Università degli Studi di Padova Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea Triennale in Astronomia

Riduzione e classificazione di supernove

Relatori: Prof. Alessandro Pizzella - Dott. Nancy Elias de la Rosa Candidato: Francesco Olivieri

Periodo di Laurea III B2023

Indice

1	Sommario								
2	Introduzione								
3	Dati, telescopio e strumenti per la riduzione dei dati	3							
4	Riduzione delle immagini 4.1 Overscan e trim	3 4 4 4 5 6 6 7 8							
5	Identificazione delle supernove	9							
6	Conclusione	10							
\mathbf{A}	Parametri rilevanti dei programmi di IRAF	11							
в	Elenco delle righe di emissione delle lampade utilizzato con il programma $identify$	14							
С	Magnitudine AB 1								
D	Stelle standard 1								
Е	Valori dell'estinzione per il GTC 1'								

1 Sommario

In questo documento riduco due spettri di supernova, ottenuti per gli oggetti SN2013dy e SN2013hj, acquisiti dal Gran Telescopio Canarias. La riduzione consiste nella correzione dei difetti delle immagini causati dalla strumentazione di acquisizione, e nell'estrazione e calibrazione in lunghezza d'onda e flusso degli spettri, oltre che all'eliminazione di tracce lasciate dall'atmosfera terrestre. Alla fine tento anche una classificazione delle due supernove basandomi sui loro spettri così ridotti. Classifico la SN2013dy come una SN Ia e la SN2013hj come una SN II. Stimo anche la distanza di SN2013hj con un valore di 32 ± 4.5 Mpc.

2 Introduzione

Le supernove sono eventi stellari di natura esplosiva e di brevissima durata nella scala cosmologica, che risultano nella completa distruzione di una stella. Si presentano come repentini (sulla scala di pochi giorni o poche ore) aumenti della luminosità della stella interessata, seguiti da un graduale ottenebramento che può durare diversi mesi.

Una stella può produrre una supernova solo se rispetta certe condizioni, e il fenomeno presenta caratteristiche direttamente legate alla sua massa, composizione e struttura. Studiare questi eventi è dunque utile per comprendere l'evoluzione delle stelle. Si ritiene anche che durante questi eventi venga creata parte degli elementi più pesanti della tavola periodica, dunque la loro analisi può aiutare a costruire un modello più completo della storia e della composizione dell'universo. Inoltre, la regolarità nella luminosità massima di alcune supernove, quelle di tipo Ia, costituisce un importantissimo metro nella misura delle grandi distanze extragalattiche.

Vista l'importanza di questi fenomeni per l'astronomia, è normale che molta attenzione venga dedicata alla corretta acquisizione dei loro spettri, tramite i quali è possibile eseguire una loro classificazione, ma anche studi approfonditi sulla loro composizione, comportamento, interazione col mezzo interstellare, stelle progenitrici, e altro. Per questi motivi negli anni si sono sviluppate delle procedure specifiche di riduzione di immagini e spettri astronomici; nel seguito metterò in pratica una tale procedura per ottenere gli spettri di due supernove scoperte nel 2013: SN2013dy e SN2013hj^{*}.

3 Dati, telescopio e strumenti per la riduzione dei dati

Gli spettri e le immagini di interesse scientifico e di calibrazione provengono dallo strumento OSIRIS[†] del Gran Telescopio CANARIAS (GTC): un telescopio con uno specchio primario segmentato di 10.4m di diametro localizzato a 2396m di altitudine a Roque de Los Muchachos, La Palma, Isole Canarie, Spagna. In questo caso ho sfruttato la capacità di OSIRIS di operare come uno spettrografo a fessura lunga che copre le lunghezze d'onda tra 3650 Å e 10500 Å. Per la spettroscopia si è impiegata una fessura, o slit, lunga 7.4 arcmin e larga 1 arcsec (2.52 arcsec per le stelle standard), centrandola su solo un oggetto alla volta. È stato impiegato il reticolo montato su un prisma (detto *grism* = *grating prism*) R300B. Le immagini sono generate da due CCD[‡] gemelli da 2048x4096px[§] ciascuno. Gli oggetti osservati sono centrati nel secondo CCD, dunque nel seguito impiegherò esclusivamente la seconda estensione di ogni immagine ricevuta.

Il team di osservazione ha consegnato, per ogni supernova osservata, un certo numero di immagini di Bias (si veda sez. 4.2), FlatField (sez. 4.2), spettri di lampade di calibrazione (sez. 4.4) e uno spettro di una stella standard (sez. 4.5), oltre alle immagini e agli spettri 2-dimensionali ricavati da pose di 30 minuti della supernova oggetto di studio. Per la riduzione si sono impiegati i programmi di IRAF specificati nel seguito volta per volta.

4 Riduzione delle immagini

Nel seguito impiego le seguenti definizioni:

- Direzione spaziale: nelle immagini prodotte dal CCD è la direzione parallela al lato lungo della fessura impiegata per la spettroscopia. Uno spostamento lungo questa direzione coincide con uno spostamento nello spazio.
- Direzione della dispersione: nelle immagini prodotte dal CCD è la direzione perpendicolare al lato lungo della fessura impiegata per la spettroscopia. Uno spostamento lungo questa direzione coincide con uno spostamento in lunghezza d'onda.

 $^{\$}px = pixel$

^{*}Come riferimenti per questo paragrafo, si vedano per esempio:

Filippenko 1997

The Astrophysical Journal, Volume 591, Issue 1, pp. 288-300

Annual Review of Nuclear and Particle Science, vol. 62, issue 1, pp. 407-451

Astrophysical Journal Supplement v.101, p.181

[†]https://www.gtc.iac.es/instruments/osiris/osiris.php

 $^{^{\}ddagger}$ Dispositivi ad accoppiamento di carica: sono lastre suddivise in una griglia di cellette (in seguito: pixel) che conteggiano il numero di fotoni da cui vengono colpite.

4.1 Overscan e trim

La prima correzione da applicare è quella dell'*overscan*. L'*overscan* è una regione coperta del CCD che dunque registra solo il segnale causato dalla strumentazione, ed è appunto impiegato per stimarlo. Analizzando le immagini ricevute apprendo che la regione utile di *overscan* delle immagini si trova nei pixel [3:22,5:2051]. Apprendo inoltre dal team del telescopio che la direzione di lettura è lungo le linee. Inserisco queste informazioni nel programma *ccdproc*^{*}, in modo che il rumore in quella regione venga in seguito stimato e sottratto in tutte le immagini processate.

Poiché lo spettro delle supernove di interesse cade su una sezione limitata del CCD posso selezionare un intorno di quest'area su cui lavorare. Con questa azione tolgo anche i bordi delle immagini, irregolari e spesso degradati. Per fare ciò verifico l'estensione dello spettro utile con *imexam*, e poi inserisco le coordinate della sezione utile nel parametro trimsec del comando ccdproc. Faccio notare che tutte le immagini processate in seguito, anche quelle di calibrazione come bias e flatfield, saranno ritagliate in questo modo.

4.2 Bias e Flatfield

Le immagini di *bias* sono esposizioni della durata minima possibile e con i sensori coperti, in modo da registrare il loro livello zero. Poiché questo non è nullo, lo sottraggo alle immagini da calibrare. Per meglio stimare questo valore riducendo al contempo le fluttuazioni introdotte dal rumore di lettura, creo un'immagine di *masterbias*, mediando pixel per pixel le immagini di *bias* disponibili ed eliminando ogni volta il valore più alto ed il valore più basso registrato da ognuno, per escludere l'influenza di eventuali anomalie.

Il programma utilizzato per realizzare il masterbias è zerocombine^{*}. Imposto le opzioni combine = average e reject = minmax per fare sì che le immagini di bias vengano mediate pixel per pixel eliminando ogni volta i due pixel con valori estremi. L'input sono tutte le immagini di bias fuorché la prima in ordine di acquisizione, per tenere conto del caso in cui la strumentazione non abbia funzionato a regime fin dall'inizio.

Dopo aver eseguito zero combine indico in ccdproc il nome del masterbias cosicché venga utilizzato sulle immagini processate in seguito.

I pixel del CCD non hanno sensibilità uguale, ciò è evidenziato inquadrando un campo di luminosità uniforme. Tramite i programmi $flatcombine^*$ e $response^{\dagger}$ combino le immagini così create, i flatfield, per ottenerne una che corregga le differenze di sensibilità, eseguendo il rapporto con le immagini dal calibrare.

Prima eseguo flatcombine con gli stessi parametri utilizzati per zerocombine, con tutti i flatfield come input. Poi normalizzo il masterflat di output con response, in modo da portare il DN[‡] medio a 1. Eseguo il secondo passaggio in maniera interattiva, scegliendo una funzione monodimensionale che rappresenti il segnale dei pixel lungo la direzione della dispersione, avendo mediato ogni riga di pixel lungo la direzione spaziale. Questa è la funzione di normalizzazione del masterflat. Nella pratica imposto il masterflat sia come immagine da calibrare che come immagine di normalizzazione nelle opzioni di response, e indico che la direzione della dispersione è lungo le colonne, come è il caso per le immagini provenienti da OSIRIS.

Normalizzato il masterflat posso inserirne il nome in ccdproc, in modo che a tutte le immagini processate in seguito venga applicata anche questa correzione. Se minrepl = 1 è necessario cambiarlo con un valore inferiore al valore minimo del masterflat corretto, per esempio 0.5, per evitare che i suoi valori più piccoli vengano erroneamente ignorati.

Applico le correzioni già descritte eseguendo il comando *ccdproc* per le immagini rimanenti (spettri di supernova, delle lampade di calibrazione, della standard).

4.3 Raggi cosmici

L'alta atmosfera terrestre è continuamente colpita da raggi cosmici, ovvero particelle in viaggio ad altissime velocità provenienti da sorgenti extraplanetarie. Da questi impatti hanno origine cascate di raggi cosmici secondari che possono lasciare una traccia sui CCD degli osservatori astronomici. Tali eventi si presentano come segnali molto luminosi che coprono pochi pixel ciascuno, ed avvengono con una frequenza abbastanza alta da comparire numerosi in pose lunghe diversi minuti. Per ripulire gli spettri di supernova e stelle standard da questi segnali installo il programma lacos_spec[§]. Per eseguirlo imposto gain e readnoise come indicato nel sito di OSIRIS¶: gain = $0.95e^-/DN$ e rdnoise = $4.5e^-$, e xorder = 9 e yorder = 9 per modellizzare correttamente lo spettro del background e dell'oggetto e non eliminare pixel di interesse scientifico.

4.4 Calibrazione in lunghezza d'onda

In questa sezione estraggo degli spettri 1-dimensionali dalle immagini 2-dimensionali di supernove e stelle standard, ai quali assegno una lunghezza d'onda nella direzione della dispersione, al posto delle coordinate in pixel. Ricavo dunque

^{*}Del pacchetto di IRAF no
ao/imred/ccdred

[†]Del pacchetto IRAF no
ao/twodspec/longslit

[‡]DN=Data Number: il numero di elettroni conteggiati da ogni pixel, che corrisponde al numero di fotoni che lo hanno colpito

[§]Eseguito dall'ambiente di IRAF *stsdas*; per maggiori informazioni sul programma: http://www.astro.yale.edu/dokkum/lacosmic/ [¶]https://www.gtc.iac.es/instruments/osiris/osiris.php#Detector_Setup

una funzione che lega le righe di pixel del CCD agli Angstrom identificando linee di emissione conosciute negli spettri delle lampade. Applico quindi questa funzione agli spettri di supernove e stelle standard. Effettuo una verifica finale della correttezza di questa calibrazione controllando le coordinate di righe di emissione conosciute del cielo, presenti nel background degli spettri di interesse scientifico.

4.4.1 Estrazione di spettri 1dim

Per l'estrazione degli spettri di supernove e stelle standard impiego il programma *apall*^{*} con i parametri indicati nella Tabella 2 nell'Appendice A. Con questo programma inizialmente individuo l'estensione del segnale della supernova o della stella lungo la direzione spaziale delle immagini, in un intervallo di righe favorevole i cui valori vengono sommati colonna per colonna per ottenere un miglior rapporto segnale/rumore, come indicato nelle Figure 1a e 1b. Inoltre modellizzo e sottraggo il background sotteso al segnale, stimandolo con una funzione in genere lineare a partire da due intervalli scelti subito accanto ad esso, evidenziati in Fig. 1c. Successivamente la stessa identificazione viene ripetuta automaticamente a intervalli regolari lungo tutta la coordinata della dispersione. È possibile che a dispersioni diverse il segnale di interesse sia centrato in coordinate spaziali differenti, dunque costruisco una funzione F che rappresenti questi spostamenti, come mostrato in Fig. 1d. Fatto ciò, eseguo una somma pesata, riga per riga, dei valori di tutti i pixel colpiti dal segnale dell'oggetto già identificato, per ogni punto lungo l'asse della dispersione.

Figura 1: (a) Nel rettangolo rosso le righe sommate per la prima identificazione, la riga rossa centrale è quella di partenza selezionata dall'utente nelle opzioni di *apall*. La direzione verticale è quella della dispersione, s è la dimensione spaziale. (b) Valori sommati colonna per colonna delle righe evidenziate in precedenza. Il segnale di interesse è evidenziato al centro. In ordinata i conteggi in DN e in ascissa le coordinate in pixel lungo l'asse spaziale. (c) Il background sotteso al segnale è stimato a partire da due intervalli accanto alle estremità del segnale, evidenziati dai righelli in basso. In ordinata i conteggi in DN e in ascissa le coordinate. (d) Costruzione della funzione F: ogni nodo indicato con + corrisponde alla posizione spaziale del centro del segnale calcolato per un gruppo di righe adiacenti, i nodi cancellati sono indicati con X. In ascissa le coordinate in px lungo l'asse della dispersione, in ordinata le coordinate in px lungo l'asse spaziale.

I file che risultano da questa procedura si presentano come gruppi di 4 grafici per ogni oggetto:

- 1. lo spettro 1dim ottimizzato (ottenuto da somme pesate) dell'oggetto, a cui è stato sottratto il background;
- 2. lo spettro 1dim non ottimizzato dell'oggetto (ovvero ottenuto da somme semplici, non pesate, delle intensità dei pixel colpiti dal segnale dell'oggetto);
- 3. lo spettro 1dim del background sottratto dal segnale dell'oggetto, frutto principalmente dell'emissione del cielo;
- 4. incertezze nei valori dello spettro.

^{*}Del pacchetto di IRAF noao/twodspec/apextract

Sono stati consegnati gli spettri ottenuti da 3 lampade^{*}. Dopo averli ritagliati e processati per *overscan*, *bias* e *flatfield*, li unisco in un'unica immagine con *imcombine*[†], effettuando una somma semplice pixel per pixel senza operazioni aggiuntive. Lo spettro 1-dimensionale delle tre lampade sommate si può dunque estrarre con *apsum*[‡]. Questa volta non ci sono difficoltà legate all'individuazione della posizione dello spettro da estrarre ad ogni lunghezza d'onda, qualsiasi posizione lungo la fessura va bene, ma per semplicità si è scelta la stessa posizione utilizzata per estrarre il segnale della supernova. I parametri rilevanti sono indicati nell'Appendice A nella Tabella 3.

4.4.2 Calibrazione degli spettri 1-dim

Ottenuto lo spettro 1dim delle lampade, è giunto il momento di assegnare una lunghezza d'onda alle righe di emissione lì visibili, il cui elenco è disponibile nel sito di OSIRIS. Eseguo il programma *identify*[§], il quale richiede come input lo spettro 1dim delle lampade precedentemente estratto, e l'elenco di righe di emissione da identificare. L'elenco di righe impiegato nel mio caso è descritto in Appendice B. Identifico alcune righe inserendo la loro lunghezza d'onda manualmente, preferendo quelle alle estremità dello spettro e aiutandomi con immagini di spettri analoghi presenti nel sito dello strumento. Una volta registrate, avvio l'identificazione automatica. Se è andato tutto bene, gran parte delle righe visibili dovrebbero apparire come riconosciute dal programma. Se così è, passo alla costruzione di una funzione che leghi le coordinate in pixel lungo l'asse della dispersione a specifiche lunghezze d'onda, modellizzando i nodi individuati con l'identificazione precedente con una funzione adeguata, e cercando di portare il rumore quadratico medio dei residui almeno sotto a 0.5. È consigliabile rivedere le righe individuate dal programma una per una e cancellare quelle di identificazione pixel→Angstrom, la quale può essere applicata all'asse della dispersione degli spettri. In Figura 2 si vedono le linee identificate utilizzate per costruire la funzione pixel→Angstrom per la seconda supernova, accanto all'immagine presente nel sito di OSIRIS per il grism R300B.

Figura 2: (a) Linee di emissione delle lampade identificate per costruire la funzione $px \rightarrow Å$. In ascissa le coordinate in Å e in ordinata i conteggi. (b) Grafico di esempio delle emissioni delle lampade con il grism R300B presente nel sito di OSIRIS.

Con il programma $ref spectra^{\S}$ assegno nell'header degli spettri da calibrare (di supernove e stelle standard) lo spettro di riferimento, ovvero quello già calibrato delle lampade.

Concludo con $dispcor^{\$}$ dove gli spettri di input sono gli stessi del programma precedente. L'opzione linearize = yes risulta potenzialmente in una semplificazione della funzione $px \rightarrow \mathring{A}$ trovata con identify, ma nella pratica i risultati sono quasi completamente congruenti con quelli ottenuti adottandola integralmente. Lascio indefiniti i parametri riguardanti lunghezza d'onda iniziale, finale, e lo step in Angstrom che corrisponde ad un pixel, in quanto è proprio con questa procedura che li ricavo e li inserisco negli header degli spettri. Scelgo di conservare la densità di flusso con flux = no.

4.4.3 Verifica della calibrazione con il background

Effettuo una verifica della scala di lunghezza d'onda assegnata agli spettri di supernove e stelle standard controllando alcune linee conosciute del background, ovvero le più prominenti emissioni del cielo come la 5577.338 [OI] e la 6300.304 [OI]. Ricavando in *splot* il centro di queste linee, è possibile che si individui uno spostamento coerente dalla lunghezza d'onda corretta: se così è, ovvio a questo problema cambiando adeguatamente la lunghezza d'onda di partenza degli spettri, modificando il parametro CRVAL1 nei loro header. Per esempio se le linee appaiono centrate a lunghezze d'onda di 3 Å inferiori a quelle tabulate andrò ad aumentare di 3 Å il valore del parametro sopracitato. Nel caso

^{*}Una lampada al mercurio-argon, una al neon e una allo xeno. Maggiori informazioni sono disponibili a https://www.gtc.iac.es/ instruments/osiris/osiris.php#Arcs

[†]Del pacchetto di IRAF images/immatch

[‡]Del pacchetto di IRAF noao/twodspec/apextract

[§]Del pacchetto di IRAF noao/oned
spec

in cui spettri ridotti nello stesso modo presentino spostamenti diversi in lunghezza d'onda è consigliabile ripetere la calibrazione dal principio.

4.5 Calibrazione in flusso

Per la calibrazione in flusso. creo prima una funzione S, detta anche curva di sensibilità, la quale mette in relazione i DN dei pixel con le densità di flusso assolute in $erg/cm^2/s/Å$. Per fare ciò, utilizzo uno spettro della stella standard con flussi assoluti che si trova tabulato online. Questi tipi di file contengono tre colonne: la lunghezza d'onda centrale degli intervalli di lunghezze d'onda, la magnitudine AB (definita nell'Appendice C) ricavata dalla densità di flusso media in quell'intervallo, la larghezza dell'intervallo in Å. I file usati si possono trovare nell'Appendice D.

Con $standard^*$ creo un nuovo file in cui ad ogni intervallo di lunghezze d'onda sono assegnati la densità di flusso in unità fisiche, dallo spettro stellare tabulato, e la somma dei conteggi in DN, dallo spettro stellare osservato. I parametri rilevanti di standard sono descritti nella Tabella 4 dell'Appendice A.

Successivamente faccio passare l'output di standard per sensfunc^{*}. Questo programma determina la funzione

$$C = 2.5 log(O/(TBF)) + AE$$
⁽¹⁾

che contiene il rapporto tra i conteggi totali apparenti O e la densità di flusso assoluta per angstrom F per ogni intervallo di lunghezze d'onda, pesati sul tempo di esposizione T e l'ampiezza di ogni intervallo B. E è l'estinzione atmosferica legata alla posizione dell'osservatorio e A la massa d'aria al momento dell'osservazione della stella standard. La discrepanza originale tra conteggi apparenti O e flussi assoluti F è dunque corretta dal termine AE. I valori impiegati per E sono stati ricavati da https://www.ing.iac.es/Astronomy/observing/manuals/ps/tech_notes/tn031.pdf e si possono trovare nell'Appendice E. I parametri rilevanti di *sensfunc* sono indicati nella Tabella 5 nell'Appendice A.

La funzione S(W) viene ricavata modellizzando C, i residui tra S e C sono interpretati come estinzione residua in una funzione E(W), cosicché

$$C = S(W) + AE(W) \tag{2}$$

La curva di sensibilità S(W) non dovrebbe cambiare per un dato strumento e grism, e non dovrebbe avere oscillazioni. Le funzioni S trovate con le due stelle standard a disposizione sono poste a confronto nella Figura 3. Le due curve hanno una forma simile ma sono spostate verticalmente di 2 punti percentuali. Ciò potrebbe essere dovuto ad errori nella valutazione dei flussi delle stelle standard e/o dell'estinzione in azione nei casi specifici. Sembra improbabile che le differenze siano dovute ad una degradazione dei sensori in quanto le osservazioni sono state effettuate entrambe nella seconda metà del 2014. La scelta delle funzioni di modellizzazione non dovrebbe invece avere un ruolo in questa differenza, in quanto da questa scelta può cambiare solo la forma della curva.

Figura 3: (a) Funzione di sensibilità percentuale su lunghezza d'onda in Å ricavata dalla stella standard ross640, osservata la notte del 7-8 Agosto 2014 insieme a SN2013dy. (b) Funzione di sensibilità percentuale su lunghezza d'onda in Å ricavata dalla stella standard gd153, osservata la notte del 20-21 Dicembre 2014 insieme a SN2013hj.

Con $calibrate^*$ applico infine la funzione S agli spettri di supernova e delle stelle standard. In questo modo sostituisco i conteggi associati ad ogni lunghezza d'onda con densità di flusso misurate in $erg/cm^2/s/Å$. Il programma però prima corregge gli spettri per l'estinzione atmosferica, per evitare errori sistematici nella valutazione dei flussi in arrivo. I parametri rilevanti per *calibrate* sono mostrati nella Tabella 6 nell'Appendice A.

In alcuni casi noto che una o entrambe delle estremità degli spettri di supernova o di stella standard presentano degli andamenti oscillanti molto inflazionati. Questi comportamenti non corrispondono alla reale emissione degli oggetti osservati, ma sono causati dai bassissimi valori di S in quelle regioni, che hanno portato ad una sovra valutazione del rumore. Ho tagliato lo spettro della prima supernova indicativamente a ≈ 4000 Å e a ≈ 9000 Å, ma non ho reputato necessario farlo per la seconda supernova.

^{*}Del pacchetto di IRAF noao/onedspec

4.6 Rimozione assorbimenti tellurici

L'atmosfera terrestre è particolarmente opaca ad alcune lunghezze d'onda. Nell'intervallo 3000-9000Å gli assorbimenti più importanti sono causati da composti di idrogeno e/o ossigeno, come mostrato in Figura 4.

Figura 4: Spettro di Vega proveniente da http://www.astrosurf.com/buil/us/vatlas/vatlas.htm tra 6000 Å e 9000 Å. Gli assorbimenti di origine tellurica sono quelli causati da H_2O , O, O_2 .

Dallo spettro delle stelle standard estraggo gli assorbimenti atmosferici principali, evidenziati in verde nei grafici in Figura 4. Li inserisco poi in un file di calibrazione separato, di cui un esempio è mostrato in Figura 5a. Utilizzo questo

Figura 5: (a) Assorbimenti tellurici estratti dallo spettro di ross
640. Si tratta di un continuo di valore unitario interrotto solamente dagli assorbimenti individuati nello spettro. In ascissa le coordinate in lunghezza d'onda in Ang
strom. (b) In nero lo spettro della prima supernova prima della rimozione degli assorbimenti tellurici e in ciano lo spettro dopo la rimozione degli assorbimenti tellurici. In ascissa la lunghezza d'onda in Ang
strom e in ordinata la densità di flusso in $erg/cm^2/s/Å$

file nel programma *telluric*^{*}, con le opzioni indicate nella Tabella 7 in Appendice A. Gli input sono gli spettri di supernova già calibrati in flusso. Lo spettro di calibrazione viene automaticamente traslato e riscalato all'occorrenza, per correggere eventuali differenze con gli spettri da calibrare nelle coordinate in lunghezza d'onda o dovute alla massa d'aria, e poi viene eseguito il rapporto con gli spettri di input. Se lo vedo necessario correggo traslazione e riscalamento

^{*}Del pacchetto IRAF noao/onedspec

dello spettro di calibrazione in maniera interattiva. Il confronto tra uno spettro di supernova prima e dopo la rimozione degli assorbimenti tellurici è mostrato in Figura 5b.

5 Identificazione delle supernove

Al termine della riduzione delle pose di ciascuna supernova, le unisco in un'unica immagine per ogni supernova, facendo la media dei valori dei pixel. Fatto ciò procedo con l'identificazione della classe delle due supernove.

Le supernove si possono distinguere in due classi principali: le supernove di tipo I, caratterizzate dall'assenza di linee di emissione dell'idrogeno, al netto di contaminazioni da mezzo interstellare, e le SN di tipo II, che invece mostrano tracce evidenti di presenza di H.*

Classificazioni ulteriori distinguono le SN di tipo Ia da quelle di tipo Ib e Ic. Le SN Ia in genere presentano un assorbimento evidente a 6150 Åcausato dal Si II, mentre le Ib e Ic non lo mostrano. La presenza di linee di He I nell'ottico distingue le SN Ib dalle SN Ic.^{*}

Spettri ottenuti relativamente tardi (oltre 4 mesi) rispetto all'esplosione, però, hanno comportamenti diversi. Nelle SN Ia sparisce l'assorbimento a 6150 Å, ma compaiono numerose emissioni del Fe nell'ottico fuse tra loro. Nelle SN Ib e Ic compaiono invece linee di elementi di massa intermedia come O e Ca.^{*}

La SN 2013
dy non mostra righe di emissione dell'H, mentre la SN
2013
hj sì, dunque si può classificare la prima come una SN tipo I mentre la seconda come una SN II. Riconosco la prima supernova come una tipo I
a grazie alle sue emissioni del Fe, in particolare di [FeII] e [FeIII], simili a quelle che compai
ono nello spettro late time della SN I
a 2011fe a ≈ 250 giorni dal picco di luminosità[†]. Tali righe sono evidenziate nel grafico in Figura 6a.

La seconda supernova presenta appunto righe di emissione dell'H della serie di Balmer, mostrate in Figura 6b, la più prominente delle quali è la H α al centro dello spettro. Si tratta dunque di una SN II.

Figura 6: (a) Identificazione di alcune righe di SN2013dy, che coincidono con quelle delle SN Ia. In ascissa la lunghezza d'onda in Angstrom e in ordinata la densità di flusso in $erg/cm^2/s/Å$. (b) Identificazione delle principali righe di emissione della serie di Balmer dell'H nella SN2013hj. Gli assi sono dello stesso tipo della prima figura.

^{*}Filippenko 1997

[†]Visibile per esempio in Mazzali PA et al (2015) Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core. Mon Not R Astron Soc 450: 2631–2643, Figure 5

Le identificazioni sono state ripetute con il programma di identificazione online GELATO^{*}, che ha riconosciuto la prima SN come una Ia con una sicurezza del 83% e la seconda SN come una SN II con una sicurezza del 100%. Ciò è in linea con le mie supposizioni e con la reale classificazione delle supernove qui studiate.

Lo spostamento verso il rosso delle linee di Balmer nella supernova di tipo II, se attribuito interamente al redshift cosmologico, porta ad una stima della distanza della supernova di 32 ± 4.5 Mpc, come mostrato in Tabella 1, il che è congruente con la distanza di 30Mpc attribuita alla galassia ospite della supernova.

\mathbf{Riga}	$oldsymbol{\lambda_0}({ m \AA})$	$oldsymbol{\lambda_{oss}}({ m \AA})$	$oldsymbol{\Delta} oldsymbol{\lambda}(\mathbf{\AA})$	\mathbf{Z}	d(Mpc)
$H\alpha$	6562.79	6610	47	0.0072	31
${ m H}eta$	4861.35	4897	36	0.0074	32
$ m H\gamma$	4340.472	4373	33	0.0076	33
${ m H}\delta$	4101.734	4132	30	0.0073	32
$H\epsilon$	3970.075	3998	28	0.0071	31
${ m H}\zeta$	3889.064	3920	31	0.0080	34
$\mathrm{H}\eta$	3835.397	3866	31	0.0081	35

Tabella 1: Linee di emissione della serie di Balmer dell'H osservate nello spettro della supernova di tipo II e distanze ricavate dai loro redshift

6 Conclusione

Dopo aver eseguito la riduzione e l'estrazione degli spettri delle SN2013dy e SN2013hj, come osservate dal Gran Telescopio Canarias nella seconda metà del 2014, le ho identificate con successo come, rispettivamente, una SN Ia e una SN II. Ho inoltre stimato la distanza della SN2013hj con un valore di 32 ± 4.5 Mpc, basandomi sull'effetto di redshift cosmologico subito dalle sue linee di emissione della serie di Balmer dell'idrogeno.

^{*}Al link https://gelato.tng.iac.es/

A Parametri rilevanti dei programmi di IRAF

Parametro	Opzione	Spiegazione				
apertures nfind	1	Indico che voglio estrarre un singolo spettro (poiché ogni immagine ne contiene solo uno)				
format	multispec	L'output è un singolo file con tutti gli spettri estratti (per quanto detto sopra ci sarà comunque un solo spettro per immagine)				
interactive edit	yes	Per poter eseguire interattivamente l'estrazione dello spettro e del background				
find recenter resize	no	Poiché voglio che la prima individuazione dell'estensione del segnale sia manuale; per questo posso ignorare i parametri delle categorie seguenti riguardanti la ricerca automatica degli spettri, il loro riaccentramento ed il loro ridimensionamento.				
trace	yes	Questa opzione attiva l'identificazione dell'eventuale spostamento del segnale dello spettro lungo la direzione spaziale col variare della lunghezza d'onda. Ciò che sarà fatto in pratica consiste nella creazione di una funzione F (Fig. 1d) che modellizzi la posizione del centro del flusso spettrale per ogni coordinata dell'asse della dispersione, basandosi su una serie di nodi separati da uno step da indicare in seguito.				
fittrace	Per poter scegliere interattivamente la miglior funzione F (Fig. 1d)					
extract extras	yes	Per estrarre ulteriori grafici oltre a quello ottimizzato e privato del background della supernova/stella standard (es. spettro del solo background)				
line	р	Scelgo una coordinata p in pixel lungo la direzione della dispersione: questa sarà la riga lungo la quale si eseguirà la prima identificazione dell'estensione spaziale del segnale dello spettro di interesse. È meglio scegliere una posizione non troppo disturbata da righe del cielo, ricordando anche che un certo numero di righe prima e dopo quella scelta saranno sommate ad essa. L'obiettivo è che il flusso dell'oggetto sia di intensità più alta possibile rispetto al background.				
nsum t_nsum	10	Numero di righe, distribuite prima e dopo la coordinata p, da sommare prima di identificare l'estensione dello spettro: ciò dovrebbe dare un rapporto segnale/rumore più favorevole. Il secondo parametro ha la stessa funzione ma per la successiva identificazione automatica nel resto dello spettro.				
t_step	10	Numero di righe da saltare tra una determinazione della posizione del centro del segnale e la successiva, durante la ricerca automatica.				
background	fit	Scelgo che il background venga modellizzato con una funzione e poi sottratto allo spet- tro totale. La necessità di tale operazione è evidenziata dal confronto di uno spettro di supernova estratto senza sottrarre il background con lo stesso spettro estratto con la sottrazione del background, in Fig. 7.				
weights	variance	Si indica che i pesi utilizzati per estrarre lo spettro 1dim sono costruiti secondo una funzione che utilizza il gain e il readnoise, e che in pratica dà maggior peso ai pixel col segnale registrato più forte [*]				
readnoise	4.5	Impiarati par i gostruiro posi già monzionati				
gain	0.95	Implegati per i costruire pesi gia menzionati				

Tabella 2: Parametri del programma *apall*. I parametri non menzionati esplicitamente possono essere lasciati coi loro valori di partenza, perché già adeguati o non rilevanti, o perché calibrati all'occorrenza durante le fasi interattive del programma.

*Maggiori informazioni sono disponibili a https://www2.mpia-hd.mpg.de/~mathar/progs/apex.pdf

Figura 7: Confronto di uno spettro di supernova estratto senza sottrarre il background, in nero, con lo stesso spettro estratto con la sottrazione del background, in ciano. In ascissa la coordinata in pixel lungo l'asse della dispersione, in ordinata l'intensità in DN.

Parametro	Opzione	Spiegazione
apertures	1	Voglio estrarre solo uno spettro
reference		Inserisco il nome dello spettro 2dim della supernova, serve a scegliere da quali colonne estrarre lo spettro delle lampade. Non fa grande differenza in quanto le linee di emissione si estendono lungo tutta la dimensione spaziale
interactive find fittrace	no	In quanto le righe delle lampade si estendono lungo tutta la dimensione spaziale dello spettro queste operazioni non sono necessarie
extract	yes	Per estrarre uno spettro 1dim delle lampade
extras	no	Perché non sono necessario grafici aggiuntivi come per esempio il background
background weights	none	Perché non voglio estrarre lo spettro del background o effettuare una somma pesata per l'estrazione dello spettro delle lampade

Tabella 3: Parametri di apsum

Parametro	Opzione	Spiegazione
input		Inserisco il nome dello spettro 1-dim della stella standard già calibrato in lunghezza d'onda
bandwidth bandsep	INDEF	Gli intervalli di lunghezza d'onda sono definiti nei file di calibrazione
fnuzero	3.63078055E-20	Il valore della densità di flusso per $m_{AB} = 0$ in $erg/cm^2/s/Hz$
star_name		Il nome della stella standard, che deve corrispondere al nome del file di calibrazione

Tabella 4: Parametri di standard

Parametro	Opzione	Spiegazione
extinction		Il nome del file contenente l'estinzione atmosferica per l'osservatorio GTC
interactive answer	yes	Per cercare interattivamente la miglior funzione S
graphs	sir	Scelgo di lavorare con un grafico sensibilità-lunghezza d'onda, un grafico mostrante lo spettro risultante dalla calibrazione in flusso, un grafico residui-lunghezza d'onda

Tabella 5: Parametri di sensfunc

Parametro	Opzione	Spiegazione
input		Spettri di supernove e stelle standard precedentemente calibrati in lunghezza d'onda
extinct	yes	Per eliminare gli errori sistematici causati dall'estinzione nella valutazione dei flussi reali
flux	yes	Per effettuare la calibrazione in flusso
extinction		Il nome del file contenente l'estinzione atmosferica per l'osservatorio GTC
sensitivity		Il nome del file di outut di sensfunc contenente la funzione S
fnu	no	Per avere densità di flusso misurate per unità di lunghezza d'onda e non per unità di frequenza

Tabella 6: Parametri di calibrate

Parametro	Opzione	Spiegazione
input		Spettri di supernove precedentemente calibrati in flusso
cal		Spettro di calibrazione. Ha intensità $0 < I < 1$ negli assorbimenti tellurici e intensità pari a 1 altrove
xcorr	yes	Lo spettro di calibrazione viene automaticamente traslato in lunghezza d'onda. Il
shift	0.	criterio seguito è che i suoi assorbimenti tellurici siano nella stessa posizione degli
lag	50	assorbinenti individuati nelo spettro da cambrate. La inecodologia implegata e la correlazione incrociata tra i due spettri. Viene effettuato uno spostamento iniziale pari a $shift$ e la ricerca è limitata ad un raggio di pixel pari a lag dalla posizione di partenza. Lag dovrebbe essere circa pari alla larghezza delle righe di assorbimento telluriche
sample	6500:8700,0:2	Range di coordinate dove si trovano gli assorbimenti tellurici che voglio sottrarre, ove verranno svolte la correlazione incrociata e la minimizzazione del rumore quadratico medio
tweakrms	yes	Minimizzazione automatica del rumore quadratico medio (calcolato nelle regioni in-
dshift	1.	dicate in <i>sample</i>) nello spettro corretto. Prima cerca lo spostamento trasversale dello
scale	1.	spettro di cambrazione per cui il rqui neno spettro corretto e minino, spostandosi inizialmente dei pixel indicati in $dshift$ e poi di step minori, finché lo step non è
dscale	0.2	< 0.01 px oppure lo spostamento totale non supera 2px. Poi cerca il riscalamento del- lo spettro di calibrazione per cui il rqm nello spettro corretto è minimo, partendo da una scala con esponente A/A_cal * <i>scale</i> e cambiando <i>scale</i> di step pari a <i>dscale</i> e poi sempre minori, finché lo step non è < 0.01 oppure il nuovo valore di scala è cambiato del 100% rispetto a <i>scale</i> . A e A_cal sono le airmass dello spettro da calibrare e di quello di calibrazione. Tutta questa procedura è ripetuta 2 volte
interactive	yes	Per eventualmente correggere manualmente le operazioni di minimizzazione del rqm, applicando a scelta traslazioni o riscalamenti dello spettro di calibrazione e osservando in tempo reale gli effetti sullo spettro corretto

Tabella 7: Parametri di *telluric*.

B Elenco delle righe di emissione delle lampade utilizzato con il programma identify

Lunghezza d'onda (Å)	Ione	Lunghezza d'onda (Å)	Ione
4046.563	HgI	6532.882	NeI
4358.328	HgI	6598.953	NeI
5460.735	HgI	6678.276	NeI
5769.598	HgI	6717.043	NeI
5790.663	HgI	6929.467	NeI
5852.488	NeI	7032.413	NeI
5881.895	NeI	7173.938	NeI
5944.834	NeI	7245.167	NeI
5975.534	NeI	7488.871	NeI
6029.997	NeI	7724.207	ArI
6074.338	NeI	8231.635	XeI
6096.163	NeI	8280.117	XeI
6143.063	NeI	8377.608	NeI
6217.281	NeI	8495.356	NeI
6266.495	NeI	8819.411	XeI
6304.789	NeI	8952.252	XeI
6334.428	NeI	9045.45	XeI
6382.992	NeI	9162.65	XeI
6402.248	NeI	9799.7	XeI
6506.528	NeI	9923.19	XeI

Tabella 8

C Magnitudine AB

La magnitudine AB m_{AB} si ricava dalla densità di flusso f_{ν} misurata in $erg/cm^2/s/Hz$ secondo la formula:

$$m_{AB} = -2.5 \log_{10} f_{\nu} - 48.60 \tag{3}$$

Ne consegue che

$$f_{\nu} = f_{\nu 0} \cdot 10^{-0.4m_{AB}} \tag{4}$$

$$f_{\nu 0} = 10^{-0.4 \cdot 48.60} \tag{5}$$

È così definita in modo che Vega a 5556 Å abbia $m_{AB} = 0.0336$ con $f_{\nu} = 3.52E - 20 erg/cm^2/s/Hz$.

D Stelle standard

λ centrale (Å)	(m_{AB})	Intervallo (Å)	$\lambda \ { m centrale} \ ({ m \AA})$	(m_{AB})	Intervallo (Å)
3320	14.13	80	5800	13.84	80
3400	14.06	80	5880	13.88	80
3480	14.02	80	6040	13.86	160
3560	13.97	80	6200	13.87	160
3640	13.94	80	6360	13.88	160
3720	13.96	80	6520	13.93	160
3800	14.09	80	6680	13.93	160
3880	14.11	80	6840	13.93	160
3960	14.56	80	7000	13.95	160
4040	13.92	80	7160	13.96	160
4120	13.82	80	7320	13.98	160
4200	13.82	80	7480	14.00	160
4280	13.83	80	7640	14.04	160
4360	13.81	80	7800	14.02	160
4440	13.82	80	7960	14.05	160
4520	13.81	80	8120	14.03	160
4600	13.80	80	8280	14.03	160
4680	13.79	80	8440	14.06	160
4760	13.79	80	8600	14.14	160
4840	13.78	80	8760	14.10	160
4920	13.78	80	8920	14.09	160
5000	13.77	80	9080	14.11	160
5080	13.81	80	9240	14.17	160
5160	13.81	80	9400	14.12	160
5240	13.78	80	9560	14.12	160
5320	13.77	80	9720	14.20	160
5400	13.79	80	9880	14.24	160
5480	13.79	80	10040	14.23	160
5560	13.83	80	10200	14.17	160
5640	13.83	80	10360	14.17	160
5720	13.86	80	10520	14.19	160

Tabella 9: File di calibrazione per la stella standard ross640. I valori provengono da Oke 1974, ApJ. Supp. 27, 21.

λ centrale (Å)	(m_{AB})	Intervallo $(Å)$	λ controlo (Λ)	(m, r)	Intorvallo (Å)
3440	15.09	80	6700.05	(<i>mAB</i>)	
3520	15.13	80	6870.05	16.20	80
3600	15.17	80	6050.05	16.29	80
3680	15.21	80	7020.05	16.24	80
3760	15.24	80	7059.95	10.34	80
3840	15.28	80	7119.95	10.30	80
3920	15.31	80	7199.95	10.38	80
4000	15.34	80	7279.95	16.41	80
4080	15.41	80	7359.95	16.45	80
4160	15.36	80	7439.95	16.45	80
4240	15.37	80	7519.95	16.47	80
4320	15.53	80	7599.95	16.49	80
4400	15.46	80	7679.95	16.51	80
4480	15.46	80	7759.95	16.53	80
4560	15.49	80	7839.95	16.56	80
4640	15.52	80	7919.95	16.58	80
4720	15.56	80	7999.95	16.6	80
4800	15.63	80	8079.95	16.62	80
4880	15.76	80	8159.95	16.64	80
4960	15.66	80	8239.95	16.66	80
5040	15.68	80	8319.95	16.68	80
5120	15.71	80	8399.95	16.7	80
5199.98	15.74	80	8479.95	16.71	80
5279.95	15.77	80	8559.95	16.73	80
5359.95	15.8	80	8639.95	16.75	80
5439.95	15.83	80	8719.95	16.77	80
5519.95	15.86	80	8799.95	16.79	80
5599.95	15.89	80	8879.95	16.81	80
5679.95	15.91	80	8959.95	16.83	80
5759.95	15.94	80	9039.95	16.85	80
5839.95	15.97	80	9119.95	16.86	80
5919 95	15.99	80	9199.95	16.88	80
5999 95	16.02	80	9279.95	16.9	80
6079 95	16.05	80	9359.95	16.91	80
6159.95	16.07	80	9439.95	16.93	80
6239.95	16.1	80	9519.95	16.96	80
6319 95	16.13	80	9599.95	16.97	80
6399 95	16.15	80	9679.95	16.98	80
6470.05	16 10	80	9759.95	16.99	80
6550.05	16 21	80	9839.95	17.01	80
6630 05	16.94	80	9919.95	17.03	80
6710.05	16.24	80	9979.95	17.05	40
0113.30	10.40	00			

Tabella 10: File di calibrazione per la stella standard GD153. I valori originali provengono da Bohlin et al. 1995, AJ 110, 1316 ma sono disponibili sui server ftp dell'ESO.

E Valori dell'estinzione per il GTC

$\lambda({ m \AA})$	${ m E}({ m mag}/{ m ma})$	$\lambda({ m \AA})$	${ m E}({ m mag}/{ m ma})$	$\lambda({ m \AA})$	${ m E}({ m mag}/{ m ma})$	$\lambda({ m \AA})$	${ m E}({ m mag}/{ m ma})$
3000	3.715	3450	0.5486	5500	0.102	7750	0.0197
3010	3.3105	3460	0.5409	5550	0.1004	7800	0.0192
3020	2.9638	3470	0.5337	5600	0.0991	7850	0.0187
3030	2.6782	3480	0.527	5650	0.0987	7900	0.0183
3040	2.4211	3490	0.5208	5700	0.1001	7950	0.0178
3050	2.214	3500	0.5146	5750	0.0987	8000	0.0174
3060	2.0423	3550	0.483	5800	0.095	8050	0.0169
3070	1.9001	3600	0.4554	5850	0.0914	8100	0.0165
3080	1.7822	3650	0.4299	5900	0.0887	8150	0.0161
3090	1.6826	3700	0.4061	5950	0.0876	8200	0.0157
3100	1.5961	3750	0.3839	6000	0.0891	8250	0.0153
3110	1.5169	3800	0.3633	6050	0.0878	8300	0.015
3120	1.4393	3850	0.344	6100	0.0844	8350	0.0146
3130	1.3579	3900	0.326	6150	0.0808	8400	0.0143
3140	1.267	3950	0.3092	6200	0.077	8450	0.0139
3150	1.161	4000	0.2935	6250	0.0734	8500	0.0136
3160	1.127	4050	0.2787	6300	0.0702	8550	0.0133
3170	1.0928	4100	0.2649	6350	0.0671	8600	0.013
3180	1.0587	4150	0.2519	6400	0.0638	8650	0.0127
3190	1.0247	4200	0.2397	6450	0.0606	8700	0.0124
3200	0.9908	4250	0.2283	6500	0.0575	8750	0.0121
3210	0.9574	4300	0.2175	6550	0.0547	8800	0.0118
3220	0.9245	4350	0.2079	6600	0.0524	8850	0.0115
3230	0.8922	4400	0.1986	6650	0.05	8900	0.0113
3240	0.8609	4450	0.1896	6700	0.0473	8950	0.011
3250	0.8303	4500	0.1811	6750	0.045	9000	0.0108
3260	0.8009	4550	0.1734	6800	0.0428	9050	0.0106
3270	0.7727	4600	0.1664	6850	0.0407	9100	0.0103
3280	0.7459	4650	0.1598	6900	0.0389	9150	0.0101
3290	0.7204	4700	0.1529	6950	0.0371	9200	0.0099
3300	0.6967	4750	0.1472	7000	0.0356	9250	0.0097
3310	0.6877	4800	0.1424	7050	0.0342	9300	0.0095
3320	0.6789	4850	0.1378	7100	0.033	9350	0.0093
3330	0.6702	4900	0.132	7150	0.0319	9400	0.0091
3340	0.6598	4950	0.1276	7200	0.0307	9450	0.0089
3350	0.649	5000	0.1244	7250	0.0293	9500	0.0087
3360	0.6379	5050	0.1225	7300	0.0282	9550	0.0085
3370	0.6266	5100	0.1179	7350	0.0274	9600	0.0083
3380	0.6154	5150	0.1145	7400	0.0268	9650	0.0082
3390	0.6042	5200	0.112	7450	0.0261	9700	0.008
3400	0.5934	5250	0.11	7500	0.0254	9750	0.0078
3410	0.5829	5300	0.1087	7550	0.0243	9800	0.0077
3420	0.5731	5350	0.1079	7600	0.0213	9850	0.0075
3430	0.564	5400	0.1046	7650	0.0208	9900	0.0074
3440	0.5558	5450	0.1026	7700	0.0202	9950	0.0072

$\lambda({ m \AA})$	${ m E(mag/ma)}$
10000	0.0071
10050	0.0069
10100	0.0068
10150	0.0067
10200	0.0065
10250	0.0064
10300	0.0063
10350	0.0061
10400	0.006
10450	0.0059
10500	0.0058
10550	0.0057
10600	0.0056
10650	0.0055
10700	0.0054
10750	0.0053
10800	0.0052
10850	0.0051
10900	0.005
10950	0.0049
11000	0.0048

_

Tabella 11: Valori dell'estinzione atmosferica per la località degli osservatori di Roque de Los Muchachos, ricavati da https: //www.ing.iac.es/Astronomy/observing/manuals/ps/tech_notes/tn031.pdf. Le colonne contrassegnate da λ contengono la lunghezza d'onda di rilevazione in angstrom e le colonne contrassegnate da E contengono l'estinzione calcolata in magnitudini per massa d'aria