

Università degli Studi di Padova – Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica e dei Materiali

Relazione per la prova finale «Funzionalizzazione di oli vegetali con anidride maleica»

Tutor universitario: Prof. Bertani Roberta

Laureanda: Franceschetti Gaia

(2034471)

Padova, 16/07/2024

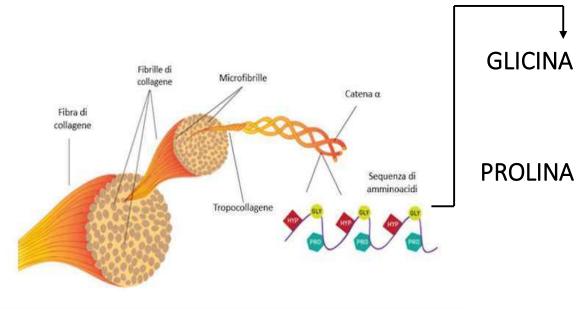
Nell'industria conciaria, il trattamento delle pelli rappresenta un processo fondamentale con rilevanza cruciale dal punto di vista tecnico e produttivo, e per le sue implicazioni ambientali e socio-economiche connesse. Le pelli vengono sottoposte a determinati trattamenti che hanno lo scopo di preservare le caratteristiche del materiale grezzo.

MORFOLOGIA DELLA PELLE:

Ghiandola sebacea

Ghiandola sudoripara

Muscolo erettore


Pelo

Epidermide

Strato fiore

VIII Tessuto sottocutaneo

La proteina principale della pelle: IL COLLAGENE

OH NH₂

N O OH

IDROSSIPROLINA

HO NH

La pelle è costituita per il 33% da proteine

Collageni fibrosi → COLLAGENE TIPO I

LAVORAZIONE DELLA PELLE

Operazioni per produrre il cuoio:

- LAVORI DI RIVIERA: operazione chimica che elimina il pelo e reidrata le pelli
- CONCIA: Modifica le caratteristiche del collagene. Trasforma la pelle in cuoio e gli conferisce resistenza meccanica, all'umidità, alla temperatura e agli agenti chimici e batterici.

Consiste in due fasi:

- 1. Penetrazione del conciante all'interno della struttura della pelle
- 2. Fissazione per generazione dei legami trasversali

Tipologie di concia:

- Concia minerale → legami di coordinazione
- Concia al cromo → legami di coordinazione molto stabili
- Concia vegetale → legami a idrogeno, dipoli
- Concia con prodotti organici → legami covalenti
- RICONCIA, TINTURA E INGRASSO: trattamenti chimici che migliorano le caratteristiche estetiche della pelle
- RIFINIZIONE: Lavorazioni su pelli asciutte per proteggere la superficie e migliorare l'aspetto

4

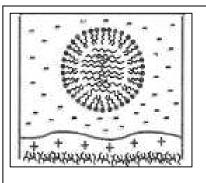
INGRASSO: film di molecole lubrificanti è interposto tra le fibre per interazione fisica e chimica con cuoio

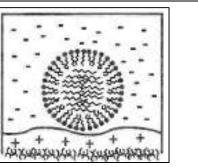
Scopo dell'ingrasso

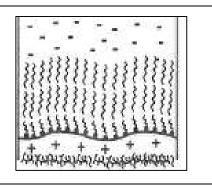
- Conferire morbidezza e cedevolezza al prodotto finito
- Protezione dall'ossidazione e alterazioni cromatiche

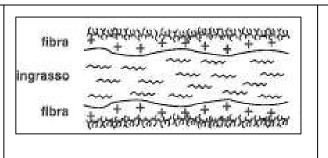
- Migliorare lo scambio d'acqua del cuoio
- Migliorare resistenza allo strappo

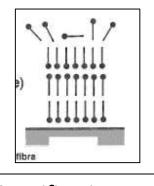
PRODOTTI INGRASSANTI:


ANIMALI: olio di piede di bue, olio di foca e di balena, olio di capodoglio o spermaceti, olio di merluzzo, olio di pesce


SINTETICI


NATURALI


VEGETALI: olio di cocco, ricino, lecitina di soia, jojoba


MECCANISMO DELL'INGRASSO:

Ingrasso penetra nelle fibre

Legame testa polare-gruppi ionici opposti

Deposito di uno strato dell'ingrasso

Lubrificazione viscosa

Stratificazione

OBIETTIVI DEL LAVORO

- Funzionalizzazione oli vegetali, sostenibili, di scarso uso alimentare: olio di vinacciolo, olio di canapa,
 olio di lino
- Utilizzo dell'alta reattività degli oli per elevata quantità di doppi legami
- Formare **Prodotti** in grado di **legare covalentemente con il collagene**
- Metil oleato come sistema di riferimento
- Funzionalizzazione oli con anidride maleica senza solventi o catalizzatori con attivazione a microonde
- Osservazione aumento di viscosità dei prodotti legato al meccanismo di reazione radicalico
- Metodi di riduzione dell'aumento di viscosità, per poter usare i prodotti nell'ingrasso delle pelli

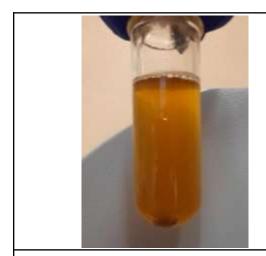
OLIO DI VINACCIOLO

OLIO DI CANAPA

OLIO DI LINO

REAZIONI DEGLI OLI CON ANIDRIDE MALEICA

PROCEDIMENTO:

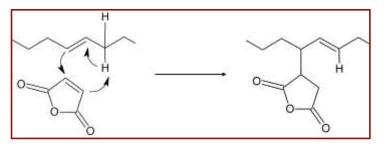

 Reagenti pesati (15g olio/3g MA, 1:1 per MO), introdotti in fiala da 30mL del reattore a microonde e 1x30 min, 230 °C, rpm 600, heat 21 min (10 °C/min), cooling 60 gradi

- 2. Prodotto Centrifugato 10000 giri per 1x30 min (per far precipitare MA non reagita)
- 3. Miscele lasciate raffreddare per una notte
- 4. Rimozione precipitati di anidride maleica e centrifugazione 1x10 min

REAZIONE DEL METIL OLEATO

REAZIONE DELL'OLIO DI VINACCIOLO

REAZIONE DELL'OLIO DI CANAPA

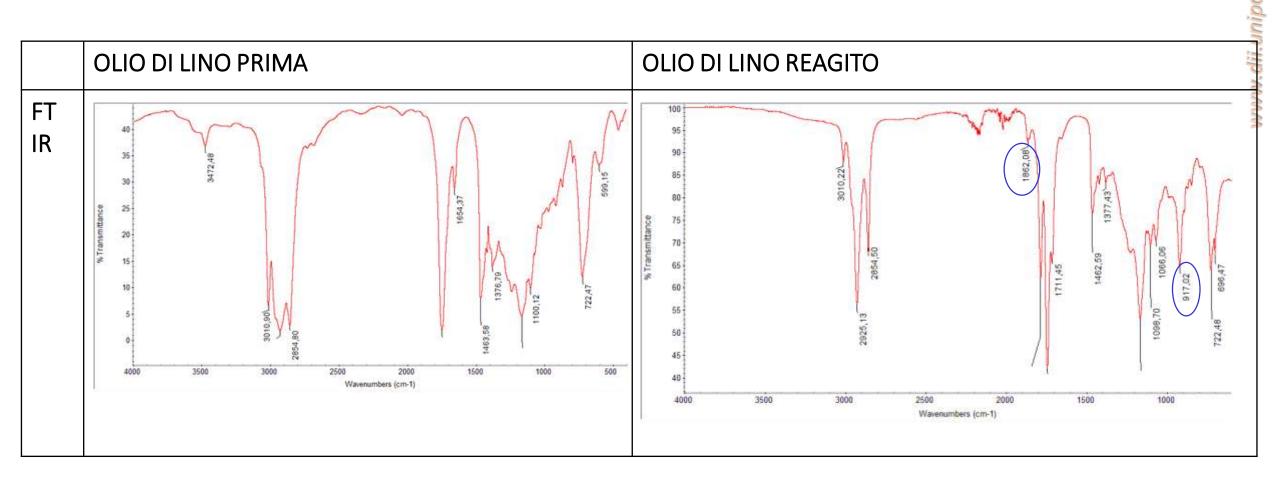

REAZIONE DELL'OLIO DI LINO

FUNZIONALIZZAZIONE per REAZIONE CON ANIDRIDE MALEICA:

Meccanismo radicalico con reazione ene e reazione allilica

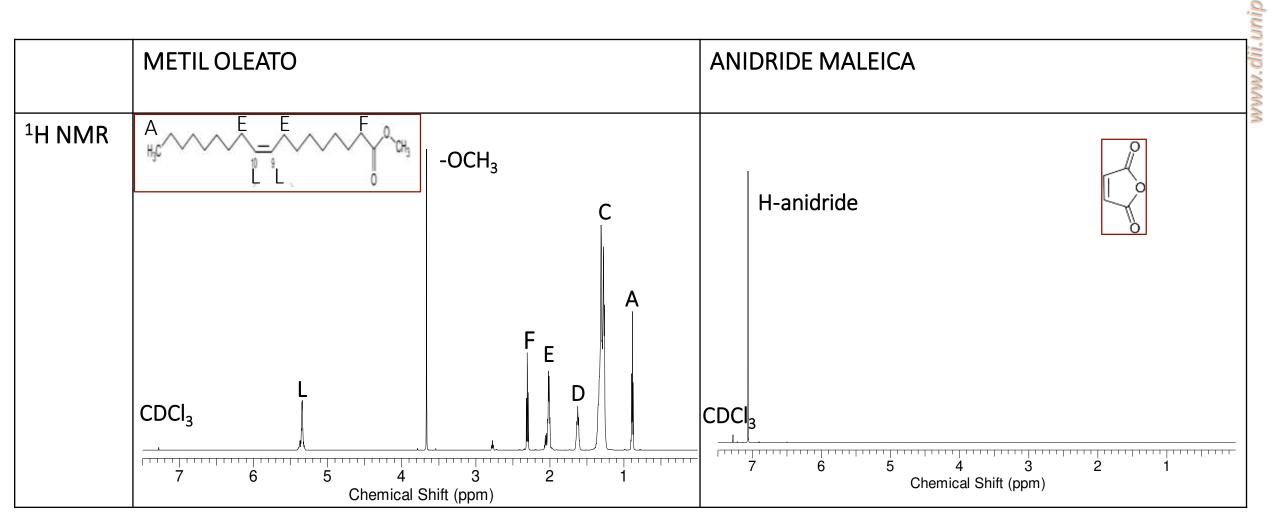
METIL OLEATO: sistema con un solo doppio legame

ETIL LINOLEATO: sistema con due doppi legami



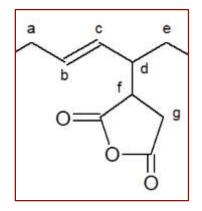
MECCANISMO DELLA REAZIONE ENE

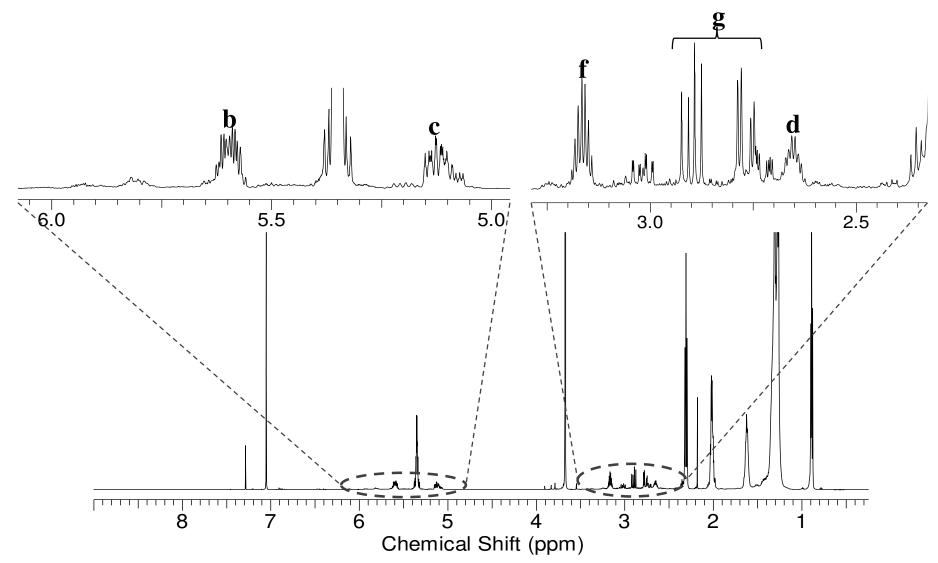
REAZIONI DEGLI OLI CON ANIDRIDE MALEICA



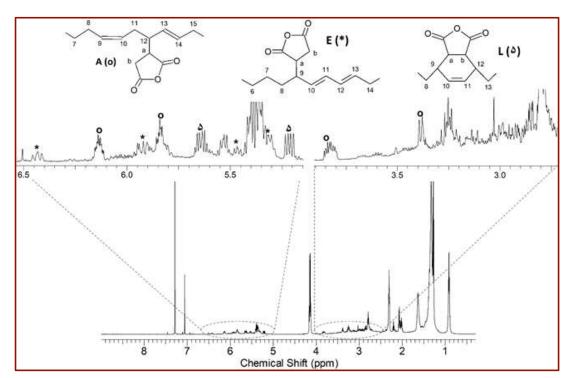
A 917 cm⁻¹ e 1862 cm⁻¹ è evidenziata la conversione da anidride maleica a gruppo succinico per reazione con l'olio

¹H NMR METIL OLEATO E ANIDRIDE MALEICA

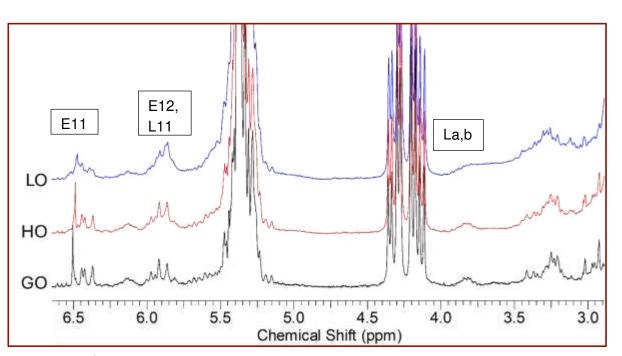



¹H NMR METIL OLEATO REAGITO

11

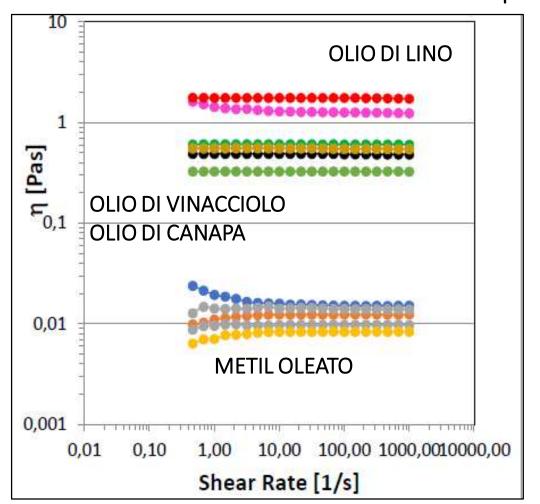


STRUTTURA DEL PRODOTTO PRINCIPALE DELLA REAZIONE



Utilizzando opportune sequenze di impulsi per eseguire spettri ¹H NMR bidimensionali è stato possibile identificare alcuni segnali caratteristici delle specie formate anche nei spettri dei derivati ottenuti con gli oli.

Spettro ¹H NMR (600 MHz). Segnali identificativi della formazione dei derivati succinici (olio di vinacciolo)



Spettro ¹H NMR (200 MHz) dei derivati ottenuti per reazione di anidride maleica con GO, HO e LO

VISCOSITA': Proprietà della materia per la quale le particelle di un corpo (tipicamente di un fluido) incontrano resistenza nello scorrere le une rispetto alle altre.

REAZIONE	Viscosità subito dopo reazione (Pas)	Viscosità dopo (Pas)
MO+MA	0,014	Non attendibili per precipitato
GO+MA	0,49	0,64
HO+MA	0,55	0,76
LO+MA	1,75	2,86

L'aumento di viscosità è probabilmente legato al meccanismo di reazione radicalico

Corso di Laurea in Ingegneria ...

VISCOSITA' IN DIVERSE CONDIZIONI

PRIMA

METIL OLEATO LINO VINACCIOLO CANAPA

CuCl₂

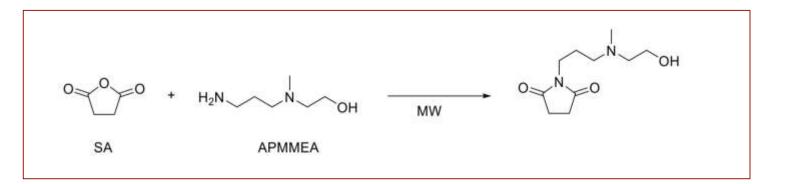
MO GO HO LO

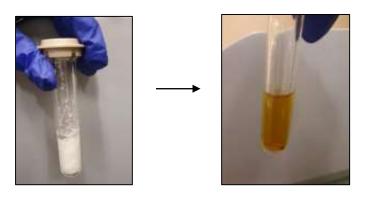
TEMPO

MO GO HO LO

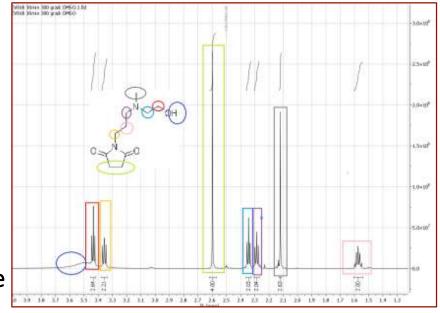
MO PRIMA

MO DOPO


CONDIZIONI SPERIMENTALI	VISCOSITA' OSSERVATA (dopo due mesi)	NOTE
CuCl ₂ (10 mg in 5 ml)	MO << GO ~ HO << LO	CuCl ₂ → favorisce formazione radicali. No precipitato
TEMPO (1,5 mg in 5 ml)	MO << GO < HO << LO	TEMPO → trap di radicali
ATMOSFERA INERTE	GO < HO < LO MO ha viscosità << ma si ha formazione precipitato	No radicali. Tutte le viscosità sono minori di quelle precedenti

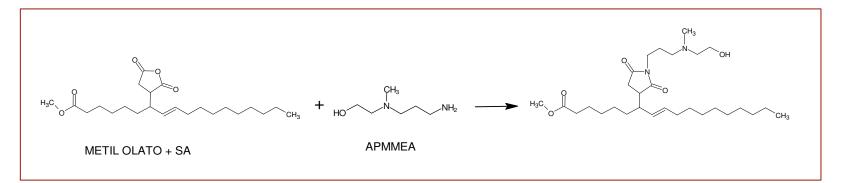

Corso di Laurea in Ingegneria ...

ANIDRIDE SUCCINICA+ METIL-ETANOL-PROPILAMMINA



PROCEDIMENTO:

- 1,80 g AS + 2,43 g APMMEA scaldati a microonde e 1x30 min,
 200 °C, rpm 600, cooling 60 gradi
- Centrifugata 10000 giri 1x30 min
- Raffreddamento per una notte
- Centrifugazione


OSSERVAZIONI:

Possibilità dell'utilizzo del reattore a microonde per la conversione del gruppo succinico dell'olio maleinizzato a succinimmidico in maniera efficace e selettiva.

Spettro ¹HNMR di Reazione di Anidride succinica con APMMEA

METIL OLEATO/ANIDRIDE SUCCINICA CON AMMINA

fase sovrastante meno viscosa

fase sottostante molto viscosa

OSSERVAZIONI:

Varie prove con i seguenti risultati:

- No solvente a RT per 72h: prodotto semisolido non ancora studiato;
- Etanolo a RT per 72h: caratterizzazione in corso;
- Toluene a riflusso per 18h: 2 fasi, un precipitato sul fondo di colore rosso scuro e una soluzione torbida; caratterizzazione in corso;
- No solvente in microonde 30 min a 200°C: 2 fasi → una molto viscosa e solubile in acqua e una più liquida, caratterizzazione in corso ma i primi spettri ¹H NMR molto promettenti

- Reazioni con microonde hanno portato a risultati simili alle reazioni con riscaldamento tradizionale → risparmio di energia e minore degradazione materiali di partenza
- Riproducibilità delle reazioni verificabile con spettri FTIR e ¹H NMR
- Effettivo aumento di viscosità, specialmente per olio di lino
- In ambiente inerte aumento di viscosità molto scarso
- Con CuCl₂ e TEMPO aumento di viscosità
- Mediante attivazione a microonde si può ottenere in tempi brevi la funzionalizzazione di oli vegetali

GRAZIE PER L'ATTENZIONE