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Abstract

Over the last two decades, brain connectivity has become a dominant

concept in neuroscience, and functional magnetic resonance imaging

(fMRI) has significantly contributed to the understanding of the func-

tional connectome of the human brain. However, fMRI only indirectly

reflects neuronal activity through haemodynamic changes, whereas

positron emission tomography (PET) captures relevant biological pro-

cesses more directly, e.g., glucose metabolism.

“Regions of the brain whose rCMRglc [cerebral glucose metabolic rates]

values are significantly correlated are functionally associated, and the

strength of the association is proportional to the magnitude of the cor-

relation coe�cient”. This statement from a pioneering study by Hor-

witz et al. (1984) is the starting point for research on the so-called

metabolic connectivity (MC), i.e., the set of relationships between the

metabolic rates of di↵erent regions of the brain.

MC is calculated on PET scans acquired with the glucose analogue

[18F]fluorodeoxyglucose (FDG). However, instead of exploiting the

temporal information of dynamic PET, most studies have used static

measures to derive MC at the group level such as the covariation

of metabolic information between subjects (subject-series approach),

usually with the standardized uptake value (SUV). This is in contrast

with fMRI, where functional connectivity matrices are derived at the

individual subject level from temporal correlations of brain region sig-

nals (time-series approach).

Therefore, a gold standard method to derive MC networks from dy-

namic [18F]FDG PET data at the single-subject level is missing in

literature, and in this context the following thesis project is proposed.

First, di↵erent approaches capable of retrieving MC matrices using

dynamic [18F]FDG PET data were tested on a dataset of 71 healthy

individuals provided by Washington University in Saint Louis, MO,

USA.

After pre-processing of the data (motion correction, coregistration to

T1w image, parcellation with the Hammers anatomical atlas, filtering

of the noisy initial frames, normalization with 5 di↵erent approaches

to address the positive trend in the signal), di↵erent metrics were

tested to calculate time-series MC: Euclidean similarity, Pearson cor-



II

relation, Cosine similarity and Gaussian kernel. These were applied

to both the non-normalized and normalized data. The same analyses

were then performed on the concentration curve of the free tracer in

the tissue and on the concentration curve of the tracer phosphorylated

by the hexokinase enzyme, obtained following quantification using an

image-derived input function and Sokolo↵’s two-tissue compartment

model. The obtained MC matrices were compared in terms of network

structure and between-subject reproducibility.

Subsequently, the time-series matrices were compared with subject-

series matrices calculated as across-subject correlation of [18F]FDG

parameters (i.e., SUVR, Ki, K1, k3) to assess the similarities between

the results obtained through the proposed method and those derived

from the standard across-subject approach.

The next step was to repeat the analyses using functional atlas i.e. the

Schaefer parcellation. The ultimate goal is to introduce “time series”

metabolic connectivity into connectomics studies, which already in-

corporate functional connectivity, structural connectivity and e↵ective

connectivity, but lack metabolic and receptor information. Therefore,

testing MC on functional atlas, frequently employed in connectomics,

was a necessary step.

Further studies on the structure of the MC networks via graph the-

ory and enrichment analysis with brain receptor maps were performed

to better characterize the physiological underpinnings of the obtained

MC networks.

Finally, voxel-level MC analysis was tested using independent compo-

nent analysis on [18F]FDG dynamic data (GIFT toolbox).

The results, using the Hammers parcellation, demonstrated that, by

applying Euclidean similarity as a metric, normalisation of the TAC is

not a necessary step. Indeed, homotopic interhemispheric connections,

already confirmed in a number of brain studies, are evident through

the application of this metric.

Furthermore, additional studies reveal that the MC matrices from

both the full TAC and last 20 minutes are strongly correlated with

those of compartment 2, whereas compartment 1 is weakly correlated

with the other portions of the TAC, so the application of compart-
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mental modelling cannot be avoided. Another important result is

the total absence of correlation between the time-series matrices and

the SUVR subject-series matrix, which is generally referred to in the

literature when dealing with metabolic connectivity. This result is

somewhat analogous to Simpson’s paradox, according to which a re-

lationship observed at the level of a population is reversed at the level

of the individuals that constitute it. Moreover, the graph metrics of

the time-series matrices correlate positively with receptor/protein den-

sity information and mean SUVR maps, whereas the metrics of the

subject-series correlate negatively or are unrelated to those indices,

which cast doubt on their physiological interpretation.

The Schaefer parcellation partly confirmed what emerged with the

Hammers case, but the lower correlation values that tend to be ob-

tained are probably related to the very fine parcellation that is intro-

duced in this case (100 or 200 parcels), which leads to an increase in

noise in an already very noisy dataset and is therefore not suitable for

this PET data.

Finally, the analysis at voxel level did not give satisfactory results,

confirming what had already emerged in the study by Ionescu et al.

(2021), according to which this approach is not suitable for conven-

tional PET studies given the low signal-to-noise ratio at voxel level.
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Chapter 1

Introduction

1.1 Positron Emission Thomography

Positron Emission Tomography (PET) is a type of nuclear medicine procedure,

involving chemical analysis, that is widely used clinically in oncology, neurol-

ogy, cardiology and in neuroscience research. PET helps to detect biochemical

changes in the body, thus making it possible to identify deviations in the normal

metabolism of an organ or tissue and to assess the processes responsible for dis-

eases [1]. As a nuclear medicine technique, it involves the use of a small amount

of a radioactive substance, called a radiopharmaceutical, obtained by labelling

metabolically active molecules, i.e. substances that are naturally used by the

particular organ or tissue during its metabolic process, with positron-emitting

radionuclides.

The first studies began in the 1930s, when the first cyclotron was developed for

the artificial production of radionuclides. The procedure initially involves the in-

travenous injection of the radiopharmaceutical into the patient, usually followed

(in static acquisitions) by a waiting period to allow a certain concentration of the

metabolically active molecule to be reached in the tissue of interest. The patient

is then placed in the PET scanner.The isotope, which has a short half-life, decays,

resulting in the emission of a positron, which annihilates with an electron. This

process gives rise to a pair of gamma photons, both of energy 511 keV, which

are emitted in opposite directions and are therefore called back-to-back photons.

These photons are detectable when they reach a scintillator, the main component

of a PET tomograph, which is the detection system surrounding the table on

which the patient is placed. Once the photons hit the scintillator, a bright field

1
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is created that can be detected by the photomultiplier tubes. The idea is to be

able to reconstruct from the point at which the photons reach the scintillator,

the position in the body from where they are emitted. A computer then uses

this information to create an image map of the organ or tissue being studied.

The amount of radionuclide collected in the tissue a↵ects the brightness of that

area in the image (which usiually can be expressed quantitatively as count/sec or

Bq/ml, in absolute units unlike those employed in MRI), thus providing metabolic

information.

Static and dynamic PET images

PET data are generally stored in a large matrix, in which the value of radioactivity

concentration is assigned to each voxel.There are two types of PET images: static

and dynamic (figure 1.1). In static, i.e., single-frame acquisition, each voxel con-

tains the sum of the image acquisition period information. This approach, given

the extremely reasonable costs and easy management of the patient, is widely

used for clinical applications, particularly in oncology and cardiac studies.

On the other hand, with regard to dynamic PET, i.e., multi-frame acquisition,

there are a number of reconstructed images and each can be associated to a time

frame of di↵erent duration (usually frames have increasing duration to match

the scanner’s count statistics).Thus, the distribution of tracer concentration as a

function of time can be measured. This approache sees main application in neuro-

science research, particularly to study tissue metabolism and receptor density [2].

1.1.1 [18F] FDG-PET

Currently, the most widely used radiopharmaceutical is [18F]fluoro-D-glucose

(FDG), which, being a glucose analogue, is widely utilized as a biomarker of

glucose metabolism in the brain. When injected intravenously, it is transported

from the blood into the cells mainly by the glucose transporter GLUT1, then

phosphorylated by hexokinases (HXKs) to form FDG-6-phosphate and stored in

the cells.

This is in fact the main advantage of FDG, as [18F]FDG-6-P is trapped in the

tissue and released very slowly, so it cannot be metabolised further. By contrast,

glucose-6-P is metabolised along the pathways of glycolysis and glycogen synthe-

sis.

However, it should be noted that, as [18F]FDG is a glucose analogue, there is
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Figure 1.1: Static and dynamic PET image. For static scans, tracer activity is measured over a
single fixed time period. While in dynamic PET imaging the tracer activity is measured
for multiple instants, resulting in 4D matrices [2].

a need to correct for di↵erences in transport and phosphorylation with respect

to glucose itself. For this reason a factor, called the Lumped Constant (LC), is

introduced to convert the fractional uptake of [18F]FDG to that of glucose. The

LC value depends on several factors, including the type of tissue being tested or

the study conditions (insulin level or oxygen availability for example) [3].

Glucose is the primary source of energy in the brain, particularly in the cortex

and deep structures of the grey matter. Reductions in glucose metabolism can be

seen in a variety of neurodegenerative conditions. Indeed, in studies of patients

with Alzheimer’s disease and Parkinson’s disease, it was noted that changes in

regional metabolic ratios occurred compared to healthy subjects [4].

Thus, an understanding of regional metabolic ratios in the brains of healthy indi-

viduals is important for understanding the alteration of brain function in disease

states. FDG-PET neuroimaging provides a wide range of useful metabolic in-

formation, which can elucidate mechanisms of neurological diseases and guide

therapeutic approaches. This is the reason why it would be useful to integrate

PET connectivity into connectomics studies, which incorporate structural and

functional connectivity, but lack metabolic information.

1.1.2 Quantification of PET images

PET images can be analysed, depending on the purpose, both qualitatively and

quantitatively.
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Visual interpretation may be useful in some studies to answer the biological ques-

tion, for example, when localisation of metabolic defects is the main aim of the

study. However, quantitative information is often required and to relate the

concentration of the PET tracer with underlying physiological or biochemical

processes, a mathematical model must be applied to describe the tracer kinetics

in a particular region of interest [2] [3].

Depending on the purpose, di↵erent quantification techniques are employed and

can be represented by a pyramid structure, as in figure 1.2, in which each level,

corresponding to a method, represents the balance between the conditions neces-

sary for its application and the parameters returned as output.

Figure 1.2: Hierarchical representation of the di↵erent methods used for quantitative or semi-
quantitative PET image analysis [2].

All PET quantification methods consist in relating the radioactivity measure-

ments detected by the scanner to the metabolic processes in which the injected

tracer is involved, taking into account the specific biological characteristics of the

system under investigation. The key assumption assumption is that the tracer

does not alter or disrupt the system under study and therefore its functioning in

vivo can be deduced directly.

Considering static PET acquisitions first, quantification is based on the semi-

quantitative SUV index, the standard uptake value. The study of SUV has been

largely developed in clinical practice, as its calculation is very simple and re-

quires only the PET measurement at a fixed sampling time and the injected dose

normalised to some anthropometric characteristic of the subject (body weight or
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body surface area). As an alternative to SUV, the tissue-to-plasma ratio, i.e. the

tracer activity measured in the tissue as a ratio to that in the plasma pool, is often

calculated within a fixed time window. The SUV provides an index to quantify

the uptake of the tracer in a region of interest or in a voxel and is calculated by:

SUV =
radiotracer concentration

injected dose

NF

(1.1)

where the radiotracer concentration is the concentration measured by PET over

a time interval (usually from 5 to 20 minutes), 45-60 minutes after tracer injec-

tion. The injected dose, in milliCuries or MBq, is the total dose administered

to the patient and NF is a normalisation factor based on anthropometric char-

acteristics of the subject such as body weight, body surface area or lean body

mass. Despite the adaptability and simplicity of the SUV, several physiological

and technical factors can impact on this calculation and therefore an a priori val-

idation is necessary: given a tracer and a certain system, it is necessary to verify

the reproducibility of SUV, its consistency with the physiology and kinetics of the

tracer, and its ability to discriminate between healthy and pathological tissues.

Moving on to dynamic acquisitions, which are more informative, there are three

classes of models most widely used, which di↵er in terms of application assump-

tions (e.g. reversibility of tracer uptake, model structure, etc.) and these are:

compartmental models, spectral analysis modelling approach and graphical meth-

ods. While spectral analysis and graphical methods are linear modelling tech-

niques, thus usable for the quantification of physiological systems in a steady

state, compartmental models can be linear or non-linear, thus allowing a non-

stationary description. It follows that they provide a richer physiological explana-

tion than the other two methods, obviously with increased modelling complexity.

Thus, while compartmental modelling requires a complete mathematical descrip-

tion of the system’s processes, it is absolutely the richest approach, allowing a

complete understanding of the physiological process itself or of the pathogenesis

of a disease by revealing the mechanisms underlying the system under investiga-

tion.

Compartmental models have been widely used since the pioneering contribution

of Sokolo↵ and colleagues in 1977, who introduced the well-known two-tissue com-

partmental model based on the tracer 2-[14C]deoxyglucose to quantify cerebral

glucose consumption [5].

In compartmental models, a linear or non-linear structure must first be postulated
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in terms of the number of compartments and their interconnections, which must

have a reliable biochemical and physiological basis, thus being able to describe

aspects such as di↵usion, transport, metabolism and receptor-ligand binding.

Each compartment, depicted by means of a circle, is understood as a quantity

of well-mixed and kinematically homogeneous material, described by a time de-

pendent system of first-order di↵erential equations. From this time dependence

comes the necessity to acquire dynamic PET images. The arrows between the

compartments, instead, represent a flow of material due to transport or chemical

transformation or both.

The two-tissue compartmental model proposed by Sokolo↵ and colleagues was

subsequently used for [18F]FDG PET studies in the brain and other tissues or or-

gans. In the model, shown in the figure 1.3, Cp is the arterial plasma concentration

of [18F]FDG, C1 the tissue concentration of [18F]FDG and C2 the concentration

of [18F]FDG-6-P in the tissue.

Figure 1.3: Two-tissue compartment model for quantifying [18F]FDG glucose analogue as proposed
by Dr. Sokolo↵ and colleagues in 1977 [2].

MicroparametersK1 and k2 represent the kinetics of forward and reverse [18F]FDG

transport across the membrane respectively, and k3 the rate constant of [18F]FDG

phosphorylation. The use of arterial plasma samples and dynamic PET images

allows the estimation of model microparameters. Note that K1 in the PET lit-

erature is reported with a capital k to indicate a di↵erent unit of measurement

(ml/ cm3/min or mlplasma/mltissue/min) than the remaining parameters.

The kinetics of the tracer in the tissue is described by:

8
<

:
C1
˙ = K1Cp(t)� (k2 + k3)C1(t) C1(0)=0

C2
˙ = k3C1(t) C2(0)=0

(1.2)

After the injection of [18F]FDG into the blood, the total concentration of radioac-

tivity in the tissue, Ci, is equal to the sum of the concentrations of [18F]FDG and

[18F]FDG-6-P at any time:

Ci(t) = C1(t) + C2(t) (1.3)
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However, due to the limited spatial resolution of the PET scanner, the mea-

surement of tracer concentration in a ROI (Region Of Interest) also includes the

measurement of radioactivity in the volume of blood present within the tissue. It

follows that a certain fraction, Vb, of the concentration of 18F in the blood, Cb,

must be added to the above formula:

Ci(t) = (1� Vb)(C1(t) + C2(t)) + VbCb(t) (1.4)

Where Vb in brain and skeletal muscle means the vascular volume present in the

ROI tissue, while in the heart it represents the spillover e↵ects from blood to

tissue, which are negligible in brain and skeletal muscle.

The quantification of microparameters is usually performed using the weighted

non-linear least squares estimator. In this approach, the weights are expressed

as the inverse of the variance of the PET measurement error. For the estimation

of the variance, several formulas can be used, including the most widely adopted

one:

var(tk) = C(tk)/�tk (1.5)

where C(tk) is the mean measured value of the tracer activity over the kth relative

scan time interval �tk. However, if the data are very noisy, as in the case of voxel

level, the estimator may have problems with convergence, high calculation time

and sensitivity to initial estimates. In this case di↵erent estimation approaches

have to be adopted.

From the microparameters it is possible to derive the macroparameter of interest,

i.e. the fractional uptake of [18F]FDG, Ki:

Ki =
k1k3

k2 + k3
(1.6)

When Ki is known, the regional metabolic rate of glucose can be derived:

rGl =
k1k3

k2 + k3

Cp-g

LC
(1.7)

where Cp-g is the arterial plasma glucose concentration and LC is the factor

describing the relationship between the glucose analogue and glucose itself. LC

is defined as:

LC =
E

FDG

EGLU
(1.8)

where E
FDG and E

GLU are the extraction of [18F]FDG and glucose respectively.
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Quantification at voxel level: Variational Bayesian approach

Since pathological states may change micro-parameters it is important to obtain

their parametric maps at a voxel level. Furthermore, at the level of regions of

interest, there would be a loss in terms of spatial resolution, and averaging the

time activity curves of voxels would ignore the variability between them, so voxel-

level analyses would also be introduced. However, in this case, the weighted non-

linear least-squares estimator would have three problems: lack of convergence due

to the low signal-to-noise ratio, inacceptable precision of parameter estimates and

non physiological estimates (e.g.., < 0 or > 1). A suitable alternative is o↵ered

by Bayesian methods, which have already been used in the literature and have

the advantage of incorporating prior information on tissue kinetics. The critical

point is that the computation of the posterior distribution, involving numerical

integrations, is, most of the times, intractable. An option is the Variational

Bayesian (VB) approach, which approximate the posterior distribution to make

it numerically tractable. VB has already been implemented in PET studies for

reconstruction [6, 7] and segmentation and recently has been adapted for kinetic

PET modelling and customised to the characteristics of its noise distribution [8].

In a VB approach, a priori information is used to help in the estimation of the

parameter vector j, given a model y (y = C(#, t)) and a set of measurements z.

The prior distribution are data-driven, using a hierarchical scheme: the estimates

obtained from model fitting at ROI level with WNNLS are passed to the voxel

level as prior information. The idea is to use the data z to refine the a priori

information P (#|y) and to obtain the posterior distribution of the vector j, that
is P (#|z, y). The link between the posterior and the a priori distribution is express

by the Bayes’ rule (neglecting the dependence on y):

P (#|z) = P (z|#)P (#)

P (z)
(1.9)

Where P (z|#) is known as likelihood, the probability density function that, given

# and y, describes the data z.

In VB approach:

#̂ = argmin
#

P (#|z) (1.10)

In practise the numerical integrations involved in the calculus of P (#|z) make

the problem intractable. In real applications, VB methods analytically approx-

imate the posterior with the simpler function Q(#) [9]. The goal is to reduce
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the di↵erence between the real and approximate posterior: this di↵erence can be

quantified via the Kullback–Leibler divergence [10]:

KL[Q(#)||P (#|z)] = logP (z)� F (1.11)

Where F is the free energy term, defined as:

F =

Z
Q(#) log

P (z|#)P (#)

Q(#)
d# (1.12)

The logarithmic term in 1.11 does not depend on # and can be ignored. Assured

that KL divergence is non-negative it can be minimized by maximising F .

In order to make the integrals tractable, VB specifies a mean field approximation

for Q(#). In practice # is collected into two separate groups: one with model

parameters (#) and another with noise-related parameters ('). Each group has

its own approximate distribution Q#(#|z) and Q'('|z) which are assumed inde-

pendent. Thus Q(#) = Q#(#|z)Q'('|z). Q(#) nd the likelihood have the same

structure simplifying the integration that became a process of updating the pos-

terior hyper-parameters [9].

1.2 Brain Connectivity

The brain can be considered as a network consisting of a large number of distinct

regions, each with its own task and function, but which continuously share infor-

mation respectively.

In physiology, it is known that there are many mechanisms that contribute to the

creation of connections within the brain: epigenetic and genetic factors, but also

processes that depend on experience.

Cell plasticity, which characterises cell migration and neurogenesis in the de-

veloping brain, and synaptic plasticity are two key physiological factors in brain

connectivity. The latter refers to the intensity of synaptic connections, as neurons

and neural populations interact through their a↵erent and e↵erent connections in

such a way as to be able to perform di↵erent sensorimotor and cognitive tasks.

Therefore, given the interactions between the di↵erent neural populations, it is

clear that they do not function independently. By contrast they form a complex

integrative network, the brain network, in which information is continuously pro-

cessed and transported between the connected regions.

Finally, the brain network can be defined as consisting of spatially distributed
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but functionally connected regions. However, how functions and connections are

spread in the human brain is still a field of continuous research and study. For this

reason the brain connectivity has become a dominant concept in neuroscience [11].

1.2.1 Localizationism and Connectionism

The theory of localizationism and the theory of connectionism were the two oppo-

site ways of interpreting brain functions throughout the 19th century. Underlying

functional localizationism is the idea that individual psychic and cognitive func-

tions are associated with one and only one region of the brain, i.e. “one-to-one”

mapping. However, studies have shown this theory to be unfounded: neural units

are not isolated, but what has been found experimentally for all cognitive domains

is a “one-to-many” and “many-to-one” mapping [12] [13].

Evidence to the disproof of functional localizationism is for example what is called

the disconnection syndrome, i.e. information processing in a local and anatomi-

cally intact area is altered when input, coming from distinct and remote regions,

is a↵ected due to lesions in its white or grey matter [14].

Therefore, this principle has been replaced by the theory of connectionism, accord-

ing to which, brain regions have specific functions, but processing is influenced

by the temporal e↵ects of di↵erent areas from which the input comes [15].

For this reason, reference should be made to the overall behaviour of the nervous

system.

At the basis of the concept of connectionism are functional specialisation and

functional integration. These are complementary concepts, as they refer to the

fact that brain regions dedicated to a specific function may involve further spe-

cialised regions whose combination results in functional integration. Hence, the

functional specialisation of a cortical structure becomes meaningful only in the

context of functional integration and vice versa [16].

1.2.2 Functional Specialization and Functional Integration

Functional specialisation is based on the concept that specific brain regions are

dedicated in processing certain information. This translates into the fact that,

if a task is performed on a subject, changes in activity can be detected only in

the brain regions that are interested in the given cognitive or sensorimotor input.

However the single brain region is the location of a set of elemental operations,

not a complex group of mental faculties that rather derive from the reciprocal
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connections between the numerous brain areas. Functional integration refers to

the reciprocal correlation and interaction between the di↵erent areas of the brain

that underlie any cognitive or sensory-motor task [17].

A further aspect to highlight in the theory of functional integration between the

di↵erent specialised brain regions is also the reciprocal proximity between these

areas. If we consider, for example, the temporal lobe, functionally involved in the

perception of words, this is surrounded by the auditory cortex and other corti-

cal areas, which integrate acoustic, visual and somatic information into complex

perceptions. Therefore the temporal lobe is in an optimal position to interact

with the surrounding regions, which have functions closely related to the purpose

of the first one. However, proximity from an anatomical point of view is not a

necessary requirement, but even anatomically distant regions interact with each

other for the same function [18].

1.2.3 Types of connectivity

In order to have a clear and complete view of the mechanisms underlying informa-

tion processing in the brain, the study of the connectivity between the di↵erent

cerebral regions is crucial.

Connectomics studies include: anatomical-structural connectivity, functional con-

nectivity and e↵ective connectivity.

Figure 1.4: Schematic representation of the three di↵erent types of connectivity [19].

Anatomical-structural connectivity

Anatomical or structural connectivity refers to the presence of anatomical con-

nections, i.e. axons connecting di↵erent areas. The study can be carried out by

means of imaging techniques such dMRI (Di↵usion Magnetic Resonance Imaging)

in vivo, which allow indirect evaluation at the macroscale/mesoscale of the fibers

connecting pools of neural cells.

Concerning the DTI (Di↵usion Tensor Imaging) technique, it is sensitive to the

di↵usion of water molecules with respect to a predefined direction and since this
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is constrained by the cell membrane, an estimate of fibers orientation can be ob-

tained from the di↵usive direction [20]. However, tractography algorithms, which

Figure 1.5: Di↵usion directions obtained from DTI. Sagittal (left), coronal (middle) and axial (right)
slice of the color coded fractional anisotropy (FA) map computed from the registered
di↵usion tensors and plotted on the registered T1w-MRI. The color indicates the main
fiber orientation: red is left-right, green is anterior-posterior and blue is superior-inferior
[21].

aim to reconstruct white matter fibre tracts from di↵usion MRI data, have been

demonstrated to generate a significant number of false-positive connections be-

tween brain regions. This is due to the fact that whenever two axon bundles

are organised in a crossing or kissing configuration, in vivo tractography can-

not distinguish their actual trajectories from di↵usion data. This implies the

presence of many spurious entries in the structural contectome obtained from a

tractogram. Consequently, structural connectivity is biased, with some connec-

tions being more faithfully identified than others. This type of connectivity is

relatively stable over time, but it is not possible to discriminate between excita-

tory and inhibitory connectivity.

Functional connectivity

Functional connectivity is typically defined as the temporal correlation of neu-

ronal activation patterns of anatomically separated brain regions [22].

Imaging techniques that provide information on functional connectivity are

mainly fMRI (functional magnetic resonance imaging), EEG (electroencephalog-

raphy) and MEG (magnetoencephalography), and numerous methodologies can

be exploited. However, considering the time series of two distinct but function-

ally related brain areas, it is not possible with functional connectivity alone to

define which conditions the other, whether they influence each other or if a third

modulates them. For this purpose e↵ective connectivity must be studied, which

therefore considers the causality of the correlations.
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E↵ective connectivity

E↵ective connectivity provides information on the influence of one neuronal sys-

tem on another, reflecting causal interactions between activated brain areas [23].

The aim is to find the simplest possible model that generates the observed tem-

poral relationship between the recorded neurons.

The imaging methodologies most commonly used to study e↵ective connectivity

are fMRI, EEG and MEG. While several methods are used to obtain the actual

connectivity maps, most generally reference is made to dynamic causal modelling,

Granger causality and structural equation modelling.

1.3 Metabolic Connectivity

The study of brain function and thus of the connectivity of cerebral areas, through

the development of new technologies and imaging methodologies, has been ad-

dressed in greater depth in recent decades. In particular, the main focus is on

functional connectivity (FC), which describes the synchronous oscillations of ac-

tivity in distinct areas of the brain.

The majority of studies in the literature have been conducted by means of func-

tional magnetic resonance imaging (fMRI) that was essential to delineate the hu-

man connectome. Ogawa et al. introduced fMRI, a technique that is based on the

BOLD (blood oxygenation level dependent) signal, thus on contrasts dependent

on the level of oxygen present in the blood [24]. However, the complex relation-

ships between blood oxygenation, cerebral metabolic rate of oxygen (CMRO2),

cerebral blood flow (CBF), and changes in cerebral blood volume (CBV) are all

involved in a single fMRI signal. Thus, a complete and clear description of these

relationships has not yet been provided. In addition, fMRI has some other draw-

backs, including that the BOLD signal only indirectly reflects neuronal activity

through hemodynamic changes and an high sensitivity to artifacts such as the

motion artifact, particularly problematic in developmental or clinical populations,

where movement is correlated with the independent variable of interest (age, di-

agnosis). However, the BOLD signal can also be influenced by a number of other

sources that can be labelled as noise, e.g. physiological sources (e.g. breathing

and cardiac characteristics) as well as random noise (e.g. thermal noise).

For these reasons, functional MRI is far from being considered the “gold stan-

dard” technique for studying brain connectivity.

In comparison, positron emission tomography (PET) has recently grow in pop-
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ularity in the connectivity literature as it can directly reflect neuronal and glial

activity. PET connectivity is an emerging research area in neuroscience to which

two symposiums have been dedicated last year at OHBM 2021 and this year at

Brain&BrainPET 2022, and on which the major centres working on brain PET

are focusing, like: Yale (Richard Carson), Harvard (Martinos Center), MedUni

Wien, Monash University,..

In the PET literature, the most widely used radiopharmaceutical (about 90%)

is [18F] Fluorodeoxyglucose (FDG), which, being a glucose analogue, is largely

utilized as a biomarker of glucose metabolism in the brain. Moreover, it can be

used to calculate the so-called metabolic connectivity (MC), which refers to the

set of relationships between the metabolic rates of di↵erent regions. Importantly,

if metabolic changes occur in one region, changes also occur in adjacent or dis-

tant areas, depending on their related functionality. This might prove very useful

in diagnosing degenerative diseases, which cause alterations in large-scale brain

networks.

Advantages that justify FDG-PET metabolic connectivity studies definitely in-

clude the better signal-to-noise ratio compared with fMRI data, has greater

between-subject reproducibility and robustness from a methodological point of

view. Regarding the latter aspect, it is related to the fact that while there are

established methods to correct FDG-PET data for partial volume e↵ects, there

is no such compensation established for fMRI data. This is a relevant problem in

the case of elderly subjects and in neurodegenerative conditions, in which brain

atrophy is pronounced.

1.3.1 State of the Art on Metabolic Connectivity

The idea of relating regional cerebral metabolic rate for glucose (rCMRglc) from

di↵erent brain regions was first introduced by Macko et al., 1982, with a visual

mapping experiment [25]. However, in that study, correlations between regions

were inferred by simply examining individual rCMRglc values, not by an explicit

quantitative correlation algorithm. The experiment consisted of first dissecting an

optic tract in four monkeys and then they were administered [14C]2DG followed

by a bright, high-contrast visual pattern. The brain was divided into regions,

in each the rCMRglc was determined, then a comparison between normal and

blinded side was performed. As a result, what has been observed is that the

metabolic rate of the blind side was 30% of the healthy side in the visual area

OCiv (layer iv of the striate cortex), 72% of the normal in the prefrontal area
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FDv, but unchanged in the temporal lobe area TC. In terms of correlations, when

rCMRglc in OCiv was low, it was also low in FDv, when it was high in OCiv, it

was also high in FDv. Thus, these two areas showed a high correlation between

their rCMRglc values. Macko concluded that regions with high reciprocal corre-

lations participate in visual processing, whereas those with low or no correlations

did not.

The idea of deriving functional associations of di↵erent brain regions by metabolic

activity was later taken up by Horwitz et al. in 1984, thus pre-dating the introduc-

tion of fMRI [26]. The research group performed a correlational analysis between

regional brain metabolic rates for glucose by positron emission tomography using

2-[18F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. On the basis of the relation-

ships derived between regional metabolic rates, it was suggested that areas of the

brain whose rCMRglc values are significantly correlated are functionally associ-

ated, and the strength of these relationships is proportional to the magnitude of

the correlation coe�cient. The study focused on determining brain metabolism

in forty healthy adult men under conditions of reduced auditory and visual input

by calculating partial correlation coe�cients for rCMRglc between each pair of

regions while holding CMRglc (whole brain glucose metabolism) constant. The

partial correlation coe�cients measure how two quantities covary independently

of the e↵ect on each of a third quantity, and correlations with p-values < 0.01

were considered statistically significant. The findings of this research demon-

strated that the largest values of the partial correlation coe�cients were between

homologous brain regions, showing how they were significantly correlated with

each other. Furthermore, the correlations between any two lobes in the right

hemisphere did not di↵er significantly from the corresponding pattern in the left

hemisphere. Therefore it follows that both hemispheres function more or less

similarly with regard to the inter-lobe pairings. The results of the correlations

between the regions also showed statistically significant relationships between the

primary somatosensory areas with the frontal lobe regions, however, this was not

shown for the primary visual and auditory areas. Further observation concerns

the high number of correlations identified between frontal and parietal lobe re-

gions, on one hand, and between temporal and occipital lobe regions, on the

other, but few statistically significant correlations between these two domains.

Thus, metabolic connectivity obtained with FDG-PET seemed to provide rele-

vant insights for the study of brain activity and cognitive function.
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MC from static PET images

Hence, in the last few years, there has emerged a strong interest of the scientific

community in the study and development of methods to assess metabolic con-

nectivity by [18F]FDG PET. However, most studies in the literature, instead of

exploiting the temporal information of dynamic PET, rely on conventional static

measures to derive group-level MC as the covariation of metabolic information

across subjects. The metabolic connectivity thus obtained will be referred as

subject-series MC.

The review by Yakushev et al. (2017) provides an outline of the most widely used

and well-established approaches in Metabolic Connectivity from static PET [27].

These are:

• Seed correlation or IRCA, which involves choosing a reference site and quan-

tifying the correlation with FDG uptake for every other voxel in the brain,

as in Lee et al., 2008 [28].

• Principal component analysis (PCA) and independent component analy-

sis (ICA), which are multivariate decomposition techniques that impose

orthogonality and statistical independence constraints on the derived com-

ponents, as in Di and Biswal, 2012 [29].

• Sparse inverse covariance estimation (SICE), also called graphical lasso,

which estimates the connectivity map by imposing a sparsity constraint on

the precision matrix (equal to the inverse covariance), as in Huang et al.,

2010 [30].

• Graph theory, which is based on the similarity matrix where the sparsity

is obtained by applying a threshold to the correlation values, resulting in

binary adjacency matrices, as in Yao et al., 2010 [31].

Quantification of metabolic connectivity from static [18F]FDG PET data is rou-

tinely performed using the standard uptake value (SUV) calculated at a fixed

sampling time and for each region of interest or voxel.

However, connectivity studies based on static PET are in opposition to those

performed with other imaging techniques, including fMRI, where functional con-

nectivity matrices are obtained at the individual-subject level via temporal cor-

relations (i.e. dynamic data) between signal time series [32]. Very few studies

are based on dynamic PET and only three of which were conducted with human

participants.
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MC from dynamic PET images

In the study performed by Wehrl et al. (2013) on 8 rats, functional connectivity

information obtained from BOLD-fMRI and dynamic PET with [18F]FDG tracer

was compared by means of independent component analysis using the Group ICA

Toolbox (GIFT) [33]. This approach for dynamic PET data had never been used

before and allowed to highlight seven networks showing similarities to those de-

scribed in the fMRI literature, but with smaller area [34].The result of the study

indicates that fundamental information about brain networks is encoded in dy-

namic PET data, which is however largely unused by conventional image analysis

methods.

The study presented by Passow et al. (2015) involved eight healthy right-handed

male participants (mean age 53.1± 10.5) with no history of neurological or psy-

chiatric conditions [35]. Again, the aim is to perform a comparative analysis of

fMRI and FDG-PET data to investigate the link between metabolic activity and

functional connectivity within and across brain networks. To do so, each dataset

was subjected to a Default Mode Network (DMN) seed-based correlation analy-

sis. The results of the study showed spatial similarities between fluctuations in

the BOLD signal and fluctuations in local glucose consumption. This leads to

the hypothesis that the BOLD signal, and thus functional connectivity at rest,

results from dynamic changes in brain metabolism, a direct measure of ongoing

neuronal activity.

A further study carried out on 53 healthy participants is conducted by Tomasi

et al. (2017) based on group independent component analysis (gICA) to assess

associations between metabolic connectivity (from FDG-PET) and functional

connectivity (from rfMRI) [36]. The gICA on rfMRI data identified 22 di↵er-

ent subnetwork components integrating major networks such as visual, motor,

language, default mode, cerebellar and dorsal attention. However, the gICA on

FDG-PET data did not report this rich set of networks, but identified only two

anticorrelated ones. The first component incorporates cerebellum, pons, medial

temporal cortex regions and anterior thalamus, while the second component in-

cludes cortical regions.

The study conducted by Amend et al., 2019 is also based on dynamic PET im-

ages [37]. From this data, brain connectivity was derived by calculating the Pear-

son correlation coe�cient between each pair of regions of interest, based on the

Schi↵er rat brain atlas [38]. By integrating simultaneous resting-state fMRI and

dynamic [18F]FDG-PET measurements in the rat brain, homotopic correlations
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between both modalities were identified, suggesting an underlying synchrony be-

tween hemodynamic processes and glucose consumption.

A further study by Ionescu and colleagues (2021) focuses on a resting-state net-

work (RSN) analysis from a simultaneous acquisition of PET/fMRI data per-

formed on 30 rats [39]. The aim is to compare brain connectivity derived from

fMRI and [18F]FDG-PET during the resting-state and for this purpose indepen-

dent component analysis and pairwise correlation analysis were employed. The

results reported three RSNs with a high degree of similarity between PET and

fMRI: default mode network, basal ganglia network and cerebellar-midbrain net-

work. This confirmed a close link between local synaptic glucose consumption

and BOLD fluctuations. However, connectivity by [18F]FDG indicated greater in-

tegration between often distant brain areas, compared to that obtained by more

segregated fMRI-derived FC. Furthermore, several networks specific to both imag-

ing modalities were identified by ICA, underlining the complementarity of these

approaches, suggesting how a hybrid study can contribute to a greater under-

standing of brain function and could be interesting for clinical applications. Such

complementarity was explained considering that haemodynamic and [18F]FDG

tracer fluctuations occur on di↵erent time scales, thus representing two intercon-

nected but distinct physiological readouts.

Finally, in the work of Volpi et al. (2021) similarity-based approaches (Pearson

correlation, Euclidean distance and Cosine similarity) and sparse inverse covari-

ance estimation (SICE) methods were tested to quantify metabolic connectivity

from dynamic [18F]FDG-PET at the single subject level [40]. These approaches

were combined with three di↵erent TAC standardisation strategies and tested

on four healthy subjects. The obtained metabolic connectivity matrices were

compared in terms of graph structure, inter-subject reproducibility and similar-

ity to a structural connectivity (SC) model. What emerged was that Pearson

correlation, Euclidean distance and Cosine similarity (i.e. non-SICE methods)

provided better results for between-subject reproducibility and similarity to SC.

In particular, interhemispheric and homotopic connections, expected from brain

connectivity studies, were highlighted. Moreover, the choice of standardisation

method for TAC PET leads to non-trivial di↵erences between networks that will

be discussed later. The standardisation of time activity curves was already in-

troduced in the studies by Amend et al. (2019) and Tomasi et al. (2017) and

is necessary in order to correct for non-intrinsic correlations generated by fac-

tors such as increased absorption of the [18F]FDG-PET tracer. In the two studies
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mentioned above, a normalisation, which will later be referred to as normalisation

1 (number 3 in the study by Volpi et al.), was attempted to evaluate fluctuations

around the metabolic baseline. While a correlation (or ICA) approach, like that

one employed by Amed and Tomasi, necessarily requires PET signal standardiza-

tion to assess covariation in its fluctuations, ideally one would prefer a method

that reflects and maintains the overall physiological signal.

For what concerns the MC-SC similarity, the non-SICE methods have higher Dice

values (0.3-0.4) than the SICE methods (0.2-0.3).

However, such studies comparing metabolic connectivity with functional and

structural connectivity do not provide clear insight into the underlying physi-

ology, which is why supplementation with information with stronger biological

interpretability (e.g., receptor/synaptic density) would be extremely informative.

The metabolic connectivity obtained from dynamic PET data allow to estimate

MC matrices at single subject level and will be referred as time-series MC.

Furthermore, PET studies can be performed with two di↵erent protocols: bolus

injection and continuous infusion. In this thesis, only PET bolus injection will

be dealt with, as the available data are of this type and it is in any case the most

commonly used technique. While tracer availability decreases over time using a

bolus injection, a constant infusion allows the maintenance of a stable plasma

supply of [18F]FDG and this technique was named “functional PET’ (fPET).

This technique improved sensitivity to brain-state changes and better temporal

dynamics, in comparison to bolus PET, in order to track dynamic changes of glu-

cose uptake over time. Several studies have demonstrated that fPET can isolate

task related changes in glucose uptake [41, 42]. This technique was adopted in

both the study by Amend et al., (2019), and Li et al., (2020) [43]. In Amend

et al., the normalisation in performed by determining a whole-brain mean value

of the measured signal at each time point and the value of each ROI was then

divided by its respective whole-brain mean. Instead in Li et al., the global base-

line was removed by normalising the data of each volume to remove the mean in

each voxel and divide the voxel wise standard derivation of each volume. These

types of normalisation performed allows to remove a global baseline as well as to

remove non-intrinsic correlations by applying Pearson’s correlation and ICA on

the fluctuations.
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Chapter 2

Materials and Methods

In this chapter it will be described the available dataset, on which the study was

performed.

A brief introduction to structural pre-processing and coregistration, which allowed

to make the data suitable for the application, will then be discussed.

Finally, the methods adopted for the study and estimation of the brain metabolic

connectivity, using dynamic [18F]FDG Positron Emission Tomography, both at

region and voxel level, will be described.

2.1 Material

The dataset under study is a part of the WASHU VG LAB dataset, from the

Washington University in Saint Louis, MO, USA.

Specifically, the sub-dataset on which the present study was performed included

71 subjects, 39 females and 32 males (56± 15 years old).

2.1.1 [18F]FDG PET data

PET data were collected on the Siemens ECAT HR+ 962 PET scanner. To

minimize head movement, a softened thermoplastic mask with enlarged eye holes

was placed on the head and secured. PET scans were performed after slow i.v.

injection of 5 mCi of FDG.

Two di↵erent reconstruction algorithms were applied: filtered back-projection

(FBP) and ordered subset expectation maximization (OSEM), see fig. 2.1. For

this thesis work, all analysis were performed on FBP and the chosen recon-
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struction grid consisted of 24x5-second frames, 9x20-second frames, 10x1-minute

frames, and 9x5-minute frames, see fig. 2.2.

However, for some subjects issues in the acquisition led to alterations in the time

grid, particularly to the number of 5-second frames.

Figure 2.1: Axial slice from images reconstructed by the two di↵erent algorithms. Left: FBP, right:
OSEM.

Figure 2.2: PET reconstruction time grid: 4x5-second frames, 9x20-second frames, 10x1-minute
frames, and 9x5-minute frames.

In table A.1 is report the table with the ID that allows the identification, age,

sex and the characteristics of the time grid for each of the 71 subjects.

2.1.2 MRI data

For the same cohort of individuals who underwent PET dynamic acquistions,

MRI images were separately collected via Siemens (Siemens Medical Solutions

USA, Inc) MAGNETOM Prisma MRI scanner.

For each subject, Multi-echo T1w MPRAGE was provided, (TR=2500,TI=1000

ms, TE=1.81, 3.6, 5.39, 7.18 ms, voxel size=0.8 x 0.8 x 0.8 mm).
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2.2 Methods

2.2.1 Tools

Data have been inspected and processed using: MATLAB R2021b, Advanced

Normalization Tools and FSL v6.0.

Some packages have been downloaded to extend MATLAB functionalities: SPM12,

“Tools for NIfTI and ANALYZE image” v1.27 and Group ICA of fMRI Toolbox

(GIFT) v1.3h.

2.2.2 Structural Image pre-processing

All subjects were pre-processed according to the procedures implemented in the

pipeline of the Padova research team.

Pre-processing was performed on T1w images, which were later used to coregister

and normalize PET data.

Bias Field Correction and Skull Stripping

T1w structural images were initially corrected for field bias using the N4 algo-

rithm [44]. This consists of a presence of low-frequency intensity non-uniformity in

the image data, also known as bias, inhomogeneity, illumination non-uniformity,

or field gain. The result can be that in some areas white matter has the same

intensity as gray matter, causing low reliability in classifiers. In fact, tissue seg-

mentation is based on signal intensity, so it is crucial to correct for intensity

non-uniformity in order not to a↵ect tissue class probability assignment.

Along with Bias Field Correction, an additional preprocessing step is performed,

i.e., T1w structural images are skull stripped. This is a crucial step since high-

resolution MRI brain images contain some non-brain tissues such as skin, fat,

muscle, neck, and eyeballs compared to functional images like PET that usually

contain relatively less non-brain contrast. The presence of these tissues is con-

sidered a major obstacle for automated brain image segmentation and analysis

techniques, therefore, it is essential to perform a preliminary step to isolate the

brain from extracranial or non-brain tissues from MRI scans of the head [45].

These steps were accomplished through the use of ANTs (Advanced Normaliza-

tion Tools), and obtain as output the image T1w N4.nii.
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Segmentation

Segmentation of the T1-weighted image (T1w N4.nii). The goal of segmentation

is to separate tissue classes, and the information used for this purpose is the in-

tensity of the image voxels. This means that di↵erent tissue types emit signals of

di↵erent strengths, and therefore di↵erent intensities: white matter is the bright-

est, followed by gray matter and cerebrospinal fluid. However in T1w images,

some factors can lead to a variation in voxel intensities, for example this can be

due to biological variability, measurement error and in particular partial volume

e↵ects. Regarding the latter, it is an e↵ect that occurs when a voxel extends over

more than one tissue.

The probabilistic approach is based on assigning high probabilities in the case

where intensities clearly reflect white matter or gray matter, while intermediate

probability values reflect partial volume e↵ects.

It follows that the output of the tissue class segmentation step assigns to each

voxel the probabilities that the voxel belongs to each tissue class.

There are several tools available for brain tissue segmentation and Statistical

Parametric Mapping (SPM) software was used in this study [46].

In SPM, the segmentation routine automatically segments the incoming MR im-

age into gray matter (c1T1w.nii), white matter (c2T1w.nii), and cerebrospinal

fluid (c3T1w.nii), but this classification, as outlined above, is probabilistic.

Normalization

In the structural pre-processing step, brain normalization is performed. This is

a procedure to map individual brain images to a standard anatomical coordinate

space.

It is required to define a reference image, or Atlas, representing a standard

anatomy, for this purpose MNI (Montreal Neurological Institute) models are

commonly used. There are several MNI spaces available today, and even sub-

tle changes between spaces can impact results. Such atlases can be used by

automated spatial normalization software and should reflect the average neu-

roanatomy. The International Consortium of Brain Mapping (ICBM) has adopted

these models as an international standard.

The first MNI model is MNI305, which was updated in 2009, MNI152 NLIN 2009,

and is available in three versions, 2009a, 2009b and 2009c (the latter is the one

chosen for our normalisation), each of which has a symmetric and an asymmetric

version [47].
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Normalization was performed using ANTs registration method.

Hammers segmentation to T1 mapping

During the structural preprocessing phase, an additional step performed is to

bring the Hammers segmentation into T1 space, using ANTs.

The Hammers atlas identifies 83 cortical and subcortical regions (see table B.1)

[48], including both gray and white matter. Therefore, the probabilistic gray

matter map obtained via SPM was thresholded, choosing in this first part a very

conservative threshold, i.e., 0.2. This allowed to obtain a binary map, so the

value of the voxel is equal to one only if that particular voxel has a probability

of belonging to gray matter greater than 20%, otherwise it is zero. The mask is

applied to Hammers parcellation in T1 space, obtaining Hammers 2 T1 GM.nii,

while Hammers 2 T1.nii in case of none mask applied.

2.2.3 Motion Correction

The images acquired frame by frame can be corrupted by any movement of the

subject during acquisition, even slight movements of the head or body can cause

obvious alterations in the recorded signals. The ever-present artifacts, moreover,

are due to physiological oscillations, such as breathing, which cause minimal but

noticeable shifts.

Therefore, motion correction consists in coregistering the PET volumes corre-

sponding to the final frames (last 5 frames), on a frame chosen as a reference,

i.e. the one corresponding to the first frame of 5 minutes. This step is performed

because the final frames are the longest in terms of time and motion on these

can have a strong impact, i.e., there can be significant misalignment between one

frame and another. As for the remaining frames, they were not corrected for

motion because of their low signal-to-noise ratio and also, the initial frames do

not have clear anatomical structures that can be aligned.

The Motion Correction step is implemented in the pipeline by an in-house script

that calls a set of Piwave tools in Matlab [49], that use wavelet filters, in order to

realigne a time-series of PET images from the same subject using a least square

approach and a 6-parameter (rigid body) spatial transformation. After the esti-

mation of the 6 parameters each volume is resliced using a B-spline interpolation

method.

Once the motion correction was performed on the dynamic PET (PET DYN -

MoCo.nii), the summed static PET image (PET DYN MoCo last.nii) was calcu-
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lated, considering also in this case the sum only on the last frames, in particular

the last 4 (5 minutes frame). Generally in fact the static PET is obtained con-

sidering the last 20 minutes (from minute 40 to 60).

2.2.4 Coregistration

The obtained static PET image is mapped onto the T1 image of the same sub-

ject, obtaining PET static MoCo 2 T1.nii. This step is performed using ANTs.

It is also obtained in output the a�ne transformation matrix used to perform

this coregistration.

In addition, in the structural preprocessing step, segmentation with the Hammers

atlas was performed in T1 space. It is possible to map this segmentation from T1

space to PET space, inverting the transformation matrix estimated in the pre-

vious step. This was also performed with ANTs, obtaining Hammers 2 PET.nii

and Hammers 2 PET GM.nii

Finally, considering SPM segmentation, this provided probability maps repre-

senting the odds of a voxel belonging to gray matter (GM), white matter (WM)

and cerebrospinal fluid (CSF). These were appropriately thresholded using two

di↵erent thresholds in order to obtain a mask containing voxels that have a prob-

ability of belonging to grey matter > 0.5 and a mask containing voxels that have a

probability of not belonging to CSF > 0.95. These maps, however, are still in T1

space and to bring them into PET space the previously estimated transformation

matrix and a Nearest Neighbor interpolation are used.

Schaefer to PET mapping

In this study, parcellation was also performed using the Schaefer Functional Atlas,

with 100 and 200 parcels, both at 7 and 17 networks [50].

This atlas is based on the influential brain networks published by Thomas Yeo

(2011) [51], and these new parcels add further refinement by sub-partitioning

the global networks on the basis of a local gradient approach. The parcels are

available in di↵erent versions and subdivide the cortex into up to 1000 regions

based on rs-fMRI.

The Schaefer atlas (MNI FSL) is mapped to PET space using the transforms

already estimated in the previous steps.
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2.2.5 Estimation of metabolic connectivity matrices at parcel

level

Parcellation with Hammers Anatomical Atlas

It was decided to use for the cortical regions, Cerebellum, Hippocampus and

Amygdala a segmentation with the mask containing the voxels that have a prob-

ability of belonging to the GM > 0.5, while for the subcortical regions Caudate,

Accumbens, Putamen, Thalamus and Pallidus the segmentation with the not-

CSF mask > 0.95 was adopted. For this purpose, the Hammers anatomical atlas

appropriately mapped in PET space and to which the grey mask had not previ-

ously been applied (Hammers 2 PET.nii) was segmented with the not-CSF mask

> 0.95, while the Hammers anatomical atlas in PET space that was already pre-

viously masked with the grey mask (Hammers 2 PET GM.nii) was segmented

with the GM mask > 0.5.

This type of segmentation made it possible to have a su�ciently high number

of voxels even in subcortical regions such as Pallidus, where a more aggressive

segmentation like GM > 0.5 resulted in few voxels per parcel.

The voxels from the dynamic (motion-corrected) PET were then extracted from

each parcel defined by the appropriately segmented Hammers atlas and the time

series of each parcels was derived as the average of the time series of the voxels

of that specific region:

XI =
1

NI

X
xi (2.1)

where I is the parcel under consideration, NI is the number of voxels in that

parcel, and xi is the time series of voxel i.

Having a reconstruction grid consisting of 24x5-second frames, 9x20-second frames,

10x1-minute frames, and 9x5-minute frames, an interpolation with a uniform vir-

tual grid of 0.6 s step is performed.

Data denoising

The initial part of the curves is particularly noisy, so several pre-processing ap-

proaches were tested, applied to the first 24 5-second frames:

• Interpolating from frame 1 (no processing);

• interpolating from frame 8 (removing initial frames);
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• interpolating from frame 25 (removing all 5-second frames);

• applying to the 5-second frames (the first 24) a moving average filter with

a window of 3;

• applying to the 5-second frames (the first 24) a moving average filter with

a window of 5;

• averaging the first 24 frames 2 by 2 (subsampling);

• averaging the first 24 frames 3 by 3 (subsampling);

• averaging the first 24 frames 4 by 4 (subsampling);

• averaging the first 24 frames 6 by 6 (subsampling);

Data standardization

The TAC of the di↵erent regions are characterised by a strong multicollinearity.

Therefore, various normalisation methods were attempted in this study to resolve

this issue. Indeed, in the presence of multicollinearity, it would not be possible to

refer to segregation or integration on the connectivity matrices, even after sparsi-

fication. The carpet plot (showing times on the x-axis and regions on the y-axis)

of the non-normalised TAC is shown in the fig. 2.3.

Figure 2.3: Carpet plot of the non-normalised TAC for an example subject. Time is shown on the
x-axis (in second), and Hammers parcels are on the y-axis.

In normalisation 1 the matrix XS1 is obtained by dividing each row of X by
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the average of the rows of X, as in Volpi et al., 2021 [40]. The carpet plot of the

TAC with normalisation 1 is shown in fig. 2.4.

µWB(t) =
1

P

PX

i=1

X(i, t) for t = 1, ...T (2.2)

XS1 =
X

µWB
(2.3)

Figure 2.4: Carpet plot of the TAC with normalisation 1 for an example subject. Time is shown
on the x-axis (in second), and Hammers parcels are on the y-axis.

In normalisation 2, a matrix XS is obtained by z-scoring X: each column of X

is centred in order to have mean 0 and scaled in order to have standard devia-

tion 1 (i.e., subtracting the overall mean and dividing by its standard deviation).

Subsequently, XS2 is generated by subtracting the mean from each row (i.e. re-

moving the parcel mean), as in Volpi et al., 2021. The carpet plot of the TAC

with normalisation 2 is shown in fig. 2.5.

�S(t) =
p
(var(X(:, t))) (2.4)

XS =
X � µWB

�S
(2.5)

µXS(t) =
1

T

TX

j=1

XS(p, j) (2.6)
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XS2 = XS � µXS (2.7)

Figure 2.5: Carpet plot of the TAC with normalisation 2 for an example subject. Time is shown
on the x-axis (in second), and Hammers parcels are on the y-axis.

In normalisation 3, the matrix XS is obtained by subtracting the mean from each

column of X. Next, XS3 is generated by z-scoring XS: each row of XS is centred

to have mean 0 and scaled to have standard deviation 1, as in Volpi et al., 2021.

The carpet plot of the TAC with normalisation 3 is shown in fig. 2.6.

XS = X � µWB (2.8)

µS(p) =
1

T

TX

j=1

XS(p, j) for p = 1, ...P (2.9)

�S(p) =
p

(var(XS(p, :))) (2.10)

XS3 =
XS � µS

�S
(2.11)

In normalisation 4, the matrix XS4 is obtained by dividing X by the plasma

concentration curve (Cp) of [18F]FDG. Cp should ideally be an arterial input

function (AIF), but in this case is substituted by an image-derived input function

(IDIF), see fig. 2.7. This was extracted from the internal carotid artery via an
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Figure 2.6: Carpet plot of the TAC with normalisation 3 for an example subject. Time is shown
on the x-axis (in second), and Hammers parcels are on the y-axis.

automatic pipeline (vessel segmentation [52], parametric clustering [53], model

fitting [54]), and corrected for spillover with Chen’s approach [55].

The carpet plot of the TAC with normalisation 4 is shown in fig. 2.8.

XS4 =
X

Cp
(2.12)

Figure 2.7: Cp image-derived input function
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Figure 2.8: Carpet plot of the TAC with normalisation 4 for an example subject. Time is shown
on the x-axis (in second), and Hammers parcels are on the y-axis.

In normalisation 5, a matrix XS5 is obtained by dividing X by the integral of Cp.

The carpet plot of the TAC with normalisation 5 is shown in fig. 2.9.

XS5 =
XR
Cp

(2.13)

Figure 2.9: Carpet plot of the TAC with normalisation 5 for an example subject. Time is shown
on the x-axis (in second), and Hammers parcels are on the y-axis.

These types of normalisations highlight di↵erent characteristics of the signal, in

particular:
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• normalisations 1 and 2 emphasise the signal fluctuations around the metabolic

baseline or global signal;

• normalisation 3 emphasises the fluctuations of the signal with respect to

itself;

• normalisation 4 leads to greater denoising of the initial part, thereby em-

phasising the tails and their separation;

• normalisation 5 performs the opposite of normalisation 4, thus emphasising

mainly the initial part of the curve.

Similarity-based approaches for Metabolic Connectivity estimation

Four pairwise similarity metrics were applied to the standardised and non-standardised

matrices (X, XS1 , XS2 , XS3 , XS4 , XS5) in order to obtain the time-series connec-

tivity matrices, which are:

• Pearson’s Bivariate Correlation Coe�cient;

• Euclidean Pairwise Similarity;

• Cosine Similarity;

• Gaussian Kernel.

Pearson’s Bivariate Correlation Coe�cient, computed between each pair

of ROIs, was calculated as:

r =

Pn
i=1(xi,1 � x1̄)(xi,2 � x2̄)pPn

i=1(xi,1 � x1̄)
pPn

i=1(xi,2 � x2̄)
(2.14)

where n is the number of samples, xi,1 and xi,2 are the individual samples, and

x1̄ and x2̄ are the arithmetic sample averages.

Second, the Euclidean Pairwise Similarity was calculated between each pair

of ROIs as:

d(x1, x2) =

vuut
nX

i=1

(xi,1 � xi,2)2 (2.15)

Next, a rescaling to the interval [0;1] is performed, then the complement to 1 was

calculated to obtain a similarity metric.
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Third, Cosine Similarity was calculated between every pair of ROIs as:

cosSim =
x1x2

kx1k kx2k
=

Pn
i=1(xi,1xi,2)pPn

i=1(xi,1)2
pPn

i=1(xi,2)2
(2.16)

Finally, the Gaussian Kernel was calculated between every pair of ROIs as:

GaussKernel = e
�(�kx1�x2k2) (2.17)

The four di↵erent metrics are applied to the matrices X, XS1 , XS2 , XS3 , XS4 , and

XS5 2 R
p⇥T , of each of the 71 subjects, obtained by considering the entire TAC

of each parcel. Furthermore, the same metrics and normalisations were applied

to the matrices, 2 R
p⇥T , obtained considering only the first 10 minutes of the

TAC, the first 20 minutes of the TAC, and the last 20 minutes.

Furthermore, in order to relate the concentration of radioactivity measured by

PET to underlying physiological or biochemical processes, the application of

mathematical models is required. Therefore, the fitting of models for the ki-

netics of [18F]FDG is essential to study regional glucose metabolism. For this

reason, the Sokolo↵ model was applied to the TAC of the [18F]FDG tracer, ob-

taining, for each parcel, the concentration curve of the free [18F]FDG tracer in the

tissue (compartment 1, see fig. 2.10) and the concentration curve of the tracer

phosphorylated by the hexokinase enzyme (compartment 2, see fig. 2.11). The

voxel-wise time-courses of C1 and C2 were calculated as:

C1(t) = (1� Vb)
K1k2

k2 + k3
e�(k2+k3)t ⌦ Cp(t) (2.18)

C2(t) = (1� Vb)Ki

Z t

0

Cp(⌧)d⌧ (2.19)

The metrics and normalisations were then applied to the matrices 2 R
p⇥T ob-

tained considering the first compartment time series and the second compartment

time series of each parcels, for any of 71 subjects.

The aim was to assess any similarities between the metabolic connectivity ma-

trices obtained considering di↵erent portions of the TAC (first 10 minutes, first

20 minutes, last 20 minutes) and the metabolic connectivity matrices obtained
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Figure 2.10: Concentration curve of the free [18F]FDG tracer in the tissue, compartment 1 (left
Cerebellum)

Figure 2.11: Concentration curve of the tracer phosphorylated by the hexokinase enzyme, compart-
ment 2 (left Cerebellum)

considering the first compartment and the second compartment time curves.

MC subject-series

A voxel-level quantification of the [18F]FDG PET data, using the Sokolo↵ model

and a Variational Bayesian inference framework [8], is performed in order to derive

parametric maps of K1, k3, Ki.

Furthermore, the standardised uptake value ratio (SUV R) to the whole-brain

average [18F]FDG uptake was calculated from the dynamic data in the 40-60 min

time window.

Subsequently, the voxel-wise maps of K1, k3, Ki, SUV R were parcelled using the

Hammers anatomical atlas and within-subject normalised by z-score.

Finally, Pearson’s correlation matrices across subjects were computed on the K1,

k3, Ki, SUV R, obtaining the subject-series connectivity matrices.
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Across-subject and across-method reproducibility

The matrices of each subject were saved both in the full version (without spar-

sity), but also, since, as for SC and FC, the MC matrix is expected to be sparse,

a sparsity threshold was applied to retain only the most significant 20% of the

edges [56].

Regarding the time-series connectivity matrices, the average MC matrix across

subjects was calculated for each metric and for each normalisation (including

non-normalised case), again reported both full and sparsity thresholded at the

80th percentile.

In order to assess the reproducibility between the methods and thus compare

the MC matrices between the di↵erent metrics and normalisations, a Pearson

correlation was performed between the obtained sparse matrices. Subsequently,

by binarising the sparse matrices, Dice’s pairwise similarity coe�cients between

them were also calculated.

Instead, coe�cient of variation matrices were calculated to assess inter-subject

reproducibility. These were obtained as the element-by-element ratio of the

between-subjects standard deviation matrix and the absolute value of the between-

subjects mean matrix, multiplied by 100. This gives the percentage variability

of each entry between subjects. Both the full matrices of the coe�cients of vari-

ation and the matrices of the coe�cients of variation corresponding to the most

significant entries in the mean matrices (20% most significant) were obtained.

MC subject-series vs MC time-series

It is also useful to examine the similarity and correlation between subject-series

connectivity matrices and time-series connectivity matrices, in order to under-

stand what the matrices normally obtained in the literature (subject-series con-

nectivity matrices) actually reflect. Again, Pearson’s correlation coe�cients be-

tween all possible pairs of sparsified matrices and the Dice coe�cient of pairwise

similarity, applied after a subsequent binarisation of the matrices, were evaluated.
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Parcellation with Schaefer Functional Atlas

Parcellation was then performed with the Schaefer functional atlas in the two

100- and 200-parcel versions, both at 7 and 17 Network. Since the Schaefer atlas

is only cortical, it was decided to use a segmentation with a mask containing the

voxels that have a probability of belonging to GM > 0.5. As far as the subcorti-

cal regions are concerned, these were introduced from the Hammers anatomical

atlas, with the segmentations set out above.

Again, as in the Hammers case, the time series of each parcel was derived as the

average of the time series of the voxels of that specific region, see equation 2.1.

For each of the 71 subjects a matrix X 2 R
p⇥T is obtained, where p is the

number of parcels, 100 or 200, and T is the size of the time grid.

The steps of data denoising, data standardisation, similarity-based approach,

calculation of MC subject-series matrices and evaluation of across-subject and

across-method reproducibility were also performed for the case of parcellization

with Schaefer functional atlas.

2.2.6 Graph theory metrics and hubs

In connectomics studies, the topology of the brain network is usually investigated

using graph theory. In the present study, each of the derived metabolic connectiv-

ity matrices, sparsified with a threshold at the 80th percentile, was translated into

a network, considering each ROI as a node and each interregional association as

an edge, see fig. 2.12. Then, using the Brain Connectivity Toolbox [57], degree,

stenght and eigenvector centrality were derived for each parcel (node).

Degree is defined as the number of connections of a node, while the eigenvector

centrality of a node is high when it is connected to many nodes with a high de-

gree, see fig. 2.13. Finally, node strength is defined as the sum of the weighted

edges of a node.

The next step was to derive hubs, i.e. regions that integrate and distribute in-

formation due to the number and position of their connections. The loss of these

well-connected hubs can be particularly devastating for the functioning of the

network. Given the role of hubs and their importance for the brain network,

their location and functions are of clear interest to neuroscientists, so their char-

acterisation was a crucial step.
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Figure 2.12: The PET MC matrix is translated into a network, where nodes are ROIs and interre-
gional associations are link. Thresholding is aplied to preserve the strongest connec-
tions. before any metric is extracted as representation of the biological organisation
of the PET tracer across the brain (adapted from [58]).

Figure 2.13: Degree (number inside each node) and Eigenvector centrality, for a simple network.

The definition of hubs is not unique, but in the following study it is opted to

identify them as the nodes belonging to the top 20% of both degree and eigen-

vector centrality distributions [57].

Other studies were then carried out.

Degree, eigenvector centrality and strength were calculated on the MC time-series

matrices, imposing a sparsity with a threshold at the 80th percentile (a test with-

out imposing sparsity was also performed for strength and eigenvector centrality).

From the region⇥ subject matrices of K1, k3, Ki and SUV R, testing both with-

out any z-scores and with z-scores, an average between subjects was performed.

Each mean vector of K1, k3, Ki and SUV R was correlated with degree, strength

and eigenvector centrality of the time-series connectivity matrices.

The degree, eigenvector centrality and strength on the MC subject-series matrices

of K1, k3, Ki and SUV R were calculated, imposing a sparsity with threshold at

the 80th percentile. Each mean vector of K1, k3, Ki and SUV R was correlated

with the degree, strength and centrality of the eigenvectors of the MC matrices.
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2.2.7 Enrichment analysis with brain receptor maps

To perform the enrichment analysis, brain receptor maps, described in detail in

Hansen et al., 2022, were used [59]. In this study, a comprehensive cortical pro-

file of neurotransmitter receptor densities was constructed by assembling PET

images of a total of 19 di↵erent neurotransmitter receptors, receptors, trans-

porters and receptor binding sites, across 9 di↵erent neurotransmitter systems,

including dopamine, norepinephrine, serotonin, acetylcholine, glutamate, GABA,

histamine, cannabinoids and opioids, see fig. 2.14.

Figure 2.14: PET tracer images were collated and averaged to produce mean receptor distribution
maps of 19 di↵erent neurotransmitter receptors and transporters across 9 di↵erent
neurotransmitter systems and a combined total of over 1 200 healthy participants [59].

In this thesis, maps of the N-methyl-D-aspartate receptor (NMDAR), the brain

protein synthesis rate (rCPS) [60], the group 1 metabotropic glutamate receptor

5 (mGluR5) and the GABA-A receptor were used.

In particular:

• the NMDA receptor is an ion channel receptor present at most excitatory

synapses, where it responds to the neurotransmitter glutamate (the main

excitatory neurotransmitter in the Central Nervous System);

• mGluR5 is a glutamate receptor and has been implicated in the neuropathol-

ogy of various disorders, including autism, fragile X syndrome, attention

deficit/hyperactivity disorder and schizophrenia;

• The GABA-A receptor (ionotropic receptor) is one of two receptors for

GABA (g-aminobutyric acid) that are present in the nervous system. GABA

is the main inhibitory transmitter in the CNS and has many opposite ef-
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fects to those of glutamate, some of which involve GABAergic inhibition of

glutamate function.

The correspondence of metabolic PET connectivity graph metrics (both time-

series and subject-series connectivity matrices were sparsified with a threshold

at the 80th percentile) with neurochemical architecture (neuroreceptor map tem-

plates) was assessed by means of Pearson correlation.

In addition, for each MC matrix (both time-series and subject-series connectiv-

ity matrices), hub nodes were identified. In this case, in order to have a credible

statistic, approximately 20 hubs were taken into account; this was done by taking

the top 35% (instead of 20% as described before) of both degree and eigenvector

centrality distributions. In order to assess the presence of statistically significant

di↵erences in receptor density between hub and non-hub nodes, the Wilcoxon

ranksum statistical test was applied to the two groups.

2.2.8 Estimation of metabolic connectivity at voxel level

The voxel dynamics of GM, WM and CSF were interpolated with a uniform 5 s

step grid. However, also in this case, the dynamics of the voxels for the first few

minutes are very noisy and di↵erent pre-processing approaches were tested:

• moving average filter with window of 5, on the first 20 min;

• moving average filter with window of 11, on the first 20 min;

• average 6 to 6 on 5 s frames, 3 to 3 on 20 s frames, 2 to 2 on 60 s frames;

• linear polynomial fit on the first 20 min;

• quadratic polynomial fit over the first 20 min;

• average 6 to 6 on 5 s frames;

• average 3 to 3 on 5s frames.

For all these approaches, the five standardisations set out above were tested, and

for the first three, both a global normalisation (i.e. normalising on all voxels

considered, thus grey, white and cerebrospinal fluid voxels) and a normalisation

on grey matter voxels only were attempted.

Independent component analysis (ICA) was used to extract voxel-level metabolic
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connectivity information from dynamic PET data, via the Group ICA of the fMRI

Toolbox (GIFT). This is a MATLAB toolbox that implements several algorithms

for independent component analysis and blind source separation of group (and

single-subject) functional MRI data. The idea is therefore to adapt this toolbox,

generally used for fMRI data, to PET data, as previously attempted [36, 39].

However, before applying ICA, a preliminary step was carried out in order to

understand which pre-processing method could give the most satisfactory re-

sults: k-means clustering was applied to the voxel dynamics (obtained with the

di↵erent combinations of data denoising and normalisation).

Distance metrics play a very important role in the clustering process, and were

attempted here:

• Euclidean distance squared: each centroid is the average of the points in

that cluster.

d(x, c) = (x� c)(x� c
0) (2.20)

where x is an observation and c is a centroid.

• Cosine: one minus the cosine of the included angle between points (treated

as vectors). Each centroid is the mean of the points in that cluster, after

normalizing those points to unit Euclidean length.

d(x, c) = 1� xc
0

p
(xx0)(cc0)

(2.21)

• Correlation: one minus the sample correlation between points (treated as

sequences of values). Each centroid is the component-wise mean of the

points in that cluster, after centering and normalizing those points to zero

mean and unit standard deviation.

d(x, c) = 1� (x� x~)(c� c~)p
(x� x~)(x� x~)0

p
(c� c~)(c� c~)

(2.22)

where:

x~ = 1
p(
Pp

j=1 xj)1p~

c~ = 1
p(
Pp

j=1 cj)1p~

1p~ is a row vector of p ones
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The number of clusters was set at 10 and the number of replications (i.e. number

of times to repeat clustering using new initial cluster centroid positions) at 200.

Following this preliminary step, it was proceeded with the ICA to be applied

to the PET 4D dynamics.

For the application of ICA, several parameters had to be choosen, in particu-

lar: repetition time (TR) in seconds, number of independent components, ICA

algorithm, type of data pre-processing, type of group ICA, type of back recon-

struction, stability analysis type and z-score conversion.

In particular:

• TR=5 s, i.e. equal to the interpolation step;

• Number of independent components: 10, 15 and 20 were tested;

• ICA algorithm: the toolbox o↵ers the possibility of testing number of

estimation algorithms (Infomax, FastICA, EBM, SDD ICA, RADICAL,

Amuse, EVD, COMBI, ERBM, Sparse-EBM, JADE, SIMBEC, ERICA,

OPAC, Semi-blind Infomax, Constained ICA);

• Data pre-processing type: it is possible to choose between removing mean

per timepoint, removing mean per voxel, intensity normalisation and vari-

ance normalisation;

• Group ICA type: temporal and spatial, here spatial ICA is performed;

• Back reconstruction type: GICA (choosen), spatial-temporal regression,

regular (GICA2) and GICA3;

• Stability snalysis type: the options are regular, MST and ICASSO, the

latter is the one chosen.

Independent component analysis

ICA is a statistical technique whose aim is to separate a multivariate signal into

its additive sub-components, then recover the underlying sources from an ob-

served mixture of these sources [61].

The assumption is of linear mixture and statistically independent, non-Gaussian

sources.

The observed signal in a given voxel is described as the sum of the contribu-
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tions of all independent sources in the dataset.

Assuming M zero mean sources s1, s2, ..., sM , N linear combinations of these

sources are observed. The j-th observed variable can be written as:

xj = aj1s1 + aj2s2 + ...+ ajisi with i=1,...,M j=1,...,N (2.23)

that in matrix format:

X = AS (2.24)

where X is the mixiture (observed data), A is the unknown square mixing ma-

trix (N ⇥ M) which has to be estimated and S represents the unknown source

signals to be recovered. This is representing the generative linear instantaneous

noise-free mixing ICA model.

The aim is to estimate an unmixing matrix W , so that C = WX is an approxi-

mation of the true sources S. W can be defined as a weight matrix which allows

to project the original space X into a new space that characterized the sources

S.

A pre-processing procedures is generally performed in order to reduce the com-

plexity of the problem. The first step is called centering, that aims in subtracting

the mean value of X, m = E[X], since it doesn’t bring any useful information

on the signal variance. As a consequence X is a zero mean variable and C as

well. The mean values will be reintroduced once the mixing matrix A has been

computed, by adding to the estimate of C its mean value given by A
�1
m.

The second important step is the whitening or sphering. The aim is to whiten the

observed variables, obtaining uncorrelated data with unity variances, this allows

narrow the search of A to orthogonal matrices.

Then, a V matrix has to be identified, so that:

Z = V X with E[ZZT ] = 1 = I (2.25)

Define P as a symmetric and square matrix:

P = E[XX
T ] = 1 = I (2.26)

and

V = P
� 1

2 (2.27)
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and substituting:

E[ZZT ] = I = E[V XX
T
V

T ] = P
� 1

2PP
� 1

2 (2.28)

After that the result is:

Z = V X = V AS = eAS (2.29)

Where eA = V A is the new mixing matrix and it is orthogonal ( eAfAT = I). Once
eA is estimated, the sources can be computed as S = fATZ. In particular the i-th

independent source/component is computed as: si = (eai)T z.
Considering the equation 2.29, this is a linear combination of independent com-

ponents and this sum is “more gaussian” than original components (sources). In

fact under the hypotesis of non-gaussianity of sources, thanks to Central Limit

Theory, the mixture given by the linear combination of sources will have a prob-

ability distribution surely more gaussian than that of sources. For this reason eA
has to be chosen in order to maximize the non-gaussianity of S = eAZ.
To measure the non-gaussianity, it is possible to use several indices, such as Kur-

tosis index, mutual information and negentropy.

The first one measures the dispersion of a statistical distribution around its mean

value, and for a general aleatory variable y is classically defined by:

Kurt(y) = E[y4]� 3(E[y2])2 (2.30)

This is null for gaussian variables, so Kurt(y) has to be maximized.

Regarding the negentropy, this is based on entropy variation, in order to be null

for gaussian variables and not negative in the other cases:

J(y) = H(ygauss)�H(y) (2.31)

where H(·) is the entropy and ygauss is a gaussian variable. Also in this case

the aim is to maximize J(y). This is the index used in many algorithm, such as

FastICA.

Another index is the mutual information which measures the grade of statistic

dependence between random variables and has to be minimized:

I(y1, ..., yM) =
X

i

H(yi)�H(y) (2.32)
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where y is a joint variable. It is a non-negative equation and it is null in case

of independent variables because the second term overlaps with the first one.

Therefore the mutual information has to be minimize in order to maximize the

non-gaussianity of sources.

It is possible to carry out a spatial ICA (sICA) when it is assumed that sources

are statistically independent in space, or temporal ICA (tICA) in which sources

are assumed to be statistically independent in time, see fig. 2.15.

Figure 2.15: In the case of spatial ICA, the algorithm attempts to find spatially independent com-
ponents with associated time courses. In the case of temporal ICA, the algorithm at-
tempts to find temporally independent time courses with associated spatial maps [62].

The sICA decomposition can be described as C = cWX, where X is a N ⇥ NV

matrix, with N is the number of time points, NV the number of voxels. C is a

M ⇥NV matrix, that contains the M independent components. cW is the M ⇥N

estimated unmixing matrix found using ICA. The starting data can then be writ-

ten as X = [W�1C, where the spatially independent components are located in

the rows of C and the associated spatially independent time courses are in the

columns of [W�1 [62].

In the tICA the dimensions of X original data matrix are reversed so that the

rows of C represent the temporally independent timecourses and the associated

temporally independent maps are in the columns of [W�1.



46 Chapter 2. Materials and Methods

ICASSO

One problem with ICA algorithms is that they are stochastic, so the results

can have slight changes in di↵erent runs of the algorithm. The algorithms in

fact use the basic principle of starting from an initial point and then finding a

local minimum of the cost function. As a consequence, depending on the initial

point, the algorithm will find di↵erent local minima, so it is reasonable to run

the estimation algorithm many times, using di↵erent initial points and evaluating

which components are found in almost every run: this has been implemented in

ICASSO.

It is a software package developed by Himberg et al. [63] with the goal of studying

ICA reliability analysis. The independent components are estimated after running

the chosen ICA algorithm several times and visualizing their clustering in the

signal space. Each estimated independent component is a point in the signal

space. If an independent component is reliable, ideally each run of the algorithm

should produce a point in signal space very close to the actual component. Thus,

reliable independent components correspond to clusters that are small and well

separated from the rest of the estimates, while unreliable components correspond

to points that do not belong to any cluster.

The steps of ICASSO are as follows:

1. Selection of the parameters of the estimation algorithm. If FastICA was

selected for example, the orthogonalization approach (symmetric or defla-

tionary) and nonlinearity will be chosen.

2. This algorithm is iterated a number of times. At each iteration the data is

resampled by bootstrapping and/or the algorithm starts from a new random

initial condition.

3. The estimated components are clustered according to their similarities to

each other. Agglomerative clustering with the average linkage criterion is

selected by default.

4. The clustering result is displayed as a 2D graph (2D Canonical Correlation

Analysis, CCA, projection) from which it is possible to analyze how the

estimates are concentrated in the clusters providing information on the

quality of the estimate. In particular, if the cluster is compact and tight it

emerges that the component estimate is similar despite randomization.
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To direct the user’s attention to clusters that seem most compact and interesting,

a cluster quality index Iq is generated in the third step, reflecting the compactness

and isolation of a cluster. It is calculated as the di↵erence between the average

intra-cluster similarities and the average inter-cluster similarities:

Iq(Cm) =
1

(|Cm|)2
X

i,j2Cm

�ij �
1

|Cm| |C�m|
X

i2Cm

X

j2C�m

�ij�ij (2.33)

where C represents the indices set of all the estimated components, Cm and C�m

are respectively the set of indices belonging and not belonging to the m-th cluster

and |Cm| is size of the m-th cluster.
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Chapter 3

Results

3.1 Estimation of metabolic connectivity matrices

at parcel level: parcellation with Hammers

atlas

Once the parcellation with Hammers anatomical atlas has been executed, a count

of the voxels in each parcel was performed.

Parcels of very small size (few voxels per region) or from WM and CSF areas were

removed and not considered in the subsequent analysis. These are: Brainstem,

Corpus Callosum, Substantia Nigra (right and left), Frontal Horn (right and left),

Temporal Horn (right and left), see table 3.1.

Therefore, for each of the 71 subjects a matrix X 2 R
p⇥T is obtained, where p

Table 3.1: Parcels to remove, with voxels count

Parcels voxel count (pre-segm.) voxel count (post-segm.)

Brainstem 290 214
Corpus Callosum 145 119
Substantia Nigra (right) 1 1
Substantia Nigra (left) 2 1
Frontal Horn (right) 116 76
Frontal Horn (left) 118 84
Temporal Horn (right) 38 35
Temporal Horn (left) 38 32

49
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is the number of parcels (74, equals to 84 Hammers parcels from which the 9

described above are removed) and T is the size of the new time grid.

The TACs of the 74 parcels considered, for a representative subject, are shown

in the figure 3.1.

Figure 3.1: Time Activity Curves of the 74 parcels for a representative subject (parcellation with
Hammers Anatomical Atlas).

3.1.1 Data denoising

Among the approaches tested for the data denoising it was chosen to proceed

with the moving average filter with a window size of 5 and the 3 by 3 average

of the first 24 frames, see fig. 3.2. In order to choose the best approach, the

TAC of a region (e.g. Anterior temporal lobe, medial part) obtained with the

two data denosing methodologies was compared with the original one (without

any processing), see fig. 3.3. It can be observed that in both cases there is a noise

reduction in the initial part of the curve but the moving average filter results in

an excessive lowering of the beginning, whereas the 3 by 3 average better respects

the statistics of the process by maintaining a more physiological trend. It was

therefore decided to proceed with this methodology.
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(a) TACs pre-processed with a moving average filter with a window size of 5 on the first 24 frames

(b) TACs pre-processed with 3 by 3 average of the first 24 frames

Figure 3.2: TACs of the 74 parcels, pre-processed in two possible way. The first figure (a) is the
case of moving average filter with window size of 5 (first 24 frames). The second figure
(b) is the case of 3 by 3 average (first 24 frames)

(a) TAC of Anterior temporal lobe, medial part,
without any processing

(b) TAC of Anterior temporal lobe,
medial part, pre-processed with a
moving average filter with a win-
dow size of 5 on the first 24
frames

(c) TAC of Anterior temporal lobe,
medial part, pre-processed with 3
by 3 average of the first 24 frames

Figure 3.3: TAC of Anterior temporal lobe, medial part. (a) Without any pre-processing. (b)
Moving average filter. (c) 3 by 3 average of the first 24 frames.
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3.1.2 Similarity-based approach

The average time-series connectivity matrices across subjects for each metric

(Pearson’s correlation, fig. 3.4; Cosine Similarity, fig. 3.5; Gaussian Kernel, fig.

3.6; Euclidean Similarity, fig. 3.7) and normalisation are reported below, consid-

ering the full TAC. Since there is no gold standard, non-trivial di↵erences in MC

networks emerge with the di↵erent standardisation methods.

(a) MC average matrix,
Pearson’s correlation.
No Normalization

(b) MC average matrix,
Pearson’s correlation.
Normalization 1

(c) MC average matrix,
Pearson’s correlation.
Normalization 2

(d) MC average matrix,
Pearson’s correlation.
Normalization 3

(e) MC average matrix,
Pearson’s correlation.
Normalization 4

(f) MC average matrix,
Pearson’s correlation.
Normalization 5

Figure 3.4: Time-series connectivity average matrices (full TAC), Pearson’s correlation.

(a) MC average matrix,
Cosine Similarity. No
Normalization

(b) MC average matrix,
Cosine Similarity.
Normalization 1

(c) MC average matrix,
Cosine Similarity.
Normalization 2

(d) MC average matrix,
Cosine Similarity.
Normalization 3

(e) MC average matrix, Co-
sine Similarity. Nor-
malization 4

(f) MC average matrix, Co-
sine Similarity. Nor-
malization 5

Figure 3.5: Time-series connectivity average matrices (full TAC), Cosine Similarity.

For the matrices shown here, the order of the labels is such that first the left and

then the right hemisphere is reported, and in each first the subcortical regions,
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(a) MC average matrix,
Gaussian Kernel. No
Normalization

(b) MC average matrix,
Gaussian Kernel.
Normalization 1

(c) MC average matrix,
Gaussian Kernel.
Normalization 2

(d) MC average matrix,
Gaussian Kernel.
Normalization 3

(e) MC average matrix,
Gaussian Kernel.
Normalization 4

(f) MC average matrix,
Gaussian Kernel.
Normalization 5

Figure 3.6: Time-series connectivity average matrices (full TAC), Gaussian Kernel.

(a) MC average matrix,
Euclidean Similarity.
No Normalization

(b) MC average matrix,
Euclidean Similarity
Normalization 1

(c) MC average matrix,
Euclidean Similarity.
Normalization 2

(d) MC average matrix,
Euclidean Similarity.
Normalization 3

(e) MC average matrix,
Euclidean Similarity.
Normalization 4

(f) MC average matrix,
Euclidean Similarity.
Normalization 5

Figure 3.7: Time-series connectivity average matrices (full TAC), Euclidean Similarity.

then Frontal Lobe, Temporal Lobe, Parietal Lobe, Occipital Lobe, Insula and

Cingulate Gyri.

A Fisher’s Z-transformation is applied, as the metrices result in very squashed

upward values, with a subsequent rescaling between [0;1], for the following cases:

• Gaussian kernel (for each standardisation);

• Euclidean Distance (for each normalisation);

• Pearson correlation (for the non-standardised case, normalisation 1, 4 and
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5);

• Cosine similarity (for the non-standardised case, normalisation 1, 4 and 5).

Evaluating all possible combinations of metrics and standardisation, it was found

that, through the use of Euclidean similarity as a metric and even without the

application of any kind of normalisation (see fig. 3.8), it is possible to reveal

a Network structure, i.e. with interhemispheric homotopic connections (right

hemisphere - left hemisphere) that are clearly distinguishable, as it is expected

from studies of brain connectivity. The matrix is then shown in sparsified form,

thus applying a threshold at the 80th percentile, keeping 20% of the connections.

(a) MC average matrix obtained by
Euclidean similarity metric (non-
normalised case and with Fisher’s Z-
transformation).

(b) MC average sparse matrix obtained
by Euclidean similarity metric (non-
normalised case and with Fisher’s Z-
transformation).

Figure 3.8: MC average matrix, Euclidean Similarity, non-normalized. (a) Full average matrix. (b)
Sparse average matrix.

Once the most suitable estimation approaches had been identified, metabolic

connectivity matrices were obtained not only by considering the full TAC of each

parcel, as reported above, but by taking into account: the first 10 minutes (see

fig. 3.9), the first 20 minutes (see fig. 3.10) and the last 20 minutes (see fig.

3.11).

It was then decided to keep the case of the first 10 minutes of the TAC as more

representative of the initial portion of the curve instead of the first 20 minutes.

The metabolic connectivity time-series matrices obtained by considering the time

series of compartment 1 (see fig. 3.12) and the time series of compartment 2 are

then reported (see fig. 3.13).
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(a) MC average full matrix, first 10 min-
utes of the TAC (Euclidean Similar-
ity, non-normalized)

(b) MC average sparse matrix, first 10
minutes of the TAC (Euclidean Simi-
larity, non-normalized)

Figure 3.9: MC average matrix, first 10 minutes of the TAC (Euclidean Similarity, non-normalized)

(a) MC average full matrix, first 20 min-
utes of the TAC (Euclidean Similar-
ity, non-normalized)

(b) MC average sparse matrix, first 20
minutes of the TAC (Euclidean Sim-
ilarity, non-normalized)

Figure 3.10: MC average matrix, first 20 minutes of the TAC (Euclidean Similarity, non-normalized)

(a) MC average full matrix, last 20 min-
utes of the TAC (Euclidean Similar-
ity, non-normalized)

(b) MC average sparse matrix, last 20
minutes of the TAC (Euclidean Sim-
ilarity, non-normalized)

Figure 3.11: MC average matrix, last 20 minutes of the TAC (Euclidean Similarity, non-normalized)

3.1.3 MC subject-series

The subject-series connectivity matrices of K1, k3, Ki and SUV R are reported

in fig. 3.14.
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(a) MC average full matrix, Compart-
ment 1 (Euclidean Similarity, non-
normalized)

(b) MC average sparse matrix, Compart-
ment 1 (Euclidean Similarity, non-
normalized)

Figure 3.12: MC average matrix, Compartment 1 (Euclidean Similarity, non-normalized)

(a) MC average full matrix, Compart-
ment 2 (Euclidean Similarity, non-
normalized)

(b) MC average sparse matrix, Compart-
ment 2 (Euclidean Similarity, non-
normalized)

Figure 3.13: MC average matrix, Compartment 2 (Euclidean Similarity, non-normalized)

3.1.4 Across-subject and across-method reproducibility

In order to assess the reproducibility between the various metrics and normalisa-

tions, Dice’s pairwise similarity coe�cients were calculated by binarising the aver-

age metabolic connectivity matrices obtained from the full TAC, with a threshold

at the 80th percentile, see fig. 3.15.

Maximum similarity can be found between Euclidean Similarity and Gaussian

Kernel metrics, the choice of one or the other is therefore almost equivalent.

To assess the across-subject reproducibility of the metrics and normalisations,

the full matrices of the coe�cients of variation (CV) are reported together with

median CV%±MAD (MC obtained considering the full TAC).



3.1 Estimation of metabolic connectivity matrices at parcel level: parcellation with
Hammers atlas 57

(a) MC matrix of K1 (b) MC matrix of k3

(c) MC matrix of Ki (d) MC matrix of SUVR

Figure 3.14: MC matrices subject-series, obtained via Pearson’s correlation across-subject.

Figure 3.15: Across-metrics and normalizations reproducibility (full TAC).
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(a) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
No Normalization

(b) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
Normalization 1

(c) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
Normalization 2

(d) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
Normalization 3

(e) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
Normalization 4

(f) Full matrix of the co-
e�cients of variation,
Pearson’s correlation,
Normalization 5

Figure 3.16: Full matrices of the coe�cients of variation (the scale is set from 0 to 100%), Pearson’s
correlation.

Table 3.2: medianCV%±MAD (Pearson’s correlation)

Normalization median CV%±MAD

No Normalization 12, 6± 2, 7
Normalization 1 32, 7± 5, 4
Normalization 2 194, 6± 1620, 2
Normalization 3 109, 2± 986, 5
Normalization 4 45, 8± 4, 4
Normalization 5 65, 7± 8, 9
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(a) Full matrix of the co-
e�cients of variation,
Cosine similarity, No
Normalization

(b) Full matrix of the co-
e�cients of variation,
Cosine similarity, Nor-
malization 1

(c) Full matrix of the co-
e�cients of variation,
Cosine similarity, Nor-
malization 2

(d) Full matrix of the co-
e�cients of variation,
Cosine similarity, Nor-
malization 3

(e) Full matrix of the co-
e�cients of variation,
Cosine similarity, Nor-
malization 4

(f) Full matrix of the co-
e�cients of variation,
Cosine similarity, Nor-
malization 5

Figure 3.17: Full matrices of the coe�cients of variation (the scale is set from 0 to 100%), Cosine
similarity.

Table 3.3: medianCV%±MAD (Cosine Similarity)

Normalization median CV%±MAD

No Normalization 10, 2± 1, 9
Normalization 1 14, 1± 2, 8
Normalization 2 194, 6± 1620, 2
Normalization 3 109, 2± 986, 5
Normalization 4 49, 2± 2, 6
Normalization 5 73, 7± 9, 3
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(a) Full matrix of the co-
e�cients of variation,
Euclidean similarity,
No Normalization

(b) Full matrix of the co-
e�cients of variation,
Euclidean similarity,
Normalization 1

(c) Full matrix of the co-
e�cients of variation,
Euclidean similarity,
Normalization 2

(d) Full matrix of the co-
e�cients of variation,
Euclidean similarity,
Normalization 3

(e) Full matrix of the coe�-
cients of variation, Eu-
clidean similarity, Nor-
malization 4

(f) Full matrix of the coe�-
cients of variation, Eu-
clidean similarity, Nor-
malization 5

Figure 3.18: Full matrices of the coe�cients of variation (the scale is set from 0 to 100%), Euclidean
similarity.

Table 3.4: medianCV%±MAD (Euclidean Similarity)

Normalization median CV%±MAD

No Normalization 8, 3± 28, 9
Normalization 1 7, 5± 26, 8
Normalization 2 5, 9± 19, 8
Normalization 3 37, 3± 68, 9
Normalization 4 6, 3± 47, 7
Normalization 5 8, 1± 41, 3
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(a) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, No
Normalization

(b) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, Nor-
malization 1

(c) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, Nor-
malization 2

(d) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, Nor-
malization 3

(e) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, Nor-
malization 4

(f) Full matrix of the co-
e�cients of variation,
Gaussian Kernel, Nor-
malization 5

Figure 3.19: Full matrices of the coe�cients of variation (the scale is set from 0 to 100%), Gaussian
Kernel.

Table 3.5: medianCV%±MAD (Gaussian Kernel)

Normalization median CV%±MAD

No Normalization 1, 7± 14, 7
Normalization 1 1, 4± 15, 1
Normalization 2 1, 1± 9, 9
Normalization 3 19, 9± 88, 6
Normalization 4 3, 0± 22, 5
Normalization 5 2, 6± 23, 9

The analysis of the coe�cients of variation also confirms the choice of the

Euclidean Similarity metric to determine the metabolic connectivity matrices. In

fact, it can be observed that the highest inter-subject reproducibility, and thus

the lowest median CV% ± MAD, are for the Gaussian Kernel and Euclidean

Distance metrics.

Therefore, the full matrices of the coe�cients of variation of the MC matrices

considering the first 10 minutes of the TAC, the last 20 minutes, the time series of

compartment 1 and compartment 2, for the not normalised Euclidean Similarity

case only, are reported in the figure 3.20. Also indicating the corresponding

median CV%±MAD value.
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(a) Full matrix of the coe�cients of variation, Eu-
clidean similarity, No Normalization, first 10 min-
utes.

(b) Full matrix of the coe�cients of variation, Eu-
clidean similarity, No Normalization, last 20 min-
utes.

(c) Full matrix of the coe�cients of variation, Eu-
clidean similarity, No Normalization, compartment
1

(d) Full matrix of the coe�cients of variation, Eu-
clidean similarity, No Normalization, compart-
ment 2

Figure 3.20: Full matrices of the coe�cients of variation (the scale is set from 0 to 100%), by means
of Euclidean similarity metrics and not normalised case.

Table 3.6: medianCV%±MAD (Euclidean Similarity, first 10 minutes)

Normalization median CV%±MAD

No Normalization 26, 4± 7, 1
Normalization 1 25, 5± 6, 8
Normalization 2 19, 2± 6, 3
Normalization 3 51, 6± 18, 7
Normalization 4 39, 3± 5, 0
Normalization 5 33, 7± 6, 5
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Table 3.7: medianCV%±MAD (Euclidean Similarity, last 20 minutes)

Normalization median CV%±MAD

No Normalization 32, 1± 8, 3
Normalization 1 32, 1± 8, 3
Normalization 2 30, 1± 6, 4
Normalization 3 53, 0± 12, 2
Normalization 4 32, 5± 8, 1
Normalization 5 32, 5± 8, 0

Table 3.8: medianCV%±MAD (Euclidean Similarity, compartment 1)

Normalization median CV%±MAD

No Normalization 38, 9± 7, 9
Normalization 1 38, 8± 7, 9
Normalization 2 36, 6± 5, 6
Normalization 3 104, 2± 24, 1
Normalization 4 42, 3± 7, 5
Normalization 5 36, 7± 7, 6

Table 3.9: medianCV%±MAD (Euclidean Similarity, compartment 2)

Normalization median CV%±MAD

No Normalization 47, 7± 9, 4
Normalization 1 45, 9± 9, 3
Normalization 2 31, 8± 11, 1
Normalization 3 102, 0± 72, 8
Normalization 4 47, 5± 8, 8
Normalization 5 46, 4± 8, 8

In order to assess the relationship between the di↵erent portions of the TAC

(first 10 minutes, first 20 minutes, last 20 minutes), and with the time series of

compartment 1 and compartment 2, the values of the Pearson’s correlation coef-

ficients is evaluated between all possible pairs of average MC time-series matrices

obtained using the Euclidean similarity metrics, see fig. 3.21. These matrices

were considered following an 80th percentile sparsification.

After their binarisation, it was also possible to calculate Dice’s pairwise similarity

coe�cient between all possible pairs of matrices.

In figure 3.22 we highlight the correlations considering only the non-normalised

case of Euclidean Similarity, since this is the option chosen for the time-series

metabolic connectivity matrices.

What is evident is that:
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Figure 3.21: Pearson’s correlation coe�cients evaluated between all possible pairs of MC time-series
matrices

Figure 3.22: Pearson’s correlation coe�cients evaluated between the non-normalised case of Eu-
clidean Similarity

• MC from full TAC is strongly correlated (correlation values around 0.9) with

MC from the last 20 minutes of TAC and strongly-moderately correlated

(values around 0.7) with MC from compartment 2 and from the first 10

minutes of TAC.

• MC from compartment 2 turns out to be strongly-moderately correlated

(values around 0.7) also with MC from the last 20 minutes.

• MC from compartment 1 appears to be uncorrelated with all other metabolic

connectivity matrices.
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3.1.5 MC subject-series vs MC time-series

Matrices reporting the Pearson’s correlation coe�cients between the average MC

time-series and subject-series matrices (see fig. 3.23), as well as Dice’s coe�cient

of pairwise similarity (see fig. 3.24), are shown below.

Figure 3.23: Pearson’s correlation coe�cients evaluated between MC time-series matrices and MC
subject-series matrices. The correlation was performed between the entries of the
vectorised matrices.

Figure 3.24: Dice’s coe�cient of pairwise similarity evaluated between all possible pairs of MC
time-series matrices

What is evident is that:

• the strongest relationship (correlation values around 0.4) is between the

matrix of K1 and the matrix of compartment 1.

• Correlations around 0.4 also emerged between the matrix of compartment

2 and the matrix of k3.
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• SUV R and Ki are found to be uncorrelated with all other time-series ma-

trices.

3.2 Graph theory metrics and hubs

The distribution, for each parcel, of degree and eigenvector centrality are reported

on the Hammers atlas template, evaluated on the di↵erent metabolic connectivity

average matrices: full TAC (fig. 3.25), first 10 minutes (fig. 3.26), last 20 minutes

(fig. 3.27), compartment 1 (fig. 3.28) and compartment 2 (fig. 3.29). The colour

scale used is “Hot”, i.e. with increasing values from dark to light.

(a) Degree distribution for each parcel (full
TAC)]

(b) Eigenvector centrality distribution for each
parcel (full TAC)

Figure 3.25: Degree (a) and eigenvector centrality (b) distribution (full TAC)

(a) Degree distribution for each parcel (first 10
minutes TAC)]

(b) Eigenvector centrality distribution for each
parcel (first 10 minutes TAC)

Figure 3.26: Degree (a) and eigenvector centrality (b) distribution (first 10 minutes TAC)

(a) Degree distribution for each parcel (last 20
minutes TAC)]

(b) Eigenvector centrality distribution for each
parcel (last 20 minutes TAC)

Figure 3.27: Degree (a) and eigenvector centrality (b) distribution (last 20 minutes TAC)

What emerges is (considering the degree distribution, being consistent for eigen-

vector centrality):

• the distribution of the full TAC is particularly similar to that of the last 20

minutes, i.e. with high values for the temporal and occipital lobes.
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(a) Degree distribution for each parcel (com-
partment 1)]

(b) Eigenvector centrality distribution for each
parcel (compartment 1)

Figure 3.28: Degree (a) and eigenvector centrality (b) distribution (compartment 1)

(a) Degree distribution for each parcel (com-
partment 2)]

(b) Eigenvector centrality distribution for each
parcel (compartment 2)

Figure 3.29: Degree (a) and eigenvector centrality (b) distribution (compartment 2)

• The first 10 minutes have a strong distribution in the temporal and frontal

lobes.

• The distribution of compartment 1 is strong in the frontal and parietal

lobes.

• The distribution of compartment 2 is strong in the frontal, parietal and

temporal lobes.

After having applied the graph metrics, the methodology to derive the hubs was

implemented and these are shown in the figure 3.30. The hubs identified from the

study of the metabolic connectivity matrices obtained from the di↵erent portions

of the TAC and the time series of compartment 1 and 2 are such that there is

good overlap, with the exception of compartment 1, which has a more character-

istic distribution.

For compartment 1, the hubs are predominantly distributed in the Parietal Lobe.

While, as also confirmed by the distribution of degree and eigenvector centrality

on the Hammers atlas template, the hub nodes are predominantly in the Frontal

Lobe (right and left) and Temporal (right and left) for all other cases.

The figure 3.31 shows the values of the Pearson’s correlation coe�cients calcu-

lated between the graph metrics (only degree is reported, as for strength and

eigenvector centrality the results are consistent) of the time-series connectivity

matrices, with the average values calculated across the subjects of K1, k3, Ki and

SUV R, after an appropriate z-score. The figure 3.32 shows the values of the Pear-

son’s correlation coe�cients calculated between the graph metrics (only degree
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Figure 3.30: Identified hubs, as the nodes belonging to the top 20% of both degree and eigenvector
centrality distributions, for the cases of full TAC, first 10 minutes, last 20 minutes,
compartment 1 and compartment 2.

Figure 3.31: Correlation coe�cients between MC time-series degree and mean parameters.

is reported, as for strength and eigenvector centrality the results are consistent)

of the subject-series connectivity matrices, with the average values calculated
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across the subjects of K1, k3, Ki and SUV R, after an appropriate z-score. What

Figure 3.32: Correlation coe�cients between MC subject-series degree and mean parameters.

is evident from the figures 3.31 and 3.32 is that:

• the degree of the time-series connectivity matrices, for all cases, has positive

and high correlation values (around 0.6) with mean SUV R and Ki mainly,

but also with mean k3 (values around 0.3).

• In contrast, the degree of the subject-series connectivity matrices corre-

lates much less and negatively with the mean values of the micro/macro

parameters.

3.3 Enrichment analysis with brain receptor maps

The Pearson correlation coe�cients between graph metrics of time-series metabolic

connectivity (only degree is reported, as for strength and eigenvector centrality

the results are consistent) and the neurochemical architecture are shown in the

figure 3.33.

While the Pearson correlation coe�cients between graph metrics of subject-series

metabolic connectivity (only degree is reported) and the neurochemical architec-

ture are shown in the figure 3.34.

From figure 3.33, emerges that:

• rCPS appears to be strongly correlated (values around 0.7) with the degree

of the matrices from full TAC, first 10 minutes, last 20 minutes, time series
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Figure 3.33: Pearson correlation coe�cients between degree of time-series MC and the neurochem-
ical architecture.

Figure 3.34: Pearson correlation coe�cients between degree of subject-series MC and the neuro-
chemical architecture.

of compartment 2, while the correlation values are weaker (around 0.4) with

the degree of the MC matrix of compartment 1. This confirms the more

di↵erent trend of compartment 1, compared with the other cases.

• NMDAR appears to be consistently anticorrelated with all cases, although

with rather low values (around -0.3).

From figure 3.34, in contrast, no significant correlations emerge between the de-

gree of MC subject-series matrices and neurochemical architecture.
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With regard to the study of receptor density, the presence of a statistically sig-

nificant di↵erence between hub and non-hub nodes of the average time-series

connectivity matrices, determined via Wilcoxon ranksum test, was found for the

following cases:

• mGLUR5 and compartment 1 time courses: p-value=0,00061 (see fig. 3.35).

Figure 3.35: Hubs vs not-Hubs, compartment 1, case mGLUR5

• mGLUR5 and first 10 minutes: p-value=0,01820.

• rCPS and compartment 1: p-value=0,00195.

• rCPS and compartment 2: p-value=0,000004 (see fig. 3.36).

Figure 3.36: Hubs vs not-Hubs, compartment 2, case rCPS

• rCPS and first 10 minutes: p-value=0,00090 (see fig. 3.37).

• rCPS and last 20 minutes: p-value=0,00713.

• rCPS and full TAC: p-value=0,02579.

• GABA-A and compartment 1: p-value=0,00905.

• GABA-A and compartment 2: p-value=0,00099 (see fig. 3.38).
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Figure 3.37: Hubs vs not-Hubs, first 10 minutes, case rCPS

Figure 3.38: Hubs vs not-Hubs, compartment 2, case GABA-A

MC hubs are enriched in rCPS, mGluR5 is rich in first compartment and first

10-min hubs, and GABA is rich in first and second compartment hubs.

As for the case of subject-series connectivity matrices:

• rCPS and K1: p-value=0,04658.

• mGLUR5 and K3: p-value=0,00660.

• NMDAR and SUV R: p-value=0,00174 (see fig. 3.39).

Figure 3.39: Hubs vs not-Hubs, SUV R, case NMDAR

• NMDAR and Ki: p-value=0,00166 (see fig. 3.40).
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Figure 3.40: Hubs vs not-Hubs, Ki, case NMDAR

• GABA-A and SUV R: p-value=0,03593.

3.4 Estimation of metabolic connectivity matrices

at parcel level: parcellation with Schaefer atlas

In this case, the number of voxels per parcel is su�ciently high and for this reason

none of the regions were removed from the analysis. Results will be reported for

Schaefer’s 200 parcels, 7 networks case only.

The data-denoising approach as well as the chosen similarity metric were con-

sistent with the Hammers case, i.e. 3 by 3 average on the first 24 frames and

Euclidean Similarity non-normalised case. Below, see fig. 3.41, the metabolic

connectivity average matrices of the full TAC, first 10 minutes, first 20 minutes,

last 20 minutes, compartment 1 and compartment 2 are shown.

The subject-series connectivity matrices are shown in the figure 3.42.

As in the Hammers case, even with the parcellation using Schaefer, both 200 and

100, at 7 and 17 networks, the study of the coe�cients of variation confirmed the

choice of Euclidean Similarity as the metric to determine the metabolic connec-

tivity matrices, providing in fact low values of median CV%±MAD. The table

3.10 shows the median CV%±MAD for the di↵erent CV matrices obtained by

parcelling via Schaefer 200 with 7 networks, for the non-normalised Euclidean

similarity case.

With regard to the correlations obtained between the di↵erent MC time-series

matrices (full TAC, first 10 minutes, first 20 minutes, last 20 minutes, compart-

ment 1 and compartment 2), the results (see fig. 3.43) obtained by Schaefer

parcellation reproduce what emerged from Hammers parcellation:

• MC from full TAC is strongly correlated (correlation values around 0.9) with



74 Chapter 3. Results

(a) MC average matrix obtained by Eu-
clidean similarity metric, full TAC (non-
normalised case and with Fisher’s Z-
trasformation)

(b) MC average matrix obtained by Euclidean
similarity metric, first 10 minutes (non-
normalised case and with Fisher’s Z-
trasformation)

(c) MC average matrix obtained by Euclidean
similarity metric, first 20 minutes (non-
normalised case and with Fisher’s Z-
trasformation)

(d) MC average matrix obtained by Euclidean
similarity metric, last 20 minutes (non-
normalised case and with Fisher’s Z-
trasformation)

(e) MC average matrix obtained by Euclidean
similarity metric, compartment 1 (non-
normalised case and with Fisher’s Z-
trasformation)

(f) MC average matrix obtained by Euclidean
similarity metric, compartment 2 (non-
normalised case and with Fisher’s Z-
trasformation)

Figure 3.41: MC average matrix obtained by Euclidean similarity metric, (non-normalised case and
with Fisher’s Z-trasformation).

MC from the last 20 minutes of TAC, strongly-moderately correlated (values

around 0.8) with MC from the first 10 minutes of TAC and moderately

correlated (values around 0.6) with MC from compartment 2.

• MC from compartment 2 turns out to be moderately correlated (values

around 0.6) also with MC from the last 20 minutes.

• MC from compartment 1 appears to be uncorrelated with all other metabolic
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(a) MC matrix of K1 (b) MC matrix of k3

(c) MC matrix of Ki (d) MC matrix of SUV R

Figure 3.42: MC matrices subject-series, obtained via Pearson’s correlation across-subject.

Table 3.10: medianCV%±MAD Schaefer 200 with 7 networks (non-normalised Euclidean similar-
ity case)

Type median CV%±MAD

Full TAC 25, 3± 5, 4
First 10 minutes 21, 3± 5, 1
First 20 minutes 23, 5± 5, 5
Last 10 minutes 29, 3± 5, 5
Compartment 1 33, 7± 4, 9
Compartment 2 39, 7± 6, 6

connectivity matrices.

With regard to the correlations between the mean time-series metabolic connec-

tivity matrices and the subject-series matrices, see fig. 3.44, the results quali-

tatively reproduce for the most part what was found in the Hammers case, but

with barely significant correlation values:

• the strongest relationship (correlation values around 0.35) is between the

matrix of k3 and the matrix of compartment 1, followed by a correlation of

around 0.3 also between compartment 1 and both K1 and Ki.

• SUV R is totally uncorrelated with the MC time-series matrices.



76 Chapter 3. Results

Figure 3.43: Pearson’s correlation coe�cients evaluated between the non-normalised case of Eu-
clidean Similarity (Schaefer 200, 7 networks)

Figure 3.44: Pearson’s correlation coe�cients evaluated between MC time-series matrices and MC
subject-series matrices (Schaefer 200, 7 networks). The correlation was performed
between the entries of the vectorised matrices.

The degree distribution for each parcel is reported on the three-dimensional tem-

plate of the Schaefer functional atlas, for the full TAC case (see fig. 3.45), first

10 minutes (see fig. 3.46), last 20 minutes (see fig. 3.47), compartment 1 (see fig.

3.48) and compartment 2 (see fig. 3.49).

What emerges is:

• The last 20 minutes and the full TAC have a similar pattern, with a strong

distribution in the temporal and parietal lobe.

• The first 10 minutes have a strong distribution in the temporal and frontal

lobes.
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Figure 3.45: Degree distribution full TAC (Schaefer 200, 7 networks).

Figure 3.46: Degree distribution first 10 minutes (Schaefer 200, 7 networks).

Figure 3.47: Degree distribution last 20 minutes (Schaefer 200, 7 network).

Figure 3.48: Degree distribution compartment 1 (Schaefer 200, 7 networks).

• Compartment 1 has a strong anterior distribution and in the temporal lobes,

with lower cingulate cortex and medial part.

• Compartment 2 has very low Precuneus, and the highest part is in the

temporal and parietal lobes.

• It is interesting to observe the di↵erence between medial and lateral, with
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Figure 3.49: Degree distribution compartment 2 (Schaefer 200, 7 networks).

lower degree values observed in the medial view.

The results are consistent with what has already been observed for the degree

distribution in the Hammers case.

The correlations between the graph metrics evaluated on the time-series con-

nectivity matrices with the average value calculated across subjects of K1, k3, Ki

and SUVR, is shown in the figure 3.50 (the metric is the degree and the Schae-

fer is the 200 at 7 networks). Qualitatively, the results are comparable to the

Hammers case, but with less significant correlation values: the degree of the time

series connectivity matrices, for all cases, has positive correlation values (around

0.3) with the mean SUV R, Ki and k3.

As for the subject-series case, the results are shown in the figure 3.51. Similarly

to the Hammers case, the degree of subject-series connectivity matrices correlates

much less and negatively with the average values of the micro/macro parameters.

Figure 3.50: Correlation coe�cients between MC time-series degree and mean parameters (Schaefer
200, 7 networks)
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Figure 3.51: Correlation coe�cients between MC subject-series degree and mean parameters
(Schaefer 200, 7 networks)

With regard to the enrichment analysis with brain receptor maps, the Pearson’s

correlation coe�cients between the graph metrics (only the degree is shown) of

time-series connectivity and neurochemical archiectecture are reported in the fig-

ure 3.52, while for the case of subject-series connectivity matrices in fig. 3.53.

Figure 3.52: Pearson correlation coe�cients between degree time-series MC (Schaefer 200, 7 net-
works) and the neurochemical architecture.

What emerges is the lack of significant correlations between the degree of the

MC time-series matrices and the neurochemical architecture (contrary to previ-

ous findings in the Hammers case) and similar for the subject-series matrices.

In fact, even with regard to receptor density studies, for the time-series case, no

significant di↵erences were found between hub and non-hub nodes when applying

the Wilcoxon ranksum test.

With regard to the subject-series case, significant di↵erences emerged in the fol-
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Figure 3.53: Pearson correlation coe�cients between degree subject-series MC (Schaefer 200, 7
networks) and the neurochemical architecture.

lowing cases:

• NMDAR and Ki: p-value=0,02463.

• NMDAR and SUV R: p-value=0,02675.

• mGluR5 and K1: p-value=0,00272.

3.5 Estimation of metabolic connectivity at voxel

level

The dynamic of the voxels is reported in the figure 3.54.

Among the data denoising approaches tested, the most promising result, as also in

the case of MC at parcel level, was obtained by averaging 3 by 3 the first 24 frames.

The outcome of applying k-means clustering to voxel dynamics, following data

denoising using this approach, with global normalisation 1 and squared Euclidean

distance as a metric, is reported below (fig. 3.55).

Once the pre-processing was defined, ICA was applied with the GIFT toolbox to

the PET 4D dynamics. The analysis performed on a single subject (3 by 3 average

of the first 24 frames and normalisation 1) is shown below. Figure 3.56 shows

the parameters set for the execution of ICA, figure 3.57 the stability indices (Iq)

for ICA estimate-cluster and figure 3.58 the results of the Canonical Correlation

analysis.

Finally, figure 3.59 shows the components extracted from ICA.

The results, however, are not satisfactory: the spatial maps of the components
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Figure 3.54: Voxels dynamic (GM, WM, CSF) interpolated with a uniform 5 s step grid.

are unable to highlight any structure, but only extract noise. The stability indices

are also around values of 0.6-0.8, with only one component (the first one) having

a stability index of 1. This implies that one component is identified (gray matter

or white matter) and the remaining of the revealed components are noise. Even

in the 2D CCA projection, the clusters are not distinct, but some turn out to be

connected, again showing unpromising results.
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(a) Clustering k-means on voxel dynamics following data denosing with 3 by 3 averaging on the first 24 frames,
global normalisation 1 and squared Euclidea distance as a metric. The number of centroids was set to 10 and
the replicates to 200.

(b) Trend over time of the 10 highlighted centroids.

Figure 3.55: Application of k-means clustering to voxel dynamics, averaged 3 by 3 of the first 24
frames and global normalisation 1.
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Figure 3.56: ICA parameters choosen in the toolbox GIFT

Figure 3.57: Stability index (Iq) for ICA estimate-cluster

Figure 3.58: Estimate space as a 2D CCA projection
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(a) Component 1 (b) Component 2 (c) Component 3

(d) Component 4 (e) Component 5 (f) Component 6

(g) Component 7 (h) Component 8 (i) Component 9

(j) Component 10

Figure 3.59: Components extracted from ICA
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Discussion

4.1 Estimation of metabolic connectivity matrices

at parcel level: parcellation with Hammers

atlas

The aim of this first part was to derive metabolic connectivity from dynamic

[18F]FDG PET at the individual subject level, with a focus on network charac-

terisation and data standardisation, thus providing an appropriate mathematical

method to extract “time series” connectivity maps from dynamic PET data.

The main problems we had to adress were the high level of noise in the available

dataset and the multicollinearity of the time activity curves.

The first problem was solved by testing di↵erent data-denoising approaches, eval-

uating their e↵ects on the TACs in terms of noise reduction and making sure the

denoised signal still maintained a physiological time course which respected the

count statics. From this analysis it emerged that the best results could be ob-

tained by applying a 3 by 3 average over the first 24 frames.

In order to solve the multicollinearity problem, di↵erent metrics (Pearson’s cor-

relation, Euclidean Similarity, Gaussian Kernel and Cosine Similarity) and 5 dif-

ferent types of normalisation (6 also considering the non-normalised case) were

tested. It can be seen from the carpet plots of the TACs that these normalisations

highlight di↵erent characteristics of the signal:

• normalisations 1 (the most typically empoyed in the literature, Tomasi et

al. (2017), Amend et al. (2019) and Ionescu et al. (2021)) and 2 emphasise

85
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the signal fluctuations around the metabolic baseline or global signal;

• normalisation 3 emphasises the fluctuations of the signal with respect to

itself;

• normalisation 4 leads to greater denoising of the initial part, thereby em-

phasising the tails and their separation;

• normalisation 5 performs the opposite of normalisation 4, thus emphasising

mainly the initial part of the curve.

Once the MC matrices have been obtained, each symmetrical matrix can be

imagined as organised into 4 blocks:

• upper left block: connectivity between the left hemisphere regions (LH);

• lower right block: connectivity between the right hemisphere regions (RH);

• lower left block and upper right block, as the connections between LH and

RH.

In particular, considering the MC matrices obtained via Euclidean Similarity, on

visual inspection, the left hemisphere-right hemisphere structure with homotopic

interhemispheric connections, assessed by brain connectivity studies, is evident

in most normalisation methods. In particular, they are most evident in the non-

standardised case, in normalisation 1 and normalisation 4, and are represented

by means of secondary diagonals. The matrices obtained through standardisation

3, on the other hand, show a pronounced block-diagonal structure with strong

connectivity within each sub-network. In fact, since there is no gold standard,

non-trivial di↵erences in MC networks emerge with the di↵erent standardisation

methods.

It is interesting to note that through the Euclidean Similarity metric (and simi-

larly for the Gaussian Kernel) it is possible to identify a Network structure and

in particular the homotopic interhemispheric connections even without adopting

any type of normalisation. Therefore, choosing one of these metrics would solve

the question of finding the most suitable normalisation, overcoming the problem

encountered in the studies of Amend et al. (2019), Li et al. (2020), Tomasi et

al. (2017) and Ionescu et al. (2021). While adopting a normalization reduces

the multicollinearity between TACs, and allow to perform MC via correlations

between PET signal fluctuations (similarly to what happens for fMRI FC), re-

moving the positive trend (global signal) in PET TACs might lead to a significant
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loss of information.

Homotopic interhemispheric connections are indeed supported by brain connec-

tivity studies in the literature. In fact, how the left and right hemispheres are

integrated is a crucial issue in neuroscience. For the two hemispheres, integration

refers to the interaction between specialised regions, which enables long-range in-

terhemispheric synchronisation and information flow. Various neuroimaging tech-

niques have been applied to study functional integration between the two cerebral

hemispheres. For example, Horwitz et al. (1984) used precisely PET-acquired

regional metabolic rates to characterise functional integration between di↵erent

brain regions. This study showed that all regions were significantly correlated

with their contralateral parts. Other studies (Du↵y et al, 1996), on the other

hand, used electroencephalogram (EEG) recordings in the resting state, reveal-

ing synchronised electrical activity between the right and left hemispheres [64].

Resting-state fMRI has also been crucial in revealing patterns of spontaneous syn-

chronised activity between homotopic regions of the right and left hemisphere [65].

Therefore, the metabolic connectivity results obtained in this study using the Eu-

clidean Similarity metric with the non-normalised case are extremely promising,

finding physiological support.

Also confirming the choice of Euclidean Similarity as a metric is the study of

the coe�cients of variation, relevant for assessing the inter-subject variability of

the obtained connectivity matrices. In fact, evaluating the full CV matrices for

the metric in question, the values are very low, and in particular for the non-

normalised full TAC case, a median CV% ± MAD of 8.3 ± 28.9 was obtained,

therefore implies high reproducibility between subjects.

Interesting results emerged from the study of the correlations between the ob-

tained time-series connectivity matrices: full TAC, first 10 minutes of the TAC,

last 20 minutes, time series of compartment 1 and time series of compartment 2.

It can be inferred that:

• the strong correlation between the MC matrices of the full TAC and the

last 20 minutes is related to the fact that the Euclidean similarity metric

is based on the distance between the curves, which is greater in the final

portion of the TAC. For this reason, the final portion drives the values of

the metric. Therefore, the last 20 minutes of the TAC provide the most

information on the full TAC in terms of metabolic connectivity.
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• The medium-strong correlations between the MC from compartment 2 and

both MC from full TAC and from the last 20 minutes of the TAC sug-

gest that from these two it is possible to derive information regarding the

time course of the concentration of the tracer phosphorylated by the hex-

okinase enzyme (time series of compartment 2). Thus, the application of

compartmental modelling could be avoided.

• Nevertheless, it is not possible, from the simple study of portions of the

TAC, to derive information regarding the time course of the free tracer

concentration in the tissue (time series of compartment 1), so compartmen-

tal modelling would be necessary in this case, as the MC from compartment

1 does not correlate with any of the other matrices obtained.

With regard to the subject-series connectivity matrices obtained from K1, k3, Ki

and SUV R, what emerges is that a di↵erent parameter corresponds to a di↵er-

ent network. In the literature, the study of metabolic connectivity is generally

based on SUV R, but it is also useful to evaluate what emerges from the micro-

parameters, in particular, while the networks that is highlighted from SUV R, Ki

and K1 are more similar, with highly connected regions in the Temporal lobe,

what emerges from k3 is more peculiar, with highly connected regions in the Pari-

etal and Frontal lobes.

Assessing the relationships between the subject-series and time-series connec-

tivity matrices, it can be deduced that:

• the absence of correlation between the MC matrix from the SUVR with all

time-series matrices casts doubt on its significance and validity for metabolic

connectivity studies. The results of this research would open up new per-

spectives for metabolic connectivity studies, opposing what has been done

so far in the literature, as MC is generally studied as an across-subject

correlation from SUVR values.

• The positive correlation between MC from compartment 1 and MC from

K1 and k3 is consistent with the structure of Sokolo↵’s model, as is the

positive correlation between compartment 2 and k3.

In particular, what emerges is the di↵erence between what is revealed by time-

series matrices versus subject-series matrices. This result is somewhat analogous

to Simpson’s paradox [66], according to which a relationship observed at the level
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of the population is reversed at the level of the individuals that constitute it [67].

What has in fact been found in this thesis is a substantial di↵erence between

the connectivity matrix obtained from the SUVR as a covariation of metabolic

information across subjects, a matrix generally referred to in the literature and

obtained at the group level, and the time-series connectivity matrices obtained

as a relationship between the time series of each region thus at the level of the

individual (within subject).

Simpson’s paradox is a special case of the “ecological fallacy” [68] and the related

concept of “ergodicity” [67]. Ergodic processes occur when a group-level result

is generalisable to the individuals in the sample. Actually, ergodic processes are

rather rare, because two strict criteria must be fulfilled:

1. the process must be homogeneous across individuals in a sample;

2. the statistical parameters describing the process must be constant or sta-

tionary over time.

Brain connectivity as measured by neuroimaging data does not meet the criteria

of ergodicity and therefore results at the group level are not generalisable to indi-

viduals within the group [69]. In fact, as the study by Fisher et al. (2018) shows,

non-ergodicity is a threat to human subjects research because the full extent of

the problem is not known and it is not being adequately studied; furthermore,

he argues that scientists need to demonstrate consistency between individual and

group variability before generalising results across levels of analysis.

Due to the technical limitations of the PET imaging method, existing studies

on resting-state metabolic connectivity have been limited to examining group-

level covariance rather than within-subject correlation of FDG-PET time series.

Researchers have attempted to draw rather strong conclusions based on these

findings, including attempts to use metabolic covariance as a biomarker of dis-

ease [27].

By definition, a biomarker must be individually estimable (FDA-NIH 2019). Our

results suggest that metabolic covariance cannot be used to predict within-subject

connectivity. Although subject-series connectivity matrix analyses may be use-

ful in other contexts, future attempts to explore metabolic connectivity as a

biomarker of disease should use time-series connectivity as the only statistically

valid approach.
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4.2 Graph theory metrics and hubs

Network science or “graph theory” can be used to elucidate key organizational

features of the brain’s connectome architecture and to make predictions about

the role of network elements and network attributes in brain function. Brain

networks can be described mathematically as graphs, which essentially comprise

sets of nodes (parcels) and edges (their interconnections). The extraction of brain

networks from human imaging data and the many opportunities of graph-based

approaches have been the subject of several recent reviews. One interesting as-

pect is that graph theory o↵ers a wide range of objective data-based measures

to characterise the topology of networks. An important subset of these measures

identifies network elements (nodes or edges) that are likely to have a strong in-

fluence on the communication and integration of information and thus on the

overall network function. In network science, nodes that are positioned to make

a strong contribution to the overall network function are generally referred to as

network hubs. Hubs can be identified using many di↵erent graph measures, the

simplest one used to identify hubs being the node degree. However, no single

measure is necessary and su�cient to define network hubs, which is why it is

often advantageous to identify hubs by aggregating di↵erent graph measures. In

the present study, it was decided to derive hubs as the nodes belonging to the

top 20% of both degree and eigenvector centrality distributions.

The identified hubs are mostly located in the Parietal lobe with regard to Com-

partment 1, which has a more characteristic pattern, and in the Frontal and

Temporal lobe with regard to all the remaining cases.

The study of the hubs of metabolic connectivity from time-series matrices has

never been addressed before in the literature, however, the results obtained here

are confirmed in the study conducted by Jamadar et al. (2021) on functional-

PET, in which the analysis of the degree of connectivity matrices is further inves-

tigated, highlighting the higher degree regions as those in the Temporal, Frontal

and Parietal lobes [70].

Therefore, these results indicate that the hub regions identified in this study are

indeed physiologically significant and illustrate the potential application of the

proposed method, as hub regions are generally altered in various brain disorders,

such as Alzheimer’s disease and schizophrenia [71]. Therefore, the potential of

hub regions as imaging markers for diagnosis and patient stratification is an in-

teresting topic for future research.
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The match between the graph metrics of the time-series connectivity matrices

and the average maps of K1, k3, Ki and SUV R again confirms the more singular

trend of compartment 1, which is not correlated with any mean map. While

the strongest positive correlation is between the average SUV R map, as a local

measure of metabolism, and the degree of full TAC, first 10 minutes and last 20

minutes. These strong and positive correlations between the average SUVR map

and the graph metrics of the time-series connectivity matrices can be interpreted

from a physiological point of view: regions with high degree (the same goes for

in strength and eigenvector centrality), thus which can be considered brain hubs,

are associated with high metabolic demand.

This suggests that informational nodes within the brain are highly metabolic,

and reflects to some extent the relationship that has been derived with rCPS and

set out below.

This pattern is not consistent when considering the correlation between average

maps and graph metrics of subject-series connectivity matrices. In this case, in

fact, the SUV R, Ki and K1 networks have negative correlations with the mean

maps. In particular, the SUV R network is the most strongly negatively corre-

lated, which would mean that even the higher the SUV R of a node, the less that

node covaries with the others across subjects, i.e. that node has low variability

across subjects, and is always high in all of them, so it covaries weakly with other

regions.

4.3 Enrichment analysis with brain receptor maps

A direct physiological interpretation of hubness measures is still missing, and

investigating, through the development of appropriate mathematical and statis-

tical approaches, how molecularly rich these hubs are in terms of receptor and

transporter density will help provide insights for targeted pharmacological and

neurostimulation interventions.

Neurotransmitters are chemical agents that transmit messages across synapses,

and are the key molecules of neural signalling. While neurotransmitters carry

the message, neurotransmitter receptors act as ears covering the cell membrane,

determining the response of the postsynaptic neuron. Neurotransmitter receptors

e↵ectively mediate the transfer and propagation of electrical impulses, modulat-

ing excitability, the firing rate of the cell, modifying neural states and ultimately
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shaping communication at the network level.

What emerged from the evaluation of the correlation of the time-series connec-

tivity graph metrics with the neurochemical architecture is a strong positive cor-

relation between the rate of protein synthesis and the metrics of all matrices.

One possible reason for the strong associations between rCPS and MC graph

metrics (time-series) may be that protein synthesis is directly associated with a

high metabolic rate, or vice versa. As shown by previous results on the relation-

ships between graph metrics and the mean SUVR map, it is precisely regions of

high degree (analogue in strength and eigenvector centrality) that are associated

with high metabolic demand. Free leucine (L-[1-11C]leucine PET is used to mea-

sure protein synthesis in vivo in the brain) is in fact one of the main amino acid

donors for glutamate synthesis in the brain [72]. Since an increase in metabolic

load would be associated with glutamate production, it follows that an increase

in metabolic load in the regions would be similarly associated with measures of

protein turnover, which explains the similarity of the relationship between rCPS

and the mean SUVR map with metabolic connectivity graph metrics. To confirm

this, a study by Wilcoxon ranksum test of the presence of significant di↵erences

between hub and non-hub nodes in terms of receptor density highlights that hub

nodes are clearly enriched in rCPS.

These relationships are thus confirmed from a physiological point of view, in

contrast to the findings of correlations between the graph metrics of the MC

subject-series matrices and the neurochemical architecture. In this case, in fact,

no significant correlations emerged.

4.4 Estimation of metabolic connectivity matrices

at parcel level: parcellation with Schaefer atlas

After having conducted the complete study using parcellation with the Ham-

mers anatomical atlas, it was decided to repeat the analysis by parcellation with

the Schaefer functional atlas, both at 100 and 200 parcels, with both 7 and 17

networks. A functional atlas was introduced because the aim was to include

metabolic connectivity in studies of connectomics, which already incorporate

functional connectivity, structural connectivity and e↵ective connectivity, not by

keeping it separate, but by opting to integrate it, so a study with a functional

atlas was a necessary test to be carried out.

By testing the various metrics (Pearson’s correlation, Cosine similarity, Euclidean
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similarity and Gaussian Kernel) and normalisations, what emerged confirmed the

results of the Hammers case, i.e. from visual inspection and analysis of the coe�-

cients of variation, Euclidean similarity was chosen with the non-normalised case

as the metric to derive the metabolic connectivity matrices. For the full TAC case

in fact the median CV ±MAD is 25, 3 ± 5, 4 confirming the high inter-subject

reproducibility of the MC matrices obtained at individual level.

Proceeding with the subsequent analyses, the correlation studies between the

obtained time-series connectivity matrices reflect the findings of the Hammers

studies:

• the strong correlation between the MC matrices of the full TAC and the

last 20 minutes is related to the fact that the Euclidean similarity metric

is based on the distance between the curves, which is greater in the final

portion of the TAC. For this reason, the final portion drives the values of

the metric.

• The medium-strong correlations between the MC from compartment 2 and

both MC from full TAC and from the last 20 minutes of the TAC suggest

that from these two it is possible to derive information regarding the time

course of the concentration of the tracer phosphorylated by the hexokinase

enzyme (time series of compartment 2).

• Nevertheless, the MC from compartment 1 does not correlate with any of

the other matrices obtained.

Subsequently, the correlation between subject-series and time-series connectiv-

ity matrices was assessed. The pattern of correlations mostly reflects what was

evident in the Hammers case, but with lower correlation values. The strongest

positive correlations are between the matrix of compartment 1 and both matrices

of K1 and k3. In particular, also in this case it is significant to note that the

SUV R subject-series matrix is uncorrelated from the remaining MC time-series

matrices.

Thus, as in the Hammers case, the di↵erence between what is revealed by time-

series matrices and subject-series matrices emerges, and therefore the previous

discussion regarding Simpson’s Paradox can be extended.

The next step involves the application of graph metrics to metabolic connec-

tivity matrices. The degree distribution replicates what was observed for the
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Hammers case, i.e. in general stronger in the Frontal, Parietal and Temporal ar-

eas, but with the di↵erence of lower values in the medial than in the lateral region.

Also with regard to the evaluation of the correlation between the calculated av-

erage across-subject maps of SUV R, K1, Ki and k3, with the time-series connec-

tivity graph metrics, what emerges is qualitatively the same as in the Hammer

case, but with lower correlation values. Thus, the average SUV R map corre-

lates positively with the MC time-series degree metrics, confirming also in the

Schaefer case how high degree regions (same for strength and centrality of the

eigenvectors), which can thus be considered brain hubs, are associated with high

metabolic demand.

Similarly to the Hammers case, even with Schaefer parcellation, the absence of

correlation, or negative correlations between mean maps and MC subject-series

graph metrics emerges.

However, the correlations that resulted in both cases, are particularly low and not

significant, this is probably due to the very detailed parcellation associated with

the atlas used (100 and 200 parcels) from which an increase in noise is derived,

and the PET data in question probably cannot support such a fine parcellation.

The e↵ect of such fine parcellation for the data in question, which is already

very noisy, can be detected when evaluating the correlation of time-series and

subject-series connectivity graph metrics with the neurochemical architecture.

In fact, what is evident is the total absence of correlation. Another factor that

may then a↵ect the correlation result with the graph metrics is the characteristic

and ubiquitous property of brain maps: spatial autocorrelation (SA) [73]. Due

to SA, brain feature values in spatially close regions tend to be more similar than

values in spatially distant regions. Therefore, the latter is a factor that will have

to be appropriately evaluated in future developments of this project.

4.5 Estimation of metabolic connectivity at voxel

level

After estimating metabolic connectivity matrices at the parcel level, an attempt

was made to assess MC at the voxel level by means of independent component

analysis using the GIFT toolbox. This type of analysis had already been tried

previously, recalling the studies of Wehrl et al. (2013) with the result of extracting
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7 networks showing similarities to those described in the fMRI literature, using

this technique. However, the areas found in ICA PET are smaller than the

regions assigned in fc-fMRI. In contrast, the study by Tomasi et al. (2017) showed

only two anticorrelated components: the first component incorporates cerebellum,

pons, medial temporal cortex regions and anterior thalamus, while the second

component includes cortical regions.

Finally, the study by Ionescu et al. (2021), in which the ICA readout of [18F]FDG

data broadly mirrors what has been reported in previous rat studies (Wehrl et

al., 2013), but many components indicate a focal, unilateral signal. The use of

a di↵erent number of components may help to address this problem; however,

one of the main reasons for this observation is the low signal-to-noise ratio that

“traditional PET data” have at the voxel level [39]. Indeed, what is already

stated by the authors is that voxel-wise approaches such as ICA are probably less

suitable for the analysis of [18F]FDG connectivity than FC.

What emerges from the spatial maps of the components from our analysis is the

inability to highlight any structure. This is in agreement with what was reported

above from Ionescu’s study, hence the need to use pairwise correlation approaches

to derive MC, with nodes large enough to avoid noisy signals. In fact, the data

under investigation is particularly noisy, which is also due to the low-quality

scanner used (Siemens ECAT HR+ 962 PET scanner), compared to the certainly

higher-performance scanner used in Wherl’s study (Siemens Inveon). In addition

to this, the promising results obtained at the parcel level use a distance-based

metric, which was therefore found to be the optimal metric to deal with PET

data, however none of the algorithms proposed in GIFT to perform ICA are

distance-based, so the di�culty in extracting structures may also be related to

finding the most appropriate algorithm, possibly modifying those already present.

Even this can be the focus of future studies and investigations.
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Conclusion

The aim of this thesis is to develop a mathematical method to perform metabolic

connectivity from dynamic PET data, using [18F]FDG as a tracer. This in or-

der to introduce metabolic connectivity into connectomics studies, which already

incorporate functional connectivity, structural connectivity and e↵ective connec-

tivity, but lack metabolic information and enrichment through receptor studies.

Hence, this would lay the foundation for the introduction of a new biomarker to

decode brain disorders in order to prevent them and investigate them by means

of targeted approaches.

Four possible metrics (Pearson’s correlation, Cosine similarity, Euclidean similar-

ity, Gaussian Kerne,) were proposed and tested on both the non-normalised TAC

and the normalised TAC with 5 di↵erent standardisations showing di↵erent signal

features. The Euclidean similarity metric with the non-normalised case was se-

lected, among other combinations, both for its high inter-subject reproducibility

and because it shows consistent identification of interhemispheric and homotopic

connections, as expected from brain connectivity studies. The advantage of this

metric is its ability to highlight a network structure even without adopting any

kind of normalisation: while adopting a normalization reduces the multicollinear-

ity between TACs, and allow to perform MC via correlations between PET signal

fluctuaztions (similarly to what happens for fMRI FC), removing the positive

trend (global signal) in PET TACs might lead to a significan loss of information.

The study then proceeded to evaluate possible correlations between the time-

series metabolic connectivity matrices (full TAC, last 20 minutes, first 10 minutes,

time series of compartment 1 and compartment 2) and subject-series (SUVR, K1,

k3, Ki). This revealed an absence of correlation between the time-series matrices
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and the SUVR subject-series matrices, highlighting the strong di↵erence between

this new approach of obtaining matrices at the subject level, compared to the

standard approach of across-subject covariation of metabolic information.

Calling into question the physiological interpretation and therefore the applica-

bility of the subject-series matrices are also the correlation studies between graph

metrics of time-series and subject-series matrices with both average maps of mi-

cro/macroparameters (SUV R, K1, k3, Ki) and the neurochemical architecture.

The strong and positive correlation between the graph metrics of MC time-series

and both the average map of SUV R and the rate of protein synthesis is consistent

with what is expected from a physiological point of view and is not found instead

considering the graph metrics of subject-series MC.

The Schaefer parcellation partly confirmed what emerged with the Hammers case,

but the lower correlation values that tend to be obtained are probably related

to the very fine parcellation that is introduced in this case (100 or 200 parcels),

which leads to an increase in noise in an already very noisy dataset and is there-

fore not suitable for this PET data. In future studies, the level of autocorrelation

of the receptor maps that may a↵ect the relationships that emerge will also have

to be assessed.

Finally, the analysis at the voxel level did not give satisfactory results, probably

because of the low signal-to-noise ratio at the voxel level and the algorithm of es-

timation of the components which, not being based on distance as the Euclidean

similarity, is not able to extract significant structures, therefore in future studies

such algorithms should be adapted to the PET data accordingly.
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Materials

Table A.1: Dataset information

Subject ID Age Sex Time Grid

108295 52 Male 24x5s 9x20s 10x60s 9x300s

108293 42 Male 24x5s 9x20s 10x60s 9x300s

108291 55 Male 24x5s 9x20s 10x60s 9x300s

108289 46 Male 24x5s 9x20s 10x60s 9x300s

108285 35 Female 24x5s 9x20s 10x60s 9x300s

108283 39 Male 24x5s 9x20s 10x60s 9x300s

108281 49 Male 24x5s 9x20s 10x60s 9x300s

108280 53 Female 24x5s 9x20s 10x60s 9x300s

108279 40 Female 24x5s 9x20s 10x60s 9x300s

108263 59 Female 24x5s 9x20s 10x60s 9x300s

108262 65 Male 24x5s 9x20s 10x60s 9x300s

108261 71 Male 24x5s 9x20s 10x60s 9x300s

108251 61 Female 24x5s 9x20s 10x60s 9x300s

108249 58 Male 24x5s 9x20s 10x60s 9x300s

108248 59 Female 24x5s 9x20s 10x60s 9x300s

108245 28 Female 24x5s 9x20s 10x60s 9x300s

108244 56 Male 24x5s 9x20s 10x60s 9x300s

108241 62 Male 24x5s 9x20s 10x60s 9x300s

108239 85 Male 23x5s 9x20s 10x60s 9x300s

108238 71 Female 24x5s 9x20s 10x60s 9x300s

108237 62 Male 24x5s 9x20s 10x60s 9x300s

108236 66 Male 24x5s 9x20s 10x60s 9x300s
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108235 56 Male 24x5s 9x20s 10x60s 9x300s

108234 66 Female 22x5s 9x20s 10x60s 9x300s

108232 25 Female 24x5s 9x20s 10x60s 9x300s

108231 25 Male 24x5s 9x20s 10x60s 9x300s

108230 77 Female 24x5s 9x20s 10x60s 9x300s

108229 27 Female 24x5s 9x20s 10x60s 9x300s

108228 58 Female 24x5s 9x20s 10x60s 9x300s

108227 25 Male 24x5s 9x20s 10x60s 9x300s

108226 28 Male 24x5s 9x20s 10x60s 9x300s

108225 28 Female 24x5s 9x20s 10x60s 9x300s

108224 58 Male 24x5s 9x20s 10x60s 9x300s

108223 54 Male 24x5s 9x20s 10x60s 9x300s

108222 68 Male 24x5s 9x20s 10x60s 9x300s

108214 63 Female 24x5s 9x20s 10x60s 9x300s

108208 75 Female 23x5s 9x20s 10x60s 9x300s

108206 68 Female 24x5s 9x20s 10x60s 9x300s

108205 66 Female 24x5s 9x20s 10x60s 9x300s

108202 69 Female 24x5s 9x20s 10x60s 9x300s

108200 68 Female 24x5s 9x20s 10x60s 9x300s

108199 70 Female 24x5s 9x20s 10x60s 9x300s

108194 70 Female 24x5s 9x20s 10x60s 9x300s

108191 72 Male 24x5s 9x20s 10x60s 9x300s

108189 68 Female 24x5s 9x20s 10x60s 9x300s

108187 70 Female 24x5s 9x20s 10x60s 9x300s

108185 71 Female 24x5s 9x20s 10x60s 9x300s

108183 82 Female 24x5s 9x20s 10x60s 9x300s

108182 70 Female 24x5s 9x20s 10x60s 9x300s

108181 76 Male 24x5s 9x20s 10x60s 9x300s

108179 72 Female 24x5s 9x20s 10x60s 9x300s

108176 50 Male 24x5s 9x20s 10x60s 9x300s

108174 56 Female 24x5s 9x20s 10x60s 9x300s

108172 49 Female 24x5s 9x20s 10x60s 9x300s

108170 76 Male 24x5s 9x20s 10x60s 9x300s

108169 40 Male 24x5s 9x20s 10x60s 9x300s

108050 35 Female 24x5s 9x20s 10x60s 9x300s

108049 39 Male 24x5s 9x20s 10x60s 9x300s
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108046 56 Male 24x5s 9x20s 10x60s 9x300s

108045 42 Female 24x5s 9x20s 10x60s 9x300s

108044 67 Female 24x5s 9x20s 10x60s 9x300s

108040 44 Female 23x5s 9x20s 10x60s 9x300s

108038 68 Female 24x5s 9x20s 10x60s 9x300s

108036 50 Female 24x5s 9x20s 10x60s 9x300s

108029 46 Female 24x5s 9x20s 10x60s 9x300s

108026 70 Female 24x5s 9x20s 10x60s 9x300s

108016 55 Female 24x5s 9x20s 10x60s 9x300s

108013 65 Male 24x5s 9x20s 10x60s 9x300s

108007 38 Male 24x5s 9x20s 10x60s 9x300s

108004 55 Male 24x5s 9x20s 10x60s 9x300s
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Labels Atlases

Table B.1: Labels of the 83 regions reported by the Hammers atlas.

Number in Atlas Name of Structure

Temporal Lobe

1; 2 Hippocampus

3; 4 Amygdala

5; 6 Anterior temporal lobe, medial part

7; 8 Anterior temporal lobe, lateral part

9; 10 Parahippocampal and ambient gyri

11; 12 Superior temporal gyrus, posterior part

13; 14 Middle and inferior temporal gyrus

15; 16 Fusiform gyrus

30; 31 Posterior temporal lobe

82; 83 Superior temporal gyrus, anterior part

Posterior Fossa

17; 18 Cerebellum

19 Brainstem

Insula and Cingulate gyri

20; 21 Insula

24; 25 Cingulate gyrus (gyrus cinguli), anterior part

26; 27 Cingulate gyurs (gyrus cinguli), posterior part

Frontal Lobe

28; 29 Middle frontal gyrus

50; 51 Precentral gyrus

52; 53 Straight gyrus
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54; 55 Anterior orbital gyrus

56; 57 Inferior frontal gyrus

58; 59 Superior frontal gyrus

68; 69 Medial orbital gyrus

70; 71 Lateral orbital gyrus

72; 73 Posterior orbital gyrus

76; 77 Subgenual frontal cortex

78; 79 Subcallosal area

80; 81 Pre-subgenual frontal cortex

Occipital Lobe

64; 65 Lingual gyrus

66; 67 Cuneus

22; 23 Lateral remainder of occipital lobe

Parietal Lobe

60; 61 Postcentral gyrus

62; 63 Superior parietal gyrus

32; 33 Inferio-lateral remainder of parietal lobe

Central Structures

34; 35 Caudate nucleus

36; 37 Nucleus accumbens

38; 39 Putamen

40; 41 Thalamus

42; 43 Pallidum

44 Corpus callosum

74; 75 Substantia nigra

Ventricles

45; 46 Lateral ventricle (excluding temporal horn)

47; 48 Lateral ventricle, temporal horn

49 Third ventricle
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più di�cili. Grazie per avermi asciugato le lacrime nei momenti bui, per aver

ascoltato sempre tutte le mie paranoie e per avermi insegnato ad a↵rontare la

vita a testa alta, spronandomi a dare sempre il meglio. Grazie papà per aver
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