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Introduction

The goal of this thesis is to illustrate the Generic Vanishing theorem (GVT),
specifically the version that Green and Lazarsfeld proved in the late 80’s in
[GL1], focusing on its proof and some of its applications, in particular on the
so called Ueno’s conjecture K. To understand these problems we need some
definitions and properties from the Hodge theory, in particular on a compact
Kähler manifold. In fact, these are the main objects of our studying. A Käh-
ler manifold is a complex manifold equipped with a Hermitian metric whose
imaginary part, which is a 2-form of type (1, 1) relative to the complex struc-
ture, is closed. We are interested in these objects mostly because the Kähler
identities, which are identities between certain operators on differential forms,
provide the Hodge decomposition of the de Rham cohomology. We also prove
the Kodaira Vanishing theorem, an important theorem on vanishing of coho-
mology of positive line bundle. While Kodaira’s theorem depends on the fact
that the first Chern class c1(L) is positive, the GVT concerns line bundles
with c1(L) = 0. This kind of line bundles are topologically trivial, because
their underlying smooth line bundle is the trivial bundle X×C, and they are
parametrized by the points of Pic0(X). In Chapter 1 we start with some def-
initions and properties about sheaves cohomology and singular cohomology.
Then we compare them with the de Rham cohomology and we give a brief
review of the Hodge theory. We start from compact and oriented Rieman-
nian manifolds, here the classes in the de Rham cohomology are uniquely
represented by harmonic forms. Then we move to compact Kähler mani-
folds, where the harmonic theory is compatible with the complex structure.
We show the Hodge decomposition on Kähler manifolds. This chapter ends
with a description of holomorphic line bundle with trivial first Chern class,
extending the results about cohomology of a compact Kähler manifold to co-
homology groups of the form H0(X,Ωp

X⊗L) where L ∈ Pic0(X), the identity
component of the Picard group. In Chapter 2 we introduce the theory of com-
plex tori and abelian varieties in order to study two complex tori that one can
associate to a compact Kähler manifold, the Picard torus and the Albanese
torus, which are dual of each other. Moreover, we describe the Albanese map
alb : X → Alb(X), with the property that alb∗ : Pic0(Alb(X))→ Pic0(X) is
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an isomorphism. Finally we show that the Picard torus of a smooth projec-
tive variety is an abelian variety, therefore the Albanese torus is projective as
well. In Chapter 3 we show the famous vanishing theorem of Kodaira, which
states that if X is a compact Kähler manifold and L is an ample line bundle
on X, then H i(X,ωX ⊗ L) = 0 for all i > 0. In addition we explain the Ko-
daira Embedding theorem which gives a criterion for a Kähler manifold to be
projective. The Chapter ends with a parallel between the Kodaira Vanishing
theorem and the Generic Vanishing theorem of Green and Lazarsfeld.

In Chapter 4 we give the proof of the GVT, it says that the ith-cohomology
group of a generic topologically trivial line bundle L on a compact Kähler
manifoldX is zero for all i < dim alb(X). We introduce the subsets Sim(X) =
{ξ ∈ Pic0(X) | H i(X,Lξ) ≥ m} ⊆ Pic0(X), where Lξ is the line bundle on X
corresponding to ξ ∈ Pic0(X). We study the infinitesimal properties of these
loci, at first when X is a complex manifold, then we specify our studying
in the case that X is a compact Kähler manifold. In order to prove the
theorem an important role is played by the tangent cone theorem and some
of its corollaries.

In Chapter 5 we see some applications of the GVT. We look at the
Beauville theorem about the structure of S1(X), without giving the proof
that can be found in [Be]. Then we state the Green-Lazarsfeld’s theorem
about the irreducible components of Sim(X) which turn out to be translate
of subtori of Pic0(X), we follow the proof in [GL2]. The end of the thesis is
focused on the varieties of Kodaira dimension zero and on Ueno’s Conjecture
K, due to Kenji Ueno, which is partially open. We prove the first point of
the conjecture, following the proof given by Ein and Lazarsfeld in [EL] that
makes use of the GVT.
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Chapter 1

Preliminaries

We will start with a review of basic facts about Hodge theory on a com-
pact Kähler manifold recalling also the definition of the sheaf cohomology,
the singular cohomology and the de Rham cohomology. The useful thing
about Kähler manifold is that Kähler conditions makes the harmonic theory
compatible with the complex structure.

1.1 Sheaf Cohomology
We want to introduce sheaf cohomology using acyclic resolutions.
Let M a complex manifold.

Definition 1.1.1. A resolution of a sheaf F is a complex

0→ F 0 → F 1 → . . .

together with a homomorphism 0→ F → F 0 such that

0→ F → F 0 → F 1 → . . .

is an exact complex of sheaves.

Definition 1.1.2. A sheaf F is called flasque if for any open subset U ⊆M
the restriction map ru,M : F (M)→ F (U) is surjective.

We have

Lemma 1.1.3. If
0→ F 0 → F 1 → F 2 → 0

is a short exact sequence and F 0 is flasque, then the induced sequence

0→ F 0(U)→ F 1(U)→ F 2(U)→ 0

is exact for any open U ⊆M.
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1.1 Sheaf Cohomology 1. Preliminaries

Now, in order to define sheaves cohomology we need to know if any sheaf
can be resolved by flasque sheaves. In fact we have

Proposition 1.1.4. Any sheaf F on M admits a resolution

0→ F → F 0 → F 1 → . . .

such that F i is flasque for all i ≥ 0.

And now we can give the following

Definition 1.1.5. The i-th cohomology group H i(M,F ) of a sheaf F is the
i-th cohomology of the complex

F 0(M)
ϕ0

−→ F 1(M)
ϕ1

−→ F 2(M)
ϕ2

−→ . . .

induced by a flasque resolution F → F •, i.e.

H i(M,F ) =
ker (ϕi : F i(M)→ F i+1(M))

im (ϕi−1 : F i−1(M)→ F i(M))
.

Note that, if F is flasque then H i(X,F ) = 0 for all i > 0.
Moreover, from the definition it follows thatH0(M,F ) = Γ(M,F ) = F (M),
for any sheaf F .

We also have

Proposition 1.1.6. If F → F • and F → G • are two flasque resolutions
of the sheaf F then both define naturally isomorphic cohomology groups.

This Proposition says that our definition of sheaf cohomology is indepen-
dent of the chosen flasque resolution.

From this definition we also get a very good explanation of the non-
exactness of short exact sequences at level of global section. Indeed we have

Proposition 1.1.7. Let

0→ F 0 → F 1 → F 2 → 0

be a short exact sequence of sheaves on M . Then there exists a long exact
cohomology sequence defined as follows

0 H0(M,F 0) H0(M,F 1) H0(M,F 2)

H1(M,F 0) H1(M,F 1) H1(M,F 2)

H2(M,F 0) H2(M,F 1) H2(M,F 2) . . .

2



1. Preliminaries 1.2 Singular (Co)homology

One more definition, by the fact that the space of sections Γ(K,F ) of F
over the closed set K ⊂M can be defined as the direct limit of the spaces of
sections over all open neighbourhoods of K, we have

Definition 1.1.8. A sheaf F is called soft if the restriction Γ(M,F ) →
Γ(K,F ) is surjective for any closed subset K ⊆M.

Moreover, soft sheaves are acyclic, i.e. sheaves with trivial higher coho-
mology groups; and any sheaf of modules over a soft sheaf of commutative
rings is soft and hence acyclic.

1.2 Singular (Co)homology

Let X be a topological space. To avoid technicalities, X will always be
assumed to be a locally compact, Hausdorff space, and satisfying the second
countability axiom.

The definition of singular homology and cohomology uses topological sim-
plexes. The topological n-simplex ∆n is defined as

∆n =

{
(t0, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = 1, ti ≥ 0

}
.

Singular (co)homology is defined by looking at all possible continuous maps
from simplexes to X, where we denote by singular n-th simplex a continuous
map f : ∆n → X. And, if X is a differentiable manifold, we call a singular
simplex f differentiable if it can be extended to a C∞-map from a neighbour-
hood of ∆n ⊆ Rn+1 to X.

Define the group of singular n-chains as the free abelian group

Sn(X) = Z [f : ∆n → X | f singular n-simplex] .

Define similarly S∞n (X) the free abelian group of differentiable singular n-
chains by requiring that all f are differentiable. Define also the boundary
map ∂n : Sn(X)→ Sn−1(X) as

∂nf =
n∑
j=0

(−1)jf |tj .

Now, we call the group of singular n-cochains the free abelian group

Sn(X) = Hom (Sn(X),Z) ,
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1.2 Singular (Co)homology 1. Preliminaries

and the group of differentiable singular n-cochains the free abelian group

Sn∞(X) = Hom (S∞n ,Z) .

Then the adjoint of ∂n+1 define the boundary map

dn : Sn∞(X)→ Sn+1
∞ (X).

So we have

Lemma 1.2.1.
∂n−1∂n = 0 and dn+1dn = 0,

i.e. the groups S•(X) and S•(X) define complexes of abelian groups.

Then we can finally state the

Definition 1.2.2. We define singular homology and cohomology with values
in Z as follows

H i
sing(X,Z) =H i (S•(X), d•) ,

Hsing
i (X,Z) =H i (S•(X), ∂•) .

If X is a manifold, we define the differentiable singular (co)homology as
follows

H i
sing,∞(X,Z) = H i(S•∞(X), d•) and Hsing,∞

i (X,Z) = H i(S∞• (X), ∂•).

We can extend easily these definitions to a general ring R. In the case
R = R or R = C we have the following theorem, due to de Rham.

Theorem 1.2.3.
H i
sing(X,Z)⊗Z R = H i(X,R).

The proof of this theorem can be done by using the natural map Ak(X)→
Sksing(X) given by integration:

α 7→
(
f 7→

∫
∆i

f ∗α

)
.

Moreover, by Stokes’ theorem, the map α →
∫
α gives a morphism of

sheaves from the de Rham complex to the singular cochain complex, and
this morphism of acyclic resolution leads to

Hk
DR(X) ' Hk

sing(X,R).

To see a more specific description of these facts see [Vo] or [Fu].
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1. Preliminaries 1.3 Hodge Theory

1.3 Hodge Theory

1.3.1 On a compact and oriented Riemannian manifold

Let’s start from the case of a compact smooth manifold M. Denote by
Ak(M,R) the space of smooth real-valued k-forms, and let d be the exte-
rior derivative mapping Ak(M,R)→ Ak+1(M,R). Then define the de Rham
cohomology groups of M as

Hk
dR =

ker
(
d : Ak(M,R)→ Ak+1(M,R)

)
im (d : Ak−1(M,R)→ Ak(M,R))

.

A class in Hk
dR(M,R) is represented by a closed k-form ω, but it’s not unique.

Define the Laplace operator ∆: Ak(M,R)→ Ak(M,R) by the formula ∆ =
d ◦ d∗ + d∗ ◦ d, where d∗ is the adjoint operator d∗ : Ak(M,R)→ Ak−1(M,R)
defined by the condition (d∗α, β) = (α, dβ) with α ∈ Ak(M,R) and β ∈
Ak−1(M,R). Then we have that ω is d-closed and of minimal norm if and
only if ω is harmonic, i.e. ∆ω = 0, and we denote by Hk(M,R) = ker ∆ the
set of harmonic k-forms. So we have the

Theorem 1.3.1. Let (M, g) be a compact and oriented Riemannian manifold
of dimension n. Then the natural map Hk(M,R) → Hk

dR(M,R) is an iso-
morphism; i.e. every de Rham cohomology class contains a unique harmonic
form.

1.3.2 On a complex manifold

Here we want to extend Hodge theory to the case of a compact complex man-
ifold X of dimension n. We denote by Ak(X) the space of smooth complex-
valued differential k-forms on X. Because of the complex structure, we get
a decomposition

Ak(X) =
⊕
p+q=k

Ap,q(X),

where Ap,q(X) denote the space of differentials (p, q)-forms.
Let d : Ak(X) → Ak+1(X) the exterior derivative. Then it decomposes

into d = ∂ + ∂̄, where

∂ : Ap,q(X)→ Ap+1,q(X) and ∂̄ : Ap,q(X)→ Ap,q+1(X).

We also have, from d2 = 0, ∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0.
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1.3 Hodge Theory 1. Preliminaries

Using these differentials we define to kinds of cohomology groups on X.
The first is the de Rham cohomology defined as

Hk
dR(X,C) =

ker
(
d : Ak(X)→ Ak+1(X)

)
im (d : Ak−1(X)!Ak(X))

.

Moreover, by Poincaré lemma, the complex of sheaves of smooth forms is
a soft resolution of the constant sheaf C; this makes Hk

dR(XC) canonically
isomorphic to Hk(X,C).
The second is the Dolbeault cohomology defined as

Hp,q(X) =
ker
(
∂̄ : Ap,q(X)→ Ap,q+1(X)

)
im
(
∂̄ : Ap,q−1(X)→ Ap,q(X)

) .
We have, by the holomorphic version of the Poincaré lemma that

Hp,q(X) ' Hq(X,Ωp
X).

Now, we want restate the results of the previous section in this setting.
Then define the Laplace operator ∆: Ak(X) → Ak(X) and the subspace
of harmonic forms Hk(X) ⊆ Ak(X) as we did before. So, Theorem 1.3.1
becames

Hk(X,C) ' Hk
dR(X,C) ' Hk(X).

1.3.3 On a compact Kähler manifold

Let X be a complex manifold of dimension n. Choose a Hermitian metric h
on the holomorphic tangent bundle of X. Considered as a real vector space
of dimension 2n, the holomorphic tangent space is canonically isomorphic to
the tangent space of X, viewed as a smooth manifold of dimension 2n, then
our Hermitian metric induces a Riemannian metric g = Re h on the tangent
bundle of the smooth manifold X, and also a differential form ω = −Im h ∈
A2(X,R)∩A1,1(X).We need the Hermitian metric h to be Kähler if we want
the theory of Harmonic forms to interact well with the complex structure of
X.

Definition 1.3.2. A Kähler metric on a complex manifold is a Hermitian
metric whose associated (1, 1)-form is closed. A complex manifold that admits
at least one Kähler metric is called a Kähler manifold.

Proposition 1.3.3. One has that on a Kähler manifold the Laplace operator
satisfies the condition

1

2
∆ = ∂∂∗ + ∂∗∂ = ∂̄∂̄∗ + ∂̄∗∂̄.

6



1. Preliminaries 1.3 Hodge Theory

Moreover, we have ∆Ap,q(X) ⊆ Ap,q(X) and any holomorphic form is both
∂-closed and ∂̄-closed.

The Laplace operator ∆ also preserves the type of a form, in the following
sense: if α ∈ Ak(X) is harmonic, then its components αp,q ∈ Ap,q(X) are also
harmonic, i.e.

0 = ∆α =
∑
p+q=k

∆αp,q

since ∆αp,q ∈ Ap,q(X) then ∆αp,q = 0.

Corollary 1.3.4. On a compact Kähler manifold X, the space of harmonic
forms decomposes by type as

Hk(X) =
⊕
p+q=k

Hp,q(X)

with Hp,q(X) denote the space of harmonic (p, q)-forms.

Hodge Decomposition
On a compact Kähler manifold we can use Theorem 1.3.1 to see that every
cohomology class contains a unique harmonic representative, obtaining in
this way the famous Hodge decomposition of the de Rham cohomology. We
state it in a way that is independent of the choice of Kähler metric.

Theorem 1.3.5. Let X be a compact Kähler manifold. Then the cohomology
of X admits a direct sum decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q

where Hp,q is the set of those cohomology classes that are represented by a
d-closed form of type (p, q). We have Hq,p = Hp,q, where complex conjugation
is with respect to the real structure Hk(X,R).
Moreover Hp,q is isomorphic to the Dolbeault cohomology group Hp,q(X) '
Hq(X,Ωp

X).

Corollary 1.3.6. Let X be a compact Kähler manifold , then every holomor-
phic form is harmonic, and so there is an embedding H0(X,Ωp

X) ↪→ Hp(X,C)
whose image is precisely the subspace Hp,0.

7



1.3 Hodge Theory 1. Preliminaries

1.3.4 Hodge theory for line bundles

Here we want to describe analytically all the holomorphic line bundles, on a
compact Kähler manifold , with first Chern class equal to zero.

Lemma 1.3.7. Let X a compact Kähler manifold and let L be a holomorphic
line bundle with trivial first Chern class, endowed with the structure given by
∂̄ + τ , for τ ∈ H0,1(X). Then the complex

Ap,0(X)→ Ap,1(X)→ . . .→ Ap,n(X)

with differential given by ∂̄ + τ , computes the cohomology of Ωp
X ⊗ L.

We can now extend the previous results about the cohomology of a com-
pact Kähler manifold to cohomology groups of the form

Hq(Ωp
X ⊗ L)

with L ∈ Pic0(X) such that c1(L) = 0.
We give the corresponding version of the Hodge theorem in our current

situation

Theorem 1.3.8. With the notation as above, every class in Hq(Ωp
X ⊗ L) is

uniquely represented by a smooth form α ∈ Ap,q(X) satisfying

(∂̄ + τ)α = (∂̄ + τ)∗α = (∂ − τ)α = (∂ − τ)∗α = 0

All global holomorphic sections of Ωp
X ⊗L lie in the kernel of the connection

∇ = d+ τ + τ , which is integrable because ∇ ◦∇ = 0.

This theory has one application which is very surprising. Let’s suppose
that f ∈ A0(X) is a smooth function such that (∂̄ + τ)f = 0. By the above
Theorem, we automatically get (∂ − τ)f = 0 as well. This means that the
two differential equations are somehow coupled to each other, due to the fact
that X is a compact Kähler manifold . This leads to the following

Corollary 1.3.9. There is an isomorphism of vector spaces

Hq(Ωp
X ⊗ L) ' Hp(Ωq

X ⊗ L
−1).

Finally, another really interesting theorem

8



1. Preliminaries 1.3 Hodge Theory

Theorem 1.3.10 (Cartan-Serre-Grothendieck). Let X be a compact
Kähler manifold and let L be a line bundle on X. The following are equiva-
lent:

1. L is ample;

2. for every coherent sheaf F on X there exist a integer m0 = m0(F ) ≥ 0
such that

H i(X,F ⊗ L⊗m) = 0 for all i > 0, and m ≥ m0;

3. for every coherent sheaf F on X there exist a integer m1 = m1(F ) ≥ 0
such that F ⊗ L⊗m is generated by its global sections for all m ≥ m1;

4. there exist a integer m2 = m2(F ) > 0 such that L⊗m is very ample for
all m ≥ m2.

9



Chapter 2

Albanese Variety

2.1 Complex Tori

A lattice in a complex vector space Cg is by definition a complex subgroup of
maximal rank in Cg. So, it’s a free abelian group of rank 2g. A complex torus
is a quotient X = Cg/Λ, where Λ is a lattice in Cg. This complex torus X is
a complex manifold of dimension g that inherits the structure of a complex
Lie group from the vector space Cg. Recall that a Lie group of dimension
g is a compact connected complex manifold of dimension g with a group
structure on the underlying set such that the maps defined by (x, y) 7→ x · y
and x 7→ x−1 are holomorphic. A meromorphic function on Cg periodic with
respect to Λ can be considered as a function on X. An abelian variety is a
complex torus admitting enough meromorphic functions.

More general, let V be a complex vector space of dimension g and let Λ
be a lattice in V , then by definition Λ is a discrete subgroup of V of rank 2g.
Moreover the lattice Λ acts on V by addition. So, the quotient

X = V/Λ

is called complex torus. It’s easy to see that it’s a connected complex man-
ifold, and X it’s also compact; because Λ is of maximal rank as a subgroup
of V . The addition of V induces a structure of complex Lie group on X.
Moreover one can prove that any connected compact complex Lie group of
dimension g is a complex torus. In fact, one can first show that any compact
connected complex Lie group Y is commutative. Then we have that the ex-
ponential map exp: T0Y → Y is a surjective homomorphism of complex Lie
groups whose kernel is a lattice in T0Y , where T0Y is the tangent space of
Y at the point 0. Letting ker(exp) = Λ, exp induces an isomorphism of Lie

10



2. Albanese Variety 2.1 Complex Tori

groups
T0Y/Λ

'−→ Y

Therefore Y is a complex torus.

For n ∈ Z, n 6= 0, let Xn be the subgroup of elements annihilated by n,
i.e. Xn is the kernel of the map x 7→ nx, called the group of n-division points
of X. Then

Xn ' (Z/nZ)2g .

For a complex torus X = V/Λ, the vector space V can be seen as the
universal covering space. If we denote

π : V → X

the universal covering map, then ker(π) = Λ can be identified with the fun-
damental group π1(X) = π1(X, 0), that is isomorphic to the first homology
group H1(X,Z), since Λ is abelian. So, the torus X is locally isomorphic to
V , then we can consider V as the tangent space T0X of X at the point 0.
From the Lie theoretic point of view, π : V = T0X → X is just the exponen-
tial map.

Now, we want to compute the singular cohomology groups of complex tori
with values in Z. As a real manifold X is isomorphic to (R/Z)2g ' (S1)2g,
where S1 is the circle group. From above, we have an identification π1(X) =
H1(X,Z) = Λ that induces an isomorphism

H1(X,Z) ' Hom(π1(X),Z).

Proposition 2.1.1. We have a natural isomorphism induced by the cup prod-
uct

n∧
H1(X,Z)→ Hn(X,Z)

for every n ≥ 1.

Then, we can identify H1(X,Z) = Hom(Λ,Z), and if we denote by
Altn(Λ,Z) =

∧n Hom(Λ,Z) the group of Z-valued alternating n-forms on
Λ we get

Corollary 2.1.2. There is, for every n ≥ 1, a canonical isomorphism

Hn(X,Z) ' Altn(Λ,Z).

Moreover Hn(X,Z) and Hn(X,Z) are free Z-modules of rank
(

2g
n

)
for all

n ≥ 1.
11



2.1 Complex Tori 2. Albanese Variety

Now, we want to compute Hq(X,Ωp
X), where Ωp

X is the sheaf of the holo-
morphic p-forms on X. Let T = HomC(V,C) the complex cotangent space to
X at 0. By translation with respect to the group law on X, every complex p-
covector α ∈

∧p T extends to a translation invariant holomorphic p-form ωα
on X. In fact, let x ∈ X, the translation t−x induces a vector space isomor-
phism dt−x : TX,x → TX,0; using the dual isomorphism (dt−x)

∗ : Ω1
X,0 → Ω1

X,x

we can define (ωα)x = (∧p(dt−x)∗)α. Moreover the map α 7→ ωα define a
homomorphism of sheaves

OX ⊗C
p∧
T → Ωp

X (2.1)

which is actually an isomorphism. Thus, Ωp
X is a globally free sheaf of OX-

modules. Since the only global sections of OX are the constants, the global
sections of Ωp

X are the translation-invariant p-forms ωα. In fact, for the
isomorphism 2.1 we have

Hq(X,Ωp
X) ' Hq(X,OX ⊗C

p∧
T ) ' Hq(X,OX)⊗C

p∧
T.

We have the following

Theorem 2.1.3. Let T = HomC−antilinear(V,C). Then there is a natural
isomorphism

Hq(X,OX) '
q∧
T

for all q ≥ 0. In particular, for every pair (p, q) there is a natural isomor-
phism

Hq(X,Ωp
X) '

p∧
T ⊗

q∧
T .

The proof depend on the Dolbeault resolution

0→ OX → C 0,0 ∂̄−→ C 0,1 ∂̄−→ · · ·

where C p,q is the sheaf of C∞ complex-valued differential forms of type (p, q)
on X and ∂̄ is the component of the exterior derivative d mapping C p,q to
C p,q+1. This resolution define an isomorphism

Hq(X,OX) =

{
∂̄-closed (0, q)-forms on X

}
∂̄ {space of (0, q − 1)-forms on X}

.

The same method can used to compute the cohomology of the de Rham
complex. We know thatHn(X,C) = Hn(X,Z)⊗C, so denoting by AltnR(V,C)

12



2. Albanese Variety 2.1 Complex Tori

the group of R-linear alternating n-forms on V with values in C and applying
the canonical isomorphism Altn(Λ,Z)⊗C = AltnR(V,C) we get the canonical
isomorphisms

Hn(X,C) ' AltnR(V,C) '
n∧

HomR(V,C) '
n∧
H1(X,C)

for all n ≥ 1. Now, let C n =
⊕

p+q=n

C p,q the sheaf of C∞ complex-valued

n-forms. Then
0→ C→ C 0 d−→ C 1 d−→ · · ·

is a resolution of the constant sheaf C, then

Hn(X,C) ' Hn
DR(X) =

{d-closed n-forms}
d {(n− 1)-forms}

.

Just as in the case of (0, q)-forms we obtain the result: in every class of n-
forms in Hn

DR(X) we can distinguish a uniquely determined representative.
In fact, for all d-closed n-form ω, there is a unique translation invariant
n-form ωα, with α ∈

∧n HomR(V,C) such that

ω − ωα = dµ

for some (n − 1)-form µ. Then Hn(X,C) =
∧n HomR(V,C); taking cup

product on the left side to the exterior product on the right side. Moreover,
since we have HomR(V,C) = T ⊕ T , this shows the following

Theorem 2.1.4. The De Rham and Dolbeault isomorphism induces

Hn(X,C) '
n∧
T ⊕ T

'
⊕
p+q=n

(
p∧
T ⊗

q∧
T

)
'
⊕
p+q=n

Hq(X,Ωp
X)

for every n ≥ 0, with Hq(X,Ωp
X) the sheaf of holomorphic p-forms on X.

and it’s the Hodge Decomposition.

13



2.2 Abelian Varieties 2. Albanese Variety

2.2 Abelian Varieties

We now want to study algebraic varieties over an algebraically closed field k.

Definition 2.2.1. An abelian variety X is a complete algebraic variety over
k, which implies in particular that it’s irreducible, with a group law m : X ×
X → X such that m and it’s inverse map are both morphisms of varieties.

Note that if k = C, the underlying complex analytic space of an abelian
variety is a compact complex analytic group, then it is a complex torus.

When k 6= C an abelian variety has the following properties which are
similar to those of a complex torus.

Properties

1. X is a commutative and divisible group. Moreover, if nX denotes the
multiplication by a positive integer n, then its kernel Xn has the fol-
lowing structure

Xn ' (Z/nZ)2g if chark - n
Xpm ' (Z/pmZ)i if p = chark,m > 0

with 0 ≤ i ≤ g = dimX.

2. We have canonical isomorphism

Hq(X,Ωp
X) '

p∧(
H0(X,Ω1

X)
)
⊕k

q∧(
H1(X,OX)

)
and dimH0(X,Ω1

X) = dimH1(X,OX) = g.

3. There is an exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

where Pic0(X) has a natural structure of abelian variety, and NS(X)
is a finitely generated abelian group.

4. An abelian variety is everywhere non-singular. In fact, if there exists a
non-singular point x0 ∈ X, then for x ∈ X the translation morphism
Tx,x−1

0
: X → X is an automorphism of X sending x0 to x, so that x is

again a non-singular point, which is a contradiction.

14



2. Albanese Variety 2.3 Albanese Variety for Kähler manifolds

5. Let T = T0X be the tangent space of X at 0, and let ΩX,0 be its dual
space (T0X)∗ of differentials. Then there is a natural isomorphism

ΩX,0 ⊗k OX → Ω1
X

where Ω1
X is the sheaf of regular 1-forms on X. This map is defined

as follows: for each θ ∈ ΩX,0 consider the 1-form ωθ ∈ X defined by
(ωθ)x = T ∗−x(θ), that is the unique translation invariant 1-form on X
whose value at 0 is θ. It can easily be checked that is a regular 1-form on
X. Moreover, since X is connected and complete and H0(X,OX) = k,
then, from that isomorphism, the everywhere regular forms on X are
precisely the invariant forms.

The following theorem connects abelian varieties and complex tori.

Theorem 2.2.2. Let X = V/Λ a complex torus of dimension g. The follow-
ing are equivalent

(i) X is an abelian variety;

(ii) X is the complex space associated to a projective algebraic variety;

(iii) there are g algebraically independent meromorphic functions on X;

(iv) there exists a positive definite Hermitian form H on V such that its
imaginary part is integral on Λ × Λ. An hermitian form with these
properties is called polarization od the abelian variety X.

2.3 Albanese Variety for Kähler manifolds
In this section we associate to any compact Kähler manifold X of dimension
n ≥ 1 the Albanese torus Alb(X) and the Picard torus Pic0(X). (cf.[Ke] or
[BH]).

Let X a compact Kähler manifold of dimension n ≥ 1. From the Hodge
decomposition

H1(X,C) = H1(X,OX)⊕H0(X,Ω1
X), (2.2)

recall that H1(X,OX) ' H0(X,Ω1
X), defined H1(X)Z as follows

H1(X)Z = H1(X,Z)/torsion

then it is a free abelian group of rank 2q, where q = h0(X,Ω1
X). By Stoke’s

theorem every element γ ∈ H1(X)Z yields a linear form on the space H0(ωC)
which we also denote by γ

γ : H0(X,Ω1
X)→ C, ω 7→

∫
γ

ω.

15



2.3 Albanese Variety for Kähler manifolds 2. Albanese Variety

We also have that the map H1(X)Z → H0(ΩX)∗ is injective. It follows that
H1(X)Z is a lattice in H0(X,Ω1

X)∗, then the quotient defined by

Alb(X) = H0(X,Ω1
X)∗/H1(X)Z

is a complex torus of dimension q, and it’s called the Albanese variety of X.
Remark For any complex torus Z = V/Λ, we get V = (H0(Z,Ω1

Z))
∗ and

Λ = H1(X,Z), then
Alb(Z) = Z.

Definition 2.3.1. Fix x0 ∈ X, then for any point x ∈ X we can choose a
path γ from x0 to x mod H1(X)Z and we have a map

albX : X → Alb(X)

x 7→
(
ω 7→

∫ x

x0

ω

)
mod H1(X)Z

that it’s called the Albanese map of X with base point x0, where
∫ x
x0
ω =

∫
γ
ω.

Note that by Stoke’s theorem, the integral is independent from the choice of
γ and so the map is well-defined.

Corollary 2.3.2. Let X be a smooth projective variety, and let x0 ∈ X.
Then there is an integer n such that the holomorphic map

albnX : Xn → Alb(X)

(x1, · · · , xn) 7→
n∑
j=1

albX(xj)

is surjective. In particular albX(X) generates Alb(X) as a group.

Lemma 2.3.3. The differntial d albX of the Albanese map albX in a point
x ∈ X is given by the linear map

TxX → Hom
(
H0
(
X,Ω1

X

)
,C
)
, v 7→ (ω 7→ ω(v)) .

Then the codifferential (d albX)∗ : H0 (X,Ω1
X)⊗ OX → Ω1

X is just the evalu-
ation map.

Theorem 2.3.4 (Universal Property of the Albanese Torus). Let
ϕ : X → M be a holomorphic map into a complex torus M . There exists
a unique homomorphism ϕ̃ : Alb(X)→ M of complex tori such that the fol-
lowing diagram

X M

Alb(X) M

ϕ

albX t−ϕ(x0)

ϕ̃

is commutative.
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2. Albanese Variety 2.3 Albanese Variety for Kähler manifolds

As a consequence we obtain that the Albanese map is functorial:

Corollary 2.3.5. Let f : X → Y a morphism of compact Kähler manifolds.
Then there is a homomorphism of complex tori f̃ such that the following

X Y

Alb(X) Alb(Y ).

f

albX albY

f̃

We want now to define the Picard torus of X. First, recall that we have
that the following

H1(X,R)→ H1(X,C) = H0(X,Ω1
X)⊕H0(X,Ω1

X)
pr−→ H0(X,Ω1

X)

is injective, since every real differential 1-form is of the form α+ α for some
α ∈ H0(X,Ω1

X). So, define H1
Z(X) as the image of H1(X,Z) in H0(X,Ω1

X)
and then we can consider the quotient

Pic0(X) = H0(X,Ω1
X)/H1

Z(X).

Pic0(X) is the identity component of the Picard group of X. It’s a complex
torus, because rkH1

Z(X) = dimCH
1(X,C) = 2 dimCH0(X,Ω1

X). It is called
the Picard torus of X. Note that the construction of Pic0(X) if functorial, in
the sense that if f : X → Y is a holomorphic map of compact Kähler mani-
folds, then the pull-back f ∗ of holomorphic 1-form induces a homomorphism
of complex tori

f ∗ : Pic0(Y )→ Pic0(X).

The Picard torus can be identified with the set of line bundles on X with
trivial first Chern class.

Proposition 2.3.6. For any compact Kähler manifold X there is a canonical
isomorphism

Pic0(X) ' ker
{
c1 : H1(X,OX)→ H2(X,Z)

}
.

Proof. From the exponential sequence

0→ Z→ OX
exp−−→ (OX)∗ → 0

we get the long exact sequence in cohomology

H1(X,Z)→ H1(X,OX)→ H1(X, (OX)∗)
c1−→ H2(X,Z)→ · · · .

Then, by Hodge duality we obtain

ker c1 = H1(X,OX)/
(
im H1(X,Z)

)
= H0(X,Ω1

X)/H1
Z(X) = Pic0(X).
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2.3 Albanese Variety for Kähler manifolds 2. Albanese Variety

Our claim now is that if X is smooth and projective then Pic0(X) is an
abelian variety; then Alb(X) would be an abelian variety as well. To his end,
let ω ∈ H1,1(X)∩H2(X,Z) be the first Chern class of the line bundle OX(1).

Lemma 2.3.7. The hermitian form

H : H0(X,Ω1
X)×H0(X,Ω1

X)→ C

given by

(ϕ, ψ) 7→ −2i

∫
X

ωn+1 ∧ ϕ ∧ ψ

define a polarization on Pic0(X). We call it the canonical polarization of
Pic0(X).

Proof. For ϕ, ψ ∈ H1
Z(X) ⊆ H0(X,Ω1

X) the sum ϕ+ϕ and ψ+ψ are integral
(1, 1)-forms on H1

Z(X). In fact we have

ImH(ϕ, ψ) =
1

2i
(H(ϕ, ψ)−H(ψ, ϕ))

= −
∫
X

ωn+1 ∧ ϕ ∧ ψ +

∫
X

ωn+1 ∧ ψ ∧ ϕ

= −
∫
X

ωn+1 ∧ (ϕ+ ϕ) ∧ (ψ + ψ)

∈ Z.

So, we have an hermitian form H : Λ × Λ → Z, we only have to show
that it’s positive definite. For this we are going to use the Hodge opera-
tor ∗ : Hp,q(X) → Hn−p,n−q(X) (see [GH, section 4.4]). We get an inner
hermitian product defined as follows

〈 , 〉 : Hp,q(X)×Hp,q(X)→ C, 〈ϕ, ψ〉 =

∫
X

ϕ ∧ ∗ψ.

Now, it can be proved that for every 1-form ϕ ∈ H0(X,Ω1
X) one has

∗ϕ =
−i

(n− 1)!
ωn+1 ∧ ϕ.

Using these results, from [Hu], we have now that for any nonzero ϕ ∈
H0(X,Ω1

X)

H(ϕ, ϕ) = −2i

∫
X

ωn+1 ∧ ϕ ∧ ϕ

= 2(n− 1)!

∫
X

ϕ ∧ ∗ϕ > 0.
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2. Albanese Variety 2.3 Albanese Variety for Kähler manifolds

Then, similarly we obtain the following

Corollary 2.3.8. For any smooth projective variety X, the complex torus
Alb(X) is an abelian variety.

Proposition 2.3.9. Let albX : X → Alb(X) be the Albanese map of a smooth
projective variety X. Then

alb∗X : Pic0 (Alb(X))→ Pic0(X)

is an isomorphism.

Proof. We have that the pullback mapping

alb∗X : H0
(
Alb(X),Ω1

X

)
→ H0(X,ΩX)

is an isomorphism, by Theorem 2.1.4 applied to Alb(X). This means that
every holomorphic one-form on X is the pullback of a holomorphic one-form
from Alb(X). And we know from (2.2) that every class in H1(X,C) can be
uniquely written as the sum of holomorphic one-form and the conjugate of a
holomorphic one-form

alb∗X : H1(Alb(X),C)→ H1(X,C)

is an isomorphism.
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Chapter 3

Vanishing Theorems

Recall some definitions. Let X a projective variety and let L a line bundle on
X. L is said to be very ample if there exist a closed embedding f : X → PN ,
where N = dimH0(X,L)− 1, such that

L = f ∗OPN (1).

L is called ample if L⊗n is very ample for some n ∈ N.
Note that L is very ample if and only if there exist a closed embedding
f : X → Pn for some n ∈ N and there exists m ∈ N such that L⊗m '
f ∗OPn(1)

3.1 Kodaira Vanishing Theorem
Here we want to give a proof of the Kodaira vanishing theorem using the
results of Hodge theory.

Theorem 3.1.1 (Kodaira Vanishing). Let L be an ample line bundle on
a smooth projective variety X. Then

H i(X,ωX ⊗ L) = 0

for every i > 0.

There is a very elegant proof based on Serre’s Theorem 1.3.10 and the
following theorem

Theorem 3.1.2. Let X be a smooth projective variety, L a line bundle on
X, and s ∈ H0(X;L⊗N) a nontrivial section whose divisor is smooth. Then
the mapping

Hj(X,ωX ⊗ L)→ Hj(X,ωX ⊗ L⊗N+1)

induced by multiplying by s is injective.
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3. Vanishing Theorems 3.2 Kodaira Embedding Theorem

We can now prove the Kodaira Vanishing Theorem (cf. [EV]).

Proof. Suppose that L is an ample line bundle on a smooth projective variety
X. Since L⊗N is very ample for large N , it certainly has global sections whose
divisors are smooth. Theorem 3.1.2 therefore gives us an injection

Hj(X,ωX ⊗ L) ↪→ Hj(X,ωX ⊗ L⊗N+1).

But for sufficiently large values of N , the group on the right-hand side van-
ishes for j > 0 by Serre’s theorem. Consequently, Hj(X;ωX ⊗ L) = 0 for
j > 0, as desired.

3.2 Kodaira Embedding Theorem

Recall, first, the following definitions. A line bundle L is called positive if its
first Chern class c1(L) ∈ H2(X,R) can be represented by a closed positive
real (1, 1)-form.
Note that a compact complex manifold X that admits a positive line bun-
dle L is automatically Kähler . Indeed, the closed positive real (1, 1)-form
representing c1(L) defines a Kähler structure on X.

Not every compact complex manifold is Kähler and not every compact
Kähler manifold is projective. Of course, one would like to have a criterion
that decides whether a Kähler manifold is projective. Such a criterion is
provided by the Kodaira embedding theorem which will be proved now.

Let L be a holomorphic line bundle on a complex manifold X. A point
x ∈ X is a base point of L if s(x) = 0 for all s ∈ H0(X,L). The base locus
Bs(L) is the set of all base points of L. Clearly, if s0, . . . , sN ∈ H0(X,L) is
a basis of global sections then Bs(L) = Z(s0) ∩ . . . ∩ Z(sN) is an analytic
subvariety.
Moreover, if L is a holomorphic line bundle on a complex manifold X and
suppose that s0, . . . , sN ∈ H0(X,L) is a basis. Then

ϕL : X \ Bs(L)→ PN , x 7→ [s0(x), . . . , sN(x)]

defines a holomorphic map such that ϕ∗L (OPN ) (1) ' L|X\Bs(L).

Remark The map ϕL is said to be associated to the complete linear system
H0(X,L), whereas a subspace of H0(X,L) is simply called a linear system
of L, and we usually denote it by |L|. We say that L is globally generated by
the sections s0, . . . , sN if Bs(L, s0, . . . , sN) = ∅.
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3.2 Kodaira Embedding Theorem 3. Vanishing Theorems

Equivalently, given x ∈ X, we can define ϕL(x) to be the hyperplane Hx

in P (H0(X,L)) consisting of those sections vanishing at x

ϕL : X → P
(
H0(X,L)

)
x 7→ Hx =

{
s ∈ H0(X,L) | s(x) = 0

}
.

A question that rise spontaneously from this discussion is: Given a holo-
morphic line bundle L on X, when is that ϕL : X → PN an embedding?
First, note that, in order fro ϕL to be well-defined, the linear system |L|
can’t have any base points, it means that the restriction map

H0(X,L)→ L(x)

must be surjective for every x ∈ X. Notice that this map sits in the long
exact cohomology sequence associated to

0→ L⊗Ix(L)→ L→ L(x)→ 0

where we denote Ix ⊂ O the sheaf of holomorphic functions on X vanishing
at x, and Ix(L) the sheaf of sections of L vanishing at x.

Now, we can say that ϕL will be an embedding if

1. ϕL is one-to-one. This happens if and only if for all x and y in X there
is a section s ∈ H0(X,L) vanishing at x but not at y; i.e. if and only
if the restriction map

H0(X,L)→ L(x)⊗ L(y) (3.1)

is surjective for all x 6= y in X. We say that ϕL or L separates points.
Note that if L satisfies this condition, then |L| is base point free. More-
over, as before, this map is induced by a short exact sequence:

0→ L⊗Ix,y → L→ L(x)⊗ L(y)→ 0.

2. ϕL has non-zero differential everywhere. It means that for any x ∈ X
the differential dϕL,x : TxX → TϕL(x)

PN is injective. Let ψa a local
trivialization of L near x, this is the case if and only if for every v∗ ∈∧1
xX, the cotangent space at x, there exists s ∈ H0(X,L) such that

sa(x) = 0 and dsa(x) = v∗, where sa = ψ∗s. Let us reformulate this as
follows. If s is any section in Ix(L), defined near x and ψα, ψβ local
trivializations of L in a neighbourhood U of x, so if sα = ψ∗αs, sβ = ψ∗βs
and sα = gα,βsβ, then we have

dsα = dsβ · gα,β + dgα,β · sβ
= dsβ · gα,β
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3. Vanishing Theorems 3.2 Kodaira Embedding Theorem

at x. So, consider the map dx : H0 (X,L⊗Ix)→ L⊗
∧1
xX defined by

s 7→ d (ψs)x , for any s vanishing at x. Then dx is independent of the
choice of ψ. Hence, dϕL is injective if and only if

dx : H0 (X,L⊗Ix)→ L⊗
1∧
x

X (3.2)

is surjective. Also here the map dx is induced by a short exact sequence
which in this case takes the form

0→ L⊗I 2
x → L⊗Ix → L⊗

1∧
x

X → 0.

Summarizing, we find out that the complete linear system |L| induces a
closed embedding ϕL : X → PN if and only if the global sections of L separate
points x 6= y ∈ X and tangent directions v ∈ TxX.

Now, recall that a line bundle L on a compact complex manifold X is
called ample if and only if L⊗k, for some k > 0, defines a closed embedding
ϕL : X → PN .

Theorem 3.2.1 (Kodaira Embedding). Let X be a compact Kähler man-
ifold, and L a line bundle on X. Then L is positive if and only if L is ample
and so if an only if there is embedding

φ : X ↪→ Pn

of X into some projective space.

Proof. The proof is based on the observations above. To see more details see
[GH, cap.4] or [Hu, section 5.3].

So far we know from Kodaira vanishing theorem that, if X a is compact
Kähler manifold and L is an ample line bundle on X, then H i(X,L⊗ωX) = 0
for i > 0. We can go further, if we consider only a generic line bundle
P ∈ Pic0(X), what we are going to prove is that we still have a Kodaira-type
vanishing theorem but not for all i > 0. Indeed, for q > n − dim alb(X) we
have Hq(X,ωX ⊗ P ∗) = 0, where alb : X → Alb(X) is the Albanese map

X Alb(X)

alb(X)

alb

and n− dim alb(X) is the dimension of the generic fiber.
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3.2 Kodaira Embedding Theorem 3. Vanishing Theorems

Our purpose is to study the cohomological properties of topologically
trivial holomorphic line bundles on a compact Kähler manifold, applying
deformation theory to prove some conjectures of Beauville and Catanese
concerning the vanishing of its cohomology groups. The essential idea for
the proof of the Generic Vanishing Theorem is to study the deformation
theory of the groups H i(X,L) as L varies over Pic0(X). Roughly speaking,
one wants to argue that if i < dim alb(X) then one can “deform away” any
non-zero cohomology class.

Let X a compact Kähler manifold and let alb : X → Alb(X) be the
Albanese mapping of X for some choice of base point. Let Pic0(X) de-
note the identity component of the Picard group of X, which parametrizes
topologically trivial holomorphic line bundles on X. We wish to study the
cohomology groups H i(X,L) for a general line bundle L ∈ Pic0(X). To this
end, for a given integer i ≥ 0 let Sim ⊆ Pic0(X) to be the analytic subvariety
defined by

Sim(X) = {L ∈ Pic0(X) | dimH i(X,L) ≥ m};

to simplify the notation we also set Si(X) = Si1(X).

Theorem 3.1. Let X be a compact Kähler manifold. Then

codimPic0(X) S
i(X) ≥ dim alb(X)− i.

In particular, if L ∈ Pic0(X) is a generic line bundle, where general means
on the complement of the proper analytic subset S i(X), then H i(X,L) = 0
for every i < dim alb(X).
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Chapter 4

Generic Vanishing Theorem

Notation

(0.1) If V is a complex vector space, and if M is a complex manifold, we
denote by VM the trivial vector bundle on M with fibre V .

(0.2) Let u : E → F be a map of holomorphic vector bundles of ranks e and
f respectively on a complex manifold M . For any integer a > 0, we
denote by Ja(u) the ideal sheaf onM locally generated by the determi-
nants of the a×a minors of u, with the conventions that J0(U) = OM

and Ja(u) = 0 if a > min{e, f}.

4.1 Poincaré Line Bundle

Recall that Pic0(X) is defined to be the group of holomorphic line bundle
with first Chern class equal to zero. Via the cohomology sequence of the
exponential sequence we get

Pic0(X) ' H1(X,OX)

H1(X,Z)
.

Denote with Lξ the holomorphic line bundle on X corresponding to the point
ξ ∈ Pic0(X).
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4.1 Poincaré Line Bundle 4. Generic Vanishing Theorem

Proposition 4.1.1. Fix a base point x0 ∈ X. Then there exists a holomor-
phic line bundle, called the Poincaré bundle, P on X × Pic0(X) with the
following properties:

(a) For any ξ ∈ Pic0(X) it satisfies

P|X×{ξ} ' Lξ;

(b) The restriction of P to {x0} × Pic0(X) is the trivial line bundle, i.e.

P|{x0}×Pic0(X) ' OPic0(X).

Moreover, P is unique up to isomorphism.

Now we need a good model for computing the cohomology gropusH i(X,Lξ)
when ξ ∈ Pic0(X) is allowed to vary. Fix x0 ∈ X and consider the Poincaré
bundle P . Let

p : X × Pic0(X)→ Pic0(X)

the projection map. The cohomology groups H i(X,Lξ) are related to the
direct image sheaves Rip∗P , so recall some definitions first.

Definition 4.1.2. Let f : X → Y be a morphism of complex manifold. Let
G an OY -sheaf on Y . Define the pull-back sheaf

f ∗G = f−1G ⊗f−1OY
OX

where f−1 is the inverse functor. In this way f ∗G is an OX-sheaf on X,
indeed the map f# : OY → f∗OX induces a morphism of sheaves f−1OY →
OX and so we can consider OX as an f−1OY -sheaf.

Definition 4.1.3. Let f : X → Y a continuous map of topological space. Let
F a sheaf of abelian group on X, define for all i ≥ 0 the higher direct image
sheaf Rif∗(F ) on Y as the sheaf associated to the presheaf

V 7→ H i
(
f−1V,F |f−1V

)
on Y .

For more details see Hartshorne’s book [Ha]. Now we can state a useful
result from analysis.
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Theorem 4.1.4. Let f : X → Y be a proper morphism of complex manifolds,
and let F be a coherent sheaf on X, flat over Y . Then for every y ∈ Y , there
exists an open neighbourhood V and a bounded complex E • of holomorphic
vector bundles on V , with the following property: for every coherent sheaf G
on Y , one has

Rif∗(F ⊗ f ∗G ) ' Hi(E • ⊗ G )

and the isomorphism is functorial in G .

For the proof, made in an algebraic setting, we refer to chapter III, The-
orem 12.11 of [Ha] or [Mu, p.46].

This Theorem turns out to be very useful when applied to the Pioncaré
bundle P on X×Pic0(X). So, following the previous notation, Y = Pic0(X)
and F = P . So for any ξ ∈ Pic0(X) we have an open neighbourhood V and
a bounded complex of vector bundles E •. Let mξ ⊆ OV the maximal ideal
at ξ and let C(ξ) = OV /mξ the skyscraper sheaf at ξ. If we take G = C(ξ),
the isomorphism in the previous Theorem 4.1.4 becomes

H i(X,E • ⊗ C(ξ)) ' Rip∗ (P ⊗ p∗ (C(ξ))) ' H i(X,Lξ)

and so the complex E • does compute cohomology of the line bundle corre-
sponding to ξ.

4.2 Cohomology Support Loci

4.2.1 Infinitesimal Properties

Our purpose in this section is to prove useful results concerning the deforma-
tion theory associated to a complex of vector bundles on a complex manifold.
Let M be a complex manifold, denote by OM the sheaf of germs of holomor-
phic functions. For y ∈ M denote by OM,y the local ring at the point, by
my ⊆ OM,y its maximal ideal and by C(x) = OM,x/my the residue field. Let
E • a bounded complex of locally free sheaves on M , with rkEi = ei

E • =
[
· · · d

i−1

−−→ Ei−1 di−−→ Ei di+1

−−→ Ei+1 −→ · · ·
]

Given a point y ∈M , we denote by E •(y) the complex of vector spaces at y
determined by the fibres of E •

E •(y) = E •/myE
• = E • ⊗OM

C(y)
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where C(y) = OM,y/my is the residue field of M at y. We are interested in
the study of how the cohomology groups of this complex of vector spaces
depend on y ∈M , in particular on the cohomology support loci

Sim(E •) = {y ∈M | dimH i(E •(y)) ≥ m},

and in particular, we want to understand these loci infinitesimally.

Lemma 4.2.1. Each Sim(E •) are closed analytic subvariety of M .

Proof. Note first that

dimH i(E •(y)) ≥ m⇐⇒ dim ker di(y)− dim im di−1(y) ≥ m

⇐⇒ rkdi−1(y) + rkdi(y) ≤ ei −m, (4.1)

Then we have, as sets:

Sim(E •) =
⋂

a+b=ei−m+1
a,b≥0

{y ∈M | rkdi−1(y) ≤ a− 1 or rkdi(y) ≤ b− 1},

so we may take the ideal sheaf of Sim(E •) to be

J (Sim(E •)) =
∑

a+b=ei−m+1
a,b≥0

Ja(d
i−1) ·Jb(d

i). (4.2)

as in Notation (0.2). Note that we can do that because, after choosing local
trivializations for the bundles Ei and Ei+1, the differential di is given by a
matrix of holomorphic functions.

We can now start to study the infinitesimal behaviour of E •. Fix a point
y ∈ M , and denote by T = TyM the holomorphic tangent space to M at
y, which is dual to my/m

2
y. Roughly, we want to keep only the first order

terms in each differential di, and extract as much information s we can bout
Sim(E •). Algebraically, it means that we consider the complex E •/m2

yE
•. We

have a short exact sequence of complexes

0 myE
•/m2

yE
• E •/m2

yE
• E •/myE

• 0

E •(y)⊗ T ∗ E •(y)

It gives rise to the connecting homomorphism

D
(
di, y

)
: H i (E •(y))→ H i+1(E •(y))⊗ (TyM)∗ . (4.3)
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Then for each tangent vector v ∈ T , D(di, y) determines a homomorphism

Dv

(
di, y

)
: H i(E •(y))→ H i+1(E •(y))

and these vary linearly with v. Concretely, Dv(d
i, y) may be described as

follows: after choosing local trivializations of the Ei near y, di will be given
by a matrix of holomorphic functions. Differentiating this matrix at y in the
direction v gives a linear map Ei(y) → Ei+1(y), that we denote simply by
δi. By hypothesis, we know that didi−1 = 0, then we have

δid
i−1(y) + di(y)δi−1 = 0

which implies that δi passes to cohomology and it coincides with Dv(d
i, y).

Differentiating again we obtain

δ2
i d

i−1(y) + 2δiδi−1 + di(y)δ2
i−1 = 0

which, in cohomology, becomes Dv (di, y)Dv (di−1, y) = 0. It follows that we
get a complex of vector spaces

Dv (E •, y) :
[
· · · → H i−1(E •(y))→ H i(E •(y))→ H i+1(E •(y))→ · · ·

]
and we call it derivative complex of E • at y in the direction v. Recall that
the symmetric algebra

SymT ∗ =
∞⊕
j=0

SymjT ∗ '
∞⊕
j=0

mj
y/m

j+1
y

where T ∗ is the space of linear functions on T . Note that, ifM is smooth at y,
then TyY =

(
my/m

2
y

)∗, and so T ∗ = my/m
2
y. So SymT ∗ =

⊕
Symj

(
my/m

2
y

)
that is the algebra of all polynomial functions on T ; and we have that
Spec (SymT ∗) ' T . Now, we can consider a similar construction, R =⊕(

mj
y/m

j+1
y

)
, then SpecR is the tangent cone of T .

Moreover, if we denote by OT the sheaf of germs of holomorphic functions on
T we have, as rings, SymT ∗ ' OT . Then, thinking of T itself as a complex
manifold, (4.3) define a morphism

D(di, y) : H i(E •(y))⊗ OT → H i+1(E •(y))⊗ OT

between trivial holomorphic vector bundles on T (cf.(Notation 0.2)).

Lemma 4.2.2. We have D(di, y) ◦D(di−1, y) = 0.
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Proof. The short exact sequence of complexes

0→ myE
•/m3

yE
• → E •/m3

y → E •/my → 0

gives rise to the connection homomorphism

H i−1(E •(x))→ H i
(
myE

•/m3
yE
•) .

Now it’s easy to see that if we project toH i
(
myE

•/m2
yE
•) we obtainD (di−1, y).

This gives a factorization as follows

H i−1(E •(x))

H i
(
myE

•/m3
yE
•) H i

(
myE

•/m2
yE
•) H i+1

(
m2
yE
•/m3

yE
•)

H i (E •(y))⊗ T ∗ H i+1 (E •(y))⊗ Sym2 T ∗

D
(
di, y

)
D
(
di−1, y

)

Where the last inequality on the right follows from Sym2 T ∗ ' m2
y/m

3
y. In

the middle row, we are using two consecutive morphisms in the long exact
sequence coming from the short exact sequence of complexes

0→ m2
yE
•/m3

yE
• → myE

•/m3
yE
• → myE

•/m2
yE
• → 0.

Their composition is zero, and so the Lemma is proved.

We can now make the

Definition 4.2.3. The directional derivative complexes fit together into a
complex of trivial vector bundles D(E •, y)[
. . .→ H i−1(E •(y))⊗ OT → H i(E •(y))⊗ OT → H i+1(E •(y))⊗ OT → . . .

]
on T , with differential D(di, y), that we call derivative complex of E • at y.

In particular, the derivative complex is itself a complex of vector bundles
on the tangent space T , so we can consider its cohomology support loci

Sim(D(E •, y)) =
{
v ∈ T | dimH i(Dv(E

•, y)) ≥ m
}
⊆ T.

Note that here

H i (Dv(E
•, y)) =

ker (H i(E •(y))→ H i+1(E •(y)))

im (H i−1(E •(y))→ H i(E •(y)))
.
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Moreover since the differentials in D(E •, y) are linear in the variable v ∈ T
the loci Sim(D(E •, y)) are cones in T , i.e. algebraic sets defined by homo-
geneous ideals in Sym(T ∗). The deformation-theoretic significance of the
derivative complex is illustrated by

Theorem 4.2.4. Fix an integer m ≥ 0. Suppose that y ∈ Sim(E •). Then

TCy(S
i
m(E •)) ⊆ Sim(D(E •, y))

where TCy(Sim(E •)) denote the tangent cone of Sim(E •) at the point y.

Since dimy TCy(S
i
m(E •)) = dimy S

i
m(E •), one obtains the following corol-

laries.

Corollary 4.2.5. Set m = dimH i(E •(y)). Then

dimy(S
i
m(E •) ≤ dim

{
v ∈ T | Dv(d

i, y) = Dv(d
i−l, y) = 0

}
.

In particular, if either Dv(d
i, y) 6= 0 or Dv(d

i−l, y) 6= 0 for some tangent
vector v ∈ T , then Sim(E •) is a proper subvariety of M .

Proof. From (4.2.4) we get that

dimy S
i
m(E •) ≤ dimy S

i
m(D(E •, y))

= dim
{
v ∈ T | dimH i(Dv(E

•, y)) ≥ m
}
.

Butm = dimH i(E •(y)) and H i(Dv(E
•, y)) = kerDv(d

i, y)/imDv(d
i−1, v), so

a vector v ∈ TyM can belong to the set Sim(D(E •, y)) only if both differentials
Dv(d

i, y) and Dv(d
i−l, y) vanish at v, which are the conditions Dv(d

i, y) =
Dv(d

i−l, y) = 0.

The following is a condition for Sim(E •) to be a proper subset of M .

Corollary 4.2.6. If H i(Dv(E
•, y)) = 0 for some point y ∈ M and some

tangent vector v ∈ TyM , then Sim(E •) is a proper subvariety of M , for some
m ≥ 1.

Proof. Using again Theorem 4.2.4

dimy S
i
m(E •) ≤ dimy S

i
m(D(E •, y))

= dim
{
v ∈ T | dimH i(Dv(E

•, y)) ≥ m
}
.

Since there exist v ∈ T such that H i(Dv(E
•, y)) = 0, then Sim(E •)  M.
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We can also use the derivative complex to detect isolated points of Sim(E •)

Corollary 4.2.7. If y ∈ Sim(E •), and if H i(Dv(E
•, y)) = 0 for every non-

zero tangent vector v ∈ TyM , then y is an isolated point of Sim(E •).

Proof. If H i(Dv(E
•, y)) = 0 then we there isn’t v ∈ T such that both

Dv(d
i, y) = Dv(d

i−l, y) = 0, so eitherDv(d
i, y) orDv(d

i−l, y) must be nonzero.
Using (4.2.5) we conclude that dimy S

i
m(E •) = 0.

Now prove the tangent cone theorem:

Proof of Theorem 4.2.4. First, to simplify notation setm = my. Given vector
spaces V andW , a linear map δ : V → W⊗T ∗ can be viewed as a matrix with
entries in T ∗ after choosing some basis. We denote by Ja(δ) the homogeneous
ideal of SymT ∗ generated by the determinants of the a× a minors of δ, that
are elements in Syma T ∗ = ma/ma+1, and by Ja(δ)k ⊆ mk/mk+1 the degree k
piece of this ideal. And second, if J is an ideal sheaf of OM , we set

Grk(J ) = J ∩mk/J ∩mk+1

and
Gr(J ) =

⊕
Grk(J ).

We think about this last one as an homogeneous ideal ofGr(OM) = ⊕mk/mk+1 =
SymT ∗.

Now let δ : E → F be a morphism of holomorphic vector bundles on M ,
similar to (4.3), using the snake lemma applied to the diagram

0 0

E(y)⊗ T ∗ F (y)⊗ T ∗

E/m2E F/m2F

E(y) F (y)

0 0

d(y)⊗id

d(y)

gives rise to a "derivative" homomorphism δ : ker d(y)→ cokerd(y)⊗ T ∗.
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Lemma 4.2.8. Let r = rk d(y). Then for k ≥ r we have the following

1. Jk(d) ⊆ mk−r

2. Grk−r (Jk(d)) = Jk−r(δ)k−r.

The proof will be done at the end of this section, for now suppose it’s
true.
The the differential di : ei → Ei+1 gives rise, as above, to a homomorphism
δi : kerdi(y)→ cokerdi(y)⊗ T ∗. We have a commutative diagram

ker di(y) (cokerdi(y))⊗ T ∗

H i(E •(y)) H i+1(E •(y))⊗ T ∗

δi

where the second horizontal map is D(di, y) defined in (4.3). We have that
Jk(D(di, y) = Jk(δ

i), then the previous Lemma implies

Grk−ri(Jk(d
i)) = Jk−ri(D(di, y))k−ri (4.4)

for k ≥ ri with ri = rk di(y).

Now set h = dimH i(E •(y)), then by (4.2), Sim (E •, y) is defined in T =
TyM by the homogeneous ideal

J =
∑

a+b=h−m+1
a,b≥0

Ja(δ
i−1) · Jb(δi) ⊆ SymT ∗.

On the other hand we have

J =
∑

a+b=ei−m+1
a,b≥0

Ja(δ
i−1) ·Jb(δ

i)

that denotes the ideal sheaf defining Sim(E •) inM , as in (4.2). Then the tan-
gent cone TCy(Sim(E •)) is defined in T by the homogeneous ideal Gr(J ) ⊆
SymT ∗. Since J is generated by polynomials of degree h−m+1, to complete
the proof it enough to prove that

Jh−m+1 ⊆ Grh−m+1(J ). (4.5)

To this end, set rk = rk dk(y), and fix integers a, b ≥ 0 such that a + b =
h−m+ 1. Then (4.4) gives
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Ja
(
D(di−1, y)

)
a

= Gra
(
Ja+ri−1

(di−1)
)

and
Jb(D(di, y))b = Grb

(
J b+ri(di)

)
.

Hence(
Ja(D(di−1, y)) · Jb(D(di, y))

)
a+b
⊆ Gra+b

(
Ja+ri−1

(di−1) ·Jb+ri(d
i)
)
.

But ri+ ri−1 = ei−h thanks to (4.1); hence (a+ ri−1) + (b+ ri) = ei+m−1.
Therefore the product of ideals on the right side of the inclusion above is
contained in J , and the theorem is proved.

The last thing we need to do is the

Proof of Lemma 4.2.8. We can assume E and F to be trivial, because we are
looking locally at y. We may choose bases v1, . . . , vn for E and w1, . . . , wm
for F such that

d(vi) ≡ wi ( mod m)

for i ∈ {1, . . . , r}, and

d(vi) ≡ δ(vi) ∈ mF mod (w1, . . . , wr) + m2F

for i > r. For i1 < i2 < . . . < ik and `1 < `2 < . . . < `k we denote by
∆`1<`2<...<`k
i1<i2<...<ik

(d) the determinant of the k × k minor corresponding to those
indexes. Then we have

∆`1<`2<...<`k
i1<i2<...<ik

(d) ≡ ∆`1<`2<...<`k
i1<i2<...<ik

(δ) mod mk−r+1

if i1 = `1, . . . , ir = `r = r, and

∆`1<`2<...<`k
i1<i2<...<ik

(d) ≡ 0 mod mk−r+1

otherwise. Then it follows the Lemma.

4.2.2 On a Compact Kähler Manifold

Let X be a compact Kähler manifold of dimension n, we wish to apply the
results of the previous section to study the following loci contained in Pic0(X)

Sim(X) = {ξ ∈ Pic0(X) | dimH i(X,Lξ) ≥ m}

and
Si(X) = {ξ ∈ Pic0(X) | dimH i(X,Lξ) ≥ 0}

34



4. Generic Vanishing Theorem 4.2 Cohomology Support Loci

for i,m > 0. To this end, the basic fact is that, according to Theorem 4.1.4,
locally on Pic0(X) the groups H i(X,Lξ) are computed as the pointwise co-
homology of a complex of vector bundles. Therefore, fix once and for all a
neighbourhood U of ξ ∈ Pic0(X) and a complex E • then one has

Sim(X) ∩ U = Sim(E •).

Furthermore, from our construction of Pic0(X) = H1(X,OX)/H1(X,Z) the
derivative complex Dv(E

•, ξ) takes the simple form:

Lemma 4.2.9. A tangent vector v ∈ TξPic0(X) corresponds to a harmonic
(0, 1)-form v ∈ H0,1(X) under the canonical identification

TξPic0(X) = H1(X,OX).

The derivative complex Dv(E
•; ξ) is isomorphic to

H0(X,Lξ)→ H1(X,Lξ)→ · · · → Hn(X,Lξ)

with differential given by wedge product with v ∈ H0,1(X).

Proof. Recall that the differentials in the derivative complex are constructed
from the short exact sequence

0→ m/m2 → O/m2 → O/m→ 0

where m is the ideal sheaf of the point ξ ∈ Pic0(X). Tensor it by E • and
then we consider the connecting homomorphism of the corresponding co-
homological long exact sequence. Recall that the isomorphism in Theorem
4.1.4 is functorial in G , we can compute the connecting homomorphism on
X ×Pic0(X). In fact, we denote by P the restriction of the Pioncaré bundle
P to the first infinitesimal neighbourhood, corresponding to m2, of X ×{ξ}.
Then locally on Pic0(X) there is a finite complex E • of vector bundles which
computes the cohomology of P as in Theorem 4.1.4. On the other hand, a
tangent vector v ∈ H0,1(X) determines a class ev ∈ Ext1(P, P ), which gives
the homomorphism

H i(X,Lξ)→ H i+1(X,Lξ), [α] 7→ [v ∧ α].

This concludes the proof. (See [GH, p.706].)

This description of the derivative complex is still not very tractable, since
it involves cohomology groups. We can use Hodge theory to reinterpret the.
Recall from (1.3.9) that we have an isomorphism of complex vector spaces

H i(X,Lξ) ' H0(X,Ωi
X ⊗ L−1

ξ );
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where the bar denotes the conjugate vector space. Concretely, take the har-
monic (i, 0)-form representing a given cohomology class for Lξ, and conju-
gate to obtain a harmonic (0, i)-form that represents a cohomology class for
Ωi
X ⊗ L−1

ξ . Furthermore we have a commutative diagram

H i(X,Lξ) H i+1(X,Lξ)

H0(X,Ωi
X ⊗ L−1

ξ ) H0(X,Ωi+1
X ⊗ L−1

ξ )

v̄∧

v̄∧

for every v ∈ H0,1(X). Therefore if we conjugate the derivative complex

H0(X,Lξ)→ H1(X,Lξ)→ · · · → Hn(X,Lξ),

in Lemma 4.2.9, using the isomorphism above, we obtain the complex

H0(X,L−1
ξ )→ H0(X,Ω1

X ⊗ L−1
ξ )→ · · · → H0(X,Ωn

X ⊗ L−1
ξ )

where the differentials are given by wedge product with the holomorphic 1-
form v̄ ∈ H1,0(X). The advantage of this complex is that it involves only
global sections of vector bundles. We can now apply our results about tangent
cones to cohomology support loci:

TCξS
i
m(E •) ⊆ Sim(D(E •, ξ)). (4.6)

In our situation Corollary 4.2.5 becomes

Theorem 4.2.10. Let X be a compact Kähler manifold . Fix a point ξ ∈
Pic0(X), and set m = dimH i(X,Lξ). Then

dimξ S
i
m(X) ≤ dim

{
ω ∈ H0(X,Ω1

X)
∣∣∣ ω ∧ α = 0 for α ∈ H0

(
X,Ωi−1

X ⊗ L−1
ξ

)
ω ∧ β = 0 for β ∈ H0

(
X,Ωi

X ⊗ L−1
ξ

) }
Proof. This is the equivalent of (4.2.5). From (4.6) we get

dimξ S
i
m(X) ≤ dim

{
v ∈ TξPic0(X) | dimH i (Dv (E •, Lξ)) ≥ m

}
.

We have that the i-th vector space in the derivative complex is H i (X,Lξ),
which is by assumptionm-dimensional. So the only possibility for dimH i(Dv(E

•, Lξ))
to be ≥ m is that the two differential next to H i (X,Lξ) are zero. After con-
jugation we obtain the requested condition on ω in H0 (X,Ω1

X).

As in (4.2.6) we have a criterion to say if Si(X) is a proper subset of
Pic0(X).
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Corollary 4.2.11. If the sequence

H0(X,Ωi−1
X ⊗ L−1

ξ )
ω∧−→ H0(X,Ωi

X ⊗ L−1
ξ )

ω∧−→ H0(X,Ωi+1
X ⊗ L−1

ξ ) (4.7)

is exact for some ω ∈ H0(X,Ω1
X), then Si(X) 6= Pic0(X).

Finally, a version of (4.2.7), which gives a criterion for ξ ∈ Pic0(X) to be
an isolated point of S i(X).

Corollary 4.2.12. If the sequence (4.7) is exact for every non-zero holo-
morphic 1-form ω ∈ H0(X,Ω1

X), then ξ is an isolated point of S i(X).

We used, in these cases, that we are working on global sections of coherent
sheaves, that is much easier to use than general cohomology classes.

4.3 Proof of the GVT
The Generic Vanishing Theorem. Let X be a compact Kähler manifold.
Let alb : X → Alb(X) its Albanese mapping, having fixed x0 ∈ X. Then

codimPic0(X) S
i
m(X) ≥ dim alb(X)− i. (4.8)

Proof. First, if we fix an irreducible component of S i(X), say Z, and we
choose ξ0 ∈ Z such that dimH i(X,Lξ) is as small as possible, set m =
dimH i(X,Lξ0); then Z ⊆ S im(X), so we need to show that

dimξ0 S
i
m(X) ≤ dimPic0(X)− dim alb(X) + i.

We are going to estimate dimξ0 S
i
m(X). Fix a non-zero section β ∈ H0(X,Ωi

X⊗
L−1
ξ0

), that is possible because m = dimH0
(
X,Ωi

X ⊗ L−1
ξ0

)
≥ 1. Now, let

W = {ω ∈ H0(X,Ω1
X) | ω ∧ β = 0} ⊆ H0(X,Ω1

X), by Theorem 4.2.10 we
have

dimξ0 S
i
m(X) ≤ dimW,

so we only need to prove

dimW ≤ dimPic0(X)− dim alb(X) + i,

where W (x) = {ϕ ∈ (TxX)∗ | ϕ ∧ β(x) = 0} ⊆ (TxX)∗. Consider the evalua-
tion morphism e(x) at a point x ∈ X

e(x) : H0
(
X,Ω1

X

)
→ Ω1

X = Ω1
X,x = (TxX)∗

ω 7→ ω(x).
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If ω ∈ W , then ω(x) ∈ W (x) and

dimW − dim ker e(x) ≤ dimW (x).

On the other hand, recall that H0(X,Ω1
X) is the cotangent space to Alb(X)

and e(x) is the codifferential of the Albanese map at the point x, see Lemma
2.3.3. Consequently we can split e(X) as follow

Ω1
Alb(X),alb(x) � Ω1

alb(X),alb(x) ↪→ Ω1
X,x,

since dim Ω1
Alb(X),alb(x) = dimAlb(X) = dimH0(X,Ω1

X) = dimPic0(X) and
dim Ω1

alb(X),alb(x) = dim alb(x) we get that at a general point x ∈ X

dim ker e(x) = dimPic0(X)− dim alb(X).

The inequality albove becomes

dimξ0 S
i
m(X) ≤ dimPic0(X)− dim alb(X) + dimW (x).

So, for a general x ∈ X with, β(x) 6= 0, we are reduced to proving that

dimW (x) ≤ i.

But this is a consequence of the following result of linear algebra:

Lemma 4.3.1. Let V be a finite-dimensional vector space, and let β ∈
∧i V

be a nonzero element. Then

dim {v ∈ V | v ∧ β = 0} ≤ i.

Proof. Let e1, . . . , em ∈ V be linearly independent vectors such that ej∧β = 0
for 1 ≤ j ≤ m. Let n = dimV , complete e1, . . . , em to a basis e1, . . . , en of
V . If β 6= 0, then exists α ∈

∧n−1 V such that α ∧ β 6= 0. But since
n− i > n−m, every term of α must involve one of the ej, 1 ≤ j ≤ m, then
α ∧ β = 0, contradiction.

By this Lemma we get

dimξ0 S
i
m(X) ≤ dimPic0(X)− dim alb(X) + i

and so the theorem is proved.
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Chapter 5

Applications

5.1 Beauville’s Theorem
We want to understand the structure of the set

S1(X) =
{
ξ ∈ Pic0(X) | H1(X,Lξ) 6= 0

}
when X is a compact Kähler manifold. This is the main subject of [Be].
Introduce some notation, denote by Picτ (X) the set of holomorphic line
bundle on X whose first Chern class c1(L) ∈ H2(X,Z) is torsion. Now
we have the exact sequence

0→ Pic0(X)→ Picτ (X)→ ker
(
H2(X,Z)→ H2(Z,C)

)
→ 0

Given a morphism f : X → C with connected fibres, we define

Picτ (X, f) = {L ∈ Picτ (X) | L is trivial on every smooth fiber of f}

and set Pic0(X, f) = Picτ (X, f)∩Pic0(X). We’ll see that this is the same as
the image of f ∗ : Pic0(C) → Pic0(X), the difference is in the singular fibres
of f . Then we have the following theorem, which we are not going to prove.

Theorem 5.1.1 (Beauville). Let X be a compact Kähler manifold. Let
{fi : X → Ci}i∈I be the collection of all fibrations of X onto curves of genus
≥ 1. Then S1(X) is the union of the following subsets:

1. Pic0(X, fi) for every i ∈ I with g(Ci) ≥ 2;

2. Pic0(X, fi) \ Pic0(Ci) for every i ∈ I with g(Ci) = 1;

3. finitely many isolated points.
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5.2 The Structure of Cohomology Support Loci
We now specify the structure of cohomology support loci

S im(X) =
{
ξ ∈ Pic0(X) | dimH i(X,Lξ) ≥ m

}
.

Suggested by Beauville, we have the following theorem proved by Green and
Lazarsfeld

Theorem 5.2.1. Let Z ⊆ S im(X) be an irreducible component. Then Z is a
translate of a subtorus of Pic0(X).

During the proof of the generic vanishing theorem we use the fact that
we can find locally on Pic0(X) a bounded complex of vector bundles that
computes the direct image sheaf of the Poincaré bundle. The proof of the
theorem is based on the fact that, by Hodge theory once can write it explicitly.
Is also used the construction

Pic0(X) =
H0,1(X)

{τ ∈ H0,1(X) | τ̄ − τ has period in Z(1)}
.

Then for τ ∈ H0,1(X), the class [τ ] in the quotient correspond to the smooth
line bundle X × C, with complex structure given by ∂̄ + τ . Details can be
found in [GL2].

5.2.1 Consequences

We know that locally on Pic0(X), the higher direct image sheaves Rip∗2P are
computed by a linear complex. This is very interesting if we think that a
linear complex is its own derivative complex, and so all the consequences of
this result also become stronger: Theorem 4.2.4 now becomes

TCx
(
Sim(E •)

)
= Sim (D(E •, x)) . (5.1)

And also Corollary 4.2.5 now gives a formula for the dimension of the coho-
mology support loci

Corollary 5.2.2. Set m = dimH i (E •(x)). Then

dimx S
i
m (E •) = dim

{
v ∈ TxX | Dv(d

i, x) = Dv(d
i−1, x) = 0

}
.

Another useful improvement is a necessary and sufficient condition for
isolated points, strengthening Corollary 4.2.7 we have

Corollary 5.2.3. Set m = dimH i (E •(x)). Then x is an isolated point of
Sim (E •) if and only if H i (Dv(E

•, x)) = 0 for every nonzero v ∈ TxX.
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5.3 Ueno’s Conjecture
The results of Green and Lazarsfeld have a lots of interesting application to
algebraic geometry. One of these is a proof of theorem of Kawamata about
varieties of Kodaira dimension equal to zero.

5.3.1 Kodaira Dimension

Let’s introduce the subject first, starting with the definition of the Iitaka
dimension. We will give a brief introduction to the problem, for more details
see [La, section 2.1]

Let X be a smooth projective variety on an algebraically closed field k.
The crucial invariant of X we will repeatedly refer to is its canonical bundle

ωX =
dimX∧

Ω1
X .

Definition 5.3.1. Define the m-th plurigenus of X as

Pm(X) = dimH0(X,ω⊗mX )

for every m ≥ 0.

Now, let L be a line bundle on X. If L⊗m has nontrivial global sections,
i.e. dimH0(X,L⊗m) 6= 0, then it defines a rational morphism

φm : X 99K P(H0(X,L⊗m)).

Let Ym = φm(X) ⊆ P(H0(X,L⊗m)) denote the closure of its image, i.e. the
image of the closure of the graph of φm.

Definition. The Iitaka dimension of the line bundle L is defined to be

κ(L) = κ(X,L) = max
m∈N
{dimYm}

if H0(X,L⊗m) 6= 0 for all m ≥ 1 we set κ(X,L) = −∞. Thus either
κ(X,L) = −∞, or

0 ≤ κ(X,L) ≤ dimX.

If κ(X) = dimX, then X is said to be of general type.

There is also an alternative characterization of the Iitaka dimension of a
line bundle: let L a line bundle on an irreducible normal projective variety
X, set κ = κ(X,L) then there are constants a, b > 0 such that

a ·mκ ≤ dimH0(X,L⊗m) ≤ b ·mκ
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for all sufficiently large and divisible m with H0(X,L⊗m) 6= 0.
One can show that, for m sufficiently large, the rational mappings ϕm

stabilize in the following sense: there is a morphism ϕ∞ : X∞ → Y∞ between
two smooth projective varieties, such that ϕm is birationally equivalent to
ϕ∞. This morphism is unique up to birational equivalence, and is called the
Iitaka fibration of the line bundle L. By construction, dimY∞ = κ(X;L);
moreover, ϕ∞ is an algebraic fibre space, meaning that it has connected
fibres. It is also known that the restriction of L to a very general fibre of ϕ∞
has Iitaka dimension equal to zero.

Definition 5.3.2. In the above setting, consider L = ωX , the canonical
bundle of a smooth projective variety. We call κ(X) = κ(X,ωX) the Kodaira
dimension of X. We call ϕ∞ the Iitaka fibration of X.

Note that X∞ is birational to X and a general fibre of ϕ∞ has Kodaira
dimension equal to zero.

In other words, the rough interpretation for the Kodaira dimension is that

Pm(X) ∼ mκ(X)

for sufficiently large and divisible m.

5.3.2 Varieties of Kodaira dimension zero

Interesting to study are the varieties whose Kodaira dimension is equal to
zero.

Conjecture 5.3.3 (Ueno’s Conjecture K). Let X be a smooth projec-
tive variety with κ(X) = 0, and let alb : X → Alb(X) denote its Albanese
mapping. Then

1. alb is surjective with connected fibres;

2. if F is a general fibre of alb, then κ(F ) = 0;

3. after passing to a finite étale cover, X becomes birational to F×Alb(X).

The first one was proved by Yujiro Kawamata, using difficult arguments
from Hodge theory. Subsequently, Lawrence Ein and Robert Lazarsfeld found
a very simple proof ([EL]) based on Theorem 5.2.1, see also [CH].
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Theorem 5.3.4. Let X be a smooth projective variety of Kodaira dimension
zero. Then the Albanese mapping alb : X → Alb(X) is surjective.

The proof is based on two surprisingly simple observations. But first,
a word about the meaning of the condition κ(X) = 0. By definition, the
sequence of plurigenera Pm(X) is bounded; actually, we even have Pm(X) ≤ 1
for all m. Indeed, if Pm(X) ≥ 2 for some m, then we could find two linearly
independent sections of ω⊗mX , and by multiplying these together, we would
get Pkm(X) ≥ k + 1, contradicting κ(X) = 0. Thus we can say that if X
has Kodaira dimension zero, then Pm(X) = 1 for m sufficiently large. So,
we shall assume that P1(X) = P2(X) = 1. The first observation is that this
condition has an effect on the locus Sn(X), where n = dimX.

Proposition 5.3.5. If P1(X) = P2(X) = 1, then OX is an isolated point of
Sn(X).

Proof. Since P1(X) 6= 0, we have

Hn(X,OX) ' Hom(H0(X,ωX),C) 6= 0

and so OX ∈ Sn(X). Suppose that it is not an isolated point. Then by Theo-
rem 5.2.1, Sn(X) contains a subtorus T of positive dimension. In particular,
T is a subgroup, and so if L ∈ T , then also L−1 ∈ T . This means that the
image of the multiplication map

H0(X,ωX ⊗ L)⊗H0(X,ωX ⊗ L−1)→ H0(X,ω⊗2
X )

is nonzero for every L ∈ T . Now ω⊗2
X only has one global section because

P2(X) = 1; let D be the corresponding effective divisor on X. By the above,
the divisor of any global section of ωX ⊗ L has to be contained in D; but
because D has only finitely many irreducible components, we can find two
distinct points L1, L2 ∈ T , and nontrivial sections s1 ∈ H0(X;ωX ⊗ L1) and
s2 ∈ H0(X;ωX⊗L2), such that divs1 = divs2. But then ωX⊗L1 ' ωX⊗L2,
which contradicts the fact that L1 and L2 are distinct points of T.

The second observation of Ein and Lazarsfeld is that Sn(X) is closely
related to the geometry of the Albanese mapping.

Proposition 5.3.6. If the origin is an isolated point of Sn(X), then the
Albanese mapping alb : X → Alb(X) is surjective.

Proof. Since OX lies in Sn(X), we have H0(X;ωX) ≥ 1. Let s ∈ H0(X;ωX)
be any nontrivial section. Because OX is an isolated point of Sn(X), the
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criterion in Corollary 5.2.3 shows (after conjugating) that the mapping

H0(X,Ωn−1
X )

ω∧−→ H0(X,Ωn
X)

is surjective for every nonzero ω ∈ H0(X; Ω1
X). In particular, we have

s(x) = 0 at every point x ∈ X where ω(x) = 0. From this, we can de-
duce without much difficulty that alb must be surjective.
Indeed, suppose that alb was not surjective. Take an arbitrary point x ∈ X.
The differential TxX → Talb(x)Alb(X) of the Albanese mapping is obviously
not surjective; after dualizing and using Lemma 2.3.3, we find that the eval-
uation mapping

H0(X,Ω1
X)→ (Tx(X))∗

ω 7→ ω(x)

is not injective. Thus, there is at least one nonzero holomorphic one-form
with ω(x) = 0. By the above, we then have s(x) = 0; but because x was an
arbitrary point of X, this contradicts the fact that s 6= 0.

Together, the two propositions prove Theorem 5.3.4 in the case when
P1(X) = 1. The general case requires a little bit of extra work.

Proof. Theorem 5.3.4. If P1(X) = 1, then κ(X) = 0 forces P2(X) = 1, and
so we are done by the above arguments. If this is not the case, it can be
found a smooth projective variety Y with κ(Y ) = 0, and a generically finite
morphism f : Y → X, such that P1(Y ) = 1 (This is the Fujita’s lemma).
Then albY is surjective, and we can use this to show that albX is so,too. The
first observation is that f ∗ : Pic0(X) → Pic0(Y ) has finite kernel: if f ∗L is
trivial, then we get, from the projection formula

L⊗ f∗OY ' f∗OY ;

so, setting r = deg f , it follows that

L⊗r det(f∗OY ) ' det(f∗OY ),

which shows that the r-th power of L is trivial.
Dually, we get that Alb(Y )→ Alb(X) is surjective. Then, if we look at the
diagram

Y X

Alb(Y ) Alb(X)

f

albY albX

it’s clear that the composition Y → AlbY → Alb(X) is therefore surjective.
Then we can conclude that albX must be surjective as well.
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5.3.3 Cyclic Coverings

We discuss here some covering constructions that allow one to extract “roots”
of divisors or line bundles. We begin with a local description of the m-fold
cyclic covering branched along a given divisor on a variety. Suppose then that
X is an affine variety, and s ∈ C[X] is a non-zero regular function, where
C[X] is the corresponding finitely generated extension of function fields. We
wish to define a variety Y on which the mth root m

√
s of s makes sense. Let’s

start with the product X ×A1 of X and the affine line. Let Y ⊆ X ×A1 the
subvariety defined by the equation tm − s = 0, where t is the coordinate on
A1.

{tm − s = 0} = Y X × A1

X

π p1

Let D = div(s), the mapping π : Y → X is a cyclic covering branched along
D. Then if we set s′ = t | Y ∈ C[Y ] we get

(s′)
m

= π∗s

as functions on Y , so we have extracted the desired root of s.
This local construction can be globalized in the following way

Proposition 5.3.7 (Cyclic Coverings). Let X be a variety, and L a line
bundle on X. Suppose, given a positive integer m ≥ 1 and a nonzero section
s ∈ H0(X,L⊗m), which defines a divisor D ⊆ X. Then there exists a finite
flat covering

π : Y → X,

where Y is a scheme having the property that the pull-back L′ = π∗L of L
carries a section s′ ∈ H0(Y, L′) such that

(s′)
m

= π∗s.

The divisor D′ = div(s′) maps isomorphically D.

As above, one should think of s′ as being the m-th root m
√
s of s.

Proof. Let L be the total space of the line bundle L with p : L → X the
bundle projection. In other words L = SpecOX

Sym (L∗). Then there is a
“tautological” section

T ∈ Γ (L, p∗L) .
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In fact, a section of p∗L is specified geometrically by giving for each point
a ∈ L a vector in the fibre of p over x = p(a). But this vector is a, and we set
T (a) = a. More formally, T is determined by a homomorphism of OL-moduli

OL → OL ⊗ p∗L;

or equivalently a mapping

SymOX
(L∗)→ L⊗ SymOX

(L∗)

of quasi-coherent sheaves on X. Here, the term on the left in is a naturally
a summand of that on the right, and the map in question is the canonical
inclusion. One should view T as a “global fibre coordinate” in L: for instance
{T = 0} defines the zero-section of L.
Now, let Y ⊆ L be the divisor of the section

Tm − p∗s ∈ Γ(L, p∗L⊗m)

and s′ = T | Y . Then the proposition follows from the local construction.

Note that the proof could be done by taking an affine open covering {Ui}
of X which locally trivializes L, and carrying out the previous construction
over each Ui: the fact that s is a section of the m-th power of a line bundle
allows one to glue together the resulting local coverings.

Remark 5.3.8. It follows from the construction that there is a canonical
isomorphism

π∗OY = OX ⊕ L⊗(−1) ⊕ · · · ⊕ L⊗(1−d).

Now we want to generalize this construction to the following case.
Let Y = {(x, v) ∈ L | v⊗m = s(x)}, if it is singular we can use the following
method to find a space X ′ with a (m : 1)-covering as desired. Let’s consider

X ′ Y ν Y ⊆ L

X

π
m:1

where we denoted with Y ν the normalization of Y and with X ′ the desin-
gularization of Y ν . Let L a line bundle on X. Then we can consider L
both as a line bundle on X either a scheme over X, in this case it can be
thought as {(x, v) | v ∈ L(x)}. So, define the tautological section s0 on L
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as s0(x, v) = v ∈ L(x); in particular s0|Y (x, v) = v ∈ L(x). Since s0|Y ∈ Y ,
then it satisfies

(s0|Y (x, v))⊗m = v⊗m = s(x).

The map f : Y → X above is a cyclic covering. Now, consider L = ωX
the canonical bundle, and let s a non-trivial section s ∈ H0(X,ω⊗mX ). Let
π∗s ∈ H0(Y, π∗ω⊗mX ) on Y , then there exist s0 ∈ H0(Y, π∗Y ωX) such that

s⊗m0 = π∗s.

Now we want to extend this discussion to X ′, which is smooth. We know
that ωX′ = π∗ω⊗mX ⊗ O(nR), where R is the ramification divisor. Then

H0(X ′, ω⊗mX′ ) = H0(X,ω⊗mX ⊗ π∗O(nR)).

And here we can conclude using Fujita’s Lemma 5.3.9. (see [Mo])

Lemma 5.3.9 (Fujita’s Lemma). Let M be a manifold with κ(M) ≥ O.
Then there is a surjective morphism f : N → M from a manifold N with
dimN = dimM , κ(N) = κ(M) and P1(N) > 0.

Proof. The idea of the proof is the following. Let D ∈ |kKM |, we construct
in a natural way a subvariety W in KM such that the projection K → M
restricted to W makes W a cyclic k-sheeted branched covering of M with
branch locus D. A smooth model N of W has the desired property.
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