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Abstract

A quantum mechanical system describing a particle swinging around a certain space might furnish us
with useful insights on both the geometry and the topology of the space itself: throughout the thesis
explicit examples of this peculiar relation are provided. Particularly, basing the discussion upon a
celebrated article of Luis Alvarez-Gaumé, the exact Gauss-Bonnet formula is derived in a supersym-
metric quantum mechanical system, representing the motion of a particle in a Riemannian manifold
extended by additional Grassmann coordinates.

Lo studio del sistema quantistico che descrive una particella che si muove in un certo spazio può
fornire indicazioni utili sia sulla geometria che sulla topologia dello spazio stesso: in questa tesi ven-
gono studiati alcuni esempi di questa caratteristica relazione. In particolare, basandosi su un famoso
articolo di Luis Alvarez-Gaumé, è stata derivata esplicitamente la formula di Gauss-Bonnet nel con-
testo di un sistema quantistico supersimmetrico, il quale descrive il moto di una particella su una
varietà Riemanniana, generalizzata mediante l’aggiunta di coordinate di Grassmann.

v



Contents

Abstract v

1 Thesis overview 2

2 Geometry prelude 3
2.1 De Rham Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Riemannian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Vielbeins formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Introduction to the Path Integral formalism 9
3.1 Quantum Mechanics Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Path Integral formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Solving techniques for the Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Path Integral in Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Stationary Phase approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Generating function and Time Rotation . . . . . . . . . . . . . . . . . . . . . . 13

4 Introduction to Grassmann variables and Fermionic Path Integral 14
4.1 Grassmann numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Fermionic Path Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Computations 17
5.1 Euler number derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Tr (−1)F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Gauss-Bonnet formula derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A Appendix 23

References 24

1



1
Thesis overview

Along this thesis, we have studied a quantum mechanical system describing a unit-mass particle mov-
ing in a Riemannian manifold without constraints. Remarkably, from this basic physical information,
we will be able to derive fundamental properties of the space the particle is living in.
To be more precise, we are going to derive, at first, the invariant Euler character of the manifold.
Indeed, it turns out that this invariant characteristic coincides with the trace of a particular operator
in the quantum mechanical system which is enumerating the difference between the number of bosonic
states and fermionic ones at zero energy. Moreover, since the trace is invariant under continuous and
small deformations, it can be computed in a convenient perturbation limit, therefore the evaluation
of the corresponding Path Integral will end up precisely with the Gauss-Bonnet formula.
Furthermore, we have delved into the analysis of the Path Integral formulation of Quantum Mechanics
and it was laid down the mathematical basis for approaching a broad understanding of the fermionic
Path Integral, by the introduction of the Grassmann algebra and its integration theory. These tools
were used to compute the above trace, or better, its regularized version, the Witten index.
From a wider perspective, it is worth noticing that this index is strictly connected with the supersym-
metry breaking mechanism [10].
The thesis is eventually arranged as follows:

i. In the forthcoming chapter 2, an extensive review of formal definitions is provided, aiming at
roughly explaining the space of the quantum mechanical system above presented. De Rham
Cohomology and Riemannian geometry are discussed, with a brief introduction to the non-
coordinate basis and Vielbeins.

ii. In the following chapter 3, the Path Integral formalization of Quantum Mechanics is introduced,
starting from its derivation and then developing ways to tackle these functional integrals. This
is done at first heuristically, secondly regarding it as a Gaussian integral and by the stationary
phase expansion and finally, mentioning in a nutshell, the Wick rotation and the Generating
functions as well.

iii. Next in the fourth chapter, 4, the reader is furnished with a broad introduction to anticommuting
variables, by means of the Grassmann approach. Accordingly, a fermionic Path Integral formula
is achieved by the usual method of splitting the time variable into chunks and integrating over
the resolution of the unit.

iv. In chapter 5, the relevant non-linear sigma model is presented, commencing with the bosonic case
and subsequently providing its fermionic extension. The supersymmetry charges Q and Q have
been computed by the Noether procedure. Consequently, the relations between the differential
structure of the manifold and the fermions are made clear, and the Tr (−1)F operator and
its physical and mathematical meaning are described. Furthermore, by means of the methods
introduced in the previous chapters, the supertrace integral has been determined and therewith
the Euler number is computed. In conclusion, the Gauss-Bonnet formula is obtained through a
perturbative limit. Lastly, two examples are furnished, i.e. the 2-sphere S2 and the torus T 2.

v. Finally, in the appendix A, the variation of the supersymmetric non-linear sigma model action
under supersymmetry transformations is calculated, in the rather simple case of zero-curvature.
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2
Geometry prelude

2.1 De Rham Cohomology

The main references for this chapter are [3] and [5].

Definition 2.1.1 (Smooth Manifold):
A smooth manifoldsmooth manifoldsmooth manifold of dimension m consists of:

1. M a Hausdorff topological space,

2. a family {(Ui, ϕi)}i∈I where {Ui}i∈I is an open cover of M and, given the open subset Vi ⊂ Rm,
the maps ϕi : Ui → Vi ⊂ Rm are homeomorphisms such that for all the opens with i, j ∈ I and
with non-empty intersection Uij = Ui ∩ Uj ̸= ∅, the following map ψij = ϕi ◦ ϕ−1

j : ϕj(Uij) →
ϕi(Uij) exists in C∞(Rm).

Definition 2.1.2 (Smooth Map):
Let M, N to be two smooth manifolds, let (U,φ) and (V, ϕ) to be two local charts respectively around
p ∈ U ⊂M and f(p) ∈ V ⊂ N , then f :M → N is said to be a smooth mapsmooth mapsmooth map in p ∈M if

ϕ ◦ f ◦ φ−1 : Rm → Rn is C∞(Rm,Rn)

A curve in M is a smooth map such that c1 : (a1, b1) →M mapping t to
(︁
x11(t), . . . , x

n
1 (t)

)︁
and given

c2 : (a2, b2) ∋ t ↦→
(︁
x12(t), . . . , x

n
2 (t)

)︁
we say that they are equivalent, i.e. c1 ∼ c2 if and only if

dxi1(t)

dt
⃓⃓
t=0

=
dxi2(t)

dt
⃓⃓
t=0

one might show that the above relation is transitive, symmetric and reflexive, thus it forms an equiv-
alence relation and all the equivalent curves in M are denoted as [c(t)].

Definition 2.1.3 (Tangent Space TpM):
Let M to be a smooth manifold and ∀ p ∈M we define the tangent space TpMtangent space TpMtangent space TpM as the quotient:

TpM = {all the curves c(t) taking values in p at t = 0}/ ∼

where ∼ is the previous equivalence relation.

Furthermore, an element of this space could be regarded as a vector [c(t)] = X ∈ TpM acting as

X : C∞(M) → R mapping f ↦→ df(c(t))
dt |t=0

= ∂f
∂xµ

dxµ

dt |t=0
.

Acting naturally on the basis of the vector space,
⟨︁
dxµ, ∂

∂xν

⟩︁
= δµ ν , one could derive the dual space,

T ∗
pM , whose elements are said to be 1-forms on M at p, moreover by linearity one could define a

tensor t of type (r, s) on p ∈M such that t ∈ TpM
⊗r ⊗ T ∗

pM
⊗s, furthermore we define:

Definition 2.1.4 (Tensor Field):
A tensor fieldtensor fieldtensor field is a map t : M →

⋃︁
p∈M TpM

⊗r ⊗ T ∗
pM

⊗s such that at fixed p ∈ M it’s a (r, s) tensor
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like and its components tµ1...µrν1...νs : M → R are smooth, moreover the space of all tensor fields of type
(r, s) is denoted by TrsM such that

TrsM =

⎧⎨⎩t :M →
⋃︂
p∈M

TpM
⊗r ⊗ T ∗

pM
⊗s =:

⋃︂
p∈M

Tp
r
sM

⎫⎬⎭
It is quite common also the following notation, thus T1

0 = X(M) is the space of all the vector fields on
M , similarly T0

1 = Ω1(M) is the space of all the 1-forms and T0
0 = C∞(M,R) is the space of all the

smooth function from M to R.
Moreover, let M,N to be two smooth manifold and given a smooth function f : M → N exists the
push forward map f∗ defined by composition of the equivalence classes as f∗ : [c(t)] → [f (c(t))] and
therefore for p ∈M it such that :

f∗ : TpM → Tf(p)N

Analogously for the dual, the pullback map f∗ could be defined as f∗ : T ∗
f(p)N → T ∗

pM such that the
pairing between a vector X ∈ TpM and the 1-forms ω ∈ T ∗

f(p)N reads:

⟨f∗ω,X⟩ = ⟨ω, f∗X⟩

Definition 2.1.5 (Antisymmetrizer A):
Let σ ∈ Sr the symmetric group of the permutations of r elements, then it acts on the components of
ω ∈ Tp

0
rM as (σω)µ1,...,µr = ωµσ(1)...µσ(r)

and therefore we define ω antisymmetrizedantisymmetrizedantisymmetrized as:

Aω =
1

r!

∑︂
σ∈Sr

sgn (σ)σω = ω[µ1,...,µr]

Definition 2.1.6 (Differentiable r-Form):
Let ω ∈ Tp

0
rM a (0, r) tensor, then it is said to be a differentiable r-formdifferentiable r-formdifferentiable r-form if it is fully antisymmetric

such that Aω = ω

Definition 2.1.7 (Exterior Derivative):
The exterior derivativeexterior derivativeexterior derivative is the map dr : Ω

r(M) → Ωr+1(M) defined as

dω (V1, . . . , Vr+1) =

r+1∑︂
i=1

(−1)i+1Vi

[︂
ω
(︂
V1, . . . , Vî, . . . , Vr+1

)︂]︂
+
∑︂
i<j

(−1)i+jω
(︂
[Vi, Vj ], V1, . . . , V̂ i, V̂ j , . . . , Vr+1

)︂

Nonetheless, one might shift into a more convenient basis, defining the exterior product, denoted with
the wedge ∧, of two differentiable forms ω ∈ ATp

0
rM and ξ ∈ ATp

0
sM such that

(ω ∧ ξ) (V1, . . . , Vr+s) =
1

r!s!

∑︂
σ∈Sr+s

sgn (σ)ω
(︁
Vσ(1), . . . , Vσ(r)

)︁
ξ
(︁
Vσ(r+1), . . . , Vσ(r+s)

)︁
Thus,

dω =
1

r!

∂ωµ1...µr
∂xν

dxν ∧ dxµ1 ∧ · · · ∧ dxµr

and therefore, from that it could be derived the graded Leibniz rule:

d (ω ∧ ξ) = dω ∧ ξ + (−1)rω ∧ dξ

One could also show that

d2ω = d

(︃
1

r!

∂ωµ1...µr
∂xα

dxα ∧ dxµ1 ∧ · · · ∧ dxµr
)︃

=
1

r!

∂2ωµ1...µr
∂xβ∂xα

dxβ ∧ dxα ∧ dxµ1 ∧ · · · ∧ dxµr = 0
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This is due to the symmetry property of the double derivatives, commuting with each other, and the
antisymmetry of the basis wedge products.
Moreover, it can be defined a sequence such that if dim(M) = m we read:

0 −→ Ω0(M)
d0−→ Ω1(M)

d1−→ Ω2(M) −→ . . .
dm−1−−−→ Ωm(M)

dm−−→ 0 (2.1)

the so-called De Rham complexDe Rham complexDe Rham complex, where the exterior derivative is rising the order of each component,
next, a r-form ω ∈ Ωr(M) is said to be closed if dω = 0 and exact if ω = dα with α ∈ Ωr−1(M), as a
consequence of the previous result, d2 = 0, it is clear that Im dr−1 ⊂ ker dr:

Definition 2.1.8 (De Rham Cohomology):
The rth De Rham Cohomology grouprth De Rham Cohomology grouprth De Rham Cohomology group is defined as

Hr
DR(M) =

ker dr
Im dr−1

Furthermore, we define1:

Definition 2.1.9 (Euler Characteristic):
Let M smooth compact and oriented manifold of dimension m, then the Euler Characteristic χ(M)Euler Characteristic χ(M)Euler Characteristic χ(M) is
such as

χ(M) =
m∑︂
r=0

(−1)r dimHr
DR(M) (2.2)

2.2 Riemannian Geometry

Definition 2.2.1 (Riemannian Metric g):
Let M to be a smooth manifold, then a Riemannian metric gRiemannian metric gRiemannian metric g on M is a tensor field of type (0, 2) such
that satisfies

1. gp(X,Y ) = gp(Y,X) is symmetric for all p ∈M and all X,Y ∈ TpM

2. gp(X,X) ≥ 0 is positive semi-definite2 for all p ∈ M, X ∈ TpM where gp(X,X) = 0 ⇐⇒
X = 0.

Let us recall that the set of all the vector fields in M is denoted with X(M), then:

Definition 2.2.2 (Affine Connection):
The affine connection ∇affine connection ∇affine connection ∇ is the map ∇ : X(M) × X(M) → X(M) mapping (X,Y ) ↦→ ∇XY such that
satisfies:

1. R- bilinearity

2. f -bilinearity in X for all f ∈ C∞(M) i.e. ∇fXY = f∇XY

3. f -Leibniz bilinearity in Y for all f ∈ C∞(M) i.e. ∇X (fY ) = X(f)Y + f∇XY

When it is contracted such as ∇XY we say that it is the covariant derivative of Y along X.

1This is not an actual definition but rather a series of theorems, avoiding exceeding details, it could be just mentioned
that the Euler Characteristic can be defined over the smooth compact and oriented manifold from the Euler-Poincaré
theorem which claims that the dimension of the complex, i.e. the number of the r-simplexes in it, equals the dimen-
sion of the Simplicial Homology Hsimp

r (M) and finally, by De Rham duality it is possible to prove the isomorphism
between Hr

DR(M) ≃ Hsimp
r (M) and therefore we have χ(M) :=

∑︁m
r=0(−1)r dimCr(M) =

∑︁m
r=0(−1)r dimHsimp

r (M) =∑︁m
r=0(−1)r dimHr

DR(M)
2The metric is said to be Psuedo-Riemannian if gp(X,Y ) = 0 for all p ∈ M and if ∀X ∈ TpM implies Y = 0, ∀Y ∈ TpM
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In local coordinates if we define the Christoffel symbol Γρµν as ∇ ∂
∂xµ

∂
∂xν = Γρµν

∂
∂xρ we have that the

covariant derivative acts on the components of vector fields as

∇µX
ν = ∂µX

ν + ΓνµρX
ρ

Next, we might define

Definition 2.2.3 (Torsion Tensor):
Let M a smooth manifold and ∇ an affine connection, then T : X(M) ⊗ X(M) → X(M) mapping
(X,Y ) ↦→ T (X,Y ) is said to be the torsion tensortorsion tensortorsion tensor where3

T (X,Y ) = ∇XY −∇YX − [X,Y ]

And similarly for the curvature tensor or Riemann tensor:

Definition 2.2.4 (Riemann Tensor):
The Riemann tensorRiemann tensorRiemann tensor is defined by R : X(M) ⊗ X(M) ⊗ X(M) → X(M) which maps (X,Y, Z) ↦→
R(X,Y )Z as

R(X,Y )Z =
(︁
[∇X ,∇Y ]−∇[X,Y ]

)︁
Z

In local coordinates is written as follow4:

Rµ νρσ = Γµ νσ,ρ − Γµ νρ,σ + Γµ ρτΓ
τ
νσ − Γµ στΓ

τ
νρ

Example 2.2.0.1:
Let us take the S2 sphere embedded in R3 with radius r.
The metric non-vanishing components are gθθ = r2 and gϕϕ = r2 sin2 θ therefore we read the non-null
Christoffel symbols to be Γθ ϕϕ = − cos θ sin θ and Γϕ θϕ = Γϕ ϕθ =

cos θ
sin θ and since the first two indices

of the Riemann tensor are antisymmetric then they can only be θϕ or vice versa, in a similar manner
with the last two indices. Hence the only independent component is Rθϕθϕ or its permutations:

Rθϕθϕ = gθµR
µ
ϕθϕ = gθθR

θ
ϕθϕ = r2Rθ ϕθϕ = r2

[︂
Γθ ϕϕ,θ − Γθ ϕθ,ϕ + Γθ θµΓ

µ
ϕϕ − Γθ ϕµΓ

µ
ϕθ

]︂
=

= r2∂θ (− cos θ sin θ)− 0 + 0 + r2 cos2 θ = r2 sin2 θ

Example 2.2.0.2:
Let us take the T 2 = S1×S1 torus embedded in R3 with fixed rays R > r, the standard parametrization
is for θ, ϕ ∈ [0, 2π) such that x = (R+ r cos θ) cosϕ, y = (R+ r cos θ) sinϕ, z = r sin θ.
The metric non-vanishing components are gθθ = r2 and gϕϕ = (R+ r cos θ)2 therefore we read the

non-null Christoffel symbols to be Γθ ϕϕ = (R+r cos θ) sin θ
r and Γϕ θϕ = Γϕ ϕθ = − sin θ

R+r cos θ and thus, the
only independent components are Rθϕθϕ and its permutations:

Rθϕθϕ = r2
(︃
R+ r cos θ

r
cos θ − sin2 θ + sin2 θ

)︃
= r cos θ (R+ r cos θ)

Moreover, one might say that an affine connection is metric with respect to the metric tensor g if and
only if ∇g = 0, then claiming without any proofs:

Theorem 2.2.1 (Levi-Civita):
Let (M, g) a Riemannian manifold then it exists unique its affine connection ∇ metric with respect to
g and with the torsion tensor vanishing, i.e. Γρµν = Γρ(µν)

3The brackets are Lie Brackets, satisfying bilinearity, antisymmetry and Jacobi.
4It is been used the notation such that , ρ means ∂

∂xρ
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Next let M to be a smooth manifold endowed with an affine connection ∇ and c : (a, b) →M to be a
curve on it, then X ∈ X(M)5 is said to be parallelly transported along c if

∇c∗( d
dt)
X = 0

Definition 2.2.5 (Geodesic):
A curve c : (a, b) → M is said to be a geodesicgeodesicgeodesic with respect to an affine connection ∇ if its tangent
vector field c∗

(︁
d
dt

)︁
satisfies:

∇c∗( d
dt)
c∗

(︃
d

dt

)︃
= 0 in local coordinates

d2Xµ

dt2
+ Γµνλ

dXν

dt

dXλ

dt
= 0 (2.3)

It is an non-linear ordinary differential equation of the second order, that is why the further model in
the chapter 5 is dubbed non-linear sigma model.
Furthermore, given a point p in the Riemannian manifold (M, g), it exists an isomorphism between
the tangent space TpM and its dual T ∗

pM by means of the following map, for all X ∈ TpM then
X ↦→ g(X, ·) and thus for all v, w ∈ TpM exist unique α = g(v, ·) and β = g(w, ·) ∈ T ∗

pM , from that
it is straightforwardly defined ⟨α, β⟩ = g(v, w) extended to all the ATp

0
rM as

⟨α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr⟩ = det
[︂
⟨αi, βj⟩ij

]︂
Moreover let m = dim(M), then a top-form ω ∈ Ωm(M) everywhere non-vanishing could be defined
as the volume form of the manifold, next, denoting with Vol (g) the volume form of the orientable
Riemannian manifold (M, g), it is such that:

Vol (g) =
√︁
|det g|dx1 ∧ · · · ∧ dxm

Furthemore, through the metric g is possible to establish an isomorphism between Ωk(M) and Ωm−k(M)

Definition 2.2.6 (Hodge Star Operator ∗):
Let ω, η ∈ Ωk(M) then ∗η ∈ Ωm−k(M) is the only element such that:

ω ∧ ∗η = ⟨ω, η⟩V ol(g) (2.4)

Finally, one could define the inner product on the space Ωk(M) such that, given α, β ∈ Ωk(M):

(α, β)M =

∫︂
M

⟨α, β⟩V ol(g) =
∫︂
M
α ∧ ∗β (2.5)

And herewith, it could be defined the dual of the exterior derivative with respect to this inner product
d∗ : Ωp(M) → Ωp−1(M), in the succeeding way, for all α ∈ Ωp−1(M), β ∈ Ωp(M):

(dα, β)M =

∫︂
M
dα ∧ ∗β graded Leibniz

=

∫︂
M

−(−1)p−1α ∧ d ∗ β =

= (−1)p
∫︂
M
α ∧ ∗

(︁
∗−1d ∗ β

)︁
= (−1)p

(︁
α, ∗−1d ∗ β

)︁
M

= (α, d∗β)M

Then, by means of the identity ∗ ∗ α = (−1)p(m−p)id and since ∗−1d ∗ β is a p− 1-form we read

d∗ = (−1)p ∗ ∗
(︁
∗−1d ∗ β

)︁
= (−1)p(−1)(p−1)(m−p+1) ∗ d ∗ β (2.6)

Definition 2.2.7 (Laplace Operator):
LetM to be a smooth manifold of dimension m, ∆ : Ωk(M) → Ωk(M) is said to be the Laplace operatorLaplace operatorLaplace operator
for each 0 ≤ k ≤ m by the formula

∆ = d ◦ d∗ + d∗ ◦ d
5This constraint could be relaxed by requiring that X is just defined in the image of c(t).

7



Definition 2.2.8 (Harmonic Form):
A form ω ∈ Ωk(M) is called harmonicharmonicharmonic if

∆ω = 0

And we let Harmk(M) = ker∆ to be the space of all the harmonic forms.

Furthermore, it is not difficult to prove after the fundamental theorem of elliptic operators [6] that
every De Rham Cohomology class contains a unique harmonic form:

Theorem 2.2.2:
Let (M, g) be a compact and oriented Riemannian manifold, then the natural map

Harmk(M) → Hk
DR(M,R)

is an isomorphism.

2.2.1 Vielbeins formalism

LetM to be a compact oriented Riemannian manifold of dimension m, with a metric form g as above,
next we twist the canonical basis by a rotation matrix ea

µ ∈ GL(m,R) which preserves the orientation
as êa = ea

µ ∂
∂xµ , moreover it has also to satisfy the orthonormality condition with respect to the metric

components:
g(êa, êb) = ea

µeb
νg(eµ, eν) = ea

µeb
νgµν = δab

Thus, if we define as the inverse matrix ea µ such that ea µea
ν = δµ

ν and vice versa ea µeb
µ = δa b we

can infer the important following relation:

gµν = ea µe
b
νδab (2.7)

The dual basis can be defined via
⟨︂
θ̂
a
, êb

⟩︂
= δa b and therefore θ̂ a = ea µdx

µ, we read

gµνdx
µ ⊗ dxν = δab (e

a
µdx

µ)⊗
(︂
eb νdx

ν
)︂
= δabθ̂

a ⊗ θ̂ b

Definition 2.2.9 (Vielbeins):
The bases {êa} and {θ̂ a} are called the non-coordinate basesnon-coordinate basesnon-coordinate bases and the coefficients ea

µ are called, fol-
lowing the German language, in a one-dimensional space einbein and similarly up to 4-dimensions
vierbeins and with many, i.e. more than four, vielbeinsvielbeinsvielbeins.

Example 2.2.2.1:
Recalling the previous examples 2.2.0.1 and 2.2.0.2 of the 2-sphere S2 and the T 2 = S1×S1 torus, let
us compute the Riemann tensor components in the zweibeins basis respectively:

Rθ ϕθϕ = ea
θeb ϕe

c
θe
d
ϕR

a
bcd = 1 · sin θ · 1 sin θR1

212

Which has to be Rθ ϕθϕ = sin2 θ = sin2 θR1
212 if and only if R1

212 = 1.
Analogously or by symmetry we get R1212 = 1, R1221 = −1, R2121 = 1 and R2112 = −1 for the 2-sphere
S2.
In a similar manner, we have the torus Riemann tensor components in the zweibeins basis:

Rθ ϕθϕ =
(R+ r cos θ) cos θ

r
and therefore R1212 =

cos θ

r (R+ r cos θ)
.
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3
Introduction to the Path Integral formalism

3.1 Quantum Mechanics Path Integral

Let us study a quantum mechanical system with n dynamical variables {q1, . . . , qn} and conjugate
momenta {p1, . . . , pn}, provided with a Hamiltonian Ĥ hermitian in the Hilbert space H, describing
the whole system.
Assume now this set-up is representing one single particle, then in such an arrangement we are im-
plicitly hinting1 a space-time formed by a one dimension compact and connected manifold M param-
eterized by a time coordinate t, e.g. if M is a circle S1 then we would let t ∈ [0, T ) by identifying
t ≃ t+ T , whereas if it was an interval of length T with respect to the inner product of M we would
let t ∈ [0, T ]. Thus, if we take a target space N and a map q :M → N , the worldlineworldlineworldline of the particle is
said to be q(M) ⊂ N . For instance, for the case of the non-relativistic Quantum Mechanics one could
consider N = Rn with the Euclidean metric δ or, as it will be useful for the following computations,
take it to be a Riemannian manifold (N, g). By means of the map q, for each point t on M we have
a point q(t) on N , more in general we would cover just a patch of the space, U ⊂ N , and we will
consider qi = {q1, . . . , qn} as a local coordinate system.
At this point, let us consider a D-dimensional quantum system living in H = L2(N), the space of
square-integrable function on N =

(︁
RD, δ

)︁
, then as usual, if we consider the unitary time evolution

operator in natural unit ℏ = 1 and in Heisenberg picture Û(tf , ti) = e−iĤ(tf−ti), the particle amplitude
to travel from an initial position q⃗i ∈ N to a final q⃗f ∈ N is given by the heat kernelheat kernelheat kernel2:

K(q⃗f , tf ; q⃗i, ti) = ⟨qf | Û(tf , ti) |qi⟩ (3.1)

3.1.1 Path Integral formula

Once defined the heat kernel as in (3.1) the continuous time variable could be fit in a lattice, i.e.

tn = ti + n∆t where each step would increase of the amount ∆t =
tf−ti
N with t0 = ti and tN = tf and

therefore we read:

Û(tf , ti) =
(︂
e−iĤ∆t

)︂N
Thus, the transition amplitude can be computed between an initial and final coordinate eigenstate,
|q0⟩ and |qN ⟩ respectively, by performing a Fourier transformation to the following amplitude, where
|p0⟩ represents an initial momentum eigenstate, after having inserted two N−1 completeness relations

1 =
∫︁
dD q⃗ |q⟩ ⟨q| and 1 =

∫︁ dD p⃗
(2π)D

|p⟩ ⟨p| in the following way, as was done in [9]:

⟨qN | Û(tf , ti) |p0⟩ = ⟨qN | e−iĤ∆t . . . e−iĤ∆t |p0⟩ =

=

∫︂ N−1∏︂
i=1

dDqi⃗d
Dpi⃗

(2π)D
⟨qN | e−iĤ∆t |pN−1⟩ ⟨pN−1|qN−1⟩ ⟨qN−1| e−iĤ∆t |pN−2⟩ . . . ⟨q1| e−iĤ∆t |p0⟩ =

=

∫︂
DΩ

N−1∏︂
i=0

⟨qi+1| e−iĤ∆t |pi⟩
N−1∏︂
i=1

⟨pi|qi⟩ =
∫︂

DΩ

N−1∏︂
i=0

⟨qi+1| e−iĤ∆t |pi⟩ e−i
∑︁N−1

k=1 pk⃗·qk⃗ =

1See [7] for more details.
2It originally has been considered to solve heat conduction problems given some differential operator M and some

initial conditions: (∂t −M)K(x⃗, t; x⃗0, t0) = 0 and limt→0 K(x⃗, t; x⃗0, t0) = δ (x⃗− x⃗0), it is therefore describing the heat
distribution over the space at a given time.
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Where for simplicity sake it is been defined the measure∫︂
DΩ =

∫︂ N−1∏︂
i=1

dDqi⃗d
Dpi⃗

(2π)D

Consequently, without loss of generality,3 let us consider the simplest case when

Ĥ = H(q̂⃗, p̂⃗) = p̂⃗ 2

2m + V (q̂⃗):

=

∫︂
DΩ

N−1∏︂
i=0

⟨qi+1|
(︂
1− iĤ∆t+ . . .

)︂
|pi⟩ e−i

∑︁N−1
k=1 p⃗k·q⃗k =

=

∫︂
DΩ

N−1∏︂
i=0

(︃
1− i∆t

(︃
p⃗2i
2m

+ V
(︁
q⃗i+1

)︁)︃
+ . . .

)︃
⟨qi+1|pi⟩ e−i

∑︁N−1
k=1 p⃗k·q⃗k =

=

∫︂
DΩ

N−1∏︂
i=0

(︂
e−i∆tH(q⃗i+1,p⃗i)

)︂
eip⃗i·q⃗i+1e−i

∑︁N−1
k=1 p⃗k·q⃗k

Next, let us conclude the whole derivation by a Fourier transformation, having noticed that ∆t → 0
if and only if N → ∞

⟨qN | Û(tf , ti) |q0⟩ =
∫︂
dDp⃗0
2π

eiq⃗0·p⃗0 ⟨qN | Û(tf , ti) |p0⟩ =

=

∫︂
dDp⃗0
2π

eiq⃗0·p⃗0
∫︂

DΩ

N−1∏︂
i=0

(︂
e−i∆tH(q⃗i+1,p⃗i)

)︂
eip⃗i·q⃗i+1e−i

∑︁N−1
k=1 p⃗k·q⃗k =

=

∫︂
dDp⃗0
2π

∫︂
DΩei

∑︁N−1
i=0 p⃗i·(q⃗i+1−q⃗i)−∆tH(q⃗i+1,p⃗i) =

=

∫︂
dDp⃗0
2π

∫︂
DΩei∆t

∑︁N−1
i=0 p⃗i·

(q⃗i+1−q⃗i)
∆t

−H(q⃗i+1,p⃗i) (3.2)

the exponent might be interpreted as the discretized action which in the continuous limit for N → ∞
(and therefore in the ∆t → 0 limit) and after having set q⃗(t) such that q⃗(tn) = q⃗n (and analogously
p⃗(t) such that p⃗(tn) = p⃗n). It tends to:

∆t
N−1∑︂
i=0

p⃗i ·
(︁
q⃗i+1 − q⃗i

)︁
∆t

−H(q⃗i+1, p⃗i) = ∆t
N−1∑︂
i=0

p⃗i ·
dq⃗i+1

dt
−H(q⃗i+1, p⃗i) −→ S[q⃗, p⃗] =

∫︂ tN

t0

dtL(q⃗, p⃗)

Therefore if we define the integral measures∫︂
Dq⃗ = lim

N→∞

∫︂ N−1∏︂
i=1

dD q⃗i and

∫︂
Dp⃗ = lim

N→∞

∫︂ N−1∏︂
i=0

dDp⃗i
(2π)D

(3.3)

we end up with:

K(q⃗f , tf ; q⃗i, ti) =

∫︂ tf

ti

Dq⃗

∫︂
Dp⃗eiS[q⃗,p⃗] (3.4)

In this way the reader can interpret the transition amplitude

K(q⃗f , tf ; q⃗i, ti) =
∑︂

Histories γ

eiS[γ]

as a sum over all the possible histories i.e. a functional integral over all the phase space functions with
some boundary conditions which sort out the histories that are going to be added up in the sum.

3Actually this is an approximation which could be evaluated by the Campbell-Baker-Haussdorf formula as a series of
homogeneous polynomials in the potential V and its derivatives and by following [4] it can be shown its convergence to
zero.
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3.2 Solving techniques for the Path Integral

3.2.1 Path Integral in Configuration Space

The Path Integral, as prescribed above, is the most general expression. One could however re-arrange
the exponent in 3.2 in such a way that, if the Hamiltonian is quadratic in the momenta, for instance

as before, H(q⃗i+1, p⃗i) =
p⃗2i
2m + V (q⃗i+1), it would then give us a standard Gaussian integral:

K(q⃗f , tf ; q⃗i, ti) =

∫︂
dDp⃗0
2π

∫︂
DΩei∆t

∑︁N−1
i=0 p⃗i·

(q⃗i+1−q⃗i)
∆t

− p⃗2i
2m

−V (q⃗i+1) =

=

∫︂ (︄N−1∏︂
i=1

dD q⃗i

)︄
e−i∆t

∑︁N−1
i=0 V (q⃗i+1)

∫︂ (︄N−1∏︂
i=0

dDp⃗i
(2π)D

)︄
e−i

∆t
2m

∑︁N−1
i=0 p⃗2i−2mp⃗i

(q⃗i+1−q⃗i)
∆t =

=

∫︂ (︄N−1∏︂
i=1

dD q⃗i

)︄
e
−i∆t

∑︁N−1
i=0 V (q⃗i+1)−m

2

(︃
(q⃗i+1−q⃗i)

∆t

)︃2

×

×
∫︂ (︄N−1∏︂

i=0

dDp⃗i
(2π)D

)︄
e
−i ∆t

2m

∑︁N−1
i=0

(︃
p⃗i−

m(q⃗i+1−q⃗i)
∆t

)︃2

=

=

∫︂ (︄N−1∏︂
i=1

dD q⃗i

)︄
e
−i∆t

∑︁N−1
i=0 V (q⃗i+1)−m

2

(︃
(q⃗i+1−q⃗i)

∆t

)︃2
N−1∏︂
n=0

1

(2π)D

(︃
2mπ

i∆t

)︃D
2

for N → +∞ and by recognizing the action in configuration space S[q] =
∫︁ tf
ti
L(q, q̇) and naming the

overall constant C = limN→∞
∏︁N−1
n=0

(︁
m

2πi∆t

)︁D
2 , clearly diverging, which could be set out by normal-

ization, we read:

K(q⃗f , tf ; q⃗i, ti) = C

∫︂ q⃗f

q⃗i

Dq⃗eiS[q⃗] (3.5)

3.2.2 Stationary Phase approximation

Trying to work out the configuration space heat kernel K(q⃗f , tf ; q⃗i, ti), we might grasp its behaviour
by means of the following considerations, first let us re-introduce the ℏ in the exponent argument as
i
ℏS[q⃗].
Thus, since ℏ ≪ 1, the phase which is given by the action, will oscillate wildly running over all the
paths q⃗i(t).
There will be a stationary phase of constructive interference around the peculiar path q⃗∗(t), which is
defined under the constraint δS = 0. It demands that the differences of the phases δq⃗∗(t) of the paths
close to q⃗∗(t) are vanishing.
Vice versa, away from this condition, the several paths will destructively interfere.
In this way, we could explain the principle of least action which implies all the classical physics, indeed
the path q⃗∗(t) ≡ q⃗cl(t) is regarded as the constructive interference of all the neighborhood trajectories.
Hence, by considering the expansion around the stationary phase path q⃗(t) = q⃗cl(t) + y⃗(t) with
boundary conditions y⃗(ti) = y⃗(tf ) = 0, up to the second order we read:

S[q⃗f , tf ; q⃗i, ti] = S|q⃗cl
+ δS|q⃗cl

+
1

2
δ2S|q⃗cl

+ · · · = S|q⃗cl
+

1

2
δ2S|q⃗cl

+ . . .

Thus:

K(q⃗f , tf ; q⃗i, ti) = C

∫︂ q⃗f

q⃗i

Dq⃗e
i
ℏ

(︃
S|q⃗cl

+ 1
2
δ2S|q⃗cl

+...

)︃
= Ce

i
ℏS[q⃗cl(tf ),q⃗cl(ti)]

∫︂ y⃗f=0

y⃗i=0
Dy⃗e

i
ℏ

(︃
1
2
δ2S|q⃗cl

+...

)︃
(3.6)

For instance, given the Lagrangian of the one dimensional harmonic oscillator L = mq̇2

2 − mω2q2

2
which by the classical equation of motion q̈cl = −ω2qcl and without any need of a Taylor expansion:
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S[q(t)] = S[qcl(t)] + S[y(t)] +
∫︁ tf
ti
dt ddt(q̇cly) = S[qcl(t)] + S[y(t)] where in the last step the latter term

vanishes because of the boundary conditions on the fluctuations, thus:

K(qf , tf ; qi, ti) = CeiS[qcl]
∫︂ yf=0

yi=0
Dye

i
∫︁ tf
ti

dt

(︃
mẏ2

2
−mω2y2

2

)︃

One could compute eiS[qcl] by means of the classical solution qcl(t) = qi cos [ω (t− ti)]+B sin [ω (t− ti)],
whereas for the remaining integral we write the Fourier series expansion with τ = tf − ti of the
fluctuations:

y =
∞∑︂
p=1

ỹp

√︃
2

τ
sin

(︃
pπ (t− ti)

τ

)︃
(3.7)

The action is therefore written through its truncated Fourier series and by the time lattice of before
tn = ti + n∆t we recognize that y0 = yN = 0 are the boundary conditions

S[y] =

∫︂ tf

ti

dt

(︃
mẏ2

2
− mω2y2

2

)︃
=

N−1∑︂
p=1

ỹ2p

∫︂ tf

ti

dt
m

τ

(︂pπ
τ

)︂2
cos2

(︂pπ
τ
(t− ti)

)︂
− mω2

τ
sin2

(︂pπ
τ
(t− ti)

)︂
=

=
N−1∑︂
p=1

ỹ2p
m

τ

(︂pπ
τ

)︂2 [︃τ
2
+ sin

(︃
2pπ

τ
τ

)︃
τ

4pπ

]︃
− mω2

τ

[︃
τ

2
− sin

(︃
2pπ

τ
(τ)

)︃
τ

4pπ

]︃
=

N−1∑︂
p=1

ỹ2p
m

2

[︃(︂pπ
τ

)︂2
− ω2

]︃
The Path Integral will be henceforth a Gaussian integral over the functional measure of the non-

constant modes
∫︁ yf=0
yi=0 Dy = limN→∞ det

(︂
∂yn
∂ỹp

)︂∏︁N−1
p=1

∫︁
dỹp i.e.

K(qf , tf ; qi, ti) = CeiS[qcl] det

(︃
∂yn
∂ỹp

)︃N−1∏︂
p=1

∫︂
dỹpe

iỹ2p
m
2

[︂
( pπ

τ )
2−ω2

]︂
= CeiS[qcl] det

(︃
∂yn
∂ỹp

)︃N−1∏︂
p=1

⌜⃓⃓⎷ 2πi

m
[︂(︁pπ

τ

)︁2 − ω2
]︂ =

= CeiS[qcl] det

(︃
∂yn
∂ỹp

)︃(︃
2iτ2

mπ

)︃N−1
2 1

(N − 1)!

N−1∏︂
p=1

1√︃
1−

(︂
ωτ
pπ

)︂2 =

= C ′eiS[qcl]
√︃

m

2πiτ

N−1∏︂
p=1

1√︃
1−

(︂
ωτ
pπ

)︂2 = C ′′eiS[qcl]
√︃

mω

2πi sin (ωτ)

Where the identity
∏︁∞
p=1 1−

(︂
ωτ
pπ

)︂2
= sin(ωτ)

ωτ has been used.

We have assembled the former constant C ′ in such a way that the remaining c-number is the Path
Integral of the action given V = 0, i.e. the free field and the latter constant such that it could be set
to C ′′ = 1 since the heat kernel at τ = 0 gives exactly the above delta function.
In order to compute such free field integral, one would have to evaluate the following integral, first
solving it by parts then recognizing the Gaussian integral in the succeeding form, given M a D ×D
real symmetric matrix: ∫︂

Rd

dDxe−x
tMx = π

D
2 det (M)−

1
2 (3.8)

Thus, in our case:∫︂ yf=0

yi=0
Dyei

m
2

∫︁ tf
ti

dtẏ2 =

∫︂ yf=0

yi=0
Dye

im
2

∫︁ tf
ti

dty
(︂
− d2

dt2

)︂
y
=

√︃
m

πi
det

[︃
− d2

dt2

]︃− 1
2

Here it comes a subtlety, i.e. the functional determinant, to tackle it we have first to study its

eigenvalues det
[︂
− d2

dt2

]︂
=
∏︁+∞
n=1 λn with:

− d2

dt2
yn(t) = λnyn(t) such that yn(ti) = yn(tf ) = 0 ⇐⇒

yn(t) = sin

(︃
nπ(t− ti)

τ

)︃
⇐⇒ λ =

(︂nπ
τ

)︂2
12



Moreover, we have the succeeding formal equivalence, given a positive-definite operator Ô, from the

infinitesimal expansion of the determinant det
(︂
1 + ϵÔ

)︂
= 1 + ϵTr

(︂
Ô
)︂
+ O(ϵ2) one could show that:

det Ô = eTr(ln Ô). Hence, we deduce: ln
[︂
det Ô

]︂
= Tr

(︂
ln Ô

)︂
=

+∞∑︂
n=1

lnλn (3.9)

Definition 3.2.1 (Spectral ζ-Function):
Given Ô positive-definite operator, the spectral ζ-functionspectral ζ-functionspectral ζ-function is defined as

ζÔ(s) =
+∞∑︂
s=1

1

λsn
<∞ for Re s≫ 1

It is analytic with respect to s≫ 1 and such that
d

ds
ζÔ(s)

⃓⃓
s=0

= −
∑︁+∞

n=1 lnλn

Hence, we deduce:

det Ô = e−
d
ds
ζÔ(s)|s=0

Particularly for our case, recalling that the Riemann-ζ-function is defined as ζ(s) =
∑︁∞

n=0
1
ns :

ζ
− d2

dt2

ˆ (s) =

+∞∑︂
n=1

(︂nπ
τ

)︂−2s
=
(︂ τ
π

)︂2
s

∞∑︂
n=1

1

n2s
=
(︂ τ
π

)︂2s
ζ(2s)

Therefore

d

ds
ζ
− d2

dt2

ˆ (s)⃓⃓
s=0

= 2 ln
(︂ τ
π

)︂
ζ(0) + ζ ′(0) = − ln (2τ)

and finally det
[︂
− d2

dt2

]︂
= 2τ .

3.2.3 Generating function and Time Rotation

We can characterize a quantum mechanical system by means of its generating functiongenerating functiongenerating function, also known
as partition function for its similarities with statistical mechanics, it is defined as:

Z(τ) = TrH

(︂
e−i(tf−ti)Ĥ

)︂
(3.10)

Implementing in it the formula for the heat kernel (3.4) and taking |y⟩ to form a basis for the Hilbert
space H = L2 (Rn, dy⃗n):

TrH

(︂
e−i(tf−ti)Ĥ

)︂
=

∫︂
Rn

dny⃗ ⟨y| e−i(tf−ti)Ĥ |y⟩ =
∫︂
Rn

dny⃗

∫︂
q⃗i=q⃗f=y⃗

Dq⃗

∫︂
Dp⃗eiS[q⃗,p⃗]

The larger the real part Re{iS} becomes, the quicker the oscillation of the integral will be, thus a
common way to fix this is to rotate time into the complex plane as t = e−iϵτ , for instance the action
would read:

SE =

∫︂ τf

τi

dτ

(︃
p
dq

dt
− e−iϵH(q, p)

)︃
if H is positive definite Re{iS} = − sin(ϵ)

∫︂ τf

τi

dτH(q, p) < 0

Hence, the Path Integral will converge for large oscillation, at this purpose sometimes this rotation
is done from the scratch, by taking the time such that ϵ = π

2 , in the textbooks is well known as
Wick rotationWick rotationWick rotation and in this case times becomes solely imaginary or Euclidean and for instance, given
the path integral in configuration space (3.5):

K(q⃗f , tf ; q⃗i, ti) = C

∫︂ q⃗f

q⃗i

Dq⃗e−SE [q⃗]
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4
Introduction to Grassmann variables and Fermionic Path

Integral

4.1 Grassmann numbers

Parallelly as were defined the complex numbers, by introducing the imaginary unit i such that i2 = −1,
we can define the so-called Grassmann variablesGrassmann variablesGrassmann variables or anticommuting numberanticommuting numberanticommuting number η by the requirement that

η2 = 0.

Thus we define a supernumber

Definition 4.1.1 (Supernumber):
A supernumbersupernumbersupernumber is defined as Z = a+ bη = a+ ηb where a, b are commuting numbers.

We can define consequently, a function of supernumber by its Taylor expansion, f(Z) =
∑︁∞

n=0

f (n)(a)

n!
(bη)n

and from the Grassmann parameter definition we have for n ≥ 2 that (bη)n = 0, thus any function
could be written down as

f(Z) = f(a) + bf ′(a)η

i.e. a supernumber itself. Moreover, we can differentiate it as follow

∂

∂η
Z = b and therefore

∂

∂η

∂

∂η
Z = 0 (4.1)

Furthermore, if we define the integral requiring, as usual, the linearity under non-integration param-
eters and the invariance under linear shifts of the integration variable, we have:∫︂

dηf(a+ η) =

∫︂
dηf(η)

which could be expanded considering a infinitesimal as f(η + a) ≃ f(η) + a∂ηf(η), thus:∫︂
dηf(a+ η) =

∫︂
dηf(η) +

∫︂
dηa∂ηf(η)

measure invariance
=

∫︂
dηf(η) ⇐⇒

∫︂
dη∂ηf(η) = 0

comparing it to (4.1) and recalling that a function of a supernumber is a supernumber itself, we have
the formal definition of the integral 1: ∫︂

dη = ∂η

Increasing the number of anticommuting variables requires a more sophisticated analysis, thus:

Definition 4.1.2 (Real Grassmann Algebra):
A real Grassmann algebrareal Grassmann algebrareal Grassmann algebra ΛN is defined by introducing a set N hermitian like Grassmann parameters
ηi satisfying:

{ηi, ηj} = 0∀ i, j = 1, . . . N and η†i = ηi
1It is a Berezin integration.
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Definition 4.1.3 (Element of ΛN ):
An arbitrary element of the algebra is defined from its expansion

Z(η) = Z0 +
N∑︂
i=1

biηi +
∑︂
i<j

bijηiηj + · · · =
∑︂

0≤k≤N

1

k!

∑︂
{i}

bi1...ikηi1 . . . ηik

where bi1...ik are c-number antisymmetric under the exchange of any two indices.

If ϵk1k2...kN is the Levi-Civita symbol, we have that the elements of the real Grassmann algebra also
satisfy: {︄

ηk1ηk2 . . . ηkN = ϵk1k2...kN η1η2 . . . ηN

ηk1ηk2 . . . ηkM = 0 for M > N

If N = 2 we have Z = a+ b1η1 + b2η2 + cη1η2 we can vary it with respect to η1 in two ways:

δZ = δη1
∂Z

∂η1
= b1δη1 + cδη1η2 but also δZ =

∂Z

∂η1
δη1 = b1δη1 − cη2δη1

Thus it defines the left derivative and the right derivative:
∂LZ

∂η1
= b1 + cη2 and

∂RZ

∂η1
= b1 − cη2.

Going back to N parameters, it is crucial to make an order choice for the integral measure:∫︂
dNη =

∫︂
dηN . . . dη1 such that

∫︂
dNη (η1 . . . ηN ) = 1

treating each differentials as anticommuting {dηi, dηj} = 0 and {dηi, ηj} = 0 for all i, j = 1, . . . , N ,
let us suppose that we are changing the variables as ηi =

∑︁
j Uijη

′
j thus each integral will look like∫︁

dηi =
∂
∂ηi

=
∑︁

j

∂η′j
∂ηi

∂
∂ηj

=
∑︁

j

(︁
U−1

)︁
ij

∂
∂η′j

i.e. opposite to bosonic integration:∫︂
dηN =

∫︂
dηN · · ·

∫︂
dη1 =

∑︂
jN ...j1

(︁
U−1

)︁
NjN

. . .
(︁
U−1

)︁
1j1

∫︂
dη′jN · · ·

∫︂
dη′j1 =

=
∑︂
jN ...j1

(︁
U−1

)︁
NjN

. . .
(︁
U−1

)︁
1j1
ϵj1...jN

∫︂
dη′N · · ·

∫︂
dη′1 = det

(︁
U−1

)︁ ∫︂
dNη′ =

1

det(U)

∫︂
dNη′

(4.2)

Moreover, we can also treat an even number of Grassmann variables as complexes

Definition 4.1.4 (Complex Grassmann Algebra):
The real Grassmann algebra Λ2N can also be written as a N dimensional complex Grassmann algebracomplex Grassmann algebracomplex Grassmann algebra
with the following definitions ∀ i = 1, . . . , N − 1

χi =
1√
2
(η2i + iη2i+1) χi =

1√
2
(η2i − iη2i+1)

It is possible to show the following anticommutation relations:

{χi, χj} = {χi, χj} = {χi, χj} = 0.

4.2 Fermionic Path Integral

Starting from the coherent states for the harmonic oscillators, i.e. states such that â |λ⟩ = λ |λ⟩
with |λ⟩ = e

−|λ|2
2 eλâ

† |0⟩ then we have that the fermionic coherent states would be |η⟩ = eηψ̂ |0⟩ and

⟨η| = ⟨0| eηψ̂ with the unusual normalization condition ⟨η|η⟩ = eηη, thus we are given of the resolution
of the unit:

1H =

∫︂
d2ηe−ηη |η⟩ ⟨η|
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To give a brief explanation to the above lines we can derive them from the fermionic harmonic oscillator
with the ladder operators ĉ, ĉ† such that {ĉ, ĉ†} = 1 and {ĉ, ĉ} = {ĉ†, ĉ†} = 0 and the Hamiltonian

Ĥ = ω
2 (ĉ

†ĉ − ĉĉ†) = ω
(︂
F̂ − 1

2

)︂
with F̂ the number operator with eigenvalues {0, 1}, therefore by

considering the Hilbert space spanned by its eigenstates {|0⟩ , |1⟩} and taking two Grassmann numbers
η, η we have |η⟩ = |0⟩+ η |1⟩ and ⟨η| = ⟨0|+ η ⟨1| thus ⟨η|η⟩ = 1 + ηη = eηη and therefore∫︂

dηdη |η⟩ ⟨η| e−ηη =
∫︂
dηdη (|0⟩+ η |1⟩) (⟨0|+ η ⟨1|) (1− ηη) =

=

∫︂
dηdη |0⟩ ⟨0|+ η |1⟩ ⟨0|+ η |0⟩ ⟨1|+ ηη |1⟩ ⟨1| − ηη |0⟩ ⟨0| = |1⟩ ⟨1|+ |0⟩ ⟨0| = 1H

From this result we can get the heat kernel from a fermionic initial state |χ⟩ to a final one |χ′⟩ in a
rather closed way to the bosonic case2:⟨︁
χ′⃓⃓ e−i(tf−ti)H |χ⟩ =

⟨︁
χ′⃓⃓ e−i∆tH(ψ̂,ψ̂) . . . e−i∆tH(ψ̂,ψ̂) |χ⟩ =

= lim
N→∞

∫︂ N−1∏︂
k=1

d2ηke
−ηkηk

⟨︁
χ′⃓⃓ e−i∆tH(ψ̂,ψ̂) |ηN−1⟩

⟨︁
ηN−1

⃓⃓
. . . |η1⟩ ⟨η1| e−i∆tH(ψ̂,ψ̂) |χ⟩ =

= lim
N→∞

∫︂ N−1∏︂
k=1

d2ηke
−ηkηk

N∏︂
p=1

e−i∆tH(ηp−1,ηp)eηpηp−1 =

= lim
N→∞

∫︂ N−1∏︂
k=1

d2ηke
ηNηN e−i∆t

∑︁N
p=1

ηk
i∆t

(ηk−ηk−1)+H(ηk−1,ηk)

Whereas in the continuous approximation we tell the latter exponent to be the action itself, moreover, it
is key here to switch into Euclidean time τ = it, such that SE [η, η] =

∫︁ τf
τi
dτ (ηη̇ +H(η, η)). Therefore

if ψ(τi) = χ and ψ(τf ) = χ′ then:

K(χ′, τf ;χ, τi) =

∫︂
DψDψeψ(τf )ψ(τf )e−SE [ψ,ψ]

Furthermore, if β = τf − τi and given anti-periodic boundary conditions, in short APBC, χ = ψ(0) =
−ψ(β), we read the trace:

Tr
(︂
e−βH

)︂
=
∑︂
n=0,1

⟨n| e−βH |n⟩ =
∑︂
n=0,1

∫︂
dηdηe−ηη ⟨n|η⟩ ⟨η| e−βH |n⟩ =

=
∑︂
n=0,1

∫︂
dηdηe−ηη ⟨n| (|0⟩+ η |1⟩) (⟨0| − η ⟨1|) e−βH |n⟩ =

=
∑︂
n=0,1

∫︂
dηdηe−ηη

(︃
⟨n|0⟩ ⟨0| e−βH |n⟩+

+ η ⟨n|0⟩ ⟨1| e−βH |n⟩+ η ⟨n|1⟩ ⟨0| e−βH |n⟩+ ηη ⟨n|1⟩ ⟨1| e−βH |n⟩
)︃

We can invert the sign of η → −η in the second term, indeed it is not going to saturate the Grassmann
integral anyway and if ⟨−η| = ⟨0| − η ⟨1| and therefore we read:

Tr
(︂
e−βH

)︂
=

∫︂
d2χ ⟨−χ| e−βH |χ⟩ e−χχ =

∫︂
APBC

DψDψe−SE [ψ,ψ]

And finally

Tr
(︂
(−1)F e−βH

)︂
=

∫︂
d2χ ⟨χ| e−βH |χ⟩ e−χχ =

∫︂
PBC

DψDψe−SE [ψ,ψ] (4.3)

Where also the fermions are periodic such that ψ(τ + β) = ψ(τ)
2Check [8] for more details.
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5
Computations

5.1 Euler number derivation

Let us consider a particle of unit mass moving along a Riemannian manifold (N, g) of dimension
n, compact, oriented and with no boundaries, in which a set of local coordinates is given by xi ={︁
x1, . . . , xn

}︁
, let t ∈ M denote time, with M = R or S1 (for Euclidean time). The worldline field of

our particle is the map ϕ : M → N . With a little abuse of notation, we call ϕi = xi ◦ ϕ the pullback

of the coordinates of the local chart in N to M . Similarly, gijϕ̇
i
ϕ̇
j
is the pullback of the metric g of

N to M.
Next, we consider the free particle action:

S =

∫︂
M
dt
1

2
gij(ϕ)ϕ̇

i
ϕ̇
j
.

By varying it:

δS =

∫︂
M
dt

(︃
1

2
gij,kδϕ

kϕ̇
i
ϕ̇
j
+ gij

d

dt

(︁
δϕi
)︁
ϕ̇
j
)︃

= by parts∫︂
M
dt

[︃
1

2
gij,kϕ̇

i
ϕ̇
j − d

dt

(︂
gkjϕ̇

j
)︂]︃
δϕk +

∫︂
M
dt
d

dt

(︂
gkjϕ̇

j
δϕk
)︂

We get the bulk equation of motion:

0 =
1

2
gij,kϕ̇

i
ϕ̇
j − d

dt

(︂
gkjϕ̇

j
)︂
=

1

2
gij,kϕ̇

i
ϕ̇
j −

(︂
gkj,iϕ̇

i
ϕ̇
j
+ gkjϕ̈

j
)︂
=

= −1

2

(︂
gkj,iϕ̇

i
ϕ̇
j
+ gki,jϕ̇

j
ϕ̇
i − gij,kϕ̇

i
ϕ̇
j
)︂
− gkjϕ̈

j ⇐⇒

ϕ̈
l
+

1

2
glk (gki,j + gkj,i − gij,k) ϕ̇

i
ϕ̇
j
= 0 ⇐⇒ ϕ̈

l
+ Γlijϕ̇

i
ϕ̇
j
= 0

Hence, from a classical point of view, the particle freely moving is following the geodesics (2.3) of N .

Finally, we introduce n complex valued fermions ψi =

(︃
ψi1
ψi2

)︃
where ψi1, ψ

i
2 are real. These fermions

should be thought as the local components of a fermionic field ψ = ψi ∂
∂xi |ϕ [2].

Furthermore, taking the following action, the supersymmetric non-linear sigma modelsupersymmetric non-linear sigma modelsupersymmetric non-linear sigma model action [1]:

L =
1

2
gij(ϕ)ϕ̇

i
ϕ̇
j
+
i

2
gij(ϕ)ψ

i
γ0
D

dt
ψj +

1

12
Rijklψ

i
ψkψ

j
ψl (5.1)

where
D

dt
ψi =

d

dt
ψi + Γijkϕ̇

j
ψk and ψ

i
α =

(︁
ψi
)︁
β

(︁
γ0
)︁
βα

∀α, β = 1, 2

it is shown in the appendix A that is invariant under the supersymmetry transformations:

δϕi = ϵψi and

δψi = −iγ0ϕ̇iϵ− Γijkϵψ
jψk

(5.2)

with ϵ =

(︃
ϵ1
ϵ2

)︃
and ϵ1, ϵ2 being the two real components of the anticommuting constant spinor and

the matrix γ0 = σ2 =

(︃
0 −i
i 0

)︃
, which is such that

(︁
γ0
)︁2

= id.
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Let us compute the supersymmetry charges through the use of Noether’s theorem. Thus, on shell and
since δL = 0 the following current is conserved

j0 =
∂L

∂
(︂
ϕ̇
i
)︂δϕi + ∂RL

∂
(︂
ψ̇
i
)︂δψi =

= gijϕ̇
i
δϕj +

i

2
gijψ

i
γ0Γjklψ

kδϕl +
i

2
gijψ

i
γ0δψj =

= gijϕ̇
i
ϵψj +

i

2
gijψ

i
γ0Γjklψ

kϵψl +
1

2
gijψ

i
γ0γ0ϕ̇

j
ϵ =

= ϵgijϕ̇
i
ψj − ϵ

1

2
gijψ

i
ϕ̇
j
=

=
i

2
ϵQ+ iϵQ where Q = igijϕ̇

i
ψ
j
and Q = −igijϕ̇

i
ψj

Next, if the conjugate momenta of ϕi, ψj are respectively pi = ∂L

∂ϕ̇
i = gijϕ̇

j
+ i

2gkjψ
k
γ0Γjilψ

l and

ρj = i
2gijψ

i
γ0, we quantize the theory imposing the commutation and anticommutation relations:1

[ϕi, pj ] = iδij {ψi, ψj} = gij

In particular, the Hilbert space of the non-supersymmetric system H = L2 (N) is given by square-
integrable functions in the target space N with respect to the measure

√
gdnx where, as usual:

pi acts as differentiation − i
∂

∂xi

The fermions generate a Fock space where the vacuum state is taken to be ψi |0⟩ = 0 for all i = 1, . . . , n

and all the other states are obtained acting by ψ
i
on |0⟩. Since ψ

i
ψ
j
= −ψjψi we can identify them

as the basis of all the k-forms in N , i.e.

ψ
i
is acting on |0⟩ as dxi∧

similarly, ψ
1
. . . ψ

n |0⟩ is in correspondence with dx1 ∧ · · · ∧ dxn. The ψ’s are acting as the contraction
by a vector field:

ψiψ
j
ψ
k
. . . ψ

m |0⟩ = {ψi, ψj}ψk . . . ψm |0⟩ − ψ
j
ψiψ

k
. . . ψ

m |0⟩ =

= gijψ
k
. . . ψ

m |0⟩ − ψ
k
gil . . . ψ

m |0⟩+ · · ·+ ψ
j
ψ
k
. . . ψ

m
ψi |0⟩ =

= gijψ
k
. . . ψ

m |0⟩ − ψ
k
gil . . . ψ

m |0⟩+ . . .

So that

ψi acts as the contraction of a k-forms by gij
∂

∂xj

The full supersymmetric Hilbert space could be regarded as the completion of2

H = Ω∗(N)⊗ C

given by all the complex value forms on N square-integrable with respect to (2.5), C-linearly extended
to the following: ∀α, β ∈ H

(α, β)N =

∫︂
N
α ∧ ∗β

It is possible to decompose the Hilbert space as:

H =
n⨁︂
p=0

Ωp(N)⊗ C =
n⨁︂
p=0

Hp

1All the others (anti)-commutation relations are trivial.
2By a slight abuse of notation we are denoting both Ω∗(N)⊗ C and its completion by H.
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or by a Z2 grading given by the operator (−1)F such that it anticommutes with both ψi, ψ
i
and

(−1)F |0⟩ = |0⟩, as follow:
H = HB ⊕HF

where in the former are laying the even forms HB = ⊕p evenH
p whilst in the latter the odd ones

HF = ⊕p oddH
p. So that HB and HF are eigenspaces of (−1)F with eigenvalues +1 and −1 respec-

tively.
Further, we might interpret Q and Q within this geometrical framework. Indeed by −iψipi =

−igijψiϕ̇
j
+ 1

2gkjψ
iψ
k
γ0Γjilψ

l = −igijψiϕ̇
j
= Q and analogously Q = igijψ

i
ϕ̇
j
= iψ

i
pi, we associate Q

as follow:

Q ↦→ idxi ∧ −i∂
∂xi

= d

Thus, Q is acting as the exterior derivative and Q as d∗, i.e. its dual, which is given by the Hodge
star operator as above (2.6).
Hence, from the algebra [1] we also have:

{Q,Q} = 2H

{Q,Q} = {Q,Q} = 0

and therefore H = 1
2{Q,Q} is identified with the Laplacian operator (2.2.7), properly with

H ↦→ 1

2
∆ =

1

2
{d, d∗} =

1

2
(dd∗ + d∗d) (5.3)

5.1.1 Tr (−1)F

Let |E⟩ be eigenstate of H. By

E = ⟨E|H |E⟩ = 1

2
⟨E|QQ+QQ |E⟩ = 1

2

(︁
∥Q |E⟩ ∥2 + ∥Q |E⟩ ∥2

)︁
≥ 0

then E = 0 if and only if Q |E⟩ = Q |E⟩ = 0

the Hamiltonian is positive-definite. A zero energy state H |0⟩ = 0 is a ground state, and is a
supersymmetric state, i.e. it is annihilated by both the supercharges Q and Q.
Next, if H(n) is the Hilbert space associated with the n-th energy level of value En such that the

Hamiltonian H|H(n)
= En then the operator S = Q+Q√

2
satisfies S2 = 2H conserving each energy level

so that for En > 0, the restriction of S to H(n) is invertible:

S2 = 2En > 0

S maps HB
(n) → HF

(n) and vice versa, so for En > 0 it realizes an isomorphism

HB
(n) ≃ HF

(n)

by which the number of fermions and bosons in each positive energy level coincides. For E = 0 a
bijection might not exist and the number of bosonic and fermionic supersymmetric ground states does
not need to equal anymore.
By varying the parameters of the theory, the states of non-zero energy jingle around in energy, moving
in Bose-Fermi pairs, at a certain value they might fall down to E = 0 states,
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Figure 5.1: Isomorphism fermions-bosons for E ̸= 0, [2].

such that dimHB
(0), dimHF

(0), which respectively indicate the number of bosonic and fermionic zero-
energy states, would both increase by one. Vice versa it is not possible for a singlet of zero-energy to
escape since it has to be paired with its supersymmetric partner, thus also in this case both would
decrease by one.
Summing it up, we see that their difference does not change and therefore dimHB

(0) − dimHF
(0) is

invariant and independent of all parameters. A noteworthy property is that it may be regarded as the
supertrace (4.3) of the grading operator, given β > 0:

dimHB
(0) − dimHF

(0) = Tr
(︂
(−1)F e−βH

)︂
Indeed the non-zero energy states do not contribute to the trace since they come in opposite sign pair,
thus the trace is evaluated just for states at E = 0.
Recalling the results anticipated in 2.2.2, we have that for each harmonic form there exists a unique
representative of the De Rham cohomology by Hodge decomposition:

Harmp(N, g) ≃ Hp
DR(N)

By (5.3) the supersymmetric ground state can be regarded as the space of the harmonic forms of the
Riemannian manifold:

H(0) = Harm(N, g) =
n⨁︂
p=0

Harmp(N, g)

Finally we have the following identities:

Tr
(︂
(−1)F e−βH

)︂
=

n∑︂
p=0

(−1)p dimHarmp(N, g) =

n∑︂
p=0

(−1)p dimHp
DR(N) = χ(N) (5.4)

where χ(N) is the Euler number (2.2) of N .
Proceeding as in [2], recalling (4.3), we have that the previous index, also known as Witten index, has
a Path Integral representation:

Tr
(︂
(−1)F e−βH

)︂
=

∫︂
PBC

DϕDψDψe−SE [ϕ,ψ,ψ] (5.5)

5.2 Gauss-Bonnet formula derivation

Because the Witten index is independent of β [10], we can evaluate (5.5) for β → 0.
Taking the action (5.1) in the basis in which γ0 is diagonal is equivalent to the following:

1

2
gij(ϕ)ϕ̇

i
ϕ̇
j
+ iψ∗igij

D

dt
ψj − 1

4
Rijkl(ϕ)ψ

∗iψ∗jψkψl (5.6)
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In order to evaluate the above Path Integral (5.5), one would Wick rotate the action into its Euclidean
form, taking τ to be τ = it, moreover, pursuing the stationary phase approximation (3.6), we could
split the integration variables into zero-modes and non-constant modes as:

ϕi(t) = ϕi0 + ξi(t)

ψi(t) = ψi0 + ηi(t)

In order to take the limit β → 0 we could substitute as follow:

LE =
L′
E

β
τ = τ ′β ξi = ξ′i

√︁
β ψi0 =

ψ′i
0

β
1
4

While ηi = η′i. From now on, we will drop the prime notation from the variable names. In the limit
β → 0 at first order in β, we obtain:

LE
β

=
1

2
gij(ϕ0)

ξ̇
i

β

ξ̇
j

β
β +

(︄
ψ∗
0
i

β
1
4

+ η∗i
)︄
gij(ϕ0)

[︄
η̇j

β
+ Γjkl(ϕ0)

ξ̇
k

β
1
2

(︄
ψl0

β
1
4

+ ηl

)︄]︄
−

− 1

4
Rijkl(ϕ0)

(︄
ψ∗
0
i

β
1
4

+ η∗i
)︄(︄

ψ∗
0
j

β
1
4

+ η∗j
)︄(︄

ψk0

β
1
4

+ ηk

)︄(︄
ψl0

β
1
4

+ ηl

)︄
=

=
1

β

[︄
1

2
gij(ϕ0)ξ̇

i
ξ̇
j
+

1

β
1
4

ψ∗
0
igij(ϕ0)η̇

j + η∗igij(ϕ0)η̇
j − 1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0 + O (β)

]︄

Recalling we have required periodic boundary condition, so the fluctuations are such that η(0) =
η(β) = 0 and that we have switched the first and the third terms into a Vielbein basis3, we get the
Euclidean action:

SE =

∫︂ 1

0
dτLE =

∫︂ 1

0
dτ

(︄
1

2
gij(ϕ0)ξ̇

i
ξ̇
j
+

1

β
1
4

ψ∗
0
igij(ϕ0)η̇

j + η∗igij(ϕ0)η̇
j − 1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0 + O (β)

)︄
(5.7)

Where we used:∫︂ 1

0
dτψ∗

0
igij(ϕ0)η̇

j =

∫︂ 1

0
dτ

d

dτ

(︂
ψ∗
0
igij(ϕ0)η

j
)︂
−
∫︂ 1

0
dτ

d

dτ

(︂
ψ∗
0
igij(ϕ0)

)︂
ηj = 0

Hence, performing the limit for β → 0, it reads:

SE =

∫︂ 1

0
dτ

(︃
1

2
δabξ̇

a
ξ̇
b
+ δabη

∗aη̇b − 1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0

)︃
We start by carrying out the integral over the constant modes of the bosonic and fermionic fields
separately ∫︂

PBC
Dϕe−SE [ϕ0,ξ] =

∫︂ ξ(1)=0

ξ(0)=0
Dξe−

1
2

∫︁ 1
0 dτδabξ̇

a
ξ̇
b

= N(2π)
n
2 det

[︃
− d2

dτ2

]︃− 1
2

Whereas, for the Grassmann fields, recalling (4.2) shifting ηi =
∑︁

j

[︂
d
dτ

−1
]︂
ij
η′j and treating η′i, η

∗
j as

independent:∫︂
PBC

DψDψe−SE [ψ0,η] =

∫︂ η(1)=0

η(0)=0
DηDηe−

∫︁ 1
0 dτδabη

∗aη̇b = N′ 1

det
[︂
d
dτ

−1
]︂ = N′ det

[︃
d

dτ

]︃
3Recall 2.7.
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Hence, fixing the normalization constants and without any need of regularization (3.9), because the
functional determinants identity elide each other, indeed by Binet’s theorem:√︄

det

[︃
d2

dτ2

]︃
= det

[︃
d

dτ

]︃
therefore, we read:

Tr
(︂
(−1)F e−βH

)︂
=

1

(2π)
n
2

∫︂
d (Vol)

∫︂
dψ

n
0dψ

n
0 . . . dψ

1
0dψ

1
0e

− 1
4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk

0ψ
l
0

Next, if we are in a odd dimensional space we see that we cannot saturate all the Grassmann measures
and therefore the integral vanishes, whereas if we are in an even dimensional space, expanding out
the exponent and re-casting it back to the right order we have, through the use of the Levi-Civita
symbols:∫︂

dψ
n
0dψ

n
0 . . . dψ

1
0dψ

1
0e

− 1
4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk

0ψ
l
0 =

=

∫︂
dψ

n
0dψ

n
0 . . . dψ

1
0dψ

1
0

[︃
1− 1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0 +

1

2

(︃
−1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0

)︃2

+ · · ·+

+
1(︁
n
2

)︁
!

(︃
−1

4
Rijkl(ϕ0)ψ

∗
0
iψ∗

0
jψk0ψ

l
0

)︃n
2
]︃
=

=

∫︂
dψ

n
0dψ

n
0 . . . dψ

1
0dψ

1
0

(−1)
n
2

4
n
2

(︁
n
2

)︁
!
ψ1
0ψ

∗
0
1 . . . ψn0ψ

∗
0
nϵ
i1j1,...,in

2
jn
2 ϵ
k1l1,...,kn

2
ln
2 Ri1j1k1l1(ϕ0) . . . Rin

2
jn
2
kn

2
ln
2
(ϕ0) =

=
(−1)

n
2

(2)n
(︁
n
2

)︁
!
ϵ
i1j1...in

2
jn
2 ϵ
k1l1...kn

2
ln
2 Ri1j1k1l1(ϕ0) . . . Rin

2
jn
2
kn

2
ln
2
(ϕ0)

Eventually, we read:

Tr
(︂
(−1)F e−βH

)︂
=

(−1)
n
2

(2)n (2π)
n
2
(︁
n
2

)︁
!

∫︂
d (Vol) ϵ

i1j1...in
2
jn
2 ϵ
k1l1...kn

2
ln
2 Ri1j1k1l1(ϕ0) . . . Rin

2
jn
2
kn

2
ln
2
(ϕ0)

(5.8)
Let us end by musing on this final result: if we recall that the L.H.S of the equation is the Euler
Characteristic of the manifold, then we have obtained exactly the Gauss-Bonnet formula.

5.2.1 Examples

From the formula (5.8), from the example 2.2.2.1 and by recalling the volume form of the 2-sphere

d (Vol) = θ̂
1 ∧ θ̂2 = sin θdθ ∧ dϕ we have:

χ(S2) =
−1

8π

∫︂
S2

θ̂
1 ∧ θ̂2ϵijϵklRijkl =

−1

8π

∫︂
S2

θ̂
1 ∧ θ̂2

(︂
δikδjl − δilδjk

)︂
Rijkl =

−1

8π

∫︂
S2

θ̂
1 ∧ θ̂2

∑︂
ij

(Rijij −Rijji) =

= − 1

8π

∫︂
S2

θ̂
1 ∧ θ̂2 (R1212 +R2121 −R1221 −R2112) = − 1

8π

∫︂
S2

θ̂
1 ∧ θ̂24R1212 =

1

2π

∫︂
S2

θ̂
2 ∧ θ̂1 =

=
1

2π

∫︂ 2π

0
dϕ

∫︂ π

0
dθ sin θ = 2

And similarly the volume form of the torus is d (Vol) = θ̂
1 ∧ θ̂2 = r (R+ r cos θ) dθ ∧ dϕ:

χ(T 2) = − 1

8π

∫︂
T 2

θ̂
1 ∧ θ̂24R1212 =

1

2π

∫︂
T 2

θ̂
2 ∧ θ̂1 cos θ

r (R+ r cos θ)
=

1

2π

∫︂ 2π

0
dϕ

∫︂ 2π

0
dθ cos θ = 0

These examples clearly show, recalling (5.4), that the 2-sphere is endowed only with the constant
harmonic 0-form and with the volume harmonic 2-form. On the other hand, the torus, in order for χ
to vanish, must also be equipped with two harmonic (actually, constant) 1-forms.
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A
Appendix

For simplicity sake let us consider the particle swinging around the same space where it is been rid of the
curvature term and where the Riemannian manifold is bounded by the Levi-Civita connection 2.2.1, as a

consequence of that, the ψ’s transformation (5.2) read1 δψi = −iγ0ϕ̇
i
ϵ and given γ0 to be hermitian δψ

i
=

iϵ†ϕ̇
i
= iϵγ0ϕ̇

i
, so that:

δL =
1

2
gij,kδϕ

kϕ̇
i
ϕ̇
j
+ gij

d

dt
(δϕi)ϕ̇

j
+
i

2
gij,kδϕ

kψ
i
γ0
D

dt
ψj +

i

2
gijδψ

i
γ0
D

dt
ψj+

+
i

2
gijψ

i
γ0
(︃
d

dt
δψj + Γj

kl,mδϕ
mϕ̇

k
ψl + Γj

kl

d

dt

(︁
δϕk
)︁
ψl + Γj

klϕ̇
k
δψl

)︃
Where by , k we have intended the partial derivative with respect to ϕk, next carrying out all the substitutions
lead to:

δL =
1

2
gij,kϵψ

kϕ̇
i
ϕ̇
j
+ gijϵψ̇

i
ϕ̇
j
+
i

2
gij,mϵψ

mψ
i
γ0
(︂
ψ̇
j
+ Γj

klϕ̇
k
ψl
)︂
− 1

2
gijϵγ

0ϕ̇
i
γ0
(︂
ψ̇
j
+ Γj

klϕ̇
k
ψl
)︂
+

+
i

2
gijψ

i
γ0
(︂
−iγ0ϕ̈

j
ϵ+ Γj

kl,mϵψ
mϕ̇

k
ψl + Γj

klϵψ̇
k
ψl − iΓj

klϕ̇
k
γ0ϕ̇

l
ϵ
)︂
=

=

[︃
1

2
gij,kϵψ

kϕ̇
i
ϕ̇
j
− 1

2
ϵ
1

2
(gik,j + gij,k − gkj,i)ψ

kϕ̇
i
ϕ̇
j
+

1

2
gijψ

i
Γj
klϕ̇

k
ϕ̇
l
ϵ

]︃
+

+
1

2
gijϵϕ̇

i
ψ̇
j
+

1

2
gijψ

i
ϕ̈
j
ϵ+

[︃
i

2
gij,mϵψ

mψ
i
γ0ψ̇

j
− i

4
(gij,m + gim,j − gjm,i) ϵψ

mψ
i
γ0ψ̇

j
]︃
+

+

[︃
i

2
gij,mϵψ

mψ
i
γ0Γj

klϕ̇
k
ψl +

i

2
gijϵψ

mψ
i
γ0Γj

kl,mϕ̇
k
ψl

]︃

Recall here, that the metric tensor is symmetric

δL =

[︃
1

4
(gkj,i + gij,k − gik,j) ϵψ

kϕ̇
i
ϕ̇
j
+

1

2
gijψ

i
Γj
klϕ̇

k
ϕ̇
l
ϵ

]︃
+

1

2
gijϵϕ̇

i
ψj +

1

2
gijψ

i
ϕ̈
j
ϵ+

+

[︃
i

4
(gjm,i + gij,m − gim,j) ϵψ

mψ
i
γ0ψ̇

j
]︃
+
i

2

(︂
gij,mΓj

kl + gijΓ
j
kl,m

)︂
ϵψmψ

i
γ0ϕ̇

k
ψl =

=
1

2
gijϵϕ̇

i
ψ̇
j
− 1

2
gijϵϕ̈

i
ψ
j
+

1

2
gki,jψ

k
ϕ̇
i
ϕ̇
j
ϵ+

[︃
1

4
gij,kϵψ

kϕ̇
i
ϕ̇
j
+

1

4
gij,kϵψ

k
ϕ̇
i
ϕ̇
j
]︃
+

+
i

2
∂m

(︂
gijΓ

j
kl

)︂
ϵψmψ

i
γ0ϕ̇

k
ψl by inserting ϵψ

i
= −ϵψi

At this purpose, it is worth noticing by the antisymmetry of γ0:∑︂
α

ϵαψ
i

α =
∑︂
α,β

ϵαψ
i
βγ

0
βα =

∑︂
α,β

−ϵαψi
βγ

0
αβ =

∑︂
β

−ϵβψi
β (A.1)

δL =
1

2
gijϵϕ̇

i
ψ̇
j
+

1

2
gijϵϕ̈

i
ψj +

1

2
gij,kϵϕ̇

k
ϕ̇
i
ψj +

i

2
∂m

(︂
gijΓ

j
kl

)︂
ϵψmψ

i
γ0ϕ̇

k
ψl =

=
1

2
ϵ
d

dt

(︂
gij ϕ̇

i
ψj
)︂
+

1

2
ϵ∂m

(︂
gijΓ

j
klψ

mψ
i
γ0ϕ̇

k
ψl
)︂
→ 0

In this way, up to total derivative terms and by choosing periodic boundary conditions to the ψ’s, the action is
invariant under the aforementioned transformation.

1Since the Christoffel symbol in the Riemannian connection is torsion-free and therefore symmetric.
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