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Abstract

A quantum error correction protocol consists of (1) a set of quantum states faith-
fully representing some logical information (the code), and (2) a recovery map
that is able to correct the effect of environmental noise on such states. The aim
of the work is to develop an optimisation scheme that is able to find optimally
correctable subspace codes for a known quantum noise channel, leveraging Petz
recovery maps and nonlinear optimization methods based on the Stiefel mani-
fold. In fact, in the proposed approach, given a candidate subspace to be associ-
ated to a code, we fix the recovery map as if the code was perfectly correctable.
Therefore, optimisation must only be considered over the set of valid codes, not
over the set of recovery operators. Optimisation over the codes is equivalent
to optimisation over the complex-valued Stiefel manifold of the corresponding
dimensions. In this thesis, which includes a brief mathematical introduction
to the relevant elements of quantum mechanics, quantum error correction and
Riemannian optimisation, the theoretical basis for the problem is developed and
gradient-based local optimisation algorithms are discussed and tested, as well
as two different kinds of global optimisers on the Stiefel manifold. The global
optimisation algorithms are based on simulated annealing with intermittent dif-
fusion, and a consensus based algorithm. Using these algorithms, correctable
codes are found and compared to existing ones for three qubits subjected to
bit-flip errors (single and correlated), four qubits undergoing local amplitude
damping and five qubits subjected to local depolarising channels, and general
single qubit errors.





Sommario

Un protocollo di correzione degli errori quantistici consiste in (1) un insieme di
stati quantistici che rappresentano alcune informazioni logiche (il codice) e (2)
una mappa di recupero in grado di correggere l’effetto dell’interazione dell’ambiente
esterno con tali stati. Lo scopo di questo lavoro è sviluppare uno schema di ot-
timizzazione in grado di trovare codici ottimamente correggibili per un canale di
rumore quantistico noto a priori, sfruttando mappe di recupero di Petz e metodi
di ottimizzazione non lineari basati sulla varietà di Stiefel. Infatti, nell’approccio
proposto, dato un sottospazio candidato ad essere associato ad un codice, fis-
siamo la mappa di recupero come se il codice fosse perfettamente correggi-
bile. Pertanto, l’ottimizzazione deve essere considerata solo sull’insieme di cod-
ici validi, non sull’insieme di operatori di recupero. L’ottimizzazione sui codici
equivale all’ottimizzazione sulla varietà di Stiefel a valori complessi delle dimen-
sioni corrispondenti. In questa tesi, che include una breve introduzione matem-
atica agli elementi rilevanti della meccanica quantistica, alla correzione degli
errori quantistici e all’ottimizzazione riemanniana, vengono sviluppate le basi
teoriche del problema e vengono discussi e testati algoritmi di ottimizzazione
locale ”gradient-based”, nonché due diversi tipi di ottimizzatori globali sulla
varietà di Stiefel. Gli algoritmi di ottimizzazione globale si basano sul simu-
lated annealing con diffusione intermittente e su un algoritmo basato sui metodi
di consenso. Utilizzando questi algoritmi, vengono trovati codici correggibili e
confrontati con quelli esistenti tramite tre qubit soggetti a errori di bit-flip (sin-
goli e correlati), quattro qubit sottoposti a smorzamento dell’ampiezza locale
e cinque qubit soggetti a canali di depolarizzazione locali ed errori generali a
singolo qubit.
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1
Introduction

The field of quantum science and technology is evolving at an impressive
speed. IBM’s latest quantum computer [12], Osprey, has 433 qubits. Moreover,
they have planned Kookaburra, with over 4158 qubits, on their roadmap by 2025.
That is about a tenfold increase in the amount of qubits in the span of little more
than two years, five times faster than Moore’s law. At the same time, ion-photon
interfaces capable of generating entanglement every 5ms have already been de-
veloped [31]. However, mostly due to difficulties in producing scalable solid-
state quantum processors, induced by the interaction with the environment, the
industry is still in the Noisy Intermediate-Scale Quantum (NISQ) era. In order to
overcome this era, different information protection methods are being designed.
Among them are the exploitation of noise-free codes [23], quantum dynamical
decoupling (QDD) [33] and quantum error correction (QEC) [14].

The mitigation of noise and errors in quantum systems requires innovative
solutions. Particularly, the techniques used in classical information process-
ing are not applicable to quantum systems, due to the no-cloning theorem [36].
Therefore, it not only is of vital importance to the progress of the entire field, but
it also is a topic with a challenging nature.

In this work, we aim to explore a new way in which control and optimisation
techniques can lead to better error suppression. Subspace codes are the main
type of codes used in QEC, but it is known that finding correctable codes even if
the system dynamics is perfectly known is an NP-Hard problem [4]. Nonethe-
less, relying on geometric and probabilistic intuition a numerical approach may
be pursued: a subspace can be associated to a projector, which in turn can be ex-
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pressed in terms of an orthonormal 𝑘-frame. Hence, the set of subspace codes is
equal to the complex-valued Stiefel manifold. This observation opens the door to
the use of Riemannian optimisation algorithms for the search of error correcting
codes. As such, a suitable formulation of an optimisation problem equivalent to
finding correctable Quantum Error Correction (QEC) codes has been designed,
and three different algorithms performing optimisation on the Stiefel manifold,
leading to the optimal code, have been implemented.

The work is divided into the following chapters,

• Quantum mechanics: All the algebraic concepts necessary to understand
the mathematical structure of Quantum Mechanics (QM) are given first.
Then, a brief introduction QM is given, with the aim of introducing all the
elements necessary to understand QEC.

• Quantum error correction: The chapter starts with an introduction of the
theory of QEC, including a series of fundamental theorems, that will allow
us to determine the correctability of a code, and the most common fidelity
measures. Then, a review of the existing work on QEC via optimisation is
given. The chapter ends with the description of our proposed scheme for
code optimisation.

• Riemannian optimisation: First, an introduction to Riemannian optimisa-
tion is given, including the necessary concepts from topology and differen-
tial geometry. Then, three different optimisation algorithms are described.
The first is a local optimisation algorithm that is the adaptation gradient
descent to Riemannian manifolds. The other two are global optimisation
algorithms, Intermittent Diminishing Diffusion on Manifold (IDDM) and
a Consensus-based Optimisation (CBO) algorithm.

• Analysis: The previously described algorithms were tested with three dif-
ferent kinds of noise channels, with the aim of recreating known correctable
codes and testing the limitations, both of our methods and of QEC in gen-
eral.

Then, the conclusions are given, together with suggestions for future work.
Finally, the computation of the gradient of the cost function and the MATLAB
code of the implemented algorithms are given in two appendixes.
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2
Quantum mechanics

The underlying mathematical structure of quantum theories is that of 𝐶∗-
algebras. In order to provide a full theoretical picture, this chapter starts by
introducing the essential algebraic concepts. The relation to matrix algebra is
given, as well as the arguments as to why finite dimensional QM can be faithfully
represented in these terms. Finally, a brief introduction to QM is given, with a
focus on the concept of quantum channels and quantum operations, which are
extensively used in the following chapters.

2.1 ALGEBRAIC PRELIMINARIES

The most basic mathematical structure on which all of the following is based
is that of vector space. For this reason, we start from this definition, and then we
specialise it progressively, building up to 𝐶∗-algebras.

Definition 2.1.1. Let𝑉 be a set endowed with an addition operation+ : 𝑉×𝑉 →
𝑉 , and a scalar multiplication · : F × 𝑉 → 𝑉 , where F is a field (e.g. R, C, etc),
such that the following properties are satisfied for any 𝑢, 𝑣, 𝑤 ∈ 𝑉 and 𝛼, 𝛽 ∈ F

• Commutativity of the addition: 𝑢 + 𝑣 = 𝑣 + 𝑢.

• Associativity of the addition: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤).
• Existence of a null element 0 ∈ 𝑉 : 𝑣 + 0 = 𝑣.
• Existence of an additive inverse −𝑣 ∈ 𝑉 : 𝑣 + (−𝑣) = 0.

• Associativity of the scalar multiplication: (𝛼𝛽)𝑣 = 𝛼(𝛽𝑣).
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2.1. ALGEBRAIC PRELIMINARIES

• Existence of the multiplicative identity 1 ∈ F: 1𝑣 = 𝑣.

• Distributivity of the scalar multiplication with addition in 𝑉 : 𝛼(𝑢 + 𝑣) =
𝛼𝑢 + 𝛼𝑣.

• Distributivity of the scalar multiplication with addition in F: (𝛼 + 𝛽)𝑢 =
𝛼𝑢 + 𝛽𝑢.

Such a structure (𝑉,+, ·) is called a vector space.

Now the notions of sizes, i.e. norms, and distances, i.e. metrics are intro-
duced.

Definition 2.1.2. Given a vector space 𝑋, a map ‖ · ‖ : 𝑋 → [0,∞) is called a
norm if the following properties are satisfied for any 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ F

• ‖𝛼𝑥‖ = |𝛼 |‖𝑥‖.
• ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖.
• ‖𝑥‖ = 0⇒ 𝑥 = 0.

A vector space endowed with a norm is called a normed vector space (𝑋, ‖·‖).
Definition 2.1.3. A map 𝑑 : 𝑋 × 𝑋 → R is called a metric if it satisfies the
following properties for any 𝑥, 𝑦, 𝑧 ∈ 𝑋

• 𝑑(𝑥, 𝑦) ≥ 0.

• 𝑑(𝑥, 𝑦) = 0⇔ 𝑥 = 𝑦.

• 𝑑(𝑦, 𝑥) = 𝑑(𝑥, 𝑦).
• 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).
A vector space endowed with a metric is called a metric space (𝑋, 𝑑).
Of course, a metric can be induced from a norm as 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. The

notion of completeness is given now, which leads to the definitions of Banach
and Hilbert spaces.

Definition 2.1.4. Let (𝑋, 𝑑) be a metric space. A sequence {𝑥𝑛 ∈ 𝑋} is said to be
Cauchy if given 𝜖 > 0 there exists a natural number 𝑁𝜖 such that 𝑑(𝑥𝑚 , 𝑥𝑛) < 𝜖

for all 𝑚, 𝑛 > 𝑁𝜖.

Definition 2.1.5. A metric space (𝑋, 𝑑) is said to be complete if every Cauchy
sequence converges in 𝑋.
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CHAPTER 2. QUANTUM MECHANICS

Definition 2.1.6. A complete normed vector space is called a Banach space.

Definition 2.1.7. Let H be a complex vector space equipped with a scalar prod-
uct 〈·, ·〉 : H ×H→ C satisfying

1. 〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉.
2. 〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉.
3. 〈𝑥, 𝑥〉 ≥ 0, 〈𝑥, 𝑥〉 = 0 iff 𝑥 = 0.

If it is complete with respect to the norm induced by the scalar product
‖𝑥‖2 = 〈𝑥, 𝑥〉, it is called a Hilbert space.

This definition implies that a Hilbert space is a Banach space where the norm
induced by the scalar product.

Definition 2.1.8. Consider two Hilbert spaces H1,H2, and two scalar products
〈𝑥1, 𝑦1〉H1 : H1 × H1 → C and 〈𝑥2, 𝑦2〉H2 : H2 × H2 → C. Now consider
two operators 𝐴 : H1 → H2 and 𝐴∗ : H2 → H1, such that 〈𝑥2, 𝐴𝑦1〉H2 =

〈𝐴∗𝑥2, 𝑦1〉H1 , ∀𝑥2 ∈ H2, 𝑦1 ∈ H1, then 𝐴∗ is said to be the Hermitian adjoint
of 𝐴.

The Hermitian conjugate satisfies the following properties,

• Involutivity: (𝐴∗)∗ = 𝐴.

• Anti-linearity: (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ and (𝑐𝐴)∗ = 𝑐𝐴∗.

• Anti-distributivity: (𝐴𝐵)∗ = 𝐵∗𝐴∗.

At this point, an algebra can be defined.

Definition 2.1.9. An algebra A over a field F is a vector space equipped with a
multiplication, under which it is closed, which is linear on both factors, i.e. it
must satisfy

𝑐(𝐴𝐵) = (𝑐𝐴)𝐵 = 𝐴(𝑐𝐵) ∀𝑐 ∈ F, 𝐴, 𝐵 ∈ A,
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 ∀𝐴, 𝐵, 𝐶 ∈ A,
(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 ∀𝐴, 𝐵, 𝐶 ∈ A.

The multiplication is commonly assumed to have an identity element
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2.1. ALGEBRAIC PRELIMINARIES

1𝐴 = 𝐴 ∀𝐴 ∈ A.
If the multiplication is associative, A is said to be an associative algebra

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) = 𝐴𝐵𝐶 ∀𝐴, 𝐵, 𝐶 ∈ A.
If the underlying vector space is endowed with a norm ‖ · ‖, A is a normed

algebra is the following condition is satisfied

‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖.
Finally, if the underlying vector space is complete w.r.t. the distance induced

by this norm, A is said to be a Banach algebra.

There are certain types of maps that are particular importance, namely ho-
momorphisms, isomorphisms, automorphisms and isometries. The existence
of these between different mathematical structures leads to important relations
of equivalence and help us represent abstract objects in terms of more concrete
ones.

Definition 2.1.10. A map Φ : A1 → A2 is called a homomorphism if for 𝐴, 𝐵 ∈
A1 and 𝜆 ∈ C one has that Φ(𝜆𝐴) = 𝜆Φ(𝐴), Φ(𝐴+𝐵) = Φ(𝐴)+Φ(𝐵) and Φ(𝐴𝐵) =
Φ(𝐴)Φ(𝐵). IfΦ is a one-to-one homomorphism, then it is called an isomorphism.
Additionally, if 𝐴2 = 𝐴1 an isomorphism is called an automorphism, since it
maps 𝐴1 to itself.

Definition 2.1.11. Given metric spaces𝑋1 and𝑋2, an isometry is a mapΦ : 𝑋1→
𝑋2 such that

𝑑𝑋2(Φ(𝑥),Φ(𝑦)) = 𝑑𝑋1(𝑥, 𝑦). (2.1)

At this point, ∗-algebras and 𝐶∗-algebras can be defined.

Definition 2.1.12. A ∗-algebra is an algebra A with a map ∗ : A → A that is
an automorphism and an involution (i.e. it is its own inverse), satisfying the
following properties of the Hermitian adjoint:

(𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗,
(𝑐𝐴)∗ = 𝑐𝐴∗,
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(𝐴𝐵)∗ = 𝐵∗𝐴∗,

(𝐴∗)∗ = 𝐴.

𝐴∗ is called the adjoint of 𝐴. For a Banach ∗-algebra the following additional
condition is required

‖𝐴∗‖ = ‖𝐴‖.

Definition 2.1.13. A 𝐶∗-algebra is a Banach ∗-algebra over the field of the com-
plex numbers C, which satisfies the 𝐶∗-condition, i.e.

‖𝐴∗𝐴‖ = ‖𝐴‖‖𝐴∗‖.
This condition is equivalent to what historically been also called the 𝐵∗-condition

‖𝐴𝐴∗‖ = ‖𝐴‖2.

An element 𝐴 ∈ A is said to be self-adjoint or Hermitian if it is equal to its
adjoint 𝐴∗. In this case the 𝐶∗-condition implies

‖𝐴2‖ = ‖𝐴‖2. (2.2)

An element 𝐴 ∈ A is said to be normal if it commutes with its adjoint, i.e.
𝐴𝐴∗ = 𝐴∗𝐴. In this case the previous property also applies. Additionally, it is
said to be unitary if its adjoint is its inverse, i.e. 𝐴𝐴∗ = 1.

Let us now introduce the notions of states and representations of a𝐶∗-algebra.

Definition 2.1.14. A state 𝜌 on a 𝐶∗-algebra is a positive linear functional if it is
normalised, i.e. ‖𝜌‖ = 1. The set D(A) of all states 𝜌 in A is said to be its state
space.

Definition 2.1.15. Let A, B be two 𝐶∗-algebras, and let Φ : A → B be a ho-
momorphism, then it is called a ∗-homomorphism if Φ(𝐴∗) = Φ(𝐴)∗. If Φ is an
isomorphism satisfying the same condition, then it is a ∗-isomorphism. A, B are
said to be ∗-isomorphic if there exists a ∗-isomorphism mapping A onto B.

Definition 2.1.16. Let 𝑋1, 𝑋2 be a two vector spaces. Then 𝐵(𝑋1, 𝑋2) is the set of
linear bounded operators from 𝑋1 to 𝑋2, and 𝐵(𝑋1) is the set of linear bounded
operators from 𝑋1 to itself.
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Definition 2.1.17. LetA be a𝐶∗-algebra. A ∗-representation ofA is a ∗-homomorphism
𝜋 of A into 𝐵(H) (H some Hilbert space). We shall denote this ∗-representation
of A by {𝜋,H}.

Finally, the concept of universal ∗-representations provides a way to repre-
sent the elements of A as linear bounded operators on some Hilbert space, while
preserving distances. In a probabilistic setting, this would imply the preserva-
tion of probabilities and expectation values, which is of key importance to QM.

Definition 2.1.18. Let A be a 𝐶∗-algebra an let D(A) be its state space. For ar-
bitrary 𝜌 ∈ D(A), consider the ∗-representation {𝜋𝜌 ,H𝜌}. Let 𝐾 =

⊕
𝜌∈D(A)H𝜌

be the direct sum of {H𝜌}. Put 𝑈(𝑎) = ⊕
𝜌∈D(A) 𝜋𝜌(𝑎). Then 𝑈(𝑎) ∈ 𝐵(𝐾), and

the mapping 𝑎 → 𝑈(𝑎) is a ∗-representation of A. This ∗-representation {𝑈, 𝐾}
is called the universal ∗-representation of A.

Theorem 2.1.1. The universal ∗-representation {𝑈, 𝐾} of A is an isometric isomor-
phism. Therefore, every 𝐶∗-algebra is ∗-isomorphic to a uniformly closed self-adjoint
subalgebra of 𝐵(H) on some Hilbert space H

This theorem provides a link between 𝐶∗-algebras and linear operators on
a Hilbert space H. Moreover, consider finite dimensional 𝐶∗-algebras and the
basis {𝑒𝑖} of H, then for every element 𝐴 ∈ A we can construct the following
matrix,

𝜋(𝐴) = {𝜋(𝐴)𝑒1 |𝜋(𝐴)𝑒2 |...|𝜋(𝐴)𝑒𝑛}. (2.3)

As for states, let us introduce the following theorem

Theorem 2.1.2 (Frigyes Riesz Representation Theorem). Let H be a Hilbert space.
Then the space H∗ of linear continuous functionals on H can be identified with H itself
as 𝑇 ∈ H∗ iff there exists 𝐵 ∈ H such that

𝑇(𝐴) = 𝑇𝐵(𝐴) = 〈𝐴, 𝐵〉, 𝑥 ∈ H. (2.4)

Moreover, ‖𝑇𝐵‖ = ‖𝐵‖.
Therefore, through the same procedure, both elements of a finite dimen-

sional 𝐶∗-algebra and its states can be identified with matrices in C𝑛×𝑛 . In what
follows, we will only consider finite dimensional systems. Since we are inter-
ested in numerical methods, this is a natural assumption. At this point we are
ready to shift the focus towards the necessary notions of QM.
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2.2 QUANTUM MECHANICS

Following the description provided by [32] and [35], QM is built around ob-
servables. These are associated to Hermitian elements𝐴 of a𝐶∗-algebraA, called
observable algebra. Since we are working with finite dimensional systems, they
can be represented as Hermitian matrices of dimension 𝑛 × 𝑛. More specifically,
the involution ∗ is taken to be the conjugate transposition ·∗ = ·† = ·>, and every
observable must satisfy 𝐴† = 𝐴.

A state in QM is a linear functional mapping observables onto their expecta-
tion values 〈𝐴〉. In other words, a state is an element of the dual A∗ of A.

In order for QM to have a valid probabilistic interpretation, and accordance
with the theory of 𝐶∗-algebras, the following assumptions are made,

• Normalisation: 〈1〉 = 1.

• Positiveness: ∀𝐴 ∈ A : 〈𝐴†𝐴〉 ≥ 0.

Take the Hilbert-Schmidt scalar product 〈𝐵, 𝐴〉 = 𝑡𝑟(𝐵†𝐴). Under this repre-
sentation, and considering theorem 2.1.2, it can be shown that states are associ-
ated to density matrices 𝜌 ∈ D(H), which are Hermitian, have unit trace and are
semi-positive definite. Then, the expectation value of and observable would be
given by its scalar product with a density matrix, i.e. 〈𝐴〉 = 𝑡𝑟(𝜌𝐴).

An important property ofD(H), the set of all density matrices is its convexity.
In this way, any convex combination of density matrices is a density matrix as
well. This leads to the classification of states into pure and mixed states. Pure
states are the extreme points of the convex set, i.e. those that can be represented
by a rank 1 density matrix, whereas mixed states can only be written as convex
combinations of different density matrices.

Since pure states have rank 1, they can also be written in a simpler repre-
sentation, that of complex unit vectors. These unit vectors are usually written
using Dirac’s bra-ket notation, where a pure state is written as a ket |𝜓〉, and its
adjoint as a bra 〈𝜓 |. Under this notation, the expectation value of an observable
would be given by 〈𝐴〉 = 〈𝜓 |𝐴|𝜓〉. In this way we recover the ”wave function”
representation of QM.

In QM composite systems are joined by a tensor product. When a composite
state cannot be factorised or written as a mixture of factorised states, it is said
to be entangled. Entangled states are separate physical objects that behave as a
single entity, even if its parts are at a distance.

9
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Definition 2.2.1. The tensor product of two vector spaces 𝑋1, 𝑋2 is the vector
space of elements 𝑥1 ⊗ 𝑥2, where ⊗ : (𝑥1, 𝑥2) ↦→ 𝑥1 ⊗ 𝑥2 is a bilinear map such
that for every bilinear map 𝜓(𝑥1, 𝑥2) : 𝑋1 × 𝑋2 → 𝑋3, there is a unique map
�̃�(𝑥1 ⊗ 𝑥2) : 𝑋1 ⊗𝑋2→ 𝑋3 such that �̃�(𝑥1 ⊗ 𝑥2) = 𝜓(𝑥1, 𝑥2). In the case of matrix
vector spaces, 𝑥1 ⊗ 𝑥2 is computed as

𝑥1 ⊗ 𝑥2 =


𝑥111𝑥2 · · · 𝑥11𝑛𝑥2
... . . . ...

𝑥1𝑚1𝑥2 · · · 𝑥1𝑚𝑛𝑥2

 , (2.5)

where 𝑥1 is of dimension 𝑚 × 𝑛.

The partial trace 𝑡𝑟𝐵(𝜌𝐴𝐵) =
∑
𝑖(1 ⊗ 〈𝑖 |)𝜌𝐴𝐵(1 ⊗ |𝑖〉) is used to obtain the

reduced state of a subsystem in a composite quantum system. This is analogous
to marginalisation in probability theory.

The evolution of a quantum system can be regarded either as the evolu-
tion of the observables or the evolution of the states. The first case is known
as the Heisenberg picture, in which A 3 𝐴 → T(𝐴); whereas the latter is the
Schrödinger picture, in which 𝜌→ T∗(𝜌). These two interpretations are equiva-
lent and can be mixed into an interaction picture. Therefore, 𝑡𝑟(𝜌T(𝐴)) = 𝑡𝑟(T∗(𝜌)𝐴)
arises as a condition for consistency, where T and T∗ are mutually adjoint maps.

Any physically meaningful evolution T : B(H) → B(H′) in the Schrödinger
picture should satisfy the following properties

• Linearity:
∀𝐴, 𝐵 ∈ B(H), 𝑐 ∈ C : T(𝑐𝐴 + 𝐵) = 𝑐T(𝐴) + T(𝐵). (2.6)

• Trace preservation:
∀𝐴 ∈ B(H) : 𝑡𝑟(T(𝐴)) = 𝑡𝑟(𝐴). (2.7)

• Complete positivity:

T ⊗ 1𝑛(𝐴†𝐴) ≥ 0∀𝐴 ∈ B(H) ⊗M𝑛∀𝑛 ∈ N. (2.8)
The equivalent map T∗ : B(H′) → B(H) in the Heisenberg picture shall also

satisfy the conditions of linearity and complete positivity. Whereas the trace
preservation translates to unitality

T∗(1) = 1. (2.9)

A mapping which fulfills either of these two sets of three conditions, de-
pending on the picture being used, is called a quantum channel, e.i. a quantum
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channel is a Completely Possitive Trace Preserving (CPTP) map. A commonly
used representation for quantum channels is the Kraus representation, which
expresses the completely positive linear map T ∈ B(M𝑑 ,M𝑑′) as the following
superoperator sum

T(𝐴) =
𝑟∑
𝑗=1

𝐾 𝑗𝐴𝐾†𝑗 . (2.10)

In this way, trace preservation is guaranteed iff
∑
𝑗 𝐾
†
𝑗𝐾 𝑗 = 1 and unitality iff∑

𝑗 𝐾 𝑗𝐾
†
𝑗 = 1. If this last pair of conditions is relaxed and one allows

∑
𝑗 𝐾
†
𝑗𝐾 𝑗 ≤ 1

or
∑
𝑗 𝐾 𝑗𝐾

†
𝑗 ≤ 1, T is called a quantum operation [34], and each of the operators

𝐾 𝑗 is known as a operation elements or Kraus operator. Finally, the notation

T ∼ {𝐾 𝑗} (2.11)

is commonly used to denote the quantum operation T(𝐴) = ∑𝑟
𝑗=1 𝐾 𝑗𝐴𝐾

†
𝑗 .

Finally, after a measurement is performed, the state suffers a collapse. That
is to say, it becomes a superposition of the eigenvectors of the observable that
are compatible with the result of the measurement. Consider the eigendecom-
position of an observable 𝐴

𝐴 =
∑
𝑖

𝜆𝑖Π𝑖 , (2.12)

where each of the Π𝑖 is a projector, i.e. Π†𝑖 = Π𝑖 and Π2
𝑖 = Π𝑖 , 𝜆𝑖 are the

possible values that can be obtained as result of a measurement. Then, after
the measurement is performed, where the value 𝜆𝑖 is obtained, the state of the
system becomes

𝜌→ Π𝑖𝜌Π𝑖

tr(Π𝑖𝜌Π𝑖) . (2.13)
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3
Quantum error correction

3.1 QUANTUM ERROR CORRECTION

The effect of a quantum environment on a quantum system of interest, of-
ten referred to as quantum noise, can be modelled as a quantum CPTP map in
Schroedinger’s picture, i.e. it is represented as a quantum channel. The changes
it causes on the state of the system is called a quantum error. QEC aims to revert
these unwanted changes caused by the environment. However, unlike in classi-
cal information processing, redundancy cannot be used to identify the error to
be corrected. This is due to the no-cloning theorem [36], A consequence of the
fact that measurements destroy quantum information. Thus, recovery action
after a measurement process would not be possible. Another difference to clas-
sical information, is the fact quantum errors are continuous and of an infinite
variety, instead of just random bit flips [27].

For these reasons, one has to rely heavily on the knowledge of the dynamical
properties of the system at hand and the noise that affects it. Indeed, without
a proper model of the noise, it may not be possible to recover the state of the
system consistently. However, in many applications the noise is of a restricted
form. For instance, a common assumption that can be made for systems of qubits
is that the noise is independent for each qubit [14]. In other words, that each of
the operation elements 𝐾 𝑗 can be factorised in a tensor product of one-qubit op-
erators. Indeed, this is the kind of systems on which a substantial part of the
present QEC theory is focused, and it does not directly lend itself to generali-

13



3.1. QUANTUM ERROR CORRECTION

sation to physical systems that are not canonically decomposable into qubits or
that are subject to non-independent (correlated) noises [15].

As an alternative to redundancy, the information of interest can be spread
over a bigger Hilbert space through an adequate encoding. That is to say, the
bigger Hilbert space is divided into equivalent subspaces, such that the noise
can only map the state into its equivalent in one of the other subspaces, leaving
the internal structure of the subspaces unaltered. This idea is the basis of what
is known as subspace codes, the most common kind of QEC strategy. More
precisely, a quantum code C is defined as a subspace of the Hilbert space H

associated to a quantum system. The notation (𝑛, 𝑑) is used to indicate the di-
mension of the full Hilbert space (𝑛) and that of the code (𝑑). With some abuse
of notation, we may also call code the set of states with support on C. Finally,
a quantum error-correcting code is a pair (C,R) consisting of a subspace code C

and a recovery map R.
The following theorems give an insight at the conditions for correctability of

a quantum code. These theorems have been derived in the original perspective
of a set of errors. Later we focus on specific noise models.

Theorem 3.1.1. Let N(C,R) be the set of Kraus operators of all the noise channels that
can be corrected by the quantum code (C,R). The Kraus operator 𝑁𝑎 is in N(C,R) iff
when restricted to C, 𝑅𝑟𝑁𝑎 = 𝜆𝑟𝑎 for each 𝑅𝑟 ∈ R. The family N(C,R) is linearly closed
and (C,R) is N(C,R) correcting.

Theorem 3.1.2. The code C can be extended to an N-correcting code iff for all basis
elements |𝑖𝐿〉, | 𝑗𝐿〉 (𝑖 ≠ 𝑗) of C and operators 𝑁𝑎 , 𝑁𝑏 in N,

〈𝑖𝐿 |𝑁†𝑎𝑁𝑏 |𝑖𝐿〉 = 〈𝑗𝐿 |𝑁†𝑎𝑁𝑏 | 𝑗𝐿〉, (3.1)

and

〈𝑖𝐿 |𝑁†𝑎𝑁𝑏 | 𝑗𝐿〉 = 0. (3.2)

These two conditions can be condensed into a single one as

Π𝑁†𝑎𝑁𝑏Π = 𝛼𝑖 𝑗Π, (3.3)

where Π is the projector onto the quantum code.

Theorem 3.1.3. The recovery R has error 0 on C, after the noise channel N, iff 1⊗ (R ◦
N)∑𝑖 |𝑖𝐿〉 ⊗ |𝑖𝐿〉 = 𝜆

∑
𝑖 |𝑖𝐿〉 ⊗ |𝑖𝐿〉.
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Given a code that satisfies theorem 3.1.2, let

V𝑖 = span({𝑁𝑎 |𝑖𝐿〉}𝑎). (3.4)

Due to condition (3.2) the V𝑖 are orthogonal subspaces. Let also |𝑣 𝑖𝑟〉 be an
orthonormal basis for 𝑖 . Since the subspaces are orthonormal, we have that
〈𝑣 𝑖𝑟 |𝑣 𝑗𝑟〉 = 0, ∀𝑖 ≠ 𝑗. Thus, there exists a unitary 𝑉𝑟 such that 𝑉𝑟 |𝑣 𝑖𝑟〉 = |𝑖𝐿〉.
This leads to the recovery operation being a superoperator with the following
elements {O, 𝑅1, ..., 𝑅𝑟 , ...}, where O is the projector onto the orthogonal com-
plement of

⊕
𝑖 V

𝑖 , and

𝑅𝑟 = 𝑉𝑟
∑
𝑟

|𝑣 𝑖𝑟〉〈𝑣 𝑖𝑟 |. (3.5)

In case that theorem 3.1.2 is not satisfied, the construction of a perfect re-
covery is not possible. However, a optimal recovery operation still exists and is
given by what is known as Petz recovery map.

The Petz recovery map RN,𝜌 for a quantum channel N and initial state 𝜌, as
described in [28, 1], is given by the following expression,

RN,𝜌 ∼ {𝜌1/2𝑁†𝑖 N(𝜌)−1/2}. (3.6)

In this work, we intend to adapt this recovery map to quantum codes and
use it as recovery operation. Tho this end, let us show that RN,Π is a perfect
recovery for a correctable code with projector Π. First of all, let us substitute 𝜌

in the previous expression by the projector onto the code Π, i.e.

RN,Π ∼ {Π1/2𝑁†𝑖 N(Π)−1/2}. (3.7)

If N(Π) is full rank and N is trace-preserving, it is direct to show that this is
a time-reversal of the quantum operation 𝐴, since

∑
𝑖 𝑁
†
𝑖 𝑁𝑖 = 1. If N(Π) is not

full rank, consider the orthonormal basis {|𝛼𝑛〉}𝑛 of its kernel,

∑
𝑖

〈𝛼𝑛 |𝑁𝑖Π𝑁†𝑖 |𝛼𝑛〉 = 0. (3.8)

This implies that 𝑁†𝑖 |𝛼𝑛〉 ∈ ker(Π). Therefore, one could write
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1 =
∑
𝑖

𝑁†𝑖 𝑁𝑖

=
∑
𝑖

𝑁†𝑖 (ΠN(Π) +Π⊥N(Π))𝑁𝑖

=
∑
𝑖

𝑁†𝑖 N(Π)−1/2N(Π)N(Π)−1/2𝑁𝑖 +
∑
𝑖𝑛

𝑁†𝑖 |𝛼𝑛〉〈𝛼𝑛 |𝑁𝑖

. (3.9)

Then, multiply on both sides by Π, one obtains

Π =
∑
𝑖

Π𝑁†𝑖 N(Π)−1/2N(Π)N(Π)−1/2𝑁𝑖Π. (3.10)

This shows that the code is invariant under concatenation of the noise with
the recovery R◦N(Π) = Π. Let us now show that the application of this recovery
corresponds to the time reversal of the states belonging to the code, i.e. the states
such that Π𝜌Π = 𝜌. In what follows, with some abuse of notation, we use Π𝜌Π

to implicitly state that 𝜌 ∈ C.

Definition 3.1.1. For any 𝜌, the time reversal map T𝜌 : N ↦→ T𝜌(N) is a map such
that

T𝜌(N) ∼ {𝜌1/2𝑁†𝑖 (N(𝜌))−1/2}. (3.11)

Computing explicitly TN(Π)(RN,Π), we have that its Kraus operators are

N(Π)1/2𝑅†𝑖Π = N(Π)1/2(N(Π)−1/2𝑁𝑖Π)Π = ΠN(Π)𝑁𝑖Π. (3.12)

Then, for Π𝜌Π one has that

TN(Π)(RN,Π)(Π𝜌Π) =
∑
𝑖

ΠN(Π)𝑁𝑖ΠΠ𝜌ΠΠ𝑁†𝑖 ΠN(Π)

=
∑
𝑖

ΠN(Π)𝑁𝑖Π𝜌Π𝑁†𝑖 ΠN(Π)
. (3.13)

However, as seen above Π𝑁†𝑖 Π
⊥
N(Π) = 0, therefore

Π𝑁†𝑖 = Π𝑁†𝑖 (ΠN(Π) +Π⊥N(Π)) = Π𝑁†𝑖 ΠN(Π), (3.14)
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TN(Π)(RN,Π)(Π𝜌Π) =
∑
𝑖

𝑁𝑖Π𝜌Π𝑁†𝑖 = N(Π𝜌Π). (3.15)

Different implementations of this map have been proposed. A discrete time
implementation is proposed in [9], and a continuous time implementation is
proposed in [20].

3.2 FIDELITY MEASURES

In order to measure how good a QEC code is, the fidelity with respect to
the initial state can be used. The fidelity is a measure of similarity between two
different states and has the following definition,

𝐹(𝜌1, 𝜌2) B max|〈𝜓1 |𝜓2〉|2, (3.16)

where the maximum is taken over all purifications |𝜓1〉 and |𝜓2〉 of 𝜌1 and
𝜌2, respectively. A purification is a higher-dimensional pure state |𝜓〉 that has
the original state 𝜌 as reduction, i.e. 𝜌 = 𝑇𝑟𝐴(|𝜓〉〈𝜓 |). If one of the two states in
the fidelity calculation is already a pure state, the expression reduces to

𝐹(|𝜓1〉, 𝜌2) = 〈𝜓1 |𝜌2 |𝜓1〉. (3.17)

Therefore, in the context of QEC, 𝐹(𝜌,R◦N(𝜌))would be a quantity that one
would want to maximise. However, it has been argued that the entanglement fi-
delity is a better measure, rather than the fidelity [26]. The entanglement fidelity
measures not only how well a state is preserved after a quantum operation, but
also of how well its possible entanglement with the rest of a larger system is
preserved. This latter property is the main reason given as to why it may be a
better choice than 𝐹(𝜌,R ◦ N(𝜌)). The entanglement fidelity has the following
definition,

𝐹𝑒(𝜌,N) B 〈𝜓 |(N ⊗ 1)(|𝜓〉〈𝜓 |)|𝜓〉, (3.18)

where |𝜓〉 is again a purification of 𝜌, and (N ⊗ 1) is the natural extension of
the original quantum operation to the space on which 𝜌 has been purified.

If the quantum operation N is given in the Kraus representation, then the
entanglement fidelity has the following expression,
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𝐹𝑒(𝜌,N) =
∑
𝑖

𝑡𝑟(𝑁𝑖𝜌)𝑡𝑟(𝑁†𝑖 𝜌). (3.19)

A remarkable property of the entanglement fidelity is the following,

𝐹𝑒(𝜌,N) ≤ 𝐹(𝜌,N(𝜌)). (3.20)

Meaning that when the entanglement fidelity is maximised, one is also max-
imising a lower bound of the fidelity. Additionally, for pure states one has that

𝐹𝑒(|𝜓〉〈𝜓 |,N) = 𝐹(|𝜓〉〈𝜓 |,N(|𝜓〉〈𝜓 |)). (3.21)

Which is to be expected, since pure states cannot be the reduced state of a
larger entangled state, and therefore there is no entanglement to be preserved.
Finally, it has been proved in [14] that if the fidelity is kept high for all pure states,
𝐹(|𝜓〉〈𝜓 |,N(|𝜓〉〈𝜓 |)) ≥ 1 − 𝜖 ∀|𝜓〉, the entangled fidelity is also kept high for all
states, 𝐹𝑒(𝜌,N) ≥ 1 − 3𝜖/2 ∀𝜌.

However, these measures are dependent on the input state, and therefore not
ideal to benchmark QEC operations in general. To overcome this limitation, the
minimal or the average fidelity may be used. In fact, this question is explored
in [8] with the aim of comparing different quantum processes in a more gen-
eral way. In the context of QEC, it suffices to compare the noise and recovery
operation with the identity operation. Thus, the definition of the average and
minimal fidelity are the following, respectively

𝐹𝑎𝑣𝑔(N, E) B
∫
𝜌
𝑑𝜌𝐹(N(𝜌), E(𝜌)), (3.22)

𝐹𝑚𝑖𝑛(N, E) B min
𝜌
𝐹(N(𝜌), E(𝜌). (3.23)

Then, if E = 1, which is the case of interest for QEC, and N is given in the
Kraus representation, one has

𝐹𝑎𝑣𝑔(N, 1) B 1
𝑛2

∑
𝑘

|𝑡𝑟(𝑁𝑘)|, (3.24)

𝐹𝑚𝑖𝑛(N, 1) B min
𝜌

∑
𝑘

|𝑡𝑟(𝑁𝑘𝜌)|2. (3.25)
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3.3 QUANTUM ERROR CORRECTION VIA OPTIMISATION

It is known that finding perfectly correctable codes, even if the system dy-
namics are perfectly known, is an NP-Hard problem [4]. Nonetheless, a different
approach can be taken. One could instead try searching for approximate codes
using optimisation algorithms. In fact, work has already been done in this di-
rection and it may lead to better codes when the implementation details, such
as the required amount of qubits, are taken into account [22].

In [29], it has been proposed an adapted version of the power method eigen-
value algorithm to maximise what they call channel fidelity, which is a spe-
cial case of the entanglement fidelity with the maximally entangled state |Ω〉 =∑
𝑘 |𝑘𝑘〉/

√
𝑑 as initial state. Then, a line of work focused on the use of Semidefinite

Programming (SDP) to optimise the recovery operation can be traced back to
[37], in which they assume fixed encodings and aim to maximise the minimum
fidelity. A similar scheme is proposed in [7], where they use SDP to find the op-
timum recovery operation, given a certain quantum code. Their objective func-
tion is the entanglement fidelity between the initial state and the recovered state
after the noise. This work is then complemented by [6], in which they focus on
the code, rather than the recovery.

In [19] they account for uncertainties in the model of the noise. They solve
the optimisation problem by convexifying the constraint 𝐶†𝐶 = 1𝑑 and solve
the problem with 𝐶†𝐶 ≤ 1𝑑 instead. In this way, they are able to use SDP find
codes that maximise the average fidelity. Then, they take replace the solution of
the relaxed problem with its singular values, thus recovering the orthonormal-
ity constraint. Then, for the recovery, they use an approximation to the optimal
recovery that can be calculated directly, thus skipping this part of the optimisa-
tion problem. Then, in [18] they include a step to optimise the recovery, using
SDP as well. The solution to both problems is computed using Lagrange dual-
ity. Finally, in [17] a quantum process tomography (QPT) is added to eliminate
the need for a previously known model of the noise that affects the system.

Another work that tries to eliminate the need for a known noise model is [25],
where a reinforcement learning scheme is proposed to find optimum codes. The
noise is then assumed to be a black box, together with the recovery operation.
Finally, in [42] instead of relying on classical optimisation algorithms, they use
a variational quantum algorithm to find the optimal code and recovery. How-
ever, the proposed algorithm requires the specification an initial state, like in [7].
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On the other hand, this algorithm has the advantage that it would directly pro-
vide an implementation of these operations, since it can be run on the quantum
hardware itself.

3.4 OUR FRAMEWORK FOR CODE OPTIMISATION

In this section we derive intuitively the cost function and the specific problem
we shall solve numerically. The problem derived in this section has the advan-
tage that it is independent of the initial state of the system, since it is based only
to the subspace code and the noise model.

Let N be a known noise channel defined as

N(𝜌) B
𝑚∑
𝑘=1

𝑁𝑘𝜌𝑁†𝑘 , (3.26)

where
∑𝑚
𝑘=1 𝑁

†
𝑘𝑁𝑘 = 1𝑛 .

Consider the Petz recovery map for the code identified by Π

RN,Π(𝜌) =
𝑚∑
𝑙=1

𝑅𝑙𝜌𝑅†𝑙 , (3.27)

for 𝜌 ∈ D(H). Recall that the Petz recovery map is a perfect recovery if Π
corrects N. However, we do not know the best Π.

Therefore, the problem is how to find an appropriate projection matrix Π,
such that RN,Π acts as the reversal of N. Precisely, what we want is that the
composition of the noise and the recoveryA = RΠ◦N(𝜌) is as close to the identity
map as possible, when restricted to the subspace of the code.

AΠ(𝜌) =
𝑚∑

𝑗 ,𝑘=1

Π𝑁†𝑘N(Π)−1/2𝑁𝑗︸               ︷︷               ︸
𝐴𝑗𝑘

𝜌𝑁†𝑗 N(Π)−1/2𝑁𝑘Π. (3.28)

In order to restrict the map to the code, consider only input states such that
𝜌 = Π𝜌Π. It is convenient to introduce the following map,

ǍΠ =
𝑚∑

𝑗 ,𝑘=1

Π𝑁†𝑘N(Π)−1/2𝑁𝑗Π︸                  ︷︷                  ︸
�̌�𝑗𝑘

𝜌Π𝑁†𝑗 N(Π)−1/2𝑁𝑘Π. (3.29)
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Notice that Ǎ being the composition of Π · Π with AΠ, it is a trace non-
increasing map.

Proposition 3.4.1. Conjugate transposition of the operation elements �̌� 𝑗𝑘 corresponds
to a swapping of its indexes, which then implies that the map ǍΠ is self-adjoint.

�̌�
†
𝑗𝑘 = �̌�𝑘 𝑗 ⇒ Ǎ

†
Π = ǍΠ. (3.30)

Proof. It can be directly seen that �̌�†𝑗𝑘 = �̌�𝑘 𝑗 . Then, the operator sum can be
written as

ǍΠ[𝜌] =
∑
𝑗𝑘

�̌� 𝑗𝑘𝜌�̌�
†
𝑗𝑘 =

∑
𝑗≤𝑘
(�̌� 𝑗𝑘𝜌�̌�

†
𝑗𝑘 + �̌�𝑘 𝑗𝜌�̌�†𝑘 𝑗) =

∑
𝑗≤𝑘
(�̌� 𝑗𝑘𝜌�̌�

†
𝑗𝑘 + �̌�†𝑗𝑘𝜌�̌� 𝑗𝑘).

(3.31)
□

Next, in order to better exploit the linear structure of the maps, we consider
the vectorised representation.

Definition 3.4.1. Given a matrix

𝑋 =


𝑥11 . . . 𝑥1𝑛
... . . . ...

𝑥1𝑚 . . . 𝑥𝑚𝑛

 ,
its vectorisation is defined as the vertical stacking of its columns, i.e.

vec(𝑋) =



𝑥11
...

𝑥1𝑛
...

𝑥1𝑚
...

𝑥𝑚𝑛


. (3.32)

The vectorisation vec(𝐴𝑋𝐵) satisfies the property vec(𝐴𝑋𝐵) = (𝐵>⊗𝐴)vec(𝑋).
Then, ǍΠ can be rewritten as
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vec(ǍΠ(𝜌)) = vec(
∑
𝑗𝑘

�̌� 𝑗𝑘𝜌�̌�
†
𝑗𝑘) =

∑
𝑗𝑘

�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘︸          ︷︷          ︸
�̂�Π

vec(𝜌), (3.33)

where

�̂�Π =
𝑚∑

𝑗 ,𝑘=1

Π>𝑁>𝑗 N(Π)−>/2𝑁𝑘Π> ⊗ Π𝑁†𝑘N(Π)−1/2𝑁𝑗Π. (3.34)

Proposition 3.4.2. The operator �̂�Π is Hermitian

�̂�Π =
∑
𝑗𝑘

�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘 , (3.35)

�̂�
†
Π = �̂�Π. (3.36)

Proof. Using the fact that �̌�†𝑗𝑘 = �̌�𝑘 𝑗 , one can write

�̂� =
∑
𝑗≤𝑘
(�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘 + �̌�𝑘 𝑗𝜌�̌�𝑘 𝑗) =

∑
𝑗≤𝑘
(�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘 + (�̌� 𝑗𝑘𝜌�̌� 𝑗𝑘)†)

= 2
∑
𝑗≤𝑘

Sym(�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘)
. (3.37)

□

Let us now define the set of vectorised code words as 𝜈Π and study the struc-
ture that �̂�Π would have in this space.

Definition 3.4.2. The set of vectorised code words is 𝜈Π defined as the set of the
vectorised representations of the states in the support of the projector to the code
Π, i.e.

𝜈Π B {vec(𝜌)|Π𝜌Π = 𝜌}. (3.38)

Proposition 3.4.3. Considering the set of code words 𝜈Π and decomposing the under-
lying space of the system as C𝑛×𝑛 = 𝜈Π ⊕ 𝜈⊥Π, there exists a unitary operator 𝑇 such that
for every state 𝜌 ∈ C,
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𝑇𝜌𝑇† =

[
𝜌Π 0
0 0

]
. (3.39)

Under the same operator 𝑇, after vectorisation the operator �̂�Π would be

(𝑇 ⊗ 𝑇)�̂�Π(𝑇 ⊗ 𝑇)† =
[
�̃�Π 0
0 0

]
, (3.40)

where �̃�𝑃 𝑖 is Hermitian

�̃�Π = �̃�
†
Π. (3.41)

Proof. Since Π = Π†, it is unitarily diagonalisable, i.e. there exists some 𝑇, such
that 𝑇𝑇† = 1 and

𝑇Π𝑇† =

[
1 0
0 0

]
. (3.42)

Under this transformation and since Π𝜌Π is in the support of Π, we have
that

𝑇Π𝜌Π𝑇† = 𝑇Π𝑇†(𝑇𝜌𝑇†)𝑇Π𝑇† =
[
𝜌Π 0
0 0

]
. (3.43)

Similarly, for the operator �̂�Π and since the tensor product preserves the
block structure of the left term, we have that

(𝑇 ⊗ 𝑇)�̂�Π(𝑇† ⊗ 𝑇†) =
∑
𝑗𝑘

(𝑇�̌� 𝑗𝑘𝑇†) ⊗ (𝑇�̌� 𝑗𝑘𝑇†)

=
∑
𝑗𝑘

(𝑇Π𝑁†𝑘N−1/2(Π)𝑁𝑗Π𝑇†) ⊗ (𝑇Π𝑁†𝑘N−1/2(Π)𝑁𝑗Π𝑇†)

=

[
�̌�Π 0
0 0

]
⊗

[
�̌�Π 0
0 0

]
=

[
�̃�Π 0
0 0

]
.

(3.44)
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Finally, Hermitianity of �̃�Π is a direct consequence of the Hermitianity of �̂�Π

and the block structure of (𝑇 ⊗ 𝑇)�̂�Π(𝑇 ⊗ 𝑇)†. □

Theorem 3.4.4. Let 𝑑 = rank(Π), then

1. The product of �̃�Π by its conjugate transpose is bounded by the identity, �̃�†Π�̃�Π ≤
1𝑑2 .

2. C ∼ Π is a correctable code iff �̃�Π = 1𝑑2 .

Proof. From the trace non-increase condition one has that∑
𝑗𝑘

�̌�
†
𝑗𝑘�̌� 𝑗𝑘 ≤ 1. (3.45)

Each of the terms �̌�†𝑗𝑘�̌� 𝑗𝑘 is positive semi-definite. Therefore, all of their
eigenvalues are non-negative. At the same time, to comply with the previous
condition, it must also be the case that

〈𝜓 |(
∑
𝑗𝑘

�̌�
†
𝑗𝑘�̌� 𝑗𝑘)|𝜓〉 ≤ 1. (3.46)

Putting this together with the non-negativity of the eigenvalues, one can con-
clude that

0 ≤ 〈𝜓 |(�̌�†𝑗𝑘�̌� 𝑗𝑘)|𝜓〉 ≤ 1, (3.47)

and putting the last two expressions together, one has that

0 ≤ 〈𝜓 |(
∑
𝑗𝑘

�̌�
†
𝑗𝑘�̌� 𝑗𝑘)|𝜓〉 ≤ 1. (3.48)

Since this is true ∀|𝜓〉, vectorising and using the same transformation 𝑇 from
the previous proposition, it is easy to see that

�̃�
†
�̃� ≤ 1𝑑2 . (3.49)

To prove the second part, it is easy to see that rk(�̂�Π) ≤ 𝑑2 due to the projector
Π, which has rk(Π) = 𝑑 and the fact that rk(𝐴 ⊗ 𝐵) = rk(𝐴)rk(𝐵). This means
that at least 𝑛2 − 𝑑2 of the eigenvalues of �̂�Π are zero.
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For the study of the rest of the eigenvalues, consider {|𝜓𝑘〉} such that |𝜓𝑘〉〈𝜓𝑘 | ∈
C. Then |𝜓𝑎〉 ⊗ |𝜓𝑏〉 ∉ ker(Π ⊗ Π) and span({|𝜓𝑎〉 ⊗ |𝜓𝑏〉}) ⊇ Im(�̂�Π).

If the code is correctable, one has that �̌�(|𝜓𝑎〉〈𝜓𝑎 |) = |𝜓𝑎〉〈𝜓𝑎 |,

⇒ |𝜓𝑎〉 ⊗ |𝜓𝑎〉 = (
∑
𝑗𝑘

�̌� 𝑗𝑘 ⊗ �̌� 𝑗𝑘)|𝜓𝑎〉 ⊗ |𝜓𝑎〉. (3.50)

Therefore, there are 𝑑 eigenstates with eigenvalue 1.
Now consider the following two states

𝜌 = (|𝛼 |2 |𝜓𝑎〉〈𝜓𝑎 | + |𝛽 |2 |𝜓𝑏〉〈𝜓𝑏 |),
𝜎 = (𝛼 |𝜓𝑎〉 + 𝛽 |𝜓𝑏〉)(𝛼〈𝜓𝑎 | + 𝛽〈𝜓𝑏 |),

with 𝛼, 𝛽 ∈ C, |𝛼 |2 + |𝛽 |2 = 1. It is easy to see that 𝜎 = 𝜌 + (𝛼𝛽 |𝜓𝑎〉〈𝜓𝑏 | +
𝛼𝛽 |𝜓𝑏〉〈𝜓𝑎 |).

By linearity, one gets that Ǎ(𝜌) = 𝜌 and thus �̂�Πvec(𝜌) = vec(𝜌).
Then Ǎ(𝜎) = 𝜌 + Ǎ(𝛼𝛽 |𝜓𝑎〉〈𝜓𝑏 | + 𝛼𝛽 |𝜓𝑏〉〈𝜓𝑎 |) and �̂�Πvec(𝜎) = vec(𝜌) +

�̂�Πvec(𝛼𝛽 |𝜓𝑎〉〈𝜓𝑏 | + 𝛼𝛽 |𝜓𝑏〉〈𝜓𝑎 |) = vec(𝜌) + �̂�Π(𝛼𝛽 |𝜓𝑏〉 ⊗ |𝜓𝑎〉 + 𝛼𝛽 |𝜓𝑎〉 ⊗ |𝜓𝑏〉).
Hence, for C to be a correctable code, one would also need that �̂�Π |𝜓𝑏〉 ⊗

|𝜓𝑎〉 = |𝜓𝑏〉⊗ |𝜓𝑎〉, Since it must be true for any 𝑎, 𝑏, it results in 𝑑2−𝑑 eigenstates
having eigenvalue equal to 1.

Putting everything together, one sees that �̃� has all of its eigenvalues equal to
1, and being Hermitian, this also implies that it is equal to the identity. Proving
the other direction of the implication is automatic, since if �̃� = 1, for any state
in the code one would have that A(𝜌) = 𝜌, due to the previous proposition. □

In the light of this theorem, it is natural to consider the following as a quality
index for the correctability of Π,

𝐽(Π) = 𝑡𝑟(�̃�Π) =
∑
𝑘

eigs(�̂�𝑘). (3.51)

The following proposition clarifies the optimality of a code, as measured by
𝐽(Π).

Proposition 3.4.5. The cost function 𝐽(Π) is non-negative and upper-bounded by the
square of the rank of the projector Π,

0 ≤ 𝐽(Π) ≤ 𝑑2. (3.52)
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Furthermore, the code C ∼ Π is a correctable code iff 𝐽(Π) = 𝑑2.

Proof. The 𝐽(Π) ≤ 𝑑2 part is a direct consequence of the first item of the previous
theorem, together with the fact that �̃� is Hermitian. The following proves the
𝐽(Π) ≥ 0 part,

𝑡𝑟(𝑁Π) =
∑
𝑘𝑙

𝑡𝑟(Π>𝑁>𝑘 N(Π)−>/2𝑁𝑙)𝑡𝑟(Π𝑁†𝑙 N(Π)−1/2𝑁𝑘)

=
∑
𝑘𝑙

𝑡𝑟(Π𝑁†𝑙 N(Π)−1/2𝑁𝑘Π)2 = 𝑡𝑟((
∑
𝑙

𝑁𝑙Π)†N(Π)−1/2 (
∑
𝑘

𝑁𝑘Π)︸      ︷︷      ︸
𝑂Π

)2

= 𝑡𝑟(𝑂Π𝑂†ΠN(Π)−1/2) ≥ 0

.

(3.53)

Finally, using the results of the previous theorem, 𝐽(Π) = 𝑑2 iff all the eigen-
values of �̃� are equal to 1. □

If we were to fix the rank of Π and consider it as a parameter of the cost
function, i.e. 𝐽𝑑(Π), the following relation to the average fidelity is found.

Proposition 3.4.6. The cost function 𝐽𝑑(Π) with 𝑑 fixed is proportional to the average
fidelity of the operation Ñ ∼ {�̃�},

𝐽𝑑(Π) = 𝑑2𝐹𝑎𝑣𝑔(N, 1). (3.54)

Proof. By direct calculation,

𝐽𝑑(Π) = 𝑡𝑟(�̃�) = |𝑡𝑟(�̃�)| = 𝑑2 | 1
𝑑2 𝑡𝑟(�̃�)| = 𝑑2𝐹𝑎𝑣𝑔(N, 1). (3.55)

□

If a correctable code for a certain error is unknown, consider the following
optimisation problem with fixed 𝑑 = 𝑟𝑎𝑛𝑘(Π),

Π𝐶 = argmax
Π

𝐽(Π). (3.56)

Since 𝑑 is fixed, one could also decompose the projector onto the code as
Π = 𝑈𝑈†, where 𝑈 ∈ C𝑛×𝑑 and 𝑈†𝑈 = 1𝑑. This decomposition leads one
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to perform optimisation on the complex valued Stiefel manifold 𝑉𝑑(C𝑛), since
𝑈 ∈ 𝑉𝑑(C𝑛), and the optimisation problem would be the following,

Π𝑈 = argmax
𝑈∈𝑉𝑑(C𝑛)

𝐽(Π). (3.57)

In the following chapter the Stiefel manifold𝑉𝑑(C𝑛)will be defined and meth-
ods to solve this optimisation problem will be introduced.
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4
Riemannian optimisation

Since the optimisation parameter is a complex matrix 𝑈 ∈ C𝑛×𝑑 with the
constrained 𝑈†𝑈 = 1𝑑, commonly used steepest descent or Newton method
should be modified. Let us introduce some basics of the complex Stiefel mani-
fold 𝑉𝑑(C𝑛).

Relying on geometric and probabilistic intuition a numerical approach may
be pursued: a subspace can be associated to a projector, which in turn can be ex-
pressed in terms of an orthonormal k-frame. Hence, the set of subspace codes is
equal to the complex-valued Stiefel manifold. This observation opens the door
to the use of optimisation algorithms for the search of error correcting codes.
The Stiefel manifold is a Riemannian manifold, therefore, instead of performing
constraint Eucledian optimisation on C𝑛×𝑑, one can perform Riemannian opti-
misation without constraints to solve this problem.

This chapter starts with an introduction of the necessary concepts to under-
stand the theory behind Riemannian optimisation. Then the focus shifts towards
Stiefel manifolds, which can model quantum codes. Finally, a series of local and
global optimisation algorithms on the Stiefel manifold are introduced.

4.1 MANIFOLD PREREQUISITES

Manifolds are a generalisation of surfaces on Eucledian space. As such, they
are built on top of topological spaces, which are a more general kind of structure
than vector spaces.
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Definition 4.1.1. Given a set 𝑋, a collection 𝜏 of open subsets of 𝑋 is called a
topology on 𝑋 if the following conditions are satisfied:

• The empty set and 𝑋 itself belong to 𝜏, i.e. , 𝑋 ∈ 𝜏.

• 𝜏 is closed w.r.t. finite and infinite unions, i.e. given 𝜏𝑖 ∈ 𝜏,
𝑁⋃
𝑖=1

𝜏𝑖 ∈ 𝜏,
∞⋃
𝑖=1

𝜏𝑖 ∈ 𝜏.

• 𝜏 is closed w.r.t. finite intersections, i.e. given 𝜏𝑖 ∈ 𝜏,
𝑁⋂
𝑖=1

𝜏𝑖 ∈ 𝜏.

Additionally,𝑋 is called a topological space and its elements are called points.

However, some additional structure is necessary. The following definitions
give the necessary notions of separability and distinguishability, as well as the
relation to Eucledian space.

Definition 4.1.2. A neighbourhood𝑊 of a point𝑈 in a topological space 𝑋 is a
subset 𝑉 of 𝑋 that includes an open set containing𝑈 , i.e. 𝑈 ∈ 𝑉 ⊆ 𝑊 ⊆ 𝑋.

Definition 4.1.3. A second countable space𝑋 is a topological space whose topol-
ogy has a countable base, i.e. there exists some collection V = {𝑉𝑖}∞𝑖=1 of open
subsets of 𝑋 such that any open subset of 𝑋 can be written as the union of ele-
ments of V.

Definition 4.1.4. A Hausdorff space 𝑋 is a topological space where for every
pair points there exist neighbourhoods of each that are mutually disjoint, i.e.
given points𝑈1, 𝑈2 ∈ 𝑋, ∃𝑊1,𝑊2 such that𝑈1 ∈𝑊1,𝑈2 ∈𝑊2 and𝑊1 ∩𝑊2 = ∅

Definition 4.1.5. A map Φ : X1→ X2 is called a homeomorphism if it satisfies:

• Bĳectivity, i.e. ∀𝑈 ∈ 𝑋1∃Φ(𝑈) ∈ 𝑋2 and ∀𝑈𝑎 , 𝑈𝑏 ∈ 𝑋1, Φ(𝑈𝑎) = Φ(𝑈𝑏) iff
𝑈𝑎 = 𝑈𝑏 .

• Continuity, i.e. for any neighbourhood𝑊2 ofΦ(𝑈) there exists some neigh-
bourhood𝑊1 of𝑈 such that Φ(𝑊1) ⊆ 𝑊2.

• Continuity of the inverse, i.e. Φ−1 is continuous.

Two topological spaces are said to be homeomorphic if there exists such a
map Φ between them.
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Definition 4.1.6. Two topological spaces 𝑋1, 𝑋2 are locally homeomorphic if for
every𝑈 ∈ 𝑋1 there exists an open set 𝑉1 3 𝑈 with a homeomorphism Φ : 𝑉1 →
𝑉2, where 𝑉2 ⊂ 𝑋2.

At this point, we have the necessary ingredients to define a manifold.

Definition 4.1.7. A manifold M is a second countable Hausdorff space that is
locally homeomorphic to a Eucledian space F𝑛 (e.g. R𝑛 , C𝑛 , etc.)

Similarly to optimisation in Eucledian space, optimisation algorithms on man-
ifolds are usually based on the gradient. Therefore, we also need to introduce
the notion of differentiability in a manifold.

Definition 4.1.8. A chart (𝑉,Φ) is a homeomorphism Φ between an open set 𝑉
in a topological space 𝑋 and an open set in a Eucledian space.

Definition 4.1.9. An atlas is a collection of charts {(𝑉𝑖 ,Φ𝑖)}𝑖 such that they cover
the entirety of the topological space 𝑋, i.e.

⋃
𝑖 𝑉𝑖 = 𝑋. Additionally, if for 𝑉𝑎 , 𝑉𝑏

such that 𝑉𝑎 ∩ 𝑉𝑏 ≠, one has that Φ𝑏 ◦ Φ𝑎 : Φ(𝑈𝑎 ∩ 𝑈𝑏) → Φ𝑏(𝑈𝑎 ∩ 𝑈𝑏) is 𝐶𝑟

differentiable, then the atlas is said to be a 𝐶𝑟 atlas.

Definition 4.1.10. A 𝐶𝑟 differentiable manifold is a manifold M with a 𝐶𝑟 atlas.
If 𝑟 = ∞, then M is said to be a smooth manifold.

Just as how points on surfaces in Eucledian space have tangent planes, points
on differentiable manifolds have tangent spaces. The definition of derivative on
a manifold is also given here, which is a generalisation of the directional deriva-
tive in multivariable calculus.

Definition 4.1.11. Given a point 𝑈 ∈ M and a curve 𝛾(𝑡) : [𝑡0 − 𝑇, 𝑡0 + 𝑇] → M

such that 𝛾(𝑡0) = 𝑈 , the vector 𝑋𝑝 = 𝑑
𝑑𝑡𝛾(𝑡)|𝑡0 is said to be a tangent vector at 𝑈 .

The tangent space 𝑇𝑝M of M at𝑈 is the set all tangent vectors at𝑈 . The disjoint
union of all tangent spaces

⊔
𝑈∈M 𝑇𝑈M =

⋃
𝑈∈M{𝑈} × 𝑇𝑈M is known called the

tangent bundle 𝑇M.

Definition 4.1.12. Given two manifolds M1, M2, a map Φ : M1 → M2 and a
curve 𝛾 : [𝑡0 − 𝑇, 𝑡0 + 𝑇] → M1, such that 𝛾(𝑡0) = 𝑈 , the derivative 𝐷Φ(𝑈) :
𝑇𝑈M1→ 𝑇Φ(𝑈)M2 is defined through 𝛾 on M1 and 𝛾Φ = Φ ◦ 𝛾 on M2 as

𝐷Φ(𝑈)[𝛾¤ (𝑡0)] = 𝛾¤Φ(𝑡0). (4.1)
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At this point we are finally ready to define a Riemannian manifold, which is
the kind of manifold on which we intend to perform optimisation.

Definition 4.1.13. Given a tangent bundle 𝑇M, if an inner product 𝑔𝑈(·, ·) is de-
fined in each of the 𝑇𝑈M tangent spaces, then the collection of these inner prod-
ucts is called Riemannian metric 𝑔. A smooth manifold together with a Rieman-
nian metric is called a Riemannian manifold (M, 𝑔).
Theorem 4.1.1. For any smooth manifold, there exists a Riemannian metric.

Definition 4.1.14. Given a Riemannian manifold (M, 𝑔), the gradient of a map
Φ : M→ R is defined as the unique tangent vector gradΦ(𝑈) that satisfies

𝐷Φ(𝑈)[𝜉] = 𝑔𝑈(gradΦ(𝑈), 𝜉), 𝜉 ∈ 𝑇𝑈M. (4.2)

The fact that gradΦ(𝑈) is unique can be checked by considering two tangent
vectors 𝜂, 𝜁 ∈ 𝑇𝑈M, such that𝐷Φ(𝑈)[𝜉] = 𝑔𝑈(𝜂, 𝜉) = 𝑔𝑈(𝜁, 𝜉), ∀𝜉 ∈ 𝑇𝑈M. Then,
by linearity of the inner product: 𝑔𝑈(𝜂 − 𝜁, 𝜉) = 0, where 𝜂 − 𝜁 ∈ 𝑇𝑈M. Since 𝜉

is arbitrary, we have that 𝜂 = 𝜁.

Proposition 4.1.2. Given a Riemannian manifold (M̂, �̂�), its Riemannian submani-
fold (M, 𝑔) and the orthogonal projection Π𝑈 : 𝑇𝑈M̂ → 𝑇𝑈M. Then the Riemannian
gradients of Φ̂ on M̂ and Φ, its restriction to M, satisfy

gradΦ(𝑈) = Π𝑈(gradΦ̂(𝑈)). (4.3)

An important difference between Eucledian and Riemannian optimisation
is the fact that the update rule must keep the iteration inside the manifold. It
is not sufficient to linearly displace the estimate in the opposite direction of the
gradient, since manifolds are not linear nor convex in general. Instead, this dis-
placement is done through retractions on the manifold. That is how the same
optimisation problem can be solved in an unconstrained manner, or with a sim-
pler set of constraints.

Definition 4.1.15. A retraction is a smooth map 𝑅 : 𝑇M → M such that its
restriction 𝑅𝑈 to 𝑇𝑈M satisfies the following conditions:

• 𝑅𝑈(0𝑈) = 𝑈 .

• 𝐷𝑅𝑈(0𝑈) = 1𝑇𝑈M.
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We now have the necessary ingredients to talk about Riemannian optimisa-
tion problems,

�̂� = argmin
𝑈∈M

Φ(𝑈). (4.4)

Theorem 4.1.3. GivenΦ of class𝐶1, if𝑈∗ ∈ M is a local optimal solution to the problem
(4.4), then gradΦ(𝑈) = 0.

However, in this work we are interested in performing optimisation only on
a particular kind of Riemannian manifold, which is the Stiefel manifold.

Definition 4.1.16. The set 𝑉𝑑(F𝑛) = {𝑈 ∈ F𝑛×𝑑 |𝑈†𝑈 = 1𝑑}, as a submanifold of
F𝑛×𝑑, where F (e.g. R, C, etc.) and 𝑛 ≥ 𝑑, is called Stiefel manifold.

In particular, as mentioned above, we are interested in the complex valued
Stiefel manifold. Therefore, in what follows we will consider F = C,

Proposition 4.1.4. Given𝑈 ∈ 𝑉𝑑(C𝑛), Π = 𝑈𝑈† is a projector.

Proof. In order for Π to be a projector it needs to be Hermitian and idempotent,
i.e.

Π† = (𝑈𝑈†)† = 𝑈𝑈† = Π, (4.5)

Π2 = (𝑈𝑈†)(𝑈𝑈†) = 𝑈1𝑑𝑈† = 𝑈𝑈† = Π. (4.6)

□

Since any 𝑈,𝑉 ∈ 𝑉𝑑(C𝑛), there exists a smooth function 𝑋 : [0.1] → 𝑉𝑑(C𝑛)
such that 𝑋(0) = 𝑈 and 𝑋(1) = 𝑉 . From the constraint, 𝑋(𝑡)†𝑋(𝑡) = 1𝑑 and
therefore,

𝑑
𝑑𝑡
𝑋(𝑡)†𝑋(𝑡) = 𝑑𝑋(𝑡)†

𝑑𝑡
𝑋(𝑡) + 𝑋(𝑡)† 𝑑𝑋(𝑡)

𝑑𝑡
= 0𝑑,𝑑 . (4.7)

The above condition defines the tangent vector space at𝑈 ∈ 𝑉𝑑(C𝑛),

T𝑈𝑉𝑑(C𝑛) B {𝑋 ∈ C𝑛×𝑑 |𝑋†𝑈 +𝑈†𝑋 = 0𝑑,𝑑}. (4.8)

Clearly, T𝑈𝑉1(C𝑛) is a set of orthogonal vectors (with respect to the Euclidean
inner product) of𝑈 . Consider the following maps,
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𝜋𝑈(𝑋) B 𝑈Skew(𝑈†𝑋) + (1𝑛 −𝑈𝑈†)𝑋, (4.9)

𝜋⊥𝑈(𝑋) B 𝑈Sym(𝑈†𝑋), (4.10)

for 𝑋 ∈ C𝑛×𝑑, where Sym(𝑍) = (𝑍 + 𝑍†)/2 and Skew(𝑍) B (𝑍 − 𝑍†)/2 for
𝑍 ∈ C𝑑×𝑑. From the definition, 𝑋 = 𝜋𝑈(𝑋) + 𝜋⊥𝑈(𝑋) for any 𝑋 ∈ C𝑛×𝑑 and
𝜋𝑈(𝑈) = 0𝑛,𝑑. 𝜋𝑈 is a projection onto T𝑈𝑉𝑑(C𝑛) and we have

𝑔𝑈(𝜋𝑈(𝑋),𝜋⊥𝑈(𝑋)) = 0∀𝑋 ∈ C𝑛×𝑑 ,
where 𝑔𝑈 is an inner product at𝑈 ∈ 𝑉𝑑(C𝑛) defined as

𝑔𝑈(𝑋,𝑌) B 𝑡𝑟(𝑋†(1𝑛 − 1
2
𝑈𝑈†)𝑌), (4.11)

for 𝑋,𝑌 ∈ C𝑛×𝑑. 𝑔𝑈 is called the canonical inner product in the field of Rie-
mannian geometry. See Section 2.4 of [5] for the reason why this definition is
commonly used. Note that 𝑈 ∈ 𝑉𝑑(C𝑛) and 𝑋 ∈ T𝑈𝑉𝑑(C𝑛) are orthogonal
with respect to the canonical inner product (4.11), but it does not imply that
𝑈†𝑋 = 0𝑑,𝑑 in general.

The main retractions on the Stiefel manifold are the following [24]:

• Exponential mapping

RetrExp
𝑍 (𝜉) = [𝑍 𝑄] exp

( [−𝑍>𝜉 −𝑅>
𝑅 0

] ) [
1𝑑0

]
, (4.12)

where
𝑄𝑅 = −(1𝑑 − 𝑍𝑍>)𝜉. (4.13)

• Polar decomposition

RetrPolar
𝑍 (𝜉) = (𝑍 + 𝜉)(1 + 𝜉>𝜉)−1/2. (4.14)

• QR decomposition
RetrQR

𝑍 (𝜉) = QR(𝑍 + 𝜉). (4.15)

• Cayley transformation

RetrCayley
𝑍 (𝜉) = (1𝑛 − 1

2
𝑊(𝜉))−1(1𝑛 + 1

2
𝑊(𝜉))𝑍, (4.16)

where
𝑊(𝜉) = (1 − 𝑍𝑍>/2)𝜉𝑍> − 𝑍𝜉>(1 − 𝑍𝑍>/2). (4.17)
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4.2 OPTIMISATION ALGORITHMS

In this section three different kinds of optimisation algorithms are intro-
duced. First, gradient-based algorithms that result in local optimisers, and then,
diffusion-based and consensus-based algorithms that approximate global opti-
misers.

4.2.1 GRADIENT-BASED OPTIMISATION ALGORITHMS

From the previous subsection, we obtain the Euclidean gradient of the cost
function 𝐽𝑑(𝑈) at 𝑈 ∈ 𝑉𝑑(C𝑛). Remember that since Π𝑈 = 𝑈𝑈† = 𝑈𝑅𝑅†𝑈†

for any unitary 𝑅 ∈ C𝑑×𝑑, the optimal solution is not unique 𝑈 if it exists. If
𝑈 changes but Π𝑈 remains a certain matrix, it means that we may find a local
optimum. Since we do not know whether the cost function 𝐽𝑑 has a unique opti-
mum on 𝑉𝑑(C𝑛), we run one of the algorithms below with several initial values
(multi-start optimisation).

Remember that the gradient of 𝐽𝑑 at𝑈 ∈ 𝑉𝑑(C𝑛) is given by (A.2), i.e.,

𝑔𝑟𝑎𝑑𝐽𝑑(𝑈) = ∇𝑈 𝐽𝑑(𝑈) −𝑈(∇𝑈 𝐽𝑑(𝑈))†𝑈. (4.18)

Therefore, the solution of the ordinary differential equation

𝑑
𝑑𝑡
𝑈(𝑡) = 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈(𝑡)), (4.19)

with 𝑈(0) ∈ 𝑉𝑑(C𝑛) always lies on 𝑉𝑑(C𝑛) and if there exists the steady state
solution, it is a local optimum of 𝐽𝑑. As I mentioned above, a local optimal so-
lution is not unique, but 𝑃𝑖𝑈 = 𝑈𝑈† converges to the local optimum. [11] gives
more details on gradient flow.

Note that numerical calculation does not make the flow {𝑈(𝑡)}𝑡≥0 lie on𝑉𝑑(C𝑛).
Usually the QR decomposition is employed to correct the error. QR decompo-
sition of 𝑋 ∈ C𝑛×𝑑 is 𝑋 = 𝑄𝑅, where 𝑄 ∈ 𝑉𝑑(C𝑛) and 𝑅 is an upper triangular
matrix. Therefore, calculate QR decomposition of (𝑈(𝑡) + 𝑑𝑈), take the 𝑄 part
of it, and update as 𝑈(𝑡 + 𝑑𝑡) = 𝑄. Another normalisation for a given 𝑋 ∈ C𝑛×𝑑
is to use𝑈 = 𝑋(𝑋†𝑋)−1/2 if the inverse exists.

To describe the dynamics of the Stiefel manifold, it is useful to use a so-called
exponential map explicitly. The exponential map on 𝑉𝑑(C𝑛) with respect to the
canonical inner product (4.11) defined as follows.
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Definition 4.2.1 (Exponential map). A map

exp𝑈 : T𝑈𝑉𝑑(C𝑛) → 𝑉𝑑(C𝑛) (4.20)

is called an exponential map with respect to the canonical inner product
(4.11) if

exp𝑈(0𝑛,𝑑) = 𝑈 and 𝑑
𝑑𝑡

exp𝑈(𝑡𝑋)|𝑡=0 = 𝑋, (4.21)

for𝑈 ∈ 𝑉𝑑(C𝑛) and 𝑋 ∈ T𝑈𝑉𝑑(C𝑛).

In order to obtain the exponential map, we start with the following exponen-
tial matrix. Let us consider the

𝐸𝑥𝑝′𝑈(𝑋) B exp(𝑋𝑈† −𝑈𝑋†), 𝑈 ∈ 𝑉𝑑(C𝑛), 𝑋 ∈ C𝑛×𝑑 . (4.22)

Since 𝐸𝑥𝑝′𝑈(𝑋)† = 𝐸𝑥𝑝′𝑈(−𝑋) = 𝐸𝑥𝑝′𝑈(𝑋)−1 (i.e., 𝐸𝑥𝑝′𝑈(𝑋) is unitary),

𝐸𝑥𝑝′𝑈(𝑡𝑋)𝑈 ∈ 𝑉𝑑(C𝑛)∀𝑡 ∈ R. (4.23)

Furthermore, for any 𝑋 ∈ C𝑛×𝑑,

𝑑
𝑑𝑡
𝐸𝑥𝑝′𝑈(𝑡𝑋)𝑈 |𝑡=0 = 𝑋 −𝑈𝑋†𝑈 ∈ T𝑈𝑉𝑑(C𝑛).

If 𝑋 ∈ T𝑈𝑉𝑑(C𝑛) (i.e.,𝑈†𝑋 = −𝑋†𝑈), then we have

𝑑
𝑑𝑡
𝐸𝑥𝑝′𝑈(𝑡𝑋)𝑈 |𝑡=0 = (1𝑛 +𝑈𝑈†)𝑋.

It is easy to check that (1𝑛 + 𝑈𝑈†)𝑋 ∈ T𝑈𝑉𝑑(C𝑛) for any 𝑋 ∈ T𝑈𝑉𝑑(C𝑛).
Therefore, for any 𝑋 ∈ T𝑈𝑉𝑑(C𝑛), there exists 𝑌 ∈ T𝑈𝑉𝑑(C𝑛) such that 𝑋 =

(1𝑛 + 𝑈𝑈†)−1𝑌. The matrix inversion lemma (the Woodbury matrix identity)
gives (1𝑛 +𝑈𝑈†)−1 = 1𝑛 − 1

2𝑈𝑈
†. Therefore, the following exponential matrix,

𝐸𝑥𝑝𝑈(𝑋) B 𝐸𝑥𝑝′𝑈((1𝑛 −
1
2
𝑈𝑈†)𝑋), 𝑈 ∈ 𝑉𝑑(C𝑛), 𝑋 ∈ T𝑈𝑉𝑑(C𝑛), (4.24)

defines the exponential map with respect to the canonical inner product (4.11)

exp𝑈(𝑋) B 𝐸𝑥𝑝𝑈(𝑋)𝑈. (4.25)
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If 𝑛 is large, it takes a long time to compute the exponential matrix. To re-
duce the computational burden, some efficient calculation methods have been
proposed (see, e.g., [40, 41]). The following is one of them.

Lemma 4.2.1 ([40]). For a given 𝑈 ∈ 𝑉𝑑(C𝑛), consider 𝑋 ∈ T𝑈𝑉𝑑(C𝑛). Define 𝐴 B
𝑈†𝑋 ∈ C𝑑×𝑑 and consider the QR decomposition 𝑄𝑅 = (1𝑛 − 𝑈𝑈†)𝑋, where 𝑄 ∈
𝑉𝑑(C𝑛) and 𝑅 ∈ C𝑑×𝑑 is upper triangular (𝑋 = 𝑈𝑈†𝑋 + (1𝑛 −𝑈𝑈†)𝑋 = 𝑈𝐴+𝑄𝑅).
Then, the following map is an exponential map with respect to the inner product (4.11).

exp𝑐𝑈(𝑋) B
[
𝑈 𝑄

]
exp

(
𝐴 −𝑅†
𝑅 0𝑑,𝑑

) [
𝐼𝑑

0𝑑,𝑑

]
∈ 𝑉𝑑(C𝑛), (4.26)

where exp represents the matrix exponential function.

Since the exponential map is uniquely determined [41], exp𝑐𝑈(𝑋) = exp𝑈(𝑋)
for all 𝑋 ∈ T𝑈𝑉𝑑(C𝑛). For 𝑡 ∈ R, we interpret 𝑡𝑋 = 𝑈(𝑡𝐴) +𝑄(𝑡𝑅) so that

𝑒𝑥𝑝𝑐𝑈(𝑡𝑋) =
[
𝑈 𝑄

]
exp

(
𝑡

[
𝐴 −𝑅†
𝑅 0𝑑,𝑑

]) [
𝐼𝑑

0𝑑,𝑑

]
∈ 𝑉𝑑(C𝑛). (4.27)

Algorithm 1 Gradient descent
Require: 𝑈0 ∈ 𝑉𝑑(C𝑛)
Ensure: b

1: while not Stopping conditions do
2: 𝑑0← 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈0)
3: Φ(𝑡) ← 𝐽𝑑(𝐸𝑥𝑝𝑈𝑘 (𝑡𝑑𝑘)𝑈𝑘)
4: 𝑡𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈[0,∞)Φ(𝑡)
5: 𝑈𝑘+1 = 𝐸𝑥𝑝𝑈𝑘 (𝑡𝑘𝑑𝑘)𝑈𝑘 , 𝑑𝑘+1 = 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈𝑘+1)
6: end while

As described above, numerical computation of an exponential matrix is some-
times hard. To avoid it, other algorithms have been proposed so far. Roughly
speaking, these methods allow to leave from 𝑉𝑑(C𝑛) once, and using a pullback
onto 𝑉𝑑(C𝑛) again. The pullback is called retraction and QR decomposition is
usually employed for the retraction. QR decomposition of 𝑋 ∈ C𝑛×𝑑 is 𝑋 = 𝑄𝑅,
where𝑄 ∈ 𝑉𝑑(C𝑛) and 𝑅 is an upper triangular matrix. We need the𝑄 part, and
let Q : C𝑛×𝑑 → 𝑉𝑑(C𝑛) be the operation to give the 𝑄 part.

These algorithms, however, include the following optimisation problem 𝑡𝑘 ←
𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈[0,∞)Φ(𝑡). The variable 𝑡𝑘 is interpreted as a step length, and the objec-
tive is to use the step length that brings the estimate to the minimum of the curve
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Algorithm 2 Retraction-based gradient method
Require: 𝑈0 ∈ 𝑉𝑑(C𝑛), 𝑑0 = 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈0)
Ensure: b

1: while not Stopping conditions do
2: Φ(𝑡) ← 𝐽𝑑(Q(𝑈𝑘 + 𝑡𝑑𝑘))
3: 𝑡𝑘 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈[0,∞)Φ(𝑡)
4: 𝑈𝑘+1← Q(𝑈𝑘 + 𝑡𝑘𝑑𝑘) ∈ 𝑉𝑑(C𝑛),
5: 𝑑𝑘+1← 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈𝑘+1) ∈ T𝑈𝑘+1𝑉𝑑(C𝑛)
6: end while

Φ(𝑡), which follows the descent direction. This condition can be relaxed to the
following,

Φ(𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)) ≤ Φ(𝑈𝑘) + 𝑐1𝑡𝑘 〈gradΦ(𝑈𝑘), 𝜂𝑘〉𝑈𝑘 , (4.28)

which is know as Armĳo condition. This condition only requires the estimate
update to be good enough, where ”good enough” is regulated by the parameter
0 < 𝑐1 < 1. An additional conditional that is commonly used, together with
Armĳo condition is the following,

〈gradΦ(𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)), 𝐷𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)[𝜂𝑘]〉𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘) ≥ 𝑐2〈gradΦ(𝑈𝑘), 𝜂𝑘〉𝑈𝑘 . (4.29)

This is known as Wolfe condition, and 0 < 𝑐1 < 𝑐2 < 1. A stronger version of
this, known as strong Wolfe condition, is the following,

|〈gradΦ(𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)), 𝐷𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)[𝜂𝑘]〉𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘) | ≤ 𝑐2 |〈gradΦ(𝑈𝑘), 𝜂𝑘〉𝑈𝑘 |. (4.30)

In order to find a step size that satisfies the Armĳo condition the backtracking
algorithm is used. Additionally, the two-point method developed in [2] can be
used to speed up the calculation of the step size by substituting the fixed initial
estimate of the backtracking algorithm by the one given by this method.

Given the current and previous estimates of the optimisation algorithm,𝑈𝑘 ,
𝑈𝑘−1, the two-point method provides the following initial estimate for the step
size 𝑡. Let Δ𝑈𝑘 = 𝑈𝑘 − 𝑈𝑘−1 be the difference between the last two iterations,
and Δ𝐺𝑘 = 𝐺𝑘 −𝐺𝑘−1 the difference between their gradients, then the two-point
step size is
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Algorithm 3 Backtracking

Require: 𝑋 𝑖
0 ∈ 𝑉𝑑(F𝑛), 𝑇, ℎ

𝑡 ← 𝑡0
while Φ(𝑅𝑈𝑘 (𝑡𝑘𝜂𝑘)) > Φ(𝑈𝑘) + 𝑐1𝑡𝑘 〈gradΦ(𝑈𝑘), 𝜂𝑘〉𝑈𝑘 do
𝑡 ← 𝜏𝑡𝑘

end while
𝑡𝑘 ← 𝑡

𝑡𝑘 =
〈Δ𝑈𝑘 ,Δ𝐺𝑘〉
〈Δ𝐺𝑘 ,Δ𝐺𝑘〉 . (4.31)

Finally, the following theorem establishes the convergence of this kind of op-
timisation algorithm.

Theorem 4.2.2 (Zoutendĳk’s theorem for convergence). Let 𝜃𝑘 be the angle between
the search direction 𝜂𝑘 and the steepest descent direction −gradΦ(𝑈𝑘), i.e.,

cos(𝜃𝑘) = − 〈gradΦ(𝑈𝑘), 𝜂𝑘〉𝑈𝑘

‖gradΦ(𝑈𝑘)‖𝑈𝑘 ‖𝜂𝑘 ‖𝑈𝑘

. (4.32)

Given a step length 𝑡𝑘 that satisfies the Armĳo-Wolfe conditions for every integer
𝑘 ≥ 0, if the objective function Φ is bounded below and is of class 𝐶1, and if there exists
a constant 𝐿 > 0 such that

|𝐷(Φ ◦ 𝑅𝑈)(𝑡𝜂)[𝜂] − 𝐷(Φ ◦ 𝑅𝑈)(0)[𝜂] ≤ 𝐿𝑡, (4.33)

where 𝜂 ∈ 𝑇𝑈M with ‖𝜂‖𝑈 = 1, 𝑈 ∈ M, 𝑡 ≤ 0. Then, for 𝜃𝑘 the following series
converges,

∞∑
𝑘=0

cos2(𝜃𝑘)‖gradΦ(𝑈𝑘)‖2𝑈𝑘
< ∞. (4.34)

4.2.2 DIFFUSION-BASED ALGORITHMS

The following global optimisation algorithms rely heavily on the dynamics
of diffusion processes. Imagine to have a particle ensemble inside a volume.
A diffusion process is the evolution of the concentration of these particles, due
to the density gradient within the volume. In general, diffusion dynamics are
governed by the following equation,
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𝜕𝑡𝜌(𝑥, 𝑡) = ∇ · (𝐷(𝑥, 𝑡)∇𝜌(𝑥, 𝑡)). (4.35)

If the density is normalised, a diffusion process can also be understood as
the random walk of a single particle within a volume with initial probability
distribution 𝑤(𝑥, 𝑡0) = 𝜌(𝑥, 𝑡0). If the function 𝐷(𝑥, 𝑡) is a constant diffusion
coefficient 𝐷, then the diffusion equation has the following solution,

𝑤(𝑥, 𝑡) =
∫

𝑑𝑥0𝑊(𝑥, 𝑡 |𝑥0, 𝑡0)𝑤(𝑥0, 𝑡0), (4.36)

where

𝑊(𝑥, 𝑡 |𝑤0, 𝑡0) = 1√
4𝜋𝐷(𝑡 − 𝑡0)

𝑒−
(𝑥−𝑥0)2
4𝐷(𝑡−𝑡0) , (4.37)

and 𝑤(𝑥0, 𝑡0) is the initial condition.
Under the action of an external force, one would get stochastic processes de-

scribed by the Fokker-Planck equation,

𝜕𝑡𝑤(𝑥, 𝑡) = ∇ · [− 𝑓 (𝑥, 𝑡)𝑤(𝑥, 𝑡) + ∇[𝐷(𝑥, 𝑡)𝑤(𝑥, 𝑡)]], (4.38)

where 𝑓 (𝑥(𝑡), 𝑡) = 𝐹𝑒𝑥𝑡(𝑥(𝑡), 𝑡)/𝛾 is the drift velocity, 𝛾 is the viscous friction
coefficient of the medium, and 𝐹𝑒𝑥𝑡(𝑥(𝑡), 𝑡) is the external force. In what follows,
let us assume 𝛾 = 1.

Proposition 4.2.3. If the external force is conservative, i.e. there exists a potential𝑉(𝑥)
such that 𝑓 (𝑥) = −∇𝑉(𝑥), and assuming a constant diffusion coefficient 𝐷(𝑥, 𝑡) = 𝐷,
the stationary solution of the Fokker-Planck equation is

𝑊∗(𝑥) = 1
𝑍
𝑒−𝑉(𝑥)/𝐷 , (4.39)

which is known as Boltzmann distribution.

Proof. Multiply both sides of the Fokker-Planck equation by 𝑒𝑉(𝑥)/(2𝐷) and define
�̂�(𝑥, 𝑡) = 𝑒𝑉(𝑥)/(2𝐷)(𝑥, 𝑡) and �̂�(𝑥) = 𝑉(𝑥)/(2𝐷),

𝜕𝑡�̂�(𝑥, 𝑡) = 𝑒�̂�(𝑥)∇ · (2𝐷∇�̂�(𝑥)𝑤(𝑥, 𝑡) + 𝐷∇𝑤(𝑥, 𝑡)). (4.40)

Now apply the rule 𝑒− 𝑓 (𝑥)(∇ · 𝑒 𝑓 (𝑥)𝐺(𝑥)) = (∇+∇ 𝑓 (𝑥)) ·𝐺(𝑥)with 𝑓 (𝑥) = �̂�(𝑥)
and 𝐺(𝑥) = 2𝐷∇�̂�(𝑥)𝑤(𝑥, 𝑡) + 𝐷∇𝑤(𝑥, 𝑡),
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𝜕𝑡�̂�(𝑥, 𝑡) =𝑒�̂�(𝑥)∇ · 𝐺(𝑥)
=𝑒�̂�(𝑥)𝑒−�̂�(𝑥)(∇ · 𝑒�̂�(𝑥)𝐺(𝑥)) − 𝑒�̂�(𝑥)∇�̂�(𝑥) · 𝐺(𝑥)
=∇ · 𝑒�̂�(𝑥)𝐺(𝑥) − ∇�̂�(𝑥) · 𝑒�̂�(𝑥)𝐺(𝑥)
=(∇ − ∇�̂�) · (2𝐷∇�̂�(𝑥)�̂�(𝑥, 𝑡) + 𝐷𝑒�̂�(𝑥)∇𝑤(𝑥, 𝑡))

. (4.41)

Now apply the rule 𝑒− 𝑓 (𝑥)(∇𝑒 𝑓 (𝑥)𝑔(𝑥)) = (∇ + ∇ 𝑓 (𝑥))𝑔(𝑥) with 𝑓 (𝑥) = �̂�(𝑥)
and 𝑔(𝑥) = 𝑤(𝑥, 𝑡),

𝜕𝑡�̂�(𝑥, 𝑡) =(∇ − ∇�̂�) · (2𝐷∇�̂�(𝑥)�̂�(𝑥, 𝑡) + 𝐷∇�̂�(𝑥, 𝑡) − 𝐷∇�̂�(𝑥)�̂�(𝑥, 𝑡))
=(∇ − ∇�̂�) · (𝐷∇�̂�(𝑥)�̂�(𝑥, 𝑡) + 𝐷∇�̂�(𝑥, 𝑡))
=𝐷(∇ − ∇�̂�) · (∇ + ∇�̂�)�̂�(𝑥, 𝑡)

. (4.42)

Define now𝐴 = ∇�̂�+∇ and𝐴† = (∇�̂�−∇)>, then the Fokker-Planck equation
can be written as

𝜕𝑡�̂�(𝑥, 𝑡) = −𝐷𝐴†𝐴𝑤. (4.43)

Notice that

∫
X

𝑑𝑑𝑥𝜙(𝑥)𝐴†𝐴𝜙(𝑥) =
∫
X

𝑑𝑑𝑥(𝐴𝜙(𝑥))†(𝐴𝜙(𝑥)) =
∫
X

𝑑𝑑𝑥‖𝐴𝜙(𝑥)‖2 ≥ 0, (4.44)

where the equality holds iff 𝐴𝜙(𝑥) = 0, that is �̂�(𝑥, 𝑡) ∝ 𝑒−�̂� . Thus, the
stationary solution of the Fokker-Planck equation under a conservative force is
𝑊∗ = 𝑒−𝑉/𝐷/𝑍, where 𝑍 =

∫
X
𝑑𝑑𝑥𝑒−𝑉/𝐷 is the normalisation constant. □

For the purposes of simulations, an approach based on Brownian motion
can also be pursued. In particular, one would be interested in implementing the
following discrete time Langevin equation,

Δ𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑡)Δ𝑡 + √2𝐷Δ𝐵(𝑡), (4.45)

where
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Δ𝐵(𝑡) ∼ N(0,Δ𝑡). (4.46)

The Langevin equation is a Stochastic differential equation (SDE). As such,
the sampling time of 𝑑𝐵(𝑡) is important, since different sampling times within
each integration interval leads to different results. There are two standard frame-
works, known as Itô an Stratonovich prescriptions. Take 𝜏𝑘 = 𝜆𝑡𝑘 + (1 − 𝜆)𝑡𝑘−1,
with 0 ≤ 𝜆 ≤ 1. If the samples 𝑑𝐵(𝜏𝑘) are taken with 𝜆 = 0, then it the Itô pre-
scription, and if 𝜆 = 1/2, then it is the Stratonovich prescription. When one of
these two prescriptions is used, the following notations are used,

𝑆Itô =
∫ 𝑡

𝑡0
𝐵(𝜏)𝑑𝐵(𝜏) = 𝐵2(𝑡) − 𝐵2(𝑡0)

2
− 𝑡 − 𝑡0

2
, (4.47)

𝑆Stratonovich =
∫ 𝑡

𝑡0
𝐵(𝜏) ◦ 𝑑𝐵(𝜏) = 𝐵2(𝑡) − 𝐵2(𝑡0)

2
, (4.48)

i.e. the Stratonovich is denoted by an empty circle product sign and the Itô
prescription is denoted by no product sign. If a general prescription is used, also
called 𝜆-prescription, the following notation is used

𝑆𝜆 =
∫ 𝑡

𝑡0
𝐵(𝜏)𝑑𝐵(𝜏)|𝜆= 𝐵2(𝑡) − 𝐵2(𝑡0)

2
+ (𝑡 − 𝑡0)2𝜆 − 1

2
. (4.49)

Additionally, equations (4.47,4.48,4.49) show the results of the integral of the
identity function under the different prescriptions, i.e. the equivalent of the in-
tegral

∫ 𝑡
𝑡0
𝑓 (𝜏)𝑑𝑓 (𝜏) = ( 𝑓 2(𝑡) − 𝑓 2(0))/2 in non-stochastic calculus. The Itô pre-

scription has the advantage that it preserves causality, since the noise acts be-
fore the state update. But the Stratonovich prescription has the advantage that
it reproduces the results from non-stochastic calculus and it is invariant under
time reversal.

As such, the continuous time Langevin equation under the Itô prescription
would be

𝑑𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑡)𝑑𝑡 + √2𝐷𝑑𝐵(𝑡). (4.50)

Notice how in the absence of noise, i.e. 𝐷 = 0, and under conservative forces
only, i.e. 𝑓 (𝑥(𝑡), 𝑡) = −∇𝑉(𝑥(𝑡)), simulating this equation is equivalent to per-
forming the steepest descent method (with fixed step size) if we use the objective
function as the potential 𝑉(𝑥).
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We introduce now an algorithm that is based on these processes. It uses the
cost function as a potential on which the walk of a single particle is simulated. It
is called IDDM and was first introduced in [38], for the real-valued Stiefel man-
ifold. Here it has been adapted to the problem at hand. Namely, the algorithm
has been adapted to run over the complex-valued Stiefel manifold, instead of the
real-valued one.

At its core, this algorithm is a version of simulated annealing, with a noise
term that not only is diminishing but also intermittent. Another way to interpret
it is as an alternation between simulated annealing and gradient descent.

The usual gradient descent method, when used for solving non-convex prob-
lems, may converge to local stationary points. Therefore, finding the global min-
imum of a function is not guaranteed by the algorithms mentioned up to this
point. To overcome this obstacle, a noise term may be added, resulting in the
following SDE,

𝑑𝑈(𝑡) = −grad𝐽𝑑(𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡) ◦ 𝑑𝐵𝑉𝑑(C𝑛)(𝑡), (4.51)

where 𝐵𝑉𝑑(C𝑛)(𝑡) is an 𝑛-dimensional Brownian motion on the Stiefel man-
ifold, and ◦ indicates the Stratonovich prescription. The diffusion coefficient
𝜎(𝑡), if chosen with and appropiate decreasing profile, and given certain regu-
larity conditions on 𝐽𝑑(𝑈), guarantees the convergence of the optimiser to the
global minimum of the function. This method is called Simulated Annealing, or
Continuous Diminishing Diffusion.

If the diffusion coefficient is chosen with a piecewise constant profile of the
form 𝜎(𝑡) = ∑𝑁

𝑖=1 𝜎𝑖1[𝑆𝑖 ,𝑆𝑖+𝑇𝑖](𝑡), the method is called Intermittent Diffusion. This
profile has value 𝜎𝑖 in the interval [𝑆𝑖 , 𝑆𝑖 + 𝑇𝑖] and zero in the interval (𝑆𝑖 +
𝑇𝑖 , 𝑆𝑖+1). The proposed algorithm is a combination of Simulated Annealing and
Intermittent Diffusion on the Stiefel manifold. Therefore, it is called Intermittent
Diminishing Diffusion on Manifold (IDDM).

However, to make use of (4.51) in numerical optimisation, an extrinsic pre-
sentation is necessary. One using the embedding coordinates of 𝑉𝑑(C𝑛) into
C𝑛×𝑑 is proposed.

𝑑𝑈(𝑡) = −grad𝐽𝑑(𝑈(𝑡))𝑑𝑡 + 𝜎(𝑡)
𝑛∑
𝑢=1

𝑑∑
𝑣=1

𝑃𝑢𝑣(𝑈(𝑡)) ◦ 𝑑𝐵𝑢𝑣(𝑡), (4.52)

where {𝐵𝑢𝑣(𝑡)} is a series of independent standard Brownian motions and
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𝑃𝑢𝑣 is the projection of the one-entry matrices 𝐸𝑢𝑣 onto the tangent space at𝑈(𝑡).
The equivalent Itô SDE is

𝑑𝑈(𝑡) =
(
−grad𝐽𝑑(𝑈(𝑡)) − 𝑛 − 1

2
𝜎2(𝑡)𝑈(𝑡)

)
𝑑𝑡 + 𝜎(𝑡)𝑃𝑈(𝑑𝐵(𝑡)), (4.53)

where 𝑃𝑈(𝑑𝐵(𝑡)) = ∑𝑛
𝑢=1

∑𝑑
𝑣=1 𝑃𝑢𝑣(𝑈(𝑡))𝑑𝐵𝑢𝑣(𝑡).

In order to solve the SDE numerically, first project the random noise in the
ambient space onto the tangent space of the Stiefel manifold. After that, apply
the Cayley transformation. The following update rule is proposed,

𝑍𝑘 = −𝛿𝑘𝐺𝑘 + 𝜎𝑘(1𝑛 − 𝛽𝑌𝑘𝑌𝑇𝑘 )𝛿𝐵𝑘 , (4.54)

𝑊𝑘 = 𝑍𝑘𝑌𝑇𝑘 − 𝑌𝑘𝑍𝑇𝑘 , (4.55)

𝑌𝑘+1 = (1 − 𝑊𝑘

2
)−1(1 + 𝑊𝑘

2
)𝑌𝑘 , (4.56)

where 𝐺𝑘 is the Eucledian gradient and 𝛿𝑘 is the time difference at time 𝑘.

Algorithm 4 Numerical scheme for the diffusion process
Require: 𝜎(𝑡), 𝑡0 = 𝜏0 < 𝜏1 < ... < 𝜏𝐾 = 𝑇, 𝑌0 = 𝑈(𝑡0)

𝛿𝑘 ← 𝜏𝑘+1 − 𝜏𝑘
𝜎𝑘 ← 𝜎(𝜏𝑘)
𝐺𝑘 ← ∇𝐸𝐽𝑑(𝑌𝑘)
{𝛿𝐵𝑘}𝐾−1

𝑘=0 ∼ 𝑁(0, 𝛿𝑘)
for 𝑘 = 0 : 𝐾 − 1 do
𝑍𝑘 ← −𝛿𝑘𝐺𝑘 + 𝜎𝑘(1𝑛 − 𝛽𝑌𝑘𝑌𝑇𝑘 )𝛿𝐵𝑘
𝑊𝑘 ← 𝑍𝑘𝑌𝑇𝑘 − 𝑌𝑘𝑍𝑇𝑘
𝑌𝑘+1← (1 − 𝑊𝑘

2 )−1(1 + 𝑊𝑘
2 )𝑌𝑘

end for
𝑈(𝜏𝑘) ← 𝑌𝑘

Instead of the exponential map, an implicit mid-point update scheme is used
to compute the next estimate,

𝑌(𝜏) = 𝑈 − 𝜏𝑊
(
𝑈 + 𝑌(𝜏)

2

)
, (4.57)

where −grad𝐽𝑑(𝑈) = −𝑊𝑈 . This update scheme is equivalent to the follow-
ing Cayley transformation,
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𝑌(𝜏) = (1 + 𝜏
2
𝑊)−1(1 − 𝜏

2
𝑊)𝑈. (4.58)

Hence, as shown in the previous section, this is a retraction in the Stiefel
manifold and orthonormality is guaranteed at each iteration.

Under certain conditions the Frobenius norm of the gradient converges to
zero. These conditions are the following.

• 𝑊 is continuous in𝑈 .

• 𝐽′𝑑𝜏(𝑌(0)) ≤ −𝜎‖𝑊 ‖2𝐹, where 𝐽′𝑑𝜏 = 𝜕𝐽𝑑(𝑌(𝜏))
𝜕𝜏 |𝜏=0 = −1

2 ‖𝑊 ‖2𝐹 and 𝜎 > 0 is
constant.

Algorithm 5 Intermittent Diminishing Diffusion on the Stiefel Manifold (IDDM)
Require: 𝑁 , 𝜎𝑛 , 𝑇𝑛 , 𝑈0

while Terminal conditions not satisfied do
if 𝑘 ≥ 𝑁 then

break
end if
Use Alg. 4 to solve (4.52)
Use Alg. 2 until convergence to local minimum
if 𝑓 (𝑈𝑘+1) < 𝑓 (𝑈𝑜𝑝𝑡) then
𝑈𝑜𝑝𝑡 ← 𝑈𝑘+1;

end if
𝑘 ← 𝑘 + 1

end while

4.2.3 CONSENSUS METHOD

The last algorithm to be considered is a CBO algorithm, developed in [13].
Here, the algorithm is adapted to the complex-valued Stiefel manifold. This
algorithm is similar to the previous one in the sense that it also simulates random
walks and relies of the solution of a SDE. However, in this case many many
interacting particles are simulated and the gradient of the cost function is not
necessary. This interaction is weighted by the cost function, in a way such that
the particle with the lowest cost exerts a greater attraction.

The CBO model is given by a stochastic interacting particle system for 𝑁
agents 𝑥 𝑖𝑡 ∈ R𝑑,

𝑑𝑥𝑡𝑡 = −𝜆(𝑥 𝑖𝑡 − �̄�∗𝑡)𝑑𝑡 + 𝜎 |𝑥 𝑖𝑡 − �̄�∗𝑡 |𝑑𝑤 𝑖
𝑡 , (4.59)
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where 𝑖 = 1, ..., 𝑁 , 𝑤 𝑖
𝑡 is the standard Wiener process on R𝑑, representing

a Brownian motion, 𝜎 is the noise strength for exploration and 𝜆 represents the
strength of the consensus dynamics. 𝑁 is the number of particles. A larger num-
ber of particles provides a better approximation of global minimisers. Finally,
�̄�∗𝑡 is the weighted average of the particle positions, according to the Boltzmann
distribution, i.e.

�̄�∗𝑡 =
𝑁∑
𝑖=1
(

𝜔
𝛽
𝑓 (𝑥 𝑖𝑡)∑𝑁

𝑗=1 𝜔
𝛽
𝑓 (𝑥

𝑗
𝑡)
)𝑥 𝑖𝑡 , (4.60)

and
𝜔

𝛽
𝑓 (𝑠) = exp(−𝛽 𝑓 (𝑥)), (4.61)

where 𝛽 is the inverse temperature. A larger inverse temperature provides a
better approximation.

Over the complex-valued Stiefel manifold, the previous model would be

𝑑𝑈 𝑖
𝑡 = −𝜆𝑃𝑈 𝑖

𝑡
(𝑈 𝑖

𝑡 − �̄�∗𝑡)𝑑𝑡 + 𝜎 |𝑈 𝑖
𝑡 − �̄�∗𝑡 |𝑃𝑈 𝑖

𝑡
(𝑑𝑊𝑡) − 𝐶𝑛,𝑑

𝜎2
𝑡 |𝑈 𝑖

𝑡 − �̄�∗𝑡 |2
2

𝑈 𝑖
𝑡 𝑑𝑡, (4.62)

where 𝑖 = 1, ..., 𝑁 and {𝑊𝑡} is the standard Wiener process on C𝑛×𝑑, which
is defined by Itô’s sense, and

𝐶𝑛,𝑑 =
2𝑛 − 𝑑 − 1

2
, (4.63)

�̄�∗𝑡 =
𝑁∑
𝑖=1

𝑈 𝑖
𝑡 [

𝜔
𝛽
𝑓 (𝑈 𝑖

𝑡 )∑𝑁
𝑗=1 𝜔

𝛽
𝑓 (𝑈

𝑗
𝑡 )
]. (4.64)

However, since 𝑃𝑈 𝑖
𝑡
(𝑈 𝑖

𝑡 ) = 0, the stochastic system can be reduced to

𝑑𝑈 𝑖
𝑡 = (𝜆𝑃𝑈 𝑖

𝑡
(�̄�∗𝑡) − 𝐶𝑛,𝑑

𝜎2 |𝑈 𝑖
𝑡 − �̄�∗𝑡 |2
2

𝑈 𝑖
𝑡 )𝑑𝑡 + 𝜎 |𝑈 𝑖

𝑡 − �̄�∗𝑡𝑃𝑈 𝑖
𝑡
(𝑑𝑊𝑡). (4.65)

Following the Euler-Maruyama method, the SDE is discretised as
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𝑈 𝑖
𝑛+1 = 𝑈 𝑖

𝑛 + (𝜆𝑃𝑈 𝑖
𝑛
(�̄�∗𝑛) − 𝐶𝑛,𝑑

𝜎2 |𝑈 𝑖
𝑛 − �̄�∗𝑛 |2
2

𝑈 𝑖
𝑛)Δ𝑡 + 𝜎 |𝑈𝑛

𝑖 − �̄�∗𝑛 |𝑃𝑈𝑛
𝑖
(Δ𝑊 𝑖

𝑛+1),
(4.66)

where Δ𝑡 is the time step size and Δ𝑊 𝑖
𝑛+1 denotes an 𝑛 × 𝑑 matrix with i.i.d.

N(0,Δ𝑡) components.
However, this update rule does not preserve orthogonality. Therefore, a pro-

jection step is added, so that𝑈 =𝑊Σ𝑉𝑇 is mapped to Π(𝑈) =𝑊1𝑛,𝑑𝑉𝑇 .
The term −𝐶𝑛,𝑑 𝜎

2 |𝑈 𝑖
𝑡−�̄�∗𝑡 |2
2 𝑈 𝑖

𝑡 𝑑𝑡 keeps the points inside the manifold.

Algorithm 6 Consensus method
Require: 𝑈 𝑖

0 ∈ 𝑉𝑑(F𝑛), 𝑇, ℎ
𝛿𝑑 ← 𝜏𝑑+1 − 𝜏𝑑
while 𝑛ℎ < 𝑇 do
Δ𝑊 𝑖

𝑛+1 ∼ N(0,Δ𝑡)
𝑈 𝑖
𝑛+ 1

2
← 𝑈 𝑖

𝑛 + (𝜆𝑃𝑈 𝑖
𝑛
(�̄�∗𝑛) − 𝐶𝑛,𝑑 𝜎

2 |𝑈 𝑖
𝑛−�̄�∗𝑛 |2
2 𝑈 𝑖

𝑛)Δ𝑡 + 𝜎 |𝑈𝑛
𝑖 − �̄�

∗
𝑛 |𝑃𝑈𝑛

𝑖
(Δ𝑊 𝑖

𝑛+1)
𝑈 𝑖
𝑛+1← Π(𝑈 𝑖

𝑛+ 1
2
)

end while
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5
Numerical tests and applications

The cases that have been chosen for study are the following:

• Bit-flip channel: This is a simple noise channel that can be corrected with
as few as three qubits. This made an ideal candidate for testing the cor-
rectness of the algorithms and other tests.

• Bit-flip channel with correlated term: A modified version of the previous
channel was designed in order to test a case that is not considered in the
standard QEC theory. This also served as a benchmark of the robustness
of the known and the optimised codes.

• Amplitude damping channel: This is another commonly studied noise
channel, which represents the effect of energy loss to the environment.

• Depolarising channel: This is the most general noise channel. Finding a
code able to correct this channel would be equivalent to finding a code
able to correct any non-correlated qubit noise. The smallest code able to
correct it has a size of five qubits.

5.1 BIT-FLIP

In a system of qubits, the bit-flip noise is a quantum channel that rotates the
state of a random qubit around the 𝑋 axis of the Bloch sphere, with probability
𝑝. This rotation is represented by the first Pauli matrix

𝜎𝑥 =

[
0 1
1 0

]
, (5.1)
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which maps |0〉 ↦→ |1〉 and |1〉 ↦→ |0〉. That is why it is called bit-flip.

The codes considered in this section are three-qubit codes. As such, the
Kraus operators for the noise channel are the following,

N ∼ {√1 − 𝑝1⊗3,√
𝑝
3
𝜎𝑥 ⊗ 1 ⊗ 1,√

𝑝
3
1 ⊗ 𝜎𝑥 ⊗ 1,√
𝑝
3
1 ⊗ 1 ⊗ 𝜎𝑥}

. (5.2)

As benchmark, the Shor code [27] for bit-flip errors is used in this section.
The basis for this code is the following,

{|0𝐿〉, |1𝐿〉} = {|000〉, |111〉}. (5.3)

This code belongs to a family of subspace codes known as stabiliser codes.
These codes are described by a set of operators called generators, and the code’s
subspace is given by the intersection of the+1 eigenspaces of these generators. It
is easy to confirm that indeed the basis elements given above are+1 eigenvectors
of the generators given in table5.1.

𝑔1 Z Z I
𝑔2 I Z Z

Table 5.1: Generators of the known (23, 21) bit-flip code

In order to obtain a code for this channel, the gradient descent algorithm was
used. After several runs of the algorithm, it has been concluded that the optima
of the cost function 𝐽3(𝑈), under this noise channel, has multiple local optima.
But they are all equal to the global optimum. Figures 5.1, 5.2 show a comparison
of the performance of the optimised code with the Shor code and a case without
any recovery action. The basis of the optimised code is the following,
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{|0𝐿〉, |1𝐿〉} = {(−0.4478 + 0.5384𝑖)|000〉 + (−0.0645 + 0.1473𝑖)|001〉+
(−0.2461 − 0.2396𝑖)|010〉 + (0.0465 + 0.2486𝑖)|011〉+
(−0.0890 + 0.1012𝑖)|100〉 + (−0.1945 − 0.2070𝑖)|101〉+
(0.0048 + 0.2100𝑖)|110〉 + (0.3616 − 0.1678𝑖)|111〉,
(0.2566 + 0.1149𝑖)|000〉 + (−0.1515 + 0.1936𝑖)|001〉+
(−0.0486 − 0.3594𝑖)|010〉 + (−0.1573 + 0.0784𝑖)|011〉+
(−0.1387 + 0.2397𝑖)|100〉 + (−0.0669 − 0.4054𝑖)|101〉+
(−0.1670 + 0.1194𝑖)|110〉 + (−0.6112 + 0.1921𝑖)|111〉}

. (5.4)

This basis spans a space that is different to that of the Shor code. It is also
easy to verify that these basis elements are not eigenvectors of the generators
5.1. For illustration of the performance of the obtained code, the fidelity of the
output of the noise and recovery with respect to the original state |0𝐿〉 is shown
in 5.1. However, considering theorem 3.1.3, the actual fidelity of importance to
understand the correctability of the code is that between the output of 1⊗A and
the input state (|0𝐿〉⊗ |0𝐿〉+ |1𝐿〉⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 |+〈1𝐿 | ⊗ 〈1𝐿 |), where A = RΠ◦N.
This latter case is shown in 5.2.

The Shor code does not protect against correlated errors. In order to test the
possibilities of our optimisation scheme, let us consider the following modifica-
tion to the bit-flip channel,

N ∼ {√1 − 𝑝1⊗3,√
𝑝(1 − 𝑞)

3
𝜎𝑥 ⊗ 1 ⊗ 1,√

𝑝(1 − 𝑞)
3

1 ⊗ 𝜎𝑥 ⊗ 1,√
𝑝(1 − 𝑞)

3
1 ⊗ 1 ⊗ 𝜎𝑥 ,

√
𝑝𝑞1 ⊗ 𝜎𝑥 ⊗ 𝜎𝑥}

. (5.5)

Here a correlated term 𝜎𝑥⊗𝜎𝑥 has been introduced, such that a simultaneous
bit-flip can occur in the second and third qubits. After running the gradient
descent algorithm with multiple initial points, with and without the correlated
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Figure 5.1: Fidelity of A(|0𝐿〉〈0𝐿 |) under the (23, 21) bit-flip codes
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Figure 5.2: Fidelity of 1 ⊗ A((|0𝐿〉 ⊗ |0𝐿〉 + |1𝐿〉 ⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 | + 〈1𝐿 | ⊗ 〈1𝐿 |))
under the (23, 21) bit-flip codes
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term, it has been concluded that the addition of this term does not alter the
structure of the optima of the cost function. Instead, it only lowers the optimal
value. This effect can be seen in figure 5.3.
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Figure 5.3: Optimal value for different correlation strengths

Figures 5.4, 5.5 show the performance when the channel is modified with a
correlation term 𝑞 = 0.1. The basis of the optimised code for this case is

{|0𝐿〉, |1𝐿〉} = {(−0.1058 − 0.2861𝑖)|000〉 + (0.3977 − 0.1287𝑖)|001〉+
(0.3040 − 0.5191𝑖)|010〉 + (0.0861 + 0.2100𝑖)|011〉+
(0.1457 + 0.3208𝑖)|100〉 + (−0.1082 + 0.1389𝑖)|101〉+
(0.0756 − 0.3557𝑖)|110〉 + (−0.0347 − 0.1741𝑖)|111〉,
(−0.1174 − 0.0094𝑖)|000〉 + (−0.3317 − 0.0562𝑖)|001〉+
(0.2150 + 0.2200𝑖)|010〉 + (0.3028 − 0.0747𝑖)|011〉+
(0.1545 − 0.0283𝑖)|100〉 + (−0.4871 − 0.4338𝑖)|101〉+
(0.0191 − 0.3940𝑖)|110〉 + (−0.2698 + 0.0507𝑖)|111〉}

. (5.6)
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Figure 5.4: Fidelity of A(|0𝐿〉〈0𝐿 |) under the (23, 21) codes and a correlated bit-
flip channel
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Figure 5.5: Fidelity of 1 ⊗ A((|0𝐿〉 ⊗ |0𝐿〉 + |1𝐿〉 ⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 | + 〈1𝐿 | ⊗ 〈1𝐿 |))
under the (23, 21) codes and a correlated bit-flip channel
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5.2 AMPLITUDE DAMPING

The amplitude damping channel models the energy loss of the quantum sys-
tem to its environment, for instance through spontaneous emission. Its Kraus
operators are based on the following two operators,

𝐸0 =

[
1 0
0
√

1 − 𝑝

]
, (5.7)

𝐸1 =

[
0 √𝑝
0 0

]
. (5.8)

𝐸1 corresponds to an energy decay with probability 𝑝, whereas 𝐸0 ensures
trace preservation. In the case of four qubits, the following would be the Kraus
representation of the noise channel,

N ∼ {
√

1
4
1⊗4,√

1
4
𝐸0 ⊗ 1⊗3,

√
1
4
𝐸1 ⊗ 1⊗3,√

1
4
1 ⊗ 𝐸0 ⊗ 1⊗2,

√
1
4
1 ⊗ 𝐸1 ⊗ 1⊗2,√

1
4
1⊗2 ⊗ 𝐸0 ⊗ 1,

√
1
4
1⊗2 ⊗ 𝐸1 ⊗ 1,√

1
4
1⊗3 ⊗ 𝐸0,

√
1
4
1⊗3 ⊗ 𝐸1}

. (5.9)

An approximate four qubit code is known for this channel [22]. It has the
following basis,

{|0𝐿〉, |1𝐿〉} = { 1√
2
(|0000〉 + |1111〉), 1√

2
(|0011〉 + |1100〉)}. (5.10)

The amplitude damping channel is an interesting study case, because its op-
tima are not unique as in the previous case. As such, it is good to study the
performance of the two global optimisation algorithms. Figure 5.6 shows the
value of the cost function for the state returned by each algorithm at different
damping rates. It is interesting to notice that the local algorithm with 100 ini-
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tialisations performed better than IDDM and the CBO algorithm, and that the
known code performs better than the ones obtained by optimisation.
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Figure 5.6: Comparison of the (24, 21) codes obtained from different algorithms

Then, figures 5.7, 5.8 show the performance of the best code obtained by
multiple initialisations. The base of this code is the following,
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{|0𝐿〉, |1𝐿〉} = {(−0.0627 + 0.6273𝑖)|0000〉 + (−0.0599 + 0.0851𝑖)|0001〉+
(0.0554 − 0.0828𝑖)|0010〉 + (0.0210 + 0.0010𝑖)|0011〉+
(−0.0675 + 0.0702𝑖)|0100〉 + (0.0179 − 0.1380𝑖)|0101〉+
(−0.1659 − 0.0845𝑖)|0110〉 + (−0.0940 − 0.0587𝑖)|0111〉+
(−0.0588 + 0.0917𝑖)|1000〉 + (0.1784 + 0.0131𝑖)|1001〉+
(0.0006 + 0.1471𝑖)|1010〉 + (−0.1024 − 0.0308𝑖)|1011〉+
(−0.0178 + 0.0063𝑖)|1100〉 + (0.0800 + 0.0637𝑖)|1101〉+
(−0.0928 − 0.0770𝑖)|1110〉 + (0.1401 + 0.6194𝑖)|1111〉,
(0.2668 − 0.0316𝑖)|0000〉 + (−0.0455 − 0.0103𝑖)|0001〉+
(0.0531 + 0.0162𝑖)|0010〉 + (0.0040 − 0.0177𝑖)|0011〉+
(−0.0577 − 0.0125𝑖)|0100〉 + (0.3753 + 0.0163𝑖)|0101〉+
(0.0963 − 0.5096𝑖)|0110〉 + (0.0065 − 0.0649𝑖)|0111〉+
(−0.0587 − 0.0141𝑖)|1000〉 + (0.0725 + 0.5210𝑖)|1001〉+
(−0.3699 − 0.0144𝑖)|1010〉 + (−0.0127 − 0.0627𝑖)|1011〉+
(0.0019 + 0.0135𝑖)|1100〉 + (0.0118 + 0.0600𝑖)|1101〉+
(0.0041 − 0.0677𝑖)|1110〉 + (0.2469 − 0.1159𝑖)|1111〉}

. (5.11)

5.3 DEPOLARISING CHANNEL

The depolarising channel models the full erasure of the information con-
tained in a qubit. It involves flips around all three axes of the Bloch sphere, i.e.
bit-flip, phase-flip and bit-phase-flip. As mentioned before, the bit-flip is rep-
resented by the first Pauli matrix 𝜎𝑥 . Let us now introduce the other two Pauli
matrices,

𝜎𝑦 =

[
0 −𝑖
𝑖 0

]
, (5.12)

𝜎𝑧 =

[
1 0
0 −1

]
. (5.13)

It is easy to see that the third Pauli matrix generates a phase-flip, since it maps
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Figure 5.7: Fidelity of A(|0𝐿〉〈0𝐿 |) under the (24, 21) codes and the amplitude
damping channel, optimised with the steepest descent algorithm and 100 start-
ing points

|0〉 ↦→ |0〉 and |1〉 ↦→ −|1〉, i.e. if one has as initial state |𝜓〉 = 𝛼 |0〉 + 𝛽 |1〉, the
final state would have an additional phase of 𝜋 between |0〉 and |1〉, as 𝜎𝑧 |𝜓〉 =
𝛼 |0〉 + 𝑒 𝑖𝜋𝛽 |1〉. As for 𝜎𝑦 , it induces a bit-phase-flip, since it maps |0〉 ↦→ 𝑖 |1〉, and
|1〉 ↦→ −𝑖 |0〉. The global phase of 𝑖 does not have any effect, since it is cancelled
by the adjoint in any probability or expectation computation (−𝑖𝑖 = 1).

For a single qubit this channel has the following Kraus representation,

N ∼ {√1 − 𝑝1,√
𝑝
3
𝜎𝑥 ,

√
𝑝
3
𝜎𝑦 ,

√
𝑝
3
𝜎𝑧}

. (5.14)

As example, consider 𝑝 = 3/4 and a general qubit pure state 𝜌 = |𝛼 |2 |0〉〈0| +
𝛼𝛽 |0〉〈1| + 𝛼𝛽 |1〉〈0| + |𝛽 |2 |1〉〈1|, then,

58



CHAPTER 5. NUMERICAL TESTS AND APPLICATIONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise strength

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
id

el
ity

 a
fte

r 
no

is
e 

an
d 

re
co

ve
ry

Optimal code
No recovery
Known code

Figure 5.8: Fidelity of 1 ⊗ A((|0𝐿〉 ⊗ |0𝐿〉 + |1𝐿〉 ⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 | + 〈1𝐿 | ⊗ 〈1𝐿 |))
under the (24, 21) code and the amplitude damping channel, optimised with the
steepest descent algorithm using 100 initial points

N(𝜌) =1
4
(|𝛼 |2 |0〉〈0| + 𝛼𝛽 |0〉〈1| + 𝛼𝛽 |1〉〈0| + |𝛽 |2 |1〉〈1|)+

1
4
(|𝛼 |2 |1〉〈1| + 𝛼𝛽 |1〉〈0| + 𝛼𝛽 |0〉〈1| + |𝛽 |2 |0〉〈0|)+

1
4
(|𝛼 |2 |1〉〈1| − 𝛼𝛽 |1〉〈0| − 𝛼𝛽 |0〉〈1| + |𝛽 |2 |0〉〈0|)+

1
4
(|𝛼 |2 |0〉〈0| − 𝛼𝛽 |0〉〈1| − 𝛼𝛽 |1〉〈0| + |𝛽 |2 |1〉〈1|) =

=
1
2
(|0〉〈0| + |1〉〈1|) = 1

2
1

. (5.15)

Therefore, under this setting, the depolarising channel maps every initial
pure state onto the fully mixed state 1/2, removing entirely any information
stored in the initial state. Another representation of this channel is

N(𝜌) = (1 − 𝑞)𝜌 + 𝑞
2
1, (5.16)

where it has been made explicit the fact that it mixes the input state with the
fully mixed state.
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For a system of five qubits, the following Kraus representation is used,

N ∼ {√1 − 𝑝1⊗5,√
𝑝
15

𝜎𝑥 ⊗ 1⊗4,

√
𝑝
15

𝜎𝑦 ⊗ 1⊗4,

√
𝑝
15

𝜎𝑧 ⊗ 1⊗4,√
𝑝
15

1 ⊗ 𝜎𝑥 ⊗ 1⊗3,

√
𝑝
15

1 ⊗ 𝜎𝑦 ⊗ 1⊗3,

√
𝑝
15

1 ⊗ 𝜎𝑧 ⊗ 1⊗3,√
𝑝
15

1⊗2 ⊗ 𝜎𝑥 ⊗ 1⊗2,

√
𝑝
15

1⊗2 ⊗ 𝜎𝑦 ⊗ 1⊗2,

√
𝑝
15

1⊗2 ⊗ 𝜎𝑧 ⊗ 1⊗2,√
𝑝
15

1⊗3 ⊗ 𝜎𝑥 ⊗ 1,

√
𝑝
15

1⊗3 ⊗ 𝜎𝑦 ⊗ 1,

√
𝑝
15

1⊗3 ⊗ 𝜎𝑧 ⊗ 1,√
𝑝
15

1⊗4 ⊗ 𝜎𝑥 ,

√
𝑝
15

1⊗4 ⊗ 𝜎𝑦 ,

√
𝑝
15

1⊗4 ⊗ 𝜎𝑧}

. (5.17)

The expression for five qubits is given, because a perfect five qubit code is
known for this noise [3, 21]. This code has the following basis,

{|0𝐿〉, |1𝐿〉} = {14(|00000〉 − |00011〉 + |00101〉 − |00110〉 + |01001〉 + |01010〉
− |01100〉 − |01111〉 − |10001〉 + |10010〉 + |10100〉 − |10111〉
− |11000〉 − |11011〉 − |11101〉 − |11110〉),

1
4
(−|00001〉 − |00010〉 − |00100〉 − |00111〉 − |01000〉 + |01011〉
+ |01101〉 − |01110〉 − |10000〉 − |10011〉 + |10101〉 + |10110〉
− |11001〉 + |11010〉 − |11100〉 + |11111〉)}

.

(5.18)

This code is another stabiliser code and its generators are given in table 5.2.

𝑔1 Y Y Z I Z
𝑔2 X I X Z Z
𝑔3 X Z Z X I
𝑔4 Y Z I Z Y

Table 5.2: Generators of the known (25, 21) perfect code

Figures 5.9, 5.10 show the performance of the optimised code, compared to
the known five qubit code and to a case without recovery. The basis elements of
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the optimised code is

|0𝐿〉 =(−0.1456 + 0.1749𝑖)|00000〉 + (−0.1717 − 0.0812𝑖)|00001〉+
(0.0905 − 0.0352𝑖)|00010〉 + (−0.0320 + 0.0350𝑖)|00011〉+
(0.1609 + 0.1728𝑖)|00100〉 + (0.1309 − 0.0932𝑖)|00101〉+
(0.0074 + 0.0380𝑖)|00110〉 + (−0.2595 + 0.0072𝑖)|00111〉+
(−0.2086 − 0.0672𝑖)|01000〉 + (−0.0204 + 0.0629𝑖)|01001〉+
(0.0128 − 0.1244𝑖)|01010〉 + (−0.2869 + 0.0094𝑖)|01011〉+
(0.0656 − 0.0516𝑖)|01100〉 + (−0.0137 + 0.1449𝑖)|01101〉+
(0.2145 − 0.1220𝑖)|01110〉 + (0.0615 + 0.0820𝑖)|01111〉+
(0.1521 − 0.0685𝑖)|10000〉 + (−0.1711 + 0.0146𝑖)|10001〉+
(−0.0735 − 0.1011𝑖)|10010〉 + (−0.2424 − 0.1370𝑖)|10011〉+
(−0.0725 + 0.0849𝑖)|10100〉 + (0.0572 − 0.0867𝑖)|10101〉+
(−0.2394 − 0.1354𝑖)|10110〉 + (0.0212 − 0.0144𝑖)|10111〉+
(−0.1053 − 0.1596𝑖)|11000〉 + (0.1026 − 0.0729𝑖)|11001〉+
(−0.0254 + 0.2108𝑖)|11010〉 + (−0.0242 − 0.0378𝑖)|11011〉+
(0.0646 − 0.0801𝑖)|11100〉 + (0.0749 − 0.3175𝑖)|11101〉+
(0.0341 − 0.1582𝑖)|11110〉 + (−0.0145 + 0.0839𝑖)|11111〉

, (5.19)
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|1𝐿〉} =(−0.0833 − 0.0177𝑖)|00000〉 + (−0.1596 − 0.0270𝑖)|00001〉+
(−0.3227 − 0.0481𝑖)|00010〉 + (0.0984 − 0.0303𝑖)|00011〉+
(−0.0261 − 0.0365𝑖)|00100〉 + (−0.2052 − 0.0545𝑖)|00101〉+
(0.1058 − 0.0683𝑖)|00110〉 + (−0.1092 − 0.1570𝑖)|00111〉+
(−0.0213 + 0.0144𝑖)|01000〉 + (0.0370 + 0.2725𝑖)|01001〉+
(0.1017 − 0.0209𝑖)|01010〉 + (0.1058 − 0.0359𝑖)|01011〉+
(0.0374 + 0.2759𝑖)|01100〉 + (−0.0667 − 0.1057𝑖)|01101〉+
(0.0769 − 0.1535𝑖)|01110〉 + (0.1200 − 0.1158𝑖)|01111〉+
(0.0534 + 0.0875𝑖)|10000〉 + (0.1928 − 0.1540𝑖)|10001〉+
(−0.1396 − 0.0410𝑖)|10010〉 + (−0.0722 + 0.0418𝑖)|10011〉+
(−0.1151 + 0.2630𝑖)|10100〉 + (−0.1203 − 0.0343𝑖)|10101〉+
(0.0660 + 0.0043𝑖)|10110〉 + (−0.0150 + 0.2187𝑖)|10111〉+
(−0.1029 + 0.2383𝑖)|11000〉 + (0.0326 + 0.0209𝑖)|11001〉+
(−0.1351 + 0.0870𝑖)|11010〉 + (−0.1009 − 0.2135𝑖)|11011〉+
(0.0444 − 0.0168𝑖)|11100〉 + (0.0662 − 0.0710𝑖)|11101〉+
(0.0118 + 0.1896𝑖)|11110〉 + (0.2164 − 0.0704𝑖)|11111〉

. (5.20)

Let us now consider theorem 3.1.1. This theorem states that if a code C can
correct a noise N with Kraus operators {𝑁𝑖}, then it can correct any noise N′

with Kraus operators {∑𝑗 𝜆𝑖 𝑗𝑁𝑗}. Since the Pauli matrices, together with the
identity form a bases of C2×2, this means that a code able to correct the depolar-
ising channel is also able to correct any other single qubit noise. In order to test
this claim, let us consider the five qubit amplitude damping channel with the
following representation,
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Figure 5.9: Fidelity of A(|0𝐿〉〈0𝐿 |) under the (25, 21) code and the depolarising
channel
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Figure 5.10: Fidelity of 1 ⊗ A((|0𝐿〉 ⊗ |0𝐿〉 + |1𝐿〉 ⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 | + 〈1𝐿 | ⊗ 〈1𝐿 |))
under the (25, 21) code and the depolarising channel
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N ∼ {
√

1
5
1⊗5,√

1
5
𝐸0 ⊗ 1⊗4,

√
1
5
𝐸1 ⊗ 1⊗4,√

1
5
1 ⊗ 𝐸0 ⊗ 1⊗3,

√
1
5
1 ⊗ 𝐸1 ⊗ 1⊗3,√

1
5
1⊗2 ⊗ 𝐸0 ⊗ 1⊗2,

√
1
5
1⊗2 ⊗ 𝐸1 ⊗ 1⊗2,√

1
5
1⊗3 ⊗ 𝐸0 ⊗ 1,

√
1
5
1⊗3 ⊗ 𝐸1 ⊗ 1,√

1
5
1⊗4 ⊗ 𝐸0,

√
1
5
1⊗4 ⊗ 𝐸1}

. (5.21)

Figures 5.11, 5.12 show the performance of the same two codes under the
amplitude damping channel. As it can be seen, it indeed perfectly corrects this
noise channel as well.
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Figure 5.11: Fidelity of A(|0𝐿〉〈0𝐿 |) under the (25, 21) code and the amplitude
damping channel
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Figure 5.12: Fidelity of 1 ⊗ A((|0𝐿〉 ⊗ |0𝐿〉 + |1𝐿〉 ⊗ |1𝐿〉)(〈0𝐿 | ⊗ 〈0𝐿 | + 〈1𝐿 | ⊗ 〈1𝐿 |))
under the (25, 21) code and the amplitude damping channel
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6
Conclusions and Future Works

As shown in the previous chapter, when a perfectly correctable codes exist,
the implemented algorithms are able to find them. On the other hand, when
only approximate codes exist, the algorithms are still able to find codes with
performance similar to that of the codes known in the literature. Furthermore
the cost function 𝐽𝑑(Π) can be used to benchmark different codes, and aid in the
design process of an engineered quantum system.

Even though the codes obtained with these algorithms do not necessarily
have the kind of symmetries that would be desired for a physical implementa-
tion, they could be approximated by means of the Schmidt operator decompo-
sition. An interesting line of research for future work would be exploring how
the performance of the codes would be affected by such an approximation.

The methods developed in this work can also be applied to theoretical mod-
els. They can also be used to empirically explore the properties of different QEC
protocols or different noise channels. For instance, to study the degeneracy of
optimal codes, or how perturbations of a noise model affect the correctability,
as done in the previous chapter.

Extension of the implemented algorithms for finding codes are possible. For
instance, the implementation of conjugate descent methods [30, 39] or the relax-
ation to convex versions, using a combination of duality theory, barrier func-
tions and geometric reformulation of the problem, in the effort of producing
faster and more accurate algorithms.

Finally, since all of the above assumes knowledge of a model of the system
and the noise, a possible line of research would be through the study of system
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identification theory, in order to develop model learning algorithms for quan-
tum systems and for the noises present in the system. That is to include sys-
tem identification procedures within the control strategies and to integrate them
with the present work in a sort of data-driven information-protection design.
Having such a design pipeline may prove to be crucial as engineered quantum
systems continue to scale up in size and complexity.
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A
Gradient computation

In order to use gradient methods to obtain a local optima of our optimisation
problem, we need to compute the gradient of the cost function. First, let us
define the gradient of 𝐽𝑑(𝑈) over 𝑉𝑑(C𝑛). Since we consider a complex function
𝐽𝑑 : C𝑛×𝑑 ⊃ 𝑉𝑑(C𝑛) → [0,∞), the Eucledian gradient of 𝐽𝑑 becomes

∇𝑈 𝐽𝑑(𝑈) B 𝜕

𝜕𝑈𝑅𝑒
𝐽𝑑(𝑈) + 𝑖 𝜕

𝜕𝑈𝐼𝑚
𝐽𝑑(𝑈) ∈ C𝑛×𝑑 , (A.1)

where𝑈𝑅𝑒 B (𝑈 +𝑈)/2 and𝑈𝐼𝑚 B (𝑈 −𝑈)/(2𝑖) are the real and imaginary
matrices of𝑈 , respectively. The gradient at𝑈 ∈ 𝑉𝑑(C𝑛) is calculated as

𝑔𝑟𝑎𝑑𝐽𝑑(𝑈) = ∇𝑈 𝐽𝑑(𝑈) −𝑈(∇𝑈 𝐽𝑑(𝑈))†𝑈. (A.2)

It is easy to verify that 𝑔𝑟𝑎𝑑𝐽𝑑(𝑈) ∈ T𝑈𝑉𝑑(C𝑛).
Remark. For complex cost functions, the complex derivative does not make sense
in general. For example, let us consider 𝐽(𝑧) B |𝑧−𝛼 |2 where 𝛼 ∈ C. In this case,
the complex derivative does not exist. However, for 𝑧 = 𝑥 + 𝑖𝑦, the derivative
over the real and imaginary axes exist and are calculated as

𝜕𝐽(𝑧)
𝜕𝑥

= 2(𝑥 − 𝑅𝑒(𝛼)), 𝜕𝐽(𝑧)
𝜕𝑦

= 2(𝑦 − 𝑅𝑒(𝛼)).

Then,

∇𝐽(𝑧) = 2(𝑧 − 𝛼),
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and this is the natural gradient for the cost function.

Since 𝑡𝑟(𝐴 ⊗ 𝐵) = 𝑡𝑟(𝐴)𝑡𝑟(𝐵) and 𝑡𝑟(𝐴) = 𝑡𝑟(𝐴>) for any square complex
matrices A and B, the cost function (3.51)

𝐽𝑑(𝑈) =
𝑚∑

𝑘,𝑙=1

𝑡𝑟
(
(Π>𝑈 ⊗ Π𝑈)𝑁>𝑘 N(Π𝑈)−>/2𝑁𝑙 ⊗ 𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘

)
=

𝑚∑
𝑘,𝑙=1

𝑡𝑟
(
Π>𝑈𝑁

>
𝑘 N(Π𝑈)−>/2𝑁𝑙

)
𝑡𝑟

(
Π𝑈𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘

)
=

𝑚∑
𝑘,𝑙=1

𝑡𝑟
(
𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘Π𝑈

)
𝑡𝑟

(
Π𝑈𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘

)
=

𝑚∑
𝑘,𝑙=1

𝑡𝑟
(
Π𝑈𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘

)2

. (A.3)

Now we need to obtain the Eucledian gradient of 𝐽𝑑 at any𝑈0 ∈ 𝑉𝑑(C𝑛).

A.1 USEFUL GRADIENTS

The following are gradients that are going to appear due to the chain rule,
when computing the gradient of the cost function,

∇𝑈 𝑡𝑟(𝐶1(Π𝑈0)Π𝑈)|𝑈=𝑈0 and ∇𝑈 𝑡𝑟(𝐶2(Π𝑈0)N(Π𝑈)−1/2)|𝑈=𝑈0 , (A.4)

where 𝐶𝑖(𝑈0) = 𝐶𝑖(𝑈0)†.
Lemma A.1.1. Let 𝐴 ∈ C𝑛×𝑛 be a given Hermitian matrix. then,

∇𝑈 𝑡𝑟(𝐴Π𝑈) = 2𝐴𝑈. (A.5)

Proof. Since𝑈 = 𝑈𝑅𝑒 + 𝑖𝑈𝐼𝑚 ,

𝑡𝑟(𝐴Π𝑈) = 𝑡𝑟(𝑈†𝐴𝑈)
= 𝑡𝑟((𝑈𝑅𝑒 − 𝑖𝑈𝐼𝑚)>𝐴(𝑈𝑅𝑒 + 𝑖𝑈𝐼𝑚))
= 𝑡𝑟(𝑈>𝑅𝑒𝐴𝑈𝑅𝑒) − 𝑖𝑡𝑟(𝑈>𝐼𝑚𝐴𝑈𝑅𝑒) + 𝑖𝑡𝑟(𝑈>𝑅𝑒𝐴𝑈𝐼𝑚) + 𝑡𝑟(𝑈>𝐼𝑚𝐴𝑈𝐼𝑚)

.

(A.6)
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Therefore,

𝜕

𝜕𝑈𝑅𝑒
𝑡𝑟(𝐴Π𝑈) = (𝐴 + 𝐴>)𝑈𝑅𝑒 + 𝑖(𝐴 − 𝐴>)𝑈𝐼𝑚 ∈ R𝑛×𝑑 , (A.7)

𝜕

𝜕𝑈𝐼𝑚
𝑡𝑟(𝐴Π𝑈) = (𝐴 + 𝐴>)𝑈𝐼𝑚 − 𝑖(𝐴 − 𝐴>)𝑈𝑅𝑒 ∈ R𝑛×𝑑 , (A.8)

and

∇𝑈 𝑡𝑟(𝐴Π𝑈) = 𝜕

𝜕𝑈𝑅𝑒
𝑡𝑟(𝐴Π𝑈) + 𝑖 𝜕

𝜕𝑈𝐼𝑚
𝑡𝑟(𝐴Π𝑈) = 2𝐴𝑈. (A.9)

□

Lemma A.1.2. Let 𝐴 ∈ C𝑛×𝑛 be a given Hermitian matrix. Then,

∇𝑈 𝑡𝑟(𝐴N(Π𝑈)−1/2) = 2
𝑚∑
𝑗=1

3∑
𝑖=1

𝑁†𝑗 vec−1(�̂�−1vec(𝐶𝑖)†𝑁𝑗)𝑈, (A.10)

where
𝐶1 = −N(Π𝑈0)−1/2𝐴N(Π𝑈0)−1/2, (A.11)

𝐶2 = N(Π𝑈0)−1𝐴(1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2), (A.12)

𝐶3 = (1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2)𝐴N(Π𝑈0)−1, (A.13)

�̂� = N(Π𝑈)>/2 ⊗ 1𝑛 + 1𝑛 ⊗ N(Π𝑈)1/2. (A.14)

Proof. For any non-zero matrix 𝑋 = (𝑋𝑖 𝑗) ∈ C𝑛×𝑛 and 𝐴 ∈ C𝑛×𝑛 , derivative of the
Moore-Penrose pseudo inverse is given as

𝜕

𝜕𝑋𝑖 𝑗
𝑋−1 = −𝑋−1 𝜕𝑋

𝜕𝑋𝑖 𝑗
𝑋−1+(1𝑛−𝑋−1𝑋) 𝜕𝑋

†

𝜕𝑋𝑖 𝑗
(𝑋−1)†𝑋−1+𝑋−1(𝑋−1)† 𝜕𝑋

†

𝜕𝑋𝑖 𝑗
(1𝑛−𝑋𝑋−1),

(A.15)
where the derivative is the Eucledian derivative [10, 16]. Therefore, we only

consider the derivative of the underlined parts of the following equation,

∇𝑈 𝑡𝑟(𝐴N(Π𝑈)−1/2)|𝑈=𝑈0

= − ∇𝑈 𝑡𝑟(𝐴N(Π𝑈0)−1/2N(Π𝑈)1/2N(Π𝑈0)−1/2)|𝑈=𝑈0

+ ∇𝑈 𝑡𝑟(𝐴(1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2)N(Π𝑈)1/2N(Π𝑈0)−1)|𝑈=𝑈0

+ ∇𝑈 𝑡𝑟(𝐴N(Π𝑈0)−1N(Π𝑈)1/2(1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2))|𝑈=𝑈0

. (A.16)
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Note that if N(Π𝑈) is invertible, i.e., positive definite, the above equation be-
comes

∇𝑈 𝑡𝑟(𝐴N(Π𝑈)1/2)|𝑈=𝑈0 = −∇𝑈 𝑡𝑟(𝐴N(Π𝑈0)−1/2N(Π𝑈)1/2N(Π𝑈0)−1/2)|𝑈=𝑈0 .

(A.17)

Next, we establish the derivative ofN(Π𝑈)1/2 in A.16. SinceN(Π𝑈) = N(Π𝑈)1/2N(Π𝑈)1/2,
we have the following Sylvester equation,

𝜕

𝜕𝑈𝑖 𝑗
N(Π𝑈) = 𝜕N(Π𝑈)1/2

𝜕𝑈𝑖 𝑗
N(Π𝑈)1/2 +N(Π𝑈)1/2 𝜕N

1/2

𝜕𝑈𝑖 𝑗
. (A.18)

By using vectorisation,

vec( 𝜕

𝜕𝑈𝑖 𝑗
N(Π𝑈)) = (N(Π𝑈)>/2 ⊗ 1𝑛 + 1𝑛 ⊗ N(Π𝑈)1/2)vec(𝜕N(Π𝑈)1/2

𝜕𝑈𝑖 𝑗
), (A.19)

�̂� B N(Π𝑈)>/2 ⊗ 1𝑛 + 1𝑛 ⊗ N(Π𝑈)1/2.

For 𝐶 ∈ C𝑛×𝑛 and 𝑏 ∈ C𝑛 , the general solution of 𝐶𝑥 = 𝑏 is given by 𝑥 =

𝐶−1𝑏 + (1𝑛 − 𝐶−1𝐶)𝑑 if the solution exists, where 𝑑 ∈ C𝑛 is an arbitrary vector
(we consider the Moore-Penrose pseudo-inverse if 𝑑𝑒𝑡(𝐶) = 0). Hence,

𝜕N(Π𝑈)1/2
𝜕𝑈𝑖 𝑗

= vec−1(�̂�−1vec( 𝜕

𝜕𝑈𝑖 𝑗
N(Π𝑈)) + (1𝑛2 − �̂�−1

�̂�)𝑧𝑖 𝑗), 𝑧𝑖 𝑗 ∈ C𝑛2
, (A.20)

where 𝑧𝑖 𝑗 ∈ C𝑛2 is arbitrarily chosen, Now we analyze the effect of 𝑧𝑖 𝑗 . Note
that since N(Π𝑈0) is Hermitian and non-negative, there exists a unitary matrix
𝑉 ∈ C𝑛×𝑛 such that

N(Π𝑈0) = 𝑉
[
Λ

𝑂𝑝

]
𝑉†,

where Λ ∈ R(𝑛−𝑝)×(𝑛−𝑝) is a diagonal matrix with strictly positive diagonal ele-
ment and 1 ≤ 𝑝 < 𝑛 is the rank of the kernel of N(Π𝑈0) (here, we do not consider
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𝑝 = 0 or 𝑝 = 𝑛). Hence, we have

�̂� =𝑉∗ ⊗ 𝑉
([√

Λ

𝑂𝑝

]
⊗ 𝐼𝑛 + 𝐼𝑛 ⊗

[√
Λ

𝑂𝑝

])
𝑉> ⊗ 𝑉† (A.21)

and

𝐼𝑛2 − �̂�−1
�̂� =𝑉∗ ⊗ 𝑉



𝑂𝑛(𝑛−𝑝)
𝑂𝑛−𝑝

𝐼𝑝
. . .

𝑂𝑛−𝑝
𝐼𝑝


𝑉> ⊗ 𝑉†

=𝑉∗ ⊗ 𝑉
([
𝑂𝑛−𝑝

𝐼𝑝

]
⊗

[
𝑂𝑛−𝑝

𝐼𝑝

])
𝑉> ⊗ 𝑉†.

From (A.20), N(Π𝑈)−1/2 is multiplied from, at least, one of the both sides of the
derivative of N−1/2, so for any 𝑋 ∈ C𝑛×𝑛 ,

(N(Π𝑈)−1/2 ⊗ 𝑋)(𝐼𝑛2 − �̂�−1
�̂�) = (𝑋 ⊗ N(Π𝑈)−1/2)(𝐼𝑛2 − �̂�−1

�̂�) = 0.

Therefore, without loss of generality, we can put 𝑧𝑖 𝑗 = 0.

For 𝐶 = 𝐶† ∈ C𝑛×𝑛 , by using 𝑡𝑟(𝐴†𝐵) = vec(𝐴)†vec(𝐵) and the fact that
�̂�
†
= �̂�,

∇𝑈 𝑡𝑟(𝐶N(Π𝑈)1/2) = ∇𝑈vec(𝐶)†(�̂�−1vec(N(Π𝑈)))
= ∇𝑈(�̂�−1vec(𝐶))†vec(N(Π𝑈))
= ∇𝑈 𝑡𝑟(vec−1(�̂�−1vec(𝐶))†N(Π𝑈))

= ∇𝑈
𝑛∑
𝑘=1

𝑡𝑟(𝑁†𝑘vec−1(�̂�−1vec(𝐶))†𝑁𝑘Π𝑈)

= 2

(
𝑛∑
𝑘=1

𝑁†𝑘vec−1(�̂�−1vec(𝐶))†𝑁𝑘

)
𝑈

. (A.22)

From (A.16) and (A.22), we obtain the Eucledian gradient of 𝑡𝑟(𝐴N(Π𝑈))−1/2.
□
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A.2 GRADIENT OF THE COST FUNCTION

We can now proceed to compute the Eucledian gradient of the cost function

∇𝑈 𝐽𝑑(𝑈)|𝑈=𝑈0 =∇𝑈
𝑚∑

𝑘,𝑙=1

𝑡𝑟
(
Π𝑈𝑁†𝑙 N(Π𝑈)−1/2𝑁𝑘

)2 |𝑈=𝑈0

=
𝑚∑

𝑘,𝑙=1

(
2𝑡𝑟

(
Π𝑈0𝑁

†
𝑙 N(Π𝑈0)−1/2𝑁𝑘

)
(∇𝑈 𝑡𝑟

(
𝑁†𝑙 N(Π𝑈0)−1/2𝑁𝑘Π𝑈

)
|𝑈=𝑈0+

∇𝑈 𝑡𝑟
(
𝑁𝑘Π𝑈0𝑁

†
𝑙 N(Π𝑈)−1/2

)
|𝑈=𝑈0)

)
. (A.23)

By applying lemma A.1.1

∇𝑈 𝐽𝑑(𝑈)|𝑈=𝑈0 =
𝑚∑

𝑘,𝑙=1

(
2𝑡𝑟

(
Π𝑈0𝑁

†
𝑙 N(Π𝑈0)−1/2𝑁𝑘

)
(2𝑁†𝑙 N(Π𝑈0)−1/2𝑁𝑘𝑈+
∇𝑈 𝑡𝑟

(
𝑁𝑘Π𝑈0𝑁

†
𝑙 N(Π𝑈)−1/2

)
|𝑈=𝑈0)

) . (A.24)

Finally, by applying lemma A.1.2

∇𝑈 𝐽𝑑(𝑈)|𝑈=𝑈0 =4
𝑚∑

𝑗,𝑘,𝑙=1

(
𝑡𝑟

(
Π𝑈0𝑁

†
𝑙 N(Π𝑈0)−1/2𝑁𝑘

)
(𝑁†𝑙 N(Π𝑈0)−1/2𝑁𝑘𝑈 +

3∑
𝑖=1
(𝑁†𝑗 vec−1(�̂�−1vec(𝐶𝑖)†𝑁𝑗)𝑈)

) , (A.25)

where

𝐶1 = −N(Π𝑈0)−1/2𝑁𝑘Π𝑈0𝑁
†
𝑙 N(Π𝑈0)−1/2, (A.26)

𝐶2 = N(Π𝑈0)−1𝑁𝑘Π𝑈0𝑁
†
𝑙 (1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2), (A.27)

𝐶3 = (1𝑛 −N(Π𝑈0)−1/2N(Π𝑈0)1/2)𝑁𝑘Π𝑈0𝑁
†
𝑙 N(Π𝑈0)−1, (A.28)

�̂� = N(Π𝑈)>/2 ⊗ 1𝑛 + 1𝑛 ⊗ N(Π𝑈)1/2. (A.29)

74



B
MATLAB code

1 function res = armijo(U, X, N, grad, norm_grad , cost_U, d, t, c1)
2 % This function returns a boolean indicating whether Armijo's

condition
3 % is satisfied or not
4 res = cost_function(ret_exp(U, X, t), N) > cost_U - c1 * t *

norm_grad^2;
5 end

Code B.1: Armĳo condition

1 function t = backtracking(U, X, N, grad, norm_grad , cost_U, d, t0, c1
, tau, min_bt)

2 % This function performs the backtracking algorithm for step-size
3 % computation , used in line search based optimisation algorithms
4 t = t0;
5 % grad = grad_cost_function(U, N);
6 while armijo(U, X, N, grad, norm_grad , cost_U, d, t, c1)
7 t = t * tau;
8 if t < min_bt
9 disp('Armijo not satisfied')

10 break
11 end
12 end
13

14 end

Code B.2: Backtracking

75



1 function res = boltz_weight(U, N, d, beta)
2 % This function computes the Boltzmann weight used in the consensus

method
3 res = exp(-beta * (cost_function(U, N) + d^2));
4 end

Code B.3: Boltzmann weight

1 function res = canon_inner(U, X, Y)
2 % Canonincal Riemannian inner product in the complex valued Stifel

manifold
3 n = size(U, 1);
4 res = trace(X' * (eye(n) - U*U'/2) * Y);
5 end

Code B.4: Canonical inner product

1 function res = consensus(U0_cell, N, h, T, beta, lambda, sigma)
2 % Consensus method for global optimisation in the complex valued
3 % Stiefel manifold
4 U_cell = U0_cell;
5 n = size(U_cell{1}, 1);
6 d = size(U_cell{1}, 2);
7 l = length(U_cell);
8 m = floor(T/h);
9

10 C = (2*n - d - 1)/2;
11 omega_array = zeros(1, l);
12 DW = cell(1,l);
13

14 for i = 1:m
15 % parfor j = 1:l
16 for j = 1:l
17 omega_array(j) = boltz_weight(U_cell{j}, N, d, beta);
18 end
19

20 omega_sum = sum(omega_array);
21 omega_max = max(omega_array);
22 U_bar = zeros(n,d);
23 for j = 1:l
24 U_bar = U_bar + ((U_cell{j} * omega_array(j) * omega_max) / (

omega_sum * omega_max));
25 end
26
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27 for j = 1:l
28 DW{j} = randn(n,d)*sqrt(h/2) + 1i*randn(n,d)*sqrt(h/2);
29 DW{j} = tang_proj(U_cell{j}, DW{j});
30

31 U_cell{j} = U_cell{j} + (lambda * tang_proj(U_cell{j}, U_bar)
- C * sigma^2 * trace((U_cell{j} - U_bar)' * (U_cell{j} - U_bar))
* U_cell{j} / 2) * h + sigma * sqrt(trace((U_cell{j} - U_bar)' *

(U_cell{j} - U_bar))) * DW{j};
32 [U, ~, V] = svd(U_cell{j});
33 U_cell{j} = U * eye(n,d) * V';
34 end
35

36 disp(['Iteration ', num2str(i), ' finished. ', 'Min cost: ',
num2str(-log(min(omega_array))/beta)])

37 end
38

39 res = U_cell;
40 end

Code B.5: Consensus method

1 function res = cost_function(U, N)
2 % Cost function to optimise quantum codes
3 P = U * U';
4 res = real(-trace(vec_proj_noise_recovery(P, N)));
5 end

Code B.6: Cost function

1 function res = egrad2grad(U,egrad)
2 % This function converts the Eucledian gradient into the Riemannian
3 % gradient in the complex valued Stiefel manifold
4 res = egrad - U * egrad' * U;
5 end

Code B.7: Eucledian gradient to Riemannian gradient

1 function res = egrad_cost_function(U, N)
2 % Eucledian gradient of the cost function for quantum code

optimisation
3 P = U * U';
4 scrN_sqrt = noise(N, P)^(1/2);
5 scrN_inv = pinv(noise(N, P));
6 scrN_invsqrt = scrN_inv^(1/2);
7
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8 A_hat_invT = pinv(kron(transpose(scrN_sqrt), eye(size(P,1))) +
kron(eye(size(P,1)), scrN_sqrt));

9

10 res = zeros(size(U));
11 for i = 1:length(N)
12 for j = 1:length(N)
13 for k = 1:length(N)
14 for l = 1:length(N)
15 A0 = N{i}' * scrN_invsqrt * N{j} * P;
16 A1 = N{i}' * scrN_invsqrt * N{j};
17 A2 = N{j} * P * N{i}';
18

19 res = res + 2 * trace(A0) * ( ...
20 gradAux3(U, A1) + ...
21 gradAux2(U, N, A2, scrN_inv , scrN_sqrt ,

scrN_invsqrt , A_hat_invT));
22 end
23 end
24 end
25 end
26 res = -res;
27 end

Code B.8: Eucledian gradient of the cost function

1 function res = gradAux1(U, N, C, A_hat_invT)
2 % Auxiliary function to compute the gradient of the cost function
3 res = zeros(size(N{1}));
4 for i = 1:length(N)
5 res = res + N{i}' * unvec(A_hat_invT * vec(C))' * N{i};
6 end
7 res = 2 * res * U;
8 end

Code B.9: Auxilary gradient 1

1 function res = gradAux2(U, N, Ag, scrN_inv , scrN_sqrt , scrN_invsqrt ,
A_hat_invT)

2 % Auxiliary function to compute the gradient of the cost function
3 res = - gradAux1(U, N, scrN_invsqrt * Ag * scrN_invsqrt ,

A_hat_invT);
4 res = res + gradAux1(U, N, scrN_inv * Ag * (eye(size(Ag,1)) -

scrN_invsqrt * scrN_sqrt), A_hat_invT);
5 res = res + gradAux1(U, N, (eye(size(Ag,1)) - scrN_sqrt *

scrN_invsqrt) * Ag * scrN_inv , A_hat_invT);
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6 end

Code B.10: Auxilary gradient 2

1 function res = gradAux3(U, Ag)
2 % Auxiliary function to compute the gradient of the cost function
3 res = 2 * Ag * U;
4 end

Code B.11: Auxilary gradient 3

1 function res = grad_cost_function(U, N)
2 % Riemannian gradient of the cost function for quantum code

optimisation
3 egrad = egrad_cost_function(U, N);
4 res = egrad2grad(U,egrad);
5 end

Code B.12: Riemannian gradient of the cost function

1 function [U, costs, steps] = grad_descent(U0, t0, N, c1, tau,
max_iter, min_step, min_bt, min_grad)

2 % Steepest descent algorithm on the complex valued Stiefel manifold
3

4 U = U0;
5 cost_U = cost_function(U, N);
6 grad = grad_cost_function(U,N);
7 [n, d] = size(U);
8 costs = zeros(1,max_iter);
9 steps = zeros(1,max_iter);

10 for k = 1:max_iter
11 norm_grad = sqrt(real(canon_inner(U, grad, grad)));
12 if norm_grad < min_grad
13 break
14 end
15

16 t = backtracking(U, -grad, N, grad, norm_grad , cost_U, d, t0, c1,
tau, min_bt);

17

18 if t < min_step
19 break
20 else
21 U = ret_exp(U, -grad, t);
22

23 U = U / sqrtm(U'*U);
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24 [Q, ~] = qr(U);
25 U = Q(1:n, 1:d);
26

27 grad = grad_cost_function(U,N);
28 cost_U = cost_function(U, N);
29 costs(k) = cost_U;
30 steps(k) = t;
31 disp([num2str(k), ' ', num2str(cost_U)])
32 end
33

34 if k == max_iter
35 disp("Max iter reached")
36 end
37 end
38

39 costs(k) = cost_function(U, N);
40 steps(k) = t;
41

42 costs = costs(1,1:k);
43 steps = steps(1,1:k);
44 end

Code B.13: Steepest descent algorithm

1 function [U_opt, costs] = iddm(U0, t, t0, N, c, rho1, tau, eta,
min_change , min_grad , max_iter , max_iter_local , min_step , max_step
, min_bt)

2 % IDDM algorithm on the complex valued Stiefel manifold
3

4 U = U0;
5 [n, d] = size(U);
6 costs = zeros(1,max_iter);
7 U_prev = zeros(n,d);
8 U_opt = U;
9 cost_U = cost_function(U, N);

10 cost_opt = cost_U;
11

12 for k = 1:max_iter
13 if norm(U_prev - U) < min_change
14 break
15 else
16 sigma = c / ( (k*t(end))^(1/(2*(n-1))) );
17 U = sde_solver(U,N,t,sigma);
18 U = local_solver(U, t0, N, rho1, tau, eta, min_grad ,
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max_iter_local , min_step , max_step , min_bt);
19

20 cost_U = cost_function(U, N);
21 if cost_U < cost_opt
22 U_opt = U;
23 cost_opt = cost_U;
24 end
25 costs(k) = cost_U;
26 save('sanitycheck.mat', 'k', 'U_opt', 'cost_opt')
27 disp(['Iteration ', num2str(k), ', cost: ', num2str(costs(k))

, '. Time: ' datestr(datetime)])
28 end
29

30 if k == max_iter
31 disp("Max iter reached")
32 end
33 end
34

35 if k < max_iter
36 costs(k) = cost_function(U, N);
37 costs = costs(1,1:k);
38 end
39

40 end

Code B.14: IDDM algorithm

1 function res = kraus_check(N)
2 % Function to check the correctness of a set of Kraus operators
3 res = zeros(size(N{1}));
4 for i = 1:length(N)
5 res = res + N{i}' * N{i};
6 end
7 end

Code B.15: Kraus operators correctness check

1 function res = local_solver(U0, t0, N, rho1, tau, eta, min_grad,
max_iter, min_step, max_step, min_bt)

2 % Local solver of the IDDM algorithm
3

4 U = U0;
5 egrad = egrad_cost_function(U,N);
6 [n, d] = size(U);
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7

8 Q = 1;
9 C = cost_function(U, N);

10 t = t0;
11 %costs = zeros(1,max_iter);
12 for k = 1:max_iter
13 grad = egrad2grad(U,egrad);
14 norm2_grad = real(canon_inner(U, grad, grad));
15 if sqrt(norm2_grad) <= min_grad
16 %disp("Minimum gradient reached")
17 break
18 end
19

20 A = egrad * U' - U * egrad';
21 %norm2_A = trace(A * A');
22 % disp(sqrt(norm2_grad))
23

24 Y = pinv(eye(n) + t*A/2) * (eye(n) - t*A/2) * U;
25 %Y = ret_exp(U, -grad, t);
26

27 while cost_function(Y, N) >= C - rho1 * t * norm2_grad
28 %disp([cost_function(Y, N), C - rho1 * t * norm2_grad])
29 t = tau*t;
30 Y = pinv(eye(n) + t*A/2) * (eye(n) - t*A/2) * U;
31 %Y = ret_exp(U, -grad, t);
32 if t < min_bt
33 disp("Armijo-Wolf not satisfied. Returning")
34 res = U;
35 return
36 end
37 end
38

39 %U = U / sqrtm(U'*U);
40 %[Qnorm, ~] = qr(Y);
41 %U_next = Qnorm(1:n, 1:d);
42 U_next = Y;
43 egrad_next = egrad_cost_function(U_next,N);
44 Q_next = eta*Q + 1;
45 C_next = (eta * Q * C + cost_function(U_next, N)) / Q_next;
46 t_next = max(min(twopoint(U_next, U, egrad_next , egrad), max_step

), min_step);
47

48 if t_next == max_step
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49 disp("max step used in local solver")
50 elseif t_next == min_step
51 disp("min step used in local solver")
52 end
53 %costs(k) = cost_function(U, N);
54 U = U_next;
55 egrad = egrad_next;
56 Q = Q_next;
57 C = C_next;
58 t = t_next;
59

60 if k == max_iter
61 disp("Max iter reached in local solver")
62 end
63 end
64 %costs(k) = cost_function(U, N);
65 %plot(costs)
66 res = U;
67 end

Code B.16: Local solver of the IDDM algorithm

1 function res = noise(N, rho)
2 % This function applies a noise channel to a quantum state
3 res = zeros(size(N{1}));
4 for i = 1:length(N)
5 res = res + N{i} * rho * N{i}';
6 end
7 end

Code B.17: Noise channel

1 function res = noise_recovery(P, N, rho)
2 % This function applies the composition of noise and Petz recovery to

a
3 % quantum state
4 res = recovery(P, N, noise(N, rho));
5 end

Code B.18: Noise and recovery composed operation

1 function res = noise_recovery_ops(P, N)
2 % This function returns the Kraus operators of the composition of
3 % noise and Petz recovery
4 res = cell(size(N{1}));
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5 for j = 1:length(N)
6 for k = 1:length(N)
7 res{j,k} = P * N{j}' * pinv(noise(N,P))^(1/2) * N{k};
8 end
9 end

10 end

Code B.19: Noise and recovery composed operators

1 function res = proj_noise_recovery(P, N, rho)
2 % This function applies the composition of projection onto the code,

noise
3 % and Petz recovery
4 res = recovery(P, N, noise(N, P * rho * P));
5 end

Code B.20: Projection noise recovery operation

1 function res = proj_noise_recovery_ops(P, N)
2 % This function returns the Kraus operators of the composition of
3 % projection onto the code, noise and Petz recovery
4 res = cell(size(N));
5 for j = 1:length(N)
6 for k = 1:length(N)
7 res{j,k} = P * N{j}' * pinv(noise(N,P))^(1/2) * N{k} * P;
8 end
9 end

10 end

Code B.21: Projection noise recovery operators

1 function res = recovery(P, N, rho)
2 % This function applies the Petz recovery channel
3 res = zeros(size(N{1}));
4 for i = 1:length(N)
5 res = res + P * N{i}' * pinv(noise(N, P))^(1/2) * rho * pinv(

noise(N, P))^(1/2) * N{i} * P;
6 end
7 end

Code B.22: Petz recovery

1 function res = ret_exp(U, X, t)
2 % This function performs an exponential retraction on the complex

valued
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3 % Stiefel manifold
4 [n, d] = size(U);
5 A = U' * X;
6 [Q, R] = qr((eye(n) - U*U') * X);
7 R = R(1:d, 1:d);
8 Q = Q(1:n, 1:d);
9 O = zeros(d,d);

10

11 res = [U Q] * expm(t * [A -R'; R O]) * [eye(d); O];
12 [Q, ~] = qr(res);
13 res = Q(1:n, 1:d);
14

15 end

Code B.23: Exponential retraction

1 function res = sde_solver(U0, N, t, sigma)
2 % This function simulates the Stochastic process of the IDDM

algorithm
3 beta = 1 - sqrt(2)/2;
4 U = U0;
5 n = size(U, 1);
6 d = size(U, 2);
7

8 k = 1;
9

10 for delta = t(2:end) - t(1:end-1)
11 G = egrad_cost_function(U, N);
12 B = randn(n,d)*sqrt(delta/2) + 1i*randn(n,d)*sqrt(delta/2);
13 Z = -delta * G + sigma * (eye(n) - beta * (U * U')) * B;
14 A = Z * U' - U * Z';
15

16 U = pinv(eye(n) - A/2) * (eye(n) + A/2) * U;
17 k = k+1;
18 end
19

20 res = U;
21 end

Code B.24: SDE solver of the IDDM algorithm

1 function res = skew(Z)
2 % This function returns the anti-Hermitian part of a matrix
3 res = (Z - Z')/2;
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4 end

Code B.25: Anti-Hermitian part

1 function res = sym(Z)
2 % This function returns the Hermitian part of a matrix
3 res = (Z + Z')/2;
4 end

Code B.26: Hermitian part

1 function res = tang_proj(U, X)
2 % This function performs a projection onto the tangent space of a

point of
3 % the complex valued Stiefel manifold
4 n = size(U, 1);
5 res = U * skew(U' * X) + (eye(n) - U * U') * X;
6 end

Code B.27: Projection onto tangent space

1 function res = tang_proj_perp(U, X)
2 % This function perform a projection onto the orthogonal space of the
3 % tangent space of a point in the complex valued Stiefel manifold
4 res = U * sym(U' * X);
5 end

Code B.28: Projection onto space perpendicular to the tangent

1 function t = twopoint(U, U_prev, grad, grad_prev)
2 % This function performs the two-point algorithm to compute the step-

size
3 % used in line-search based algorithms
4 DU = U - U_prev;
5 Dgrad = grad - grad_prev;
6 t = abs(trace(DU' * Dgrad)) / trace(Dgrad' * Dgrad);
7 end

Code B.29: Two-point step size

1 function res = unvec(X)
2 % This function performs the inverse of the vectorisation operation
3 res = reshape(X, sqrt(size(X,1)), sqrt(size(X,1)));
4 end

Code B.30: De-vectorisation
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1 function res = vec(X)
2 % This function performs the vectorisation operation
3 res = reshape(X, size(X,1)*size(X,2), 1);
4 end

Code B.31: Vectorisation

1 function res = vec_proj_noise_recovery(P, N)
2 % This function returns the matrix that applies the composition of
3 % projection onto the code, noise and Petz recovery to a vectorised

density
4 % matrix
5 Ac = proj_noise_recovery_ops(P,N);
6 res = zeros(size(Ac{1,1}).^2);
7 for j = 1:length(Ac)
8 for k = 1:length(Ac)
9 res = res + kron(conj(Ac{j,k}), Ac{j,k});

10 end
11 end
12 end

Code B.32: Vectorised projection, noise and recovery
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