

0

ds
d

ds
〈Qt (xt)ϕsVs (xs)〉µ
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Therefore:

Ent [ω] =
1

2

ˆ t

0

ds
d

ds
〈Qt (xt)ϕsVs (xs)〉µ −

1

2

ˆ t

0

ϕs

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

ds−

−1

2

ˆ t

0

dϕs

ds
〈Vs (xs)Qt (xt)〉µ ds

If we make the derivative in the first integral we get:

Ent [ω] =
1

2

[

ˆ t

0

ϕs

d

ds
〈Qt (xt) Vs (xs)〉µ ds−

ˆ t

0

ϕs

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

ds

]

If we insert the entropic term in (5.4.6):

δ 〈Qt (xt)〉h =
1

2

ˆ t

0

dsϕs

[

d

ds
〈Qt (xt) Vs (xs)〉µ −

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

]

−1

2

ˆ t

0

dsϕs 〈LsVs (xs)Qt (xt)〉µ

Therefore:

RQ,V (t, s) =
1

2

d

ds
〈Vs (xs)Qt (xt)〉µ −

1

2

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

− 1

2
〈LsVs (xs)Qt (xt)〉µ

And using the expression of the backward generator:

RQ,V (t, s) =
1

2

d

ds
〈Vs (xs)Qt (xt)〉µ−

1

2

〈

∂Vs (xs)

∂s
Qt (xt)

〉

µ

−1

2
〈νs (xs)Fs (xs) ·∇Vs (xs)Qt (xt)〉µ−

−1

2
〈[−νs (xs)∇U (xs) +∇Ds (xs)]∇Vs (xs)Qt (xt)〉µ −

1

2

〈

Ds (xs)∇2Vs (xs)Qt (xt)
〉

µ
(5.4.7)

We can note that the first two terms are equal to the ones studied for the jump processes and they
describe the entropic contribution. The other terms represent the frenetic part of the response,
they depend on the mobility and on the diffusion coefficient as we expect. This kind of relation is
also called nonequilibrium first fluctuation-dissipation theorem. In fact the response is related to
the energy dissipated due to the perturbation.

5.4.5 Quasi-static limit

5.4.5.1 Stationary solution

Also for the continuous Markov process we are interested in the quasi-static limit. In fact, if the
dynamics evolves slowly, it is possible to approximate the probability Pt (x) with the invariant
distribution at time t fixed, solution of L+

t ρt (x) = 0. Using equation (4.3.2) it is clear that the
quasi-static limit acts on the backward generator. This is meaningful since in the jump processes
context we have assumed that the transition rates change slowly and therefore also the Lt matrix.
If the backward generator changes very slowly there is a characteristic time τ over which it is almost
constant and then, time-independent. The time τ (dt 5 τ 5 t, where t is the trajectory ending
time) is strictly related to the changing of Lt, in fact to describe the slowness of the changing
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we have to parameterize the moments At (xt) and Bt (xt) introducing a small parameter ε, with
ε = 1

τ
. Now we want to find the expression for this stationary distribution. We have to solve the

Fokker-Planck equation with zero left-hand side. Then with the condition xt = x:

∇ [At (x) ρ (x, t | x0, t0)] =
1

2
∇2 [Bt (x) ρ (x, t | x0, t0)]

∇
[

At (x) ρ (x, t | x0, t0)−
1

2
∇ [Bt (x) ρ (x, t | x0, t0)]

]

= 0

The quantity in the bracket must be constant and in particular it must be zero. In fact the
quasi-static limit says that at any fixed time the instantaneous stationary distribution must satisfy
detailed balance (4.3.6):

At (x) ρ (x, t | x0, t0) =
1

2
∇ [Bt (x) ρ (x, t | x0, t0)]

∇ρ (x, t | x0, t0) =

[

2At (x)−∇Bt (x)

Bt (x)

]

ρ (x, t | x0, t0)

∇ρ (x, t | x0, t0)

ρ (x, t | x0, t0)
= ft (x)

Its solution is:
ρ (x, t | x0, t0) =

(

e
´ t
0 fs(xs)◦dxs

)

xt=x
(5.4.8)

Here t is thought as a fixed parameter, the solution depends on the evolution until t. Consider,
for example, the solution for the Ornstein-Uhlenbeck model in which At (xt) = −γvt and Bt (xt) =
2Dγ2. This model describes a Brownian motion introduced at the beginning of Section 3. In this
case we have f (vt) = − vt

γD
. And the probability will be:

ρ (v, t | v0, t0) =
(

e−
1

2γD

´ t
0 vs◦dvs

)

vt=v
=

1√
2πDγ

e−
v2−v20
2Dγ

And, given the Einstein-Smoluchowski relation 1
D

= Mβγ, we obtain the stationary distribution
presented in Section V II.B of [1]. Therefore, (5.4.8) is the invariant distribution at time fixed for
the diffusion process. The quasi-static limit allows to write the probability Pt (x) as the invariant
distribution plus a correction of order ε:

Pt (x) = ρt (x) +O (ε) (5.4.9)

where ε is a parameter introduced to describe the slowness of the dynamics changing and then
it appears in the backward generator. This expression does not describe the evolution of the
probability, it must be thought as an infinite and dense sequence of stationary states. The fact
that the sequence is made by equilibrium or nonequilibrium states depends on the moments At (xt)
and Bt (xt). In fact for the Ornstein-Uhlenbeck process the invariant distribution is the Maxwellian
one and therefore it describes a equilibrium system. In general ρt (x) is not a Gaussian distribution
and then it describes a nonequilibrium stationary state.
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5.4.5.2 Response formula

If we use (5.4.9) in (5.4.7) we obtain:

RQ,V (t, s) =
1

2

d

ds
〈Vs (xs)Qt (xt)〉ρs−

1

2

〈

∂Vs (xs)

∂s
Qt (xt)

〉

ρs

−1

2
〈νs (xs)Fs (xs) ·∇Vs (xs)Qt (xt)〉ρs −

−1

2
〈[−νs (xs)∇U (xs) +∇Ds (xs)]∇Vs (xs)Qt (xt)〉ρs −

1

2
〈Ds (xs)∇Vs (xs)Qt (xt)〉ρs +O (ε)

Now the average values are made over the invariant distribution at time s. Since this distribution
cannot be thought as an evolution, for the same reason explained in the jump processes dissertation,
the response formula is not invariant under time-translations. Therefore it continues to depend
separately on t and s, but in this approximation the average values are easier to solve. From (5.4.8)
we can find the instantaneous stationary distribution for the Langevin equation (5.2.3):

ρ (x, t | x0, t0) =
(

e
´ t
0 βs[Fs(xs)−∇U(xs)]◦dxs

)

xt=x



Chapter 6

Second fluctuation-dissipation theorem

6.1 Introduction

As we have briefly said in Section 4.5.2, the Langevin equation is the result of a dynamics reduction.
To eliminate the environment degrees of freedom is not obvious, especially if the environment
is maintained out of equilibrium by an external force. In Section 5.1.2 we have discussed the
equilibrium case, in this Chapter we are going to explain how the reduction works when the
environment is in a time-dependent nonequilibrium condition in order to obtain the Langevin
equation for the system. In our case the system will be a probe embedded in a nonequilibrium
fluid at constant temperature that will be the environment. We can do it in two steps. First,
we have to obtain the Langevin equation for the nonequilibrium fluid interacting with a reservoir,
in this case the system is the fluid and the reservoir is the environment. For it, we can use the
local detailed balance principle and find a relation between the friction and the diffusion coefficient
perceived by the fluid particles - we have done it in Section 5.2.3. Using it, we can determine the
Langevin equation for the probe.

It must be thought as an extension to [5], in which the stationary state has been studied. Here
we want to deal with the not-stationary case. In fact if the backward generator depends on time, a
stationary distribution does not exist. But if this time-dependence is periodic the Markov process
will asymptotically converge to a periodic process and its distribution will be periodic too. This
is easily understandable considering equation (4.3.2), if the backward generator is periodic. The
periodic regime can be thought as a kind of “stationary” state, even if it is not stationary at all,
because it continues to repeat in the same way after a time T , called period of the process.

If we consider a perturbation which is generally not-periodic, we expect that the system dy-
namics will be no longer periodic. But if the perturbation is small, it is reasonable to assume
that the new dynamics is close to the initial one. Using the linear response theory we can study
a generic time-dependent regime in function of the periodic unperturbed one. Nevertheless, there
is a case in which the perturbed dynamics converges to a periodic one and it corresponds to the
long-time limit approximation when ht is constant. Because, if the perturbation is static, a relax-
ation to a new “stationary” state is possible. Obviously the new periodic state will be different
from the initial one. This situation can be interpreted as the analogue of formula 2.3 in [5]. For
this reason we are going to use it in the following. We will study a probe with mass M embedded
in an out-of-equilibrium fluid made by n particles with mass m, under the condition M . m.
We suppose the fluid is in a volume V and it can thermally interact with a reservoir at constant
temperature T .

112
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6.1.1 Fluid dynamics

The particles positions are described by n processes Xj
t ; we are going to group them as Xt =

{

Xj
t

}

j
.

This process gives at any time the position of all the particles. Therefore it takes values from a
manifold S in the phase space whose dimension is n times the dimension of the single particle
system and it is described by the probability Pt (X). In this treatment we are going to use a
1-dimensional notation, but it is obvious how to extend it to a bigger manifold. If the fluid is out
of equilibrium there will be an external and time-dependent force Ft acting on it. We suppose that
it does not depend on Xt but only on time (for example we can imagine a piston that modifies
the pressure of a gas in a volume V ). another example is imagining a fluid driven by a constant
force into a narrow tube with not-constant cross-Section. In other words, there are bottlenecks
periodically disposed. We assume the force dependence on time is periodic and then we expect
that in the long-time limit also the dynamics, described by the process Xt, of the fluid will be
periodic.

For the moment we are ignoring the presence of the probe that, evidently, will produce a not-
periodic dynamics for the fluid. We are going to treat it in the following. If we just consider the
nonequilibrium fluid interacting with the reservoir, the local detailed balance relation is satisfied.
As we have said the detailed balance condition takes into account the temperature, the pressure
and the chemical potential. We have assumed that the temperature is constant and that the fluid
cannot exchange particles with the reservoir. Therefore there is thermal and chemical equilibrium
between fluid and reservoir. But there is no mechanical equilibrium since there is the external force,
or in other words, there is work made on the fluid by the environment. If we assume that the work
is automatically transformed in heat exchanged, it is reasonable to use the local detailed balance
supposing that the fluid interacts with more than one heat reservoirs. We have also supposed that
the reservoirs are enough big to not be affected by the heat exchange. Under these considerations,
we can use local detailed balance and (5.2.2) in the fluid Langevin equation.

Due to the nonequilibrium force Ft the density of particles is no longer constant and generally
it can produce a not-constant diffusion coefficient depending on Xt. Therefore there would be
another force depending on the diffusion coefficient gradient. The same reasoning is valid also for
the friction and the mobility. The dependence on the process of the friction and of the diffusion
coefficient is a consequence of the nonequilibrium external force. In addition, we suppose that the
fluid particles interact with each others via an attractive, time-independent and central potential
Φ (it depends only on the relative distance between two particles). Finally since the fluid is at
constant temperature T there will be thermal agitation described by a white Gaussian noise. To
describe the motion of the fluid we will adopt the over-damped limit. We are going to explain the
consequences of it in the next Section.

6.1.2 Probe dynamics

The probe position is described by a diffusion process xt. It takes values from a continuous set of
states whose dimension is equal to system dimension and it is described by the probability pt (x).
The probe can interact weakly with the fluid particles via a conservative potential. We suppose
there is no external forces acting on the probe. Therefore its motion is a random walk interacting
with the fluid particles. Since the fluid is out of equilibrium the average position of the particles
will not be zero, therefore, the probe will not oscillate around a fixed equilibrium position. Since in
the nonequilibrium fluid there are currents, it is reasonable to assume that the probe follows these
currents. According to it, the probe motion is related to the average position of the fluid Xt since
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the currents are determined by the average velocity of the fluid. The average position determines
a continuous and differentiable trajectory since we have averaged over the noise. Evidently this
trajectory will not represent the motion of the probe. But, since the probe mass is much bigger
if compared to the probe one and the coupling is weak, xt will be not much different from this
trajectory, that we are going to call yt. Note that yt is not a property of the probe but of the fluid.
In the next Section we are going to present the equations of the motion for our system and we will
say also how to determine yt.

Note that the Chapter 6 must be thought as a nonequilibrium extension to what we have done
for equilibrium Langevin equation in Section 5.1.2. There we supposed the existence of a minimum
in the potential, instead here we suppose there is no external force acting on the probe. In fact it
is not obvious how to conciliate the fluid trajectory yt with the motion produced by the potential.
Therefore for the moment we suppose there is no potential on the probe.

6.1.3 Dissertation objective

We want to describe the probe position with a Langevin equation. To do this, we need to know
how to take into account the particles degrees of freedom and, then, how to consider the reduced
system. We want to find out:

• the properties of the noise perceived by the probe.

• the expression of the friction in function of the particles dynamical fluctuations. This is also
called second fluctuation-dissipation theorem for nonequilibrium systems.

The way of proceeding is the following. We will consider the probe presence and therefore the
coupling with it as a small perturbation to the particles dynamics. We will obtain the linear
response formula to this perturbation. Since the response takes into account all the particles via
average values, it does not longer depend on Xt. Instead it depends on the probe position and
therefore it can be interpreted as the global interaction between fluid and probe. It can be put in
the Langevin equation representing the dynamics reduction. According to this description, it is
obvious that we have to assume that the coupling is small in order to consider it as a perturbation.
There is another more subtle assumption: if an external not-conservative force acts on the probe
it cannot modify the fluid dynamics. Otherwise the perturbation theory studied in the previous
Section will no longer be valid since it is for potential perturbation. Since we are supposing there
is no external force on the probe, we can ignore this assumption.

6.2 Equations of motion

6.2.1 Fluid particles

As we have said, four forces act on the particles: the external nonequilibrium force, the interaction
with other particles, the diffusion gradient and the coupling with the probe. Since it is conservative,
it derives from a potential energy U (Xt − xt). It takes into account the coupling of each particles
with the probe, therefore it depends on λj that are the coupling coefficients for each degree of
freedom (generally λj can be different for each degree). It is a small parameter for each particle.
Though it is conservative it cannot be an equilibrium force for the fluid because it depends on the
probe position that is time-dependent. Also the particles interaction is conservative, therefore its
potential energy is:
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U (Xt) =
∑

j<j′

Φ
(

Xj
t −Xj′

t

)

If we take into account also the noise perceived by the particles we obtain a Langevin equation.
It is important to note that this noise is different from what we are looking for. We assume the
over-damped limit for the fluid. Deriving the energy we can obtain the Langevin equation for the
particles:

dXj
t

dt
= νj (Xt)

[

F j
t − ∂U (Xt)

∂Xj

− λj

∂Uj

(

Xj
t − xt

)

∂Xj

]

+
∂D (Xt)

∂Xj

+
√

2D (Xt)ξ
j
t (6.2.1)

where νj (Xt) is the mobility of the j-th particle. It depends on particle mass m, that for simplicity
we assume equal to 1. Here we have make explicit the dependence on the coupling coefficient
introducing λjUj , the coupling energy with the j-th particle such that:

n
∑

j=1

λjUj

(

Xj
t − xt

)

= U (Xt − xt)

Following the notation introduced in the previous Sections, the moments are:

Aj
t (Xt) = νj (Xt)

[

F j
t − ∂U (Xt)

∂Xj

− λj

∂Uj

(

Xj
t − xt

)

∂Xj

]

+
∂D (Xt)

∂Xj

B (Xt) = 2D (Xt)

It is important to note that the process is Xt = (X1
t . . .X

n
t ), while xt is a parameter of the process.

The Fokker-Planck equation is:

∂

∂t
P

{xt}
t (X) = −

n
∑

j=1

∂

∂Xj

[

νj (X)

(

F j
t − ∂U (X)

∂Xj

− λj

∂Uj (Xj − xt)

∂Xj

)

P
{xt}
t (X)

]

+

+
n
∑

j=1

∂

∂Xj

[

D (X)
∂

∂Xj

P
{xt}
t (X)

]

where P
{xt}
t (X) is the probability of the process Xt. Generally, it does not depend only the

probe position at time t, but on all the values assumed by xt until time t. For this reason we
use the notation {xt}. Note that it is not-periodic due to xt. The coupling with the probe is
the perturbation. For this reason we have separated it by the Φ-potential. The process Xt is our
reference process but it already contains the perturbation that we are going to study. Note that
the mobility and the diffusion coefficient that appear in (6.2.1) are not referred to the probe but
only to the fluid particles.

We do a consideration: here we are supposing the fluid is kept out of equilibrium by a time-
dependent force, because we want to present the most general calculation. But, in order to obtain
a time-dependent dynamics for the fluid, it is not necessary. For example we can consider a
nonequilibrium stationary regime for the fluid without the coupling with the probe. Therefore if
we add in the Langevin equation for the fluid this coupling, the equation will depend on a time-
dependent contribution. In other words, the time-dependent regime is not necessarily a prerogative
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of the fluid, but it can be a consequence of the probe presence. Nevertheless the dependence on
time of the force could be necessary in order to obtain a periodic dynamic for the fluid. If the
motion, with a constant force, is on a circle the motion will be periodic even if the force is not
time-dependent. We will present it in Section 6.4.

6.2.2 Probe

The probe is affected by the coupling with the fluid:

M
d2xt

dt2
= −

N
∑

j=1

λj

∂Uj

(

Xj
t − xt

)

∂x
(6.2.2)

The probe is affected only by the coupling with the particles, therefore we consider the sum over
all of them. Nevertheless, it is very difficult to calculate the interaction with all the particles. For
this reason we calculate, via the linear response theory, a kind of mean interaction described by a
statistical force that takes into account all of them. This statistical force will depend on the probe
position and on the average particles position. Where the average values will be made over the
fluid distribution. We are going to develop it in the following Section. But now we want to explain
better yt that we have previously introduced because it is strictly related to the perturbation theory
we are going to do. In fact, the fluid particles, due to the nonequilibrium force produce a current.
Therefore if we consider the probe it is reasonable to suppose that it will follow that current.
Evidently this is not the real probe dynamics, but it can be a good approximation especially if the
probe mass is much bigger than the particles one. Under these consideration we can obtain the
trajectory yt from the average Langevin equation for the fluid in absence of the probe:

dXj
t

dt
= νj (Xt)

[

F j
t − ∂U (Xt)

∂Xj

]

+
∂D (Xt)

∂Xj

+
√

2D (Xt)ξ
j
t

The associated Fokker-Planck equation is:

∂Pt

∂t
= −

n
∑

j=1

∂

∂Xj

[

νj (X)

(

F j
t − ∂U (X)

∂Xj

)

Pt (X)−D (X)
∂

∂Xj

Pt (X)

]

from which we can extract the current:

Jt (Xt) =
n
∑

j=1

νj (Xt)

(

F j
t − ∂U (Xt)

∂Xj

)

Pt (X)−D (Xt)
∂

∂Xj

Pt (X)

If we divide it by the probability:

Jt (Xt)

Pt (X)
=

n
∑

j=1

νj (Xt)

(

F j
t − ∂U (Xt)

∂Xj

)

−D (Xt)
∂

∂Xj

lnPt (X)

Dimensionally it is a velocity. It is the velocity of the fluid:

Vt (Xt) = ν (Xt) (Ft −∇U (Xt))−D (Xt)∇ lnPt (X)

Here the gradient is a n-dimensional operator that takes into account all the particles. If we
average over the probability Pt (X) we obtain an equation for yt:



CHAPTER 6. SECOND FLUCTUATION-DISSIPATION THEOREM 117

dyt
dt

= 〈Vt (Xt)〉µ

where µ (X) = P0 (X) is the initial distribution. Note the yt is not a stochastic process because
it derives by an average value over the fluid degrees of freedom. Therefore, yt is a continuous and
differentiable trajectory. We suppose that x0 = y0. If yt represents the average position of the
probe at time t, xt − yt can be thought as the fluctuation at time t between the probe position
and its average value due to the interaction with the fluid. Physically, the probe oscillates around
a time-dependent equilibrium position.

The external force Ft, that keeps the fluid out of equilibrium, does not affect the probe motion.
We have already seen these requirements in the previous Sections, they are necessary in order to
obtain a Langevin equation for the fluid that will be the starting point for a Langevin equation
for the probe.

6.2.3 Energy expansion

If the coupling is small, we can suppose that the interaction with the particles will not modify
largely the probe position. Since yt is the instantaneous probe equilibrium position if there is no
interaction with particles, it is reasonable to expand the coupling energy U around xt = yt to linear
order.

λjUj

(

Xj
t − xt

)

, λjUj

(

Xj
t − yt

)

+ λj

∂Uj

(

Xj
t − xt

)

∂x |xt=yt

(xt − yt)

If we define:

gj
(

Xj
t − xt

)

= −λj

∂Uj

(

Xj
t − xt

)

∂x

This expansion is very important because it allows a relation between the particles equation and
the probe one. In fact if we substitute the energy expansion in (6.2.1):

dXj
t

dt
= νj (Xt)

[

F j
t − ∂U (Xt)

∂Xj

− λj

∂Uj

(

Xj
t − yt

)

∂Xj

+ (xt − yt)
∂gj

(

Xj
t − yt

)

∂Xj

]

+
∂D (Xt)

∂Xj

+
√

2D (Xt)ξ
j
t

(6.2.3)
Now we can better understand the particles dynamics. In fact the zero order of the coupling
potential can be thought as part of the unperturbed dynamics and it represents the coupling
between particles and the probe in an instantaneous equilibrium position. They oscillate around
yt interacting with each others and diffusing. Therefore, the perturbation is described by the
observable g (Xt, yt) and it is potential since in the Langevin equation appears its derivative with
respect to Xj. Instead xt−yt describes the intensity of the perturbation and it depends on time by
the process xt, it is analogous to ht in the perturbation theory introduced in Section 5. Therefore
ht = xt−yt. The (6.2.3) is the perturbed process. According to it, we can define the new backward
generator:

Lh
t =

n
∑

j=1

νj (Xt)

[

F j
t +

∂D (Xt)

∂Xj

− ∂U (Xt)

∂Xj

− λj

∂Uj

(

Xj
t − yt

)

∂Xj

+ (xt − yt)
∂gj

(

Xj
t − yt

)

∂Xj

]

· ∂

∂Xj

+

+
n
∑

j=1

∂D (Xt)

∂Xj

· ∂

∂Xj

+D (Xt) ·
∂2

∂X2
j
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Lh
t = Lt + (xt − yt)

n
∑

j=1

νj (Xt)
∂gj

(

Xj
t − yt

)

∂Xj

· ∂

∂Xj

We suppose we know how to solve the Fokker-Plank equation for the unperturbed dynamics Lt.
It is:

∂

∂t
P

{y}
t (X) = −

n
∑

j=1

∂

∂Xj

[

νj (X)

(

F j
t − ∂U (X)

∂Xj

− λj
∂Uj (Xj − yt)

∂Xj

)

P
{y}
t (X)

]

+

+
n
∑

j=1

∂

∂Xj

[

D (X)
∂

∂Xj

P
{y}
t (X)

]

(6.2.4)

Since yt appears in the backward generator, we expect it will appear, as a time-dependent param-
eter, also in the probability Pt (X). In general the probability at time t does not depend only on
yt, but it can depend also on all the values assumed by the process yt from the initial time to time
t. Since the unperturbed probability is periodic we expect that yt will be periodic too. Therefore,
generally, we suppose that the fluid probability can depend on all the values assumed by yt in a
period. We will indicate it with {y}. Then the probability of the fluid at time t will be P

{y}
t (X).

Now consider the equation of the motion for the probe. The g (Xt − xt) appears in it.

M
d2xt

dt2
=

n
∑

j=1

gj
(

Xj
t − xt

)

(6.2.5)

From this equation it is evident what we have described in the introduction. The g (Xt − xt)
describes the interaction with the particles perceived by the probe. Instead, if it is evaluated in
yt, it produces the perturbation to the particles dynamics. We will use it as a perturbation in
order to obtain the response. Since the g (Xt − xt) appears also in the equation for xt we will
use the response to obtain a Langevin equation for xt. Under these considerations the difference
between xt and yt is due to the noise. Therefore if the noise is too big it is not correct to use the
linear response theory, because ht would not be small. At the end of this Section we will obtain
an expression for the noise, and we will check a posteriori if the assumption done was correct.

6.3 Linear response

Suppose that the potential perturbation gj
(

Xj
t − xt

)

acts from time t = 0 under the condition
x0 = y0. The perturbation depends on the process Xt and it is not periodic. We are interested in
finding the response formula for the observable gj

(

Xj
t − xt

)

. We are going to use (5.4.7), but note
that the perturbation depends on time via the process Xt and via the trajectory yt. Therefore
there will be two contributions to the entropic term:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=
〈

gj
(

Xj
t − xt

)〉{y}

µ
+

β

2

ˆ t

0

ds hs

[

d

ds

〈

gj
(

Xj
s − ys

)

gj
(

Xj
t − xt

)〉{y}

µ

]

−

−β

2

ˆ t

0

ds hs

[

〈

ẏs
∂gj (Xj

s − ys)

∂y
gj
(

Xj
t − xt

)

〉{y}

µ

+
〈

Lsg
j (Xs − ys) g

j
(

Xj
t − xt

)〉{y}

µ

]

(6.3.1)
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where µ is the initial distribution and it is the same for the unperturbed and the perturbed
dynamics, µ = P

{y}
0 . The average values 〈·〉{y}µ is made with respect to the unperturbed probability.

In fact it depends on {y}. While, the average value 〈·〉{xt}
µ is made over all the possible trajectories

starting at time t = 0 from distribution µ and it depends on all the positions assumed by the
probe until time t. In fact, xt is not a periodic process. We are supposing that the temperature
is constant. Furthermore, note that in the second term of the entropic contribution appears the
derivative of the trajectory yt since we are considering the time-derivative with respect to ys in the
perturbation. These average values are:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=

ˆ

S

dX P
{xt}
t (X) gj

(

Xj − xt

)

〈

gj
(

Xj
t − xt

)〉{y}

µ
=

ˆ

S

dX P
{y}
t (X) gj

(

Xj − xt

)

First of all we want to get the covariance in (6.3.1). Consider the first term in the integral in
(6.3.1):

d

ds

[

〈

gj
(

Xj
s − ys

)

gj
(

Xj
t − xt

)〉{y}

µ
−
〈

gj
(

Xj
s − ys

)〉{y}

µ

〈

gj
(

Xj
t − xt

)〉{y}

µ

]

+

+
〈

gj
(

Xj
t − xt

)〉{y}

µ

d

ds

〈

gj
(

Xj
s − ys

)〉{y}

µ
=

d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
+

+
〈

gj
(

Xj
t − xt

)〉{y}

µ

[

〈

Lsg
j
(

Xj
s − ys

)〉{y}

µ
+

〈

ẏs
∂gj (Xj

s − ys)

∂y

〉{y}

µ

]

(6.3.2)

This is evident if we consider the average value:

d

ds

〈

gj
(

Xj
s − ys

)〉{y}

µ
=

d

ds

ˆ

S

dX P {y}
s (X) gj

(

Xj − ys
)

=

ˆ

S

dX
d

ds

[

P {y}
s (X) gj

(

Xj − ys
)]

Now we can use (4.3.2):

d

ds

〈

gj
(

Xj
s − ys

)〉{y}

µ
=

ˆ

S

dX P {y}
s (X)Lsg

j
(

Xj − ys
)

+

ˆ

S

dX P {y}
s (X)

∂gj (Xj − ys)

∂y
ẏs

And finally:

d

ds

〈

gj
(

Xj
s − ys

)〉{y}

µ
=
〈

Lsg
j
(

Xj
s − ys

)〉{y}

µ
+

〈

∂gj (Xj
s − ys)

∂y
ẏs

〉{y}

µ

If we insert (6.3.2) in (6.3.1) we will obtain:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=
〈

gj
(

Xj
t − xt

)〉{y}

µ
+

β

2

ˆ t

0

ds hs

d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
+

+
β

2

ˆ t

0

ds hs

〈

gj
(

Xj
t − xt

)〉{y}

µ

[

〈

Lsg
j
(

Xj
s − ys

)〉{y}

µ
+

〈

∂gj (Xj
s − ys)

∂y
ẏs

〉{y}

µ

]

−
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−β

2

ˆ t

0

ds hs

[

〈

ẏs
∂gj (Xj

s − ys)

∂y
gj
(

Xj
t − xt

)

〉{y}

µ

+
〈

Lsg
j
(

Xj
s − ys

)

gj
(

Xj
t − xt

)〉{y}

µ

]

And then:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=
〈

gj
(

Xj
t − xt

)〉{y}

µ
+

β

2

ˆ t

0

ds hs

d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
−

−β

2

ˆ t

0

ds hs

[

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

+
〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ

]

(6.3.3)

Now we want to integrate (6.3.3) by partial integration. But, first of all, we have to write also the
last contribution as a derivative:

〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
=

d

ds

ˆ s

−∞

du
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

=
d

ds

ˆ s

−∞

du

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

Then:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=
〈

gj
(

Xj
t − xt

)〉{y}

µ
+

β

2

ˆ t

0

ds hs
d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
−

−β

2

ˆ t

0

hs
d

ds

ˆ s

−∞

du

[

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ

]

Integrating by parts:

β

2
hs

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ

∣

∣

∣

∣

∣

t

0

− β

2
hs

ˆ s

−∞

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

du

∣

∣

∣

∣

∣

t

0

−

−β

2
hs

ˆ s

−∞

〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ
du

∣

∣

∣

∣

∣

t

0

− β

2

ˆ t

0

ds
dhs

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
+

+
β

2

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du

[

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ

]

Now, we have to evaluate the boundary terms, remembering that we have assumed x0 = y0. It is
equivalent to say h0 = 0. Then:

β

2
ht

〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

µ
− β

2
ht

ˆ t

−∞

ds

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

−
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−β

2
ht

ˆ t

−∞

〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
ds− β

2

ˆ t

0

ds
dhs

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
+

+
β

2

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du

[〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉

+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ

]

(6.3.4)
Therefore:

〈

gj
(

Xj
t − xt

)〉{xt}

µ
=
〈

gj
(

Xj
t − xt

)〉{y}

µ
+

β

2
ht

〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

µ
−

−β

2
ht

[

ˆ t

−∞

ds ẏs

〈

∂gj (Xj
s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

+

ˆ t

−∞

ds
〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ

]

−

−β

2

ˆ t

0

ds
dhs

ds

[

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

µ
−
ˆ s

−∞

du

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

µ

]

+

+
β

2

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

µ

Now we want to understand the meaning of the boundary term that corresponds to the two contri-
butions in the bracket. Note that the response formula must be valid for each initial distribution.
According to it, we will use as initial distribution the periodic “stationary” distribution ρ{y}. Gen-
erally it is not equal to P

{y}
t , solution of the Fokker-Planck equation (6.2.4). As seen for the two

states system the probability solution of the master equation depends also on an exponentially
decreasing term. In that case the periodic “stationary” distribution is given by the probability in
the long-time limit, in which the exponential contribution goes to zero. This limit must be done
carefully because any periodic function does not admit a limit for t → ∞. For P {y}

t we have to do
the same to determine ρ

{y}
t . After that, we consider ρ{y} = ρ

{y}
0 . First of all, it is interesting to

note that:

{xt} = {y}+ {ht}
where {y} is periodic and ht is small. If we suppose that ht is constant even the probability

depending on {xt} becomes periodic. Therefore if we consider the average value
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}

starting from the initial distribution ρ{y} in the unperturbed dynamics and we apply a constant

perturbation hgj
(

Xj
t − xt

)

, the perturbed average value
〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
with the same initial

distribution will be periodic too. Using the linear response theory (6.3.3) we can find a relation
between the two average values:

〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
=
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

βh

2

ˆ t

0

ds
d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−

−βh

2

ˆ t

0

ds

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
− βh

2

ˆ t

0

ds
〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
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But equivalently we can say:

〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
=
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

βh

2

ˆ t

0

ds
d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−

−βh

2

ˆ t

0

ds
d

ds

ˆ s

−∞

du

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
−

−βh

2

ˆ t

0

ds
d

ds

ˆ s

−∞

du
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

For simplicity we can define an operator:

ẏu
∂gj (Xj

u − yu)

∂y
+ Lug

j
(

Xj
u − yu

)

= Kj
u

(

Xj
u − yu

)

〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
=
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

βh

2

ˆ t

0

d

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
ds−

−βh

2

ˆ t

0

d

ds

ˆ s

−∞

du
〈

Kj
u

(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

We can solve the integral in ds:

〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
−
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
=

βh

2

〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−

−βh

2

〈

gj
(

Xj
0 − y0

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
− βh

2

ˆ t

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

+
βh

2

ˆ 0

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
(6.3.5)

Note that on the left-hand side there is the difference between two average values with the same
initial distribution and different dynamics. It is reasonable to assume that after a long time
〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y}
evolves as if its initial distribution was ρ{y+h}. This is due to the constancy of

h. Therefore now we want to apply the limit t → ∞ in (6.3.5). Note that this is equivalent to

lim
n→∞

(t+ nT )

where T is the period of any averaged function of the process Xt. In fact we can apply the limit
t → ∞ adding infinite period to time t. Note that:

〈

gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
=
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}

Note that generally xt is not a periodic process, therefore what we have just written is not correct.
But now we are considering a static perturbation, then xt = yt + h . If yt is periodic, also xt must
be periodic. Therefore:

lim
n→∞

[

〈

gj
(

Xj
t+nT − xt+nT

)〉{y+h}

ρ{y}
−
〈

gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}

]

=
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lim
n→∞

βh

2

[

〈

gj
(

Xj
t+nT − yt+nT

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
−
〈

gj
(

Xj
0 − y0

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}

]

−

− lim
n→∞

βh

2

ˆ t+nT

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
+

+ lim
n→∞

βh

2

ˆ 0

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}

We already know what happens to the left-hand side. Now we have to understand what happens
to the right hand side:

• In the first term we can use the periodicity of the average value. Therefore:

〈

gj
(

Xj
t+nT − yt+nT

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
=
〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

is evident that it is not modified by the limit.

• In the second term we have to calculate the covariance between the same observable evaluated
at infinite time-distance. This contribution reasonably tends to zero. Generally it is not easy
to demonstrate. We have given a demonstration for the two states system in Section 2.1.3.3.

• In the third term we can do a variable change in the integral:

s′ = s− nT

Then:
ˆ t+nT

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
=

=

ˆ t

−∞

ds′
〈

Kj
s′+nT

(

Xj
s′+nT − ys′+nT

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}

Again we can use the periodicity of the process:

ˆ t+nT

−∞

ds
〈

Kj
s

(

Xj
s − ys

)

; gj
(

Xj
t+nT − xt+nT

)〉{y}

ρ{y}
=

ˆ t

−∞

ds′
〈

Kj
s′

(

Xj
s′ − ys′

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

• For the fourth term we can do the same the difference is that now the integral arrives till
s = 0, instead the covariance goes to infinite. For the same reason of the second term this
contribution goes to zero.

Therefore after applying the long-time limit:

〈

gj
(

Xj
t − xt

)〉{y+h}

ρ{y+h} −
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
=

βh

2

〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−

−βh

2

ˆ t

−∞

ds

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
− βh

2

ˆ t

−∞

ds
〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

(6.3.6)
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This is true if and only if the probe position is time-independent, or rather, when ht is constant.
To extend it to our case we will adopt an approximation. Whenever the probe changes position,
it perturbs the fluid particles. Since M . m and the coupling is small we expect that the probe
moves much slower than the particles and then, the time-scale of xt is much bigger than the one of
Xt (for this reason we call the fast the fluid degrees of freedom, and slow the probe ones). Therefore,
it is reasonable to assume that the particles can relax to a new periodic “stationary” state before
the probe changes again position. In other words, the dynamics of the fluid is at any time described
by periodic probability P

{y+ht}
t (X). We can write the response in this approximation considering

(6.3.6) at fixed time t:

〈

gj
(

Xj
t − xt

)〉{y+ht}

ρ{y+ht}
−
〈

gj
(

Xj
t − xt

)〉{y}

ρ{y}
=

βht

2

〈

gj
(

Xj
t − yt

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−

−βht

2

ˆ t

−∞

ds

〈

ẏs
∂gj (Xj

s − ys)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
−βht

2

ˆ t

−∞

ds
〈

Lsg
j
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

(6.3.7)
Where now t is considered a fixed parameter. Now it is important to note that the right-hand side
of (6.3.7) appears in (6.3.4). Therefore we can write:

〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
=
〈

gj
(

Xj
t − xt

)〉{y+ht}

ρ{y+ht}
− β

2

ˆ t

0

ds
dhs

ds

〈

gj
(

Xj
s − ys

)

; gj (Xt − xt)
〉{y}

ρ{y}
+

+
β

2

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du

[

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

]

(6.3.8)

6.3.1 Langevin equation for the probe

In the last Section we have found an expression for the average value of the coupling gj
(

Xj
t − xt

)

.

The observable gj
(

Xj
t − xt

)

, as we have said, appears in the equation of the motion for the probe
and it describes the interaction of the probe with the particles. It is very difficult since it depends

on the process Xt. But once averaged it over all the possible trajectories,
〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
will

no longer depends on Xt, but only on xt. We can interpret gj
(

Xj
t − xt

)

as the fluctuation around
its average value if we introduce a random variable ηt:

n
∑

j=1

gj
(

Xj
t − xt

)

−
〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
= ηt (6.3.9)

where ηt will be the noise perceived by the probe. In the next Section we are going to study its
properties. If we consider the equation (6.2.5)

M
d2xt

dt2
=

n
∑

j=1

〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
+ ηt
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Now, if we insert (6.3.8) in the equation of the motion:

M
d2xt

dt2
=

n
∑

j=1

〈

gj
(

Xj
t − xt

)〉{y+ht}

ρ{y+ht}
+ ηt −

β

2

n
∑

j=1

ˆ t

0

ds
dhs

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

+
β

2

n
∑

j=1

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du

[

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

]

If we define:

G (xt) =
n
∑

j=1

〈

gj
(

Xj
t − xt

)〉{y+ht}

ρ{y+ht}

It is a statistical force (due to its dependence on xt) that no longer depends on Xt since we have
integrated out the degrees of freedom of the fluid. It can be thought as an external force acting on
the probe. It takes into account all the particles and it is the result of the dynamical reduction.
It describes the mean interaction with the fluid and it is considered at fixed time. We obtain a
Langevin equation depending on:

M
d2xt

dt2
= G (xt) + ηt −

β

2

n
∑

j=1

ˆ t

0

ds
dhs

ds

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
+

+
β

2

n
∑

j=1

ˆ t

0

ds
dhs

ds

ˆ s

−∞

du

[

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
+
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

]

If we call:

γ (t, s) =
β

2

n
∑

j=1

〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
−β

2

n
∑

j=1

ˆ s

−∞

du

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
−

−β

2

n
∑

j=1

ˆ s

−∞

du
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
(6.3.10)

we have found the expression of the friction coefficient perceived by the probe. It does not depend
on the particles dynamics. The Langevin equation for the probe will be:

M
d2xt

dt2
= G (xt) + ηt −

ˆ t

0

dhs

ds
γ (t, s) ds

The last contribution describes the energy dissipation due to the presence of the particles and it
depends on the derivative of hs = xs − ys. It depends on the fluctuations of the probe position
around the instantaneous equilibrium, therefore it can be thought as the probe velocity. This
contribution is not memoryless since it depends on all the evolution. Using the linear response
theory we have obtained one of the fundamental ingredient of the Langevin equation, the friction
coefficient.
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6.3.2 The Noise

By definition the noise is given by:

ηt =
n
∑

j=1

[

gj
(

Xj
t − xt

)

−
〈

gj
(

Xj
t − xt

)〉{xt}
]

Then:

• 〈ηt〉{xt} = 0

• 〈ηsηt〉{xt} =
n
∑

j=1

〈

gj (Xj
s − xs) ; gj

(

Xj
t − xt

)〉{xt}

Using the approximation of weak coupling (λ small) we relate these average values to the ones
made over the periodic steady state {y} Therefore:

〈ηsηt〉{xt} =
n
∑

j=1

〈

gj
(

Xj
s − xs

)

; gj
(

Xj
t − xt

)〉{y}
+O

(

λ2
)

This is easily understandable using linear response theory given that the perturbation depends on
gj
(

Xj
t − yt

)

and, then, on λ. The noise perceived by the probe is not gaussian and it depends on
the coupling between particle and probe. Note that:

• xt differs from yt (in absence of other external forces) for the fluctuations, or rather, for the
noise. For the linear response theory we have assumed ht small, but this is true if and only
if the intensity of the fluctuation are not too big. This condition is assured by the weak
coupling assumption.

• If there would be no interaction between the particles all the contributions of the sum over
j in ηt would be independent and equal. Then, according to the central limit, ηt would
converge to a gaussian distribution. Therefore, the memory is due to the interaction between
the particles. This result is equal to the one found in the equilibrium case.

6.3.3 Second F-D theorem

First of all we are interested in the property of the noise perceived by the Brownian probe:

ηt =
n
∑

j=1

gj
(

Xj
t − xt

)

−
〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}

Then:

〈ηt〉{xt}

ρ{y}
=

n
∑

j=1

〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
−
〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
= 0

〈ηsηt〉{xt}

ρ{y}
=

n
∑

j=1

〈[

gj
(

Xj
s − xs

)

−
〈

gj
(

Xj
s − xs

)〉{xt}

ρ{y}

]

·
[

gj
(

Xj
t − xt

)

−
〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}

]〉{xt}

ρ{y}
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〈ηsηt〉{xt}

ρ{y}
=

n
∑

j=1

〈

gj
(

Xj
s − xs

)

gj
(

Xj
t − xt

)〉{xt}

ρ{y}
−
〈

gj
(

Xj
s − xs

)〉{xt}

ρ{y}

〈

gj
(

Xj
t − xt

)〉{xt}

ρ{y}

〈ηsηt〉{xt}

ρ{y}
=

n
∑

j=1

〈

gj
(

Xj
s − xs

)

; gj
(

Xj
t − xt

)〉{xt}

ρ{y}

These results are true for each initial distribution. Note that ηt is not a white noise. We have
found a relation between friction and covariance over the perturbed average value, but we can
solve only the unperturbed ones. For what we have said in the previous Section we can write
it as an unperturbed average value committing an error of order λ2. Note that the noise corre-
lation expression is close to the first term of the friction expression (6.3.10), but here we have
〈

gj (Xj
s − xs) ; gj

(

Xj
t − xt

)〉

instead of
〈

gj (Xj
s − ys) ; gj

(

Xj
t − xt

)〉

. Using the weak coupling as-
sumption we can expand it:

gj
(

Xj
s − xs

)

= gj
(

Xj
s − ys

)

+ (xs − ys)
∂

∂x
gj
(

Xj
s − xs

)

|xs=ys
+O (hs)

here hs is small due to the weak coupling assumption and gj (Xj
s − xs) with all its derivative is

proportional to λ therefore, the linear order is proportional to λ2. Due to it we can write:

〈ηsηt〉{xt}

ρ{y}
=
〈

gj
(

Xj
s − ys

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}
+O

(

λ2
)

(6.3.11)

Now the two expressions coincide. Therefore we can insert (6.3.11) in (6.3.10):

γ (t, s) =
β

2
〈ηsηt〉{y}ρ{y}

− β

2

∑

j

ˆ s

−∞

du

〈

ẏu
∂gj (Xj

u − yu)

∂y
; gj
(

Xj
t − xt

)

〉{y}

ρ{y}
−

−β

2

∑

j

ˆ s

−∞

du
〈

Lug
j
(

Xj
u − yu

)

; gj
(

Xj
t − xt

)〉{y}

ρ{y}

The 〈ηsηt〉 describes the fluctuation of the noise for the particles. Firstly we have to note that
generally it is no longer white and it depends on the perturbation to the fluid. We have found a
relation between the friction and the noise covariance. It is different from the second fluctuation-
dissipation relation for equilibrium system studied in [4]. As for the equilibrium relation the first
term is the entropic contribution, due to the nonequilibrium response theory there is a 1

2 pre-factor
and the last two terms are nonequilibrium corrections. The one depending on ẏt is still an entropic
contribution, while the last is due to the dynamical activity depending on the backward generator.
Note that if ys ≡ y would be constant we would obtain the second fluctuation-dissipation relation
found in [4] for stationary nonequilibrium dynamics. This formula paves the way to negative
friction physical phenomena. The sum over j has a huge number of terms, then the convergence of
the series is controlled by the covariances. This is indeed the second fluctuation-dissipation relation
for a nonequilibrium system. It relates the fluctuation of the only random part in the Langevin
equation for the probe to the drag contribution that is the dissipative contribution. As we expect
it is different from the second fluctuation-dissipation relation for equilibrium system studied in [4]
. The correction is due to the dynamical activity depending on the backward generator. This is
in agreement with the nonequilibrium linear response theory.
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6.4 Example

We consider time-homogeneous driven diffusion on the circle Xt ∈ S1 with

Ẋt = νE − νV ′ (Xt) +
√

2Dxξt

where the potential V is periodic in x. For non-zero forcing E > 0 the particle will start to move
around the circle, reaching a steady angular velocity

J =
νE

¸

dX ρ−1 (X)
> 0 (6.4.1)

for probability density ρ (x) , x ∈ S1 which solves the stationary Smoluchowski equation

(ν (E − V ′) ρ)′ − β−1ρ′′ = 0

The system converges to a nonequilibrium stationary regime. This current and probability density
should be interpreted as follows. One considers a great many of such identical independent particles
with positions xj

t in the same toroidal trap and then ρ actually gives the real particle density in
the steady regime. Similarly the mass center over all particles moves with angular velocity J .

Imagine now a probe inserted in that environment made up of the fluid particles (with positions
denoted above by Xj

t ). If the probe is sufficiently big compared to the fluid particles we expect that
ignoring fluctuations the probe follows the motion ẏt = J on S1. The fluid particles interact with
the probe position via some smooth potential U so that the new dynamics of the fluid becomes

Ẋj
t = νE − ν sin

(

Xj
t

)

− λν∂jU
(

Xj
t − yt

)

+
√

2Dxξ
j
t (6.4.2)

which couples each Xj
t with yt, defined as the solution of Ẏt = J on S1. In this example we

ignore the interaction between the fluid particles. Here we see a driven motion with forcing
F
(

Xj
t

)

= E − sin
(

Xj
t

)

and with a time-dependent periodic protocol yt (rotation with angular
velocity J). But the probe does not strictly be following the dynamics ẏt = J , as there will be
fluctuations and perhaps extra forces acting on the probe. In other words, the probe has a position
Xt not exactly equal to Yt, but we expect that Xt more or less follows Yt, especially when averaged
over many runs or over many identical but independent particles. Therefore the complete Langevin
equation for the fluid particles is

Ẋj
t = νE − ν sin

(

Xj
t

)

− λν∂jU
(

Xj
t − xt

)

+
√

2Dxξ
j
t (6.4.3)

where Xt is generally not-periodic. The coupling with the probe produces a time-dependent
nonequilibrium dynamics for the fluid. If xt − yt is small we can expand the potential U around
xt = yt. At the zero order we obtain (6.4.2). If we truncate the expansion to the first order we can
use the linear response theory to study how the probe motion perturbs the fluid dynamics. We
consider equation (6.4.3) making a choice for the potential

Ẋj
t = νE − ν sin

(

Xj
t

)

− λν sin
(

Xj
t − yt

)

+
√

2Dxξ
j
t

Here we are ignoring the interaction between the fluid particles. If we expand the coupling around
Xt = Yt and we write it as a potential perturbation for the fluid dynamics

Ẋj
t = νE − ν sin

(

Xj
t

)

− λν sin
(

Xj
t − yt

)

+ λνht∂j sin
(

Xj
t − yt

)

+
√

2Dxξ
j
t
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Following what we have done in Section 6.3, the equation for the probe is

Mẍt =
∑

j

〈

sin
(

Xj
t − xt

)〉{y+ht}

ρ{y+ht}
+ ηt −

ˆ t

0

ds
dhs

ds
γ (t, s)

where:
〈ηsηt〉{xt} , N 〈sin (Xs − ys) ; sin (Xt − xt)〉{y}

γ (t, s) =
βNλ

2
〈sin (Xs − ys) ; sin (Xt − xt)〉{y} +

βNλJ

2

ˆ s

−∞

du 〈cos (Xu − yu) ; sin (Xt − xt)〉{y}

−βNλ

2

ˆ s

−∞

du 〈Lu sin (Xu − yu) ; sin (Xt − xt)〉{y}

with:

Ls sin (Xs − ys) = [νE − ν sin (Xs)− λν sin (Xs − ys)] cos (Xs − ys)− β−1 sin (Xs − ys)

we have used ẏt = J . Here it appears N because the particles are equally distributed due to their
independence, therefore we can forget about the j index. We have done a numerical simulation in
two steps:

• Simulate the fluid dynamics without the coupling with the probe in order to obtain the
current J that is equal to ẏt according to (6.4.1). Since there is no time-dependent force
the dynamics relaxes to a nonequilibrium steady state (due to the nonconservative constant
force). The current tends to a constant value.

• Simulate the perturbed dynamics (6.4.3). In order to do it we have to evolve at each step of
width dt the trajectory yt that is given by the current J (we take to stationary value obtained
from the first simulation) multiplied by the time t and the probe position Xt. To determine
it we solved the equation (6.2.2). The average value are made simulating many trajectories.
The average value at a certain time is made summing the value of the process at that time
for each trajectory and then dividing by the number of trajectory.

With a numerical simulation we have obtained 〈η0 ηs〉{xt} and γ (s):
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As we can note the correlation goes quickly to zero. This is what we expect since without in-
teracting particle the noise becomes white. Instead the friction, after a relaxing time, does not
become constant, but it oscillate periodically around the same values.

6.4.1 Considerations

In this Chapter we have obtained an expression for the friction perceived by the probe, but we have
not said anything about the diffusion coefficient. If local detailed balance is no longer satisfied the
Einstein-Smoluchowski equation is no longer valid. Due to it, the diffusion coefficient perceived by
the probe is not easily estimable. If the probe dynamics is slowly changing, it is possible to obtain
an extension to Einstein-Smoluchowski relation adding a correcting contribution and then obtain
the diffusion coefficient. In [17] it has been made for a stationary nonequilibrium fluid, but it is
still unknown for a periodic steady state. A possible development of the presented theory would
be to obtain the correction in the not-stationary regime in order to find the diffusion coefficient
and to complete the understanding of the probe motion.

Furthermore, in this work we have supposed no external force acts directly on the probe,
differently from [4]. In fact, in this case the ht is not referred to a constant point y, minimum
of the potential V , but it is referred to a trajectory, property of the fluid. If we would suppose
the presence of a potential for the probe with a minimum, it would not be easy to conciliate the
dynamics yt with the tendency to stay close to the minimum. A possible development would be
the understanding of this conciliation.

In this work we have presented a method to describe a generic nonequilibrium system. In fact
proceeding by steps as just described we can obtain every needed Langevin equation and then
using it for the following step. This method is general and the only requirements are the ones
needed for the linear response theory. The description of nonequilibrium could then be viewed as a
chain in which each step is related to the following one. The relation is given by the local detailed
balance principle. Therefore, if for a step this principle is no longer satisfied, the chain is “broken”.
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It means that it is no longer possible to obtain the property of that system from the surrounding
dynamics. An example is indeed the Einstein-We have obtained an expression for the friction
perceived by the probe, but we have not said anything about the diffusion coefficient. If local
detailed balance is no longer satisfied the Einstein-Smoluchowski equation is no longer valid. Due
to it, the diffusion coefficient perceived by the probe is not easily estimable. If the probe dynamics
is slowly changing, it is possible to obtain an extension to Einstein-Smoluchowski relation adding
a correcting contribution and then obtain the diffusion coefficient. In [17] it has been made for
a stationary nonequilibrium fluid, but it is still unknown for a periodic steady state. A possible
development of the presented theory would be to obtain the correction in the not-stationary regime
in order to find the diffusion coefficient and to complete the understanding of the probe motion.

Furthermore, in this work we have supposed no external force acts directly on the probe,
differently from [4]. In fact, in this case the ht is not referred to a constant point y, minimum
of the potential V , but it is referred to a trajectory, property of the fluid. If we would suppose
the presence of a potential for the probe with a minimum, it would not be easy to conciliate the
dynamics yt with the tendency to stay close to the minimum. A possible development would be
the understanding of this conciliation.

In this work we have presented a method to describe a generic nonequilibrium system. In fact
proceeding by steps as just described we can obtain every needed Langevin equation and then
using it for the following step. This method is general and the only requirements are the ones
needed for the linear response theory. The description of nonequilibrium could then be viewed
as a chain in which each step is related to the following one. The relation is given by the local
detailed balance principle. Therefore, if for a step this principle is no longer satisfied, the chain
is “broken”. It means that it is not possible to obtain the property of that system from the
surrounding dynamics. An example is indeed the Einstein-Smoluchowski equation. This kind of
situations is really common for the nonequilibrium systems, especially for the not-stationary ones.
Therefore it would be interesting to develop issues to go through the problem of the “broken”
chain introducing reasonable approximations. equation. This kind of situations is really common
for the nonequilibrium systems, especially for the not-stationary ones. Therefore it would be
interesting to develop issues to go through the problem of the “broken” chain introducing reasonable
approximations.



Chapter 7

Conclusions

7.1 Part I

In the first part of this thesis we have studied the time-dependent jump processes. In order to
develop a general theory we have extended many properties of the jump processes to the time-
dependent case, from the most obvious ones - as the backward generator - to the subtlest ones, as
the entropy production. Since the transition rates are time-dependent, the probability of a time-
dependent process does not have a stationary distribution. Nevertheless, the process converges to a
particular regime in any case. To demonstrate it we have discussed the periodic regime evaluating
the probability for a two states system and simulating a system with a generic number of states. In
both cases, the probability depends on an exponentially decreasing term, therefore after a certain
time, given by the transition rates of the process, the probability converges to a periodic regime
that does not depend on the initial state.

This convergence is very important in order to explain the result obtained for entropy. In
fact the Shannon entropy is based on the relative entropy between two equilibrium regimes of
the process. Therefore if we consider a system at equilibrium and we perturb it, there will be a
convergence to a new equilibrium, the relative entropy gives the amount of entropy produced during
this relaxation in which the system is not at equilibrium. It can be extended to the nonequilibrium
only if the relative entropy has still meaning and this is true only if it compares two stationary
regimes. If the time-dependent probability converges to a “stationary” periodic regime, we can
introduce a comparison in the long-time limit.

Furthermore we have discussed the linear response theory in the framework of the time-
dependent processes. As in the time-independent situation, a perturbation can be of two types: if
it facilitates or obstacles in the same way a transition or its opposite it is said symmetric for states
exchange (this perturbation is thought as a global action as the variation of temperature). If it
tends to facilitate a transition and to obstacle the opposite one it is said antisymmetric (usually it
is associated to an external force). The symmetry for states exchange is very important because
when we consider the trajectories, it is related to the time-reversal symmetry. We have seen that, if
the perturbation is antisymmetric for states exchange the structure of the response is not changed
respect to the time-independent case. While, it is not true if the perturbation is symmetric be-
cause, in this case, the perturbation acts also on the symmetric reactivities. The reactivities, that
are the symmetric part of the transition rates, are related to the frenetic contribution that depends
on the time-dependent backward generator.

132
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7.2 Part II

In the second part we have studied the diffusive process introducing the Markov propagator.
Imposing the Markov approximation we have derived the Fokker-Planck equation and the Langevin
equation. After that, we have concentrated ourselves on the latter understanding its characteristics:

• The Langevin equation depends on two functions, the first represents the drift, it is deter-
ministic and it depends on the forces. While the second represents the diffusion and it is
stochastic. The structure of the equation is the same apart from the process is at equilib-
rium or not. In other words the Langevin equation formalism can be easily extended to
nonequilibrium introducing not-conservative forces.

• The dynamics reduction, obtained by “integrating out” the fast variables related to the envi-
ronment surrounding the system, and the two functions just recalled do not depend on the
system scale. Therefore the Langevin equation can be used to study microscopic systems
(e.g. a protein moving in a cell) as well as macroscopic systems (e.g. an air ballon moving
in the atmosphere).

• The Langevin equation depends only on the system degrees of freedom via the dynamics
reduction by integrating out the environment degrees of freedom. It can be done using the
linear response theory for diffusive process. Therefore the Langevin equation can be thought
as a consequence of linear response theory.

As an example of Langevin equation we have discussed the equilibrium Brownian motion. We have
described the motion of a particle embedded in an equilibrium fluid depending on two parameters,
the mobility and the diffusion coefficient. They are related via the so called Einstein-Smoluchowski
equation. It depends also on the fluid temperature. Since the Langevin equation is a consequence
of a dynamics reduction, it can be derived using the linear response theory. We have considered
the probe as a perturbation to an equilibrium fluid. Proceeding in this way we have obtained those
parameters (e.g. the mobility and the diffusion coefficient) as property of the fluid. Nevertheless,
we have derived a way to determine those parameters as property of the system itself. These
parameters are related via the fluctuation-dissipation relation, since the friction represents the
energy dissipation and the diffusion coefficient gives the intensity of the fluctuation. Since at
equilibrium the parameters obtained in the two ways coincide, the Einstein-Smoluchowski equation
is equivalent to the fluctuation-dissipation relation.

After that, we have studied the nonequilibrium regime in order to obtain an extension of
the Langevin equation. At the first step, our objective was to derive a Langevin equation for
a nonequilibrium system in an equilibrium environment introducing not-conservative, or time-
dependent external forces acting on the system. A nonequilibrium system can be seen as sum of
subsystems that are locally at equilibrium. In each subsystem the equilibrium relations between
mobility and diffusion coefficient (e.g. Einstein-Smoluchowski equation) are satisfied. If the system
can be studied in this way it satisfies the local detailed balance principle. On the other hand,
the local detailed balance principle, by definition, relates the action obtained by the trajectory
probability to the entropy flux. These two definitions must be equivalent. In order to demonstrate
it, we have studied a way to derive the entropy for a diffusive process.

We have shown how the mobility and the diffusion coefficient in the Langevin equation are
not equal to the one derived as a property of the fluid. Out of equilibrium the system dynamics
cannot be obtained as property of the fluid due to the nonequilibrium response theory. The
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response depends on a frenetic term that is important only out of equilibrium. Due to it the
Einstein-Smoluchowski equation does no longer represent also the fluctuation-dissipation theorem.
In fact out of equilibrium the mobility and the diffusion coefficient that appear in this relation are
properties of the fluid, and we have said that out of equilibrium they do not correspond to the ones
properties of the system. In other words out of equilibrium the Einstein-Smoluchowski equation
is only an useful relation between variables that appear in the Langevin equation.

Furthermore, we have studied the case in which the environment itself is out of equilibrium.
This situation is very common in the biological physics under the name of active matter. We have
developed the linear response theory for the diffusive processes using the stochastic integration in
order to develop the necessary tools to obtain the Langevin equation for a probe embedded in a
nonequilibrium fluid. This is what we have done in the last Chapter. The problem is divided in
two steps:

• First, we have considered a Langevin equation for the fluid particles in contact with one (or
more) reservoir. At this level the system is the fluid and the environment is the thermal
bath. According to it, the system dynamics satisfies the local detailed balance condition.
Note that even if the temperature is constant we cannot consider detailed balance due to the
nonequilibrium force acting on the fluid.

• Second, we have used the Langevin equation for the fluid to obtain an equation for the
probe. In this case the system is the probe and the environment is the fluid. Now it is no
longer reasonable to assume the validity of the local detailed balance principle due to the
not-stationary dynamics of the fluid.

In the last chapter we have presented the dynamics reduction for a not-stationary nonequilibrium
system and we have seen how also in this context the noise and the friction are obtained by
averaging the fluid dynamics. Since the fluid is made by interacting particles the friction and
the noise correlation at different times depend on all the history of the fluid motion. We have
demonstrated that if the fluid particle would be not-interacting the noise correlation will converge
to zero assuring a memoryless or Markovian dynamics. To demonstrate it we have also done a
numerical simulation. Therefore the not-Markovianity is a consequence of the particle interactions.

Relating the friction and the noise correlation expressions we have obtained the second fluctuation-
dissipation relation for a nonequilibrium fluid in a periodic “stationary” state. As we can see, this
expression is different from the equilibrium one, since it depends also on the frenetic contribution
of the linear response. Once again the nonequilibrium regime produces new terms that affect the
whole dynamics.

The obtained Langevin equation is very important due to its versatility. In fact we have
not assumed anything about the system scale, therefore it could describe any system, from the
microscopic to the macroscopic world. For this reason we have decided in this thesis to develop
its meaning and to extend it to the most general situation. Nevertheless this equation is not
complete. In fact we need to find also the diffusion coefficient perceived by the particle. In the
equilibrium case we have derived the friction expression and then we have used the Einstein-
Smoluchowski to find the diffusion coefficient. But, in this situation it is not possible since for the
probe system it is no longer possible to use the local detailed balance relation. In this case the
Einstein-Smoluchowski must be corrected adding another contribution. A possible development to
this result would be to find the extension to Einstein-Smoluchowski for periodic “stationary” state
and then find the diffusion coefficient expression. Furthermore, it would be interesting to consider
more then one probe particles embedded in the fluid. In this case, in fact, they could interact
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directly via a potential, or indirectly via the fluid perturbed by them. The possible applications
of this theory are many. One example is the Superconductivity where the interaction between
the Cooper’s couple electrons is made via the phonons emitted by the ions lattice. As it is easily
understandable, the potentiality of this theory is big and it is our interest to comprehend it.
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