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Summary

The goal of this thesis is to provide a fast rendering technique to render translu-
cent materials. The method we developed has low memory requirements, does
not require a mesh UV mapping and requires little or not pre-processing. The
method is well suited for real-time rendering applications such as computer
games and digital interactive visualization.

We will employ new BSSRDF analytical model that considers the directionality
of the incoming light into account. This additional parameter introduces some
interesting challenges that are not easily dealt with by previous approaches.

The result is built by using a special sampling pattern based on the optical
properties of the material. Our method incrementally builds the result over
a certain number of frames, rendering the model from different directions and
storing it in a texture. The texture is then sampled using shadow mapping in
order to obtain the final rendering.

Using this approach, we obtained real-time results of 30 FPS for complex mod-
els of the magnitude normally employed in the computer game industry (104

triangles). The results we generate are close in appearance to a path traced
solution. Our method then provides a fast and robust way to account for the
direction of the incoming light in the computation, providing a more realistic
results that the ones reachable with previous analytical models.
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Preface

This thesis was prepared at the DTU Compute department at the Technical
University of Denmark in fulfillment of the requirements for acquiring an M.Sc.
in Digital Media Engineering.

The thesis deals with the efficient rendering of translucent materials, using an
innovative model proposed by the author’s M.Sc. thesis supervisor, Jeppe Revall
Frisvad. Translucent materials consist of a particular class of materials like fruit,
marble, skin, and other materials where subsurface scattering effects cannot be
neglected.

The interest for real time rendering in the author arose during the course of
his M.Sc. in Digital Media Engineering, where he focused on the study line in
Computer Games. For this study line, he had to take several courses in real time
computer graphics, and from this courses he got his interest in advanced shading
techniques. In the spring 2014, professor Jeppe Revall Frisvad of DTU Compute
proposed a research-oriented M.Sc. thesis, that had the final goal of creating a
method for implementing the directional dipole in real time. The author deemed
the topic to be a great opportunity to research in real time rendering techniques,
and so he registered his application for this master thesis, Real-Time Rendering
of Translucent Materials with Directional Subsurface Scattering.

The thesis consists of a software implementation in C++, Qt and OpenGL, and
this report. The initial Qt framework used was taken from DTU course 02564,
Real Time Graphics, and then expanded in order to fit the needs of the thesis.
All the code reported in this document was written by the author an does not
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come from the original framework. All the screenshots in this document were
generated using the developed software. Other images in the report, unless the
original source is reported in the caption, were generated by the author.

Lyngby, 03-July-2014
Alessandro Dal Corso
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Chapter 1

Introduction

Subsurface scattering (SS) is a physical phenomenon that naturally occurs in a
wide range of natural materials. Some materials that exhibit a strong subsurface
scattering effect in everyday life are milk, human skin and marble. Subsurface
scattering occurs when light is partially absorbed by an medium, bounces re-
peatedly inside (”scatters”) and finally exits the surface on another point of the
material (as in Figure 1.1). The phenomenon that results is generally known as
translucency. We can see some examples of translucent objects in Figure 1.2.

1.1 Background

Since the beginning of computer graphics, various attempts have been performed
in order to model subsurface scattering. Some of these models involve Monte
Carlo simulations of the light entering the medium [Pharr and Hanrahan, 2000],
or other numerical techniques Fattal [2009], Kaplanyan and Dachsbacher [2010].
Other focus on approximating the diffusion of light within the material using
an analytical approach, like [Jensen et al., 2001].
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Figure 1.1: Diagram of subsurface scattering. Most of the incoming light gets re-
flected, but some of it enters the material and leaves it at a different
point.

The first model that proposed an analytical approach was the one by Jensen
et al. [2001], as an approximation of the radiative transfer equation. This
approximation, called the diffusion approximation [Ishimaru, 1997] has been
exploited by different authors, in order to account for multi-layered materials
[Donner and Jensen, 2005], heterogeneous materials [Wang et al., 2010] and thin
surfaces[Wang et al., 2010]. A recent analytical model, proposed by Frisvad et al.
[2014], extends the approximation in order to account for the directionality of
the incoming light. All these analytical methods are based on BSSRDF mod-
els. A BSSRDF function is a functions that describes how light is transmitted
between two points in a material, and is a generally dependent on the incom-
ing light direction, the distance between the two points and the outgoing light
direction.

In recent years, with the advent of programmable graphics cards (GPU), it
has become possible to exploit these algorithms and bring them to interactive
frame rates, and in some cases even to real time rendering. Jensen and Buhler
[2002] were the first to propose an efficient implementation for rendering sub-
surface scattering using an octree. More recently, several methods have been
proposed, including image-based splats [Shah et al., 2009], sum-of-Gaussians fil-
tering [d’Eon et al., 2007], and grid-propagation based methods [Børlum et al.,
2011]. We will introduce in detail some of these methods in Chapter 2, were we
will review the existing literature in more detail.
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Figure 1.2: Some examples of translucent materials: marble, leaves and wax. The
marble image and the candle are under the cc-by-sa license, and are
courtesy of Wikimedia Commons. The two images were cropped to fit
the document. The leaves image was taken by Alberto Bedin and is used
with permission.

http://creativecommons.org/licenses/by-sa/2.0/deed.en
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1.2 Problem statement

The goal of this thesis is to implement a real-time rendering technique in order to
render directional subsurface scattering using the analytical model proposed by
Frisvad et al. [2014]. The technique should ideally obtain the same results as a
offline rendered solution of the original model, but reducing the rendering times
to a few milliseconds. To do this, we employ the aid of the GPU programmable
pipeline [Fernando, 2004].

We found that there is a current gap in the knowledge on current real-time
subsurface scattering techniques regarding the approach to directional models.
In fact, most of the methods rely on the assumption that the BSSRDF function
depends only on the distance between the entering and exiting point Jensen
et al. [2001]. This allows, for example, to pre-compute the BSSRDF function
and use it in the computations, greatly increasing the performance [Shah et al.,
2009]. However, in the model proposed by Frisvad et al. [2014], this is not
possible, as the direction of the incoming light must be taken into account. In
fact, the model has too many degrees of freedom to make a pre-computation
feasible.

The model proposed by Frisvad et al. [2014] offers a more realistic evaluation
of subsurface scattering effects. A real-time working implementation would
improve the quality of scattering materials in real-time graphics applications,
such as real-time architectural visualization and computer games. In the latter
field, in recent years there has been a renewed interest in real-time SS techniques,
especially to model faithfully the appearance of skin on human faces.

1.3 Requirement analysis

In this section, we will introduce some constraints and assumptions to limit the
scope of our work. Some of these assumptions and constraints are well known
to the graphics community, and they are generally introduced to allow better
performance, quality and flexibility. Being a real-time rendering method implies
that performance plays a big part in the decisions we have made in the process,
but since the method uses a physically based approximation the final quality
of the result is also important. In the process the aspect of flexibility has been
taken into account, i.e. the capacity of the method to set the tradeoff between
quality and performance. We will now list the assumptions we made in all the
three described domains, quality, performance and flexibility.
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1.3.1 Quality constraints

1. Be visually close as much as possible to a offline rendered solution.
2. Be consistent with the directional dipole model for a wide range of material

properties. In particular, the method should perform well in the domain
of quality where the directional dipole model excels (highly scattering
materials).

3. Be potentially able to render an object under an arbitrary number of
different types of lights (point, directional, environment, etc.).

1.3.2 Flexibility requirements

1. Work with the less amount as possible of provided model data, i.e. only the
position data and eventually the normals should be provided in order for
the method to run. In particular, no unwrap of the mesh (UV mapping)
should be necessary.

2. Being able to be integrated in a game engine environment, using data
from other computations (e.g. other lighting computations) and being
adaptable to different lighting paths (forward and deferred shading).

3. The quality versus performance tradeoff should be set by a potential artist
or developer, with the fewest number of parameters as possible.

1.3.3 Performance requirements

1. Being real-time on a high-end modern GPU, i.e. one frame should take
less that 100 ms (10 FPS) to render. The ideal result would be to reach a
rendering time of less than 16 ms (60 FPS).

2. Being as less dependent as possible from the geometrical complexity of the
model.

3. Being as less dependent as possible from the screen resolution.
4. If the desired quality is not reachable within one frame, converge towards

a result in a reasonable amount of time. Techniques should be used to
approximate the required quality for the intermediate result.

5. Maintain a reasonable performance under changing light conditions, de-
formations and change of parameters, with little or none performance
penalties.

6. Employ the advantages of the directional dipole model to improve perfor-
mance.
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7. Support up to a certain number of directional and point lights (up to 3 to
5 pixel lights, as in commercial engines[Unity, 2012]).

8. Require little or no pre-processing in order to be able to perform. If there is
any pre-processing involved, it should be performed only at the beginning
of the life cycle of the program.

1.4 Thesis Outline

In this Chapter, we have given an introduction to the problem and stated the
assumption that will guide us through the choices that we will make through
our thesis. In Chapter 2, Related Work, we will describe in more detail some of
the different approaches to subsurface scattering in literature. In Chapter 3, we
will give a theoretical introduction to subsurface scattering and light transport
theory, with a special focus on BSSRDF functions. In Chapter 4, we will describe
our method on approaching the problem on a theoretical basis. In Chapter 5
we will describe the actual implementation of the method, and the problems
and limitations met during the process. In Chapter 6, we will describe the tests
we made and show the results, both in the domain of performance and quality,
comparing them with the requirement analysis we made in the previous section.
Then, we will describe some possible extensions to the method in Chapter 7.
We will wrap up everything in Chapter 8, where we will give our conclusions.
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Related Work

In rendering of subsurface scattering, most approaches rely on approximating
the Radiative Transfer Equation (RTE). We identified two main approaches to
the problem in literature:

Analytical One class of solutions consists of approximating the RTE or one of
its approximations via an analytical model. These models can have differ-
ent levels of complexity and computation times, and are often adaptable
to a wide range of materials. However, often they rely on assumptions on
the scattering parameters that limit their applicability.

Numerical In this other class of solutions, a numerical approach is used in-
stead of approximating the RTE with an analytical model. This methods
include finite element methods and discrete ordinate methods, for which
a numerical solution for the RTE is actually computed. While providing
an exact solution, the computation times are longer. Other numerical ap-
proaches focus more on the appearance of the model and do not provide
an exact solution for the RTE.

In this thesis, we focus on efficiently implementing a model that falls in the
first category, the analytical models. In the following sections, we are going to
describe approaches for each one of the mentioned categories, comparing them
to our method.
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2.1 Analytical techniques

In the analytical techniques, two different areas of research must be distin-
guished. The first area is the research on the actual models, while the second is
research on how the actual models can be implemented efficiently. Each model
is usually represented by a specific function called BSSRDF (Bidirectional Sub-
surface Scattering Reflectance Distribution Function), that describes how light
propagates between two points on the surface. Two integrations, one on the
surface and one from all the directions, must be performed in order to get the
amount of light that actually exits from a point on the surface (see chapter 3).
Implementation techniques focus on efficiently implementing this integration
steps, often making assumptions for which points computations can be avoided.

2.1.1 Models

Regarding the models, the first and most important is the dipole developed by
Jensen et al. [2001]. This models relies on an approximation of the RTE called
the diffusion approximation, which again relies on the assumption of highly
scattering materials. In this case, a BSSRDF for a planar surface in a semi-
infinite medium can be obtained. The BSSRDF needs only the distance between
two points to be calculated, and with some precautions it can be also used with
arbitrary geometry. This model does not include any single scattering term:
it needs to be evaluated separately. The model has been further extended in
order to account for thin object regions and multi-layered materials [Donner and
Jensen, 2005].

A significant improvement of the model was later given by D’Eon [2012], that
improved the model to fit path traced simulations. The new model can be
evaluated without nearly any additional computation cost. A more advanced
model based on quantization was proposed by D’Eon and Irving [2011], that
introduced a new physical foundation in order to improve the accuracy of the
original diffusion approximation. Finally, some higher order approximations
exist [Menon et al., 2005, Frisvad et al., 2014], in order to account for the
directionality of the incoming light and single scattering. This allows a more
faithful representation of the model at the price of extended computation times.
A comparison between the directional and the standard dipole can be seen in
Figure 3.11.
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2.1.2 Implementations

Most research on efficient implementations of a subsurface scattering analytical
model has been made on the original model by Jensen et al. [2001]. The first
efficient implementation was proposed by Jensen and Buhler [2002], based on a
two-pass hierarchical integration approach. Samples on the model are organized
in an octree data structure, that then is used to render the object. In the first
step, the radiance from the light is stored in the points. In the second pass, using
the octree, the contribution from neighboring points is computed, clustering
far points in order to speed up calculations. This approach can be adopted
for the Jensen model, where the only parameter is the distance between the
entering and exiting point. However, using the directional dipole, the samples
cannot be clustered because of the directionality of the light: once we sum
up the contribution from multiple lights, the contribution cannot be separated
anymore. In fact, we would need a different clustering of the points for each
light, that quickly becomes inefficient since whole octree would have to fit the
GPU’s limited memory.

Lensch et al. [2002] approached the problem by subdividing the subsurface scat-
tering contribution into two, a direct illumination part and a global illumination
part (i.e. the light shining through the object). The global illumination part
is pre-computed as vertex-to-vertex throughput and then summed to the direct
illumination term in real-time. Compared to our method, this method requires
a pre-computation step that depends on the geometry of the model, and thus
deformation effects are not possible. Moreover, a coefficient has to be stored for
each couple of vertices, that means a quadratic increase in memory for linearly
increasing model size. Our method, on the other hand, occupies a memory space
that depends linearly on the number of vertices.

Translucent shadow maps [Dachsbacher and Stamminger, 2003] use an approach
similar to standard shadow maps: they render the scene from the light point
of view, and then calculate the dipole contribution in one point only from a
selected set of points, according to a specified sampling pattern. As in Lensch
et al. [2002], the contribution is split into global and local to permit faster
computations. In our approach we will reuse some of the ideas introduced by
translucent shadow maps: we will render the scene from the light point of view
and we will reuse the information stored in the map such as depth, vertices and
normals. However, our approach to using the values from the map is different
from the original paper, as we will explain in chapter 4. Mertens et al. [2003b]
propose a fast technique based on radiosity hierarchical integration techniques,
that unlike the previous implementation can handle deformable geometry.

Another important family of methods is screen space techniques. Mertens et al.
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[2003a] propose an image space GPU technique that pre-computes a set of sam-
ple points for the area integration and then performs the integral over multiple
GPU passes. d’Eon et al. [2007], Eugene and David [2007] propose a method
in image-space, interpreting subsurface scattering as a sum of images blurred
with a gaussian filter. The gaussians are then weighted to fit the diffusion ap-
proximation. Jimenez et al. [2009] improves further the technique, giving more
precise results in the case of skin. All these techniques assume that the diffu-
sion profile can be precomputed and then fitted with a sum of gaussians: as we
have already mentioned, this is not possible for the directional dipole, where
the diffusion profile varies depending on the angle of incidence of the incoming
ray of light. Moreover, even if we were able to compute the coefficients for each
possible combination of parameters, it would not be possible to apply a gaussian
filter with a kernel that varies per pixel.

Shah et al. [2009] present a fast screen space technique that render the object
as a series of splats, using GPU blending to sum over the various contributions.
The diffusion profile in this case is pre-computed and stored as a texture. As in
the previous techniques, the directionality of the incoming light does not allow
the pre-computation of a diffusion profile. Moreover, the directional dipole is
not symmetrical, so the splats would have to use a bigger radius in order to
account for all the contribution, increasing computation and blending costs.

2.2 Numerical techniques

Numerical techniques for subsurface scattering are often not specific, but come
for free or as an extension of a global illumination numerical approximation,
since the governing equations are essentially the same. Given their generality,
they are usually slower than their analytical counterpart, and often rely on
heavy pre-computation steps in order to achieve interactive framerates. The
volumetric version of Jensen’s Photon Mapping[Jensen and Christensen, 1998]
was originally developed to render participating media in general, but it has been
adapted for subsurface scattering[Dorsey et al., 1999]. Classical approaches as
a full Monte-Carlo simulation implementation of the light-material interaction,
and finite-difference methods exist in literature[Stam, 1995].

Some less general methods have been introduced in order to devise more effi-
cient approximations when it comes to subsurface scattering. Stam [1995] uses
the diffusion approximation with the finite difference method on the object dis-
cretized on a 3D grid. Fattal [2009] uses as well a 3D grid, that is swept with
a structure called light propagation map, that stores the intermediate results
until the simulation is complete. All the numerical methods described so far are
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not real-time, and they are generally not well-suited for a GPU environment.

Wang et al. [2010], instead of performing the simulation on a discretized 3D grid,
makes the propagation directly in the mesh, converting it into a connected grid of
tetrahedrons called QuadGraph. This grid can be optimized to be GPU cache
friendly, and provides a real-time rendering of not-deformable heterogeneous
objects. The problem in this method is that the QuadGraph is slow to compute
(20 minutes for very complex meshes) and has heavy memory requirements for
the GPU. Compared to our method, this one requires an heavy pre-computation
step, and allows only not-deformable objects. However, as most of propagation
techniques, it can handle heterogeneous materials, while our method can not.

Precomputed radiance transfer methods are another class of general global illu-
mination methods. These methods pre-compute part of the lighting and store
it in tables[Donner et al., 2009], allowing to retrieve it efficiently with an addi-
tional memory cost. The problem with this methods compared to ours is that its
memory requirements increase exponentially if we want to handle deformable
materials and changing light conditions. Moreover, it requires an heavy pre-
computation in order to calculate the lighting coefficients. Our method, being
analytical, does not required either a lot of memory or an heavy pre-computation
step.

A recent method called SSLPV (Subsurface Scattering Light Propagation Vol-
umes) [Børlum et al., 2011] extends a technique originally developed by Ka-
planyan and Dachsbacher [2010] to propagate light efficiently in a scene using
a set of discretized directions on a 3D grid. The method allows real-time exe-
cution times and deformable meshes with no added pre-computation step, with
the drawback of not being physically accurate. Moreover, the required memory
space on the GPU is larger than the one required than our method, since the
voxelization of the mesh must be stored.

Finally, for real-time critical applications (such as computer games), translu-
cency is often estimated as a function of the thickness of the material, that is
used to modify a lambertian term [Tomaszewska and Stefanowski, 2012, Green,
2004]. The thickness is usually evaluated by sampling a depth map. A method
by Kosaka et al. [2012] uses an approach similar to the one we will describe in or-
der to compute the thickness of the material using a different camera direction.
While not physically accurate, this techniques allows to have a fast translucency
effect that can be easily added to existing deferred pipelines. Compared to our
method, this method requires no storage space and light computation. However,
the translucency effects are not represented faithfully, and some artifacts may
appear, as pointed out in Green [2004], and multi-sampling should be used in
order to avoid artifacts.
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As we can see, in the reviewed literature so far there is not a proper way to
account for direction in subsurface scattering in real-time, or at least one that
satisfies the requirements we have made in chapter 1. We will introduce in
detail our method to handle directional subsurface scattering in real-time in
chapter 4. In the next chapter, we are going to give a theoretical introduction
to a mathematical description of light transport, as well as giving the proper
formulas and definition of the standard dipole model by Jensen et al. [2001] and
the directional dipole model presented by Frisvad et al. [2014].



Chapter 3

Theory

In this chapter, we give a theoretical introduction to the topic dealt with in this
thesis. The ultimate goal of this chapter is to introduce and describe analytical
models for subsurface scattering. First, we will give a brief introduction to the
nature of light, and how we physically describe it. Secondly, we will introduce
the basic radiometric quantities that will be used throughout the chapter. Then,
we will describe how this quantities are related and can be used to describe light-
material interaction, using reflectance functions, of which BSSRDF functions are
a special case. Finally, we will introduce subsurface scattering and the diffusion
approximation, concluding with a description of two BSSRDF models, by Jensen
et al. [2001] and Frisvad et al. [2014].
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Quantity Description
x Point, not normalized vector
(xx, xy, xz) Components of a vector
~ω Normalized vector, direction
Q Radiant Energy
Φ Radiant Flux
E Irradiance
I Intensity
L Radiance
~n · ~m Dot product between two vectors
~n× ~m Cross product between two vectors
A Area
i (subscript) Denotes incoming direction or incidence point
o (subscript) Denotes outgoing direction or exitance point
M (capital letter) Denotes matrix (see Appendix A)
f(...) BRDF function
S(...) BSSRDF function
η = n1

n2
Relative index of refraction

R(η, ~ω) Fresnel reflection term
T (η, ~ω) Fresnel transmission term
~∇ · ~x Directional derivative of vector ~x
σa Absorption coefficient
σs Scattering coefficient
g Mean cosine coefficient
σt = σs + σa Extinction coefficient
σ′s = σs(1− g) Reduced scattering coefficient
σ′t = σ′t + σa Reduced extinction coefficient
σtr Transmission coefficient
α′ Reduced albedo
Cφ(η) Approximation of the scalar fluence Fresnel integral
CE(η) Approximation of the vector irradiance Fresnel integral

Table 3.1: Table of the notation used in this thesis.
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3.1 Light and Radiometry

Light is a form of electromagnetic radiation, that propagates through space as
a sinusoidal wave. Usually by light we refer to visible light, the small part of
the electromagnetic spectrum the human eye is sensible to (see Figure 3.1).
This small window is between the 380 nm of infrared and 750 nm of ultraviolet
light, but the precise boundaries may vary according to the environment and
the observer. Instead explicitly noted, we will use the terms light and visible
light interchangeably in this report.

The study of light is usually referred as optics. In computer aided image syn-
thesis, we are interested in representing faithfully how visible light propagates
how it interacts with the objects and the materials in a scene. In addition, we
are interested in lighting effects that are noticeable at human scales (1 mm -
1 km), like subsurface scattering, absorption and emission phenomena. Optics
studies more effects, like diffraction, interference and quantum effects, but we
are not interested in representing them because for visible light they happen on
a microscopic scale (1 nm - 1 µm).
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Figure 3.1: The electromagnetic spectrum.

The branch of physics that studies how to measure electromagnetic radiation
is called radiometry. The energy of light, like all the others forms of energy,
is measured in Joules [J = kg m s−2], and its power in Watts [W = kg m s−3].
Photometry, on the other hand, measures electromagnetic radiation as it is
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perceived from the human eye, and limits itself only to the visible spectrum,
while radiometry spans all of it. The corresponding names for energy and power
in photometry are radiant energy, measured in talbots [cd s], and radiant flux,
measured in candelas [cd].

In image synthesis it is more common to use radiometry, as its quantities di-
rectly derive from the electromagnetic theories, are universal, and can be easily
converted to the photometric ones when necessary. The most important radio-
metric quantities used in computer graphics are radiant flux, radiant energy,
radiance, irradiance and intensity.

3.2 Radiometric quantities

3.2.1 Radiant flux

The radiant flux, also known as radiant power, is the most basic quantity in
radiometry. It is usually indicated with the letter Φ and it is measured in joules
per seconds [J s−1] or Watts [W]. The quantity indicates how much power the
light irradiates per unit time.

3.2.2 Radiant energy

Radiant energy, usually indicated as Q, is the energy that the light carries in
a certain amount of time. Like all the other SI units for energy, it is measured
in joules [J]. Radiant energy is obtained integrating the radiant flux along time
for an interval ∆T :

Q =
∫

∆T
Φ(t) dt

Due to the dual nature of the light, the energy carried by the light can be derived
both considering light as made of particles, called photons, or considering it as
a wave. We will not dig further into the topic, because for rendering purposes
is not important if we characterize light as a flux of particles or as a sinusoidal
wave.
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3.2.3 Irradiance

Irradiance, usually defined as E, is the radiometric unit that measures the ra-
diant flux per unit area falling on a surface. It is measured in Watts per square
meter [W m−2]. It is defined as the flux per unit area:

E = dΦ
dA

Irradiance is usually the term in literature used for the incoming power per unit
area. The converse, i.e. the irradiance leaving a surface, it is usually referred as
radiant exitance or radiosity, and indicated with the letter B.

B

A

Figure 3.2: Irradiance versus power. For the two surfaces A and B, the received
power Φ is the same, while the two irradiances EA and EB are different,
as the area of B is twice as the one of A.

3.2.4 Intensity

Intensity is defined as the differential radiant flux per differential solid angle:

I(~ω) = dΦ
dω

(3.1)

It is measured in Watts per steradian [W sr−1] and it is indicated with the letter
I. Intensity is often a misused term in the physics community, as it is used for
many different quantities. Depending on the research community, intensity may
refer to irradiance or even to radiance (see the following section). The definition
given in 3.1 we use the most common definition given by the optics community.
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3.2.5 Radiance

Radiance is arguably the most important quantity in image synthesis. It is de-
fined precisely as the differential of the flux per solid angle per projected surface
area, and it is measured in Watt per steradian per square meter [W sr−1 m].

L(~ω) = d2Φ
dωdA cos θ

Where θ is the angle between the surface normal and the incoming ray of light
(so that cos θ = ~n · ~ωi).

Figure 3.3: Radiance. The element of area dA gets projected according to the angle
θ = cos−1 ~n · ~ω. Then the incoming flux Φ gets divided by the projected
area and by the solid angle subtended by it.

Radiance has the important property of being constant along a ray of light. In
addition, the sensibility of the human eye to light is directly proportional to
the radiance. For a discussion on why radiance is related to the sensitivity of
sensors and the human eye, see Cohen et al. [1993].
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All the other radiometric quantities can be derived from radiance:

E =
∫

2π
Li(~ω) cos θ dω

B =
∫

2π
Lo(~ω) cos θ dω

I(~ω) =
∫
A

L(~ω) cos θ dA

Φ =
∫
A

∫
2π
L(~ω) cos θ dωdA

(3.2)

For simplicity of notation, the dependence from the point of incidence x has
been dropped in equations 3.2.

3.2.6 Radiometric quantities for simple lights

To help with the formulas used later in the report, we derive the standard
radiometric quantities for the two simplest types of light, i.e. directional and
point lights.

• Directional lights simulate very distant light sources, in which all the rays
of light are parallel (e.g. sunlight). They are represented by a direction
~ωl and a constant radiance value, L.

• Point lights simulate lights closer to the observer. Isotropic point lights
are represented by a position of the light xl and a constant intensity I.
Point lights have a falloff that depends on the inverse square law, i.e. the
radiance diminishes with the square of the distance.

Table 3.2 shows different radiometric quantities evaluated for point and direc-
tional lights, for a surface point x with surface normal ~n.

3.3 Reflectance Functions

After introducing the basic radiometric quantities, we still lack a way to describe
light material interaction. More precisely, we need a way to relate the incoming
and the outgoing radiance on a point of a chosen surface.
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Quantity Directional light Point light

Cosine term cos θ = ~n · ~ωl cos θ = (x−xl)·~n
|x−xl|

Φ(x) Flux L δ( ~ω) 4πI

E(x) Irradiance L cos θ I cos θ
|xl−x|2

I(x, ~ω) Intensity L δ(~ω) I

L(x, ~ω) Radiance L δ(~ω) I
|xl−x|2

Table 3.2: Different radiometric values for simple light sources.

3.3.1 BRDF functions

One of the possible way to describe light-material interaction is by using a
BDRF function [Nicodemus et al., 1992], acronym for Bidirectional Reflectance
Distribution Function. The BRDF function f(x, ~ωi, ~ωo) is defined on one point
x of the surface as the differential ratio between the exiting radiance and the
irradiance:

f(x, ~ωi, ~ωo) = dLo(x, ~ωo)
dEi(x, ~ωi)

= dLo(x, ~ωo)
Li(x, ~ωi) cos θid~ωi

(3.3)

The BRDF states that the incoming and the outgoing radiance are proportional,
so that the energy hitting the material at the point x is proportional to the
energy coming out from the point. BRDF functions have generally the following
properties:

• reciprocal: for the Hemholtz reciprocity principle, a physics result that is
also the basis of reverse path ray tracing [Desolneux et al., 2007]:

f(x, ~ωi, ~ωo) = f(x, ~ωo, ~ωi)

• anisotropic: if the surface changes orientation and ~ωi and ~ωo stays the
same, the resulting BRDFs are different. So generally

f(x, ~ωi, ~ωo) 6= f(x, R~ωo, R~ωi)

where R is a rotation matrix with arbitrary axis around the point x.

• positive, since the BRDF regulates the transport between two positive
quantities (radiance, irradiance).

f(x, ~ωo, ~ωi) ≥ 0
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• energy conserving, so that the energy of the outgoing ray is no grater that
the one of the incoming one∫

2π
f(x, ~ωo, ~ωi) cos θod~ωo ≤ 1

By inverting equation 3.3, we obtain the so-called reflectance equation:

Lo(x, ~ωo) =
∫

2π
f(x, ~ωi, ~ωo)Li(x, ~ωi) cos θid~ωi

Later we will use this equation as a starting point to obtain a formulation of
the full rendering equation. The BRDF function has some limitations, being
not able to account for all phenomena. For example, with a BRDF it is not
possible to account for subsurface scattering, because it assumes the light enters
and leaves the material at the same point. To model these phenomena, more
complicated functions are needed, like the BSSRDF function described later in
this chapter.

Figure 3.4: Setup for a BRDF. Note that the light enters and leaves the surface at
the same point.

3.3.2 Examples of BRDF functions

There are many examples of BRDF functions in literature. In this section, in
order to illustrate some examples, we will introduce three of them: the lamber-
tian or diffuse BRDF, the specular or mirror BRDF and glossy BRDFs. For a
detailed overview on BRDF functions, refer to [Akenine-Möller et al., 2008].
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(a) Lambertian BRDF (b) Mirror BRDF

(c) Glossy BRDF (d) Combined BRDF

Figure 3.5: Examples of BRDF functions. In this particular example, the three
simple BRDFs can be evaluated separately and then combined in the
more complex BRDF of Figure 3.5d in order to represent multiple effects.

3.3.2.1 Lambertian BRDF

In the lambertian BRDF, the incoming radiance is distributed equally in all
directions, regardless of the incoming direction. To do this, the BRDF must be
constant:

f(x, ~ωi, ~ωo) = kd

We can check that then the radiance is scattered equally in all directions by
simple integration:

Lo(x, ~ωo) =
∫

2π
fdLi(x, ~ωi) cos θid~ωi

Lo(x, ~ωo) = kd

∫
2π
Li(x, ~ωi) cos θid~ωi

Lo(x, ~ωo) = kd E(x)

The lambertian model is an ideal model, so very few material exhibit a lamber-
tian diffusion. Some of them are unfinished wood and spectralon, a synthetic
material created in order to be as close as possible to a perfect lambertian mate-
rial. Given its properties, spectralon is usually employed in calibrating radiance
testing equipment.
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3.3.2.2 Mirror BRDF

Another simple kind of BRDF is the perfectly specular BRDF, or mirror BRDF.
In this function, all the incoming radiance from one direction ~ωi is transferred
towards the reflected direction ~ωr, defined as ~ωr = ~ωi−2(~ωi ·~n)~n. The resulting
BRDF is defined as follows:

f(x, ~ωi, ~ωo) = δ(~ωo − ~ωr)
cos θi

The function δ(~ω) is a hemispheric delta function. Once integrated over a hemi-
sphere, the function evaluates to one only for the vector ~ω = 0. Putting the
BRDF into the reflectance equation gives the following outgoing radiance:

Lo(x, ~ωo) =
{
Li(x, ~ωi) if ~ωo = ~ωr

0 otherwise

that is the expected result, as all the radiance is reflected into the direction ~ωr.

3.3.2.3 Glossy BRDFs

As we can see from real life experience, rarely objects are completely diffuse or
completely specular. These two models are idealized models, that represent an
ideal case. So, to create a realistic BRDF model, we often need to combine the
two terms and add an additional one, called glossy reflection.

The most used BRDF model used to model glossy reflections is based on micro-
facet theory [Torrance and Sparrow, 1992, Ashikmin et al., 2000] and was first
introduced by [Blinn, 1977]. In this theory, the surface of an object is modeled
as composed of small mirrors. In one of its classical formulations, the BRDF is
represented as:

f(x, ~ωi, ~ωo) = DGR

4 cos θr cos θi
= GR

4
(~n · ~h)s

(~n · ~r)(~n · ~ωi)

D regulates how microfacets are distributed, and it is often modeled as (~n ·~h)s,
where ~h is the half vector between the eye and the light, and s is an attenuation
parameter. ~h is defined as:

~h = ~ωo + ~ωi
‖~ωo + ~ωi‖

G accounts for the object self shadowing, while R is the Fresnel reflection term
(more details in Section 3.3.4). ~r is the reflection vector as defined in the previous
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Figure 3.6: Glossy vectors for microfacet theory. The blue angles are the same for
the reflection vector, the red ones are the same for the half vector.

section. See Figure 3.6 on how the vectors for the glossy reflection - ~n, ~h and ~r
- are defined.

Various alternative definitions exist for the D and G function, varying among
the literature. Other glossy models not based on microfacet theory do exist as
well [Akenine-Möller et al., 2008].

3.3.3 The rendering equation

Given the reflectance equation, it is possible to generalize it in order to model
all the lighting in an environment (global illumination). In fact, the described
reflectance equation is a suitable candidate to represent a full global illumination
equation, but it does not account for two important factors.

The first factor are emissive surfaces. We need to add an emissive radiance
term Le(x, ~ω) that models the amount of radiance that a point is emitting in
a certain direction. This is useful to model light sources, without introducing
a separate equation. We note that point lights have a singularity: they emit
infinite radiance on the point where they are placed.

The second factor is that the reflectance equation accounts only for direct illu-
mination. In general, we want to include also light that bounced onto another
surface before reaching the current surface. To model this, we can replace the
Li term in the reflectance equation with another term Lr that accounts for light
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coming from another surface. This term can be usually modeled as the product
of the radiance of the light plus a visibility function V (x).

Accounting for all the described factors, we reach one formulation of the ren-
dering equation [Kajiya, 1986]:

Lo(x, ~ωo) = Le(x, ~ω) +
∫

2π
f(x, ~ωi, ~ωo)Li(x, ~ωi)V (x) cos θid~ωi

This form of the rendering equation is still not completely general, since it
is based on a BRDF, to it comes with the same limitations (no subsurface
scattering effects or wavelength-changing effects like iridescence). We will extend
the rendering equation in order to account for these phenomena later on in this
chapter.

3.3.4 Fresnel equations

Until now, on the described BRDF models, we did consider only the reflected
part of the radiance. When a beam of light coming from direction ~ωi hits a
surface, only part of the incoming radiance gets reflected, while another part
gets refracted into the material. As we can see from Figure 3.7, we obtain the
two vectors ~ωr and ~ωt, the reflected and refracted vector, defined as follows [Kay
and Greenberg, 1979]:

~ωr = ~ωi − 2(~ωi · ~n)~n
~ωt = η((~ωi · ~n)~n− ~ωi)− ~n

√
1− η2(1− (~ωi · ~n)2)

Where η = n1
n2

is the relative index of refraction between the two materials.
With this setup, illustrated in Figure 3.7, we can use a solution to Maxwell’s
equations for wave propagation to describe the radiant flux. In particular, we
can tell which part of the power propagates in the reflected and refracted direc-
tion respectively. The coefficients that describe this subdivision of the power are
called Fresnel coefficients [Born and Emil, 1999]. The coefficients are different
according to the polarization of the incoming light (parallel or perpendicular),
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Figure 3.7: Reflected and refracted vector on mismatching indices of refraction.

so there are two for reflection (Rs, Rp) and two for transmission (Ts, Tp).

Rs(η, ~ωi) =
∣∣∣∣η cos θi − cos θt
η cos θi + cos θt

∣∣∣∣2
Rp(η, ~ωi) =

∣∣∣∣η cos θt − cos θi
η cos θt + cos θi

∣∣∣∣2
Ts(η, ~ωi) = η

cos θt
cos θi

∣∣∣∣ 2 cos θi
η cos θi + cos θt

∣∣∣∣2
Tp(η, ~ωi) = η

cos θt
cos θi

∣∣∣∣ 2 cos θi
η cos θt + cos θi

∣∣∣∣2
In most computer graphics applications (and this is reasonable for most of the
real-world lights), we assume that the two polarizations are equally mixed. So,
we will use the coefficient R = Rs+Rp

2 and T = Ts+Tp
2 in our calculations. Note

that R+ T = 1, so the overall energy is conserved.

3.3.5 BSSRDF functions and generalized rendering equa-
tion

As we anticipated in Section 3.3.1, the BRDF theory that was introduced before
is not accurate in predicting the behavior for all materials, since BRDF models
assume that the light enters and leaves the material in the same point. While
this assumption holds true for a wide range of material, like metal or plastic, it
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Figure 3.8: BSSRDF setup. As we compare it to the one of Figure 3.4, we can see
that the light enters and leaves the surface at two different points.

poorly describes translucent materials, that exhibit a consistent amount of light
transport under the surface.

In order to describe light transport in this material, we introduce a function,
called BSSRDF [Nicodemus et al., 1992], acronym for Bidirectional Subsurface
Scattering Reflectance Distribution Function. This function extends the concept
of BRDF to account for two separate points. The BSSRDF is usually indicated
with a capital S. We define the BRDF as the ratio between the incoming flux
in a point xi from the direction ~ωi and the outgoing radiance in another point
xo on direction ~ωo:

S(xi, ~ωi,xo, ~ωo) = dLo(xo, ~ωo)
dΦi(xi, ~ωi)

= dLo(xo, ~ωo)
dEi(xi, ~ωi)dAi

= dLo(xo, ~ωo)
Li(xi, ~ωi) cos θid~ωidAi

As we can see, the BSSRDF is similar to the BRDF, apart from a additional
derivation in the area domain. Once we rearrange this equation, we can obtain
an updated reflectance equation for the BSSRDF:

Lo(xo, ~ωo) =
∫
A

∫
2π
S(xi, ~ωi,xo, ~ωo)Li(xi, ~ωi) cos θid~ωidAi

We can immediately see that the new reflectance equation accounts for light
scattering between two points, but this generality comes with a price. In fact,
it adds a order of magnitude of complexity, since now the BSSRDF needs to be
integrated twice, once on the whole surface and once on the normal hemisphere.
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As we did for the BRDF, we can further extend the reflectance equation to
further include visibility and emission, giving an extended form of the rendering
equation [Jensen et al., 2001].

Lo(xo, ~ωo) = Le(xi, ~ωi) +
∫
A

∫
2π
S(xi, ~ωi,xo, ~ωo)Li(xi, ~ωi)V (x)(~n · ~ωi)d~ωidAi

(3.4)
From now on, by ‘rendering equation’ in this report we will mean the one in
equation 3.4.

3.4 Light transport and subsurface scattering

When we derive our models for lighting, in general we assume that the light is
traveling in vacuum. This assumption holds for light that is propagating though
the air (which is assimilable to vacuum), but once we relax it, more variables
should be taken into consideration. Objects through which light travels are re-
ferred as participating media. In this chapter, we will derive and consider an
alternative formulation of the rendering equation for light traveling into partic-
ipating media, called radiative transfer equation [Chandrasekar, 1950].

When a beam of light travels through an object, various phenomena occur. A
photon on the beam can be either being absorbed (disappear), scattered (change
direction) or emitted (appear). These phenomena can be uniform throughout
the material (homogeneous materials), as in solid materials like wax or leaves,
or be not uniform (heterogeneous materials), like in smoke or clouds.

We will briefly describe all three mentioned effects, then combine them to com-
pose the radiative transfer equation. The purpose is to describe how radiance
varies along a beam of light with direction ~ω. This directional derivative is
indicated as:

(~∇ · ~ω)L(x, ~ω) = ∂Lx
∂x

~ωx + ∂Ly
∂y

~ωy + ∂Lz
∂z

~ωz

3.4.1 Emission

Emission is the natural property of the materials to emit light, i.e. to generate
photons that add to the existing ones passing through the material. The effect
is generally generated by chemical processes emitting photons (as in fireflies),
by natural black-body radiation emission in the visible spectrum (such as in a
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(a) Emission

x
(b) Absorption

(c) Out Scattering (d) In Scattering

star like the sun or in incandescent bulbs), or by other radiation that changes
its wavelength into the visible spectrum.

In the directional 3D derivative, the variance in emission is modeled as a constant
depending only on the current position and direction:

(~∇ · ~ω)L(x, ~ω) = ε(x, ~ω)

This means that emission increases linearly along the body: if the beam travels
a distance d within the medium, d ·k photons are emitted. Emission is generally
isotropic, not depending on the direction (ε(x, ~ω) = ε(x)).

3.4.2 Absorption

Absorption is a property of materials that describes a simple physical phe-
nomenon: a photon, traveling though the material, hits one atom of the material.
The energy carried by the photon is then absorbed by the atom, augmenting its
kinetic energy. This directly translates in an increase of heat in the material.
Usually, a certain percentage of the photons that hit the atoms is absorbed per
unit length. Then, if k is the percentage of the photons absorbed in a meter,
after one meter the original radiance will become k · Li, then k2 · Li, etc.

If we write this phenomena as a differential equation, we get after a distance d
a radiance reduction of kd = e−σad, that leads to the following 3D directional
derivative:

(~∇ · ~ω)L(x, ~ω) = −σa(x, ~ω)L(x, ~ω)
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σa is referred as the absorption coefficient. Also this coefficient is generically
isotropic, and constant for homogenous materials.

3.4.3 Out-scattering

Out scattering is the radiance lost due to scattering. The scattering phenomenon
happens when photons are deflected away from the current direction ~ω. As in
the previous case, the phenomena is modeled as a percentage of the radiance
lost per unit length. So the loss due to out-scattering is modeled as:

(~∇ · ~ω)L(x, ~ω) = −σs(x, ~ω)L(x, ~ω)

σs is referred as the scattering coefficient. We note that in this case we are
not interested in which direction the photons are actually going. That will be
accounted in the in-scattering term of another point in the material.

3.4.4 In-scattering

Given some loss due to some of the photons changing direction, there will be
some of them that from other scattering events will change to the ~ω direction.
We need then to discover the number of photons that comes from all the other
directions. To do this, we integrate the incoming radiance from all directions in
the point x. This quantity, similar to irradiance, in an infinite medium is called
fluence, and indicated as φ:

φ(x) =
∫

4π
L(x, ~ω′)dω′

Fluence should be then averaged over the entire sphere, yielding φ
4π as a normal-

ization factor. This quantity then is then multiplied by the scattering coefficient,
because only some photons on average scatter towards the current point. This
results in:

(~∇ · ~ω)L(x, ~ω) = σs(x) 1
4π

∫
4π
L(x, ~ω′)dω′ (3.5)

However, equation 3.5 assumes that radiance scatters equally in all directions.
This is not usually the case, and the 1

4π term needs to be replaced by a probabil-
ity distribution function that describes how the photons scatter in the medium.
This function is called phase function, and indicated as p(x, ~ω, ~ω′). In the actual
models its integral on the hemisphere is often used as a parameter, called mean
cosine (g):

g(x) =
∫

4π
p(x, ~ω, ~ω′)~ω · ~ω′dω′
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This term indicates the general direction of the scattering in the material. If
positive, the scattering is prevalent along the beam (forward scattering), if neg-
ative is prevalent in the opposite direction (backward scattering). If zero, the
scattering is isotropic, i.e. equal in all directions.

So, the final 3D equation for in-scattering, accounting for the phase function, is
as follows:

(~∇ · ~ω)L(x, ~ω) = σs(x)
∫

4π
p(x, ~ω, ~ω′)L(x, ~ω′)dω′

3.4.5 Final formulation of the radiative transfer equation

Combining emission, absorption, scattering described in the previous sections,
we reach the final formulation of the radiative transfer equation (RTE):

(~∇ · ~ω)L(x, ~ω) = −σt(x)L(x, ~ω) + ε(x) + σs(x)
∫

4π
p(x, ~ω, ~ω′)L(x, ~ω′)dω′ (3.6)

Where the two reducing term, scattering and absorption, have been combined
together in σt = σa + σs, called the extinction coefficient.

3.4.6 The diffusion approximation

The radiative transfer equation 3.6 is a integro-differential equation with many
degrees of freedom. As we stated in Chapter 2, there are rendering techniques
that numerically solve the equation in order to obtain a realistic result. However,
analytical methods tend to use some approximations of the RTE, that hold well
given specific conditions. The diffusion approximation [Ishimaru, 1997] is one
of these approximations, and it is still widely used today since its introduction
in the computer graphics community by [Stam, 1995].

The assumption under the diffusion approximation is that given a physical
medium, the number of scattering events is so high that the beam of light
quickly becomes isotropic. Each one of the scattering events blurs the light dis-
tribution, and as a result the distribution becomes more uniform as the number
of scattering events increases. This has been proven to be a reasonable assump-
tion even for highly anisotropic light sources (e.g. a focused laser beam) and
phase functions.

When using the diffusion approximation, instead of using the extinction coeffi-
cient σt, we account for the contribution from the phase function by using the
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so-called reduced extinction coefficient σ′t. It is defined as σ′t = σa + σ′s, with
σ′s = σs(1 − g). σ′s Is called reduced scattering coefficient. The converse of the
reduced extinction coefficient is called mean free path and represents the average
distance that light travels in the medium before being absorbed or scattered.

The rationale behind this reduced coefficient is that a highly forward scattering
material is virtually indistinguishable from a not-scattering material. So, for
highly forward scattering materials (g ≈ 1) the scattering coefficients reduce
to zero. For highly backward scattering materials (g ≈ −1), the scattering is
accounted for twice as for an isotropic material (see table 3.3).

Coefficient Backward
Scattering
(g ≈ −1)

Isotropic

(g ≈ 0)

Forward
Scattering
(g ≈ 1)

σ′s 2σs σs 0

σ′t σa + 2σs σa + σs σa

Table 3.3: Explicit scattering coefficients for different kinds of materials.

We leave to Ishimaru [1997] and Jensen et al. [2001] for the algebraic details of
the calculation. Once we solve the diffusion equation, we obtain the following
formula for φ(x), the fluence of light in an infinite scattering medium.

φ(x) = Φ
4πD

eσtrr

r
(3.7)

We recall that φ(x) =
∫

4π L(x, ~ω)d~ω. r = ‖x‖ is the distance from the point to
the light source. The two coefficients D and σtr are called diffusion coefficient
and transmission coefficient respectively. The two coefficients are defined as
follows:

D = 1
3σ′t

σtr =
√

3σaσ′t =
√
σa
D

This is the equation describe light propagation in an infinite medium, i.e. no sur-
face interaction is considered. In order to derive an actual BSSRDF model from
the diffusion approximation, boundary conditions must be considered. Jensen
Jensen et al. [2001] derived an analytical model starting from this approxima-
tion of the RTE, while Frisvad Frisvad et al. [2014] uses a higher order diffusion
approximation of the RTE. The two models are explained in the following sec-
tions.
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3.4.7 Standard dipole model

The first model we describe is due to Jensen et al. [2001]. It it usually referred
in literature as Jensen dipole model or Standard dipole model. In their origi-
nal paper, the authors used the diffusion approximation for light in an infinite
medium. Starting from that, they derive an approximation that holds for light
in a semi-infinite medium, i.e. light traveling in void hitting a planar slab of a
translucent material.

As a boundary condition, we take the light coming out of the material. Light
coming out of the material has a initial fluence φ0. We assume then that the
fluence decays linearly until a distance z = 2AD from the surface, where it
becomes zero. See Donner [2006] for the full derivation. D is the diffusion
coefficient, while A is a corrective term that accounts for mismatching indices
of refraction:

A = 1 + Fdr
1− Fdr

Fdr =
∫

2π
R(η, ~n · ~ω)(~n · ~ω)d~ω

(3.8)

Where R is the Fresnel reflection term as defined in Section 3.3.4, and η = n1/n2
is the relative refraction index. The Fresnel reflectance integral Fdr is usually
approximated with an analytical expression:

Fdr = −1.440
η2 + 0.710

η
+ 0.668 + 0.0036η

Given the boundary condition, we can then model the subsurface scattering in
a point xo with two small sources on the point, a configuration called a dipole.
One source is placed beneath the surface, called the real source, while the other
one is mirrored above the surface, called virtual source. The first source actually
models the subsurface scattering effect, while the second one reduces the first in
order to account for the boundary conditions and the extrapolation boundary.
Refer to Figure 3.9 for a visual detail on the setup.

The real source is placed one mean free path beneath the surface, at zr =
1/σ′t, while the virtual one is placed symmetrically according to the boundary
conditions, ad a distance zv = zr + 4AD. From zr and zv we can calculate the
distances dr and dv from the entrance point xi. Given r = ‖xo−xi‖, we obtain:

dr =
√
z2
r + r2

dv =
√
z2
v + r2
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Figure 3.9: Setup for the standard dipole model.

Given these constraints, we obtain an equation for the BSSRDF in a semi infinite
medium:

Sd(xi, ~ωi,xi, ~ωo) = α′

4π2

[
zr(1 + σtrdr) e−σtrdr

d3
r

+ zv(1 + σtrdv) e−σtrdv
d3
v

]
Where α′ = σ′s/σ

′
t is called reduced albedo.

The model so far described was intended to model only the multiple scattering
BSSRDF term, Sd. In order to obtain the full BSSRDF S, a single scattering
term S(1) must be added. Moreover, we need to add as well the two Fresnel
transmission terms, one for the incoming and one for the outgoing radiance.
There are in literature many approaches to model single scattering, that are out
of the scope of this report. The final BSSRDF equation for the standard dipole
model then becomes:

S(xi, ~ωi,xo, ~ωo) = T (η, ~ωi)Sd(xi, ~ωi,xo, ~ωo)T (η, ~ωo) + S(1)(xi, ~ωi,xo, ~ωo)

Jensen et al. [2001] in their original paper describes some corrections that need
to be done to the model in order to make it work with generic surfaces, and on
how to account for extensions like texture support. We will not describe these
extensions here, remanding to the original paper for a detailed description.
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3.4.8 Directional dipole model

Various evolutions to the standard dipole model have been proposed through-
out the years. In this chapter, we will introduce the BSSRDF approximation
called directional dipole, proposed by Frisvad et al. [2014]. In the standard
dipole model, in fact, the diffusive part of the BSSRDF depends only on the
distance between the point of incidence and the point of emergence, that is
Sd(xi, ~ωi,xo, ~ωo) = Sd(‖xo − xi‖).

The directional dipole model, based on the diffusion approximation, accounts
for the direction of the incoming light in its calculations, in order to model the
scattering effects more precisely. Moreover, the model, instead of splitting the
BSSRDF in a multiple and single scattering term, splits the BSSRDF into a
diffusive term Sd and a term SδE , called reduced intensity, that can be com-
puted using the delta-Eddington approximationJoseph et al. [1976]. The final
BSSRDF thus becomes:

S(xi, ~ωi,xo, ~ωo) = T (η, ~ωi)(Sd(xi, ~ωi,xo) + SδE(xi, ~ωi,xo, ~ωo))T (η, ~ωo) (3.9)

Where T are the Fresnel transmission coefficients for the incoming and outgoing
directions. We note also that the diffusive part of the BSSRDF does not depend
on the outgoing direction ~ωo.

Diffusive BSSRDF
The diffusive part of the directional dipole model uses a first-order approxima-
tion of the RTE, that for a point light in an infinite medium gives the following
fluence:

φ(xo, θ) = Φ
4πD

eσtrr

r

(
1 + 3D1 + σtrr

r
cos θ

)
(3.10)

WhereD and σtr are the two scattering coefficients defined beforehand, r = ‖xo‖
and

cos θ = x · ~ω12

r

Where ~ω12 is the refracted vector as defined in Section 3.3.4. Comparing 3.10
with equation 3.7, we can see that we introduced a new term that depends on the
angle θ between the refracted incoming light vector and the vector connecting
incidence and emergence.

Using the diffusion approximation, we can first establish a relationship between
the radiant exitance M(xo) and the diffusive BSSRDF S′d in an infinite medium:

dM(xo)
dΦi(x, ~ωi)

= T (η, ~ωi)S′d(xi, ~ωi,xo) 4πCφ(1/η) (3.11)



36 Theory

Figure 3.10: Setup for the directional dipole model.

Where Cφ(1/η) is related to the integral on the hemisphere of the fresnel coeffi-
cients. Using the definition of radiant exitance and inserting inside the classical
diffusion approximation, we reach the diffusion formulation of the radiant exi-
tance:

M(xo) = Cφ(η)φ(xo) + CE(η)D~no · ∇φ(xo) (3.12)

Again, Cφ(η) and CE(η) are two terms that are related to the integration of the
fresnel coefficients. Combining the three equations 3.10, 3.11 and 3.12, we reach
the final form for our diffusive BSSRDF in an infinite medium:

S′d(x, ~ω12, r) = 1
4Cφ(1/η)

1
4π2

e−σtrr

r3[
Cφ(η)

(
r2

D
+ 3(1 + σtrr)x · ~ω12

)
−

− CE(η)
(

3D(1 + σtrr) ~ω12 · ~no−

−
(

(1 + σtrr) + 3D3(1 + σtrr) + (σtrr)2

r2 x · ~ω12

)
x · ~no

)]
(3.13)
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Fresnel integrals

The two terms Cφ(η) and CE(η) originally come from integrating the
outgoing Fresnel transmittance over the whole outgoing hemisphere,
weighted with a cosine term. The two functions are defined as follows:

Cφ(η) = 1
4π

∫
2π
T (η, ~ω)(~no · ~ω)d~ω

CE(η) = 3
4π

∫
2π
T (η, ~ω)(~no · ~ω)2d~ω

(3.14)

These two integrals can be rearranged in order to express them in terms
of reflectance instead of transmittance, recalling R = 1− T .

Cφ(η) = 1
4π

(
π −

∫
2π
R(η, ~ω)(~no · ~ω)d~ω

)
= 1

4(1− 2C1)

CE(η) = 3
4π

(
2π
3 −

∫
2π
R(η, ~ω)(~no · ~ω)d~ω

)
= 1

2(1− 3C2)
(3.15)

Even with this rearrangement the integrals cannot be expressed in closed
form. D’Eon and Irving [2011] use a convenient polynomial approxima-
tion for the two coefficients C1 and C2, expressed as:

2C1 ≈


+0.919317− 3.4793η + 6.75335η2 − 7.80989η3

+4.98554η4 − 1.36881η5 η < 1
−9.23372 + 22.2272η − 20.9292η2 + 10.2291η3

−2.54396η4 + 0.254913η5 η ≥ 1

3C2 ≈



0.828421− 2.62051η + 3.36231η2 − 1.95284η3

+0.236494η4 + 0.145787η5 η < 1
−1641.1 + 135.926

η3 − 656.175
η2 + 1376.53

η + 1213.67η
−568.556η2 + 164.798η3

−27.0181η4 + 1.91826η5 η ≥ 1.

Boundary conditions

As the name implies, also for the directional dipole we model the boundary
conditions on the material interface using a dipole. In this case, however, instead
of using two point light sources, we use two ray sources, a real and a virtual
one. As in the standard dipole, the source is displaced towards the normal of a
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distance de. In the case of the standard dipole, we use 2D, that becomes 2AD
in the case of mismatching indices of refraction on the interface. In the case of
the directional dipole, we use

de = 2.131D√
α′

Where we recall α′ = σ′s/σ
′
t as the reduced albedo. This result have been

proven [Davison and Sykes, 1958] to be consistent with numerical simulations
of the RTE. In addition, the A term is modified using the hemispheric Fresnel
integrals:

A(η) = 1− CE(η)
2Cφ(η)

As the standard dipole, the directional dipole assumes a semi-infinite medium
given the previous boundary conditions. In order to relax this assumptions,
we need to further extend the model in order to reduce undesired effects. One
first modification proposed by Frisvad et al. [2014] is to use a modified tangent
plane defined by the normal ~n∗i to mirror the real source towards the mirror
light source, instead of the obvious one defined by ~ni. We define the modified
normal as follows:

~n∗i =


~ni for xo = xi

xo − xi
‖xo − xi‖

× ~ni × (xo − xi)
‖~ni × (xo − xi)‖

otherwise

Another important modification is the distance to the real source. In the stan-
dard dipole, we used dr =

√
z2
r + r2, with zr = 1/σ′t, which is the average

distance a photon travels within the material before being absorbed or scat-
tered. The problem of this definition is that it introduces a singularity in r = 0.
Moreover, the standard dipole becomes fairly imprecise when r is small, over-
estimating the overall effect. In order to avoid these problems, Frisvad et al.
[2014] proposed a more complicated definition of dr that matches simulations of
transport theory more closely. For the details, see Appendix B in the original
paper. dr is defined as follows, recalling σt = σs + σa:

d2
r =


r2 +Dµ0(Dµ0 − 2de cosβ) µ0 ≥ 0 (frontlit)

r2 + 1
(3σt)2 µ0 < 0 (backlit)

Where µ0 = −~ω12 · ~no is an indicator if the point xo is frontlit or backlit. β is
a geometry term that is evaluated as:

cosβ = −

√
r2 − (x · ~ω12)2

r2 + d2
e
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Combining all the corrections seen so far, we can write the final form of our
BSSRDF model, that is a combination of the real source term minus the virtual
source term:

Sd(xi, ~ωi,xo) = S′d(xo − xi, ~ω12, dr)− S′d(xo − xv, ~ωv, dv)

Where the extra coefficients for the virtual source are defined as follows:

xv = xi + 2Ade~n∗i
~ωv = ~ω12 − 2(~ω12 · ~n∗i )~n∗i
dv = ‖xo − xv‖

The directional dipole model described in this chapter, gives a better result that
the standard dipole, at the extra price of additional calculations. In particular,
the model improves the previous one for highly forward scattering materials,
where it is sensibly closer to the path traced result. The final goal of this
thesis is to provide a real-time implementation of it. Given this theoretical
introduction, in the next section we will describe our contribution in order to
breakdown the problems and the issues of a real-time implementation.

(a) Standard dipole (b) Directional Dipole

Figure 3.11: Comparison of the standard and the directional dipole model, for a
Stanford Happy Buddha made of potato, with a side directional light.
We can see that the directional dipole is able to capture finer details
and provide a generally less flat appearance than the standard one.
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Chapter 4

Method

In this chapter, after giving the theoretical foundations in Chapter 3, we intro-
duce our method to render translucent materials efficiently using the directional
dipole model. This chapter connects the theory with the implementation in
Chapter 5. First of all, we will give a theoretical justification of our method,
deriving a discretization of the rendering equation that can be actually solved
and implemented in a GPU environment. Then, we will discuss some possible
sampling patterns and how they could possibly improve the results of the final
rendering. Then, we will introduce some details on the acquisition of scattering
parameters in an experimental environment. Finally, we will describe a method
to approximate environment lighting using an arbitrary number of directional
sources.

4.1 Method overview

First of all, we recall the general form of the rendering equation for participating
media using a BSSRDF (equation 3.4):

Lo(xo, ~ωo) = Le(xo, ~ωo) +
∫
A

∫
2π
S(xi, ~ωi,xo, ~ωo)Li(xi, ~ωi)V (xi)(~ni · ~ωi)d~ωidAi
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In the usual approach to offline path traced rendering, we need to integrate
the radiance from all the possible sources on the surface point seen by each
pixel of the final image. For this surface element subtended by one pixel, all
the incoming radiance contributions from the other points in the scene must
be accounted an then multiplied by the BSSRDF function in the direction of
the camera. In a way, we are basically performing the integral in equation 3.4
numerically. If we use a BSSRDF function, the contribution from all the points
from the other surfaces must be employed, while in the case of a BRDF some
contributions may be excluded. Given its natural exponential explosion, path
tracing is not generally suitable for real-time rendering.

Figure 4.1: Simulation of the directional dipole BSSRDF of a laser hitting a slab of
2x2 cm of potato material. We note the exponential decay of subsurface
scattering phenomena.

In our method, in its final goal to be real time, we perform the same integral
as equation 3.4, but under some assumptions and restrictions that allow us
to perform it more efficiently. In addition, since our method approximates the
integral and not the BSSRDF function, it is applicable to any BSSRDF function,
given that it has limited or no dependence on the outgoing direction ~ωo, like the
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Figure 4.2: Setup for our method: the disk is placed on the point xo, displaced along
the disc direction ~ωd and then the sample points di are reprojected back
to find the samples xi.

directional dipole model.

The idea on approximating the integral comes from the fact that the directional
dipole magnitude (and subsurface scattering effects) decays exponentially from
the point of incidence, as we can see from figure 4.1. So, the subsurface scatter-
ing contribution for points that are far apart becomes quickly negligible. The
distance to which this happens is related to the transmission coefficient σtr. We
will investigate this relation better in the result section.

So, given this exponential decay, we place a disc on the surface for a position xo.
We define a sampling disc as a point xd, a radius rd and a direction ~ωd From
this disc, we chose a subset of points, that are then projected on the surface
and used to calculate the BSSRDF contribution. This set of points xi is called
sample points. To obtain a sample point from a disc point di, we take the point
that intersects the surface along the line with direction ~ωd passing from the
point di (see figure 4.2 for an illustration of the process). In formulas, we do:

xi = di − s~ωd, s ∈ R,xi ∈M

We note that we can have multiple s solving this equation, or none at all. If at
least one s exists, we take the one that makes the distance between di and xi
the smallest. Then, we calculate and average the BSSRDF contribution from
these points xi on the point xo. The process can be repeated more times for
multiple lights, using the same set of sampling points.
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(a) Bottom sample, näıve approach (b) Side sample, näıve approach

Figure 4.3: Counter examples of the näıve choice for xd and ~ωd. The green area
represent the sampling area of the disc (see from the side). The red
area shows where on the surface the contribution is higher for the point
xo. We can see that with this approach all the contribution is actually
missed.

Given this setup, we need to find a way of efficiently placing the disc in order
to get a good approximation of the BSSRDF. In fact, if the disc is placed in the
wrong position, the accounted contribution from the sampling points will not
be correct. Moreover, also the orientation of the disc is important, in order to
not undersample light in certain regions of the model. A näıve approach would
suggest to pick xd = xo and ~ωd = ~no, but we can see that this approach is not
correct. The most obvious counter examples are displayed in Figure 4.3: in the
first example 4.3a, the contribution from the surrounding points will be zero,
because none of the sampling points is directly illuminated by the light, so the
visibility term on the rendering equation will evaluate to zero. In the second
example (figure 4.3b), the wrong direction ~no prevents the most of the points
from being sampled. A more careful choice for placing the points in the disc is
to place the disc in a way that the obtained surface point is always the closest
one to the light. To ensure that the points xi always have this property, we can
place xd far enough from the surface in a way that all the sampling points have
to be the closest to the light. If we define a bounding box vector in the same
coordinate frames, we have a simple formulation for xd:

xd = xo + (b · ~ωl)~ωl
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(a) Bottom sample, our method (b) Side sample, our method

Figure 4.4: The counter examples of figure 4.3 updated using our method of choice
for xd. We can see that now most of the radiance distribution is ac-
counted for.

The bounding box vector is a vector where its components are the maximum
extension of the mesh in the coordinate reference system. So,

b = (max(xxi )−min(xxi ),max(xyi )−min(xyi ),max(xzi )−min(xzi )), ∀xi
To solve the problem in the second example in figure 4.3b, we chose to always
orient the circle towards the light, that is ~ωd = ~ωl for directional lights and
~ω = xl−xd

‖xl−xd‖ for point lights. As we can see, for the new choices of disc placement
and orientation we are able to catch the points from where the contribution is
stronger. This new setup seems much more complicated that the näıve approach,
but as we will see in the implementation section the Z-buffer of the GPU will
permit us to get the desired points without any additional computation, using
shadow mapping. For environment lights, we will see how to transform them in
directional lights at the end of this chapter, so the setup of the equations will
be the same for directional lights.

4.1.1 Approximation of the rendering equation

Going into the mathematical details the idea is to take the integral form of the
rendering equation (equation 3.4):

Lo(xo, ~ωo) = Le(xo, ~ωo) +
∫
A

∫
2π
S(xi, ~ωi,xo, ~ωo)Li(xi, ~ωi)V (xi)(~ni · ~ωi)d~ωidAi

First of all, we make the assumption of a body that is not emitting light: all
the radiance from the body comes from an external source. This assumption
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can be trivially relaxed and implemented, but to simplify the equation in this
chapter we will exclude it from the calculations. Secondly, we limit ourselves
to the case of one directional light, treating the case of a point light later as an
extension. The directional light direction ~ωl and radiance Ld δ(~ωd).

Under the first assumption, equation 3.4 becomes:

LDo (xo, ~ωo) =
∫
A

∫
2π
S(xi, ~ωi,xo, ~ωo)Ld δ(~ωl) V (xi)(~ni · ~ωi)d~ωidAi

LDo (xo, ~ωo) =
∫
A

S(xi, ~ωl,xo, ~ωo)LdV (xi)(~ni · ~ωl)dAi

In this way, we remove the internal integral. Then, we need to discretize the
remaining integral. We imagine to have a set of N points on the surface. We
assume that each one of these points is visible from the light source (so we can
get rid of the V (xi) term). We will discuss in the implementation section how
to make sure that all these points are visible. Each one of these points has an
associated area Ai, so that we can write:

LDo (xo, ~ωo) = Ld

N∑
i=1

S(xi, ~ωl,xo, ~ωo)(~ni · ~ωl)Ai (4.1)

Now, instead of using all the points on the surface, we consider only the points
within a certain radius r∗ from the point xo, i.e. the disk we discussed in Section
4.1. Assuming the points are distributed uniformly on the disk, we obtain the
following area for a point:

Ai = Ac
N (~ni · ~ωl)

Where Ac = π(r∗)2 is the area of the circle. The ~ni · ~ωl accounts for the fact
that the area is projected on the surface. Inserting into equation 4.1, we obtain:

LDo (xo, ~ωo) = Ld
Ac
N

N∑
i=1

S(xi, ~ωl,xo, ~ωo) (4.2)

That is our final approximation for a directional light. For a point light, follow-
ing the exact same steps, we reach a similar solution. We recall that a point
light is defined by an intensity Ip and a source point xp:

LPo (xo, ~ωo) = Ip
Ac
N

N∑
i=1

S(xi, xp−xi
‖xp−xi‖ ,xo, ~ωo)
‖xp − xi‖2

(4.3)

And, since the radiance is linearly summable, we can combine the contribution
from an arbitrary number of P1, P2...Pp point sources and D1, D2...Dd direc-
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tional sources:

Lo(xo, ~ωo) =

=
p∑
k=1

LPko (xo, ~ωo) +
d∑
k=1

LDko (xo, ~ωo)

= Ac
N

 p∑
k=1

Ikp

N∑
i=1

S(xi,
xkp−xi
‖xkp−xi‖ ,xo, ~ωo)
‖xkp − xi‖2

+
d∑
k=1

Lkd

N∑
i=1

S(xi, ~ωkl ,xo, ~ωo)


(4.4)

4.2 Sampling patterns

As we discussed, the BSSRDF function for the directional dipole is dominated by
an exponential decay. So, it is more probable to find points that contribute more
to the BSSRDF if we take points closer to the evaluation point xo. However,
our assumption of uniform areas in the previous calculations does not hold
anymore, so we need to modify the previous equations in order to account for
the non-linear sampling.

Assuming to have number generator that can generate numbers on a disc, we
can create an exponentially distributed disc with the following exponential prob-
ability distribution function (PDF):

pdf(x) = σtre
−σtrx

The difference between a disc sampled using this distribution and an uniform
one is shown in figure 4.5. The process to create this distribution using rejection
sampling will be illustrated in the implementation section. We take the radius
of a point xi as ri = ‖di‖. So now we have a new normalization term to include
in order to scale back the result. So, we need now to divide by a exp(−σtrri)
term each sample. The new equation for a directional light instead of 4.2 then
becomes:

L̂Do (xo, ~ωo) = Ld
Ac
N

N∑
i=1

S(xi, ~ωl,xo, ~ωo)eσtrri

The other two equations 4.3 and 4.4 then change accordingly:

L̂Po (xo, ~ωo) = Ip
Ac
N

N∑
i=1

S(xi, xp−xi
‖xp−xi‖ ,xo, ~ωo)
‖xp − xi‖2

eσtrri
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(b) Exponential sampling (σtr = 70)

Figure 4.5: Uniform versus exponentially-weighted sampling of 300 points.

L̂o(xo, ~ωo) =

=
p∑
k=1

L̂Pko (xo, ~ωo) +
d∑
k=1

L̂Dko (xo, ~ωo)

= Ac
N

 p∑
k=1

Ikp

N∑
i=1

S(xi,
xkp−xi
‖xkp−xi‖ ,xo, ~ωo)
‖xkp − xi‖2

eσtrri +
d∑
k=1

Lkd

N∑
i=1

S(xi, ~ωkl ,xo, ~ωo)eσtrri



4.3 Parameter acquisition

When rendering translucent materials, it is important that we have the right
scattering properties, in order to match the appearance of real world objects.
The scattering parameters may be tweaked by the artist and set up manually,
but this is a long process since the the scattering properties are not directly
related to material appearance. In order to avoid this problems, the scattering
parameters are measured from samples taken from real world objects. In this
section, we will give an overview of two methods used to estimate the scattering
parameters.

The first method was presented alongside the standard dipole model by Jensen
et al. [2001]. The measurement apparatus consists of a series of lenses that
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focus the light on the sample. The light power Φ is measured by calibrating
the sensor with a spectralon sample. A picture of the sample is then acquired
at different exposure, in order to build an high dynamic range image. This is
necessary since the scattering decays exponentially, so a high range is needed to
have meaningful measurements. The measured data are then fitted to diffusion
theory in order to obtain the scattering coefficients. Due to the nature of the
measurement, it is not possible to measure the mean cosine g of the material,
but only the reduced scattering coefficient σ′s = σs(1 − g) and the absorption
coefficient σa. This measurement model uses the diffusion approximation to
work, so it shares the same limitations: it is valid only for materials where
σa � σs, or highly scattering materials.

The second method, proposed by Narasimhan et al. [2006] proposes a method
to measure the scattering coefficients by dilution. The assumption is that water
does not interfere with the scattering properties of the materials dissolved within
it for small distances (less than 50 cm). Naturally, the material needs then to be
already in a liquid form, or to be a powder that can be easily dissolved in water.
The setup of the experiment is a box full of water with a camera and an area
light. High dynamic range picture of the material dissolved in water are then
taken, and the scattering coefficients can be measured analyzing the resulting
images. Various measurements at different concentrations are needed in order
to get an effective measurement of the coefficients, but then the coefficients can
be extrapolated for any concentration.

Some of the scattering properties measured thanks to this method are reported
in table 4.1. This coefficients will be used throughout the report when referenc-
ing to a specific material.
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(a) Apple (b) Marble (c) Potato

(d) Whole Milk (e) Coffee (f) Soy Milk

(g) Wine (merlot) (h) Beer (Budweiser) (i) White Grapefruit Juice

Figure 4.6: Path traced renderings on a sphere of the materials reported in table 4.1.
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4.4 Environment lights

Environment lighting is a omni-directional type of lighting that represents light
coming from an environment. Instead of defining a light as a direction or a
point in space, we define directly the radiance distribution on a map. The map
is usually provided in a HDR format in order to cover various range of radiance
values, and it is usually given as a set of six cube faces (cubemap) or as a
latitude-longitude map, as the one in Figure 4.7. The maps are usually given in
equirectangular projection.

In the game development community, spherical harmonics (SH) [Green, 2003,
Sloan, 2008] are usually employed. This technique, given an heavy pre-computation
step, transforms the radiance map into a set of coefficients in the spherical har-
monics basis. This coefficients can be used easily to represent the low frequency
component of the radiance map Ramamoorthi and Hanrahan [2001].

Figure 4.7: Latitude - longitude environment map of the inner courtyard of the
Doge’s palace in Venice (Doge map). The map has been converted
to a RGB format from the original HDR format. This and all the
maps used in this report are courtesy of http://gl.ict.usc.edu/Data/
HighResProbes/.

In this chapter, we introduce a technique presented in Pharr and Humphreys
[2004] to convert a environment map into a set of directional light sources of
arbitrary size. The general idea is to generate a set of random points and them
transform them according to a pre-computed probability distribution. This
distribution make the random point concentrate in areas where the radiance is
higher, so that it is possible to get the most representative points on the radiance

http://gl.ict.usc.edu/Data/HighResProbes/
http://gl.ict.usc.edu/Data/HighResProbes/
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map. The found points are then transformed into a spherical coordinate basis
in order to get the light direction.

We start defining our image as an array of n rows and m columns. We need
to define a function that of each pixel of the image gives us a single radiance
value. Instead of using radiance, we use luminance. The ITU-R recommenda-
tion standard BT.709 [ITU, 2001] gives us a formula to obtain luminance from
spectral radiance values:

f(u, v) = 0.2126 R(u, v) + 0.7152 G(u, v) + 0.0722 B(u, v)

Where [u, v] ∈ [0, n) × [0,m). R, G and B represent the spectral coordinates
of the radiance map. We would like to define now a probability distribution
function based on the f(u, v) function. We can define it simply by normalizing
f with the integral of the function over the domain:

p(u, v) = f(u, v)∫∫
f(u, v)dudv

= f(u, v)∑
u

∑
v

f(u, v)

However, in order to be able to sample from the distribution p(u, v), there are
some things to take care about. We would like now to separate the two variables,
in order to sample from two one-dimensional distributions, instead of one two-
dimensional distribution. To do this, we use the conditional probability formula:

p(u, v) = pv(v|u)pu(u) (4.5)

So that we first choose u, sample its probability pu(u) and then compute the
conditional density pv(v|u) using the found value for u. Using the marginal
formulas, the first probability is easily found:

pu(u) =
∫
p(u, v)dv =

∑
v

f(u, v)∑
u

∑
v

f(u, v)

And, from equation 4.5, we find the conditional probability:

pv(v|u) = p(u, v)
pu(u) = f(u, v)∑

v

f(u, v)
sin θ

The sin θ comes from the fact that the latitude-longitude map with a equirectan-
gular projection is not area preserving. So, the sampling must take into account
the distortion of the map, otherwise the samples will be more concentrated at
the poles, rather than distributed uniformly on the sphere. We can appreciate
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(a) Without sin θ correction
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(b) With sin θ correction

Figure 4.8: Effect of sin θ on a random point distribution on a sphere.

the difference for a random sampling on a sphere in Figure 4.8. Now we are ready
to sample the function. In order to bias our sample according to the radiance
distribution, we need to calculate the cumulative distribution function (CDF)
for a one-dimensional probability distribution function, then inverse sample it.
The CDF is defined as:

cu(u) =
∫ u

−∞
pu(u)du =

u∑
i=0

pu(u)

That is the discrete integral of the function up to the point u. Figure 4.9 explains
why we need to inverse sample the CDF. If, as the figure, all the radiance is
distributed towards the right side of the picture (i.e. the CDF rises slowly), if
we pick a set of random points (on the y axis) and inverse sample the CDF
on them (on the x axis), we obtain a new set of points that is biased towards
the highest concentration of radiance. Let us now pick a couple of random
points (ζ1, ζ2) ∈ [0, 1)2. We then convert these points to a pair of coordinates
(u1, u2) ∈ [0, n)× [0,m) by inverse sampling of the CDF. We will give the details
of how to discretize this process in the implementation section. Then, we obtain
the spherical coordinates using the standard formula:

(θ, φ) =
( u1

πn
,
u2

2πm

)
And, from the spherical coordinates, we use the equirectangular projection for-
mula to transform them into a vector in the 3D space, that is the final direction
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Figure 4.9: Effect of weighting values with the CDF. We note that the random values
on the y axis are transformed and accumulated where the CDF is steeper.

for our light.
~ωl = (cosφ sin θ, sinφ sin θ, cos θ)

And, by varying the random values (ζ1, ζ2), obtain a set of directions that we
can use for rendering. The generated points for the Doge map can be seen in
Figure 4.10.

Figure 4.10: Position of calculated lights for the doge map.
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Chapter 5

Implementation

In this chapter, we will introduce the implementation of our method. We will
focus on a GPU-oriented implementation of the method presented in Chapter
4. First, we will briefly introduce the environment in which we are operating.
Then, we will give a general outline of our algorithm. Then, we will discuss in
more detail some of the ideas introduced in the outline. After this discussion,
we will discuss some defects and artifacts in our algorithm that arose during
the implementation, and how we have solved them. Finally, we will extend
our implementation to different kind of lights. Finally, we will discuss our
implementation.

5.1 Environment

In order to justify some of the choices and the code parts that will be introduced
in this section, we will first introduce the environment of our implementation.
The method we are going to discuss was made using the OpenGL API, version
4.3 (released in August 2012), a multi-platform API used for rendering 2D and
3D accelerated graphics. With the OpenGL API comes GLSL, the OpenGL
Shading Language, used for writing pieces of code to be run on the GPU, called
shaders. Our method uses some advanced features of OpenGL 4.3, so it is not
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immediately portable to previous generation hardware, and runs only on high-
end modern GPUs. On the CPU side, we use an extended framework based
on Qt, a C++ library that allows to create a OpenGL context and graphical
interfaces in an easy way.

5.2 Algorithm overview

By keeping the limitations presented in Chapter 1 in mind, we introduce our
algorithm. The algorithm is inspired by translucent shadow maps [Dachsbacher
and Stamminger, 2003], that we presented in Chapter 2. The general idea
is to first render the scene from the light point of view, then place the disk
we discussed in the previous Chapter (Section 4.1) directly on the generated
texture, storing the result in a radiance map. We use many directions in order
to capture all the sides of the object. Finally, we sample from the obtained
radiance map for the final rendering.

In this section, we will assume to only have one directional light with radiance
Ld and direction ~ωd, with one not-deformable object in the scene. We will
discuss later how to extend the method to multiple light sources.

Step 1 - Light buffer
In the first step, positions and normals of the object are rendered into a texture
from the light point of view. We will refer to the resulting texture as the
light map. As in standard shadow mapping we create and store a matrix to
convert between world space and texture light space. Depth testing in this
step is enabled. More details on the implementation of a render to texture are
presented in Section 5.3.1.
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Figure 5.1: Render to G-buffer. Note that the frustum and the light direction are
aligned.

(a) Vertex buffer (b) Normal buffer

Figure 5.2: State of the vertex and normal buffer after rendering from a directional
light. The model used was the Stanford bunny from the Standford 3D
Scanning repository.
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Step 2 - Render to radiance map
In the second step, we render the object from K different directions into another
texture, called the radiance map. The radiance map is organized as a layered
texture, where each layer represents a direction. More details on render to
texture and layered textures are presented in sections 5.3.1 and 5.3.2. The
points on which to place the cameras are chosen randomly, distributed on a
sphere (see Section 5.3.4 for the details). The cameras point towards the center
of the object bounding box.

On this step, for each pixel that corresponds to an exiting point xo the shader
samples N points from the texture rendered in the previous step. If the sampled
point is valid, it is then used to calculate the BSSRDF and accumulate it in the
resulting radiance map. So, this step calculates the following:

Rk(xo) = Ld

N∑
i=1

S(xki , ~ωl,xo, ~ωo) exp
(
σtrr

k
i

)
, k ∈ [0,K − 1] (5.1)

Where we recall that we have introduced an exponential term in order to com-
pensate for the exponential displacement of the sampling pattern. The genera-
tion of the sampling pattern is described in Section 5.3.4.1 in more detail. We
introduced a k parameter, that represents the current direction we are rendering
to. We can see how we are rendering a point from one of the considered direc-
tions in Figure 5.4. Also in this case, the texture space - world space conversion
matrices are stored and prepared to be reused in step 3, where we will combine
the results.

We can appreciate that rendering the light from the camera point of view comes
with two important advantages:

• If the disk is placed in texture space, it is automatically oriented towards
the light direction, that is ~ωd = ~ωl.

• The light renders in the texture only the points directly visible from it,
that are also the only points directly lit. In addition, if we sample the
light map on any point, we get the corresponding vertex that is closest to
the light.

This two factors allows us to sample the most optimal point and direction in
where to place the disk, as we described it in Section 4.1.
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Figure 5.3: Render to the radiance map. When we render the point xo, the posi-
tion in the light map is calculated and the values xi in the samples are
calculated and summed over.

In addition, on each layer, we accumulate the result over different frames:

R̃t,k =
t−1∑
i=0

Ri,k +Rt,k = R̃t−1,k +Rt,k

R̃ here represents the value that is stored in the radiance map. In equation
5.1, we omitted the dependence from time for the sake of clarity. We need an
accumulation process in order to deal with the fact that the result from the
previous computation are not reaching a satisfying result within one frame, so
they need to be accumulated over a period of T frames in order to reach an
appreciable result. In order to do this, the sampled points need to change on
different frames (in Section 5.3.4 we give more details on the process).

Naturally, the accumulation process works only if the scene does not change. A
change can be a relative change of positions between the points on the model
and the light, so if the model gets translated, rotated or scaled, the accumulated
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x

Figure 5.4: Render to cubemap, side view. The gray area represents the frustum of
the current direction’s camera (orthographic). We have three different
cases of a point on the surface: x1

o is visible from both the light and the
camera, so the disk is placed on it. x2

o is visible from the camera but not
from the light, so the disk is placed in the closest position to the light.
x3
o is not visible from the camera, so it is discarded.

result has to be discarded and the accumulation started all over. The directional
cameras are locked with the model, so the pixels are always aligned. This is
why in equation 5.1 the dependence from time of the point xo and ~ωo have been
dropped.

Step 3 - Combination
In this step, we render our model. Using the matrices and the textures prepared
in the previous step, for each fragment on the surface we sample all the layers
in the texture as illustrated in Figure 5.5. In order to do this, we need also
to sample the depth map generated in the previous step. We can define this
sampling as a visibility function to test if a point x belongs to layer k:

V k(x) =
{

1 if x is visible from the kth camera
0 otherwise

The function V is calculated by sampling the k-th layer depth map in a way



5.2 Algorithm overview 63

similar to shadow mapping (details in Section 5.3.5). Given this function, we
can simply represent the outgoing radiance by simply averaging the summation
over the K layers:

LtSS(x) = Ac
Nt

K−1∑
k=0

V k(x)R̃t,k(x)

K−1∑
k=0

V k(x)

The first factor 1
t is to average over the number of frames, while the second is the

average area of a sample in the circle Ac
N , that is necessary to complete equation

4.2. We note that we moved all the layer-independent computation into the
final computation step, in order to save as much performance as possible.

Figure 5.5: Final combination step. The blue quads indicates each one of the radi-
ance map layers, as seen from their direction. We can see that in the
point xo the contribution from three faces (green dots) is considered. For
the remaining two faces (red dots), the contribution is not considered as
the point is not visible.

We are not done yet, as for now we have computed the radiance only deriving
from subsurface scattering. For finally describing the illumination of our scene,
we need also to include a factor based on the surface reflection. Since the
subsurface scattering radiance is already multiplied by a transmittance Fresnel
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term (in the BSSRDF equation in 3.9) T (η, ~ωo) we the reflection color multiplied
by the converse transmission term 1− T (η, ~ωo):

Lt(x, ~ωo) = LtSS(x) + (1− T (η, ~ωo))Li(x, ~ωo − 2(~ωo · ~n)~n)

Li can be the radiance coming from other objects or by an environment map.
After this, we just need to perform gamma correction in order to get the final
result. Given the gamma coefficient γ, we perform gamma correction by:

Ltgamma(x, ~ωo, γ) = Lt(x, ~ωo)
1
γ

And, adter this, we can finally send the radiance to the output device.

Figure 5.6: Final Result of the method after 100 frames simulating a potato bunny of
dimensions ≈ 30cm. All the results presented in this report are gamma
corrected with γ = 1.8.
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Figure 5.7: Final Result of the method after 100 frames simulating a backlit bunny
made of beer, dimensions ≈ 30cm.

5.3 Implementation details

In this section, we will further expand the overview given in the previous section
by adding further details. We organized this section in topics, in each one of
them expanding a particular aspect of our algorithm. Each point clarifies with
examples one technique or approach used in the method. The code given on
each example does not necessarily come from our implementation, but it can be
simplified for illustration purposes.

5.3.1 Render-to-texture

In a graphics API, and more specifically in OpenGL, all the output from a final
shader stage is usually sent to the display device in order to be displayed on
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the screen. However, it is possible to redirect the output into another memory
area of the GPU and reuse it for further computations. This allows to create
complicated rendering techniques such as the one described in this report.

In OpenGL, is possible to redirect the output to a texture object. We can do this
through a so-called framebuffer object (FBO). A FBO is a collection of objects
that allows off-screen rendering. A FBO has attachment points, to which we can
attach textures. A texture can be attached to one of the output color channels of
the fragment shader (GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, ...), to
the depth buffer output (GL_DEPTH_ATTACHMENT) or to the stencil buffer output
(GL_STENCIL_ATTACHMENT).

The connection between the framebuffer and the texture can be set in a ini-
tialization step (listing 5.1). Then, by simply binding the FBO (listing 5.2) we
redirect our screen output to the desired texture.

GLuint tex ,fbo;
// Generating texture
glGenTextures (1, &tex);
glBindTexture ( GL_TEXTURE_2D , tex);
[...] // setting up texture parameters ...
glTexImage2D ( GL_TEXTURE_2D , 0, GL_RGBA16F , size , size , 0, GL_RGBA , GL_FLOAT←↩

, 0);

glGenFramebuffers (1 ,& fbo);

// connecting current fbo and texture
glBindFramebuffer ( GL_DRAW_FRAMEBUFFER , fbo);
glFramebufferTexture2D ( GL_DRAW_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , ←↩

GL_TEXTURE_2D , tex , 0);
glBindFramebuffer ( GL_DRAW_FRAMEBUFFER , 0); // Binding back main framebuffer

Listing 5.1: Render to texture example, initilalization phase. Note the call to
glFramebufferTexture2D

glBindFramebuffer ( GL_DRAW_FRAMEBUFFER , fbo);
GLenum buffers [] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers (1, buffers );
[...] // draw model

Listing 5.2: Render to texture example, rendering phase. Since we have not
configured and FBO for depth and stencil buffers, depth testing and
stencil should be disabled at this point.
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5.3.2 Layered rendering

Layered rendering is a special feature used to render to a special type of texture
called layered texture. Let us take as an example the step 2 of our algorithm,
where we need to render the object from K different directions. A first approach
to this would be to create K 2D textures of type GL_TEXTURE_2D, and perform
K draw calls, rebinding the texture on the current FBO each time. OpenGL,
however, provides a way to do this with a single draw call, potentially reducing
the rendering costs due to context switching.

We will use the OpenGL provided type GL_TEXTURE_2D_ARRAY, that we initialize
in the usual way, noting that an array texture should be allocated as a 3D tex-
ture. When binding it to an FBO, we use the generic glBindFramebufferTexture:

GLuint fbo , arraytex ;
glGenFramebuffers (1 ,& fbo);
glGenTextures (1, & arraytex );

glBindTexture ( GL_TEXTURE_2D_ARRAY , arraytex );
[...] // setting up texture parameters , omitted
glTexStorage3D ( GL_TEXTURE_2D_ARRAY , levels , GL_RGBA32F , size , size , layers );

glBindFramebuffer ( GL_DRAW_FRAMEBUFFER , fbo);
glFramebufferTexture ( GL_DRAW_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , arraytex , ←↩

0);

Listing 5.3: Initializing array texture. Note that the number of layers is passed to
the glTexStorage3D command.

In order to render to a layered texture, we need then to introduce a geometry
shader. In our example, the difference between each layer is basically a different
view matrix. So, we move the computation of the position, usually left to the
vertex shader, to the geometry shader. We first introduce the code:

#version 430
#define DIRECTIONS 16
layout ( triangles ) in;
layout ( triangle_strip , max_vertices = 60) out;

uniform mat4 P;
uniform mat4 viewMatrices [ DIRECTIONS ];

void main(void)
{

for(int i = 0; i < DIRECTIONS ; i++)
{

gl_Layer = i;

for(int k = 0; k < 3; k++)
{

vec4 v = gl_in [k]. gl_Position ;
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gl_Position = P * viewMatrices [i] * v;
EmitVertex ();

}
EndPrimitive ();

}
}

Listing 5.4: Geometry shader for layered rendering. The multiplication by the model
matrix of vertex v is performed in the vertex shader (not shown).

VERTEX SHADER VERTEX SHADER VERTEX SHADER

GEOMETRY SHADER

FRAGMENT SHADER FRAGMENT SHADER FRAGMENT SHADER FRAGMENT SHADER

LAYERED TEXTURE

Figure 5.8: Diagram that illustrates layered rendering.
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As we can see, we duplicate each one of the incoming triangles and then output
it multiplied by a different view matrix. the EndPrimitive() function ensures
that the output triangles in the final triangle strip are separated. In order to
render each triangle to a different layer, we need to set the build-in variable
gl_Layer to the layer we want to render before emitting the triangle. The
whole process is illustrated in Figure 5.8.

5.3.3 Accumulation buffers

In the second step of our method we said we would like to accumulate the result
of the computation, in order to progressively update the result over different
frames. In order to do this, we encounter an obstacle: we would like to render
to the currently bound texture, but at the same time we need to read the
previous value stored on the texture. Unfortunately, the OpenGL Specification
[Segal and Akeley, 2012] advices against reading from the same texture we are
rendering to. This is made to avoid a situation called feedback loop. In fact, we
cannot be sure of the results of what is stored in any pixel of the texture while
we are rendering to it.

There are many possible solutions to the problem. The first approach is to
rely on the driver implementation: some drivers, in fact, allow to render to the
same texture we are bound to, under some conditions. However, if we want a
general method that works over all platforms, this is not a viable path. The
second solution is to use image textures, a new type introduced in OpenGL 4.2
that allows explicit load-store of values, as well as new special constructs for
GPU memory management (atomic operations and memory barriers). Though
the usage of these features is appealing, their performance is generally poor
compared to a framebuffer-based implementation.

The final approach, and the one we use in our implementation, is to ping-pong
between the two textures. The idea is to sacrifice memory space by employing
two textures T1 and T2. In the first frame, we render to the first texture T1.
In the second frame, we use T2 as a render target, and we sample T1 and add
it to the computed result. In the third frame, we render to T1 and sample
from T2, and so on. From this alternance between the textures comes the name
ping-pong. A minimal example of ping-ponging using a 2D texture is shown in
listing 5.5.
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// A global frame variable is initialized in order to keep track of the ←↩
current frame

GLuint fbo , tex1 , tex2;
// Creating FBO , initializing textures and texture parameters .
// Also binding shader with glUseProgram in order to bind texture uniforms
[...]

GLuint tex_from , tex_to ;

tex_from = ( frame % 2 == 0)? tex1 : tex2;
tex_to = ( frame % 2 == 0)? tex2 : tex1;

glBindFramebuffer ( GL_DRAW_FRAMEBUFFER , fbo);
glFramebufferTexture ( GL_DRAW_FRAMEBUFFER , GL_COLOR_ATTACHMENT0 , tex_to , 0);
glDrawBuffer ( GL_COLOR_ATTACHMENT0 );

GLint location = glGetUniformLocation (" source_texture ");
glUniform1i (location , 0);
glActiveTexture ( GL_TEXTURE0 );
glBindTexture ( GL_TEXTURE_2D , tex_from );

// more uniforms and rendering commands .
[...]
frame ++;

Listing 5.5: Minimal example of ping-pong textures.

5.3.4 Generation of uniformly distributed points

In our method we have at least twice the necessity to generate uniformly dis-
tributed points either on a disc or on a sphere. To do this, we employ a particular
sequence of pseudo-random numbers, called Halton points [Halton, 1964]. We
explain briefly the ideas behind the sequence. For a more mathematical com-
plete discussion on its properties of pseudo randomness, see Niederreiter [1992].

First, given a prime number p and a non-negative integer n, we can express it
in base p as:

n = a0 + a1p+ a2p
2 + ...+ arp

r

Where ai ∈ [0, p− 1]. We now define a van der Corput sequence Φp(n) as:

Φp(n) =
r∑
i=0

ai
pi+1 = a0

p
+ ...+ ar

pr

This sequence, given the fact that is based on prime points, automatically as-
sumes good qualities of randomness. In addition, the function is already nor-
malized in the range [0, 1). We define an Halton point as the combination of
two Van der Corput sequences:

Hp1,p2(n) = (Φp1(n),Φp2(n))
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Where p1 and p2 are two prime numbers, with p1 < p2. Usually, (p1, p2) = (2, 3)
gives good results. All Halton points belong to the region of space [0, 1]× [0, 1].
In order to obtain a sampling of Halton points on a sphere, we convert them
using an area-preserving cartesian-to-spherical coordinates formula:

Hp1,p2(n) = (Φp1(n),Φp2(n))→ (s, t)⇒
⇒ Hsphere

p1,p2
(n) = (

√
1− (2t− 1)2 cos(2πs),

√
1− (2t− 1)2 sin(2πs), 2t− 1)

And, to get the point on a disc, we simply take the point on a sphere and project
it. In practice, we put the third coordinate to zero:

Hp1,p2(n) = (Φp1(n),Φp2(n))→ (s, t)⇒
⇒ Hdisc

p1,p2
(n) = (

√
1− (2t− 1)2 cos(2πs),

√
1− (2t− 1)2 sin(2πs))

Wong et al. [1997] provide an introduction to Halton points, as well as describing
an implementation to generate a point on a Van der Corput sequence. We
implemented their pseudo-code in C++ as follows:

float vanDerCorputPoint (int n, int basis )
{

int kp = n;
float pp = ( float ) basis ;
float phi = 0.0f;
while (kp > 0)
{

int a = kp % basis ;
phi = phi + a / pp;
kp = int(kp / basis );
pp = pp * basis ;

}
return phi;

}

Listing 5.6: Generating the p-adic Van der Corput point.

5.3.4.1 Exponentially biased points

In our algorithm, in order to obtain a better sampling, we need to have an
exponentially biased distribution of points, as described in Section 4.2. To
obtain the disc, we employ a technique called rejection sampling. The general
idea is to generate a the sequence of Halton points, then calculate their radius
r and calculate its probability distribution function using a value σ∗. Then, we
use the following acceptance criterion:

e−σ
∗r > ζ

Where ζ ∈ [0, 1) is a pseudo-randomly generated number. We can see that if the
point is close to the center (r → 0), e−σ∗r ≈ 1 and so the point is more probable
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Figure 5.9: Positions of the first 16 cameras generated using Halton points on a
sphere.
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Figure 5.10: Exponentially biased Halton points on a disk. The maximum radius is
1, and M = 300.
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to be accepted. On the other hand, if the point is far from the center of the disc
(r → +∞), e−σ∗r ≈ 0 and so the point is less probable to be accepted. The
code for generating a vector of accepted points is reported in listing 5.7.

void planeHaltonCircleRejectionExponential (std :: vector <Vec2f > &result , int ←↩
m, float sigma_tr , float radius )

{
uint accepted = 0;

gel_srand (0); // Setting the seed of the random number
int i = 1;
while ( accepted < m)
{

Vec2f point = haltonPointCircle (i, 2, 3);
float rad = point . length () * radius ;
float expon = exp(- sigma_tr * rad);
float zeta = gel_rand () / (( float )( GEL_RAND_MAX ));
if(zeta < expon )
{

result . push_back ( radius * point );
accepted ++;

}
i++;

}
}

Listing 5.7: Generation by rejection of a exponentially distributed disc. The function
generates M points with distribution e−σtrr, and where radius is the
maximum final radius of the points.

In our algorithm, we generate a number of samples M that is fixed, with a
radius equal to the size of the bounding box of the model. Then in the actual
calculation only theN points closest to xo are actually used, allowing us to tweak
the performance and the result. Moreover, the value of the exponent σ∗ we pass
to this method is related to σtr (that is a vector, since the transmission rates
are spectral), to account for the material scattering properties. We calculate σ∗
with the formula:

σ∗ = min(σtr,x, σtr,y, σtr,z)
q

Where q is a parameter tweakable from the user. We will justify why we use
the minimum transmission coefficient has to be used in section 6.2.1. The idea
is that the user can modify the distribution of the points, making them span
a wider area (that is for q > 1) without increasing the number of samples N .
In fact, a bigger N implies a worse performance, while a bigger q requires only
to recompute the points. We will discuss the results for varying values of q in
Chapter 6.
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5.3.5 Shadow mapping

Shadow mapping is a common technique used in modern real-time graphics
[Everitt et al., 2003, Segal et al., 1992, Williams, 1978]. The idea behind it is to
render an object from a light’s point of view, and then use the generated depth
information in order to decide if a point is shadowed or not. First of all, we
convert the point into the light camera space, using a special space conversion
matrix. After this, if we have a point p = (px, py, pz), we compare pz to the
texture T sampled in the point (px, py):

pz > T (px, py) (5.2)

Figure 5.11: Shadow mapping. We see the different results for three points p1,
p2 and p3. The red length represents the value sampled from the
depth texture(T (px, py)), while the green length represents the value
we compare against (pz). When pz is less than T (Pxy), as in p1, the
point is not shadowed. In the other cases, p2 and p3, pz > T (Pxy)and
the point is not visible.
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If the above condition is verified, it means that the current point is beneath the
point visible from the light and then it should be shadowed. The matrix L used
to convert a point from world space to texture space is the following, using the
matrix definitions and notation in Section A:

L = T

(
1
2

)
· S
(

1
2

)
· P · V

where P and V are the projection and view matrix we use to render with the
light. The first two matrices are necessary to convert between clip and texture
coordinates, as clip coordinates are in the range [−1, 1]× [−1, 1], while texture
coordinates are in the range [0, 1] × [0, 1]. The process is illustrated in Figure
5.11.

In our algorithm, we use the ideas behind shadow mapping in two different
occasions. The first occasion is to get the points xi in step 2 from the texture
generated in step 1, where we use the matrix L in order to convert the world
point xo to xd, the center of the disc in texture space.

The second occasion is in the final combination step, where we use also shadow
mapping in order to compute the visibility function V k(x), and to sample the
radiance map. Technically, the ”light cameras” in this case are the directional
cameras from where we render the scene, but the concept is the same. We
can see how we sample the shadow map in the final combination shader in the
following listing:

#version 430
uniform sampler2DArrayShadow depthMap ;
uniform mat4 cameraMatrices [ DIRECTIONS ];

float sample_shadow_map (vec3 world_pos , int layer )
{

vec4 light_pos = cameraMatrices [ layer ] * vec4(world_pos ,1.0f);
light_pos .z -= shadow_bias ; // bias to avoid shadow acne
if( light_pos .x < 0.0 || light_pos .x > 1.0) return 1.0;
if( light_pos .y < 0.0 || light_pos .y > 1.0) return 1.0;
return texture (depthMap ,vec4( light_pos .x, light_pos .y,layer , light_pos .z)←↩

).r;
}
[...] // shader code

Listing 5.8: Sampling of the shadow map texture in step 3 of our method.

In the above code, cameraMatrices[layer] corresponds to the L matrix. We
use a special type of sampler, sampler2DArrayShadow, that makes something
more than its equivalent sampler2DArray. The latter, in fact, accepts a vec3,
and simply retrieves the value in the texture. The former, on the other hand,
accepts an extra parameter zcamera (which is light_pos.z), and compares it



76 Implementation

to the value stored in the depth texture ztex, performing the test in equation
5.2. If the depth of the point is less than the depth stored in the texture
(zcamera < ztex), 1 is returned as the point is closer to the directional camera,
and thus visible. On the other hand, if zcamera ≥ ztex, it means the point is
under the surface, and thus not visible, and 0 is returned.

To configure the sampler2DArrayShadow texture, we need to specify some extra
parameters during the depth texture initialization:

glBindTexture ( GL_TEXTURE_2D_ARRAY , depthtex );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_MIN_FILTER , GL_NEAREST );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_MAG_FILTER , GL_NEAREST );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_WRAP_S , GL_CLAMP_TO_EDGE );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_WRAP_T , GL_CLAMP_TO_EDGE );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_COMPARE_MODE , ←↩

GL_COMPARE_REF_TO_TEXTURE );
glTexParameterf ( GL_TEXTURE_2D_ARRAY , GL_TEXTURE_COMPARE_FUNC , GL_LESS );
glTexStorage3D ( GL_TEXTURE_2D_ARRAY , 1, GL_DEPTH_COMPONENT32F , size , size , ←↩

layers );

Listing 5.9: Configuration of a shadow map depth texture.

We can see that we specify two extra parameters: GL_TEXTURE_COMPARE_MODE,
once set to GL_COMPARE_REF_TO_TEXTURE, means that sampling the depth tex-
ture in a shader will give a value based on the comparison between an extra value
z and the depth value d in the texture. The second parameter GL_TEXTURE_
COMPARE_FUNC specifies how to compare the values: GL_LESS means that 1 is
returned if z < d, and zero is returned otherwise.

5.3.6 Memory layout

In this section, we briefly describe how we allocate memory in our method.
The great advantage of using OpenGL 4.3 is that we can use texture views
[Segal and Akeley, 2012]. Texture views are a way to create allocate storage
for a texture in OpenGL, but on the opposite hand of glTexImage*D or the
glTexStorage*D families of functions they allow to use another texture’s storage
space. To create a texture view, we use glTextureView. We compare the
standard way of allocating texture with our without texture view in Figure
5.12.

In our method, this comes to great advantages in two areas. First of all, since
the depth texture of the radiance map is not accumulated, we can make the
two radiance maps that are using ping-ponging share the same depth map. In
addition, we can render directly between two mipmap levels of the same texture,
something that we will need later to generate a blurred version of our texture.
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glTexStorage(...) glTexStorage(...)

texture1 texture2

(a) Without texture views

glTexStorage(...)
glTextureView(...)

texture1 texture2

(b) With texture views

Figure 5.12: Diagram illustrating texture views. On the top part of the picture the
texture ids on the GPU, on the bottom the state of the memory. In the
first case, we create two memory areas on the GPU using glTexStorage,
in the second case we make a single call to glTexStorage and then a
second call to glTextureView to make them share the same storage
space.

A complete example memory layout for our algorithm is reported in table 5.1.
As we will see, we will account for the contribution from multiple lights as more
layers on the light map texture. More textures are loaded in order to make
the method work, but their contribution to the overall memory consumption is
negligible.

If L is the number of lights, Wl the size of the light map, K the number of
directions and Ws the size of the radiance map, we can obtain a direct formula
to calculate the memory consumption in bytes:

4
{[

(4 + 4) 4
3 + 1

]
KW 2

s + [3 + 3 + 1]LW 2
l

}
The 4/3 factor account for the extra space reserved for mipmaps. The 4 factor
at the beginning is because each channel has 32 bits, that equal to 4 bytes.
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Ch. Bits Width Height Depth Size (MB)

Light map (vertex) 3 32 512 512 1 3

Light map (normals) 3 32 512 512 1 3

Light map (depth) 1 32 512 512 1 1

Radiance map 1 (color) 4 32 512 512 16 64

Mipmaps 1 4 32 - - - 21

Radiance map 2 (color) 4 32 512 512 16 64

Mipmaps 2 4 32 - - - 21

Radiance map (depth) 1 32 512 512 16 16

193 MB

Table 5.1: Memory occupation of our method, for one light. Mipmaps are accounted
for one additional third on the size of the radiance map. ”Ch.‘ is the
number of channels in the texture, ”Bits‘ is the number of bits per channel.

5.4 Caveats

The algorithm described so far, if implemented as is, unfortunately does not give
a result that we can appreciate. In order to obtain the desired result, some extra
corrections are necessary, and we are going to describe them in this section.

5.4.1 Random rotation of samples

As we note in equation 5.1, we never specified how the points in the samples
are processed before actually being used in the calculation. This can lead to the
assumption that the same disc pattern is used on every point xo of the model.
This causes a problem because this generates banding artifacts, as we can see in
Figure 5.13. In order to avoid the artifacts, in exchange for noise, we randomly
rotate the pattern for each pixel of the radiance map. Given that we are able
to generate a random point r, we can take each one of the samples on the disk
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(a) Constant rotation (b) Random rotation

Figure 5.13: White grapefruit juice dragon. The only difference in the two images
is that the samples on the right figure are randomly rotated.

di and rotate it in order to obtain the new sample d∗i :

θ = 2πr

d∗i =
(

cos θ sin θ
− sin θ cos θ

)
di

(5.3)

Even if noisy, we eliminate the artifacts from the result. We will see how to
reduce the noise using mipmaps in Section 5.4.2. As we observed before in the
overview, we also need the result to evolve on a time basis, in order not to
compute the same results on every frame. Recalling that the current frame is t
and the maximum amount of frames before we stop the computations is T , we
make our computation evolve using the following θt in equation 5.3:

θt = 2π
(
r + t

T

)
This causes a progressive rotation of the disc around the point over time. How-
ever, we need still to specify how to calculate r. As a function, r = (x, y, l)
needs to depend on the fragment coordinates (x, y), as well as from the cur-
rent layer l (to avoid two layers make the same computation). Since we are on
the GPU, we cannot use a built-in random function, so we need either to load
the random points from the CPU as a separate texture or to generate them
on-the-fly. For the latter technique, we tried a sine based generator, a linear
shift (LSR) random generator and a congruential linear generator (LCG), all in
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(a) Sine noise (b) LSR noise (c) LCG noise

Figure 5.14: Three examples of deterministic noise generation on GPU. While the
sine and linear shift noises give a uniform and pleasant noise, the linear
congruential generator has a periodicity.

listing 5.10. The input point that was given was in both cases (l · x, l · y). We
can see some results in Figure 5.14. The sine based generator theoretically gives
the best result, but the linear shift generator gives an indistinguishable result
with better performance.

highp float noise_sine (vec2 co)
{

highp float a = 12.9898;
highp float b = 78.233;
highp float c = 43758.5453;
highp float dt = dot(co.xy ,vec2(a,b));
highp float sn = mod(dt ,3.14) ;
return fract (sin(sn) * c);

}

highp float noise_lsrg (vec2 co , int size)
{

int n = co.x + size * co.y;
n = (n << 13) ˆ n;
int s = (n * (n*n *15731+789221) + 1376312589) & 0 x7fffffff ;
return s / (4294967296.0 f) * 2;

}

highp float noise_lcg (vec2 co , int size)
{

int n = co.x + size * co.y;
return float ((n * 1664525 + 1013904223) % 4294967295) / 4294967296.0 f;

}

Listing 5.10: Three GLSL functions to generate random points on the GPU. The
extra size parameter is the height of one layer of the radiance map
texture.
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5.4.2 Mipmap generation

The randomization we performed in the previous step comes with a drawback,
i.e. we increase the noisiness of the result, especially in the initial steps. Once
we reach convergence, the noisiness slowly disappears. In order to improve our
method, we need to introduce a way to take the intermediate result and make it
as close as possible to the final result at convergence. Our approach was to use a
filter to blur the result multiple times, storing the results in the mipmaps of the
radiance map generated in step 2 of our method. This results in an additional
step between step 2 and step 3, where the mipmaps are calculated.

The filter that gave us the most promising results is the bilinear filter with the
shape shown in Figure 5.15. The filter uses the alpha value of the texture as a
weight for the sampled color, so the filter maintain the edges of the texture.
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Figure 5.15: Alpha-weighted bilinear filter. In 5.15a we have the shape of the filter.
In 5.15b we have the alpha channel of an example image, to which we
show the weights used in the filters in Figure 5.15c, based on the alpha
channel of the picture.

On the implementation level, the mipmaps need to be rendered one after the
other, as we need the result of the first computation in order to perform the
second. So, we use always the same shader, reported in listing 5.11, to filter
between two textures. In the first step, we bind layer zero (where the result of
the rendering of step 2 is stored) as source and layer 1 as destination. Then,
we bind layer 1 as source and layer 2 as destination, and so on. To perform the
filtering, we render a full screen quad.

However, OpenGL does not allow to bind the same image both as a source
and as a destination, even if the mipmap levels are different. So, in order to
overcome this difficulty, we use texture views as we described them in 5.3.6.
We create a new texture for the mipmaps, but then we configure it to use the
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storage reserved to the mipmaps of the radiance map. So, we can bind it to
the FBO as it was a completely different texture, but then once we render the
result will be rendered in the right memory location.

#version 430
in vec3 _tex;
uniform sampler2DArray source ;

out vec4 fragColor ;

uniform float texStep ;
uniform int scaling ;

void main(void)
{

int layer = gl_Layer ;
float t_step = texStep * 0.5 * scaling ;
vec4 c0 = texture (source ,vec3(_tex.xy , layer ));
vec4 c1 = texture (source ,vec3(_tex.xy + vec2(t_step ,0.0f),layer ));
vec4 c2 = texture (source ,vec3(_tex.xy - vec2(t_step ,0.0f),layer ));
vec4 c3 = texture (source ,vec3(_tex.xy + vec2 (0.0f, t_step ),layer ));
vec4 c4 = texture (source ,vec3(_tex.xy - vec2 (0.0f, t_step ),layer ));

vec4 c5 = texture (source ,vec3(_tex.xy + 2 * vec2(t_step ,0.0f),layer ));
vec4 c6 = texture (source ,vec3(_tex.xy - 2 * vec2(t_step ,0.0f),layer ));
vec4 c7 = texture (source ,vec3(_tex.xy + 2 * vec2 (0.0f, t_step ),layer ));
vec4 c8 = texture (source ,vec3(_tex.xy - 2 * vec2 (0.0f, t_step ),layer ));

vec4 c9 = texture (source ,vec3(_tex.xy + vec2(t_step , t_step ),layer ));
vec4 c10 = texture (source ,vec3(_tex.xy - vec2(t_step , t_step ),layer ));
vec4 c11 = texture (source ,vec3(_tex.xy + vec2(t_step , -t_step ),layer ));
vec4 c12 = texture (source ,vec3(_tex.xy - vec2(t_step , -t_step ),layer ));

float v0 = clamp (c0.a ,0.0f ,1.0f);
float v1 = clamp (c1.a ,0.0f ,1.0f);
[...] // omitted
float v12 = clamp (c12.a ,0.0f ,1.0f);

vec4 step1 = c0 * v0 + c1 * v1 + c2 * v2 + c3 * v3 + c4 * v4;
float vstep1 = v0 + v1 + v2 + v3 + v4;
vec4 step2 = c5 * v5 + c6 * v6 + c7* v7 + c8 * v8;
float vstep2 = v5 + v6 + v7 + v8;
vec4 step3 = c9 * v9 + c10 * v10 + c11 * v11 + c12 * v12;
float vstep3 = v9 + v10 + v11 + v12;

fragColor = ( step1 + step2 + step3 )/max( vstep1 + vstep2 + vstep3 , 1.0f);
}

Listing 5.11: Custom mipmap filtering on GPU. _tex are the texture coordinates on
the screen aligned quad.
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Figure 5.16: Mipmap generation. On the first row, left to right, the base level and
two subsequent applications of the bilinear filter (the images have been
cropped for a better visualization). On the bottom row, the model
sampled with the different mipmap levels. We note that at level 2
artifacts start to emerge along the camera seams.

5.4.3 Shadow bias

The shadow mapping described in Section 5.3.5 has an obvious problem, called
shadow acne. As we can see in Figure 5.17, the discretization of depth comes
with a problem: depending on the incidence angle, the surface starts generating
an alternating pattern of dark and light on the visible areas. The solution in
this case is to introduce a constant factor when we are comparing the texture
space position and the depth of a point, called shadow bias εb. The test then
becomes:

pz − εb < T (px, py)

The result is depicted in Figure 5.17. As we can see, we raise the sampling by
the bias factor, so the lit areas do not present shadow acne anymore. This comes
with a drawback: the shadow bias, for thin objects, it introduces another arti-
fact, called peter panning, i.e. the shadow and the object become disconnected.
In the case of our method, a too large bias makes the different directions to
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become ”disconnected”, not representing a faithful result.

(a) Shadow acne (b) Shadow acne, with shadow bias

(c) Shadow acne, result (d) Shadow acne, with shadow bias, result

Figure 5.17: Shadow acne (Figure 5.17a) origin: the angle of the light causes little
bands to appear. Adding a small offset εz to the sampling (5.17b)
corrects the result, leading to a full lit surface. On the bottom row,
the two figures 5.17c and 5.17d show the results with and without the
correction.

5.4.4 Texture discretization artifacts

A problem related to the previous one is texture discretization artifacts, that
appear as seams in the texture in Figure 5.18. The problem is similar to the one
of depth bias, but it manifests on the direction perpendicular to the directional
cameras. Because of the discretization and the depth bias in the shadow sam-
pling, some pixels become false positives, being incorrectly sampled even if they
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(a) Without correction (b) With correction

Figure 5.18: Combination offset artifacts. Without the correction, artifacts start
to appear. With a correction of 0.002 ≈ 2/1024 the result is greatly
improved.

are not visible. To fix this, we apply a transformation to the vertex in the final
step that shrinks it a little bit towards the center of the texture. The shrinking
is made using the camera direction as a main axis, according to the formula:

xshrinko = xo − εc(~no − ~ωd(~no · ~ωd));

Where εc is a parameters set by the user. In this way we obtain a shrinkage of
one pixel of the model when we use xshrinko for sampling the radiance map. As
we can see in Figure 5.18, adding this correction solves the problem.

5.5 Extensions to the method

In this section, we describe briefly how we extended our implementation in order
to cover a wider range of cases, especially regarding different types of light.

5.5.1 Rendering with multiple lights

Rendering with multiple lights requires only a slight extension to the method.
We just need to adjust the computation in 5.1 in order to account for multiple
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Figure 5.19: Rendering with two point lights. The material parameters used are for
white grapefruit juice. One light comes from the left (~ωl = (1, 0, 0)),
with radiance Ld = (13, 5, 5). One comes from the top (~ωl = (0, 0, 1)),
with radiance Ld = (5, 5, 13).

lights, obtaining a result as the one in Figure 5.19. We notice that this compu-
tation may come with a performance penalty, since we are now computing the
contribution from LN samples instead of N , where L is the number of lights.
To avoid this, we account in advance and calculate only N

L samples per light:

Rt,k(xo) =
L∑
l=1

Ll

N/L∑
i=1

S(xt,ki , ~ωtl ,xo, ~ωo) exp
(
σtrr

t,k
i

)
, t ∈ [0, T ], k ∈ [0,K−1]

We can see that only the light vector ~ωtl and the radiance Ll depend on the
current light, while the other parameters are left unchanged. On the imple-
mentation level, we first need to change the light map in order to be a layered
texture as well. As in step 2, we employ layered rendering to render all the light
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maps at same time. Then we simply add an extra loop in the shader of step
2 to account for multiple lights. As for the light parameters, they are passed
to the shader as arrays of uniforms. The outline of the new shader illustrating
how lights are computed is listed in listing 5.12.

#version 430
layout ( location = 0) out vec4 fragColor ;

[...] // constants , includes , textures omitted

uniform sampler2DArray vtex; // texture with vertices
uniform sampler2DArray ntex; // texture with normals

smooth in vec3 position ;
smooth in vec3 norm;

uniform vec4 light_pos [ MAX_LIGHTS ];
uniform vec4 light_diff [ MAX_LIGHTS ];
uniform int light_number ;
uniform mat4 lightMatrices [ MAX_LIGHTS ];

[...] // BSSRDF code , uniform and functions

void main(void)
{

vec3 xo = position ;
vec3 no = normalize (norm);

[...] // sampling the old color , noise calculation

for(int k = 0; k < light_number ; k++)
{

vec3 wi = light_pos [k]. xyz;
vec4 light_post = lightMatrices [k] * vec4(xo ,1.0f);
vec2 circle_center = light_post .xy;
vec3 Li = light_diff [k]. xyz;

for(int i = 0; i < max_samples ; i++)
{

[...] // sampling from layer k in textures vtex and ntex
[...] // summing over BSSRDF on vector accumulate

}
}

fragColor = vec4( accumulate ,1.0f);
[...] // adding old color

}

Listing 5.12: Outline of the shader in step 2 with support for multiple lights.
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5.5.2 Rendering with other kinds of light

Our method does not depend on a specific type of light in order to render a
material. Once we have a formula for the radiance for the light, we can simply
introduce it in equation 5.1 and compute the result. So, for example, for a point
light the equation would become.

Rt,k(xo) = Il

N∑
i=1

S(xt,ki , xl−xi
‖xl−xi‖ ,xo, ~ωo)
‖xl − xi‖

exp
(
σtrr

t,k
i

)
, t ∈ [0, T ], k ∈ [0,K−1]

(5.4)
Where xl is the light position and Il the light intensity. More generally, if we
have a function to compute the light direction ~ωl(xi) and a function to compute
radiance L(xi, ~ωl(xi)) we can express equation 5.1 in the following way:

Rt,k(xo) =
L∑
l=1

N/L∑
i=1

Lt(xi, ~ωl(xi))S(xt,ki , ~ωtl (xi),xo, ~ωo) exp
(
σtrr

t,k
i

)
If we have only point and directional lights, we have the following setup for the
two formulas:

~ωl(xi) =
{
~ωl if l is directional with ~ωl, Ll

xl−xi
‖xl−xi‖ if l is point with xl, Il

L(xi, ~ωl(xi)) =
{
Ll if l is directional with ~ωl, Ll

Il
‖xl−xi‖ if l is point with xl, Il

On the implementation level, we can still use same uniforms that we use for
multiple lights: the position vector will become either the position of the di-
rection of the light. We make the position vector of the light carry some extra
information in the alpha channel: if the alpha is zero (i.e. the vector is of type
(x, y, z, 0)), we are dealing with a directional light, while if the alpha is one (i.e.
the vector is of type (x, y, z, 1)) we are using a point light. The code to calculate
lights thus becomes:

int current_light = k;
vec3 wi = light_pos [ current_light ]. xyz;
vec4 rad = light_diff [ current_light ];
vec3 topoint = wi - xo;
float light_type = light_pos [ current_light ].a;
wi = ( light_type > 0)? normalize ( topoint ) : normalize (wi);
vec3 Li = light_diff [ current_light ]. xyz;
Li = ( light_type > 0)? Li / dot(topoint , topoint ) : Li;

Listing 5.13: GLSL Code to calculate the radiance Li and the incoming light
direction wi for the k-th directional or point light source.
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(a) Directional: ~ωl = (0, 0, 1) Ld = 25 (b) Point: xl = (0, 0, 2) Id = 60

Figure 5.20: Rendering with a directional and a point light. The material parameters
are the ones for potato.

5.5.3 Rendering with environment light illumination

As for the environment lighting, we proceed as we outlined in Section 4.4. In
the method chapter, we omitted how we do actually organize and sample our
CDF. The idea is to have one CDF for the rows of the function that gives us
the CDF according to the probability pu(u). Then we have a CDF for each
one of the column of the functions, that sample the probability pv(v|u). When
we select a random couple of random points (ζ1, ζ2) we first sample the first
function according to ζ1, then we sample the resulting column using ζ2.

We define our discrete CDF as and array C of s+ 1 elements as follows, where
s is the size of the distribution P (that would be either n or m in our case). P
is an array of N elements.

C[i] =
∑i−1
k=0 C[k] + P [i]

s C[s]

Then, we sample our CDF using a generic value ζ using the following:

u = j + ζ − C[j]
C[j + 1]− C[j]

Where j = minj{j ∈ [0, s] | C[j] > ζ} − 1 is the CDF value right before the
CDF surpasses ζ. This is basically the inverse function we discussed in Section



90 Implementation

Figure 5.21: Rendering a dragon using sixteen directional lights generated from the
Doge map (with reflection). The material parameters are a potato
material.

4.4. Once we have calculated the two values (u1, u2), as before we convert
them to spherical coordinates, from which we create a set of directional lights
that approximate our environment light. We can appreciate the rendering with
different numbers of generated lights using the doge light map in Figure 5.21.

5.6 Discussion

In this section, we anticipate some of the results that will be presented in Chap-
ter 6, in order to analyze our method and present advantages and disadvantages
of the method, and more specifically of our implementation.
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5.6.1 Advantages

The great advantage of this method, that comes from the BSSRDF model, is
that it already accounts for self shadowing and self occlusion. So, no extra steps
are required in order to account for these effects, that usually are difficult to
evaluate in a real-time fashion. Moreover, if we reuse the same light map for
all the objects in the scene, it is possible to account for the occlusion between
objects. So, if an object is placed between the light and another object, a soft
shadow of the first object on the second one will appear. However, since the
material properties are not stored in the light map, the contribution from the
other points will use the same properties that we are using to render the object
(so, another object will cast a ”potato shadow” on a potato object).

Another advantage of our method is that is tightly coupled with the shadow
mapping pipeline. Shadow mapping is widely used nowadays in most of real time
graphics applications, so the cost of introducing our method is greatly reduced,
since the light map data are usually available for use. In addition, the method
is generally adaptable to any kind of shadow mapping technique, providing that
it is able to store vertices and normals, and that those are accessible from step
two in the algorithm. The cost of adding normal and vertex storage is usually
only heavy on the memory requirements, since the vertex position is calculated
anyway during the render to the shadow map.

Compared to other techniques for rendering translucent materials (such as vox-
elization), our method has low memory requirements. As we will see, the size of
the textures employed in the method should not be too big in order to achieve
a reasonable quality. This also comes from the fact that subsurface scattering
effects are result of blurring of the incoming light, so a low size texture can
represent the effects very well.

Finally, another advantage of the method is that the final step relies only on the
knowledge of the exiting position and normal, so it can be integrated in both a
forward and a deferred rendering pipeline, making it very flexible.

5.6.2 Disadvantages

The first and biggest disadvantage of this method is that one frame is giving
only an approximate and noisy approximation of the final result, that needs to
be blurred using mipmaps in order to get a smooth result. In addition, every
time something changed in the scene, the computations need to be redone every
frame, not allowing the method to ever reach convergence. In this case, ping
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Figure 5.22: Back holes in the final appearance caused by a suboptimal placement
of cameras.

pong is not used at all, which results in a waste of precious memory space. The
ping pong can be reused to account partially for the computation of the previous
frame. In this way, the noise is reduced, at the price that the method is slower
to react to swift changes of condition in the scene, generating ghosting artifacts.

As we can see in Figure 5.22, it is difficult for our method to cover the whole
surface of the object. The most hidden areas, such as the internal part of the
dragon mouth, are not covered by any camera, and so the result are black holes
on the surface. The problem is well known when acquiring an object from a 3D
camera, where a rotation is often necessary in order to capture all the features
of a mesh. A solution for this problem is to let the artist place the cameras
himself/herself, but with an additional time effort.

Another problem is that our method, relying on shadow mapping at its core,
inherits all the defects and problems of shadow mapping. One of these is that
constant shadow bias and offsets are sometimes not enough to cover the defects
that inevitably generate when using this method. In addition, the artist must
tweak this parameters in order to get a good result.
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Finally, a defect that comes from the method we are using to generate the
directional lights from the environment map generally has the problem that in
certain radiance maps, where there are a lot of very bright spots. In these maps,
it tends to account only for the very bright spots and thus not approximate the
overall result very well. In this case, a solution based on spherical harmonics
[Sloan, 2008] environment lighting may be preferable.



94 Implementation



Chapter 6

Results

In the last chapter, we discussed the implementation of our method. In this
chapter, we are going to check it after the assumptions we stated in chapter 1,
discussing advantages, disadvantages, and trade-offs. In the first section, we will
discuss the quality result of our method, comparing it to path-traced results. In
the second section, we will discuss how close we can get to the expected results
in the performance domain, testing it for different parameters.

6.1 Parameters

The parameters were introduced in the previous chapter 5. We will sum them
up here, in order to have a reference for this chapter.

• M , the total number of points in the disk. We recall that we make a disc
of the size of the object bounding box and then generate M exponentially
based samples in it. Unless otherwise stated, M = 1000

• q, the modifier of the exponential distribution of the samples. Unless
otherwise stated, q = 1.

• N , the number of samples used from the disc. It is always N < M .
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• K, the number of directions used in the radiance map. Unless otherwise
stated, K = 16.

• L, the number of lights in the scene.

• Wl, the size in pixel of the light map. Unless otherwise stated, Wl = 512.

• Wr, the size in pixel of the radiance map. Unless otherwise stated, Wr =
1024.

Other parameters are available in the method, such as all the parameters of the
cameras. In this section, we listed only the parameters that makes sense for the
user to tweak, and that can directly influence the quality or the performance of
the final result.

6.2 Quality comparisons

In the domain of quality, we compared our method to offline rendered solutions,
always made using the directional dipole. The solutions are compared only
visually, since if was not possible to perfectly match the perspective and view
cameras of the original pictures. We will see that the visual results of our
method, given enough samples, can produce a result comparable to the one of a
offline rendered solution. We will compare our results at convergence (after 100
frames of evolution), unless otherwise stated.

6.2.1 Optimal radius

In section 5.3.4.1, we discussed how to generate exponentially biased points in
our implementation. In our algorithm, to choose how to distribute the sampling
points, we adopt the strategy of choosing a distribution biased towards the
following exponent:

σ∗ = min(σtr,x, σtr,y, σtr,z)
q

We can see why we use the minimum coefficient in Figures 6.1 and 6.2. σtr as a
coefficient, is related to how much the scattering effects propagate. If we look at
the directional dipole formula in 3.13, we can see that the dipole has a leading
term depending on e−σtrt. If we consider only this term, the average distance
the light travels in the medium is 1/σtr. Figure 6.1 shows these radii for the
potato and the ketchup material. So, in order to account for all channels in
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our sampling, we need choose as a exponent for our sampling pdf the maximum
radius:

max
(

1
σtr,x

,
1

σtr,y
,

1
σtr,z

)
= min(σtr,x, σtr,y, σtr,z)

And this is how we obtain Equation 6.2.1. We will see in the next section that
the q parameter in the equation is necessary in order to allow better performance
with a fewer number of samples. In Figure 6.2 we can see the effects of choosing
different radii according to the three coefficients in ketchup. When we use the
red radius, all the effects are accounted for. When we use the green radius, we
lose the red absorption part. If we use the blue channel, the green and the red
part of the absorption spectrum disappear, resulting in a gray/blue appearance.

(a) Potato (b) Ketchup

Figure 6.1: Average radius of which the scattering effects are important for ketchup
and potato materials.

6.2.2 Tests with different number of samples

The material tested where:

• Potato, a highly scattering isotropic material (α = σs/σa ≈ 102),

• Marble, a even higher high scattering material (α ≈ 104)

• White grapefruit juice, a material with a big forward scattering component
(α ≈ 102, g ≈ 0.5)
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(a) σ∗ = σtr,x (b) σ∗ = σtr,y (c) σ∗ = σtr,z

Figure 6.2: Bunny rendered with different radii. We can appreciate the different
absorptions according to the distribution radius. N = 20, M = 160,
q = 1 in all images.

• Ketchup, a material that has a strong absorption component in the red
channel (αred ≈ 10−2, αgreen ≈ αblue ≈ 102)

• Beer, a high absorption material with nearly no scattering.

We are biased against highly scattering material because those are the material
where our BSSRDF model gives our best results. However, we included materi-
als as beer and ketchup to provide a comparison of our method even where the
original BSSRDF model should fail.

The first comparison we make is with the path traced spheres generated in
Figure 4.6. The results are illustrated in Figure 6.3, comparing different values
of M and N for a potato sphere. We can see that different values of M and N
greatly influence the results. In fact, for a big M and the same N , the samples
tend to be closer to the exiting point xo, so the results are more accurate on the
highlight region. If instead we chose a relatively small M , the points are widely
spread on the surface, to the absorption of the material is accounted for more.
This results in a sphere with gradients that are closer to the reference. In this
case, the highlights are way more difficult to see.

The result that gets closer to the reference solution is the one where N = M =
1000, but as we will see this values are unfeasible in the realm of performance,
even for simple models. So, it is the artist that should find the right balance
between M and N in order to get a satisfying result.

In the next set of experiments, we can see the utility of the q parameter. We
tested a sphere of white grapefruit juice in Figure 6.4, a material with a high
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(a) N = 120, M = 120 (b) N = 120, M = 300 (c) N = 300, M = 300

(d) N = 120, M = 1000 (e) N = 300, M = 1000 (f) N = 1000, M = 1000

(g) Path traced solution

Figure 6.3: Path traced rendering on a sphere of potato material compared with the
results of our method. The parameters are from table 4.1.
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forward scattering component. In this case we can see that that with a smaller
number of samples N = 100 and a q = 3 we can approximate very well the
solution where N = 1000 and q = 1, way more expensive for the GPU. In a test
with marble, in Figure 6.5 we can see that our sampling introduces artifacts, es-
pecially on the color transition area. In this case, q slightly relieves the artifacts
generated from the sampling.
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(a) N = 100, M = 1000, q = 1 (b) N = 100, M = 1000, q = 3

(c) N = 1000, M = 1000, q = 1 (d) Path traced result

Figure 6.4: Path traced rendering on a sphere of white grapefruit material compared
with the results of our method. The parameters are from table 4.1. We
can see that a higher q helps us in approximating the path traced solution
with fewer samples.
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(a) N = 120, M = 1000, q = 1.5 (b) N = 120, M = 1000, q = 1

(c) N = 1000, M = 1000, q = 1.5 (d) N = 1000, M = 1000, q = 1

(e) Path traced result

Figure 6.5: Path traced rendering on a sphere of marble material compared with the
results of our method. The parameters are from table 4.1.
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In Figure 6.6, we can see a comparison between our method and a beer material:
despite the obvious artifacts due to sampling, our results show a more realistic
result that a path traced one. This happens because of the extremely low
scattering coefficient of beer, that makes it unfeasible to use a Monte Carlo
path tracer, since we need to sum a lot of contribution in order to remove all
the noise.

(a) N = 100, M = 100, q = 1 (b) Path traced result

Figure 6.6: Path traced rendering on a sphere of beer material compared with the
results of our method. The parameters are from table 4.1.

The results that we obtained in the sphere renderings affect also the rendering
of the full models. We tested a Buddha made of potato and a Dragon made of
ketchup, that will be tested for performance in section 6.3. For the Buddha, we
observe a slight color shift compared to reference as for the spheres in Figure
6.3.

For the ketchup Dragon, instead, we observe that for a very low number of
concentrated samples, the absorption contribution disappears, leaving only a
gray scattering contribution that exhibits a pearling effect. If we reduce M , the
highlights reduce and the absorption of the red part of the spectrum is accounted
for.
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(a) N = 100, M = 1000, q = 1 (b) N = 200, M = 1000, q = 1

(c) N = 100, M = 300, q = 1 (d) Path traced result

Figure 6.7: Rendering of a potato Buddha using the directional dipole, with increas-
ing number of samples.
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(a) N = 10, M = 100, q = 1.5 (b) N = 50, M = 120, q = 1

(c) N = 50, M = 1000, q = 1.5 (d) Path traced result

Figure 6.8: Rendering of a ketchup Dragon using the directional dipole, with chang-
ing values of M and N .
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6.2.3 Radiance map sizes tests

Finally, we tested the effect of reducing the size of the texture used for the
radiance map, for the Dragon test. As we can see, for diminishing values of
Ws the quality does not get too much worse until Ws = 128, where artifacts
due to shadow mapping become evident, like bright seams and jagged pixels. In
Figure 6.9 the difference between the 1024 and the 256 image is reported. In
the image, we can see that most of the difference are within 10% of the high
resolution value (since the image is enlarged 10 times and the full colored pixels
are only a minority).

Figure 6.9: Difference multiplied by 10 times between 6.10d and 6.10b.
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(a) Ws = 128 (b) Ws = 256

(c) Ws = 512 (d) Ws = 1024

Figure 6.10: Rendering of a ketchup Dragon using the directional dipole, with vary-
ing radiance map size Ws.
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6.2.4 Tests of mipmap blurring quality

In this part we tested the quality improvement from the mipmap blurring intro-
duced in section 5.4.2 to the final image. We can see the result of our method at
the first frame of our simulation for different mipmap levels. At the beginning of
the evolution, a strong blurring (two passes) is needed to compensate the high
level noise, as we can see from image 6.11. During the evolution, a lesser level
of mipmaps is needed in order to preserve a noiseless image. At convergence,
we do not need mipmap blurring at all, as the result converge to the solution.

(a) Mipmap level 0 (no blur) (b) Mipmap level 1

(c) Mipmap level 2 (d) Convergence

Figure 6.11: Detail of a potato Dragon in the first frame of the computation for
different mipmap levels. We can see that the second mipmap level
is very close to the final result. However, some artifacts due to the
stretching of the mipmap appear, such as black spots and bright seams.
All the Figures use N = 32 and M = 300.
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6.2.5 Environment map illumination

All the given consideration so far are the same irregardless if we have an envi-
ronment map or a single directional light. In this section we present the results
obtained we environment light illumination. Visually, we obtain a nice result.
Obviously, since the samples are split between different lights, an overlapping is
inevitable, and we need an higher number of samples to obtain a decent result.
The Bunny in Figure 6.12 was obtained using 16 directional lights, sampled
using the method in 5.5.3 and 4.4, with N = 80 (5 samples per light) and
M = 1000.

As for reference, we compared our results to the reference image of the potato
Buddha from Frisvad et al. [2014] in Figure 6.13. We had to try to match the
light settings and the camera, but here as well we notice the same color shift as
for directional lights. Also in this case we used 16 directional lights to represent
our skybox.

Figure 6.12: Marble Bunny rendered in the Doge environment map. Note that the
light is predominantly from the up direction.
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(a) L = 16, N = 90, M = 1000 (b) L = 16, N = 90, M = 320

(c) L = 16, N = 90, M = 160 (d) Hierarchical integration

Figure 6.13: Rendering of a potato Buddha using our environment lighting and the
Uffizi map.
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In the image of Figure 6.14, we compare the result using the Pisa Courtyard
environment map on a Stanford Dragon, comparing a different number of lights.
We can see the more lights we introduce, the more closer we get to a result that
approximate true environment illumination. We observe also that the images
have more scattering than absorption the more we increase the number of lights:
this is because the total number of samples N does not change, so each light has
less and less samples available. In this way, the samples tend to concentrate in
the center and produce a result where the scattering component is predominant.

(a) 2 lights (b) 4 lights

(c) 8 lights (d) 16 lights

Figure 6.14: Rendering of a potato Dragon (N = 32, M = 170) using a different
number of directional light to represent the environment map.
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6.3 Performance tests

In this section, we examine and analyze the performance of our method. The
tests in this section were made by keeping in mind the performance requirements
we made in chapter 1, and they exploit how the different parameters listed in
6.1 influence the final result. For the tests, we used three main models, to which
we will refer as Bunny, Dragon and Buddha (see table 6.1). The models cover a
varying range of complexity. The Bunny model represents a typical model used
in modern games and consoles (104 triangles), while the Dragon represents a
highly detailed model, usually for visualization purposes (105 triangles). Finally,
the Buddha model represent a high resolution model, and it will be used as a
stress test for our algorithm (106 triangles).

Model Vertices (#V ) Triangles (#∆)

Bunny 3581 21474 ≈ 104

Dragon 50000 300000 ≈ 105

Buddha 549409 3262422 ≈ 106

Table 6.1: The three models used for our tests, with number of vertices and triangles.

All the tests were performed on a NVIDIA GeForce GTX 780Ti, a high-end
modern GPU with OpenGL 4.3 capabilities. All the timings measure the av-
erage milliseconds during the 20th and the 40th frame during an evolution to
convergence of 100 frames. The first frames were not measured because of the
overhead introduced by the initialization procedure (texture creation, model
parsing and loading, shader compilation, etc.).

6.3.1 Time algorithm breakdown

The first test we are going to perform is to time how much time the algorithm
takes to perform the different steps illustrated in chapter 5. When we were
timing the algorithm, we divided the whole computation into five different steps:

1. Initialization phase, where all the different constants and data structures
in the algorithm are created and initialized.

2. Render to light map step, that corresponds to step 1 in our outline.
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3. Render to radiance map step, that corresponds to step 2 in our outline.

4. Mipmap generation, as in the extension outlined in section 5.4.2.

5. Final render combination, that corresponds to step 3 in our outline.

For this tests we tried all the three models, and the results are shown in Figure
6.15. The parameters were tweaked in order to reach the best compromise
between visual quality and performance, in order to measure realistic timings.

We can observe that, irregardless of the test case, most of the time is spent
computing the BSSRDF function for the samples in step 2. Thee render to
lightmap step does not have a big performance impact, likely because all the
tests were made with one light. We will test in the next section the impact of
a different number of lights on the performance. Another consideration to do
is that, as to be expected, the more triangles we have the less samples we can
use. As we will see, this is not the only factor that causes a performance drop.
However, the big number of triangles that has to be multiplied by the number
of directions generates a big load on the GPU for rasterization procedures.

Regarding the mipmap generation, as expected its performance is not tied to
the size of the model, but only to the size of the radiance map texture Ws and
to the number of mipmaps we generate. Finally, the final combination step is
tied as well to the size of the model, rising slightly with an increasing model
size. However, in this case we are rendering only once the model to the main
framebuffer, and not K times as in step 2.
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(a) Beer Bunny, 67.6ms. Point light.
N = 180, M = 210, q = 2

RR

MGRL
FR

RL RR MG FR Tot

0.20 66.18 0.8 0.44 67.72
(b) Detailed timings.

(c) Ketchup Dragon, 62.0ms. Direc-
tional light. N = 20, M = 180.

RR

MGRL
FR

RL RR MG FR Tot

1.07 57.59 0.76 2.56 62.04
(d) Detailed timings.

(e) Potato Buddha, 98.0ms. Point
light. N = 10, M = 300, q = 1

RR

MGRL
FR

RL RR MG FR Tot

11.18 83.90 0.86 1.41 98.00
(f) Detailed timings.

Figure 6.15: Rendering of different models, and graphs that illustrate how the tim-
ings are split into the different phases of the algorithm. All tests use
Wl = Ws = 512. The acronyms represent RL = Render to lightmap,
RR = Render to radiance map, MG = Mipmap Generation and FR =
Final Rendering.
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6.3.2 Tests for varying parameters

In this section, we will discuss how well our method behaves for changing pa-
rameters. From the quality tests before we have learned that the parameters
that are related mostly to the quality of the are N , M , q and to a certain extent
Ws. The number of directions K is important in order to ensure to cover the
whole model, and if we are generating the cameras automatically it cannot be
too low. Of the mentioned parametrs, M and q do not directly influence per-
formance, as they are used only at the beginning of the computation in order
to distribute the points on the disc.

N parameter
We start by discussing N . We can see the results for different value of the
parameter in the following table:

Number of samples (N)

Model #∆ 1 10 50 100

Bunny 104 2.1 5.3 19.8 38.2

Dragon 105 12.5 35.2 140.6 275.3

Buddha 106 96.7 97.7 128.0 216.0

Table 6.2: Timings in milliseconds of our method for different models and number
of samples N (potato material properties). The other parameters were
L = 1, Ws = Wl = 512, M = 1000, K = 16.

We tested N in the range 1 − 100. The test with N = 1 was introduced to
measure the baseline performance of the method (where the most expensive
operation is the generation of the random number for the rotation). We did not
use zero samples because otherwise the shader compiler optimizations would
have removed the base code as well, making the results not significant.

We note that from the graph the time to render the Dragon with 50 samples is
slower that rendering the Buddha with the same parameters, despite the Buddha
having 10 times the triangles as the Dragon. This suggests that N and the
triangle size of the model are not the only factors involved in the performance.
Since the heavy computational step is made on a fragment shader in step 2, the
number of pixels involved in the computation matters: the Buddha on average
occupies less texture area on the directional cameras, and thus the number of
computations performed in total is less that the ones for the Dragon. For a low
number of samples, the performance is bound by the rasterization time, so the
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Dragon outperforms the Buddha in this case because of the fewer number of
triangles.

We tested this changing performance according to the area in the following test:
we kept the same settings for the directional cameras, but we tried different
Dragon sizes. By size, we mean the size of the Dragon using a different scaling
transform matrix.

Size of the model (units)

Model #∆ 1 0.5 0.25 0.125

Dragon 105 142.1 74.3 34.9 15.4

Table 6.3: Timings in milliseconds of our method for different model size (potato
material properties). The size of the camera is 2 units, and the model
is 2 units wide. The camera does not scale with the model. The other
parameters were N = 50, L = 1, Ws = Wl = 512, M = 1000, K = 16.

The Dragon, by changing size, occupies a different area of the camera, and so
the algorithm performs differently according to the Dragon size. A degrading
in quality of the final result is also visible, because of the less number of pixels
involved. This problem should be addressed in an eventual extension to the
implementation, that should account for these problems in a optimal camera
placement.

Ws parameter
The next test we performed was on the size of the radiance map.

Size of the radiance map (Ws)

Model #∆ 256 512 1024

Bunny 104 11.4 20.0 39.0

Dragon 105 75.4 142.1 299.4

Buddha 106 98.2 127.0 258.2

Table 6.4: Timings in milliseconds of our method for different models and size of the
radiance map Ws (ketchup material properties). The other parameters
were N = 50, L = 1, Wl = 512, M = 1000, K = 16.

As we can see from table 6.4, the performance scales linearly with the radiance
map size. This means that if we double the size of the radiance map, the time
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to render the model roughly doubles. This comes from the fact that most of the
time in the computation is spent in rendering to the radiance map, that is a pixel
bound operation. So if we double the size of map, we roughly double the number
of pixels involved and thus the number of the fragment shader invocations in
step 2.

K parameter
The next test is about the number of directions used to render the model, K.

Number of directions (K)

Model #∆ 4 8 16 32

Bunny 104 6.6 10.0 20.1 42.1

Dragon 105 36.7 70.1 143.0 306.2

Buddha 106 32.5 55.8 128.3 363.5

Table 6.5: Timings in milliseconds of our method for different models and different
number of directions K (ketchup material properties). The other param-
eters were N = 50, L = 1, Ws = Wl = 512, M = 1000, q = 1.

We can see that the performance for the models scales linearly. We can see
from this test that is a big advantage to place the cameras manually, instead of
relying on an automatic algorithm. A careful placement of the cameras can cover
the whole model evenly with a smaller number of cameras that an automatic
placement. In our implementation, we needed to use at least 16 cameras to
ensure that most of the models were covered. On the other hand, with careful
placement of the cameras, we were able to lower the number of cameras up to
8 in all cases, thus doubling the performance. Also in this test, we can see that
the minor area occupation of the Buddha improves its performance for 4,8, and
16 directions. For 32 directions, the number of triangles that actually need to
be rasterized (32 · 106) probably becomes so high that memory issues on the
GPU become important.

Different types of lights
We tested the different times in performance for different kind of lights. Since
the operations performed are roughly the same (the point light requires an extra
division), also is the performance:

We times a third case, that is when we strip the outer loop in listing 5.12, thus
obtaining a shader suitable for only one light. In this case, we can see that the
performance slightly improves by fractions of a millisecond.
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Type of light

Model #∆ Point light Directional light No loop

Dragon 105 61.8 60.3 60.1

Table 6.6: Timings in milliseconds of our method for different types of light (potato
material properties), one light. The other parameters were N = 20, Ws =
Wl = 512, M = 1000, K = 16.

Different materials
We finally tried to see if different materials gave a different performance on
the method. As we expected, the material does not influence the rendering
time, as the computations in the BSSRDF do not actually take advantage on
the material type to easy any computation. We can see the test result in the
following table:

Material

Model #∆ Ketchup Beer White grapefruit Potato

Dragon 105 61.7 61.6 62.0 62.1

Table 6.7: Timings in milliseconds of our method for different materials. The other
parameters were N = 20, L = 1, Ws = Wl = 512, M = 300, K = 16.
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6.3.3 Tests on environment lighting

The considerations so far discussed apply also in environment map lighting,
that we converted to a certain number L of directional lights. So discussing
the impact on performance of multiple lights and the impact of environment
lighting is essentially the same, apart from a initialization delay to generate the
lights from the environment map that we will not consider.

The timings for different kind of lights are reported in the following table: As

Number of lights L

Model #∆ 1 2 4 8 16

Dragon 105 96.6 98.0 100.0 103.8 110.5

Table 6.8: Timings in milliseconds of our method for different number of lights (envi-
ronment map approximation, material properties for potato). The other
parameters were N = 32, Ws = Wl = 512, M = 300, K = 16.

we can see, even if we maintain the same number of samples (N = 32, so the
number of samples per light changes) the performance worsen increasing the
number of lights. To look at this into more detail, we broke down the timings
again in the different steps. We can see in Figure 6.16 that the increase in timing
is due to step 1, the render to lightmap: in fact, we have to render the model
once for each light, that implies a performance penalty.

1c 2c 4c 8c 16
0

5

10

15

Numbercofclights

R
en

de
rin

gc
tim

ec
[m

s]

Initialization
Renderctoclightcmap
Renderctocradiancecmap
Mipmapcgeneration
Combination

Figure 6.16: Rendering times for the environment lighting of Figure 6.8, split into
the various components. The rendering times of step 2 are not shown,
but they are [91.8 93.3 93.5 95.0 97.1].
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Chapter 7

Future work

In this chapter we discuss the improvements that can be done to our method in
order to improve the solution.

7.1 Improving the quality

As we have seen the results section, catching the right effect balancing absorp-
tion and scattering requires a lot of tweaking of the parameters M and q. This
depends from the fact that an exponential sampling based on σtr is not prob-
ably the best suited for the solution, thus providing good results. A further
investigation of optimal sampling patterns would be required in order to obtain
faithful results.

An idea we would like to explore is to use two separate disks with a differ-
ent sampling radius, one accounting the absorption and one for the scattering
contribution. The size of the radius of the two disk should be related to the
scattering parameters, such as σa and σs. Further investigation is required in
this realm in order to obtain results applicable to a wide range of participating
media.
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Another direction we would like to explore is the automatic placing of the cam-
eras. Because of the variety and possible concavity of meshes, it is very difficult
to place cameras in a way to ensure the complete coverage of the object. The
field in which to find ideas in order to fully cover the object would be 3D mesh
acquisition using cameras. In this way, it will be possible for a user to avoid the
tedious operation of placing the cameras in order to get a full coverage of the
object.

Another possibility in this area is to rotate the cameras during the rendering
phase: in this case, fewer cameras will be necessary, but then an accumulation
process would not be possible in the way we implemented it. It would require a
great change to the way the algorithm works in order to get a solution.

7.2 Improving the performance

Regarding the implementation, we tought about some possible extensions in
order to make the implementation faster and more reliable.

...

...

+

Initialization

Random number generation

BSSRDF calculation for N 

samples

Draw call

Storage into radiance map

Figure 7.1: Different approaches to rendering to the radiance map: on the left, our
approach (one random number generation, multiple samples in the same
shader invocation). On the right, the proposed approach: smaller shader
invocations, that can be distributed on the GPU.

The first thing we have thought about would be to change the loop in step 2. The
idea would be to have instead to have a single fragment shader invocation with
cycling N times on the samples, to have N separate fragment shader invocations
that calculate the result. The single invocations can be summed over using
blending or atomic operations available since OpenGL 4.2. This would allow
the GPU more flexibility in scheduling its work. However, we have seen in 7.1
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that also the random number generation is an expensive operation for the GPU,
and that would have to be repeated for each of the N fragments, potentially
undermining the advantages of GPU scheduling.

Another improvement in order to make the performance more reliable would
be to make the cameras more adaptive. At the moment, the size of the light
and directional cameras is fixed and set up by the user. A simple extension
to the method would be to make the camera size adaptive, in order to adapt
to the object bounding box. This would make the area in the radiance map
texture space more consistent regarding to the size of the object, leading to a
more predictable result.
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Chapter 8

Conclusions

In this thesis, we have presented an approch to rendering translucent materials
using a new directional subsurface scattering BSSRDF models. We focused on
creating a method that renders translucent materials in real-time, thus approx-
imating well path traced results.

In Chapter 2 we gave an overview of the different approaches to rendering sub-
surface scattering in literature, identifying the gap in the knowledge in rendering
translucent materials efficiently using a directional approach.

In Chapter 3, we instroduced the mathematical concepts that are needed to give
a basic understanding of light transport theory and BSSRDF models, introduc-
ing the nthe formulation of two BSSRDF dipole models, the standard dipole
model and the directional dipole model. Using this knowledge, we gave the
reader a theoretical introduction to our method, as well as scattering parame-
ters and how they are acquired in Chapter 4. Chapter 4 provided an essential
bridge between theory and implementation, that we described in Chapter 5.
In the implementation, we described a method that employs the advantages of
the formulation of the directional dipole in order to create a robust method
that implements the directional dipole taking advantage of the GPU rendering
pipeline.

In Chapter 6, we compared our result to path traced solutions, proving that
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our method can produce results that approximate well path-traced solutions,
providing speed ups of four order of magnitude compared to path tracing on
CPU. We also proved that our method for models of the size commonly used in
the computer game industry performs in real-time on a high-end modern GPU,
limiting the size of memory used to a minimum.

Finally, in Chapter 7, we introduced some possible ideas to expand our method
in order to produce a higher quality result retaining its real-time capabilities.

To sum up, we think that most of the goals of the thesis stated in the intro-
duction Chapter have been satisfied. This thesis hopefully provides an insight
on a new way to approach the efficient rendering of translucent materials using
directional subsurface scattering.
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Model matrices

In this chapter, we report the different model, view and projection matrices
formulas we used in our mater thesis.

A.1 Model matrices

Translation matrix

T (t) =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


Rotation matrix

Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1
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Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1



Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


Scale matrix

S(s) =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1



A.2 View Matrix

e is the camera position, d is the camera direction, u is the up vector.

~c = − d
‖d‖

~a = ~c× u
‖~c× u‖

~b = ~a× ~c

V (e,d,u) =


~ax ~ay ~az −ex
~bx ~by ~bz −ey
~cx ~cy ~cz −ez
0 0 0 1
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A.3 Projection Matrix

Orthographic matrix

l is the left bottom near corner of the frustum, r is the top right far corner.

O(l, r) =


2

rx−lx 0 0 − rx+lx
rx−lx

0 2
ry−ly 0 − ry+ly

ry−ly
0 0 − 2

rz−lz − rz+lz
rz−lz

0 0 0 1


Perspective matrix

fov is the field of view in radians, A is the aspect ratio, np is the near camera
plane and fp is the far camera plane. We define:

fc = 1
tan( fov2 )

P (fov,A, n, f) =


fc
A 0 0 0
0 fc 0 0
0 0 n+f

n−f
2nf
n−f

0 0 −1 0
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Directional dipole GPU code

const float EPSILON_MU = 0.0f;
const vec3 one = vec3 (1.0f);

vec3 S_infinite (vec3 _r , vec3 _r_sq , float x_dot_w12 , float no_dot_w12 , ←↩
float x_dot_no )

{
vec3 _r_tr = transmission * _r;
vec3 _r_tr_p1 = _r_tr + one;
vec3 _T = exp(- _r_tr );
vec3 coeff = _T / (_r * _r_sq );
vec3 first = C_s * ( _r_sq * D_rev + 3 * _r_tr_p1 * x_dot_w12 );
vec3 second = C_e * ( three_D * _r_tr_p1 * no_dot_w12 - ( _r_tr_p1 + ←↩

three_D * (3 * _r_tr_p1 + _r_tr * _r_tr ) / ( _r_sq ) * x_dot_w12 ) * ←↩
x_dot_no );

vec3 _S = coeff * ( first - second );
return _S;

}

vec3 S_infinite_vec (vec3 _r , vec3 _r_sq , vec3 x_dot_w12 , float no_dot_w12 , ←↩
vec3 x_dot_no )

{
vec3 _r_tr = transmission * _r;
vec3 _r_tr_p1 = _r_tr + one;
vec3 _T = exp(- _r_tr );
vec3 coeff = _T / (_r * _r_sq );
vec3 first = C_s * ( _r_sq * D_rev + 3 * _r_tr_p1 * x_dot_w12 );
vec3 second = C_e * ( three_D * _r_tr_p1 * no_dot_w12 - ( _r_tr_p1 + ←↩

three_D * (3 * _r_tr_p1 + _r_tr * _r_tr ) / ( _r_sq ) * x_dot_w12 ) * ←↩
x_dot_no );

vec3 _S = coeff * ( first - second );
return _S;

}
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vec3 bssrdf (vec3 _xi ,vec3 _nin ,vec3 _wi ,vec3 _xo , vec3 _no)
{

vec3 _x = _xo - _xi;
float r_sqr = dot(_x ,_x);
vec3 _w12 = refract2 (_wi ,_nin);

float mu = -dot(_no , _w12);
float dot_x_w12 = dot(_x ,_w12);
float dot_x_no = dot(_x ,_no);

vec3 _r_sqr = r_sqr .xxx;
vec3 _dr_sqr = _r_sqr ;

float edge = step(mu , EPSILON_MU ); // == 1.0 if mu > EPSILON_MU
vec3 project = vec3(sqrt( r_sqr - dot_x_w12 * dot_x_w12 )/sqrt( _r_sqr + ←↩

de_sqr ));
vec3 _D_prime = abs(mu) * D * edge + one_over_three_ext * (1.0f - edge)←↩

;
_dr_sqr += _D_prime * ( _D_prime + two_de * project * edge);

vec3 _dr = sqrt( _dr_sqr );

float edge_nistar = step(abs( dot_x_no ) ,0.01f); // 1.0 if dot_x_no > ←↩
0.01

vec3 _t = normalize ( cross (_nin ,_x));
vec3 _nistar = _nin * edge_nistar + cross ( normalize (_x),_t) * (1.0f - ←↩

edge_nistar );

mat3 _xov = mat3(_x ,_x ,_x) - outerProduct (_nistar , two_a_de );
vec3 _dv_sqr = vec3(dot(_xov [0] , _xov [0]) ,dot(_xov [1] , _xov [1]) ,dot(_xov←↩

[2] , _xov [2]));
vec3 _dv = sqrt( _dv_sqr );
vec3 _wv = _w12 - 2 * dot(_w12 , _nistar ) * _nistar ;

vec3 _x_dot_wv = _wv * _xov;
vec3 _x_dot_no = _no * _xov;

vec3 _S_r = S_infinite (_dr , _dr_sqr , dot_x_w12 , -mu , dot_x_no );
vec3 _S_v = S_infinite_vec (_dv , _dv_sqr , _x_dot_wv , dot(_no ,_wv), ←↩

_x_dot_no );
vec3 _S = _S_r - _S_v;

_S *= fresnel_T (_wi ,_nin);
_S = max(vec3 (0.0f),_S);

return _S;
}

Listing B.1: Directional dipole code optimized for GPU. Uniforms and Fresnel
formulas code is not reported.
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Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

Michael Ashikmin, Simon Premože, and Peter Shirley. A microfacet-based
brdf generator. In Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’00, pages 65–74, New
York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co. URL
http://dx.doi.org/10.1145/344779.344814.

James Blinn. Models of light reflection for computer synthesized pictures. SIG-
GRAPH Comput. Graph., 11(2):192–198, July 1977. URL http://doi.acm.
org/10.1145/965141.563893.

Jesper Børlum, Brian Bunch Christensen, Thomas Kim Kjeldsen, Peter Trier
Mikkelsen, Karsten Østergaard Noe, Jens Rimestad, and Jesper Mosegaard.
Sslpv: Subsurface light propagation volumes. In Proceedings of the ACM
SIGGRAPH Symposium on High Performance Graphics, HPG ’11, pages 7–
14, New York, NY, USA, 2011. ACM. URL http://doi.acm.org/10.1145/
2018323.2018325.

Max Born and Wolf Emil. Principles of Optics. Cambridge University Press, 7
edition, 1999.

Subrahmanyan Chandrasekar. Radiative Transfer. Oxford University Press,
1950.

Michael Cohen, John Wallace, and Pat Hanrahan. Radiosity and Realistic Image
Synthesis. Academic Press Professional, Inc., San Diego, CA, USA, 1993.

Carsten Dachsbacher and Marc Stamminger. Translucent shadow maps. In
Proceedings of the 14th Eurographics Workshop on Rendering, EGRW ’03,

http://dx.doi.org/10.1145/344779.344814
http://doi.acm.org/10.1145/965141.563893
http://doi.acm.org/10.1145/965141.563893
http://doi.acm.org/10.1145/2018323.2018325
http://doi.acm.org/10.1145/2018323.2018325


134 BIBLIOGRAPHY

pages 197–201, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association. URL http://dl.acm.org/citation.cfm?id=882404.882433.

Boris Davison and John Bradbury Sykes. Neutron transport theory. Oxford
University Press, 1958.

Eugene D’Eon. A better dipole (a publicly available manuscript). Technical re-
port, -, 2012. URL .http://www.eugenedeon.com/papers/betterdipole.
pdf.

Eugene D’Eon and Geoffrey Irving. A quantized-diffusion model for rendering
translucent materials. In ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11,
pages 56:1–56:14, New York, NY, USA, 2011. ACM. URL http://doi.acm.
org/10.1145/1964921.1964951.

Eugene d’Eon, David Luebke, and Eric Enderton. Efficient rendering of hu-
man skin. In Proceedings of the 18th Eurographics Conference on Rendering
Techniques, EGSR’07, pages 147–157, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association. URL http://dx.doi.org/10.2312/EGWR/
EGSR07/147-157.

Agns Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt Theory
to Image Analysis: A Probabilistic Approach. Springer Publishing Company,
Incorporated, 1st edition, 2007.

Craig Donner. Towards Realistic Image Synthesis of Scattering Materials.
PhD thesis, University of California, San Diego, La Jolla, CA, USA, 2006.
AAI3226771.

Craig Donner and Henrik Wann Jensen. Light diffusion in multi-layered translu-
cent materials. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages
1032–1039, New York, NY, USA, 2005. ACM. URL http://doi.acm.org/
10.1145/1186822.1073308.

Craig Donner, Jason Lawrence, Ravi Ramamoorthi, Toshiya Hachisuka, Hen-
rik Wann Jensen, and Shree Nayar. An empirical bssrdf model. ACM Trans.
Graph., 28(3):30:1–30:10, July 2009. URL http://doi.acm.org/10.1145/
1531326.1531336.

Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and
Hans Køhling Pedersen. Modeling and rendering of weathered stone. In
Proceedings of the 26th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’99, pages 225–234, New York, NY, USA,
1999. ACM Press/Addison-Wesley Publishing Co. URL http://dx.doi.org/
10.1145/311535.311560.

D’Eon Eugene and Luebke David. Chapter 14. advanced techniques for realistic
real-time skin rendering. In GPU Gems 3. Addison-Wesley Professional, 2007.

http://dl.acm.org/citation.cfm?id=882404.882433
. http://www.eugenedeon.com/papers/betterdipole.pdf.
. http://www.eugenedeon.com/papers/betterdipole.pdf.
http://doi.acm.org/10.1145/1964921.1964951
http://doi.acm.org/10.1145/1964921.1964951
http://dx.doi.org/10.2312/EGWR/EGSR07/147-157
http://dx.doi.org/10.2312/EGWR/EGSR07/147-157
http://doi.acm.org/10.1145/1186822.1073308
http://doi.acm.org/10.1145/1186822.1073308
http://doi.acm.org/10.1145/1531326.1531336
http://doi.acm.org/10.1145/1531326.1531336
http://dx.doi.org/10.1145/311535.311560
http://dx.doi.org/10.1145/311535.311560


BIBLIOGRAPHY 135

Cass Everitt, Ashu Rege, and Cem Cebenoyan. Hardware shadow mapping.
Technical report, NVIDIA Corporation, 2003.

Raanan Fattal. Participating media illumination using light propagation maps.
ACM Trans. Graph., 28(1):7:1–7:11, February 2009. URL http://doi.acm.
org/10.1145/1477926.1477933.

Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics. Pearson Higher Education, 2004.

J. R. Frisvad, T. Hachisuka, and T. K. Kjeldsen. Directional dipole for sub-
surface scattering in translucent materials. ACM Transactions on Graphics,
2014, -:–, 2014. URL http://www2.imm.dtu.dk/pubdb/p.php?6646. To ap-
pear.

Robin Green. Spherical harmonic lighting: The gritty details, January 2003.
Sony Computer Entertainment America.

Simon Green. Chapter 16. real-time approximations to subsurface scattering.
In GPU Gems: Programming Techniques, Tips and Tricks for Real-Time
Graphics. Pearson Higher Education, 2004.

J. H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence.
Commun. ACM, 7(12):701–702, December 1964. URL http://doi.acm.org.
globalproxy.cvt.dk/10.1145/355588.365104.

Akira Ishimaru. Wave propagation and scattering in random media. IEEE, 1997.

ITU. Parameter values for the hdtv standards for production and international
programme exchange. Technical Report ITU-R BT.709-2, ITU-R, June 2001.
URL http://www.itu.int/rec/R-REC-BT.709-2-199510-S/en.

Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique
for translucent materials. ACM Trans. Graph., 21(3):576–581, July 2002. URL
http://doi.acm.org/10.1145/566654.566619.

Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light trans-
port in scenes with participating media using photon maps. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’98, pages 311–320, New York, NY, USA, 1998. ACM.
URL http://doi.acm.org/10.1145/280814.280925.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanra-
han. A practical model for subsurface light transport. In Proceedings of the
28th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’01, pages 511–518, New York, NY, USA, 2001. ACM. URL
http://doi.acm.org/10.1145/383259.383319.

http://doi.acm.org/10.1145/1477926.1477933
http://doi.acm.org/10.1145/1477926.1477933
http://www2.imm.dtu.dk/pubdb/p.php?6646
http://doi.acm.org.globalproxy.cvt.dk/10.1145/355588.365104
http://doi.acm.org.globalproxy.cvt.dk/10.1145/355588.365104
http://www.itu.int/rec/R-REC-BT.709-2-199510-S/en
http://doi.acm.org/10.1145/566654.566619
http://doi.acm.org/10.1145/280814.280925
http://doi.acm.org/10.1145/383259.383319


136 BIBLIOGRAPHY

Jorge Jimenez, Veronica Sundstedt, and Diego Gutierrez. Screen-space percep-
tual rendering of human skin. ACM Trans. Appl. Percept., 6(4):23:1–23:15,
October 2009. URL http://doi.acm.org/10.1145/1609967.1609970.

J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. The delta-Eddington
approximation for radiative flux transfer. Journal of Atmospheric Sciences,
33:2452–2459, December 1976.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):
143–150, August 1986. URL http://doi.acm.org/10.1145/15886.15902.

Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation vol-
umes for real-time indirect illumination. In Proceedings of the 2010 ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’10,
pages 99–107, New York, NY, USA, 2010. ACM. URL http://doi.acm.
org/10.1145/1730804.1730821.

Douglas Scott Kay and Donald Greenberg. Transparency for computer syn-
thesized images. SIGGRAPH Comput. Graph., 13(2):158–164, August 1979.
URL http://doi.acm.org/10.1145/965103.807438.

Takahiro Kosaka, Tomohito Hattori, Hiroyuki Kubo, and Shigeo Morishima.
Rapid and authentic rendering of translucent materials using depth-maps
from multi-viewpoint. In SIGGRAPH Asia 2012 Posters, SA ’12, pages 45:1–
45:1, New York, NY, USA, 2012. ACM. URL http://doi.acm.org/10.1145/
2407156.2407206.

Hendrik P. A. Lensch, Michael Goesele, Philippe Bekaert, Jan Kautz, Mar-
cus A. Magnor, Jochen Lang, and Hans-Peter Seidel. Interactive rendering of
translucent objects. In Proceedings of the 10th Pacific Conference on Com-
puter Graphics and Applications, PG ’02, pages 214–, Washington, DC, USA,
2002. IEEE Computer Society. URL http://dl.acm.org/citation.cfm?
id=826030.826632.

S. Menon, Q. Su, and R. Grobe. Determination of g and µ using multiply
scattered light in turbid media. Phys. Rev. Lett., 94:153904, Apr 2005. URL
http://link.aps.org/doi/10.1103/PhysRevLett.94.153904.

Tom Mertens, J. Kautz, P. Bekaert, F. Van Reeth, and H.-P. Seidel. Efficient
rendering of local subsurface scattering. In Computer Graphics and Applica-
tions, 2003. Proceedings. 11th Pacific Conference on, pages 51–58, Oct 2003a.

Tom Mertens, Jan Kautz, Philippe Bekaert, Hans-Peter Seidelz, and Frank
Van Reeth. Interactive rendering of translucent deformable objects. In Pro-
ceedings of the 14th Eurographics Workshop on Rendering, EGRW ’03, pages
130–140, Aire-la-Ville, Switzerland, Switzerland, 2003b. Eurographics Asso-
ciation. URL http://dl.acm.org/citation.cfm?id=882404.882423.

http://doi.acm.org/10.1145/1609967.1609970
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/1730804.1730821
http://doi.acm.org/10.1145/965103.807438
http://doi.acm.org/10.1145/2407156.2407206
http://doi.acm.org/10.1145/2407156.2407206
http://dl.acm.org/citation.cfm?id=826030.826632
http://dl.acm.org/citation.cfm?id=826030.826632
http://link.aps.org/doi/10.1103/PhysRevLett.94.153904
http://dl.acm.org/citation.cfm?id=882404.882423


BIBLIOGRAPHY 137

Srinivasa G. Narasimhan, Mohit Gupta, Craig Donner, Ravi Ramamoorthi,
Shree K. Nayar, and Henrik Wann Jensen. Acquiring scattering properties of
participating media by dilution. ACM Trans. Graph., 25(3):1003–1012, July
2006. URL http://doi.acm.org/10.1145/1141911.1141986.

F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis.
Geometrical considerations and nomenclature for reflectance. In Lawrence B.
Wolff, Steven A. Shafer, and Glenn Healey, editors, Radiometry, chapter Ge-
ometrical Considerations and Nomenclature for Reflectance, pages 94–145.
Jones and Bartlett Publishers, Inc., USA, 1992. URL http://dl.acm.org/
citation.cfm?id=136913.136929.

H. Niederreiter. Random number generation and quasi-Monte Carlo methods.
SIAM, 1992.

Matt Pharr and Pat Hanrahan. Monte carlo evaluation of non-linear scatter-
ing equations for subsurface reflection. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’00, pages 75–84, New York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co. URL http://dx.doi.org/10.1145/344779.344824.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory
to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2004.

Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradi-
ance environment maps. In Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages 497–
500, New York, NY, USA, 2001. ACM. URL http://doi.acm.org/10.1145/
383259.383317.

Marc Segal and Kurt Akeley. The OpenGL Graphics System: A Specification,
version 4.3 (core profile) edition, August 2012.

Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Hae-
berli. Fast shadows and lighting effects using texture mapping. SIGGRAPH
Comput. Graph., 26(2):249–252, July 1992. URL http://doi.acm.org.
globalproxy.cvt.dk/10.1145/142920.134071.

M.A. Shah, J. Konttinen, and S. Pattanaik. Image-space subsurface scattering
for interactive rendering of deformable translucent objects. Computer Graph-
ics and Applications, IEEE, 29(1):66–78, Jan 2009.

Peter-Pike Sloan. Stupid spherical harmonics (sh) tricks. In Game Developers
Conference 2008, February 2008 (updated 2/10/2010), 2008.

http://doi.acm.org/10.1145/1141911.1141986
http://dl.acm.org/citation.cfm?id=136913.136929
http://dl.acm.org/citation.cfm?id=136913.136929
http://dx.doi.org/10.1145/344779.344824
http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org.globalproxy.cvt.dk/10.1145/142920.134071
http://doi.acm.org.globalproxy.cvt.dk/10.1145/142920.134071


138 BIBLIOGRAPHY

Jos Stam. Multiple scattering as a diffusion process. In PatrickM. Hanrahan
and Werner Purgathofer, editors, Rendering Techniques 1995, Eurographics,
pages 41–50. Springer Vienna, 1995. URL http://dx.doi.org/10.1007/
978-3-7091-9430-0_5.

Anna Tomaszewska and Krzysztof Stefanowski. Real-time spherical harmon-
ics based subsurface scattering. In Aurélio Campilho and Mohamed Kamel,
editors, Image Analysis and Recognition, volume 7324 of Lecture Notes in
Computer Science, pages 402–409. Springer Berlin Heidelberg, 2012. URL
http://dx.doi.org/10.1007/978-3-642-31295-3_47.

K. E. Torrance and E. M. Sparrow. Theory for off-specular reflection from rough-
ened surfaces. In Lawrence B. Wolff, Steven A. Shafer, and Glenn Healey,
editors, Radiometry, pages 32–41. Jones and Bartlett Publishers, Inc., USA,
1992. URL http://dl.acm.org/citation.cfm?id=136913.136924.

Unity. Unity Manual: Forward Rendering Path Details, 2012. URL http:
//docs.unity3d.com/Manual/RenderTech-ForwardRendering.html.

Yajun Wang, Jiaping Wang, Nicolas Holzschuch, Kartic Subr, Jun-Hai Yong,
and Baining Guo. Real-time rendering of heterogeneous translucent objects
with arbitrary shapes. Comput. Graph. Forum, 29(2):497–506, 2010. URL
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#WangWHSYG10.

Lance Williams. Casting curved shadows on curved surfaces. International Con-
ference on Computer Graphics and Interactive Techniques, -:270–274, 1978.

Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling with ham-
mersley and halton points. J. Graphics, GPU, & Game Tools, 2(2):9–24,
1997. URL http://dblp.uni-trier.de/db/journals/jgtools/jgtools2.
html#WongLH97.

http://dx.doi.org/10.1007/978-3-7091-9430-0_5
http://dx.doi.org/10.1007/978-3-7091-9430-0_5
http://dx.doi.org/10.1007/978-3-642-31295-3_47
http://dl.acm.org/citation.cfm?id=136913.136924
http://docs.unity3d.com/Manual/RenderTech-ForwardRendering.html
http://docs.unity3d.com/Manual/RenderTech-ForwardRendering.html
http://dblp.uni-trier.de/db/journals/cgf/cgf29.html#WangWHSYG10
http://dblp.uni-trier.de/db/journals/jgtools/jgtools2.html#WongLH97
http://dblp.uni-trier.de/db/journals/jgtools/jgtools2.html#WongLH97

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Requirement analysis
	1.3.1 Quality constraints
	1.3.2 Flexibility requirements
	1.3.3 Performance requirements

	1.4 Thesis Outline

	2 Related Work
	2.1 Analytical techniques
	2.1.1 Models
	2.1.2 Implementations

	2.2 Numerical techniques

	3 Theory
	3.1 Light and Radiometry
	3.2 Radiometric quantities
	3.2.1 Radiant flux
	3.2.2 Radiant energy
	3.2.3 Irradiance
	3.2.4 Intensity
	3.2.5 Radiance
	3.2.6 Radiometric quantities for simple lights

	3.3 Reflectance Functions
	3.3.1 BRDF functions
	3.3.2 Examples of BRDF functions
	3.3.3 The rendering equation
	3.3.4 Fresnel equations
	3.3.5 BSSRDF functions and generalized rendering equation

	3.4 Light transport and subsurface scattering
	3.4.1 Emission
	3.4.2 Absorption
	3.4.3 Out-scattering
	3.4.4 In-scattering
	3.4.5 Final formulation of the radiative transfer equation
	3.4.6 The diffusion approximation
	3.4.7 Standard dipole model
	3.4.8 Directional dipole model


	4 Method
	4.1 Method overview
	4.1.1 Approximation of the rendering equation

	4.2 Sampling patterns
	4.3 Parameter acquisition
	4.4 Environment lights

	5 Implementation
	5.1 Environment
	5.2 Algorithm overview
	5.3 Implementation details
	5.3.1 Render-to-texture
	5.3.2 Layered rendering
	5.3.3 Accumulation buffers
	5.3.4 Generation of uniformly distributed points
	5.3.5 Shadow mapping
	5.3.6 Memory layout

	5.4 Caveats
	5.4.1 Random rotation of samples
	5.4.2 Mipmap generation
	5.4.3 Shadow bias
	5.4.4 Texture discretization artifacts

	5.5 Extensions to the method
	5.5.1 Rendering with multiple lights
	5.5.2 Rendering with other kinds of light
	5.5.3 Rendering with environment light illumination

	5.6 Discussion
	5.6.1 Advantages
	5.6.2 Disadvantages


	6 Results
	6.1 Parameters
	6.2 Quality comparisons
	6.2.1 Optimal radius
	6.2.2 Tests with different number of samples
	6.2.3 Radiance map sizes tests
	6.2.4 Tests of mipmap blurring quality
	6.2.5 Environment map illumination

	6.3 Performance tests
	6.3.1 Time algorithm breakdown
	6.3.2 Tests for varying parameters
	6.3.3 Tests on environment lighting


	7 Future work
	7.1 Improving the quality
	7.2 Improving the performance

	8 Conclusions
	A Model matrices
	A.1 Model matrices
	A.2 View Matrix
	A.3 Projection Matrix

	B Directional dipole GPU code
	Bibliography

