

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Aerospaziale

Relazione per la prova finale Valutazione degli effetti dell'ambiente spaziale sul sensore di detriti della missione Alba CubeSat

Tutor universitario: Ing. Prof. Alessandro Francesconi

Co-Tutor universitario: Ing. Stefano Lopresti

Laureando: Alessandro Zamboni

Padova, 08/07/2024

Studi di **Kessler** negli anni '70: i **detriti** spaziali, **problema** per l'esplorazione spaziale futura

Deve essere monitorata attentamente

Iniziative internazionali:

- 1. US-SSN osservazione e tracking network
- 2. LDEF
- 3. HST

L'ambiente micro-detritico non può essere studiato da terra

→ tra i 4 obbiettivi di Alba CubeSat c'è la sua caratterizzazione al fine di migliorare l'accuratezza dei modelli di detriti

Obbiettivo: misurazione in situ di micro-meteoroidi e detriti orbitali (MMOD)

Struttura oggetto di analisi:

Top Coverlay	Kapton Polyimide	12.5 μm
	Adhesive	15 μm
Top Copper	Resistive Lines (Copper)	12 μm
Core	Kapton Polyimide	25µm
Bottom Copper	Resistive Lines (Copper)	12 μm
Bottom Coverlay	Adhesive	15 μm
	Kapton Polyimide	12.5 μm

Fonti di particelle cariche in LEO:

- 1. Fasce di Van Allen
- 2. Particelle solari
- 3. GCR
- 4. Neutroni

Impatto dell'ambiente radiativo sul sensore:

- **degradazione** delle **proprietà meccaniche** del materiale
- Modifica delle proprietà dielettriche

TID massima sopportata dal sensore: compresa tra **1 krad(si)** e **1 Mrad(si)** secondo lo standard ECSS-E-HB-10-12A

Ossigeno Atomico (**ATOX**): principale specie atomica presente in atmosfera tra i 200 km e i 650 km di altitudine

Conseguenza: erosione delle **superfici esterne** Erosion yield del Kapton: 3.00x10⁻²⁴ cm³atom⁻¹

Software utilizzati:

- 1. SPENVIS
- 2. OMERE
- 3. SYSTEMA

Modelli utilizzati:

- 1. Trapped Radiation: AE8 Max e AP8-MIN
- 2. Modelli di Campo Geomagnetico
- 3. Solar Particles Events
- 4. Solar Flare Particles
- 5. GCR ISO 15930
- 6. NRLMSISE-00

DI INGEGNERIA INDUSTRIALE SIMULAZIONE DELL'EROSIONE DOVUTA ALL'ATOX

- 1. Identificazione del worst-case scenario
 - Dipendenza da anno, mese e LTAN
 - Relazione tra RAAN e LTAN
- 2. Scelta dell'orbita: sma: 6878.14 km i=97.402° ° e=0.001 ω =0° TA=0°

- Determinazione dei valori F10.7_81day_avg, F10.7_daily e Ap utilizzando le previsioni del NOAA
- 3. Calcolo dei **valori di erosione** per le varie orbite considerate

Analisi dei risultati:

DI INGEGNERIA

• Si osserva una **differenza** tra i risultati dei due software anche se utilizzano lo stesso modello e gli stessi input data

Conclusioni:

- L'erosione pone un **rischio notevole** per la missione
- Per mitigare: possibile uso di **coating** oppure **inspessimento superficie esterna** in Kapton

Erosion according to:	SPENVIS [µm]	OMERE 5.6 [μm]
Orbits:		
2025 D/D	26.727	40.42
2025 N/M	29.271	40.42
2025 worst	30.809	40.43
2027 D/D	28.834	43.05
2027 N/M	31.622	43.05
2027 worst	33.211	43.05
2027 actual	12.672	20.19
2029 D/D	5.8733	9.60
2029 N/M	6.3802	9.60
2029 worst	6.9729	9.60
2029 actual	5.7115	9.60
2015 actual	18.874	24.14

- Identificazione del worst-1. case scenario
 - Dipendenza da fase ۲ solare
 - Dipendenza da RAAN ۲
- Scelta dell'orbita: 2. sma: 6878.14 km **i**=97.402° **e**=0.001 **Ω**=337.186° $\omega = 0^{\circ}$ $TA=0^{\circ}$

10⁰

10*

101

10⁰

- 3. Creazione dei file **.dose** con OMERE
- 4. Costruzione del modello su SYSTEMA
- 5. Simulazione con DOSRAD

Simulazione effetti delle **radiazioni**: la massima dose assorbita dai diversi layer non supera i **25 krad(Si)** in un anno di missione

Grazie per l'attenzione

Corso di Laurea in Ingegneria ...