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Abstract 
 

Ca2+ ions are vital for several functions in the human body such as muscle contraction, neuronal communication, 

fertilization and gene transcription. The estimation of Ca2+ concentration in living cell is thus a key point in biophysical 

research. This thesis work is conceived to derive and validate a novel mathematical formula that, based on experimental 

data obtained by fluorescent Ca2+ dyes, overcomes the general approximation that Ca2+ is in equilibrium with its 

reactants, found to fail in the presence of a rapid Ca2+ influx, e.g. during neuronal depolarization. Our formula, which 

permits to derive a more realistic estimate of the intracellular Ca2+ concentration from the analysis of temporal and 

spatial derivatives of the dye fluorescence signal, was validated by a numerical simulation in the Matlab framework 

based on reaction-diffusion differential equations. Experimental validation of the formula was addressed by miming the 

cellular environment under controlled conditions of an artificial couvette. In this system, we performed Ca2+ imaging 

experiments by the UV-flash photolysis technique in order to reproduce a nearly instantaneous and localized Ca2+ 

increase that rapidly declines due to the effect of buffering and diffusion. Our future perspective is to use the new 

formula to obtain a more accurate description of Ca2+ nanodomains that control neuronal activity.  

 

Gli ioni Ca2+ sono vitali per numerose funzioni nel corpo umano come la contrazione muscolare, la comunicazione 

neuronale, la fecondazione e la trascrizione genica. La stima della concentrazione di Ca2+ nelle cellule viventi è un 

punto chiave per la ricerca biofisica. Questo lavoro di tesi è pensato per derivare e validare una nuova formula 

matematica che, basandosi su dati sperimentali ottenuti da dye fluorescenti selettivi per il Ca2+, superi la comune 

approssimazione che assume il Ca2+ in equilibrio con i suoi reagenti (buffer), anche in presenza di rapidi influssi dello 

stesso, per esempio durante processi di depolarizzazione neuronale. La nostra formula, analizzando le derivate spaziali 

e temporali dei segnali di fluorescenza del dye, permette la derivazione di una più realistica concentrazione di Ca2+ 

intracellulare ed è stata validata tramite simulazioni numeriche basate su un sistema di equazioni di reazione-

diffusione in Matlab. La verifica della formula dal punto di vista sperimentale è stata condotta riproducendo l’ambiente 

cellulare nelle condizioni controllate di una couvette. In questo sistema abbiamo effettuato esperimenti di imaging 

combinati a fotoliberazione UV di Ca2+ per riprodurre un aumento pressoché istantaneo e localizzato di Ca2+ che 

successivamente viene ridotto da effetti di buffering e diffusione. La nostra prospettiva futura è quella di utilizzare la 

nuova formula per ottenere una più accurata descrizione dei nano domini di Ca2+ che controllano l’attività neurale. 
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Introduction 
 

Calcium ions (Ca2+) regulate multiple processes in cells, such as intracellular signal transduction mechanisms ranging 

from excitation-contraction coupling to synaptic transmission and genetic transcription ([1-4]). Optical measurement of 

the intracellular concentration of Ca2+ ([Ca2+] i) is paramount to understanding cell physiology and function. Several 

molecular probes, namely fluorescent dyes, capable of sensing the local ion concentration with high selectivity have 

been developed over the last twenty years. These are based on BAPTA(1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid), a pH-insensitive evolution of the widely used Ca2+-selective chelator EGTA (ethylene glycol 

tetraacetic acid) (Figure 0.1). 

 

Figure 0.1: Chemical structure and pH dependence of Ca2+ affinity of BAPTA and EGTA 

 

Chelation is the binding or complexation of a bi- or multidentate ligand with a single metal ion. The mechanism of 

Ca2+ chelation by BAPTA is shown in (Figure 0.2).  

 

Figure 0.2: Mechanism of Ca2+ chelation by BAPTA. The presence of four carboxylic acid (usually written as –

CoOH) functional groups makes possible the binding of Ca2+ ions 

 

Chelation is the binding or complexation of a bi- or multidentate ligand. Chelating agents form multiple bonds with a 

single metal ion. Chelation of Ca2+ by a buffer B, to form a complex CaB, is described by the reaction 

 

2[ ] [ ] [ ]
B
on

B
off

k

k
Ca B CaB+ →+ ←  (0.1) 

 



 vi 

and the corresponding kinetic equation is 

 

2[ ]
[ ][ ] [ ]B B

on off

d CaB
k Ca B k CaB

dt
+= −  (0.2) 

 

where square brackets are used to indicate concentration, B
onk  is the rate constant for Ca2+ binding to B and B

offk  is the 

rate constant for Ca2+ dissociation. At chemical equilibrium  

 

[ ]
0

d CaB

dt
=  (0.3) 

 

therefore 

 

2[ ][ ]

[ ]

B
off B

dB
on

kCa B
k

CaB k

+

= ≡  (0.4) 

 

In the above equation, which represents an instance of the law of mass action under equilibrium conditions, B
dk  is the 

equilibrium or dissociation constant (for BAPTA: Bdk  = 0.192 µM [1]; B
onk  = 500 µM−1 s−1 [2]; B B B

off on dk k k= ×  = 96 s−1 

[3]). Ca2+-selective fluorescent probes share a modular design consisting of a metal-binding site (or sensor) A, 

covalently coupled to a fluorophore B, therefore  

 

[ ] [ ]A B=  (0.5) 

  

In order for such a fluorescent probe to provide useful information about its environment, it is necessary that its spectral 

properties be altered in a suitable manner by the parameter to be measured (a change in fluorescence yield, a shift in the 

excitation or emission spectrum).  

The cell needs to localize the calcium signals in time and space to achieve a high bandwidth of signal transmission at 

specific sites: this task is entrusted to mobile calcium buffers [5]. In cells like sensory cells [6], Ca2+ concentration 

increase abruptly following opening of voltage-dependent channels [7-10]. These channels show a cooperative 

behaviour and cluster, creating “hotspots”,  microdomains of elevated 2[ ] iCa +  [6, 11, 12] (Figure 0.3) . 
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Figure 0.3: Simulated and experimental Calcium hotspots (left) in a hair cell evoked by 50 ms depolarization -20 mV 

(right) performed by patch-clamp. 

 

To study the dynamics of  Ca2+ imaging techniques are used to observe temporal and spatial dynamics of Ca2+ ions. 

Typically, these techniques combine Ca2+-sensitive fluorescent dyes, patch clamp and optical microscopy together with  

various stimulation protocols [13-16]. These methods are limited by optical resolution in time and space because of the 

speed and the “punctual” localization of the Ca2+ influx, so they are insufficient to study Ca2+ dynamics [12]. 

Simulation and mathematical methods are necessary, both to calculate the expected time course of calcium concetration 

increase and their spatial extent in the presence of multiple buffers [5, 17-19] and to extrapolate the cytosolic calcium 

concentration from fluorescent measurements. Numerical simulations involving Ca2+ and its reactants, together with a 

realistic geometry, are CPU time consuming, whereas available formulas to directly derive Ca2+ from dye fluorescence 

suppose the equilibrium of reactants, which is not a good approximation during a fast Ca2+ rise. 

The starting point of this thesis work was the mathematical derivation of a formula that, starting from the mass action 

law of Ca2+ with its buffers (the dye and the endogenous buffers), is able to take into account the onk  and offk  binding 

and unbinding constants as well as the diffusion coefficient of the dye, which we found to be as critical parameters. 

Typically,  Ca2+ concentration is reconstructed supposing the equilibrium of the reactants in cells. Because of the speed 

of  Ca2+ influxes, non-equilibrium conditions are fundamental. As it can be seen in Figure 0.4 [6], the results of the 

simulations does not fit with the experimental and simulated fluorescence, so the common reconstruction formulas does 

not reproduce the real Ca2+ concentration, in particular when it increases abruptly. As far as it is known, this is the first 

time that a similar formula is used to reconstruct the Ca2+ concentration. A set of unidimensional simulations was 

performed in the Matlab framework. These simulations are based on a system of reaction-diffusion differential 

equations that models the different reagents concentrations within a cell with cylindrical symmetry. A virtual 

fluorescence was also generated in order to apply our formula to the simulated hotspot region, placed in the central 

voxel of the cell. We found that, by the equilibrium formula, the dye fluorescence acts as a low-pass filter version of the 

real Ca2+, while our formula is able to correctly predict the real Ca2+ concentration. 
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Figure 0.4: Fluorescence signals vs. cytosolic free Ca2+ concentration. (A) Pseudo-line-scan representation of 0f f∆  

signals obtained from the experiment; abscissae represent time and ordinates are distance along the white line (a to b) 

passing through a number of hotspots (inset). (B) Simulated 0f f∆  signals for a model cell containing 1.7 mM BAPTA 

29 kDa. (C) 2[ ] iCa +∆  changes corresponding to the simulation in (B), obtained by integrating voxel Ca2+-

concentrations along the optical (z) axis. (D) Time course of the simulated 2[ ] iCa +∆ , integrated over the entire cell (red 

trace) and 2[ ] iCa +∆  values derived either from the simulated (blue trace) or from the experimental (black trace) 0f f∆  

whole cell signals, based on the law of mass action at equilibrium. 

 

The second step of this work was to upgrade the simulation in three dimensions. To do this, a user friendly software was 

developed to build a realistic geometry based on a combination of regular geometric objects (ellipsoids, cylinders, 

boxes, cones). The reaction-diffusion equations were solved by dividing the diffusible space into small cubes and by 

using a finite difference algorithm to simulate diffusion.  

In order to validate the new formula, Ca2+ imaging experiments have been performed. In particular, we combined 

patch-clamp with optical fluorescence microscopy and flash photolysis techniques. Couvette samples were used as 

prototypes of cells by  loading them with known concentrations of fluorescent dye and the caged-Ca2+ compound (NP-

EGTA), that is activated by a UV-laser focused on a small region (about 2 µm) of the sample, thus generating an 

artificial Ca2+ hotspot. A fast and sensitive CMOS camera (PCO-EDGE) monitors fluorescence dynamics up to 100 

frames per second and the data were used to reconstruct the real Ca2+ concentration by our formula as well as were 

fitted by numerical simulations. We expect that the Ca2+ transient reconstructed by our formula correctly fits the 

numerical simulation results, at least at a better extent than the “traditional” formula that supposes the equilibrium of 

reactants. Improving the quantitative description of the intracellular Ca2+ dynamics within the cell is a fundamental 

requirement to describe how Ca2+ delivers precise information in space and time related to several physiological 

functions, e.g. muscle contraction, neuronal excitation or genetic expression.  



1 Materials and methods 

 

This chapter summarizes the theoretical and experimental approaches utilized in this thesis work. The formulas cited 

from the literature will be explained and discussed [20], then, we will go deeper in the software code and algorithms 

wrote to perform the simulations and, lastly, we will report and discuss all the instruments, reactants and samples that 

are used for the experiments. 

 

1.1 Calcium Imaging 

 

Several molecular probes, namely fluorescent dyes, capable of sensing the local ion concentration with high selectivity 

have been developed over the last 20 years. In short, when these molecules are excited by a specific wavelength, they 

emit light at a wavelength that depends on their bound (to Ca2+ ions) or unbound state (see section 1.6.3). 

Suppose now that we have a system of fluorophores A  at a total concentration Tc , which we excite with light of a 

given intensity and wavelength λ , we can summarize the excitation process as 

 

*AkA photon A+ →  (1.1) 

 

Where Ak  is the excitation rate constant (in units of 1s− ) and *A  represents fluorophores in the excited state. The 

system relaxes either non-radiatively (nr), with a rate nrk , or radiatively (r), emitting a photon of longer wavelength (i.e. 

reduced energy 'hν ) with a rate constant rk (Figure 1.1). 

 

Figure 1.1: Radiative and nonradiative decay from the excited state 

 

The overall relaxation rate constant Mk  is given by  

 

1
M r nr

ex

k k k
τ

= + =  (1.2) 

 

(in units of 1s− ) where exτ  is the excited state lifetime (typically a few ns). Under constant illumination, a steady state 

is rapidly reached such that 
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( )[ *] [ *]A T Mk c A k Aα − =  (1.3) 

 

where the dimensionless parameter α  represents the fraction of absorbed photons. Therefore, the equilibrium (steady 

state) concentration of excited state fluorophores [ *] eqA  is given by 

 

[ *] T
eq

M A

c
A

k k

α
α

=
+

 (1.4) 

 

where, in general, M Ak k≪ . The fluorescence emission intensity ( )f t  is proportional to the number of photons emitted 

in the process of relaxation from the excited state 

 

[ *] rkA A photon→ +  (1.5) 

 

therefore, its steady state value is 

 

[ *] r T
r eq

M A

k c
f k A

k k

α
α

= =
+

 (1.6) 

 

where the result is expressed in mols of photons emitted per unit time and unit volume of dye solution. 

For a given Tc , α  is proportional to the product ( ) lε λ ⋅ , where ( )ε λ  is the molar absorption coefficient (in units of  

mol-1 m-1) and l  is the length of the path traversed by the illuminating beam through the absorbing medium. The 

fluorescence quantum yield (sometimes termed quantum efficiency) is a gauge for measuring the efficiency of 

fluorescence emission relative to all of the possible pathways for relaxation and is generally expressed as 

 

r
F

M

k

k
η =  (1.7) 

 

Therefore, we conclude that f  depends on factors such as illumination intensity, molar concentration of fluorescent 

probes, fluorescence quantum yield, molar absorption coefficient, and path length. Let us then assume that the 

concentration of Ca2+-selective fluorescent probes is kept low enough that the relationship between fluorescence 

emission intensity and concentration is indeed linear, as predicted by (1.4). In general, the concentration [ ]F  and 

[ ]CaF  of the Ca2+-free (b ) and Ca2+-bound (b ) forms differ with respect to quantum yield and absorption. Therefore, 

we write f  as a linear combination 

 

[ ] [ ]f bf S F S CaF= +  (1.8) 

 

where the proportionality constants bS  and fS  lump all (system-dependent) factors such as illumination intensity, Fη , 

( )ε λ  and l . We are interested in measuring 2[ ]Ca +  in a closed system (e.g. the cell cytoplasm). 
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Hence, we must also include the mass balance equation 

 

[ ] [ ]Tc F CaF= +  (1.9) 

 

We then define 

 

max b Tf S c=  (1.10) 

 

as the fluorescence emission under Ca2+
 saturation conditions and 

 

min f Tf S c=  (1.11) 

 

as the corresponding emission under Ca2+-free conditions. Combining equations (1.11), (1.10), (1.9) and (1.8), we can 

write 

 

min

max

[ ]

[ ]

f f CaF

f f F

− =
−

 (1.12) 

 

At chemical equilibrium 
2

,
,

,

[ ][ ]

[ ]
off B

d B
on B

kCa F
k

CaF k

+

= =  (see section 1.6.3), so 

 

2
,

[ ]
[ ]

[ ]d B

CaF
Ca k

F
+ =  (1.13) 

 

Therefore, we conclude that 

 

2 min
,

max

[ ] d B

f f
Ca k

f f
+ −=

−
 (1.14) 

 

Equation (1.14) expresses a quantitative relationship between the physiologically relevant equilibrium 2[ ]Ca + , the 

dissociation constant ,d Bk  and optically measurable quantities minf , maxf  and f  for single wavelength Ca2+-selective 

probes. However, there are a number of caveats and problems with the practical use of (1.14). First, we note that the 

denominator vanishes as maxf f→ . Consequently, even small fluctuations in the estimate of f  (e.g. due to 

instrumental noise) may cause unacceptably large fluctuations in the estimation of 2[ ]Ca + . Furthermore, (1.14) is 

difficult to apply to imaging experiments where maxf , minf  and f  change rapidly over time due to photo-bleaching. 

Provided that adverse effects are kept under control, (1.14) can be used to estimate the change in concentration 

2 2 2[ ] [ ] [ ] restCa Ca Ca+ + +∆ = −  where 2[ ]Ca +  is given by (1.14). For stimuli that keep 2[ ]Ca +  within the approximately 

linear region of (1.14), 2[ ]Ca +∆  can be expressed as  
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( )
0

2
2

0
0

[ ]
[ ]

f

d Ca f
Ca f f k

df f

+
+ ∆∆ ≅ − ≅  (1.15) 

 

Where 

 

( )
( )
0 max min

, 2

max 0

d B

f f f
k k

f f

−
=

−
 (1.16) 

 

As discussed in the Introduction, correct estimation of 2[ ] iCa +  during a fast 2[ ] iCa +  variation requires to abandon the 

hypothesis that Ca2+ is in equilibrium with its reactants (i.e. the dye and the endogenous buffers). Non-equilibrium 

conditions can be correctly described by considering dye binding and unbinding kinetics, but also by considering dye 

diffusion away from the Ca2+ source (see Results).  

 

1.2 Calcium concentration reconstruction formulas 

 

Experimentally, 2+Ca  concentration variations can be estimated from fluorescence measures. In particular, if we 

consider the fluorescence signals emitted by the single wavelength dye [15] [16] Oregon Green BAPTA-1 (OGB-1), the 

fluorescence signal can be expressed by (1.8) and we can defined the parameter max

min

CaF

F

S f

S f
α = =  [21]. The 

concentration of the fluorescent dye is governed by the formula 

 

2
, ,

[ ]
[ ][ ] [ ]on F off F

d F
k Ca F k CaF

dt
+= − +  (1.17) 

  

where ,on Fk  and ,off Fk  are the rate constants of the bound and unbound fluorescent dye. From equation (1.8), 

 

/ [ ]
[ ]

1
F totf S F

F
α
α

−=
−

 (1.18) 

 

where [ ] totF  is defined as [ ] [ ] [ ]totF F CaF= + . 2[ ]Ca +  can be expressed from (1.17), 

 

( ),
2

,

[ ]
[ ] [ ]

[ ]
[ ]

off F tot

on F

d F
k F F

dtCa
k F

+
− −

=  (1.19) 

 

Inserting (1.17) in (1.19), 
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( )
[ ] '

1F

d F f

dt S α
=

−
 (1.20) 

 

Combining (1.18), (1.19) and (1.20), 

 

( )
2

,
,

[ ] '
[ ]

[ ] [ ]
F tot

d F
F tot on F F tot

S F f f
Ca k

f S F k S F fα α
+ −

= +
− −

 (1.21) 

 

The first term represent the equilibrium contribution to the concentration of 2+Ca , the second one the dynamic non-

equilibrium contribution. 2[ ]Ca +  in the initial condition of equilibrium can be calculated by the formula (1.21), without 

the dynamic term, using 0f  instead of f  

 

2 0
0 ,

0

[ ]
[ ]

[ ]
F tot

d F
F tot

S F f
Ca k

f S Fα
+ −

=
−

 (1.22) 

 

[ ] totF  can be calculated from (1.22), 

 

( )
2

0 0 , 0

2
0 ,

[ ]
[ ]

[ ]
d F

tot

F d F

f Ca k f
F

S Ca kα

+

+

+
=

+
 (1.23) 

 

The first term, inserting (1.23) in (1.21) and dividing by 0f  the numerator and denominator, can be expressed as 

 

2 2
0 0 0 0

2
0 ,

, , 2
0 0 , , 0

2
0 ,

[ ] [ ] / /

[ ][ ]

[ ] [ ] / /

[ ]

F
d

d FF tot
d F d F

F tot d F d F

d F

Ca Ca f f k f f

Ca kS F f
k k

f S F Ca f f k k f f

Ca k

α
α

α α α
α

+ +

+

+

+

− − ∆
+−

=
− ∆ − +

+

 (1.24) 

 

Adding and subtracting 
2

0
2

0 ,

[ ]

[ ] d F

Ca

Ca k

α
α

+

+ +
 in the numerator and ,

2
0 ,[ ]

d F

d F

k

Ca kα + +
 in the denominator of (1.24),  

 

2
0 02

0 ,

, ,

, 02
0 ,

1
[ ] /

[ ][ ]

[ ] 1
/

[ ]

d FF tot
d F d F

F tot

d F
d F

Ca f f
Ca kS F f

k k
f S F

k f f
Ca k

α
α

α α
α

+
+

+

 − + ∆  +−  =
−  − − ∆  + 

 (1.25) 

 

In the second term of (1.24), ' 'f f= ∆ ; inserting (1.23) in (1.21) and dividing by 0f  the numerator and the 

denominator,  

 



1 Materials and methods 
 

 6 

( )
0

2
, , 0 0 , 0

, 2
0 ,

'/'

[ ] [ ] / /

[ ]
on F F tot d F d F

on F
d F

f ff

k S F f k Ca f f k f f
k

Ca k

α α α
α

+

+

∆
=

−  − ∆ −
  + 

 
(1.26) 

 

Adding and subtracting ,d Fk  inside the parenthesis of the denominator,  

 

( )
0

,

, , 02
0 ,

'/'

[ ] 1
'/

[ ]

on F F tot

on F d F
d F

f ff

k S F f
k k f f

Ca k

α α
α +

∆
=

−   − − ∆   +   

 
(1.27) 

 

Considering the terms (1.25) and (1.27), the equation (1.21) can be expressed as 

 

( )
2

2 0 0 0
,

, 0 , , 0

[ ] / '/
[ ]

/ /
d F

d F on F d F

Ca f f f f
Ca k

k f f k k f f

γ
γ γ

+
+  + ∆ ∆

= +  − ∆ − ∆ 
 (1.28) 

 

where a new parameter γ  is defined as 

 

2
, 0

1

[ ]d Fk Ca

αγ
α +

−=
+

 (1.29) 

 

The formula (1.28) has two different terms, the first one is equivalent to the equilibrium formula whereas the second 

one is the contribution by the derivation of the fluorescence signal. The formula (1.28) is incomplete as the contribution 

given by diffusion of Ca2+ and its reactants is not considered. In the Results section we will derive the complete formula 

that will take into account the diffusion term (see section 2.1.1.2). 

The equilibrium term can be expressed also without the γ  parameter as in [6]:  

 

( )
( )

2
0 0 , 02

, 2
, 0 0 0

[ ] 1 / /
[ ]

1 / [ ] /
d F

d F
d F

Ca f f k f f
Ca k

k f f Ca f f

α α
α α

+
+

+

− + ⋅∆ + ⋅∆
=

− − ∆ − ⋅ ⋅ ∆
 (1.30) 

 

Both formulas (1.28) and (1.30) will be used in the following to reconstruct the free 2+Ca concentration.  

 

1.3 One-dimensional simulation for the validation of calcium reconstruction 

formula 

 

In order to validate the complete formula combining the equilibrium, derivative and diffusive terms (see section 1.2 and 

2.1.1.2), one-dimensional simulations were performed using the user-friendly simulation software SimulBort developed 

by Prof. Mario Bortolozzi. SimulBort allows the user to solve arbitrary systems of differential equations (typically 

reaction-diffusion equations) in a 1-dimensional geometry, thus equivalent to a cell with cylindrical simmetry. 
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Furthermore, it is possible to simulate the fluorescence signals of the dye, provided it is inserted as a variable in the 

equations. In our simulations, the cell was simulated by a line of 25.25 µm divided in 101 voxels of 0.25 µm. The 

spatial resolution was chosen similar to the spatial resolution of an optical fluorescence microscope. The system is 

simulated for the total duration of 1 s, dividing the interval in 10000 steps of 0.0001 s.  

 The Ca2+
 influx was limited to the central voxel (number 50) and was activated after 0.5 s from the beginning of the 

simulation. It is simulated in a similar way to the article [6]. A term named 2Ca
J +  expressed in µM/s  is added in the 

first equation of (1.34). The authors of [6] use a whole cell current 2Ca
I +  that reproduces experimental data, defined as 

 

( )

( ) ( )

2

2

0.5 s

0.023 s

0.548 s 0.548

0.004 s 0.088

361 pA 361 pA 461 pA for 0.5 s 0.548 s

286 pA 286 pA 373 pA for 0.548 s

t

Ca

t s t

s
Ca

I e t

I e e t

+

+

−

− −


= − + − < <


 = − + − >

 (1.31) 

 

 

Figure 1.2: : Current 2Ca
I +  in the whole cell 

 

Than, 2Ca
J +  (Figure 1.3) can be calculated as 

 

2

2

2
Ca

Ca
C

I
J

F
β +

+ =  (1.32) 

 

where 49.6485 10  C/molCF = ⋅  is the Faraday’s constant and β  is a proportionality constant. The simulation cell model 

described in [6] is different from the one we used (the first is 3-dimensional, this is 1-dimensional), so β  has to be 

changed to obtain a plausible 2Ca
J + , which enables Ca2+ concentration in the central voxel to be bigger than 1 µM  and 

the dye not to saturate. 2Ca
I +  is referred to the entire cell, but Ca2+  comes from 10 hotspot that are considered as points 

in [6], so the influx for every voxel can be approximated as 
2

10
Ca

I +
. In our simulation the influx of Ca2+  is simulated in 

the central voxel as if it was a single hotspot of [6]. To express 2Ca
J +  in µM/s , (1.32) have to be multiplied by a factor 

810 . β  is chosen as 0.5β = . 
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2

2

810 0.5

2
Ca

Ca
C

I
J

F

+

+

⋅ ⋅
=  (1.33) 

 

where 2Ca
I +  is expressed in pA . 

 

 

Figure 1.3: 2+Ca  influx 2Ca
J +  in the central voxel 

 

 

All the results of the 1-dimensional simulations will be reported in section 2.1. 

 

1.3.1 Reaction-diffusion simulation with calbindin buffer 

 

The system simulated by SimulBort was composed by Ca2+, the Ca2+ dye (OGB1) and a Ca2+ buffer (calbindin) typical 

of neuronal cells [6]: 

 

2
2 2 2 2

, , , ,

2 2
, ,

2 2
, ,

2
, ,

[ ]
[ ][ ] [ ] [ ][ ] [ ] [ ]

[ ]
[ ][ ] [ ] [ ]

[ ]
[ ][ ] [ ] [ ]

[ ]
[ ][ ] [ ]

on F off F on B off B Ca

on F off F F

on F off F CaF

on B off B

d Ca
k Ca F k CaF k Ca B k CaB D Ca

dt
d F

k Ca F k CaF D F
dt

d CaF
k Ca F k CaF D CaF

dt
d B

k Ca B k CaB
dt

+
+ + +

+

+

+

= − + − + + ∇

= − + + ∇

= − + ∇

= − + + 2

2 2
, ,

[ ]

[ ]
[ ][ ] [ ] [ ]

B

on B off B CaB

D B

d CaB
k Ca B k CaB D CaB

dt
+










 ∇

 = − + ∇


 (1.34) 
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where [ ]F  and [ ]CaF  are free dye and dye bound to Ca2+, whereas [ ]B  and [ ]CaB  are free calbindin and calbindin 

bound to Ca2+. Competition between F and B will be important for the evolution of the free Ca2+ concentration during 

the following Ca2+ influx. In the system (1.34) there are also diffusive terms described by the Laplacian of the species 

concentration.  

In Table 1.1 we show all the values for the parameters used in the simulation and for the  reconstruction of 2[ ]Ca + . 

 

Table 1.1: Parameters used in the simulation 

Parameter Value 

CaD  [6] 440 2 -1
µm s  

F CaFD D≃  [6] 220 2 -1
µm s  

B CaBD D≃  [6] 70 2 -1
µm s  

,on Fk [22] 930 -1 -1
µM s  

,off Fk  192 -1s  

,
,

,

off F
d F

on F

k
k

k
=

 
[21] 0.206 µM  

,on Bk [23] 55 -1 -1
µM s  

,off Bk  11.3 -1s  

,
,

,

off B
d B

on B

k
k

k
= [23] 0.206 µM  

α [21] 5 

 

 

[ ]F  and [ ]CaF  can be calculated from 2[ ]Ca + , ,d Fk  and [ ] totF  with the system of equation (1.35). [ ] totF  is the total 

dye (Oregon Green 488 BAPTA-1)  concentration inside the cell, [ ] [ ] [ ]totF F CaF= + . (1.35) is derived from equation 

(1.17) in equilibrium conditions. 

 

,
2

,

2

2
,

[ ]
[ ]

[ ]

[ ] [ ]
[ ]

[ ]

d F tot

d F

tot

d F

k F
F

Ca k

F Ca
CaF

Ca k

+

+

+


= +


 = +

 (1.35) 

 

The same formula can also be used for the buffers, substituting [ ]F  with [ ]B  and [ ]CaF  with [ ]CaB . 

In Table 1.2 we show the initial values of the simulation. Total concentration are chosen similar to article [6]. 
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Table 1.2: Initial values of the simulation 

Concentration Value 

2
0[ ]Ca +
 [24, 25] 0.100 µM  

[ ] totF  50.000 µM  

0[ ]F  33.569 µM  

0[ ]CaF  16.431 µM  

[ ] totB  [26] 2000 µM  

0[ ]B  1346.405 µM  

0[ ]CaB
 

653.595 µM  

 

1.3.2 Reaction-diffusion simulation with dye diffusion coefficient equal to 0 

 

In the first test we imposed 0FD =  while maintaining the other parameters and initial conditions equal to those of the 

simulation shown in Table 1.2: in this way, the 2[ ]Ca +  reconstructed with the formulas (1.28) and (1.30) has to overlap 

with the simulated Ca2+ without any kind of diffusive correction.  

 

1.3.3 Reaction-diffusion simulation with BAPTA 29kDa buffer as endogenous buffer 

 

Another test was done simulating a system with the same endogenous buffer of [6]: it is an artificial Calcium buffer 

called BAPTA 29 kDa, that shows the same rate of BAPTA while being heavier, so his diffusive coefficient is smaller. 

In Table 1.3 we reported the new parameters of BAPTA 29 kDa used in the simulation. 

 

Table 1.3: Parameters of BAPTA 29 kDa 

Concentration Value 

[ ] totB  1700 µM  

0[ ]B  1117.808 µM  

0[ ]CaB
 

582.192 µM  

,on Bk  500 -1 -1
µM s   

,off Bk  96 -1s  

,
,

,

off B
d B

on B

k
k

k
=  0.192 µM  

BD

 
220 2 -1

µm s  
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1.3.4 Reaction-diffusion simulation with calretinin as endogenous buffer 

 

Ca2+ buffering in cellular systems is usually simulated in the simplest way considering the Ca2+ buffers to have a unique 

binding site. Here we would like to test if our formula predicts correct results in the presence of a more realistic buffer, 

such as the model of Calretinin with five binding sites with different affinities for Ca2+ [27]. In this model, 2+Ca  ions 

bound to Calretinin in five different sites: the molecule possesses two pairs of cooperative binding sites, I IIT T  and 

III IVT T  that can be considered indistinguishable, so that I II III IVT T T T≃ , and can bind to two 2+Ca  ions, and a 

independent site VT  that binds to a single ion. In order to model cooperativity, two states (“relaxed” R and “tensed” T) 

are set for the TT  binding site, each having its own set of rate constants. A binding site is in the “tensed” state (T), with 

a low affinity for 2+Ca , when no 2+Ca  is bound to the other site in the pair, whereas a binding site is “relaxed” (R), 

with a high affinity for 2+Ca , when the other site already has a 2+Ca  ion bound. These three binding sites can be 

considered as separated molecules with the same diffusion coefficient CrD . The simplified structure of Calretinin is 

reported in Figure 1.4. 

 

 

Figure 1.4: Simplified structure of a Calretinin molecule 

 

The model assumes that binding of 2+Ca  to one site always leads to a rapid transition T R→  to the other site and that 

unbinding of 2+Ca  from one site always leads to a rapid transition R T→  to the other site. A standard equilibrium 

equation can be used to describe the independent site VT . Calretinin binding to Calcium can be modeled using the 

system of reactions (1.36) [28], reported in Figure 1.5. 

 

,

,

,

,

,

,

22

2
22

2

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

on T

off T

on R

off R

on V

off V

k

k

k

k

k

V Vk

TT Ca CaTT

CaTT Ca Ca TT

T Ca CaT

+

+

+

 →+ ←
 →+ ←

 →+ ←

 (1.36) 
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Figure 1.5: Scheme of the reactions considered in the cooperative binding model for Calretinin 

 

Where [ ]TT  is the concentration of the double binding sites, [ ]VT  is the concentration of the indipendent one, [ ]CaTT  

and 2[ ]Ca TT  are the concentrations of the double sites, bound to one or two 2+Ca  ions, [ ]CaT  is the concentration of 

the single site bound to a 2+Ca  ion. Morover, the condition 

 

[ ] 2[ ] 2[ ]tot tot totTT T Cr= =  (1.37) 

 

Where 

 

2

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
V tot V V

tot

T CaT T

TT Ca TT CaTT TT

= +
 = + +

 (1.38) 

 

must be satisfied. In order to introduce properly this endogenous buffer in the simulation, new differential equations 

have to be added in the system (1.34), and the first one has to be modified. Now, the simulation program has to solve 

the system of equations (1.39). 
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= − − + +

2

2

2 22
, , 2 2

] [ ]

[ ]
[ ][ ] 2 [ ] [ ]

CrCa
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+ ∇

 = − + ∇

 

(1.39) 

Within this system, there are many new parameters and new initial conditions that have to be take into consideration. In 

Table 1.4 we reported the new parameters of the simulation.  

 

Table 1.4: New parameters of the simulation 

Parameter Value 

2Cr CrCa CrCaD D D≃ ≃  70 2 -1
µm s   

,on Rk  310 -1 -1
µM s   

,off Rk  20 -1s  

,
,

,

off R
d R

on R

k
k

k
=  0.068 µM  

,on Tk  1.8 -1 -1
µM s  

,off Tk  53 -1s  

,
,

,

off T
d T

on T

k
k

k
=  28 µM  

,on Vk  7.3 -1 -1
µM s   

,off Vk  252 -1s  

,
,

,

off V
d V

on V

k
k

k
=  36 µM  
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The diffusive coefficient is chosen as article [26]. The cytosolic Calretinin concentration [ ] totCr  is assumed to be 

1.2 mM [26]. To find the initial concentrations of the new chemical species introduced to simulated the Calretinin, the 

system (1.40) has to be solved. 

2
,

2
,

2
, 2

2

[ ] 2[ ][ ]

[ ] [ ][ ]

[ ] [ ][ ]

2[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

d T

d V V V

d R

tot

tot V V

k CaTT Ca TT

k CaT Ca T

k Ca TT CaTT Ca

Cr CaTT TT Ca TT

Cr T CaT

+

+

+

 =


=


=
 = + +
 = +


 (1.40) 

where the firsts three equation derives from  the seventh, the eighth and the tenth equation of (1.39) for an equilibrium 

state, the latst two derives from (1.38). The solutions of this system are 
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d R d R d T
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 =
 +

 (1.41) 

 

A similar system is calculated in the supplementary materials of  [26]. In Table 1.5 we reported the new initial 

concentrations of the simulation. 

 

Table 1.5: Initial concentrations of the simulation with Calretinin 

Concentration Value 

2
0[ ]Ca +
 [24, 25] 0.100 µM  

[ ] totCr  1200 µM  

[ ]V totT  1200 µM  

[ ] totTT  600 µM  

0[ ]VT  1196.676 µM  

0[ ]TT  2358.382 µM  

2 0[ ]Ca TT  24.773 µM  

0[ ]CaTT  16.846 µM  

0[ ]VCaT
 

3.324 µM  
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1.3.5 Reaction-diffusion simulation with different fluorescent dyes 

 

As several different dyes are used in biological experiments to study the Ca2+ concentration, we performed simulations 

with diverse parameters for the Ca2+ dye. Table 1.6 and Table 1.7 reports the parameters and the initial conditions used 

in four simulations using different fluorescent dyes: Oregon Green 488 BAPTA-1, Oregon Green 488 BAPTA-5N, 

Fluo-3 and Fluo-4. FD , calculated using the formula in supplementary material of [6] for all the dyes, is considered the 

same for the four molecules even if they have slightly different molecular weights. Diffusive coefficients differ at most 

for 3%  from  FD = 220 2 -1
µm s . Initial concentrations are calculated with (1.35). 

 

Table 1.6: Rate constant of the four fluorescent dyes 

Parameter Value  Parameter Value 

,OGB-1onk
 
[22] 930 -1 -1

µM s    
,Fluo-3onk

 
[29] 13.1 -1 -1

µM s   

,OGB-1offk  192 -1s   ,Fluo-3offk
 
[29] 33.67 -1s  

,OGB-1
,OGB-1

,OGB-1

off
d

on

k
k

k
= [21] 0.206 µM  

 ,Fluo-3
,Fluo-3

,Fluo-3

off
d

on

k
k

k
=

 
[30] 2.57 µM  

OGB-1α  [21]

 
5  

Fluo-3α  [29]

 
200 

,OGB-5Nonk
  
[23] 124 -1 -1

µM s    
,Fluo-4onk  1044 -1 -1

µM s   

,OGB-5Noffk  5600 -1s   ,Fluo-4offk
 
[31] 350 -1s  

,OGB-5N
,OGB-5N

,OGB-5N

off
d

on

k
k

k
=

 
[23] 45.16 µM  

 ,Fluo-4
,Fluo-4

,Fluo-4

off
d

on

k
k

k
=

 
[30] 0.335 µM  

OGB-5Nα  [23]

 
30.8  

Fluo-4 Fluo-3α α≈
 

200 

 

 

Table 1.7: Initial concentration of the four fluorescent dyes 

Concentration Value 

2
0[ ]Ca +
 [24, 25] 0.100 µM  

[ ] totF  50 µM  

0[OGB-1]  33.660 µM  

0[ OBG-1]Ca  16.340 µM  

0[OGB-5N]  49.890 µM  

0[ OGB-5N]Ca  0.110 µM  

0[Fluo-3]  48.127 µM  

0[ Fluo-3]Ca  1.873 µM  

0[Fluo-4]
 

38.506 µM  

0[ Fluo-4]Ca  11.494 µM  
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1.3.6 Reaction-diffusion simulation with OGB-1 or OGB-1 dextran in combination 

with NP-EGTA as endogenous buffer 

 

In order to validate our formula in respect to the diffusion term, we performed simulations changing the diffusion 

coefficient of the dye, with values correspondent to OGB-1 and OGB-1 dextran. The endogenous buffer was equivalent 

to 2 mM unphotolyzed NP-EGTA. The OGB-1 dextran posseses the same characteristics of the OGB-1, except from the 

weight. It weights about 11000 MW in spite of 1000 MW, so its diffusive coefficient is smaller [32]. For this simulation 

Calcium influx was changed and lasts 5 ms in the central voxel. This simulation was supposed to reproduce in a very 

simplified way a photorelease of Calcium. NP-EGTA [33] can be considered always unphotolyzed, due to the small 

area of the Calcium release, with respect to the entire cell, so the photoproducts of NP-EGTA can be neglected. We 

report in Table 1.8 and Table 1.9 the parameters and the initial concentrations.  

 

Table 1.8: Parameters of the simulation with OGB-1 and NP-EGTA 

 

 

 

Table 1.9: Parameters of the simulation with OGB-1 and NP-EGTA 

 

 

 

 

Parameter Value 

,on Fk  930 µM-1s-1 

,off Fk  192 s-1 

,d Fk  0.206 µM 

,on NPk  17 µM-1s-1 

,off NPk  1.36  s-1 

,d NPk  0.08 µM 

FD  220 µm2s-1 

,F dexD [32] 16 µm2s-1 

NPD  [32] 100 µm2s-1 

Parameter Value 

2
0[ ]Ca +  0.05 µM  

0[ ]F  200 µM  

0[ ]CaF  50 µM 

0[ ]NP  1155 µM 

0[ ]CaNP  845 µM 
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1.4 Three-dimensional simulation software 

 

In order to validate our formula in a 3-D space, we upgraded SimulBort from 1- to 3-dimensional geometry. In this 

chapter we will describe the simulation software upgrade from “SimulBort” to the new “SimulCell”. Firstly, we 

developed a software capable of creating volumes with regular shapes. Through this, users can create a simple volume 

that reproduce the shape of a 3-dimensional cell. Then, we simulated and validated a diffusion process within several 

kind of simple volumes (in particular, inside a sphere). Finally, we also upgraded the other modules of SimulBort, in 

order to make them capable of working with a 3D geometry. The software was written in Matlab, using a GUI interface. 

The fundamental idea was that everyone, not only the programmer himself, could easily use it.  

 

1.4.1 SimulCell 

 

The main interface of “SimulBort” was upgraded as it is shown in Figure 1.6. 

 

 

Figure 1.6: Main interface of SimulBort (left) and SimulCell (right) 

 

The button “1) equation” opens the window shown in Figure 1.7 that remains the same in SimulCell. Inide this window, 

is possible to define a system of differential equations with their variables, parameters and inputs. Inputs are function or 

sentences that change the value of one or more parameters as a function of the time of the simulation. When the user 

pushes the compile button, the equations are recognized by a parser and then re-written in a solver-compatible way. 
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Figure 1.7: Equation section of SimulBort and SimulCell 

 

1.4.2 Geometry 

 

As we already said in the previous chapters, SimulBort is a software for unidimensional simulations. The geometry 

section permits to create a line divided in voxels at a known distance or other specific patterns, where the variables and 

the parameters of their equation can be user-defined. (Figure 1.8) 

 

 

Figure 1.8: Geometry section of SimulBort 

 

We made a big effort in order to upgrade this section to a 3-dimensional enabled module. The upgraded geometry 

section is shown in Figure 1.9. 
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Figure 1.9: Geometry section of SimulCell 

 

When this window is open, a variable named ‘dataF’ is created. This is a structure that contains every parameter of the 

geometry. The 3D-objects are 3-dimensional arrays of ones and zeros commonly known as volumetric images. The 

ones values are associated with the solid part of the object, the zeros are the external empty parts. The images are 

created in the white central section using the “patch” and “isosurface” function of Matlab. In Appendix 5.1.1 we 

reported how an object is created from the volumetric image named dataF.Objects.box1.V . Togheter with the 

previous variable, a structure named ‘temp’, that contains temporal files used for some of the functions, is also created. 

We will breafly describe each feature of the software in the following section. 

 

Create Objects Panel 

 

Opening the popup list, the user can choose between 4 simple geometric shapes. After one shape is selected, a new 

window appears, in which he can choose the size of the object, display it or save it with a name. First, a zeros 3D-matrix 

with sides 3/2 times bigger that the sizes previously chosen is created. If the user modifies the input size of the object, 

he modifies the 3D-matrix too. There is also a section named “number of points”; it enables the user to choose the 

resolution of his object. This number is associated with the number of points dataF.N_tot  in which the 3D-matrix 

will be divided. This operation is computed as reported in Appendix 5.1.2.  Every shape is created by a for-loop that 

assigns the value 1 to the points that respect a specific condition. Every new object is centered in (0, 0, 0). The shapes, 

the parameters and the conditions are shown in Table 1.10. 

If there are already other existing objects, they are reshaped and recreated in a bigger 3D-matrix of zeros, maintaining 

the best resolution (number of points) possible; therefore, every object resides inside the same 3D-matrix. This is 

necessary for the correct functioning of the software. 
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Table 1.10: Shapes, parameters and conditions used in the “Create Objects” section 

Shape Parameter Condition 

Box 

x dimension (box.x ) 

y dimension (box.y ) 

z dimension (box.z ) 

dataF.X <= x/2 & dataF.Y <= y/2 & dataF.Z <= 

z/2 

Ellipsoid 

radius x (ellipsoid.r1 ) 

radius y (ellipsoid..r2 ) 

radius z (ellipsoid..r3 ) 

(dataF.X/ellipsoid.r1)^2 + 

(dataF.Y/ellipsoid.r2)^2 + 

(dataF.Z/ellipsoid.r3)^2 <= 1 

Cylinder 

radius x (cylinder.r1 ) 

radius y (cylinder.r2 ) 

height (cylinder.h ) 

(dataF.X/cylinder.r1)^2 + 

(dataF.Y/cylinder.r2)^2 <= 1 & dataF.Z >= -

cylinder.h/2 & dataF.Z <= cylinder.h/2 

Cone 

radius x (cone.r1 ) 

radius y (cone.r2 ) 

height (cone.h ) 

(dataF.X/cone.r1)^2 + (dataF.Y/cone.r2)^2 - 

((dataF.Z -cone.h/2)/cone.h)^2 <= 0 & 

dataF.Z >= -cone.h/2 & dataF.Z <= cone.h/2  

 

 

 

Number of points Panel 

 

This command allows to modify the number of points in which all the objects are discretized. This changes the number 

of dataF.N_tot . The same procedure shown in section “Create objects” is repeted to create a new grid of values 

dataF.X, dataF.Y, dataF.Z . If there are objects already saved, this command go through all of them doing a 

resize. This operation is possible because every complex object can be decomposed into its primary components created 

in “Create objects” and then reassambled in a smaller or bigger 3D-matrix. 

 

Select objects Panel 

 

In this section the user can choose which objects he wants to visualize. The object selected in the popup menu is shown 

in blue, the other visible objects are yellow. Visible and invisible objects are also copied inside two structure named 

vis  and invis .  

  

Translate Panel 

 

This feature allows the objects to be moved. The “resolution” section shows the smallest possible translation for a given 

object, which can be changed in order to make objects move faster. Only the visible objects (the blue and the yellow 

ones) can be translated. In Appendix 5.1.3 we reported the two functions used to translate an object in the positive 

(translation_xp ) (Figure 1.10) or negative direction (translation_xm ) of the x-axis. The other functions for 

y-axis and z-axis are similar. 
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Figure 1.10: Translation of the blue parallelepiped on positive direction on x axis 

 

Everytime an object is translated, a variable named dataF.Objects.example.translation is saved. This variable is a vector 

of 3 values that remembers to the user where the object is translated from the center (0, 0, 0). 

 

Rotate Panel 

 

This feature allows to rotate the visible objects around the x, y and z-axis. This function can only work with 3D-cube 

matrix with an even number of discretizations in every side, so that every object is recreated in a 3D-cube of zeros with 

the smallest surrounding size possible. The objects can be rotated applying a combination of five affine transformation: 

a translation of the object to the center of the box of zeros, a combination of the three rotation around the three axes and 

the inverse of the first translation (Figure 1.11). See Appendix 5.1.4 for the detailed Matlab functions. 

 

 

 

Figure 1.11: Rotation of the blue parallelepiped shown in Figure 1.10 
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Merge Panel  

 

This feature allows to merge objects and to save the results as a new object (Figure 1.12). By pressing the button, all the 

visible objects become one. This operation is done inside a for-cycle for all the visible objects, summing all their 

volumetric images point by point . All the points of the sum-object that are bigger than 1 are set to 1.  

 

Subtract Panel 

 

This feature allows to subtract the visible objects to a selected one (Figure 1.12). This operation is done inside a for-

cycle for all the visible objects, summing all their volumetric images point by point except for the selected one. All the 

points of the sum-object that are bigger than 1 are set to 1. Then, this volumetric image is subtracted point by point from 

the selected object. The values smaller than 0 in the final object are set to 0. 

 

Intersect Panel 

 

This feature allows to find the volume intersection between the visible objects and a selected one (Figure 1.12). This 

operation is done inside a for-cycle for all the visible objects, summing all their volumetric images point by point except 

for the selected one. All the points of the sum-object that are bigger than 1 are set to 1. Then, this volumetric image is 

added point by point to the selected object. The 0 and 1 values of this final object are set to 0, the values bigger than 1 

are set to 1. There is also the possibility to save the surface intersection. This is computed using the existing imedge3d  

function. 

 

 

Figure 1.12: Merge, subtraction and intersection operation on the object of Figure 1.10 

 

Smoothing Panel 

 

This section allows the user to smooth the surface of his objects. It uses the Matlab’s function smooth3 . It can not be 

used if the user wants to discretize the final object pushing the button “regular cubes”. It works only with tetrahedral 

mesh.  
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Patterns and discretization Panel 

 

This is the last step of the creation of the user geometry. Here, the user can select the final object and define a specific 

pattern inside it. This pattern will have the same function of the SimulBort’s patterns. They can be created starting from 

any finalized object and selecting one subsets inside (e.g. the entire volume, the external surface, its center, a line that 

pass through the center…).  After doing this, the user can choose how to discretize his object: with a tetrahedral mesh 

(feature under development) or with regular cubes. In the latter case, the 3D-matrix defining the object is resized in 

order to have the minimum number of points outside the object (to make the simulation faster). Furthermore, pushing 

the button “regular cubes” creates a new structure called dataM . The final volumetric image is called 

dataM.geometry.V . This is the connection between the geometry section and the SimulCell code. Here there are 

the variables that was used by SimulBort for the simulation. In this structure there are the coordinates of the points of 

the simulation dataM.voxels.centers , the matrix of the neighbours of every voxel 

dataM.voxels.neighbours  (every line of the matrix contain the six indexes of the neighbours of the voxel that 

have the number of the line as index. If the neighbour is outside the object, the value is 0), the volumes of every voxel 

dataM.voxels.volumes , the name and the indexes of every pattern dataM.patterns.name and 

dataM.patterns.array , and here also are computed the neighbouring and the intersecting patterns for every one 

of them: dataM.geometry.pattern.neighbouring_names and 

dataM.geometry.pattern.intersection_names . One pattern is considered intersecting with another if the 

sum of their volumetric images is bigger than one; it is considered neighbouring if his volumetric image summed with 

the other is not bigger than one, but with a edge bigger than one discretization per direction has intersections. The main 

part of the code is reported in Appendix 5.1.5.  

The object volume can be discretized with a tetrahedral mesh or with a regular grid. The main advantage of the 

former method is that tetrahedra can adapt to every shape and can be thickened in particular zones while preserving the 

four neighbours structure (except for the tetrahedra on the borders). Nevertheless, this discretization is difficult to treat 

due to the simple elements algorithm necessary to optimally simulate a diffusion process and its not so easy integration 

with the algorithms already existing inside SimulBort. A regular grid can’t be local thickened and can’t adapt, but is 

easier to use for simulating with a finite difference algorithm and to integrate with the pre-existing code. 

The tetrahedral mesh can be done using Jigsaw [34] and Iso2Mesh [35], two free Matlab’s plugins. Figure 1.13 shows 

an example of a mesh done inside a sphere. 

 

Figure 1.13: Volume of a sphere discretized with a tetrahedral mesh 
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Regular grid is simply made using Matlab: the volume discretized in this way is divided in boxes of the same 

dimensions (Figure 1.14). 

 

Figure 1.14: Example of the discretization using regular cubes 

Diffusion simulation has been made both in tetrahedral mesh and regular grid using different algorithms. The results 

are always compared with theoretical models. For tetrahedral mesh, we tested different algorithms to avoid the finite 

elements methods but no one worked correctly due to the irregularity of the tetrahedral. Regular grid algorithms are 

simpler and more effective than simulation made with tetrahedral mesh, thus were chosen as the go-to approch. 

 

1.4.3 Initial Conditions 

 

In this section, both in SimulBort and SimulCell, users can define the variables, parameters and inputs to apply to the 

geometric pattern that they have previously created. In Figure 1.15 we show how this section appears for 1-dimensional 

simulations.  
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Figure 1.15: Initial conditions section for 1-dimensional simulations 

 

This section had to be upgraded in order to work with 3-dimensional geometry. In Figure 1.16 we reported the graphical 

interface of the 3-dimensional initial conditions section. Except from the permeabilities panel, it resembles closely the 

previous version. In the new panel, once the user select a pattern from the list, the list of the adjoining patterns (already 

calculated in the Geometry section) appears. When the user defines the value of a variable, SimulCell creates a structure 

named dataM.variabls.initial_conditions{1} . The number {1}  is associated to the variable: it is the 

position of that variable in the variable list. This structure contains the following fields: pattern_name , 

pattern_array , pattern_value , pattern_unit , pattern_permeability  and pattern_indexes . 

The first four fields are present also inside dataM.parameters.initial_conditions{1}  and the first two 

inside dataM.inputs.initial_conditions{1} . pattern_name  is a string containing the name of the 

pattern for which the value is defined, pattern_array  is a cell array with the indexes of the chosen pattern, 

pattern_value  is the value of the variable in that pattern and pattern_unit  are the units of that variable. The 

new field pattern_permeability  is a N×M matrix containing the permeability values (from 0 to 1, 0 if the 

patterns is impermeable, 1 if it is permeable) where N is the number of voxels of that pattern and M the number of 

neighbours (in 3-D, M = 6); e.g. in the corresponding column of row number 7 we can find the permeability of  voxel 7 

towards neighbours voxels in the three spatial dimensions. pattern_indexes  is an array N×M containing the 

indexes of the neighbours of every voxel of the pattern. By default, every pattern is completely permeable with itself 

and with the other adjoining patterns and impermeable with the external. These conditions can be modified in the 
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designed space in the permeabilities panel. The code used to modify  pattern_permeability  and 

pattern_indexes  is reported in Appendix 5.1.6. 

 

 

Figure 1.16: Initial conditions section for 3-dimensional simulations 

 

1.4.4 Generate, use and analyze the model 

 

In these section, the model is compiled and solved by differential equation solvers. In the section “Compile” the 

equations are re-written in order to be inserted inside the solver. Some small changes had to be made to the code in 

order to upgrade it to 3-dimensions but the core code remains the same as in SimulBort. The most important change is 

in the function formatOdeMEX.m where the laplacian operator is discretized (Appendix 5.1.7).  

Another important difference from the 1-dimensional software is the “Analyze Results” section (Figure 1.17). Here, it is 

possible to visualize the results of the simulation plotting, every variable as a function of time and, also, if some 

variables are associated to fluorescent dyes concentrations, the fluorescence ratio 0f f . This ratio is calculated using 

the formula (1.8) in the following way: 
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In the panel “Select a Pattern” is possible to choose a pattern and a subset of it in order to visualize the results just 

inside that specific area (i.e. Figure 1.17 shows a selected volume of the pattern “sfe1Volume”). 

 

 

Figure 1.17: Analyze results section for 3-dimensional simulations 

 

1.4.5 Generate a movie 

 

The last section introduced in SimulCell is “Generate a Movie”. This button opens another graphical interface (Figure 

1.18).  

 

Figure 1.18: Movie section of SimulCell 

 

This section allows the user to generate a movie of the fluorescence signal or the concentration of the reactants that 

simulate the video that could be recorded with a microscope. Users can choose the frame rate of the video; the duration 

of a frame must not be smaller than the time step of the simulation (min t step). If it is bigger, the concentration’s values 

saved in dataM.results.s  are mediated in every frame. The user can also choose  the position of the focus plane of 
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the microscope modifying the value z. Delta z is the thickness of the focus plane of the microscope, so that if it is a 

confocal plane this value is smaller than a widefield one. If this value is 0, the thickness considered is the voxel length. 

When the user push the button “Do the Movie”, if one variable is selected, the movie reproduces the variations of 

concentrations of that variable in the plane selected, if  “Fluorescence” is selected, the movie shows the variation of the 

fluorescence signal. “Fluorescence” simulates the acquisition of a camera: the fluorescence’s values are multiplied by 

weight values that reproduce the changes of the intensity in function of the amount of defocus from the focal plane 

(Figure 1.19). Then, the weighted fluorescent values are mediated along the z axis [36] 

 

 

Figure 1.19: Relative intensity of the detected light of an optical fluorescence microscope in function of the amount of 

defocus 

 

1.5 Three-dimensional simulations 

1.5.1 Diffusion process simulation 

 

The diffusion was first simulated outside of the SimulCell software in order to be compared with the theoretical 

prediction, then it was compared with SimulCell’s results. 

The diffusion process was simulated in a homogenous and isotrophic volume with spherical shape in which the species 

c diffuses slowly enough that its concentration at the border of the diffusion space remains negligible for the whole 

duration of the simulation. The simulation is thus equivalent to the diffusion in a free space.  

Fick’s  second law  

2dc
D c

dt
= ⋅∇  (1.43) 

 

was discretized to simulate diffusion in squared voxels connected by probabilities related to x,y,z displacements of the c 

species. We first considered the random-walk step probabilities for the three spatial directions: 
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Secondly, the probabilities of step in a neighboring box neighp  or the probabilities of staying still stayp  are calculated 

with equations (1.45) 
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=
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∑
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where ( )n i  is the number of neighbors ( )neigh i  of the i-th box and ( ) ( )d xp i p i= , ( )yp i  or ( )zp i . The probabilities 

are zeros for boxes outside of the spherical volume. Concentration in every box is calculated using this probabilities as 

weights, using the formula  

 

( ) ( ) ( ) ( ) ( ) ( )
( )

i i stay i neigh i
neigh i

c t dt c t p i c t p i+ = ⋅ + ⋅∑  (1.46) 

 

where dt  is the time step of the simulation. 

The theoretical concentration as a function of time and space is given by 
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= ⋅  (1.47) 

 

where ( )0 0 0 0, , ,c x y z t  is the initial concentration that is supposed to be completely localized inside a single box. 

It is important to take into account the condition (1.48) for minx  that is the minimum space step of the simulation (the 

minimum between xh , yh  and zh ). 

 

min 2x D dt> ⋅  (1.48) 

 

If the condition (1.48) is not satisfied, the results of the simulation will be wrong and the algorithm automatically 

changes its time step to the bigest possible.  

Another important consideration to do is about the boundary conditions: if the volume is finite, the outside 

concentration must be constant (in this case 0 µM) . In the simulations with a volume that has a boundary, reflecting 

boundary conditions are used. This condition is taken into account by the equation (1.45). 



1 Materials and methods 
 

 30 

The simulation is performed using the initial conditions of Table 1.11. This simulations reproduce the diffusion on a 

infinite homogeneous volume, because the boundary is not reached. This condition is obtained using a small diffusion 

coefficient D . 

 

Table 1.11: Initial conditions used for the diffusion process simulation 

 

 

 

 

 

 

 

 

Secondly, the diffusion process is simulated using a bigger diffusive coefficient, 2D = µm2/s. In this case, the 

concentration is not equal to zero in the boundary regions, so that the boundary conditions are important.  

Lastly, the same procedure is followed solving the Fick’s law with SimulCell. The initial conditions are the same of 

Table 1.11. 

 

1.5.2 Reaction-diffusion simulation with OGB-1 or OGB-1 dextran in combination 

with NP-EGTA as endogenous buffer 

 

The same simulations of section 1.3.6 are performed in 3-dimensions. The results are than compared. The intial 

concentration and the parameters are the same of the 1-dimensional simulations. The chosen geometry is a sphere with a 

radius of 3 µm.  

 

1.5.3 Flash photolysis simulation 

 

The last simulation wants to reproduce the experiments of flash photolysis. The system of equations solved by 

SimulCell is (1.49). The initial concentrations and parameters are the same of sections 1.3.6 and 1.5.2. There must be 

introducted two more chemical species that reproduced the flashed NP-EGTA that changes its ,off NPk from 1.36 s-1 to 

8.0·105 s-1 [33] when it is enlighted by a UV laser. These two have initial concentrations equal to 0. 

Parameter Value 

D  0.2 µm2/s 

dt  0.0002 s 

( )0 0 0 0, , ,c x y z t  10 µM 

Sphere radius r  3 µm 

x y zh h h= =  0.27 µm 
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(1.49) 

[ ]Cg  is the [ ]NP EGTA−  and [ ]CgCa  the concentration of their Ca2+ complexes. [ ]pCg  and [ ]pCg Ca  represent the 

concentration of photoproduct without and with Ca2+. ( )flasht tδ −  is a Dirac delta “function” that is used to model the 

instantaneous conversion of a fraction of Cg and CgCa to Cgp and CgpCa. This conversion is modelled by the parameter 

f . In Table 1.12 we reported this values as they are presented in the article [33] except for f , since they are different 

from experiment to experiment, as a function of the used laser. In our case, f  and ( )flasht tδ −  are chosen in order to fit 

our experimental data. ( )flasht tδ −  is one for 5 ms, a time similar to the duration of the laser in our experiments. The 

parameters of the fluorescent dye are the same of the previous sections. 

Table 1.12: Parameters of NP-EGTA for the Calcium uncaging process 

Parameter Value 

,on Ck  7 -1 -11.7 10  M s⋅  

,off Ck  -11.36 s  

,on Pk  7 -1 -11.7 10  M s⋅  

,off Pk  5 -18.0 10  s⋅  

1
1

1

R
D

F

k
k

k
=  88.0 10  M−⋅  

4
4

4

R
D

F

k
k

k
=  31.0 10  M−⋅  

CgD
 

100 µm-2s-1 



1 Materials and methods 
 

 32 

1.6 Experimental Apparatus 

1.6.1 Optical fluorescence microscopy 

 

 

Figure 1.20: Optical fluorescence microscopy setup 

 

 

Figure 1.21: Schematic representation of the optical microscopy setup 
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In Figure 1.20 and Figure 1.21 we show a photo and a schematic representation of the optical fluorescent microscopy 

setup [37].  

The microscope is a fixed stage Olympus BX51WI mounted on an anti-vibration table. The transillumination light 

sources are a green 520 nm or red 660 nm LED (epi-fluorescence lamphouse) used under Köhler illumination in the 

objective plane. This light source is used to record a transmission image of the sample directly by the oculars placed in 

the transmitted light detection section. These images are used to select the area of the sample to be analyzed. In order to 

obtain a fluorescence image of the sample, a blue 470 nm LED or a monochromator set to 471 nm coupled with a 

480/40 emission filter are used as excitation source. In the UV photolysis section, there is a UV 379 nm laser that is 

used to photo-release Calcium bound with Caged-Calcium molecules (this is focused by the same objective used to 

focus image in the objective plane). The UV laser beam is reflected to the sample by a dichroic mirror 400 DCLP 

placed between the objective and the primary dichroic. 

The objective is a water immersion Nikon Fluor 40x/0.80w, DIC M, WD 0.20. The emission light produced by the 

sample is collected by the objective lenses and recorded by a PCO-edge camera (PCO.EDGE 5.5). This camera allows 

to record very fast frames, till 10 ms/frame. To reach this recording speed the area of the sensor must be restricted. The 

area used for the final experiments at 10 ms/frame is 960x560 pixels, that are about 61x105 µm. The calibration is made 

recording an image of a ronchi test pattern with 40 lines per mm.  

Depending on the wavelength used in the experiments, different dichroic mirrors and emission filters are used to filter 

light that reaches the sensor of the cameras (they are not shown in Figure 1.21). The dichroic mirror filter wheel has 

been always used with a 495 dichroic mirror. In Table 1.13 are reported the chosen configurations of dichroic mirrors 

and emission filters in function of the excitation light. All the parts of this experimental apparatus (cameras, leds, laser, 

shutters…) are controlled by Roboscope, a custom software built in VIMM laboratories. The protocols used in this 

software are reported in section 1.6.5. 

 

Table 1.13: Configuration of dichroic mirrors and emission filters used for the experiments 

Light source Emission filter Primary dichroic mirror 

LED 520 nm ET 514/44 515 + 520/40 

LED 660 nm BA610IF None 

LED 470 nm EO 514/44 585 + 590 LP 

Monochromator 471 nm EO 514/44 585 + 590 LP 

 

This optical microscope can be used in two ways: as a simple optical fluorescent microscope or as a confocal one. In the 

latter case, a Nipkow disk [37] can be inserted in the optical pathway as can be seen in Figure 1.21. In order to obtain 

the confocal effect, and an improvement of the resolution, the out-of-focus light is blocked by pinholes in the optical 

path. The spinning disk provides the confocal effect by parallelizing the process with a special design pinholes pattern. 

For this thesis work,  we used a spinning disk with a stripes pattern (Figure 1.22). An alternation of transparent and dark 

lines was obtained by laser ablation of a chromium deposition over a round glass window; the pattern consists of two 

orthogonal sets of transparent stripes (38 µm width, 400 µm pitch) which enables a homogeneous scan of the field of 

view by a 360° disk rotation. 
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Figure 1.22: Spinning disk with stripes pattern 

 

The disk rotation is driven by a DC motor (e.g. A-max 121394, Maxon Motor, Fall River, MA) mounted on a x-y-z 

micromanipulator (e.g. PT3, Thorlabs) that is used to connect the rotary disk mount to the transversal support bar and to 

precisely position the disk in the light path. 

The samples are placed inside a micro-chamber: this is important because it allows to surround the samples with a bath 

solution. For living cell samples the bath solution is a mix that reproduce the extracellular medium, for non-living 

samples is just distilled water.  

 

1.6.2 Laser 

 

 

Figure 1.23: Laser used for the experiments 

 

The laser used for the flash photolysis is a semiconductor UV laser (RGBLaseLLC) with a central wavelength of 379 

nm and an optical output power of 20 mW. The Abbe equations (1.48) predicts that the radius of the laser beam 

shrinked by the objective is 
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0.61
300 µmr

NA

λ= ≈  (1.50) 

 

We performed a qualitative measurement that is described in section 1.6.4.1 to have an idea of the dimension of the 

laser spot (Figure 1.25). 

The basis of the laser can be moved by two linear translators on z axis and on the axis parallel to the exit beam. There is 

also a mirror that can be tilted to move the laser spot that reach the dichroic mirror placed before the objective of the 

microscope. In Figure 1.24 is shown a scheme of the laser optical path with the power of the laser spot measured by a 

Thorlabs PM100D powermeter with a Thorlabs S175C probe in different place of the pathway.    

 

 

Figure 1.24: Scheme of the laser optical pathway 

 

 

Figure 1.25: Laser spot in a solution of fluorescein. 
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1.6.3 Reactants 

 

In this section we will describe the principal reactants used for the experiments: the fluorescent dyes, the caged-Calcium 

compound and  the intracellular solution. 

 

1.6.3.1 Intracellular solution 

 

This particular solution is used instead of water in the samples to reproduct the conditions that are typical of the inside 

of a cell, particularly the pH value. In the Table 1.14 we show the reactants used to produce this solution. 

 

Table 1.14: Reactants used for the intracellular solution 

Reactant 
Molecular 

weight (g/mol) 
Molarity (mM) 

K-asp 180.2 115 

KCl 74.56 10 

NaCl 58.44 10 

HEPES 238.30 10 

KOH 56.11 (1000) 

 

 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ) is a zwitterionic organic chemical buffering agent widely 

used in cell culture, largely because it is better at maintaining physiological pH values. The solution of KOH is 1 M and 

it is added to the solution until the pH reaches a physiological value of about 7.2. The final intracellular solution has an 

osmotic pressure of about 280 mOsm and a pH of 7.2. 

 

1.6.3.2 Extracellular solution 

 

This particular solution is used instead of water in the bath solution of the samples to reproduct the conditions that are 

typical outside a cell, particularly the pH and osmotic pressure values.  

In the Table 1.15 are shown the reactants used to produce this solution. 

 

Table 1.15: List of ionic concentration in extracellular solution 

Ionic species Molarity (mM) 

K+ 5 

Cl- 160 

Na+ 150 

Ca2+ 2 
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1.6.3.3 Fluorescent dyes 

 

A fluorophore is a fluorecsent chemical compound that can re-emit light upon light excitation. Fluorophores are 

sometimes used alone, as tracers in fluids, as a dye for staining of certain structures, as a substrate of enzymes or as a 

probe or indicator (when its fluorescence is affected by environmental aspects such as polarity or ions). More generally 

they are covalently bonded to a macromolecule, serving as a marker (or dye, or tag, or reporter) for affine or bioactive 

reagents (antibodies, peptides, nucleic acids) [20]. 

The fluorophore absorbs light energy of a specific wavelength and re-emits light at a longer wavelength. The 

absorbed wavelengths, energy transfer efficiency, and time before emission depend on both the fluorophore structure 

and its chemical environment, as the molecule in its excited state interacts with surrounding molecules. Wavelengths of 

maximum absorption (≈ excitation) and emission (for example, Absorption/Emission = 485 nm/517 nm) are the typical 

terms used to refer to a given fluorophore, but the whole spectrum may be important to consider. The excitation 

wavelength spectrum may be a very narrow or broader band, or it may be all beyond a cutoff level. The emission 

spectrum is usually sharper than the excitation spectrum, and it is of a longer wavelength and correspondingly lower 

energy. For Calcium imaging Calcium probes named Calcium fluorescent dyes are fundamental because they are 

capable of sensing local on concentration with high selectivity.  

In order for such a fluorescent probe to provide useful information about its environment (e.g. Ca2+ concentration), it is 

necessary that its spectral properties be altered in a suitable manner by the parameter to be measured. For most 

biological applications, any one of the following three property changes is appropriate (Figure 1.26):  

a. A change in fluorescence yield 

b. A shift in the excitation or emission spectrum 

c. A combination of two 

 

 

Figure 1.26: Spectral proprieties that can be utilized to measure Ca2+ concentration 

 

As discussed in the introduction, there are three types of fluorescent dyes: case (a) comprises the Fluo family of the so-

called single wave- length uorescent Ca2+ indicators which are the ones that are used for this thesis work, particularly 

Fluo-4 and Oregon Green BAPTA-1. This two types of probes can be cell permeant (AM (acetoxymethyl ester) form) 

or cell impermeant (salt form). The first ones must be loaded in the extracellular medium and they are absorbed and de-

esterificated by cells: after this processes they works but the concentration that is absorbed by every celli is different 

and unknown. The second ones are loaded in the cells by microinjection: this fact permits to control the concentration 

that are inserted inside the analyzed cell. For this thesis work are used fluorescent dyes in salt form. The specification of 
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the two fluorescence dyes used are shown below. 

 

Fluo-4, Pentapotassium Salt, cell impermeant 

• Molecular formula: C36H25F2K5N2O13 

• Molecular weigh: 927.0874 g/mol 

• Excitation/emission wavelength: 494/516 nm 

• Fluorescence intensity increase upon binding 

Ca2+: > 100 fold 

• kd: 335 nM 

 

Figure 1.27: Scheme of Fluo-4 molecule 

 

 

Figure 1.28: Fluo-4 spectra: excitation spectrum in cyan, emission spectrum in red 
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Oregon Green 488 BAPTA-1, Hexapotassium salt, cell impermeant 

• Molecular formula: C43H27F2K6N3O16 

• Molecular weigh: 1114.2834 g/mol 

• Excitation/emission wavelength: 494/523 nm 

• Fluorescence intensity increase upon binding 

Ca2+: > 14 fold 

• kd: 206 nM  

Figure 1.29: Scheme of OGB-1 molecule 

 

 

Figure 1.30: Oregon Green BAPTA-1 spectra: excitation spectrum in cyan, emission spectrum in red 

 

Oregon Green 488 BAPTA-1 dextran, Potassium salt, 10000 MW, cell impermeant 

This fluorescent dye has the same specification of the OGB-1 except for the molecular weight. The dextran size is about 

10000 MW.  

 

1.6.3.4 Caged Calcium molecules 

 

Calcium cage molecules are photolabile Ca2+ chelators that can be used to increase the intracellular concentration of 

Ca2+. They change their binding rates and their proprieties after been flashed by a UV light. The caged Calcium chosen 

for this thesis work is NP-EGTA (O-Nitrophenyl EGTA, Tetrapotassium Salt, cell impermeant). 
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Figure 1.31: Scheme of NP-EGTA molecule 

 

NP-caged EGTA, potassium salt is a cell-impermeant photolabile chelator that exhibits a high selectivity for Ca2+ upon 

UV illumination, its dk  increases from 80 nM to >1 mM. The NP-EGTA salt can be complexed with Ca2+ to generate a 

caged calcium complex that will rapidly deliver Ca2+ upon photolysis. In is shown the process of  Ca2+ uncaging by 

photolysis of NP-EGTA. Ca2+ is efficiently released by photochemical lysis of the chelator backbone, converting a high 

affinity, tetracarboxylic acid chelator into two low affinity dicarboxylic molecules [33]. They are shown just the first 

and the last step of the photolysis [38]. 

 

 

Figure 1.32: Calcium uncaging by photolysis of NP-EGTA 

 

The uncaging process can be modelled by a simplified system of equation reported in section 1.5.3 [33], with the 

scheme reported in Figure 1.33 

 

Figure 1.33: Kinetic scheme for modeling the rate of Ca2+ release upon photolysis of caged Ca2+ 

 

As the fluorescent dyes, NP-EGTA can be cell permeant, too. This one has been used for a test with HeLa cells.  



 1.6  Experimental Apparatus 
 

 41 
 

 

1.6.4 Samples 

 

The samples that we used for the experiments are “sandwiches”, couvettes and HeLa cells.  

 

1.6.4.1  “Sandwich” couvette 

 

“Sandwiches” are prototypes of cells made by two glass coverslips. Between this two coverslips there is a spacer of 

about 70 µm. The space between the coverslips is filled with little drops (about 0.50 µl) of different solutions. 

The first samples are filled with drops of a 2.5 mM solution of fluorescein: they are used to focalize the laser and to 

characterize it, recording his changes in size and intensity. In this way, it is possible to find the smaller laser spot 

possible. His diameter is 3.0 0.3± µm and will be the size of the uncaging spot. The other samples are filled with  drops 

of solutions with known concentration of reactants. In Figure 1.34 is shown a schematic representation of the 

“sandwiches” samples. This type of samples are used for the final measurements (the final “receipt” is reported in 

section 1.6.5).  

 

 

Figure 1.34: Scheme of the sandwiches samples 

 

1.6.4.2 “Pipette” couvette  

 

These samples are made by a Patch glass capillary (1.5 mm OD, 1.16 mm ID, HARVARD APPARATUS LTD) pulled 

by a micropuller. It is possible to pull the glass in one stage using a microelectrode puller and a standard heating coil 

(Figure 1.35). The temperature of the heating coil is about 57°C. The capillary breaks in two pieces, taking the form of 

a little pipette with a tip that has a diameter of about 2-4 µm.  
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Figure 1.35: Vertical micro-puller 

 

This capillary can be used for patch clamp to fill the cells with known solution but can be also used as micro-containers 

of solutions if their head is closed. The latter case is what we call “couvette samples”. 

The tip of the pipette is closed by a micro-forge (Figure 1.36 and Figure 1.37). 

 

  

Figure 1.36: Microforge: the heat is supplied by the platinum filament. The tip of the pipette is brought to within 10 µm 

until it is closed. 

 

This closed pipettes are filled with the chosen solution and are corked and pasted on a glass coverslip with hot glue. 

These samples are used for test measurments. 
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Figure 1.37: Couvette’s tip recorded with transillumination of 520 nm 

 

This samples are used for testing the reactants used for the experiments. Many tests have been made, since we had 

different aliquots of NP-EGTA but not all of them worked well. These tests are also useful to find a good “receipt” for 

the UV flash photolysis samples. The protocols used in Roboscope are the same of the sandwiches samples. 

 

1.6.4.3 HeLa cells 

 

 

Figure 1.38: HeLa cell used for a test 

 

This kind of cells are used as cell model systems in many biology laboratories around the world. 

HeLa cells are the first continuous cancer cell line scientist managed to grow in vitro; they are isolated from the 

aggressive glandular cervical cancer of a young woman, Henrietta Lacks, in 1951 in Baltimore. The cell line was called 

HeLa from the first two letters of the woman’s name. 

They are particularly used in bio labs because they are “immortal” in that they can divide an unlimited number of times 

in a cell culture plate as long as fundamental cell survival conditions are met [39]. Cells are grown in Dulbecco’s 
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modified Eagle’s medium (DMEM) supplemented with penicillin streptomycin (pen strep) and fetal bovine serum 

(FBS) at 37°C in a humidified incubator with 5% CO2. 

Cells are routinely subcultured by trypsinazation with a change of medium three times a week. They are plated in 35 m 

plastic Petri dishes; each dish hosted up to five cover glasses with a diameter of 12 mm on which cells are disseminated 

and allowed to grow.  These cells are used for this thesis work in the preliminary test experiments.  

These samples are used in order to have an idea of how a localized flash photolysis works in cells and to test if the 

apparatus can perform it. The “receipt” and the protocol used in Roboscobe are reported in section 1.6.5. In Figure 1.39 

is shown the process of photorelease revealed by a fluorescentce measurement. The laser spot is set at the right edge of 

the cell. 

 

 

Figure 1.39: UV flash photolysis on HeLa cell 

 

In Figure 1.40 are also reported the 0f f∆  traces on these samples. They show a typical Ca2+-release behaviour. We are 

not sure if all that fluorescent is due to Ca2+ diffusion or if it is also caused by other processes, such as Ca2+-induces 

Ca2+-release (because cells were not loaded with specific blockers). The decrease of the fluorescence as a function of 

time is due to the Ca2+ channels of the cellular membrane.  

 

 

Figure 1.40: 0f f∆  traces of the flash photolysis on HeLa cells 
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1.6.5 Experimental protocols 

 

In this section we reported the “receipts” of the solutions used for the experiments and the protocols followed by 

Roboscope for the recording of the images. 

 

1.6.5.1 Solutions 

 

For the first couvette and sandwiches samples we used different concentrations of the reactants, trying to find the best 

concentration for our experiments.  

For the HeLa cells samples, the fluorescent dye and the caged Calcium are loaded inside the grown medium of the cell 

(Table 1.16). Then, the cells are placed on the microscope, surrounded by extracellular medium. 

 

Table 1.16: Solution for HeLa cells sample 

Reactant Concentration 

Fluo-4 AM 50 µM 

NP-EGTA AM 50 µM 

 

The sandwiches samples that are the samples used for the final experiments, are filled with the solution reported in 

Table 1.17, using intracellular solution instead of water to dilute the solutions. We called these sample “NP”. For the 

final analysis, some sandwiches are also filled with a solution without NP-EGTA, named OGB, and others with the 

fluorescent dye completely bound and unbound with Ca2+ ions, used for the calibration of maxF  and minF  , named 

OGBmax and OGBmin. Some samples are also filled with only intracellular solution in order to evaluate the 

background. We built three samples for every solution to mediate the results during the analysis.  

 

Table 1.17: Receipt used for couvettes (“sandwiches”) 

Sample Reactant Concentration 

CaCl2 900 µM 

NP-EGTA salt 2 mM NP 

OGB-1 or OGB-1 (dextran) 250 µM 

CaCl2 50 µM 
OGB 

OGB-1 or OGB-1 (dextran) 250 µM 

CaCl2 2 mM 
OGBmax 

OGB-1 or OGB-1 (dextran) 250 µM 

BAPTA 5 mM 
OGBmin 

OGB-1 or OGB-1 (dextran) 250 µM 
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1.6.5.2 Protocols 

 

In this section we reported the protocols used for the test experiments with HeLa cells (Table 1.18) and for the final 

“sandwhich” samples (Table 1.19). 

 

Table 1.18: Protocol for HeLa cells sample 

Parameter Value 

binning 2 

Frame duration 500 ms 

Exposure time 50 ms 

Laser duration ~300 ms 

Duration of exposure with LED 470 nm  50 ms/frame 

 

Table 1.19: Protocol for final “sandwich” samples 

Parameter Value 

binning 1 

Frame duration 11 ms 

Exposure time 10 ms 

Laser duration ~2 ms or  ~100 ms 

Duration of exposure with  

the monochromator 471 nm  

11 ms 

 

 



2 Results 

 

In this chapter  we will be expose all the achieved results: the development of the novel formula for the reconstruction 

of Calcium concentration and the results of the simulations and the experiments. 

 

2.1 Calcium influx simulated in one-dimensional geometry 

2.1.1 Reaction-diffusion simulation with calbindin buffer 

 

Here are reported the results from the first simulation described in section 1.3.1.  

 

2.1.1.1 Reconstruction of the real Ca2+ concentration by equilibrium and derivative 

formulas 

 

In Figure 2.1 is shown the simulated 2[ ]Ca +  in voxels 50, 45, 40, 30, 20 and 10. The initial conditions and the 

parameters chosen for this simulation are reported in section 1.3.1. 

 

 

Figure 2.1: Simulated 2[ ]Ca +  in different voxels 

 

In Figure 2.2 are reported the concentrations of the dye bound and unbound with 2+Ca  to show that the dye does not 

saturate in every voxel (it is necessary for a correct reconstruction). 
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Figure 2.2: simulated dye concentration unbound (left) and bound (right) with Ca2+ in every voxel 

  

Starting from the simulated 0f f∆  (Figure 2.3), 2[ ]Ca +  can be initially reconstructed by the equilibrium formula 

(1.30) (Figure 2.4).  

 

Figure 2.3: Simulated 0f f∆  in different voxels 

 

 

Figure 2.4: Reconstructed 2[ ]Ca +  with the equilibrium formula (1.30) in different voxels 

 

The concentration 2[ ]Ca +  can be reconstructed from 0/f f∆  with the formula (1.28) as can be seen in Figure 2.5. 
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Figure 2.5: Reconstructed 2[ ]Ca +  with (1.28) in different voxels 

 

The spikes of 2[ ]Ca +  in the voxel 50 are due to the 0'/f f∆  term. The variation of fluorescence in the voxel 50, where 

the 2[ ]Ca +  influx appear for 0.01 s, is very fast both in the beginning and in the end, so the derivative term presents 

some spikes (Figure 2.6) that are smoothed by diffusion for other voxels. The derivative is evaluated point by point by a 

simple two-points algorithm 

 

( ) ( )0 01
0

/ /
'/ i i

f f f f
f f

t
+

∆ − ∆
∆ =

∆
 (2.1) 

 

Where t∆  is the temporal gap between two successive points, that is the resolution time of the simulation; in this case 

t∆ = 0.0001 s. 

 

 

Figure 2.6: 0'/f f∆  in different voxels  

In Figure 2.7 the simulated and the two reconstructed concentration are compared in voxels 50, while in in voxel 45 and 

20 in Figure 2.8. 
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Figure 2.7: Comparison in voxel 50 

 

 

Figure 2.8: Comparison in voxel 45 (left) and 20 (right) 

 

The reconstruction is unsatisfying. It is different from the simulation, particularly for the central voxels where is the 

Calcium influx. It is interesting that the formula (1.28) reconstructed better 2[ ]Ca +  than the formula (1.30), particularly 

in the beginning of the influx. This happens because it takes into account the dynamic of the system with the first 

derivative. 

 

2.1.1.2 Reconstruction of the real Calcium concentration by the new formula 

 

In the reconstruction equations (1.28)(1.30) a diffusion contribution is ignored. This term is introduced in the typical 

reaction equation. 
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The Laplace operator can be discretized in the following way 
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where if  is the fluorescence intensity of the dye at the position i , 1if +  and 1if −  are the intensity at positions i x+ ∆  

and i x− ∆ , where x∆  is the spatial resolution of the simulation, in this case x∆ = 0.25 µm .  

Calling (1.30) as 2[ ] RCa + , considering the discretization (2.6), (2.4) can be expressed as 
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Summing and subtracting 0f  inside the parenthesis of the denominator of (2.6),  
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Where 
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As in the previous section, from Figure 2.9 the reconstructed 2[ ]Ca +  with the diffusive correction can be seen. 
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Figure 2.9: 2[ ]Ca +  reconstructed with diffusive correction 

 

As can be seen in Figure 2.10, in voxel 50 the reconstruction with the diffusive term overlaps with the simulated 

2[ ]Ca + . 

 

Figure 2.10: 2[ ]Ca +  comparison in voxel 50 

 

These four estimates are compared in Figure 2.11 for the voxels 45 and 20 as before. 
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Figure 2.11: 2[ ]Ca +  comparison in voxels 45 (left) and 20 (right) 

 

For all the voxels, the equation (2.7) describes very well the behaviour of 
2[ ]Ca + ; simulated and corrected plots 

overlaps. The diffusive correction is fundamental to reconstructed the 2[ ]Ca +  concentration. 

 

2.1.2  Comparison of equilibrium and new formula by changing the dye diffusion 

coefficient. 

 

As described in section 1.3.2, this is the first validity test of the novel formula. With 0FD = , all the reconstruction 

formulas have to overlap with the simulated Calcium concentration. This fact is reported in Figure 2.12. It can be seen 

that reconstructions from derivative and equilibrium formula are very similar: the first is better than the second 

especially in the beginning of the influx, because in that moment the dynamic of the system is very important. The 

percentage error between the reconstructions and the simulation on the top of the influx is about 6 %.  

 

 

Figure 2.12: 2[ ]Ca +  reconstructions without dye diffusion in voxel 50 

 



2 Results 
 

 54 

2.1.3 BAPTA 29kDa buffer as the endogenous buffer 

 

As above, in Figure 2.13 reconstructions and simulation using BAPTA 29 kDa as endogenous buffer are compared. 

The initial conditions and parameters are reported in section 1.3.3. 

 

 

Figure 2.13: Comparison using BAPTA 29 kDa as endogenous buffer in voxel 50 

 

Simulated 2[ ]Ca +

 and reconstructed with formula (2.7) and simulated overlap well; the percentage error is about 0.4 %. 

 

2.1.4 Calretinin as the endogenous buffer 

 

The simulated 2[ ]Ca +  obtained with the initial conditions and parameters reported in section 1.3.4 is shown in Figure 

2.14. In Figure 2.15 is shown the comparison between the reconstructions and the simulation. 

 

 

Figure 2.14: 2[ ]Ca +  simulated with Calretinin as endogenous buffer 
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Figure 2.15: 2[ ]Ca +

 comparison using Calretinin as endogenous buffer in voxel 50 

 

The percentage error of the reconstruction comparing the top of  2[ ]Ca +

 reconstructed and simulated is about 2 % 

. 

2.1.4.1 Reconstruction of the real calcium concentration by the new formula with 

different dyes 

 

In Figure 2.16 are reported 2[ ]Ca +

 reconstructed and simulated with these four different dyes. The initial conditions 

and the parameters are reported in section 1.3.5. 

 

 

Figure 2.16: 2[ ]Ca +

 simulated and reconstructed with four different fluorescent dyes 

 

In Figure 2.17 are shown an enlargements on the tops of 2[ ]Ca + concentrations of Figure 2.16. 
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Figure 2.17: Enlargements on the tops of 2[ ]Ca + curves of Figure 2.16  

 

The reconstructions fit very well the simulations with all the four dyes, with a maximum percentage error of about 0.7 

% for Oregon Green BAPTA-1.  

 

2.1.4.2 Reconstruction of the real Calcium concentration by the new formula using 

OGB1 or OGB1-dextran in combination with NP-EGTA 

 

The results of the simulation described in section 1.3.6 are shown in the figure below (Figure 2.18). In Figure 2.19 are 

reported the Calcium concentration reconstruction by the three formulas compared with simulated Calcium 

concentration. 
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Figure 2.18: Simulated Calcium concentration (left) and 0f f∆ (right) for 1-dimensional simulations with OGB-1 and 

OGB-1 dextran 

 

 

Figure 2.19: Comparison between reconstructed Calcium concentrations with the three formulas. 1-D simulations with 

OGB-1 (left), with OGB-1 dextran (right) 

 

2.2 Three-dimensional simulations 

2.2.1 Validation of diffusion process 

 

A diffusion process is simulated with SimulCell software and outside by a self-made code and compared with the 

theoretical predictions using the initial conditions reported in Table 1.11 of section 1.5.1. In  

Figure 2.20 is shown the diffusion process for five temporal steps. The points of the self-made code and SimulCell 

overlaps perfectly.  

Secondly, the diffusion process is simulated using a bigger diffusive coefficient, 2D = µm2/s. In this case, the 

concentration is not equal to zero in the boundary regions, so the boundary conditions are important. The code works 

well in this case, too. The total concentration remains the same for all the times but, obviously, the points do not overlap 
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with the theoretical prediction for an infinite homogeneous medium when the particles reach the boundary. This process 

is shown in  

Figure 2.21.   

 

Figure 2.20: Simulation of a diffusion process in a spherical volume using parameters of Table 1.11. In the left top 

image is shown theoretical diffusion process expect at different time from the beginning of the diffusion. In the other 

images are shown the simulated points (blue) and the theoretical predictions (red line) at different time from the 

beginning of the diffusion process. 
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Figure 2.21: Simulation of a diffusion process in a spherical volume with 2D = µm2/s. In the other images are shown 

the simulated points (blue) and the theoretical predictions (red line) at different time from the beginning of the diffusion 

process. 

2.2.1.1 3D reconstruction of the real Calcium concentration by the new formula using 

OGB1 or OGB1-dextran in combination with NP-EGTA 

 

These simulations are described in section 1.5.2. In Figure 2.22 are reported the simulated 0f f∆  for the two 

simulations and in Figure 2.23 the reconstructed Calcium concentration reconstruction obtained by the three formulas 

compared with simulated Calcium concentration. In Figure 2.24 and Figure 2.25 are also reported the comparison 

between the simulated Calcium and the 0f f∆  in 1D and 3D.  

 

 

Figure 2.22: Simulated Calcium concentration (left) and 0f f∆ (right) for 3-dimensional simulations with OGB-1 and 

OGB-1 dextran 

 

 

Figure 2.23: Comparison between reconstructed Calcium concentrations with the three formulas. 3-D simulations with 

simple OGB-1 (left), with OGB-1 dextran (right) 
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Figure 2.24: Comparison of simulated Calcium and 0f f∆  for “no dex” simulations in 1D and 3D 

 

 

Figure 2.25: Comparison of simulated Calcium and 0f f∆  for “dex” simulations in 1D and 3D 

 

2.3 Experiments 

2.3.1 First analysis 

 

In this section we reported the results from the experiments performed with “sandwiches” samples. 

The same procedure is followed for both  the sample with the fluorescent dye dextran-conjugated and the dextran-free 

dye . We reported only the analysis performed on the sample with OGB-1 dextran step by step. Every image sequence 

recorded with the microscope was modified centering the laser spot on the center of the image. In this way, it is possible 

to process the images pixel by pixel. The traces for every sample are the mean values calculated inside a central region 

of interest (ROI) that surround the laser spot (ROI 1 of Figure 2.26). The ROI is the same for every sample.  
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Figure 2.26: A ROI correspondent to the laser spot was used to analyze the fluorescence signal.   

 

Firstly, the samples filled with intracellular solution were mediated.  

 

 

Figure 2.27: Fluorescence traces of intracellular (left) and mean (right) 

 

These samples were used as background refererence and subtracted from all the traces of the other samples. 

The OGBmax and OGBmin samples (after the background subtraction)  were also mediated. These are used to estimate 

the minf  and maxf  values of the fluorescent dyes. This estimation can be obtained mediating every frame of those two 

samples and then mediating the fluorescence intensity inside the ROI 1. The values are reported in table Table 2.1. 

 

Table 2.1: minf , maxf  and α  of Oregon Green BAPTA-1 and Oregon Green BAPTA-1 dextran 

 minf  maxf  α  

NP + OGB-1 29.62 270.34 9.12 

NP + OGB-1 dextran 29.15 104.75 3.59 

 

In Figure 2.28 we show the NP samples. From every sample the background was subtracted. 
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Figure 2.28: Fluorescence traces of NP samples 

 

Then the 0f f∆  was evaluated for every sample. 0f  is the mean of the fluorescence intensity before the Ca2+ influx. 

Finally,  0f f∆  was mediated (Figure 2.29). 

 

 

Figure 2.29: 0f f∆  for samples with OGB-1 dextran (left), mean of 0f f∆  (right) 

 

The same procedure was followed for the sample with the dextran-free OGB-1 (Figure 2.30) and then the results were 

compared (Figure 2.31). In this case, we used only 3 of the 6 measurments, because one of the two sandwiches did 

show no comparable traces. 
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Figure 2.30: 0f f∆  for samples with simple OGB-1 (left), mean of 0f f∆  (right) 

 

 

Figure 2.31: Comparison of the 0f f∆  of the NP samples with OGB-1 and OGB-1 dextran 

 

From these measurements was possible to evaluate the basal concentration of Ca2+ using formula (1.14) (Table 2.2). 

 

Table 2.2: 2
0[ ]Ca +  and γ  of the NPdex and NPno dex samples 

 2
0[ ]Ca +  γ  

NPno dex 58 nM 11.09 

NPdex 15 nM 9.97 

 

Knowing these two parameters,α , FD , onk  and dk  of the fluorescent dye, was possible to reconstruct the Calcium 

concentration with the equilibrium formula (1.30). In Figure 2.30 is also reported the comparion between these two 

Calcium reconstructions.  
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Figure 2.32: Reconstructed Calcium concentration with equilibrium formula (left) and comparison between 2[ ]Ca +∆  

 

In order to use the novel formula (2.7) is necessary to know the laplacian ( )2
0f f∇ ∆ . This variable could be obtained 

by the analysis of the image sequences. The same procedure followed for the traces could be performed pixel by pixel 

also for the images, obtaining comparable results. We used a confocal microscope, so the enlighted and recorded area of 

the sample was supposed to be a plane. Therefore, the laplacian is 2D and could be obtained by the following 

discretization. The vertical terms could be neglected because we supposed they have the same value of the central one. 
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In this way, the laplacian could be determined pixel by pixel. The mean of the laplacian inside the ROI number 1 is 

reported in Figure 2.33. 

 

 

Figure 2.33: ( )2
0f f∇ ∆  obtained pixel by pixel for NPdex samples 
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This laplacian term is very noisy and it could not be used for the reconstruction. We tried to obtain a better laplacian 

term applying to the 0f f∆  sequences some filters (average and Gaussian) and increasing the binning of the images but 

the results were still too noisy and unusable. Therefore, we built a “ROI laplacian” in the following way: we considered 

the central ROI as a big pixel of value 0f f∆ (mean) . His neighbours were the other adjoined ROIs of the same size. 

Thus, using (2.9) we obtained the laplacian reporte in Figure 2.34.  

 

 

Figure 2.34: “roi laplacian” for NPdex samples 

 

The laplacian now could be inserted into the formula (1.28), obtaining  

 

 

Figure 2.35: Comparison between 2[ ]Ca +  reconstructions with equilibrium and diffusive formulas for NPdex samples 

(left) and NPno dex samples (right) 

 

It seemed that the diffusive contribution did not improve the reconstruction, so we calculated the mean fluorescence 

intensity for concentric ROIs. In this way, we could understand if the diffusion was significant for our image sequences. 
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In Figure 2.36 we reported the mean fluorescence intensity as a function of the internal radius (in pixel) of the 

concentric ROI for NPno dex samples. The numbers in the legend correspond to the number of frames after the laser 

impulse. 

 

 

Figure 2.36: Mean fluorescence intensity recorded in the frames after the laser impulse in function of the radius of 

concentric rois 

 

2.3.2 Comparison between experiments and simulation 

 

Once the simulation of section 1.5.3 was finished we have tried to compare its results with the experiments for the NPno 

dex sample, because it was the one that had the basal Calcium concentration similar to what we expected. For the 

simulation, we chose the parameter f  with a value of 250. Unfortunately, this value did not fit with the experimental 

data, but the simulation could be used anyway to better understand the data’s meaning. In Figure 2.37 are shown the 

simulated Calcium concentration and the Calcium reconstructed through the equilibrium and diffusive formula. The 

simulation was meadiated in order to have the same temporal step of the experiments and nearly the same region of 

interest.  
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Figure 2.37: Comparison between simulated 2[ ]Ca +  and reconstructed 2[ ]Ca +  by equilibrium and diffusive formula 

for the simulation of section 1.5.3 

 

For the experiments, the frame in which the laser was activated was deleted, thus the same was done for this 

simulations, obtaining the Figure 2.38. The equilibrium traces overlaped perfectly with the diffusive traces.  

 

 

Figure 2.38: Comparison between simulated 2[ ]Ca +  and reconstructed 2[ ]Ca +  by equilibrium and diffusive formula 

for the simulation of section 1.5.3 without the laser frame 

 

2.3.3 Second analysis 

 

It seemed that the equilibrium conditions were reached since the first frame after the laser flash. For this reason, we 

tried to analyze the image sequence without deleting the laser frame. We had to consider the OGB samples (Table 
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1.17): these samples were used to modulate the fluorescent signal of the NPdex and NPno dex samples. In fact, OGB-1 and 

OGB1-dextran were undesirably excited by the UV-laser, so the fluorescence signals recorded from the NP samples 

were a convolution of the OGB emission due to the laser and the emission due to the calcium binding and unbinding. 

As before, the image sequences used were a mean between the same type of samples without the background. A 

modulation process was developed in order to remove the former fluorescence contribute. Firstly, the fluorescent 

signals recorded for the OGB samples were normalized, dividing them for their basal fluorescence (2.10).  

 

0
norm

OGB
OGB

OGB
=  (2.10) 

 

where OGB is the image matrix with the fluorescence intensities as entries and 0OGB  is the one with the basal 

fluorescence intensities. Then, a fictional 0f  for NP samples, called 0F , was evaluated as follows 

 

0 0 normF NP OGB= ⋅  (2.11) 

 

where 0NP  is the image matrix with the basal fluorescent intensities of the NP samples as entries. 
0

f

f

∆
 is estimated as 

0

0 0

NP Ff

f F

−∆ =  (2.12) 

 

In Figure 2.39 we reported the NP, OGB and F0 traces obtained mediating the fluorescent values inside the ROI 1 (see 

section 2.3.1)  for samples filled with simple OGB-1 and OGB-1 dextran. 

 

 

Figure 2.39: NP, OGB and F0 traces of samples with OGB-1 (left) and OGB-1 dextran (right) 

 

In  Figure 2.38 we show the 0f f∆  obtained with (2.12).  
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Figure 2.40: 0f f∆  obtained with (2.12) 

 

In Figure 2.41 are reported the Ca2+ concentration reconstructions obtained by the same formulas used in section 2.3.1. 

 

 

Figure 2.41: Calcium concentration reconstructions for NPno dex samples (left) and NPdex samples (right) 
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3 Discussion 

 

In this thesis work, we have developed a novel formula for the reconstruction of the intracellular Ca2+ concentration, 

based on knowledge of the dye fluorescence signal and the related experimental parameters (F
onk , F

offk , F
dk , α and FD ), 

as well as on the resting Ca2+ concentration estimated before the Ca2+ influx. Considering a formula that assumes the 

equilibrium of the reactants would lead to uncorrect reconstruction of the real Ca2+ concentration when the calcium 

influx is high and localized, e.g. in the case of a Ca2+ hotspot [6]. To overcome this limitation, our novel formula takes 

into account both the temporal and spatial dynamics of the dye by calculating the temporal derivative of the 

fluorescence signal  (“derivative” formula (1.28)) as well as its laplacian (“diffusive” formula (2.7)). This formula was 

initially tested and validated by numerical simulations in a 1-dimensional geometry. We tested the validity of our 

formula changing several critical parameters, such as type of dye, buffer or the Ca2+ influx dynamics (section 2.1). In 

each tested condition, the equilibrium formula failed to reconstruct the real Ca2+ concentration during the Ca2+ influx, 

whereas the “derivative” formula (1.28) improved the estimation, in particular at the onset of the Ca2+ influx. Small 

artifacts (e.g., spikes) were observed due to discretization in the first derivative of the fluorescent signal (Figure 2.19, 

Figure 2.23). Using the “diffusive” formula significantly improved the reconstruction of the real Ca2+ concentration 

(section 2.1.1.2) in respect to the “derivative” formula alone, permitting to obtain nearly exact estimations in every 

condition tested (Figure 2.10, Figure 2.13, Figure 2.15, Figure 2.16, Figure 2.19). The maximum error in the Ca2+ peak 

estimation was around 1-2%, which is a significative improvement in respect to the equilibrium formula giving errors 

around 70-80%.  

The second part of our theoretical work focused on testing the new formula in three dimensional environment 

by upgrading the 1-dimensional user-friendly simulation software developed in Prof. Bortolozzi’s lab that we used for 

the first validation. A new simulation software, named SimulCell (section 1.4.1), included the tool to design objects in 

3D and to set the initial conditions. SimulCell was designed to allow the user to create objects with arbitrary shape, 

starting from elementary geometrical solids. In the geometry (1.4.2) and initial conditions (1.4.3) sections the user can 

define “patterns”, i.e. regions of the simulation space, with different properties that can also be used to analyze the 

results of the simulation.  

Once developed the SimulCell software, we performed 3-D simulations (section 2.2). After validating the diffusion 

algorithm (Fick’s law equation, section 2.2.1, Figure 2.20), we performed same simulations performed in 1-D (section 

2.2.1.1), obtaining the same succesfull results with the novel “diffusive” formula (Figure 2.23). As we expected, we 

found that, after the offset of the Ca2+ influx, the 0f f∆  approaches the equilibrium condition faster than in the 1-D 

case, due to the higher number of degree of freedom of the dye (Figure 2.24 and Figure 2.25).  

Simulating the same dye with different diffusive coefficient (OGB-1 and OGB-1 dextran, section 2.2.1.1) suggested 

us that the same Ca2+ peak (0.11 µM), is predicted as different if we use the equilibrium formula obtaining 0.066 µM for 

OGB-1 and 0.081 µM for OGB-1 dextran (Figure 2.19 and Figure 2.23), instead of the “diffusive” formula that 

provided 0.11 µM as the real Ca2+.  

Based on these considerations, we performed Ca2+ imaging experiments combined with UV-flash photolysis 

technique in an artificial couvette that mimics the intracellular environment under controlled conditions. Images were 

acquired by using a confocal spinning disk developed in Prof. Bortolozzi’s lab. We set up the experimental conditions 

in order to have a significative photorelease of Ca2+ by NP-EGTA, while acquiring images at the high frame rate (100 
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Hz). We tested also reliability of the Ca2+ stimulus by repeating the experiments in different couvettes as well as 

different regions of the couvette itself (section 2.3.1). Unexpectedly, we found a different α values for normal OGB-1 

and OGB-1 dextran (Table 2.1), maybe due to quancing effects in the dextran dye due to the higher molecular wheight. 

The recorded 0f f∆  values were similar for both OGB-1 and OGB-1 dextran experiments when analyzed after the 

Ca2+ photorelease (Figure 2.31), suggesting that the amount of Ca2+ released by the NP-EGTA is similar but the system 

is already in equilibrium conditions (Figure 2.32), as confirmed by application of the “diffusive” formula that does not 

provide significative differences.  

We found technical problems in the estimation of the Laplacian computed pixel by pixel due to the relatively low 

signal-to-noise ratio (Figure 2.33), despite application of spatial and temporal filters to the experimental movie. 

Analysis of the laplacian was then performed by a binning approximation that we called “ROI laplacian” (Figure 2.34), 

avoiding the frames of Ca2+ photoliberation due the artefact of dye excitation by the laser. The “diffusive” formula 

provided results similar to the equilibrium formula when considering the frames after the Ca2+ photoliberation. This 

result was interpreted by the simulation (Figure 2.37) that indicates that Ca2+ is not at equilibrium with its reactants only 

during its liberation, i.e. the laser duration in the experiment (Figure 2.38). As we suspected, the “diffusive” formula is 

effective only during the Ca2+ influx, thus we tried to consider also the laser frame by performing a “modulation 

process” explained in section 2.3.3. This process did not help us to obtain good 0f f∆  traces and also creates unwanted 

artifacts (for example negative pick in 0f f∆  traces, Figure 2.40), with unsatisfactory results, expecially for the OGB-1 

experiments. 

 

 

 

 

 

 

 

 

 

 

 



4 Conclusions 

 

In this thesis work, we developed and tested a novel formula (“diffusive” formula) useful to estimate the real 

Ca2+ concentration in non-equilibrium conditions of Ca2+ and its reactants, e.g. during a Ca2+ influx at the neuronal 

synapse. The fluorescent signal of the Ca2+ dye and a few experimental parameters are required to derive the real 

Ca2+ concentration by the formula. The formula was validated by both simulations in a 1-D and 3-D environment by a 

user-friendly software upgraded during the thesis. Knowledge of the resting Ca2+ concentration is required a priori, thus 

representing a limitation in the precision of the Ca2+ estimate as this parameter can be experimentally estimated only at 

the end of the experiment. A future upgrade of the formula will be the derivation of a parameter equivalent to 

the 0f f∆ , thus predicting Ca2+ variations independent from the knowledge of the resting Ca2+ . 

Experimental validation of the formula will be also performed in a future work, overcoming artifacts found in our 

experiments, by (i) combining imaging with dual patch-clamp technique in neurons to apply voltage transients that 

control the opening and closure of voltage-activated Ca2+ channels and (ii) improving the off-line analysis of the 

Laplacian by advanced image filters. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Conclusions 
 

 74 

 

 

 

 

 

 

 



5 Appendix 

5.1 SimulCell 

5.1.1 Geometry 

 

%-- Generate the faces and vertices of the object s urface.  

dataF.Objects.box1.FV = isosurface(dataF.X,dataF.Y, dataF.Z,dataF.Objects.box1.V,0.95); 

%-- DataF.X, DataF.Y, DataF.Z are the coordinates v alue attributed to every point of the volumetric 

image. 0.95 is the isovalue :  the isosurface connects points that have the specif ied value much the 

way contour lines connect points of equal elevation  

 

%-- Draw the object  

dataF.Objects.box1.p = patch(dataF.Objects.box1.FV) ; 

  

%-- Reshape the object representation  

isonormals(dataF.X,dataF.Y,dataF.Z, dataF.Objects.b ox1.V, dataF.Objects.box1.p); 

  

%-- Choose the colour and the appearance of the obj ect  

    set(dataF.Objects.box1.p, 'FaceColor' , 'blue' , 'FaceAlpha' , 0.3, 'EdgeColor' , 'none' ); 

    daspect([1 1 1]) 

    view(3) 

    camlight(-45,45);  

    lighting phong  

 

5.1.2 Create Objects 

 

%-- dataF.Lx and the others are the dimension of th e box of zeros. For example, dataF.Lx = box.x 

where box.x is the x dimension that is wrote in the  box window 

dataF.V_tot = dataF.Lx*dataF.Ly*dataF.Lz; 

 

%-- This is the smaller distance between one point with his neighbour  

dataF.resolution = nthroot(dataF.V_tot/dataF.N_tot,  3); 

 

%-- These are the number of division for every axes  of the 3D-matrix  

dataF.Nx = round(dataF.Lx/dataF.resolution); 

dataF.Ny = round(dataF.Ly/dataF.resolution); 

dataF.Nz = round(dataF.Lz/dataF.resolution); 

 

%-- These are the value attribute to every point of  the 3D-matrix  

dataF.valuesx = -dataF.Lx:(2*dataF.Lx./(dataF.Nx-1) ):dataF.Lx; 

dataF.valuesy = -dataF.Ly:(2*dataF.Ly./(dataF.Ny-1) ):dataF.Ly; 

dataF.valuesz = -dataF.Lz:(2*dataF.Lz./(dataF.Nz-1) ):dataF.Lz; 

[dataF.X,dataF.Y,dataF.Z] = meshgrid(dataF.valuesy, dataF.valuesx,dataF.valuesz); 
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5.1.3 Translate 

 

function  V_translated = translation_xp(dataF.Objects.exampl e.V, dataF.X, dataF.Y, dataF.Z, 

dataF.resolution) 

  

gap = abs(dataF.X(1,1,1) - dataF.X(1,2,1)); 

space = round(dataF.resolution/gap); 

N = size(V); 

  

for  x=(space+1):N(1) 

        for  y=1:N(2) 

            for  z=1:N(3) 

                V_xtp(x, y, z) = V(x-space,y,z); 

            end  

        end  

end  

     

V_xtp(1:space, :,:) = 0; 

V_translated = V_xtp; 

  

end  

 

 

function  V_translated = translation_xm(dataF.Objects.exampl e.V, dataF.X, dataF.Y, dataF.Z, 

dataF.resolution) 

  

gap = abs(dataF.X(1,1,1) - dataF.X(1,2,1)); 

space = round(dataF.resolution/gap); 

N = size(V); 

  

for  x=(N(1)-space):-1:1 

    for  y=N(2):-1:1 

        for  z=N(3):-1:1 

            V_xtm(x, y, z) = V(x+space,y,z); 

        end  

    end  

end  

     

V_xtm((N(1)-space+1):N(1),:,:) = 0; 

V_translated = V_xtm; 

  

end 

 

 

5.1.4 Rotate 

 

function  V_rotated = rotate(dataF.Objects.Example.V, dataF. anglex, dataF.angley, dataF.anglez)  

V = dataF.Objects.Example.V 

N = size(V); 
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%%% This is the code used to rehsape the the volume tric image in a cube  

%%% with even number of discretizations  

if  mod(N(1),2)==0 

else  

    V = cat(1, zeros(1, N(2), N(3)), V); 

    N = size(V); 

end  

if  mod(N(2),2)==0 

else  

    V = cat(2, zeros(N(1), 1, N(3)), V); 

    N = size(V); 

end  

if  mod(N(3),2)==0 

else  

    V = cat(3, zeros(N(1), N(2), 3), V); 

    N = size(V); 

end  

maxo = max(N); 

x_add = maxo - N(1); 

y_add = maxo - N(2); 

z_add = maxo - N(3); 

if  x_add == 0 & y_add ~= 0 & z_add ~= 0 

   V = cat(2, zeros(N(1), round(y_add/2), N(3)), V) ; 

   V = cat(2, V, zeros(N(1), round(y_add/2), N(3))) ; 

   N = size(V); 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

elseif  y_add == 0 & x_add ~= 0 & z_add ~= 0 

   V = cat(1, zeros(round(x_add/2), N(2), N(3)), V) ; 

   V = cat(1, V, zeros(round(x_add/2), N(2), N(3))) ; 

   N = size(V); 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

elseif  z_add == 0 & y_add ~= 0 & x_add ~= 0 

   V = cat(2, zeros(N(1), round(y_add/2), N(3)), V) ; 

   V = cat(2, V, zeros(N(1), round(y_add/2), N(3))) ; 

   N=size(V); 

   V = cat(1, zeros(round(x_add/2), N(2), N(3)), V) ; 

   V = cat(1, V, zeros(round(x_add/2), N(2), N(3))) ; 

elseif  x_add == 0 & y_add == 0 & z_add ~= 0 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

   V = cat(3, zeros(N(1), N(2), round(z_add/2)), V) ; 

elseif  x_add == 0 & y_add ~= 0 & z_add == 0 

   V = cat(2, zeros(N(1), 1, N(3)), V); 

   V = cat(2, V, zeros(N(1), 1, N(3))); 

elseif  x_add ~= 0 & y_add == 0 & z_add ~= 0 

   V = cat(3, zeros(N(1), N(2), 1), V); 

   V = cat(3, zeros(N(1), N(2), 1), V); 

else  

end  

%%% affine transformation applied to the volumetric  image  

V_center = (size(V)+1)/2; 
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T1 = [1 0 0 0 

    0 1 0 0 

    0 0 1 0 

    -V_center 1]; 

T_x = [1 0 0 0 

    0 cos(anglex) -sin(anglex) 0 

    0 sin(anglex) cos(anglex) 0 

    0 0 0 1]; 

T_y = [cos(angley) 0 -sin(angley) 0 

    0 1 0 0 

    sin(angley) 0 cos(angley) 0 

    0 0 0 1]; 

T_z = [cos(anglez) -sin(anglez) 0 0 

    sin(anglez) cos(anglez) 0 0 

    0 0 1 0 

    0 0 0 1]; 

T2 = T_z*T_y*T_x; 

T3 = [1 0 0 0  

    0 1 0 0  

    0 0 1 0 

    V_center 1]; 

T = T1*T2*T3; 

tform = maketform( 'affine' , T); 

R = makeresampler( 'linear' , 'fill' ); 

TDIMS_A = [1 2 3]; 

TDIMS_B = [1 2 3]; 

TSIZE_B = size(V); 

TMAP_B = []; 

F = 0; 

V_rotated = tformarray(V, tform, R, TDIMS_A, TDIMS_ B, TSIZE_B, TMAP_B, F);  

end 

 

 

5.1.5 Patterns and discretization 

 

%%% definition of the centers of the voxels. 

 

x = 1:1:size(dataM.geometry.V,1); 

x = repmat(x, 1, size(dataM.geometry.V,2)); 

x = repmat(x, 1, size(dataM.geometry.V,3)); 

x = x'; 

  

y = ones(size(dataM.geometry.V,1), 1); 

for  i=2:size(dataM.geometry.V,2) 

    y = cat(1, y, i*ones(size(dataM.geometry.V,1),1 )); 

end  

y = repmat(y, size(dataM.geometry.V,3), 1); 

  

z = ones(size(dataM.geometry.V,1)*size(dataM.geomet ry.V,2),1); 

for  i=2:size(dataM.geometry.V,3) 
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    z = cat(1, z, i*ones(size(dataM.geometry.V,1)*s ize(dataM.geometry.V,2),1)); 

end  

dataM.voxels.centers = [x y z]; 

 

%%% definition of the neighbours indexes of every v oxel. 

 

V_vert = dataM.geometry.V(:);  

 

ind_out = find(V_vert==0); 

 

dataM.voxels.neighbours = zeros(length(V_vert), 6);  

neighbours_out = ismember(dataM.voxels.neighbours, ind_out); 

  

for  i=1:length(V_vert) 

    dataM.voxels.neighbours(i,1) = (i-1); 

    dataM.voxels.neighbours(i,2) = (i+1); 

    dataM.voxels.neighbours(i,3) = (i-size(dataM.ge ometry.V,1)); 

    dataM.voxels.neighbours(i,4) = (i+size(dataM.ge ometry.V,1)); 

    dataM.voxels.neighbours(i,5) = (i-(size(dataM.g eometry.V,1)*size(dataM.geometry.V,2))); 

    dataM.voxels.neighbours(i,6) = (i+(size(dataM.g eometry.V,1)*size(dataM.geometry.V,2))); 

end  

  

dataM.voxels.neighbours(find(dataM.voxels.neighbour s>size(dataM.voxels.neighbours,1) | 

dataM.voxels.neighbours<0))=0; 

index = find(V_vert==0); 

dataM.voxels.neighbours(index,:) = 0; 

  

dataM.voxels.neighbours_out = ismember(dataM.voxels .neighbours, ind_out); 

  

dataM.voxels.neighbours = dataM.voxels.neighbours.* (~dataM.voxels.neighbours_out); 

 

 

%%% definition of the volume of every voxel. 

hx = abs(dataF.valuesx(1) - dataF.valuesx(2)); 

hy = abs(dataF.valuesy(1) - dataF.valuesy(2)); 

hz = abs(dataF.valuesz(1) - dataF.valuesz(2)); 

dataM.voxels.volumes = ones(length(V_vert),1); 

dataM.voxels.volumes = (hx*hy*hz)*dataM.voxels.volu mes; 

  

%%% definition of the names of the patterns. 

dataM.patterns.name = final_pattern_list'; 

 

%%% Reshaping of the patterns. 'pattern' is a structure containing all the patterns, pattern _2 is a 

structure that will contain the reshaped patterns 

 

for  k=1:length(final_pattern_list) 

    for  i=1:length(popup_list) 

        str_comp = strfind(final_pattern_list{k}, p opup_list{i}); 

        str_comp(end+1) = 2; 

        if  str_comp(1)==1 

            ob.V = dataF.Objects.(popup_list{i}).V;  

            ob.V(1:(dataM.restricted.minSum1-2), :,  :) = []; 
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            ob.V(:, 1:(dataM.restricted.minSum2-2),  :) = []; 

            ob.V(:, :, 1:(dataM.restricted.minSum3- 2)) = []; 

            ob.V((dataM.restricted.maxSum1-(dataM.r estricted.minSum1-2)+2):end, :, :) = []; 

            ob.V(:, (dataM.restricted.maxSum2-(data M.restricted.minSum2-2)+2):end, :) = []; 

            ob.V(:, :, (dataM.restricted.maxSum3-(d ataM.restricted.minSum3-2)+2):end) = []; 

            length_str = length(popup_list{i}); 

            sub.name = final_pattern_list{k}; 

            sub.name(1:length(popup_list{i})) = [];  

            sub.V = ob.V; 

  

            if  strcmp(sub.name, 'Volume' ) 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'External Surface' ) 

                sub.indexes = find(imedge3D(sub.V)= =1); 

                sub.V = 0*sub.V; 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Internal Volume' ) 

                edge_index = find(imedge3d(sub.V)== 1); 

                sub.V(edge_index) = 0; 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'Center' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(2), central_vox el(1), central_voxel(3)) = 1; 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'Line along x' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),:,central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'Line along y' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(:,central_voxel(2),central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'Line along z' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),central_voxe l(2),:) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

            elseif  strcmp(sub.name, 'Point along x1' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),:,central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

                sub.indexes = min(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Point along x2' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),:,central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 
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                sub.indexes = max(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Point along y1' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(:,central_voxel(2),central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

                sub.indexes = min(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Point along y2' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(:,central_voxel(2),central_vo xel(3)) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

                sub.indexes = max(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Point along z1' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),central_voxe l(2),:) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

                sub.indexes = min(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            elseif  strcmp(sub.name, 'Point along z2' ) 

                sub.V = zeros(size(sub.V,1), size(s ub.V,2), size(sub.V,3)); 

                sub.V(central_voxel(1),central_voxe l(2),:) = 1; 

                sub.V = sub.V.*ob.V; 

                sub.indexes = find(sub.V==1); 

                sub.indexes = max(sub.indexes); 

                sub.V = zeros(size(ob.V,1), size(ob .V,2), size(ob.V,3)); 

                sub.V(sub.indexes) = 1; 

            end  

        end  

    end  

  

    pattern_2(k).V = sub.V; 

    pattern_2(k).indexes = sub.indexes; 

end  

 

 

 

 

for  i=1:size(pattern_2,2) 

    pattern_2(i).indexes = find(pattern_2(i).V==1);   

    dataM.patterns.array{i} = num2str(pattern_2(i). indexes'); 

    pattern_2(i).names = final_pattern_list{i}; 

end  
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dataM.geometry.pattern = pattern_2; 

 

%%% for every pattern are searched the pattern that  adjoin or intersect with others 

 

for  i=1:length(dataM.geometry.pattern) 

    dataM.geometry.pattern(i).neighbouring_names = dataM.patterns.name; 

    dataM.geometry.pattern(i). neighbouring_names =  {}; 

    dataM.geometry.pattern(i).intersection_names = dataM.patterns.name; 

    dataM.geometry.pattern(i).intersection_names = {}; 

end  

  

for  i=1:length(dataM.geometry.pattern) 

    for  j=1:length(dataM.geometry.pattern) 

        V_xp = translation_xp(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_xm = translation_xm(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_yp = translation_yp(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_ym = translation_ym(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_zp = translation_zp(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_zm = translation_zm(dataM.geometry.patter n(i).V, dataM.geometry.X, dataM.geometry.Y, 

dataM.geometry.Z, abs(dataM.geometry.X(1,1,1) - dat aM.geometry.X(1,2,1))); 

        V_big = dataM.geometry.pattern(i).V + V_xp + V_xm + V_yp + V_ym + V_zp + V_zm; 

        V_big(find(V_big>0)) = 1; 

        intersection = dataM.geometry.pattern(i).V + dataM.geometry.pattern(j).V; 

        intersection_list = find(intersection == 2) ;       

        neighbourV = V_big + dataM.geometry.pattern (j).V; 

        neighbour_list = find(neighbourV == 2); 

         

        if  isempty(intersection_list) & isempty(neighbour_lis t)==0 & strcmp(dataM.patterns.name{i}, 

dataM.patterns.name{j})==0 

            dataM.geometry.pattern(i). neighbour_na mes{j} = dataM.patterns.name{j}; 

        elseif  isempty(intersection_list)==0 & strcmp(dataM.patte rns.name{i}, 

dataM.patterns.name{j})==0 

            dataM.geometry.pattern(i).intersection_ names{j} = dataM.patterns.name{j}; 

        end          

         

        emptyCellsC = cellfun(@isempty,dataM.geomet ry.pattern(i). neighbour_names); 

        emptyCellsI = cellfun(@isempty,dataM.geomet ry.pattern(i).intersection_names); 

        dataM.geometry.pattern(i). neighbour_names( emptyCellsC) = []; 

        dataM.geometry.pattern(i).intersection_name s(emptyCellsI) = []; 

    end  

end  
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5.1.6 Initial conditions 

 

global  dataM 
%Extract initial conditions  
a=get(handles.VariableList, 'Value' ); 
pat_ind=get(handles.PatternList, 'Value' ); 
pattern_list=get(handles.PatternList, 'string' ); 
VarPatt_list = get(handles.VarPatternList, 'string' ); 
VarPattInd = get(handles.VarPatternList, 'value' ); 
perm_list = get(handles.PermList, 'string' ); 
dataM.permeabilities.external = str2num(get(handles .ExternalPermeability, 'string' )); 
c=get(handles.PermList, 'Value' );  
selected_pattern = VarPatt_list{VarPattInd};   
selected_perm_pattern = perm_list{c}; 
  
perm_value = str2num(get(handles.PermValue, 'String' ));  
  
%Save initial conditions and the new pattern  
try  
    init = dataM.variables.initial_condition{a}; 
catch  
    init =[]; 
end  
  
b = get(handles.VarPatternList, 'value' ); 
  
if  isfield(init(b), 'permeability' )==0 
    init(b).permeability.names = perm_list; 
    init(b).permeability.values = ones(1, length(pe rm_list)); 
end  
  
if  strcmp(selected_perm_pattern, 'Rest of voxels' ) 
    V=dataM.geometry.V; 
     
    if  length(perm_list)>1 
        ind_rest = find(strcmp(perm_list, 'Rest of voxels' )); 
        perm_list(ind_rest) = []; 
        for  i=1:length(perm_list) 
            index = str2num(dataM.patterns.array{fi nd(strcmp(dataM.patterns.name, 
perm_list{i})==1)})'; 
            V(index) = 0; 
        end  
        index = str2num(dataM.patterns.array{find(s trcmp(dataM.patterns.name, 
selected_pattern)==1)})';        V(index) = 0; 
    else  
        index = str2num(dataM.patterns.array{find(s trcmp(dataM.patterns.name, 
selected_pattern)==1)})';        V(index) = 0; 
    end  
     
    index_selected_pattern = find(V==1); 
    init(b).pattern_indexes = dataM.voxels.neighbou rs(str2num(init(b).pattern_array)',:);   %%% 
these are the neighbours of every point in the patt ern  
    init(b).pattern_permeability = dataM.voxels.nei ghbours(str2num(init(b).pattern_array)',:); 
    %%% by default, every pattern is permeable with its elf and with the others and impermeabile with 
the external  
    init(b).pattern_permeability(find(init(b).patte rn_permeability~=0))=1;   %è permeabile con se 
stesso  
    
init(b).pattern_permeability(find(init(b).pattern_p ermeability==0))=dataM.permeabilities.external;   
%%% Permeability with the external  
    matrix_perm = ismember(init(b).pattern_indexes,  index_selected_pattern);  
%%% The ones are the indexes that belongs to the tw o pattern, so they are the boarder indexes  
 
    index_perm_neigh = find(matrix_perm==1); 
    init(b).pattern_permeability(index_perm_neigh) = perm_value; 
else  
    index_selected_pattern = str2num(dataM.patterns .array{find(strcmp(dataM.patterns.name, 
perm_list{c})==1)})';   
    init(b).pattern_indexes = dataM.voxels.neighbou rs(str2num(init(b).pattern_array)'    
init(b).pattern_permeability = dataM.voxels.neighbo urs(str2num(init(b).pattern_array)',:); 
    init(b).pattern_permeability(find(init(b).patte rn_permeability~=0))=1   
    
init(b).pattern_permeability(find(init(b).pattern_p ermeability==0))=dataM.permeabilities.external    
matrix_perm = ismember(init(b).pattern_indexes, ind ex_selected_pattern    index_perm_neigh = 
find(matrix_perm==1); 
    init(b).pattern_permeability(index_perm_neigh) = perm_value; 
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end  
     
d = find(strcmp(perm_list, selected_perm_pattern)== 1); 
init(b).permeability.values(d) = perm_value; 
init(b).permeability.index_perm_neigh = index_perm_ neigh;   
dataM.variables.initial_condition{a} = init; 

 
 

5.1.7 Laplacian parser 

 

    %Generate the equation system for other odes  
    for  i=1:L_eq, 
        for  j=1:L_vox, 
            eq=Equations{i}; 
            for  k=1:L_var, 
                var=dataM.variables.name{k}; 
                perm_str = dataM.variables.laplacia n_str{k};  
                perm_str_j = perm_str{j}; 
                perm1 = perm_str_j{1}; 
                perm2 = perm_str_j{2}; 
                perm3 = perm_str_j{3}; 
                perm4 = perm_str_j{4}; 
                perm5 = perm_str_j{5}; 
                perm6 = perm_str_j{6}; 
                perm12 = perm_str_j{7}; 
                 
                %Parser for the Laplacian operator  
                Lapl=[ 'Lapl('  var ')' ]; 
                [int_str]=strfind(eq,Lapl); 
                %The s index is determined automatically by the ord er of  
                %variable names and by the current voxel.  
                 
               
  
                s_add12=[ 's('  NumToStr{L_vox*(k-1)+j} ')' ]; % central  
                 
                if  j==1 
                     s_add1= '0.0' ; % x left  
                else  
                     s_add1=[ 's('  NumToStr{L_vox*(k-1)+j-1} ')' ]; % x left  
                end  
                  
                if  j==L_vox 
                    s_add2 = '0.0' ; %x right  
                else  
                    s_add2 = [ 's('  NumToStr{L_vox*(k-1)+j+1} ')' ]; % x right  
                end  
                  
                if  j>=1 & j<(size(dataM.geometry.V,1)+1) 
                    s_add3 = '0.0' ; % y left  
                else  
                    s_add2 = [ 's('  NumToStr{L_vox*(k-1)+j-size(dataM.geometry.V,1) } ')' ]; % y left  
                end  
                 
                if  j>(L_vox-size(dataM.geometry.V,1)) 
                    s_add4 = '0.0' ; %y right  
                else  
                    s_add4=[ 's('  NumToStr{L_vox*(k-1)+j+size(dataM.geometry.V,1)} ')' ]; % y right  
                end  
                 
                if  j>=1 & j<(size(dataM.geometry.V,1)*size(dataM.geom etry.V,2)+1) 
                    s_add5 = '0.0' ; %z left  
                else  
                    s_add5=[ 's('  NumToStr{L_vox*(k-1)+j-
size(dataM.geometry.V,1)*size(dataM.geometry.V,2)} ')' ]; % z left  
                end  
                 
                if  j>(L_vox - size(dataM.geometry.V,1)*size(dataM.geo metry.V,2)) 
                    s_add6 = '0.0' ; % z right  
                else  
                    s_add6=[ 's('  NumToStr{L_vox*(k-
1)+j+size(dataM.geometry.V,1)*size(dataM.geometry.V ,2)} ')' ]; % z right  
                end  
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                s_add=[perm1 '*'  s_add1 '-'  perm12 '*'  s_add12 '+'  perm2 '*'  s_add2 '+'  perm3 '*'  
s_add3 '+'  perm4 '*'  s_add4 '+'  perm5 '*'  s_add5 '+'  perm6 '*'  s_add6]; 
                 
                     
  
                 
                 
                 
                 
                for  kk = flipdim(int_str,2), 
                    eq(kk:(kk+length(Lapl)-1))=[]; 
                    eq=[eq(1:(kk-1)) '('  s_add ')/'  num2str(dx2) eq(kk:end)]; 
                end  
                %Parser for the normal algebra of variables  
                [int_str]=strfind(eq,var); 
                %The s index is determined automatically by the ord er of  
                %variable names and by the current voxel.  
                s_add=[ 's('  NumToStr{L_vox*(k-1)+j} ')' ]; 
                for  kk = flipdim(int_str,2), 
                    if  kk==1, 
                        if  length(var)==length(eq), 
                            eq=s_add; 
                        else  
                            if  ~isempty(intersect(eq(kk+length(var)), '><=^+-/*,(); ' )), 
                                eq(kk:(kk+length(va r)-1))=[]; 
                                eq=[eq(1:(kk-1)) s_ add eq(kk:end)]; 
                            end  
                        end  
                    elseif  (kk+length(var))>length(eq), 
                        if  ~isempty(intersect(eq(kk-1), 'd^+-/*,(); ' )), 
                            eq(kk:(kk+length(var)-1 ))=[]; 
                            eq=[eq(1:(kk-1)) s_add eq(kk:end)]; 
                        end  
                    else  
                        if  ~isempty(intersect(eq(kk-1), 'd^+-/*,(); ' )) && 
~isempty(intersect(eq(kk+length(var)), '><=^+-/*,(); ' )), 
                            eq(kk:(kk+length(var)-1 ))=[]; 
                            eq=[eq(1:(kk-1)) s_add eq(kk:end)]; 
                        end  
                    end  
                end  
            end  
            for  k=1:L_par, 
                par=dataM.parameters.name{k}; 
                [int_str]=strfind(eq,par); 
                %The p index is determined automatically by the ord er of  
                %parameter names and by the current voxel.  
                p_add=[ 'p('  NumToStr{L_vox*(k-1)+j} ')' ]; 
                for  kk = flipdim(int_str,2), 
                    if  kk==1, 
                        if  length(par)==length(eq), 
                            eq=p_add; 
                        else  
                            if  ~isempty(intersect(eq(kk+length(par)), '><=^+-/*,(); ' )), 
                                eq(kk:(kk+length(pa r)-1))=[]; 
                                eq=[eq(1:(kk-1)) p_ add eq(kk:end)]; 
                            end  
                        end  
                    elseif  (kk+length(par))>length(eq), 
                        if  ~isempty(intersect(eq(kk-1), '><=^+-/*,(); ' )), 
                            eq(kk:(kk+length(par)-1 ))=[]; 
                            eq=[eq(1:(kk-1)) p_add eq(kk:end)]; 
                        end  
                    else  
                        if  ~isempty(intersect(eq(kk-1), '><=^+-/*,(); ' )) && 
~isempty(intersect(eq(kk+length(par)), '><=^+-/*,(); ' )), 
                            eq(kk:(kk+length(par)-1 ))=[]; 
                            eq=[eq(1:(kk-1)) p_add eq(kk:end)]; 
                        end  
                    end  
                end  
            end  
            prec_inp = 0; 
            for  k=1:L_inp, 
                %Identify the voxels where the input is present  
                inp_ind=dataM.inputs.voxel{k}; 
                inp=dataM.inputs.name{k}; 
                %Check if the input variable is present in the curr ent equation  
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                [int_str]=strfind(eq,inp); 
                for  kk = flipdim(int_str,2), 
                    if  kk==1, 
                        if  kk+length(inp)>length(eq), 
                            eq(kk:(kk+length(inp)-1 ))=[]; 
                            %If the voxel is correct, insert the input variable  
                            %in the equation with the correct index  
                            inp_j = find(inp_ind==j ); 
                            if  inp_j, 
                                inp_add=[ 'u('  NumToStr{inp_j+prec_inp} ')' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            else  
                                inp_add=[ '0.0' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            end  
                        else  
                            if  ~isempty(intersect(eq(kk+length(inp)), '><=^+-/*,(); ' )), 
                                eq(kk:(kk+length(in p)-1))=[]; 
                                %If the voxel is correct, insert the input variable  
                                %in the equation with the correct index  
                                inp_j = find(inp_in d==j); 
                                if  inp_j, 
                                    inp_add=[ 'u('  NumToStr{inp_j+prec_inp} ')' ]; 
                                    eq=[eq(1:(kk-1) ) inp_add eq(kk:end)]; 
                                else  
                                    inp_add=[ '0.0' ]; 
                                    eq=[eq(1:(kk-1) ) inp_add eq(kk:end)]; 
                                end  
                            end  
                        end  
                    elseif  (kk+length(inp))>length(eq), 
                        if  ~isempty(intersect(eq(kk-1), '><=^+-/*,(); ' )), 
                            eq(kk:(kk+length(inp)-1 ))=[]; 
                            %If the voxel is correct, insert the input variable  
                            %in the equation with the correct index  
                            inp_j = find(inp_ind==j ); 
                            if  inp_j, 
                                inp_add=[ 'u('  NumToStr{inp_j+prec_inp} ')' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            else  
                                inp_add=[ '0.0' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            end  
                        end  
                    else  
                        if  ~isempty(intersect(eq(kk-1), '><=^+-/*,(); ' )) && 
~isempty(intersect(eq(kk+length(inp)), '><=^+-/*,(); ' )), 
                            eq(kk:(kk+length(inp)-1 ))=[]; 
                            %If the voxel is correct, insert the input variable  
                            %in the equation with the correct index  
                            inp_j = find(inp_ind==j ); 
                            if  inp_j, 
                                inp_add=[ 'u('  NumToStr{inp_j+prec_inp} ')' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            else  
                                inp_add=[ '0.0' ]; 
                                eq=[eq(1:(kk-1)) in p_add eq(kk:end)]; 
                            end  
                        end  
                    end  
                end  
                if  dataM.inputs.type{k}==1, 
                prec_inp = prec_inp + length(inp_in d); 
                end  
            end  
            eq=[ 'ds('  NumToStr{L_vox*(i-1)+j} ')='  eq ';' ]; 
            eq_fid=[eq_fid [ '\n'  eq]]; 
        end  
    end  
    eq_fid=[eq_fid '\n' ];    
end  
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