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Abstract

A quantum mechanical system describing a particle swinging around a certain space might furnish us
with useful insights on both the geometry and the topology of the space itself: throughout the thesis
explicit examples of this peculiar relation are provided. Particularly, basing the discussion upon a
celebrated article of Luis Alvarez-Gaumé, the exact Gauss-Bonnet formula is derived in a supersym-
metric quantum mechanical system, representing the motion of a particle in a Riemannian manifold
extended by additional Grassmann coordinates.

Lo studio del sistema quantistico che descrive una particella che si muove in un certo spazio puo
fornire indicazioni utili sia sulla geometria che sulla topologia dello spazio stesso: in questa tesi ven-
gono studiati alcuni esempi di questa caratteristica relazione. In particolare, basandosi su un famoso
articolo di Luis Alvarez-Gaumé, é stata derivata esplicitamente la formula di Gauss-Bonnet nel con-
testo di un sistema quantistico supersimmetrico, il quale descrive il moto di una particella su una
varieta Riemanniana, generalizzata mediante 'aggiunta di coordinate di Grassmann.
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Thesis overview

Along this thesis, we have studied a quantum mechanical system describing a unit-mass particle mov-
ing in a Riemannian manifold without constraints. Remarkably, from this basic physical information,
we will be able to derive fundamental properties of the space the particle is living in.

To be more precise, we are going to derive, at first, the invariant Euler character of the manifold.
Indeed, it turns out that this invariant characteristic coincides with the trace of a particular operator
in the quantum mechanical system which is enumerating the difference between the number of bosonic
states and fermionic ones at zero energy. Moreover, since the trace is invariant under continuous and
small deformations, it can be computed in a convenient perturbation limit, therefore the evaluation
of the corresponding Path Integral will end up precisely with the Gauss-Bonnet formula.
Furthermore, we have delved into the analysis of the Path Integral formulation of Quantum Mechanics
and it was laid down the mathematical basis for approaching a broad understanding of the fermionic
Path Integral, by the introduction of the Grassmann algebra and its integration theory. These tools
were used to compute the above trace, or better, its regularized version, the Witten index.

From a wider perspective, it is worth noticing that this index is strictly connected with the supersym-
metry breaking mechanism [10].

The thesis is eventually arranged as follows:

i. In the forthcoming chapter 2, an extensive review of formal definitions is provided, aiming at
roughly explaining the space of the quantum mechanical system above presented. De Rham
Cohomology and Riemannian geometry are discussed, with a brief introduction to the non-
coordinate basis and Vielbeins.

ii. In the following chapter 3, the Path Integral formalization of Quantum Mechanics is introduced,
starting from its derivation and then developing ways to tackle these functional integrals. This
is done at first heuristically, secondly regarding it as a Gaussian integral and by the stationary
phase expansion and finally, mentioning in a nutshell, the Wick rotation and the Generating
functions as well.

iii. Next in the fourth chapter, 4, the reader is furnished with a broad introduction to anticommuting
variables, by means of the Grassmann approach. Accordingly, a fermionic Path Integral formula
is achieved by the usual method of splitting the time variable into chunks and integrating over
the resolution of the unit.

iv. In chapter 5, the relevant non-linear sigma model is presented, commencing with the bosonic case
and subsequently providing its fermionic extension. The supersymmetry charges @ and @ have
been computed by the Noether procedure. Consequently, the relations between the differential
structure of the manifold and the fermions are made clear, and the Tr(—l)F operator and
its physical and mathematical meaning are described. Furthermore, by means of the methods
introduced in the previous chapters, the supertrace integral has been determined and therewith
the Euler number is computed. In conclusion, the Gauss-Bonnet formula is obtained through a
perturbative limit. Lastly, two examples are furnished, i.e. the 2-sphere S? and the torus 72.

v. Finally, in the appendix A, the variation of the supersymmetric non-linear sigma model action
under supersymmetry transformations is calculated, in the rather simple case of zero-curvature.



Geometry prelude

2.1 DE RuaM COHOMOLOGY

The main references for this chapter are [3] and [5].
Definition 2.1.1 (Smooth Manifold):
A smooth manifold of dimension m consists of:

1. M a Hausdorff topological space,

2. a family {(U;, ¢;) bier where {U;}ier is an open cover of M and, given the open subset V; C R™,
the maps ¢; : Uy — V; C R™ are homeomorphisms such that for all the opens with 1,7 € I and
with non-empty intersection U;; = U; NU; # 0, the following map i; = ¢; o qﬁj_l ¢ (Uij) —
¢i(Usj) exists in C>°(R™).

Definition 2.1.2 (Smooth Map):
Let M, N to be two smooth manifolds, let (U, ) and (V,¢) to be two local charts respectively around
peUCM and f(p) €V C N, then f: M — N is said to be a smooth map in p € M if

pofop L :R™ = R™ is C°(R™ R")

A curve in M is a smooth map such that ¢; : (a1,b;) — M mapping t to (2{(t),...,27(t)) and given

¢t (ag,b2) Dt (x3(t),...,25(t)) we say that they are equivalent, i.e. ¢; ~ ¢y if and only if
da’ () dah(t)
dt ’t:o dt ‘t:O

one might show that the above relation is transitive, symmetric and reflexive, thus it forms an equiv-
alence relation and all the equivalent curves in M are denoted as [¢(t)].

Definition 2.1.3 (Tangent Space T),M):
Let M to be a smooth manifold and ¥p € M we define the tangent space TyM as the quotient:

T, M = {all the curves c(t) taking values in p att =0}/ ~

where ~ is the previous equivalence relation.

Furthermore, an element of this space could be regarded as a vector [c(t)] = X € T,M acting as
. df (e(t 0
X :C®(M) — R mapping f — f(gt( ))\z:o = Bx]j‘%\t:o'

Acting naturally on the basis of the vector space, <dac“, %> = 0, one could derive the dual space,
Ty M, whose elements are said to be 1-forms on M at p, moreover by linearity one could define a

tensor t of type (r,s) on p € M such that t € T,M®" @ Ty M®*, furthermore we define:

Definition 2.1.4 (Tensor Field):
A tensor field is a map t : M — ) TyM®" @ Ty M®® such that at fived p € M it’s a (r,s) tensor
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like and its components thlb" : M — R are smooth, moreover the space of all tensor fields of type

(r,s) is denoted by T, M such that

TIM=<t: M- | T,M" @T;M® = ] T,7M
peEM pEM

It is quite common also the following notation, thus ‘J'El) = X(M) is the space of all the vector fields on
M, similarly T = Q(M) is the space of all the 1-forms and T) = €>(M,R) is the space of all the
smooth function from M to R.
Moreover, let M, N to be two smooth manifold and given a smooth function f : M — N exists the
push forward map f, defined by composition of the equivalence classes as f. : [¢(t)] — [f (¢(t))] and
therefore for p € M it such that :

f* : T M — Tf( )N

Analogously for the dual, the pullback map f* could be defined as f* : ( )N — T,y M such that the
pairing between a vector X € T,M and the 1-forms w € T' }‘(p)N reads:

(ffw, X) = (w, fX)

Definition 2.1.5 (Antisymmetrizer A):
Let o € S, the symmetric group of the permutations of r elements, then it acts on the components of

0 — ; i :
w €T, M as (0w),, . = Wuyyotior and therefore we define w antisymmetrized as:

1
- Z sgn (0) 0w = Wiy, ]
O'EST

Definition 2.1.6 (Differentiable r-Form):
Let w € T,OM a (0,7) tensor, then it is said to be a differentiable r-form if it is fully antisymmetric
such that Aw = w

Definition 2.1.7 (Exterior Derivative):
The exterior derivative is the map d, : Q" (M) — Q"1 (M) defined as

dw(\/l,...,m+1):§(—1)i+lm[ (Vi Vi Vo) [ 22 (0 e (Vs Vi Vi Vi Vo Vi)
i=1 i<j

Nonetheless, one might shift into a more convenient basis, defining the exterior product, denoted with
the wedge A, of two differentiable forms w € AT, "M and ¢ € AT, M such that

1
(WA V.o, Vigs) = el E sgn (O')w(Vg(l),...,VU(T))f(VU(T+1),...,VO(T+S))
UGSr+s
Thus,
1
dw = 8“51 IR o N T A - A da
r.

and therefore, from that it could be derived the graded Leibniz rule:
dwANg) =dwN&+ (1) wAdE

One could also show that
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This is due to the symmetry property of the double derivatives, commuting with each other, and the
antisymmetry of the basis wedge products.
Moreover, it can be defined a sequence such that if dim(M) = m we read:

0 — QO(M) 2 QY (M) U Q2 (M) — ... L am() 22 (2.1)

the so-called De Rham complex, where the exterior derivative is rising the order of each component,
next, a r-form w € Q7(M) is said to be closed if dw = 0 and ezact if w = da with a € Q"1 (M), as a
consequence of the previous result, d*> = 0, it is clear that Imd,_; C kerd,.:

Definition 2.1.8 (De Rham Cohomology):
The r** De Rham Cohomology group is defined as

kerd,

Hpp(M) = {—— »

Furthermore, we define':

Definition 2.1.9 (Euler Characteristic):
Let M smooth compact and oriented manifold of dimension m, then the Buler Characteristic x(M) is

such as
m

V(M) = S(~1)" dim Hpy (M) (2.2)
r=0

2.2 RIEMANNIAN GEOMETRY

Definition 2.2.1 (Riemannian Metric g):
Let M to be a smooth manifold, then a Riemannian metric g on M is a tensor field of type (0,2) such
that satisfies

1. gp(X,Y) = g,(Y, X)) is symmetric for allp € M and all X,Y € T,M
2. gp(X,X) > 0 is positive semi-definite* for all p € M, X € T,M where g,(X,X) =0 —
X =0.
Let us recall that the set of all the vector fields in M is denoted with X(M), then:

Definition 2.2.2 (Affine Connection):
The affine connection V is the map V : X(M) x X(M) — X(M) mapping (X,Y) — VxY such that
satisfies:

1. R- bilinearity
2. f-bilinearity in X for all f € C°(M) i.e. VyxY = fVxY
3. f-Leibniz bilinearity in' Y for all f € C°(M) i.e. Vx (fY)=X(f)Y + fVxY

When it is contracted such as VxY we say that it is the covariant derivative of Y along X.

IThis is not an actual definition but rather a series of theorems, avoiding exceeding details, it could be just mentioned
that the Euler Characteristic can be defined over the smooth compact and oriented manifold from the Euler-Poincaré
theorem which claims that the dimension of the complex, i.e. the number of the r-simplexes in it, equals the dimen-
sion of the Simplicial Homology H™P(M) and finally, by De Rham duality it is possible to prove the isomorphism
between HJ,p(M) ~ H;™P (M) and therefore we have y(M) := Y7 (—=1)"dim C,(M) = 37 (=1)" dim Hi"™P (M) =
S o(—1)7 dim Hp (M)

2The metric is said to be Psuedo-Riemannian if g,(X,Y) = 0 forall p € M and if VX € T, M impliesY = 0, VY € T, M
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In local coordinates if we define the Christoffel symbol '}, as V_o_ 82,, = Fﬁ,,a%p we have that the

oxH

covariant derivative acts on the components of vector fields as
VXY =0,X"+T},X°
Next, we might define

Definition 2.2.3 (Torsion Tensor):
Let M a smooth manifold and V an affine connection, then T : (M) ® X(M) — X(M) mapping
(X,Y) = T(X,Y) is said to be the torsion tensor where?

T(X,Y)=VxY —VyX — [X,Y]

And similarly for the curvature tensor or Riemann tensor:

Definition 2.2.4 (Riemann Tensor):
The Riemann tensor is defined by R : X(M) @ X(M) @ X(M) — X(M) which maps (X,Y,Z) —
R(X,Y)Z as

R(X,Y)Z = ([Vx,Vy] = Vixy]) Z

In local coordinates is written as follow?:

T T
R* vpo — r# vo,p r# vp,o + I pTF vo — re orl vp

Example 2.2.0.1:

Let us take the S? sphere embedded in R3 with radius r.

The metric non-vanishing components are gog = 7> and Jpp =T sin? @ therefore we read the non-null
Christoffel symbols to be T? $p = —cosBsinf and e 06 = e o0 = ‘;’nsg and since the first two indices
of the Riemann tensor are antisymmetric then they can only be 8¢ or vice versa, in a similar manner

with the last two indices. Hence the only independent component is Rgggq or its permutations:

2

Ragio = o s00 = 900 R 505 = 1R’ g0 =1 [T 500 = T 0.6 + T 01" g = T 1" 0| =

= 120y (— cos@sinf) — 0+ 0 + 72 cos? § = r? sin? 0

Example 2.2.0.2:

Let us take the T? = S' x S' torus embedded in R? with fived rays R > r, the standard parametrization
is for 0,¢ € [0,2m) such that x = (R + rcosf)cos ¢, y = (R+rcosh)sing, z = rsinb.

The metric non-vanishing components are ggg = 1> and 9o = (R+rcos 9)2 therefore we read the
non-null Christoffel symbols to be T'? bd = M and T'? 0 = e 0 = _R-‘fi"ncf)sﬁ and thus, the
only independent components are Roggy and its permutations:

R+ rcost

cos@—sin20+sin29> =rcosf (R +rcosb)
r

Roppp =17 (

Moreover, one might say that an affine connection is metric with respect to the metric tensor g if and
only if Vg = 0, then claiming without any proofs:

Theorem 2.2.1 (Levi-Civita):
Let (M, g) a Riemannian manifold then it exists unique its affine connection V metric with respect to

g and with the torsion tensor vanishing, i.e. I, = F’(’W)

3The brackets are Lie Brackets, satisfying bilinearity, antisymmetry and Jacobi.
Tt is been used the notation such that , p means %



Next let M to be a smooth manifold endowed with an affine connection V and ¢ : (a,b) — M to be a
curve on it, then X € X(M)? is said to be parallelly transported along c if

VC*(%)XZO

Definition 2.2.5 (Geodesic):
A curve ¢ : (a,b) — M is said to be a geodesic with respect to an affine connection V if its tangent
vector field c. (%) satisfies:

d

d2XH dXV dx*
V. (i)c* <> =0 in local coordinates K =
*\dt

dt2 T dt  dt =0 (2:3)

dt

It is an non-linear ordinary differential equation of the second order, that is why the further model in
the chapter 5 is dubbed non-linear sigma model.

Furthermore, given a point p in the Riemannian manifold (M, g), it exists an isomorphism between
the tangent space T,M and its dual T;M by means of the following map, for all X € T,M then
X — g(X,-) and thus for all v,w € T, M exist unique a = g(v,-) and 8 = g(w,-) € Ty M, from that
it is straightforwardly defined (a, 8) = g(v,w) extended to all the AT, M as

<a1 Ao ANag,Bi A+ A ﬁr> = det |:<Oéi,5j>iji|

Moreover let m = dim(M ), then a top-form w € Q™ (M) everywhere non-vanishing could be defined
as the volume form of the manifold, next, denoting with Vol (¢g) the volume form of the orientable
Riemannian manifold (M, g), it is such that:

Vol (g) = v/| det g|da' A --- A dz™

Furthemore, through the metric g is possible to establish an isomorphism between QF (M) and Q™% (M)

Definition 2.2.6 (Hodge Star Operator *):
Let w,n € QF(M) then xn € Q™ F(M) is the only element such that:

wA*xn = (w,n) Vol(g) (2.4)
Finally, one could define the inner product on the space QF(M) such that, given «, 8 € QF(M):

(0, 8)y = /M (a, B) Vol(g) = /M o nxB (2.5)

And herewith, it could be defined the dual of the exterior derivative with respect to this inner product
d*: QP(M) — QP7L(M), in the succeeding way, for all o € QP~1(M), B € QP(M):

(da, ﬁ)M - /M da A\ *B graded:LeiniZ /M —(—1)7’*104 A d * ﬁ =
= (—l)p/ aAx(xTdxB) = (=1) (a,x'd* ), = (a,d*B)
M

Then, by means of the identity % * a = (—1)P(™P)id and since *~'d * 3 is a p — 1-form we read

d* = (=1 x % (x'dx B) = (—1)P(-1) D= 4 g5 3 (2.6)

Definition 2.2.7 (Laplace Operator):
Let M to be a smooth manifold of dimensionm, A : QF(M) — QF(M) is said to be the Laplace operator
for each 0 < k <m by the formula

A=dod" +d od

This constraint could be relaxed by requiring that X is just defined in the image of c(t).
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Definition 2.2.8 (Harmonic Form):
A form w € QF(M) is called harmonic if
Aw =0

And we let Harmk(M) = ker A to be the space of all the harmonic forms.

Furthermore, it is not difficult to prove after the fundamental theorem of elliptic operators [6] that
every De Rham Cohomology class contains a unique harmonic form:

Theorem 2.2.2:
Let (M, g) be a compact and oriented Riemannian manifold, then the natural map

Harm®(M) — HY (M, R)

18 an tsomorphism.

2.2.1 VIELBEINS FORMALISM

Let M to be a compact oriented Riemannian manifold of dimension m, with a metric form g as above,
next we twist the canonical basis by a rotation matrix e, * € GL(m,R) which preserves the orientation
as e, = €4 “%, moreover it has also to satisfy the orthonormality condition with respect to the metric
components:

g(éaa éb) =eq.l'ep Vg(e,ua eu) =eq.l'ep Vg,ul/ = Oab
Thus, if we define as the inverse matrix e® , such that e® ,e,” = 6, ¥ and vice versa e e, = 6%} we
can infer the important following relation:

Juv = e’ ,ueb »Oab (27)

The dual basis can be defined via <9a, éb> = §%, and therefore 0% = 2 pdzt, we read
G @ da” = S (¢ uda) & (e yda” ) = 5,0 0"

Definition 2.2.9 (Vielbeins):

The bases {&,} and {0°} are called the non-coordinate bases and the coefficients e, ™ are called, fol-
lowing the German language, in a one-dimensional space einbein and sitmilarly up to 4-dimensions
vierbeins and with many, i.e. more than four, vielbeins.

Example 2.2.2.1:
Recalling the previous examples 2.2.0.1 and 2.2.0.2 of the 2-sphere S? and the T? = S* x S torus, let
us compute the Riemann tensor components in the zweibeins basis respectively:

Re o8¢ = €a Beb ¢6C ged ¢Ra bed — 1-sinf - 1sin HRI 212

Which has to be R? b0 = sin? 0 = sin? R 915 if and only if R' 210 = 1.

Analogously or by symmetry we get Ris12 = 1, R1201 = —1, Ro191 = 1 and Ro112 = —1 for the 2-sphere
S2.

In a similar manner, we have the torus Riemann tensor components in the zweibeins basis:

(R + rcosf) cosf cos 6

d th R = —.
r and thercfore Riziz r (R + rcos0)

0
R 404 =



Introduction to the Path Integral formalism

3.1 QUANTUM MECHANICS PATH INTEGRAL

Let us study a quantum mechanical system with n dynamical variables {qi,...,q,} and conjugate
momenta {p1,...,p,}, provided with a Hamiltonian H hermitian in the Hilbert space H, describing
the whole system.

Assume now this set-up is representing one single particle, then in such an arrangement we are im-
plicitly hinting! a space-time formed by a one dimension compact and connected manifold M param-
eterized by a time coordinate ¢, e.g. if M is a circle S' then we would let ¢ € [0,T) by identifying
t ~t+ T, whereas if it was an interval of length T" with respect to the inner product of M we would
let ¢ € [0,T]. Thus, if we take a target space N and a map ¢ : M — N, the worldline of the particle is
said to be g(M) C N. For instance, for the case of the non-relativistic Quantum Mechanics one could
consider N = R" with the Euclidean metric § or, as it will be useful for the following computations,
take it to be a Riemannian manifold (N, g). By means of the map ¢, for each point t on M we have
a point ¢(¢) on N, more in general we would cover just a patch of the space, U C N, and we will
consider ¢ = {q',...,q"} as a local coordinate system.

At this point, let us consider a D-dimensional quantum system living in 3 = L?(N), the space of
square-integrable function on N = (RD , 5), then as usual, if we consider the unitary time evolution
operator in natural unit A~ = 1 and in Heisenberg picture U (ty, ti) = e H(ts=t) the particle amplitude
to travel from an initial position g; € N to a final Gy € N is given by the heat kernel?:

K(Gp tg;dinti) = (ar| Uty t) i) (3.1)

3.1.1 PATH INTEGRAL FORMULA

Once defined the heat kernel as in (3.1) the continuous time variable could be fit in a lattice, i.e.
t, = t; + nAt where each step would increase of the amount At = % with tg = t; and ty =t and

therefore we read: . N
U(tf,tl) _ (efiHAt)

Thus, the transition amplitude can be computed between an initial and final coordinate eigenstate,
|go) and |gqn) respectively, by performing a Fourier transformation to the following amplitude, where
|po) represents an initial momentum eigenstate, after having inserted two N — 1 completeness relations

— D-)
1= [d"Glq) (gl and 1 = [ 555

) (p| in the following way, as was done in [9]:

(gn| U(tg, i) [po) = qzvle HAL | mtHAL Iy

dDC]dePz —iHAt —iHAt —iHAt
H (anle Ipn—1) (Pn—1lan—1) {an—1e Ipn—2) .. {qi]e Ipo) =

N1 N-1 N-1
— /':DQ H <qz‘+1‘6_iHAt ‘p2> H pz’Qz /@Q H Q'L—I—l’e iHAt ’p> —zzk | L i, _
=0 i=1 =0

!See [7] for more details.

2Tt originally has been considered to solve heat conduction problems given some differential operator M and some
initial conditions: (9 — M) K (Z,t; Zo,t0) = 0 and lims—0 K(Z,t; Zo,t0) = 6 (¥ — Zo), it is therefore describing the heat
distribution over the space at a given time.



Where for simplicity sake it is been defined the measure

[0~ / H qudepz

Consequently, Wlthout loss of generality,? let us consider the simplest case when
H=H@Gp) =L+ V()

N-1

= /DQ H (qit1] (1 —iHAt + .. ) i) i SN By
=0
il p : N—-1- =
/DQ H (1 — 1At ( —+V (qZ+1)) +. > (Giv1|pi) e i 2 k=1 Priln —
=0

N N-1- =
/DQ H ( —iAtH ( ql+17pl)) elpi'qi-yle*lzk:l Pr-dk

Next, let us conclude the whole derivation by a Fourier transformation, having noticed that At — 0
if and only if N — oo

R aPp . .
(ax Ut lao) = [ 55200 (qn| U8 ) =
ap 1 a
/ 2p0 MZOPO/‘DQ H ( ZAtH(qu,pl)) ePidit1o~ i Bl
/ /DQ 3000 B (@1 =)~ AtH(G511.5;) —

e

the exponent might be interpreted as the discretized action which in the continuous limit for N — oo
(and therefore in the At — 0 limit) and after having set G(¢) such that §(¢,) = g, (and analogously
p(t) such that p(t,) = p,,). It tends to:

/ DOe zAtZNolﬁl (qu ql)_H(ZjiJrlvﬁi) (32)

. (G- @) o i &
— (3 T — — — — — — = - =
ALY B = H(Go, ) = At Y B =25 = H(Gi, 5;) — S[3.7) :/t dtL(q, p)
i=0 i=0 0
Therefore if we define the integral measures
N-1 N—1 l_"
- . D - _
/@q = ]\}gnoo/ 1_[1 d~q; Dp = lgnOO H (3.3)
1= =0
we end up with:
ty S
K(Gs.ty: G ti) = / @6/ Dpe’ 5107 (3.4)
t;

In this way the reader can interpret the transition amplitude
K@ tydnt) =y, b
Histories v

as a sum over all the possible histories i.e. a functional integral over all the phase space functions with
some boundary conditions which sort out the histories that are going to be added up in the sum.

3 Actually this is an approximation which could be evaluated by the Campbell-Baker-Haussdorf formula as a series of
homogeneous polynomials in the potential V' and its derivatives and by following [4] it can be shown its convergence to
Z€ro.
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3.2 SOLVING TECHNIQUES FOR THE PATH INTEGRAL

3.2.1 PaATH INTEGRAL IN CONFIGURATION SPACE

The Path Integral, as prescribed above, is the most general expression. One could however re-arrange
the exponent in 3.2 in such a way that, if the Hamiltonian is quadratic in the momenta, for instance

=2
as before, H(q;,1,0;) = 3= + V(G;;1), it would then give us a standard Gaussian integral:

d = (4 i) ? 7
K(gfatfaaza / p(]/ DQe ZAtZNOlpl +1 ;JT”_ (Qi+1) —
N-1 5
dDg, IS NV () / I OB \ it SN g, )
Z i (2m)®

<H dD—») ZAtZiZ\LBl V(@+1)-%(W)2X
Y

=0
2
_ / Jﬁl P e—iAtZﬁi*&V(a*iH)—%((q’“ W) 2mr)
Faley 4 iAt

n=0

for N — 400 and by recognizing the action in configuration space S[g| = f ' L(q, ) and naming the

D
overall constant C' = limpy_ an_o (27:?&) 2 | clearly diverging, which could be set out by normal-
ization, we read:

ay ,
K(Gy tr; ;s ti) = C/ Dge'*17 (3.5)

i

3.2.2 STATIONARY PHASE APPROXIMATION

Trying to work out the configuration space heat kernel K (q Fobf; Qi t;), we might grasp its behaviour
by means of the following considerations, first let us re-introduce the A in the exponent argument as
1504

Thus, since i < 1, the phase which is given by the action, will oscillate wildly running over all the
paths @;(t).

There will be a stationary phase of constructive interference around the peculiar path g, (¢), which is
defined under the constraint 5 = 0. It demands that the differences of the phases @, (t) of the paths
close to q,(t) are vanishing.

Vice versa, away from this condition, the several paths will destructively interfere.

In this way, we could explain the principle of least action which implies all the classical physics, indeed
the path ¢, (t) = G (t) is regarded as the constructive interference of all the neighborhood trajectories.
Hence, by considering the expansion around the stationary phase path ¢(t) = ¢ (t) + ¥(t) with
boundary conditions (t;) = %(t) = 0, up to the second order we read:

. . 1 1
Slay tr; @i ti) = S, + 65|, + 5525‘% +o =8, + 5525‘%1 +...
Thus:

ay 1(84 +1s25  +.. i are . §y=0 1(;5254 g
K(Jf’tf’d'“tl) = C/ 'D(Yeh ‘qu 2 qul ) —Ceﬁs[qcl(tf)vqcl(ti)}[ Dﬂeh 2 ‘qcl ) (36)

d; y;=0

. . . . . . . .2 2 2
For instance, given the Lagrangian of the one dimensional harmonic oscillator L = L — "9

which by the classical equation of motion §,; = —w?qy and without any need of a Taylor expansion:
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Slg(t)] = Slga(t)] + Sly(t)] + ftif dt£(4qy) = Slga(t)] + S[y(t)] where in the last step the latter term
vanishes because of the boundary conditions on the fluctuations, thus:

. yr=0 Z-ft_f dt(LfP,mwzyQ)
K(qp.t; g5 t;) = CetSlaal ) Dye i 2 2
Yi=

One could compute e**l%!] by means of the classical solution qu(t) = g; cos [w (t — t;)]+Bsin [w (t — t;)],
whereas for the remaining integral we write the Fourier series expansion with 7 = ¢y —¢; of the

The action is therefore written through its truncated Fourier series and by the time lattice of before
t, = t; + nAt we recognize that yo = yy = 0 are the boundary conditions

fluctuations:

Sly) = /t:f dt <m2yQ - mey ) Z ”2/ r cos.2 (Z-1) - m;‘ﬂ sin? (20— 1)) =

N—-1

S >[+m(23”7>4;f]-”?2[£-8m(23” o)) Sl

p=1

The Path Integral will be henceforth a Gaussian integral over the functional measure of the non-
constant modes fyylf Dy = limpy o det (8%) H;V:_ll [dy, ie.

K (g t7:0i,1:) = Ol det <5y> it [ 3V ~] _ (islaal gt <ay ) 1 2ri
folfs Qi a@p p=1 p a@p i m [(¥)2 . w2]

N—-1

N—1 N—
o EE” Pl
: (%)

1
— Cl ’LS qd] C,/ ZS[qu]
27TZ7' o1 7) 27T2 sm

pT

2
Where the identity J[)2; 1 — (p—w> = S0eT) }ag heen used.

wT
We have assembled the former constant C’ in such a way that the remaining c-number is the Path
Integral of the action given V = 0, i.e. the free field and the latter constant such that it could be set
to C” =1 since the heat kernel at 7 = 0 gives exactly the above delta function.
In order to compute such free field integral, one would have to evaluate the following integral, first
solving it by parts then recognizing the Gaussian integral in the succeeding form, given M a D x D
real symmetric matrix:

-

dPre=M* — 13 det (M) 2 (3.8)
Rd

[V

Thus, in our case:

-0 —0 273
/yf Dyei® 1 /yf pyeid I (v = M g [
y;=0 y;=0 T dt2

Here it comes a subtlety, i.e. the functional determinant, to tackle it we have first to study its
eigenvalues det [ dt?} [T A\ with:

d2
—@yn(t) = Ayn(t)  such that y,(t;) = yu(ty) =0 <

Yn(t) = sin <mr(t_t")> — (ﬂ)2

T T
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Moreover, we have the succeeding formal equivalence, given a positive-definite operator O, from the
infinitesimal expansion of the determinant det (1 + GO) =1+¢€Tr (O) + O(€?) one could show that:

) +00
det O = T(0) Hence, we deduce: In [det O} =Tr (ln O) = Z In A\, (3.9)
n=1

Definition 3.2.1 (Spectral (-Function):
Given O positive-definite operator, the spectral {-function is defined as

“+oo
1
Qo(s)zz)\—s<oo for Re s > 1

s=1"T"

d
It is analytic with respect to s > 1 and such that d—CO(s) =Y "t%I),
s 0

s=

Hence, we deduce:
A~ d
det O = e~ @010

(e%e] 1.

Particularly for our case, recalling that the Riemann-(-function is defined as ((s) = > >~ -:

Ca =Y () = ()Y = (D) e

TatZ n=1 n=1

Therefore

d
gc_;ﬁ(s)

dt?

=2In (%)((0) +¢'(0) = —1n(27)

s=0

and finally det [~ | = 2r.

3.2.3 GENERATING FUNCTION AND TIME ROTATION

We can characterize a quantum mechanical system by means of its generating function, also known
as partition function for its similarities with statistical mechanics, it is defined as:

Z(1) = Try (e_i(tf_ti)f{) (3.10)

Implementing in it the formula for the heat kernel (3.4) and taking |y) to form a basis for the Hilbert
space H = L? (R, dj"):

Trgc (e—i(tf—ti)f{) :/l% dng <y‘ e—i(tf—ti)f{ ‘y> :/ dng/ ga/pﬁels[a’ﬁ]
" " G;=q;=y

The larger the real part Re{iS} becomes, the quicker the oscillation of the integral will be, thus a
common way to fix this is to rotate time into the complex plane as t = e™*“7, for instance the action
would read:

Tf d . 7
Sg = / dr (pd(tl - e_“H(q,p)> if H is positive definite Re{iS} = — sin(e)/ drH(q,p) <0
Ti Ti
Hence, the Path Integral will converge for large oscillation, at this purpose sometimes this rotation
is done from the scratch, by taking the time such that ¢ = 7, in the textbooks is well known as
Wick rotation and in this case times becomes solely imaginary or Euclidean and for instance, given
the path integral in configuration space (3.5):

—

q;

K(Gg,tr; G5, ti) =C/qf®*eSEWl
Vil fﬂq'u ) q
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Introduction to Grassmann variables and Fermionic Path
Integral

4.1 GRASSMANN NUMBERS

Parallelly as were defined the complex numbers, by introducing the imaginary unit i such that 2 = —1,
we can define the so-called Grassmann variables or anticommuting number 7 by the requirement that

n* = 0.
Thus we define a supernumber

Definition 4.1.1 (Supernumber):
A supernumber is defined as Z = a + bn = a + nb where a, b are commuting numbers.

o f"(a)

We can define consequently, a function of supernumber by its Taylor expansion, f(Z) = >, ' (bn)™

and from the Grassmann parameter definition we have for n > 2 that (bn)"™ = 0, thus any function
could be written down as

f(Z) = f(a) +bf'(a)n

i.e. a supernumber itself. Moreover, we can differentiate it as follow

0 g 0
—7 = heref — 7 = 4.1
an b and therefore an on 0 (4.1)

Furthermore, if we define the integral requiring, as usual, the linearity under non-integration param-
eters and the invariance under linear shifts of the integration variable, we have:

/dnf(a+77) = /dnf('n)

which could be expanded considering a infinitesimal as f(n+ a) ~ f(n) + ad, f(n), thus:

[anstavn) = [ang+ [ dnavyson "2 Fangoy = [ anoysin =o

comparing it to (4.1) and recalling that a function of a supernumber is a supernumber itself, we have
the formal definition of the integral !:
/ dn = 0,

Increasing the number of anticommuting variables requires a more sophisticated analysis, thus:

Definition 4.1.2 (Real Grassmann Algebra):
A real Grassmann algebra Ay is defined by introducing a set N hermitian like Grassmann parameters
n; satisfying:

{min} =0¥i,j=1,...N andn} =,

Tt is a Berezin integration.
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Definition 4.1.3 (Element of Ay):
An arbitrary element of the algebra is defined from its expansion

N
Z(n) :ZO+Zbi77i+Zbij7h‘77j+"' = Z %Zbilmikml My,
i=1 {i}

i<j 0<k<N " {i

where by, ., are c-number antisymmetric under the exchange of any two indices.

If €4 ky.. 1y is the Levi-Civita symbol, we have that the elements of the real Grassmann algebra also
satisfy:
My Mkeg - - My = €kqka. ky™Mn2 .- NN
My Mko - - - My =0 forM>N
If N =2 we have Z = a + bin1 + bana + cnine we can vary it with respect to n; in two ways:
0z 07z
0Z = dnm—— =b1dm +cdmmne but also §Z = —3dn; = bi1dn1 — cnedm
om om

A
= bl +C772 and ai == bl — Cn2.
om

oLz
Thus it defines the left derivative and the right derivative: ('9L
m

Going back to IV parameters, it is crucial to make an order choice for the integral measure:

/dNn:/an...dm such that /dNn(m---UN):l

treating each differentials as anticommuting {dn;,dn;} = 0 and {dn;,n;} =0 for all i, =1,..., N,
let us suppose that we are changing the variables as n; = Zj Uz‘ﬂ];’ thus each integral will look like

on'.
[dp=2 =520 — > (U™1),. 52 i.e. opposite to bosonic integration:

On; — £~j 9n; On; ij on]
/an :/dm\r---/dm = Z (U_I)NjN... (U_1)1j1/d77§'1v"'/d77;'1 =
JN---J1
_ -1 -1 o oo I -1 N, I __ 1 /N/
_jNZﬁ (U )NjN“‘(U )1j1 ejl,,,]N/an /dnl—det(U )/d n = Jeb(0) d'n

(4.2)

Moreover, we can also treat an even number of Grassmann variables as complexes

Definition 4.1.4 (Complex Grassmann Algebra):
The real Grassmann algebra Aoy can also be written as a N dimensional complex Grassmann algebra
with the following definitionsVi=1,...,N —1

1 . . 1 )
Xi = ﬁ (M2i +im2it1)  Xi = \ﬁ (M2i — in2iy1)

It is possible to show the following anticommutation relations:

{xxit = {xa X5 = {Xi: X = 0.

4.2 FERMIONIC PATH INTEGRAL

Starting from the coherent states for the harmonic oscillators, i.e. states such that a|\) = A|\)
-2, =
with [\) = e 2 erd! |0) then we have that the fermionic coherent states would be |n) = €7 |0) and

(M| = (0] €™ with the unusual normalization condition (7j|n) = €™, thus we are given of the resolution
of the unit:

loc = / d2ne™ ) 71

15



To give a brief explanation to the above lines we can derive them from the fermionic harmonic oscillator
with the ladder operators & ¢ such that {¢,¢'} = 1 and {¢,¢} = {&f, &'} = 0 and the Hamiltonian
H = %(éTé —eh)y = w (F - %) with F the number operator with eigenvalues {0,1}, therefore by
considering the Hilbert space spanned by its eigenstates {|0) ,|1)} and taking two Grassmann numbers
n,7 we have |n) = [0) +n|1) and (7] = (0] + 77 (1| thus (7]n) = 1+ 7y = " and therefore

/ dndi [} (] ™ = / drids (0} + 1)) ({0] + 7 (1)) (1 — 7m) =
— [ a0} 01+ 111} 01+ 710) 4]+ 11 (1] =710} 0] = [1) 1]+ 0) (0 = 1o

From this result we can get the heat kernel from a fermionic initial state |y) to a final one |y’) in a

rather closed way to the bosonic case?:

<X" o—ilty—ti)H ) = <Y" e—z‘AtH(zL,@) . e—z‘AtH({p,E) ) =

N-1 =~ . "2
= lim / H d* e (| e IAHWY) Iy ) (Mn-1]--Im) (m eI |y ) =
k=1

N—o00
N-1 N
= lim H d?nje” Ik H e~ IAtH (Np—1,71p) oTlpTIp—1 —
N—o00
k=1 p=1

N-1 _
= lim H dgnkeﬁNnNefiAt Sy T (e —e—1)+H (e —1,7)
N—o0 el

Whereas in the continuous approximation we tell the latter exponent to be the action itself, moreover, it

is key here to switch into Euclidean time 7 = it, such that Sg[n,7] = |, :f dr () + H(n,7)). Therefore
if ¥(7;) = x and ¢ (7¢) = X’ then:

T

KX, 7r;x:7) = /ng@ww(ff)w(vf)e—smw,w]

Furthermore, if § = 74 — 7; and given anti-periodic boundary conditions, in short APBC, x = 1(0) =
—1(f3), we read the trace:

T () = 3 (ale ) = Y[ dndne ™ tuly (] ) =

n=0,1 n=0,1

= > [ dmane™ (] (0} + 1)) (0] = 7 0l) = ) =

n=0,1

= > [ dnane ( (n[0) (0] &= [n) +

n=0,1

+77(n|0) (1] ™7 |n) +n (n|1) (O] = |n) + 1777 (n|1) (1] e~ |n) >

We can invert the sign of 7 — —7 in the second term, indeed it is not going to saturate the Grassmann
integral anyway and if (—7| = (0| — 77 (1| and therefore we read:

T () = [ (xle M e = [ pigpge st

And finally

T (()Fe ) = [@ixle e = [ Dppge S (4.3)
PBC

Where also the fermions are periodic such that (7 + ) = (1)
2Check [8] for more details.
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Computations

5.1 EULER NUMBER DERIVATION

Let us consider a particle of unit mass moving along a Riemannian manifold (N, g) of dimension
n, compact, oriented and with no boundaries, in which a set of local coordinates is given by z? =
{931, . ,x”}, let t € M denote time, with M = R or S! (for Euclidean time). The worldline field of
our particle is the map ¢ : M — N. With a little abuse of notation, we call ¢* = z* o ¢ the pullback

of the coordinates of the local chart in N to M. Similarly, gij{bzcbj is the pullback of the metric g of
N to M.
Next, we consider the free particle action:

— 1 .. vaJ
5= [ g0l

1 -]
§S = / dt( gzjk&bkqﬁ &+ 9 ((w)qﬁ > = by parts

[t 0008 = G (o) |04+ [ arsy (nsi'50t)

We get the bulk equation of motion:

By varying it:

g” v ¢ <gk]¢ ) = %gmkqﬁ%] - (gkaéﬁzfﬁj + gkj$j> =

=3 <9kj,i¢ ¢ + gri ¢’ ¢ — 9ij k® ¢]> — g =

1 l

O + 59" (ghij + ki — 95k) 99 =0 = & +T0'¢ =0
Hence, from a classical point of view, the particle freely moving is following the geodesics (2.3) of N.
!
(&
should be thought as the local components of a fermionic field ¢ = ¢¢-2;

Finally, we introduce n complex valued fermions ¢ = < > where wi,wé are real. These fermions

ax'b\qb [ ]

Furthermore, taking the following action, the supersymmetric non-linear sigma model action [1]:
1 —i e
L=595(0)' + gw<¢>¢ 7 dtw + 5 wa A (5.1)
where

D d k i i 0
U= S TR O and = (), (1), VaB=12
it is shown in the appendix A that is invariant under the supersymmetry transformations:
§¢t =&t and

i 050 i =Gk (5.2)
W' = —iy ¢ e = Iyepy
with € = <zl> and €1, €2 being the two real components of the anticommuting constant spinor and
2

Z), which is such that (70)2 =id.

the matrix Y = 09 = <? 0
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Let us compute the supersymmetry charges through the use of Noether’s theorem. Thus, on shell and
since 0L = 0 the following current is conserved

O s 4 2RL
o(#) (V)
= gij¢i5¢j + %giJWVOFil¢k5¢l + %mﬂ%”W =

= g9 @ + %gijWVOFilwkEwl + %gz‘ﬂi’yov%je =

= Egij T — %giﬂi?bj =

= %EQ +i€Q where Q = igijéﬁi@j and Q = —igijgisi;bj

Jo = oy’ =

Next, if the conjugate momenta of ¢?,1)7 are respectively p; = gé- = gij(bj + %gkj@k'yolewl and

p = %gijwfyo, we quantize the theory imposing the commutation and anticommutation relations:!

[0, pj] = @6} {7} = g

In particular, the Hilbert space of the non-supersymmetric system H = L? (N) is given by square-
integrable functions in the target space N with respect to the measure ,/gd"z where, as usual:

0

p; acts as differentiation — i——

ox*
The fermions generate a Fock space where the vacuum state is taken to be Pt \O> =0foralle=1,...,n
and all the other states are obtained acting by w on |0). Since w "¢ =3’ 1/1 we can 1dent1fy them

as the basis of all the k-forms in IV, i.e.
Ei is acting on |0) as  dz’A

similarly, @1 .. @n |0) is in correspondence with da! A---Adz™. The 1)’s are acting as the contraction
by a vector field:

YT 0) = (L F YT 0) — LT o) =
= g9 T 0) BT 0) 4+ PR Y 0) =
:gij@k...am]m —Ekgil...W\@—i-...
So that

W acts as the contraction of a k-forms by gij g
z
The full supersymmetric Hilbert space could be regarded as the completion of?
H=Q"(N)®C

given by all the complex value forms on N square-integrable with respect to (2.5), C-linearly extended
to the following: Va, 5 € H

mﬁm=AaM6

It is possible to decompose the Hilbert space as:

%:éQP(N)@)(C:@?{p
p=0

! All the others (anti)-commutation relations are trivial.
By a slight abuse of notation we are denoting both Q*(N) ® C and its completion by .
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or by a Zs grading given by the operator (—1) such that it anticommutes with both wi,@i and
(—=1)¥'10) = |0), as follow:

H=HB o HF

where in the former are laying the even forms HE = ®p evenH? whilst in the latter the odd ones
HE = @) 0aaHP. So that HB and HT are eigenspaces of (—1)¥ with eigenvalues +1 and —1 respec-
tively.

Further, we might interpret @ and Q within this geometrical framework. Indeed by —iip; =
—z‘gijwiq'bj + %gkjwiikvofi‘lwl = —z‘gijwiq'bj =@ and analogously @ = igij@lg'b] = iﬂtpi, we associate Q
as follow:

—i0

~=d
ox*

Q > idz' A

Thus, @ is acting as the exterior derivative and Q as d*, i.e. its dual, which is given by the Hodge
star operator as above (2.6).
Hence, from the algebra [1] we also have:

{Q,Q}=2H

and therefore H = %{Q,@} is identified with the Laplacian operator (2.2.7), properly with

1 1
H— A=

* 71 * *
A= {d.d'y =5 (dd" + d"d) (5.3)

51.1 Tr(-1)"
Let |E) be eigenstate of H. By

1 — 1 —
E=(E|H|E) =5 (E|QQ+QQ|E) =5 (IQIE) I+ QE)[I*) > 0
then E =0 if and only if Q|E) =Q|E) =0

the Hamiltonian is positive-definite. A zero energy state H [0) = 0 is a ground state, and is a
supersymmetric state, i.e. it is annihilated by both the supercharges @ and Q.
Next, if 3, is the Hilbert space associated with the n-th energy level of value E, such that the

Hamiltonian H, iy = FE,, then the operator S = Qi\/g satisfies S? = 2H conserving each energy level

so that for E;, > 0, the restriction of S to H(,) is invertible:

S? =2E, >0
S maps 9{5’; )y~ ﬂ{@ ) and vice versa, so for F,, > 0 it realizes an isomorphism
HE, ~ K

by which the number of fermions and bosons in each positive energy level coincides. For £ = 0 a
bijection might not exist and the number of bosonic and fermionic supersymmetric ground states does
not need to equal anymore.

By varying the parameters of the theory, the states of non-zero energy jingle around in energy, moving
in Bose-Fermi pairs, at a certain value they might fall down to E = 0 states,
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Figure 5.1: Isomorphism fermions-bosons for E # 0, [2].

such that dim ﬂ{% , dim 9{% , which respectively indicate the number of bosonic and fermionic zero-
energy states, would both increase by one. Vice versa it is not possible for a singlet of zero-energy to
escape since it has to be paired with its supersymmetric partner, thus also in this case both would
decrease by one.

Summing it up, we see that their difference does not change and therefore dim J{g)) — dim 9{5]) is
invariant and independent of all parameters. A noteworthy property is that it may be regarded as the
supertrace (4.3) of the grading operator, given 5 > 0:

dim fH{é) — dim 9{5)) =Tr ((—I)Fe_ﬁH>

Indeed the non-zero energy states do not contribute to the trace since they come in opposite sign pair,
thus the trace is evaluated just for states at £ = 0.

Recalling the results anticipated in 2.2.2, we have that for each harmonic form there exists a unique
representative of the De Rham cohomology by Hodge decomposition:

Harm? (N, g) ~ HP, o(N)

By (5.3) the supersymmetric ground state can be regarded as the space of the harmonic forms of the
Riemannian manifold:

Hpy = Harm(N @Harmp ,9)

Finally we have the following identities:

n

Tr (( 1)Fe ﬂH) - pzo(—np dim Harm? (N, g) = %(-1)? dim HY L (N) = x(N)  (5.4)

where x(NN) is the Euler number (2.2) of N.
Proceeding as in [2], recalling (4.3), we have that the previous index, also known as Witten index, has
a Path Integral representation:

Tr((—1)Fe—BH) - / DD Dipe eVl (5.5)
PBC

5.2 GAUSS-BONNET FORMULA DERIVATION

Because the Witten index is independent of 5 [10], we can evaluate (5.5) for 5 — 0.
Taking the action (5.1) in the basis in which 4° is diagonal is equivalent to the following:

D . 1
— ) — Ry (9)y™ I pky! (5.6)

1
gzy(¢)¢ ¢ +1 w*lgzjdt 1
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In order to evaluate the above Path Integral (5.5), one would Wick rotate the action into its Euclidean
form, taking 7 to be 7 = it, moreover, pursuing the stationary phase approximation (3.6), we could
split the integration variables into zero-modes and non-constant modes as:

¢'(t) = ¢ +E'(1)
P(t) = o+ 0" (t)
In order to take the limit 8 — 0 we could substitute as follow:

/

L / 7 17
LE=7§ T=18 &= f¢*z%—g%

(2

LE 1 éﬁj < 87;

While n° = n/*. From now on, we will drop the prime notation from the variable names. In the limit
8 — 0 at first order in 3, we obtain:
*1 / 5 ¢0
J— i = + i
3 9;(¢0)ﬁ Bﬁ )93(%) i (¢0)5 ﬁ4

—iRijkz(%)( 0; + 7" ) (% *]> (% +77> (% +77>
B i Bi [

- ; %gij(%)géj + ;ilﬁgigij(éﬁo)ﬁj + 0" gij(do)ip’ — %Rijkl(%) 5 s + O (ﬁ)]

Recalling we have required periodic boundary condition, so the fluctuations are such that 7(0) =
n(B) = 0 and that we have switched the first and the third terms into a Vielbein basis®, we get the
Fuclidean action:

1 1 o , . , o
Sk = / drLp = / dr 1gz’j(fﬁo)f &+ % “gi5(D0)iP + 1" gi(do)ip — 1Rijkl(<l50) Ss Vbl + 0 (8)
0 0 2 B 4
(5.7)

Where we used:

/01 T’ gij (do)iy = /01 dT% (%igij(%)ﬁj) - /01 dT% (%igij(ﬁbo)) n =

Hence, performing the limit for g — 0, it reads:
1 1. .a:b | wi kol
Sg = ; dr §5ab§ & +0an N — ZRijkl(¢0)wo (ISEUARUR

We start by carrying out the integral over the constant modes of the bosonic and fermionic fields
separately

1

£(1)=0 cas 2772
DepeSeltod] — / @56—%&1 droapé"E _ N(27)2 det [ d ] :
(0)=0

PBC dr?
Whereas, for the Grassmann fields, recalling (4.2) shifting n, = > j {%_1} 17; and treating 7/, n; as
ij
independent:
n(1)=0 .

@%@we_SEWO’n] — / @ﬁDne_ fol drdgpn*onb =N 1 = = — N det |: d :|

PBC 7(0)=0 det [£7'] dr
3Recall 2.7.
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Hence, fixing the normalization constants and without any need of regularization (3.9), because the
functional determinants identity elide each other, indeed by Binet’s theorem:

d? d
det [d 2] det |:de|
therefore, we read:

]_ —n —_— . *1,0% ]
Tr ((~1)7e™) = (2m)% / d (Vol) / Ay dyf . . dibgdupe™ T (D0IVG VG VUG
TT) 2

Next, if we are in a odd dimensional space we see that we cannot saturate all the Grassmann measures
and therefore the integral vanishes, whereas if we are in an even dimensional space, expanding out
the exponent and re-casting it back to the right order we have, through the use of the Levi-Civita
symbols:

/dwgdwo dlbodwl Rugne (G005 057 V5¥o —

= / dipodify - dwod%[ ~Rijii(¢0) 8’¢5]¢§¢é+2(—4Rijkl<¢o>wswswéwé) 4o

1 1 o 3
+ (T), <—4Rijkl(¢0)¢32¢§j¢§¢lo> ] =
2!

T n —1 _1 % * *Tl 7 5. ,Zn n k: l, ,k‘ﬂlﬂ
— [ g . s bt e I IR R (G0) Ry gy (00) =
42 (%)l 37533
. (_1)% i1j1-injn kili..knln
- (2)” (%)' 272¢€ 2 7R21]1k1l1(¢0) . 'RZ%j%k%l% (¢0)
Eventually, we read:
— _1)% i1J1.injn kili..knln
T(—1F 5H): (=1 /dV] rigiy kilikgly oo N
P\ oy amE (o J VTR Rujian (90) - Ry sy i1y (90)
(5.8)

Let us end by musing on this final result: if we recall that the L.H.S of the equation is the Euler
Characteristic of the manifold, then we have obtained exactly the Gauss-Bonnet formula.
5.2.1 EXAMPLES

From the formula (5.8), from the example 2.2.2.1 and by recalling the volume form of the 2-sphere
d(Vol) = 8" A 9" = sindf A dé we have:

-1 A1 A2 -1 Al A2 ;
2y .~ goklp ik 57l zljk _
X&) =g [0 A0 IE Ry = o | 97D (5 5 — LGN Ry = /529 A EJ: i — Rijii)
1 Al A2 1 A1l A2 1 A2 a1
=——= 9 N0 (Ri212 + Ro121 — Ri2o1 — Ro112) = ——— [ 0 N0 4Rpiea=— [ 6 NO =
8T 8T Jg2 21 Jg2
27r
— dqb/ dfsinf = 2
27r
And similarly the volume form of the torus is d (Vol) = N (R4 rcosf)df A dg:
1 1 A2 A1 cos 6 1 [ 2
%) = —— 0' AO° 4R g1y = — «9/\9—:— d dfcosh =0
X(T7) 81 Jp2 2127 o r (R +rcos0) 27r/0 ¢/0 o8

These examples clearly show, recalling (5.4), that the 2-sphere is endowed only with the constant
harmonic 0-form and with the volume harmonic 2-form. On the other hand, the torus, in order for x
to vanish, must also be equipped with two harmonic (actually, constant) 1-forms.
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Appendix

For simplicity sake let us consider the particle swinging around the same space where it is been rid of the
curvature term and where the Riemannian manifold is bounded by the Levi-Civita connection 2.2.1, as a

consequence of that, the ¢’s transformation (5.2) read" di)* = —i7%¢'¢ and given 7° to be hermitian 8¢ =
ze% = ze’yo(i) so that:
1 d .. i oD . i —i,D .
OL = 50ik08" 88 + gij - (60°)8 + 503600010 b7 + 5 1300"7" 7+
2 dt dt dt
LB 5 i 4TI, Ml + T, = (5¢F) )t +T,0" vt
+29111/1'7 P+ klm¢ ¢¢+ kldt(¢)1/)+ l¢ P

Where by , k we have intended the partial derivative with respect to ¢*, next carrying out all the substitutions
lead to:

1 _ cqeq IRy 7 _ — . .k
5L = Lot 8'8 + gueldd + Lomev B0 (i 4+ T8 ) — Sguer®d® (8 + T ) +
— m ok Lk .
+ 59597 (0’ e+rkl e W+ T 0 iT,0 08 ) =
1 goind L —i ikl
ng,/cﬂﬁ ¢ ¢ - *6 (gik,j + Gijk — Grji) VP @+ *gijw I'uo el +
AN i m —m 0 J
+ §gij€¢ ¢] + égij'l/} (b €+ |: 9ij, mﬂ/J ’(/J Y 1/1 - (gw m +gzm,j gjm,i) 6"/} ’(/J 701/] :|+

) i ok - ; -k
+ [Qgij,meww VT U+ 2 gigew™ 5T 0 wl]
Recall here, that the metric tensor is symmetric

gkj,i+gij,k gzk,])ew ¢ ¢ + gzyd) F l¢ QS :| + glj€¢ 1/1 + gzy"l) QS e+

A k
+ [4 Gimi + Gijm — Gim.j) €™ 0 ] (gw,kal + i, m) YA % Y =
1

291j6¢ '(/) glj6¢ '(/J + gkzgw (b ¢ €+ |: 9ij, kE’l/}le) ¢ + gzg kew ¢ ¢ :|

+ %3 (gl] ) 1/1'”@/} 706 1/Jl by inserting e@i = —e!

At this purpose, it is worth noticing by the antisymmetry of 4°:

Y cala=D o =D —calilas = D —€svh (A1)
«@ a,f3 a,B B
1 -5 1 _ui 1 _ki 7 i\ =m0k g
5L = fgijeas U+ 5958V + S0 00 + Z0m (9Tl ) B0 u! =
1 77 - J m—i O'k 1
= 2o (06'?) + 7o (05 Thwm T8 ) 0

In this way, up to total derivative terms and by choosing periodic boundary conditions to the 1’s, the action is
invariant under the aforementioned transformation.

!Since the Christoffel symbol in the Riemannian connection is torsion-free and therefore symmetric.
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