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Abstract

Matched filters are used in gravitational wave detection due to their optimality properties in the case
of Gaussian noise. This thesis presents a simulation-based study that analyzes the performance of
the match function between known gravitational wave signals, synthesized from the Newtonian
coalescence model of compact binary systems, and the signals themselves injected into a noise
background as the Signal-to-Noise Ratio varies. The aim is to observe and measure the dependence
of the match function as a function of the Signal-to-Noise Ratio, which shows how the efficiency of
this analysis method changes in different noise backgrounds. This simulation will provide a better
understanding of gravitational wave detection efficiency in the LIGO-Virgo-Kagra interferometers.

I filtri ottimali (matched filters) vengono utilizzati nella ricerca di segnali di onde gravitazionali
grazie alle loro proprieta di ottimalita nel caso di rumore Gaussiano. In questa tesi viene svolto uno
studio basato su simulazioni in cui si analizza I’andamento della funzione di match fra i segnali
sintetizzati a partire dal modello Newtoniano delle coalescenze di sistemi binari compatti e i segnali
stessi iniettati in un fondo di rumore al variare del rapporto segnale-rumore. Lo scopo & quello di
osservare e misurare la dipendenza della funzione di match dal rapporto segnale-rumore per studiare
come varia l’efficienza di questo metodo di analisi in vari fondi di rumore. Questa simulazione
permettera di capire meglio lefficienza di recupero dei segnali di onde gravitazionali negli
interferometri della collaborazione LIGO-Virgo-Kagra.
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Introduction

The first detection of a Gravitational Wave (GW) signal on September 15th, 2014, marked a sig-
nificant milestone and opened up a new world of exploration, providing a new method with which to
investigate the cosmos. This was the culmination of decades of effort from a great scientific collabo-
ration that have led to the development of a global network of highly sensitive detectors: today the
relative distance between the mirrors in the interferometers can be measured with a spectral sensitivity
better than 1023 m/ VHz (as a comparison, the proton radius is about 107'°m) and work is under-
way to improve it further. However, this remarkable and unprecedented sensitivity comes at a cost:
a significant amount of noise from various sources makes the detection of GWs an extremely challen-
ging task. To overcome this challenge, scientists must use a deep and complex data analysis, making
good use of prior knowledge of the nature of astrophysical sources wherever possible. In some cases,
the GW sources can also emit electromagnetic radiation and/or neutrinos, allowing multi-messenger
observation of astrophysical phenomena. In such cases, the real-time GW data analysis must be quite
fast to provide an estimate of the sky position from which the signal originates, and quickly alert the
astronomical community searching for an electromagnetic counterpart. In this framework, GW data
analysis is an essential step towards detecting and interpreting properly these signals.

This thesis aims to study some elements of GW data analysis, providing an analytical and numeri-
cal introduction to some important methods. The data analysis performed by the LIGO-Virgo-Kagra
Collaboration is much more complex, involving refined statistical techniques as well as sophisticated
parameterizations of Numerical Relativity results.

In this thesis I synthesize GW signals, specifically chirps from the simple Newtonian model of
compact binary coalescences (CBC), described in Chapter 1 and, in Chapter 2, I inject them into
Gaussian noise background. In order to understand chirps detection, in Chapter 3 I introduce the
matched filtering technique. Matched filters are based on the overlap of a known signal template with
an detected GW signal. The main result of this thesis is a study of the dependence of the match
function as a function of the Signal-to-Noise Ratio (SNR), which shows how the efficiency of this
analysis method changes in different noise backgrounds.

When the signal model is known, matched filters are optimal linear filters that maximize the SNR
in the presence of Gaussian white noise. Gaussianity is only approximate in the existing GW inter-
ferometers, mostly because of many kinds of transient instrumental artifacts called glitches. Despite
this, matched filters play a crucial role because they constitute the foundation of several analysis
pipelines and the simulations, reported in Chapter 3, provide a better understanding of how and
how much non-Gaussianities in the noise spectrum impact on GWs signal detection efficiency in the
LIGO-Virgo-Kagra Collaboration interferometers.






Chapter 1

Gravitational Waves

In this chapter, I briefly review the theoretical background of General Relativity (GR) essential
to understand how gravitational waves arise in this theory and how we can detect them. Next, I
will focus on GW emission in a compact binary coalescence (CBC), i.e., the merging of two compact
objects, such as black holes or neutron stars, where the gradual spiraling approach of the two objects
(the inspiral phase of the coalescence) is due to the energy loss associated with the emission of GWs.
Finally, I will describe the simple Newtonian model of the inspiral phase.

1.1 Gravitational waves in the weak field limit

The Einstein’s field equations of GR are:

1 81G
R,ul/_§guuR = CTT;U/- (11)

These are non-linear differential tensorial! equations, where:
e R, is Ricci’s tensor, that is, a contraction of Riemann’s tensor (curvature tensor),
® g, is the metric tensor,

R is the Ricci scalar, that is, the trace of Ricci’s tensor,

G is the universal gravitation constant and c is the light speed in vacuum,

T, is the energy-momentum tensor that describes the distribution of energy and matter every-

where in spacetime, and it represents the sources of gravitational field.

The weak field limit corresponds to the linear expansion of Einstein’s field equation about the flat-space
(Minkowski) metric, i.e., gy = N + huw where 1, is the Minkowski tensor? and hu. is the tensor
that introduces a small curvature perturbation on flat space, with the assumption that |h,,| < 1.
Then, after expanding up to first order in A, the Ricci tensor and the Ricci scalar and introducing
the reverse-trace metric as

- 1
hyw = by — 3 v h ~ where h=h7, (1.2)

leads to the linearized field equations, which can be expressed in Lorentz’s gauge 9, h*” = 0 as follows:

!Tensorial equations are covariant, which means that their form does not depend on the reference frame.
2The signature adopted here is (—, 4, 4+, +).
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Mathematically, this is a set of wave equations with source terms, and the situation is very similar

to that occurring in classical electromagnetism. They describe the propagation in spacetime of the

deviation from the flat-space metric, h,, .

Linearized Einstein’s field equations can be solved in vacuum, where (02 l_"LW = 0, and where they
yield the usual wave-like solutions for each component of the h,, tensor. These components are not
all independent, because the Lorentz gauge still leaves some extra freedom. We determine them by
imposing the conditions that the strain is transverse to the propagation direction and that h,, is
traceless (this is called the Transverse-Traceless (TT) gauge). In the TT gauge the solution with a
given wavevector k, is a transverse plane wave: h = AM exp (ikpa?), where, since h*¥ is a symmetric
tensor under index exchange, then so is the amplitude tensor A*Y. Moreover, the amplitude tensor
AP has only two independent components:

A =ael +bel, (1.4)

where a,b € C, e/ and ei” are respectively the plus and cross polarization tensors. In particular,
these two linear polarization tensors form a basis and can be expressed as

(1.5)
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Any possible polarization of a GW can be obtained by the linear superposition of these two tensors,
and the generic expression of a GW with a given wavevector is

WY = (hyel” + hyel) exp (ik,aP) with  hy,hy € C. (1.6)

1.2 Optical Interferometers

In order to detect GWs, scientists have developed different types of detectors, among which the
most performing are undoubtedly the ground-based laser-interferometric detectors: they are modified
Michelson interferometers and rely on the fact that the distance, and therefore the travel time of light,
between two test masses — the interferometer mirrors — changes as the GW passes.

A simple interferometer scheme is shown in Figure 1.1: the detectors consist of two arms perpen-
dicular to each other, at the ends of which are suspended two mirrors. Light from a laser is injected
into the interferometer, and through a beam splitter half is reflected and goes into one arm, while
the other half is transmitted and goes on the other. The light then travels in the resonant cavities
of each arm and reflects on the mirrors a very high number of times before the two beams coming
from the two arms rejoin. The relative distance between the mirrors varies if a GW comes through
the interferometer. Therefore when the two beams recompose, an interference pattern is observed,
which is precisely the signal of a GW. Detectors actually measure GW strain, a dimensionless quantity
for the relative displacement between two masses due to a passing GW. The sensitivity of existing
interferometers is limited to the range from 10 Hz to 10* Hz corresponding to astrophysical events
such as the merging of stellar-mass black hole binaries and supernova explosions.

The first detection, on September 14th, 2015, of the GW signal named GW150914 3, was made
by the two LIGO (Laser Interferometer Gravitational-Wave Observatory) interferometers in the USA,

3 At the time, a GW event name was composed by the prefix “GW?” plus the detection date in YY/MM/DD format.
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Figure 1.1: simplified scheme of a GW interferometer. The laser beam is split along the arms (respectively along
the z-axis and y-axis of a Cartesian reference frame) by a beam splitter, then the light reaches the mirrors at the
arms end (marked Msy). After many reflections, the beam is finally recomposed, and a photodiode collects the
light. The two pairs of dielectric mirrors M; and My make up two Fabry-Perot resonant cavities that enhance
the effect of the passing GWs.

during the first scientific observing run, named O1, that lasted from September, 2015, to January,
2016. The Virgo interferometer in Italy joined the network during the following observing run (02,
from November, 2016, to August, 2017). The Kagra interferometer in Japan joined the collaboration
at the end of the second part of the O3b run (O3 run is divided into O3a, from April, 2019, to
September, 2019, and O3b, from November, 2019, to March, 2020). Figure 1.2 taken from [2] shows
the detector outputs for GW150914, the first observed GWs signal.

1.3 Compact binary coalescences

Many astrophysical sources can emit GWs in different processes. The focus of my thesis are the
CBCs, a compact binary system which comprises two compact bodies (such as two black holes, two
neutron stars, or a black hole and a neutron star) that are orbiting around their center of mass.
The system emits energy in the form of GWs at the expense of potential energy and the two objects
spiral towards each other, speeding up to higher and higher angular frequencies. The inspiral phase
continues until the two bodies coalesce into a single object (merger phase) that subsequently rings
with oscillations dumped by the emission of GWs (ringdown phase). These main phases of the process
are represented in Figure 1.3 from [8]: GWs from inspiral and ringdown are well known respectively
thanks to Post-Newtonian (PN) expansions and Perturbation Theory. At the same time, those emitted
during a merger are more difficult to predict because of the strong relativistic regime, and are based
on numerical solutions of Einstein’s equations.

Here, I use PyCBC [13], an open-source pipeline for the analysis of GW signals from CBCs, to
display a parameterized GW waveform, Figure 1.4, corresponding to GW150914 (the actual code is
in the Appendix, Section II). PyCBC interfaces to LALsimulation, a comprehensive package for GW
simulations which is part of the LIGO Algorithm Library [11] (LAL), which includes many different
parameterizations of CBC GW waveforms. Between this waveform and the one in the second row of
the Figure 1.2, there are several differences, however, both in shape and amplitude: in particular, in
Figure 1.2 the waveform is modulated respectively by the response of the interferometers L1 and H1.

1.4 Newtonian model

In the Newtonian model of the CBC inspiral phase we assume that the conditions are those of
weak field and non-relativistic speeds, that the two objects are in an almost circular orbit around
the center of mass, and that they have no spin. The model is a reasonable approximation far from

5
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Figure 1.2: the first GWs event observed by the LIGO interferometers, H1 (Hanford, WA) and L1 (Livingston,
LA). In the first row, it is shown the filtered and whitened strain (in Chapter 2 the filtering and whitening
process will be explained), and in the second row there are the numerical relativity waveform and two types
of waveform reconstruction from data. In the third row, residuals between the filtered and whitened detector
output and numerical relativity can be observed. On the bottom is the time-frequency representation of strain
data showing the chirp, the typical frequency increase over time of a CBC. The corresponding astrophysical
event is the coalescence between two black holes that were approximately D = 440 Mpc far from Earth: at
the beginning, their masses (expressed in units of solar masses, M) were respectively m; = 35.6 Mg and
mg = 30.6 Mg and an energy equivalent to 3Mg was radiated in the form of GWs during the process.

Inspiral Merger Ringdown

e @ o6
—

1

Post — Newtonian Numerical Perturbation
Theory Relativity Theory

Figure 1.3: main phases of a CBC. On the bottom, there is the typical GW signal emitted by this kind of
coalescence, and on the top, there is a schematic representation of a CBC.




1.4. Newtonian model
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Figure 1.4: In blue, waveform obtained from EOBNRv2 model [14] in LALSimulation with plus polarization
that fits the observed GW150914 GW signal. EOBNRv2 is an effective-one-body (EOB) model for waveforms
emitted during a CBC of two non-spinning black holes, used also for the first GW detection. In orange, plus
polarized strain with GW150914 parameters realized according to Newtonian model for CBC. Newtonian model
for CBC is a reasonably good approximation almost up to coalescence, set at t = 0 s. Phase at coalescence is
set at ¢ = 0.

the merger phase. The model has only two intrinsic parameters® the masses m; and msy of the two
component objects, and the shape of the chirp is mostly determined by one combined parameter only,
the chirp mass, described in detail later. It turns out that the Newtonian model is sufficient for a first
understanding of CBC events [5, 12], and that it is possible to estimate roughly how far the system
was from the Earth, its mass scale and the energy radiated in GWs.

It can be shown that in the Newtonian model, considering a non-relativistic compact binary system
with circular orbits about the center of mass and composed of two objects respectively of masses mq
and meo and orbital radii 1 and 79, the strain in the TT-gauge for a GW propagating along the z-axis
is

) 4 M\ 5/3 cos(2wt 4+ ¢)  sin(2wt+¢) 0
(R (ct, 7)) = 56 <G03@> ( mme_ 7w/ | sin(ut +9) —cos(wt+e) 0], (17)
m1 + m2) 0 0 0

where D is the distance to the system, w is the angular frequency at which the system rotates (so
0 = 2w is the pulsation of the emitted GWs) and ¢ is the phase of the system at coalescence, and
where mq and mo are expressed in units of solar masses.

A useful mass quantity to describe the GWs emission from a binary system is the chirp mass M:

(m1m2)3/5
M= —— =2 1.8
(my —|—m2)1/5 (1.8)

The chirp mass M is the main parameter determining the frequency evolution in the Newtonian
model (Figure 1.5), with ¢y the coalescence time, fy as the maximum frequency in the merger and
M = m1 4+ my the total mass of the system:

“In general, the parameters that describe a CBC are either intrinsic if they describe essential properties (masses and
spins, 8 parameters in all) or eztrinsic, if they describe incidental properties (distance, orbital inclination, sky location,
coalescence phase and coalescence time, this is another 7 parameters)

7
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Using Equation 1.9, the time-frequency behavior of the observational data can be displayed (bottom

row of Figure 1.2) and obtain the characteristic mass scale of the system, i.e., a rough estimate of the
chirp mass M.
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Figure 1.5: Newtonian approximation of the chirp using the GW150914 estimated parameters (Equation 1.9).
The maximum frequency in the merger is about fy = 345 Hz.

Finally, recalling that 2 = 2w = 27 f, from Equation 1.7 and Equation 1.9, a GW signal with

generic polarization results in: h(t) = hy(t) + h«(t), that is a linear combination of signals with only
plus and cross polarization, respectively

G 5/3

)= 55 (552) G (% e+, (L)
GM 5/3

hy(t) = % < C3®> (mlﬁlgz)w (nf)¥? sin(2nft + @), (1.12)

Finally, the phase at coalescence ¢ is a free parameter in this model, and corresponds to the orbital
phase at the coalescence time.




Chapter 2

Newtonian chirps in a noise
background

In this chapter, I first present the reference signals I will produce with the Newtonian model for
CBCs and use them for analysis. Next, an overview of how the interferometer responds to receiving
a GW signal is fundamental to performing signal analysis. In this regard, I will shortly introduce
the detectors’ noise features that limit their sensitivity and signal detection and how the detectors’
sensitivity can be represented. Consequently, I will present signal whitening, that is, filtering the
synthesized chirps with the detector sensitivity function (the noise amplitude spectral density). Finally,
I will inject whitened signals into a Gaussian noise background, after analyzing its features.

2.1 Newtonian chirps

I have selected a list of GW events from [1], [6] and [7], and synthesized the corresponding chirps
according to the Newtonian model for CBCs; selected events are presented in Table 2.1. These events
correspond to CBCs, and their waveforms generated for subsequent analyses are like that in Figure 1.4
with plus polarization (orange waveform).

Table 2.1: selected GW event list with their main features; events are presented chronologically. Event type
is either a coalescence of two black holes (indicated with BH-BH) or between a black hole and a neutron star
(indicated with BH-NS). For GW190814, there is uncertainty about its type because the estimated mass for the
second component of the system points either to a heavy neutron star or a light black hole.

Event Type Run m; (Mg) mo(Mg) D (Mpc)
GW150914 BH-BH 01 35.6 30.6 440
GW151226 BH-BH 01 13.7 7.7 450
GW170104 BH-BH 02 30.8 20 990
GW170608 BH-BH 02 11 7.6 320
GW170814 BH-BH 02 30.6 25.2 600
GW190412 BH-BH O3a 30.1 8.3 740

GW190503-185404 BH-BH O3a 43.3 28.4 1450
GW190521 BH-BH O3a 95.3 69.2 3920
GW190814 BH-NS or BH-BH O3a 23.2 2.59 240

GW190915-235702 BH-BH O3a 35.3 24.4 1620

GW200105_162426 BH-NS 0O3b 9 1.91 270

GW200115_042309 BH-NS 0O3b 5.9 1.44 290




NEWTONIAN CHIRPS IN A NOISE BACKGROUND

2.2 Noise in the detectors

In ground-based optical interferometers, such as LIGO and Virgo, GWs detection is hindered by
a large amount of noise from various sources. Therefore, it is essential to study how noise affects
detection, especially from a signal analysis point of view. The primary noise sources are listed below,
and their specific contribution depending on the frequency is shown in Figure 2.1 from [4]. These
sensitivity curves show the detector’s sensitivity at a particular frequency. They summarize the noise
budget for LIGO detectors in the first scientific run (O1, the detectors’ configuration was called
Advanced LIGO). In the first two scientific runs, strain sensitivities were similar between the two
sites, Hanford and Livingston, and the first detection was made with such sensitivity. A noise budget
is a quantitative analysis of the various sources of noise that affect the detector’s sensitivity: it is a
crucial tool for understanding a detector’s performance and identifying potential sources of noise that
can limit its sensitivity. The detector’s sensitivity is represented by the amplitude spectral density
(ASD), the square root of the power spectral density (PSD).
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Figure 2.1: on the left, noise budget for L1 detector, from about 10 to 100 Hz (low-frequency curve). Dark noise
refers to electronic noise in the signal chain with no light incident on the readout photodetectors. We notice
a significant gap between the measured strain noise and the RMS sum of investigated noises (indicated with
Ezxpected noise). In particular, there is a significant peak around 60 Hz in the measured noise due to US AC
frequency. On the right, the noise budget for the H1 detector ranges from about 100 to 1400 Hz (high-frequency
curve). Here, the sensitivity is clearly limited by shot noise and input beam jitter.

e Quantum noise: this is the sum of the quantum radiation pressure noise and shot noise; these
are fluctuations due to the quantum nature of light. Quantum radiation pressure is due to the
high laser power because a fraction is transferred to the mirrors’ mechanical modes, causing
random fluctuations that worsen the sensitivity. Shot noise corresponds to the fluctuations of
the number of photons that reach the photodiode, and it is related to the quantum, discrete
nature of the photons. In Figure 2.1, on the right, it is clear that quantum noise places a lower
limit on sensitivity in the frequency range between 100 and 1400 Hz.

e Thermal noise: this is the sum of the thermal noises of the mirror suspension and the mirror
coatings. Suspension thermal noise causes motion of the test masses due to thermal vibrations
of the suspension fibers. Thermal fluctuations of the optical coatings cause coating Brownian
noise. Thermal noise significantly limits sensitivity at low frequencies, around 10 Hz.

e Seismic noise: it limits sensitivity at low frequencies, below about 10 Hz, and it includes

geological, seismic activity and anthropic activities. Seismic noise affects both mirrors and
optical benches.

e Newtonian noise: it is a low-frequency noise associated with changes in the distributions

of surrounding masses. As a consequence, there are unpredictacble gravity gradients that act
directly on the mirrors.

e Gas noise: due to the interactions of the residual gas particles in the cavities with the mirrors

10



2.2. Noise in the detectors

and the laser light. Thermal motion of gas molecules inside the vacuum chambers results in
momentum exchange with the mirrors via collisions; meanwhile, forward scattering of photons
by the gas molecules in the arm vacuum pipes modulates the optical phase of the beam and
results in sensing noise.

e Charging noise: residual charge distribution on cavities and mirrors that causes noise interac-
tion.

e Oscillator noise: generated by the radiofrequency modulation of laser light.

e Laser amplitude and frequency noise: this is due to laser intensity and frequency fluctua-
tion.

e Beam jitter: minute fluctuations in position and angle of the laser beam, which can produce
noise because of several optical effects.

e Scattered light noise: this noise is produced by minor imperfections in the mirrors, which
cause a fraction of the laser light to scatter towards the instrument’s walls or other equipment.
If this stray light mixes with the main beam, it can produce a spurious signal in the readout
photodetectors.

e Electronic noise: is generated by the analog and digital electronics used in signal detecting
and noise reduction systems.

e Auxiliary degree-of-freedom noise: due to the control of the position and alignment of the
various mirrors in the detectors, along with the minor inter-coupling between those mirrors.

e Glitches': instrumental and environmental noise transients artifacts which hinder searches for
transient GWs and whose precise cause is uncertain. They are non-Gaussian noise fluctuations
that occur in many guises, come in many morphologies and can mask or mimic GW signals.
Glitches happen frequently enough that they often can be coincident in the two detectors and
can mimic astrophysical signals. They can be studied with spectral methods like common spec-
trograms and Omega Scans (Figure 2.2).

Finally, being built on the Earth’s surface, the detectors are susceptible to transient weather con-
ditions, particularly the variation of external temperatures and wind. In conclusion, noise in the
interferometers is anything but Gaussian and is also non-stationary over time.

Frequency (Hz)
-

025  -0.125 0.0 0.125 025 05 -0.25 0.0 0.25 05  -1.0
Time (s) Time (s)

Figure 2.2: Omega scans for different time ranges, that display a particular type of glitch, called Koi-fish,
recorded in the H1 detector. Omega scans produce frequency-time maps such as this using a multiresolution
analysis method called Q-transform [10]. The amplitude corresponding to each time-frequency tile is given by
the vertical color scale.

Figure 2.3 shows the measured sensitivity curves of the LIGO and Virgo detectors during the first
three months of the O3a run (the scientific run from April to June 2019)2. LIGO detectors’ sensitivity
significantly improved, and the peak around 60 Hz is smaller than in the first two observing runs.
Virgo’s sensitivity is not as good as that of the LIGO detectors mostly because the Advanced Virgo

H[9]
“[3]
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project started later than Advanced LIGO and at this stage it does not include improvements like a
more powerful laser and a signal recycling cavity.
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Figure 2.3: LIGO and Virgo detectors sensitivity, L1 in blue, H1 in red and Virgo in purple. The three curves
reach their minimum between about 100 Hz and 300 Hz, where the detectors are most sensitive.

2.3 Signal whitening

The synthesized chirps must first be whitened: this means that chirps must be filtered with the
interferometer’s sensitivity curve. Here, I have used the sensitivity curve of the LIGO Livingston
detector from O3a measurements (the blue curve in Figure 2.3).

I first compute the Fourier transform of the signals. To perform this, I multiply each signal by a so-
called window function to reduce the possible algorithmic artifacts that can prevent a proper analysis.
This is due to the signals’ discontinuities at the extremes of the time domain: in the frequency domain,
they produce non-physical artifacts. In practice, this is done with a one-sided tapered-cosine window
far from coalescence and by setting the phase of the plus polarization ¢ = 0 (without lack of generality)
to make the signal zero at the coalescence time. This procedure is shown in Figure 2.4, where the
Newtonian h, strain in Figure 1.4 is combined with the one-sided tapered cosine window.

Next, I compute safely the windowed Discrete Fourier Transform (DFT) of each signal. From this,
I can compute, in order:

1) for each signal, the corresponding Power Spectral Density ® (PSD, Figure 2.5);

[\

the whitened signals’ DFT by dividing the original DFT amplitude by the sensitivity curve;

s~

the SNRs of the signals (see Chapter 3);

)
)
) the PSD of the whitened signals (Figure 2.6);
)
5)

finally, having obtained the DFT of the whitened signals, I perform an inverse DFT of the filtered
signals getting the whitened signals in time domain.

3For a real signal in the time domain h(t), the PSD is defined as it follows:

2

2 /2 h(t)e 2™t dt

0

which is a single-sided spectral density because for a real signal h(t), it holds that H(f) = H(—f). Also, T is the signal’s
duration.
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2.3. Signal whitening
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Figure 2.4: in blue signal with GW150914 parameters, plus polarization, combined with the window function
tapered cosine (in orange, also called Tukey window), built in such a way as to bring the signal at its left end
gradually to zero and leave it unchanged elsewhere. Window function amplitude is scaled for visualization
purposes.

x10744

2.5F ]

2.0F 7

1.5F b

1.0 1

signal PSD (1/Hz)

0.51 b

0.0

0 20 40 60 80 100
Frequency (Hz)

Figure 2.5: PSD of the signal with GW150914 parameters, plus polarization.
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Figure 2.6: PSD of the whitened signal with GW150914 parameters, plus polarization.
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NEWTONIAN CHIRPS IN A NOISE BACKGROUND

In Figure 2.7, I present a whitened Newtonian chirp with the GW150914 parameters. It is clear that
the interferometer cuts the low-frequency components and enhances those in its maximum sensitivity
range.
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Figure 2.7: on the left, whitened signal with GW150914 parameters, plus polarization. There is an algorithmic
artifact at the signal’s left end due to the discrete Fourier transform and its inverse; it does not affect the
analysis. On the right, there is an insight into the whitened signal near coalescence.

2.4 Injection into Gaussian white noise background

I can complete the simulation of a whitened signal embedded in background noise by simulating a
Gaussian white noise background in the time domain, as shown in Figure 2.8: its probability density
function has a Gaussian distribution. Then I inject the whitened signals into that noise background. As
explained above, this is not completely realistic, because the actual noise background is not Gaussian,
but it is a reasonable approximation to start with, and one that is suitable for the purpose of this
thesis.

I repeat the injection into 100 different Gaussian white noise backgrounds and signal by signal.
For each injection I compute SNR and match, as explained in Chapter 3, and use the repetitions to
compute their statistical properties.
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Figure 2.8: A single realization of a Gaussian white noise background; because of the whitening procedure, this
stationary Gaussian noise has unit variance.
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Chapter 3

Match vs. SNR

In this chapter I introduce the matched filtering technique and I provide definitions for the match
function and the Signal-to-Noise ratio. Finally, I present the result of the analysis of the match
function as a function of SNR.

3.1 Matched filters

At the time of the first GWs detection, GW150914, the signal was confidently detected by two
different types of search [2]. One search targets a broad range of generic transient signals, with
minimal assumptions about waveforms, while the other aims to recover signals from CBCs, using
optimal matched filtering with waveforms predicted by GR. Indeed, matched filters are a fundamental
tool for GWs data analysis.

It is possible to introduce matched filters using a Bayesian approach. Bayes theorem states that,
for a null hypothesis Hy and an alternative one Hj, the posterior probability for H; hypothesis given
the data s is

P(s|31)P(3)
(8]Ho)P(Ho) + P(s]FH1)P(Hy)’

P@s) = (3.1)
where P(s|H;) is called the likelihood function and P(J;) is the prior probability. The aim is then
to select the hypothesis that maximize the posterior probability.

The null hypothesis in GW data analysis corresponds to the presence of pure noise, and the alternative
hypothesis corresponds to the presence of a signal in addition to noise, i.e., s(t) = h(t) 4+ n(t), where
s(t) is the detector’s output, h(t) is a template signal (a theoretically known GW signal), and n(t) is
the noise process.

Equation 3.4 is precisely a likelihood ratio, and for a Gaussian noise process, it can be shown that
the Bayes factor, i.e., the likelihood ratio, is given by the following expression:

[ (s(t) = A1), () = h(®)) + (s(8), 5(0)] } = (3.2)
=exp{ {s(0), h(1)) — 5 {h (1), (1)}, (33)

which depends on data only through the scalar product (s(¢), h(t)). Since the logarithm is a monotone
function, instead of the likelihood ratio we can maximize its logarithm, and this log-likelihood ratio
is proportional to the scalar product (s(t), h(t)) which is defined in the frequency domain as

5 (f)

(s(t), h(t)) :4Re/0 ey, (3.4)
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MATCH VS. SNR

using a single-sided noise spectral density S, (f) as defined in Chapter 2, and with 5(f) and A(f)
the Fourier transform of s(t) and h(t), respectively. Equation 3.4 defines the matched filter. Here,
I wish to stress that the quantity 5(f)/+/Sn(f) is the Fourier transform of the whitened signal and
h*(f)/7/Sn(f) is the whitened filter transfer function defined by the waveform template h(t) (or,
equivalently, by a template iL( f) in the frequency domain).

To apply the idea of matched filters to the detection of Newtonian signals in a noise background, I
calculate the match function in the time domain. It evaluates the match between a whitened template
signal h(t) and the whitened template injected into a noise background in the time domain h,,(t). The
match function is defined as follows:

(h(t), b (1)) |
V) BO) /D), D)

In this case the scalar product is defined in the time domain as

match =

(3.5)

kmaz
(h(t),h(t)) = > h(k)h(k), (3.6)
k

min

where k identifies a particular sample in time, k,,q; is the signal index corresponding to the time of
coalescence and ki, is chosen such to exclude the left tail of the whitened signal:

kmax kmaz
> h(k)h(k) =0.99 x > h(k) h(k). (3.7)
Kkmin 0

3.2 SNR

Ideally, the template signal h(t) is equal to the detected one, and in this case

+o00 |7, 2
PR = 4 /0 IMAE 4 (3.8)

which is the optimal power Signal-to-Noise ratio, while its square root pept is the optimal amplitude
Signal-to-Noise ratio. Comparing the equations defining the matched filter (Equation 3.4) and the
match function (Equation 3.5) and of the equation defining the signal to noise ratio (Equation 3.8),
we expect a dependence of the match function on the SNR.

For each generated chirp, I calculate its optimal amplitude SNR, after filtering it with the inter-
ferometer sensitivity function. I remark here that this SNR depends on the many approximations
and simplifications made in this work, and therefore differs from that computed with more accurate
models in papers of the LIGO-Virgo-KAGRA Collaboration (that is the network SNR).

3.3 Results

To better understand how the dependence of the match function on the optimal SNR, I selected a
Newtonian chirp generated with GW150914 parameters and changed the source distance D, for a total
of 8 chirps with modified distance, plus the original one. Modifying the distance does not take into
account cosmological effects, such as the cosmological redshift (due to the expansion of the Universe),
but this is not important in the current context. For each one of these chirps, I calculate the optimal
amplitude SNR and estimate the mean match over 100 different Gaussian white noise backgrounds,
with their associated standard deviation. Finally, I display the mean match as in Figure 3.1. It is
clear that the as the SNR decreases, the match decreases abruptly after a certain value of SNR. When
the SNR is very small, the match is close to zero: the signal is not found and the detection is not
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3.3. Results

efficient. As for the SNR value calculated for the signal obtained without changing the actual distance
of GW150914 (the green circle in Figure 3.1), it is considerably higher than that corresponding to the
actual detection, i.e., SNR = 24 (network SNR). This is mainly due to two reasons: the first is that
the present calculation of the SNR refers to the sensitivity of run O3, which is much better than that
of the first run when the first detection was made, so the SNR is consequently higher. Moreover, this
simulation uses Gaussian noise, which is only an approximation of the interferometer noise, which has
non-Gaussianities that cannot be predicted and are not constant over time (mainly due to glitches).

® GW150914 (d = 440 Mpc, original)
1.0+ GW150914 (d = 44 Mpc) > | o 1
4 GW150914 (d = 4400 Mpc)
‘ GW150914 (d = 44 Gpc)
0.8 WM GW150914 (d = 100 Gpc) 1
+ GW150914 (d = 440 Gpc) ’
% GWI150914 (d = 4400 Gpc)
© 0.6 GW150914 (d = 44000 Gpc) -
= A GWI150914 (d = 440000 Gpc)
3
> 041 o 1
0.2 .
0.0F A % i
10° 10! 102 103
SNR

Figure 3.1: Mean match over 100 Gaussian white noise background realizations for each chirp as a function of
the optimal amplitude SNR. The match samples have an approximately Gaussian distribution when the match
is close to its maximum, however, when it decreases, the sample mean distributions are not well approximated
by a Gaussian and are more scattered. Error bars are not shown because in this simulation the corresponding
standard deviations are too small to be visualized: the first value (orange triangle) has a standard deviation in
the range of 1072, while the one corresponding to the last value (blue triangle) is in the range of 1073,
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Conclusions

Gravitational waves are a very powerful tool to investigate the Cosmos and to explore its still-
dark corners, as well as offering a testing ground for General Relativity and other theories of gravity.
In this perspective, data analysis of GW signals is essential. In this thesis I explored the basics of
data analysis of GW signals originating from CBCs: in particular, I used the Newtonian model of
GW emission, which well approximates the GW strain during the early inspiral phase. I generated a
Newtonian chirp using the extimated astrophysical parameters of the first GW event ever detected,
GW150914, and I have also compared it with a parameterized GR model that also covers the merger
and ringdown phases.

Overall, the Newtonian model is sufficient to perform a basic signal analysis of the inspiral phase.
I have generated different Newtonian chirps whose parameters correspond to CBC events that were
actually detected. To analyze them, I have filtered them with the LIGO-Livingston sensitivity curve
measured at the beginning of the O3a run. Then, I have injected each whitened chirp in a simulated
Gaussian white noise background. Gaussian noise is only an approximation of the noise actually
present in the detectors, but it is suitable for the thesis’ purpose.

To recover the chirps from the noise background, I have introduced matched filters, a detection
technique that is based on searching for a known template signal in detector output data. I have then
evaluated the match function between the whitened signal (template) and the whitened signal injected
into the noise background. For each signal, I calculated the match of over 100 different Gaussian white
noise backgrounds and I have estimated the match mean and standard deviation of the match.

In addition, each GW signal has a different SNR depending on the parameters of the corresponding
astrophysical event and the noise in the detectors. For each chirp I generated, I calculated its SNR,
referring again to LIGO L1 sensitivity in O3a.

Since the match function depends on the SNR, I explored this dependence with a Newtonian chirp
using GW150914 parameters. By changing the distance parameter, I studied how the match decreases
as the SNR decreases. The match function has a sigmoid shape and it reaches its saturation value
when the SNR is above a certain threshold, while it decreases towards zero when there is no match
and the signal has is not found.

The main achievement of this thesis is the study of how detection of GW signal is performed,
starting from the basic concepts of signal analysis to match filtering. In particular the study of the
dependence of the match function on the SNR shows how and how much the noise background affects
the detection with the matched-filter technique. This simulation is a simplification compared to the
current one, where more complex models for astrophysical events and the resulting GW emission
are considered, and the resulting analysis is deeper and mainly aims at estimating the astrophysical
parameters of the source.
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Appendix: Python code

This section lists the most relevant parts of the Python code used to produce the results reported
in this thesis.

I Generating a Newtonian chirp

import numpy as np
import astropy.constants as const

W N e

# constants
5 G = const.G.value # N m~2/kg"2
6 M_S = const.M_sun.value # kg
7 C = const.c.value # m/s

9 # time of coalescence (s)

10 t_0=0

11

12 # time

13 time_step = 1/(2%*5000)

14 t = np.arange(-4,0,time_step)

16 # phase at coalescence (radian)
phi = np.pi/2

1

o =

def chirp_mass_sm(m_1,m_2):
return pow(m_1%m_2,3/5)*pow(m_1+m_2,-1/5)

def chirp_mass(a,b):
return pow(a*b,3/5)*pow(a+b,-1/5)

w N =

def max_f(m_tot):
return pow(2*np.pi*np.sqrt(2),-1)x*
pow (G*M_S/(pow(C,3)) ,-1)*M_S/m_tot

1

NN NN N NN NN
- SN H

00

29 def frequency(f0,mc):
30 return pow (pow(f0,-8/3) -256/5*pow (np.pi,8/3)*pow(mc/M_S,5/3)*
31 pow ((G*M_S) /pow(C,3) ,5/3)*(t-t_0),-3/8)

33 def a_factor(dist ,mlsm,m2sm):
34 return 4*C/dist*pow(G*M_S,5/3)*pow(C,-5)*mism*m2sm*pow (mlsm+m2sm,-1/3)

36 def b_factor(freq):
37 return pow(np.pi*freq,2/3)

39 def strain(x,f):
10 return np.cos (2*np.pi*f*xx+phi)

42 # GW150914 parameters

13 ml_sm = 35.6 # compact object 1 mass (units of solar masses)
14 m2_sm = 30.6 # compact object 2 mass (units of solar masses)
45 ml = ml_sm*M_S # compact object 1 mass (kg)

16 m2 = m2_sm*M_S # compact object 2 mass (kg)
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APPENDIX

11

I11

m = ml+m2
d_pc = 440*%10%*6
d = d_pc*3.086%10**(16) #

# chirp mass (solar masses)

# total mass

# distance (pc)

distance (m)

mc_sm = chirp_mass_sm(ml_sm,m2_sm)

mc = chirp_mass(ml,m2)

# maximum frequency in the merger (Hz)

f_0 = max_f (m)

# frequency
f = frequency(£_0,mc)

# strain with + (plus) polarization
h = a_factor(d,ml_sm,m2_sm)*b_factor (f)*strain(t,f)

h[-1] = 0 # making sure is O for t = t_0 to avoid inaccuracies due to numerical

accuracy

Waveform realization with PyCBC

import numpy as np

import astropy.cosmology.parameters

import pycbc.waveform
# chirp parameter

ml = 35.6 # solar masses
m2 = 30.6
d = 440 # Mp

# sampling time
dt = 10%*(-4)

#PyCBC package with various wavefor

# waveform (plus and cross polarization)
hp, hc = pycbc.waveform.get_td_waveform(

approximant=’EOBNRv2’,

massl=ml, mass2=m2,

distance=d,

f_lower=10, # starting frequency

delta_t=dt)

# time
t = np.linspace(-4,0.12,1len(hp))

# numerical model
# parameters

Signal whitening and SNR calculation

import numpy as np

import scipy.fft as fft

import scipy.signal as signal

# import sensitivity data

L1_03 = np.loadtxt(’L1_03.txt’)

f_L3, s_L3 = L1_03.T # frequencies and sensitivity

# time

time_step = 1/(2%5000)

t = np.arange (-4, O, time_step)

# window function

w = signal.windows.tukey(lenght,
# cutting window right edge

wl = np.where(t > -1, 1, w)

# combining signals with window

# (where h is the strain calculated in the first section with GW150914 parameters

)
hw = h *x wl

alpha=0.25,

sym=True)
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33

IV. Calculating match

# discrete Fourier transform for a real signal

hf = fft.rfft(hw, norm="backward")

# corresponding frequencies

lenght = h.size ()

delta_f = 1./(lenght * time_step)

f = delta_f * np.arange(0, lenght/2 + 1)

# modifying detector sensitivity array lenght

# to have the same lenght as sign

asd = np.concatenate((s_L3[0] * np.ones(40), s_L3))

# filtering signal

fil_sig = hf/asd

# calculating SNR

snr = np.sqrt(np.real (4*np.sum(np.conjugate (fil_sig)*fil_sig)*delta_£))
# inverse discrete Fourier transform to obtain whitened signal in time domain (
for a real signal)

idft = fft.irfft(fil_sig, norm="backward"

IV Calculating match

# selecting 997 of the energy of the whitened signal found in the previous
section
idftl = np.where(t>-0.4, idft, 0)

# norm
n = np.linalg.norm(idft1)

# selecting 997 of the energy of the whitened signal injected into Gaussian white
noise background (nh)
hni = np.where(t>-0.4, hn, 0)

# norm
nn = np.linalg.norm(hnl)

# match
match = np.dot(idftl, hnl)/(n*nn)
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