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Chapter 1

Introduction

The Riemann Zeta function

1

=3 (11)
was introduced in the first half of the eighteenth century by Leonhard FEuler as
a function of a real variable, and extended to a complex variable by Riemann
in 1859. ((s) is defined in the half-plane R(s) > 1 and it extends to the whole
complex plane as a meromorphic function with only a simple pole at s = 1 by
analytic continuation. The Riemann Zeta function is an important analytic
object. For example, one of the main open problems in mathematics, the
Riemann Hypothesis, concerns the Riemann Zeta function. On the other
hand, thanks to its form as Euler product

=TI 7=

p prime

((s) gives us some important properties on the distribution of prime numbers.
A generalization of (1.1) is given by the Dedekind Zeta function, a complex-
valued function of the form

a1 =2 = —~p (1.2

I

defined in the half-plane R(s) > 1, where the sum is over all the nonzero
ideals I of the ring of integers Oy of the number field k£ and the product runs
over all the prime ideals P of Q). There is a relationship between certain
algebraic invariants of the field & and (1.2). In fact, the analytic behavior
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of the function (; allows us to prove purely algebraic facts about k. For
example, Dirichlet used the fact that the Riemann Zeta function

has a simple pole at s = 1 in order to prove that there are infinitely many
primes in every arithmetic progression of the form

{a +nb:n e N},

where a and b are positive coprime integers. To prove this theorem, Dirichlet
also had to introduce a generalization of the Dedekind Zeta function for a
general ideal class character x, called abelian L-function. It is defined as

(1) 1
Llsx) = ~NI* 1;[ 1 — \(P)NP—s’

where the sum is over all the integral ideals /I prime to the conductor m,
associated to x and the product is over the prime ideals P not dividing m,.

In connection with his research into class field theory, in 1923 Emil Artin
introduced the Artin L-functions. More precisely, let K/k be a finite Galois
extension of number fields and let V' be a complex representation of the
Galois group G = G ;. For a finite place v = P, of k, set

1

Lv ,V == )
(5,V) det(I — o NP | yr)

where [, is the inertia group of w, a places of K which lies above v, and

Ow : Fyy = Fy

A

is the corresponding Frobenius automorphism. So, an Artin L-function is
defined as

L(s,V) =[] Lo(s.V), (1.3)

where the product is over the finite places v of k. Since L(s,V) depends
only on the isomorphism class of the representation V', we can also denoted
L(s,V) by

L(s, x),

where

x:G—C
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is the character corresponding to V. In particular, if G is abelian, we can
observe that (1.3) is an abelian L-function.

The Dirichlet class number formula states that the Dedekind Zeta func-
tion (x(s) has a simple pole at s = 1 with residue

2m (27T)T2 hKRK

Vide|  wi

where
e 71 and ry are the number of real and complex places of K respectively;
e hy is the class number of K;
e Ry is the regulator of K;
e wg is the number of roots of unity contained in K;
e di is the discriminant ideal of the extension K/Q.

By the functional equation (3.31) for (x(s), the Dirichlet class number for-
mula can be reformulated to became true for s = 0. In this way, we have
that the Taylor expansion of (x(s) at s = 0 starts as

hi Rk grtra—l

Cr(s) = — +

WK

Note that, Fxample 5 gives us a relation between the Dedekind Zeta function
and the Artin L-functions, that is, the decompostion

Gis) = [ Lls. 1 (1.4

where V; runs through the irreducible complex representations of GG. In par-

ticular,
hk Rk

Wi

(1.5)
is the ratio between the transcendental number Ry and the algebraic number
hik
WK .
Stark Conjecture concerns the algebraicity of leading term of the Taylor
expansions of Artin L-functions, divided by suitable complex numbers, called

regulators. It has been inspired by the rationality of the result (1.5) and the
factorization (1.4) for the Dedekind Zeta function.
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More precisely, let S be a finite set of places of k containing S, the
set of infinite places of k. We define the S-imprimitive Artin L-function for
R(s) > 1 as

Ls(s,V) =] ] Lo(s. V).

vgS
We write
Ls(s,V) = cS(X)sTS(X) +...,

where
r(x) = rs(x)

is the order of vanishing of Lg(s,V) at s = 0.
Let Sk be the set of places of K lying above the places of S. Let

Y =Ys,
be the free abelian group on Sk, and let
n:Y =7
be the surjective homomorphism such that
n(w) =1 for all w € Sk.
The kernel of n is denoted by
X = Xg,-
Given an abelian group B and a subring A of C, we set
AB = A®yz B.
Denote by
U=Ukgs, ={r € K :ordp,(x) =0 for all w ¢ Sk}
the group of Sk-units of K. Note that the logarithm map
AU —RY

defined by
u Z log |l - w.

wWESK
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has image in RX. By Theorem 4.3.1, tensoring A with R, we get the G-
equivariant isomorphism

1®\:RU — RX,

which we denote with the same symbol A\. Moreover, tensoring A with C, we
obtain an isomorphism of C[G]-modules

CU — CX,

also denoted by .
Let

f:QX — QU
be a Q[G]-isomorphism. f induces an isomorphism of C[G]-modules
CX —» CU,

which we denote by the same symbol. Composing f with A\, we get the
C|GJ-automorphism of CX

Ao f:CX — CX,
which induces an automorphism

(Ao f)v : Homg(V*,CX) — Homg(V*,CX)
pr—> Ao fop

where

V* = Home(V, C)

is the dual representation to V.
Define the Stark regulator as the determinant

R(V, f) = Rs(V, f) = det((Ao f)v).

Since the definition of the Stark regulator does not depend on the choice of
the representation V', we write

R(x, f)
instead of R(V, f). Set

Q(x) = Q({x(0) : 0 € G}),
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and
A, = Gal(Q(x)/Q).
Define R
Alx, f) = As(x, f) = E?X{)

Then, the Stark basic’s conjecture states that

o A(x, f) € Qx);
o Alx, /)*=A(x",f), forall « € A,.

In the case of rank 1, i.e. r(y) = 1, assuming Stark Conjecture, one can
describe the leading term of the Taylor expansion of the Artin L-function,
divided by the regulator term, by means of the logarithm of certain units in
K, which are called Stark units. This can then be seen as a generalization of
the formula for the leading coefficient of the Dedekind Zeta function in terms
of the regulator, the class number and the number of roots of unity in K.



Chapter 2

Preliminaries

2.1 Number fields

Definition 2.1. A number field k is a finite extension of the field Q of
rationals.

Definition 2.2. The ring of integers Oy of a number field £ is the ring of
all integral elements contained in k. In particular, if I is an ideal in Oy, we

set
NI = [Ok : ]],

where [0y, : I] is the number of residue classes of 1.
Definition 2.3. Let k£ be a number field with n = [k : Q]. Let o € k and

f(X) be its minimal polynomial over Q. If ay = a, ..., a, are the roots of
f, then

n
Tryg(a) = E(Oél + )

is called the trace of o, and

3z

Nigla) =(oq ... am)
is called the norm of .

Definition 2.4. A map
‘ — | k- RZO

is an absolute value if for all x,y € k
(1) || =0 x = 0;

(2) lzyl = =] - lyl;



CHAPTER 2. PRELIMINARIES 10

(3) [z +yl < 2| +[yl;
(4) 3 x € k with |z| ¢ {0,1}.
If (3) can be replaced by
(3) |z +y| < max(|z], [y]),

then it is said to be a nonarchimedean absolute value. Otherwise, say it is
archimedean.

Proposition 2.1.1. Let | — | be an absolute value on k. Then the function

d(z,y) = v —y|

1s a metric on k, invariant under translation, for which the field operations
are continuous. In particular, any absolute value on k makes k into a topo-
logical field.

Proof. Follows from the axioms. O

Definition 2.5. Two absolute values on k are equivalent if they induce the
same metric topology on k.

Definition 2.6. A place of a field k is an equivalence class of non-trivial
absolute values on k. There are three types of places:

e finite, which correspond to a non-zero prime ideal in O;
e real, which correspond to an embedding of k into R;

e complex, which correspond to a pair of distinct complex conjugate
embeddings of k into C.

Let v be an absolute value. We consider the following normalizations.

e If v is finite, with P, the corresponding non-zero prime ideal in Oy,
then
||, = (NPU)_OrdPU($)7

where ordp, () is the exponent of P, in the prime factorization of (z).

e If v is real, then
|z|o = low(x)],

where o, is the corresponding real embedding.
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e If v is complex, then

|z, = ’Uv(x)P = 0,(7)7,(7),

where {0,,7,} is the corresponding pair of complex conjugate embed-

dings.
Theorem 2.1.2. Let k be a field with an absolute value | — |. There exists a
field k with an absolute value | — |*, together with an isometric embedding
Lk k
such that:

(i) k is complete w.r.t. the metric given by | —1";
(i) o(k) is dense in k;
(i1i) any isometric embedding
Ak =)= (K =)
of k into a complete field k' factors uniquely through t.
Proof. Let
e R C k" be the ring of Cauchy sequences in k;
e [ C R be the ideal of null sequences.
In particular, I is maximal. In fact, let
T = (Tp)nen € R\ I.
Fix N € N. Since x ¢ I, there exists ¢ > 0 such that

|z,| > ¢ for each n > N.

B ﬁ ifn>N
=Y 0 ifn< N
Now, let & > 0. Since z is a Cauchy sequence, then there exists N’ = N'(¢'¢?)
such that for each m,n > N’

Set

|Zn — Tm| < €'€%.
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Then, for each m,n > max{N, N'},

— _ /-2
|yn - ym| = ‘ﬁm x’n‘ S ‘xn me‘ < 55’; = 6/.
Ty e g

Hence, y = (yn)nen is a Cauchy sequence. In particular,

xyel+1.
So, R
k:=R/I
is a field, i.e. I < R is maximal. Define the map
| — 1" R— Ry
as

[(Tn)nen|” = lim [z,],
n—oo
with (2,)neny € R. Let 2 = (z,)neny € R. The inequality

shows that (|7,,|)nen is a Cauchy sequence in [0, 00), i.e. convergent in [0, c0).
Moreover, if (y,)nen represents the same coset in k as (x,)nen, then

lim |z, —y,| = 0.

n—oo

Therefore
lim |x,| = lim |y,|.
n— o0 n—oQ
This shows that | — | is well defined on the field k. Now, note that:
o |z|" =0<lim, |2z, =0 lim, oz, =0z € I;
o if Y= (yn)nEN € R7 then

lzy|” = lm |2,y = lm [2,]|y.| = 2] [y]";
n—oo n—oo

o [z +y|" = limy, o0 |Tn + Yn| < limy, oo ([20] + [ynl) = [2]" + [yl

e by definition of absolute value, there exists z € k with |z| ¢ {0, 1}.
Define the Cauchy sequence (z,), setting

zn = 2 for each n € N.
Since
lim |z,| = lim |z| = |2,
n—0o0 n—oo
then

[(2n)n] ™ & {0,1}.
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Therefore, | — | is an absolute value on k.
Now, for each a € k, let
o’ N =k

be a constant sequence defined by

opi=0%n)=a for each n € N.

This is a Cauchy sequence and so determines a coset in k. Then, the map

Lk — k

a— (Ug)neN

is an embedding. In particular, ¢ is an isometry with respect to the metrics
induced by | — | and | — | and its image is dense in k. In fact, let z € k be
the equivalence class of (x,,), € R. By the definition of Cauchy sequence, for
any € > 0, there exists m € N such that

|z, — | < € for all n > m.

Then

|z — o(zp)|” = nlg& |z, —orm| < e.

Let (zn)n be a Cauchy sequence in k. Note that (:(2,))n is a Cauchy sequence
in k. In fact, for any € > 0, there exists N € N such that

|2n — 2m| < € for all n,m > N.
Hence,

(z0) = ()| = T o — o] =l |z — 2] < 2,

for all n,m > N. Let z € k be the equivalence class of (z,),. Since

|z — 1(2,)]” = lim |2, —o;"| < e foralln > N,
k—o0

then (1(z,))n coverges to z in k. Thus, every Cauchy sequence in k that
consists entirely of elements of k converges in k.

Now, let (2,,), be a Cauchy sequence in k. Since k is dense in k, for each
z, we may pick xz,, € k so that

|2 — t(xn)|” < (2.1)

n .

In particular, for any € > 0, there exists N € N such that
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o |z, — tzn)|” <e/3;
o |z, —i(z,)|” <e/3;
o |z, —2n|" < /3,

for all m,n > N. Then, it follows from the triangle inequality that

(T — Tn| = [t(@m) — t(@a)]”
< lzm = Uzm)|” + 20 — t(@a)]” + |2m — 20l
<e,

for all m,n > N, ie. (z,), € R. Hence, by (2.1), (2,,), is equivalent to a
Cauchy sequence in k. Then by above, (z,), converges in k. Thus the pair
(k,| —|") satisfies the requirements of a completion.

Let A as in the statement of the theorem. Define

7 (k) = A(k)

by
7(z) = Aot (x), with 2 € (k).

It follows that
7 y) = 1o A (y), with y € A(k).

In particular, 7 and 7! are both continuous. Since (k) and A(k) are dense in
k and ¥, respectively, both 7 and 77! have unique extensions to continuous
maps

Tik—=kand T K >k

So, by the continuity, the extended maps are isometric isomorphisms. O

Since the topology induced by an absolute value on k only depending on
its place v, then we indicate by k, the completion of k constructed in the
proof of Theorem 2.1.2.

Theorem 2.1.3. Let k be a number field and Xy be the set of all places of
k. Let x € k*. Then the product formula holds

I Izl =1. (2.2)

VEXL

Proof. Note that the product is multiplicative in . Then it suffices to check
(2.2) when z € O;.
If x € OF, then
ordp, () =0
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for each finite place v of k, i.e.
2]y =1
for each finite place v of k.
Let z € O; \ O). Consider the prime ideal factorization
2O =Py -+ P, (2.3)
for some finite places vy, ..., v, of k and where
a; =ordp, () € N>y, i=1,...,m

The only terms in the factorization (2.3) which are not necessarily 1 come
from the absolute values attached to these v;’s and to the real and complex
absolute values.
The contribution to (2.2) from the finite places is
T

B | (AR § (R

=1 =1

On the other hand, the contribution to (2.2) from the real and complex
absolute values is

[T el IT lebo=TT lou@)l- T lou(@)® = [Nijo(@)l:

v real v complex v real v complex

From the compatibility of the norm on principal ideals and elements, we

obtain
I8

Nio(a)] = N0y = [JNR)"

Hence,
T

I Izl = Nejg(@)| - [[NP, )" = 1.

vEX =1

We denote the number of real places by

r = 7"1(]{?),
and the number of complex places by

o = T'Q(k).
Moreover, for each finite place v, we denote the corresponding residue field
by

Fv = Ok/PTM

and its cardinality by

Qv = NP, v-
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2.2 Representations of finite groups

Let G be a finite group.

Definition 2.7. A representation of G is a finite dimensional left C[G]-

module V where
C[G] = {Z Mgy \g € cc}

geG

is the group algebra. Equivalently, a representaion of G is a finite dimensional
C-vector space V' together with a morphism

p:G— GL(V)
giving the action of G on V.

Definition 2.8. Two representations V and W are said to be isomorphic
if they are isomorphic as C|[G]-module.

In the following, we use the symbol GL(V') to denote Aut(V') because a
basis for V' gives an isomorphism

Aut(V) = GL,(C)
where n = dim(V'). Moreover, we write
o.x instead of p(o)(z)
for x € V and o € G, and define
VY ={r eV :0x=ugfor each o € G}.
Definition 2.9. Given two representations
p:G—GL(V)and v:G — GL(W),

a morphism, or a G-equivariant map, between V and W is a linear map

T:V-=W

such that the diagram
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commutes for all o € G, i.e.

v(o)T =Tp(o), for all o € G.

Furthermore, if T is invertible, it is called an isomorphism.

Example 1.

(1)

(2)

(3)

The trivial representation is V = C where the action of G is given by

cx=u, forallc € G,z € C.

The regular representation is V' = C[G] with the action of G given by
left multiplication, i.e. if 0 € G then

0.9 =o0g, forall g € G.

If V and W are representations of G, then V' @& W is a representation,
where the action is defined as

o(r®y) =o0xd oy,
forallce G,x e V,y e W.

If V and W are representations of GG, then V ®¢ W is a representation,
where the action is defined as

o.(r®y) =010y,
forallc e G,z e V,y e W.

Let V and W be two representations of G. Then the space Homc(V, W)
of all linear maps f : V — W is a representation, where the action of
G is given by
fo(x) = (0.f)(w) = 0.(f(0™".2)),
for all o € G, f € Homc(V, W),z € V. Note that
(fO')T — fTO'.
Set
Homg(V, W) :={T : V — W such that T is a G-equivariant map}.

Hence,

Home(V,W)¢ = {F € Hom¢(V,W) : F° = F for each o € G}
= {F € Hom¢(V,W) : 0.Fo~! = F for each o € G}
= Homg(V, W).



CHAPTER 2. PRELIMINARIES 18

(6) Let V' be a representation of G. Then V* = Hom¢(V,C) is the dual

representation to V', where the action of GG is defined as
(0.f)(@) = f(o™"2),
forall o € G, f € V*,x € V. In particular, we have
(V) =V,

and

Home(V*, W*) = Homge(W, V).
Finally, we have an isomorphism
V*Qc W = HomC(V, W)
given by

fRu—V =W
v f(v)w

Definition 2.10. Given a representation V of GG, a subrepresentation is a
subspace U C V such that

g.U C U for each g € G.

Definition 2.11. A representation V is called irreducible if it has no non-
trivial subrepresentations.

Definition 2.12. The character of a representation V' of GG is the function
xv:G—C

defined by
xv(o) = Tr(a|V),

i.e. it is the trace of the map

V —V
xr+—— 0.2

The degree of y is
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Let 0 € G, and n = |o|. Let p: G — GL(V) be a representation of G.
Note that

(p(0))" = p(c") = p(1) =1,
i.e. the eigenvalues of p(o) are all complex n-th roots of 1. Let ¢ be a
primitive n-th root of 1. Then

wwio) = Tr(p(o)) = 3 ¢*
k=0

i.e. yv(o) is a sum of complex n-th roots of 1.

Example 2.
(1) If V = C is the trivial representation, then

xc(o) =1, for all o € G.

(2) If V.= C|[G] is the regular representation, then

G| ifo=1
xe@l@ =10 ifo#1

(3) If V and W are representations of GG, then
xvew (o) = xv(o) +xw(o), forall o € G.
(4) If V' is a representation of G, then
xv+(0) = xv(c™) = xv (o), forall o € G.
(5) If V and W are representations of G, then
Xvecw (o) = xv(o) - xw(o), forall o € G.
By this,
XHomc(MW)(U) = Xvraw (o) = XV—@ -xw(o), forall 0 € G.

Let

Fo(G,C) ={f:G — C such that f(o) = f(ror™!) for each 0,7 € G}
={f:G — Csuch that ) __. f(0)o € Z(C[G])}
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be the space of central functions on G. In particular, we can make this space
into a Hilbert space by putting

Zf

O’EG

Let 0, 0" € G sucht that o ~ ¢’, i.e. there exists 7 € G such that o = 70’77 L.

Then
p(o) = p(ra'T™") = p(1)p(a')p(T) " = p(d"),
ie. xv € Fe(G,C).

Proposition 2.2.1. Let V' be a representation of G. Then
1G] Z g

is a projection of V onto V.
Proof. Set P = ﬁ Y oec 0 Since P € Z(C[G]), then
0.(P.x) = P.(o.x), foralloc € G,x € V.
So the action of P on V lies in Endg (V). Note that
TP =P =P, forall T € G.

Then

PZ—(|—(1;|Z ) |G|ZJP ZP—%NG]P—P,

ceG O'GG

i.e. P is a projection onto ImP. Now, let x = P.y for some y € V. Then
ox=o0.(Py)=Py=uz, forall o € G,
i.e. ImP C V. Conversely, let x € V. Then

1
P.xz(E(TGZGa).x |G’Za:c—|G‘Zx— |Glr =z,

oelG
i.e. V¢ C ImP. Then P is a projection of V onto V¢, O

Theorem 2.2.2. I[fV and W are representations of G, then

(xv, xw)e = dim(Hom(V, W)).
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Proof. By Proposotion 2.2.1, ﬁ Y »cc 0 is a projection of Home(V, W) onto

Home (V, W)%. Since the trace of a projection is the dimension of its image,
then

dim(Home (V, W)%) = Tr(‘G‘ > e o|Home (V, W)

\G| ZUEG XHomC V,W) ( ) % Zgg(}’ XV*®¢:W(J)

- \G| > ecc Xv () - xw(o).

In particular, since this is an integer, we have that

dim(Home(V, W)9) = dim(Home (V, W)%) = = " xv (o) xw (o).

It follows that
(xvixw)e = g Loea Xv(@)xw (o) = dim(Home (V, W))
= dim(Hom(V, W)).
[

Let {V;} be a complete family of non-isomorphic irreducible representa-
tions of GG, and y; be the corresponding characters. Consider the following

Theorem 2.2.3 (Schur’s Lemma). Let V and W be representations of G.

(1) If V2 W, then
Homeg(V, W) = 0.

(2) If V=W, then
HomG(V, W) = C.

Proof. See [12, Ch. 2, §2, Proposition 4]. O
So, by Theorem 2.2.2,

L o J 0 ifi#£7
<Xi7Xj>G - lel(HOITlG(V;, V})) - { 1 ifi :]

9

i.e. the x; form an orthonormal system in Fo(G,C). In particular, the y;
span Fo(G,C). To show this, it suffices to prove that if f € F(G,C) such
that

(f,xi)a = 0, for each i,
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then f =0. Let 7 =) __. f(0)o. Since 7 € C[G], then it acts G-linearly on
every V;. By Theorem 2.2.2, T acts as a constant ¢; on V;*. So, we have

oxde = 1 Soea FONE) = g 1 ( Soeg 010

= ﬁ -Tr(r|VF) = ‘—é' - ¢;dimV;.

Thus
(fixi)a=0& ¢ =0<1.V." ={0},

i.e. T annihilates every irreducible representation. Note that, C[G] is semisim-
ple (see [12, Ch. 6, §1, Proposition 9]), i.e. every representation is a direct
sum of irreducible representation. By this,

7.C[G] = {0}.

We can conclude that

Y flo)g=7=0,

ced
that is f = 0, by definition of C[G].
Consider
{¢, C conjugacy class in G'}
where

1 ifoeC
50(0):{0 ifogC -

Note that this is a base for Fo(G, C). So dimF(G, C) is equal to the number
of conjugacy classes of GG, hence to the number of isomorphism classes of the
irreducible representations V;, by the above result.

Let V be a representation of G. By semisemplicity,
V =@, V]il, (2.4)

where V[i] = V%" is called the isotypical component of V. So we obtain the
decomposition,

Homg (V;, V) ~ Homg(V;, V;)®™ ~ C®™,

which is not at all unique. But, since

Xv = Z TiXis
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then the number of copies of V; in (2.4)

dim(Homg(V;, V) = (xis xv)e = Y ni{xi Xy)a = ni (2.5)
J
is unique and it is called the multiplicity of V; in V. In particular, we can
denote the isotypical component of V' corresponding to the trivial represen-
tation C by V¢,
Define

dlmV Z NE

oeG

Since p; € C[G], then
pZ|V] S Endg(Vj) ~ C.

In particular,
pilV; =

1
T ) V; )

where
dimV; . .
Tr(ps| V) = G sz o)x;(o) = dimV; - (x;, Xi)¢ = dimV; - 6.
oceG
Hence

 [idy, ifi=

that is p; is the projection of V' onto V'[i]. So, if

r = sz € V with z; € Vi,

then

_ dimV}
we) =g 2000

ceG

Hence, the decomosition (2.4) is unique.

Let Repg denote the category of representations of G. Let f: H — G be
a homomorphism of groups.

Definition 2.13. If V' € Rep, then the adjoint functor

f*: Repez — Repy
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gives a representation f*V of H with the same underlying vector space as V'
and where H acts through f, that is,

Ta = f(r)xforte HxeV.

The adjoint functor
f« : Repy — Repg

comes with the canonical elements
tw € Hompy (W, f* f.W) for W € Repy,

and is characterized by the fact that for every W € Repy and V' € Repg,

the map
HOmg(f*W, V) — HOHIH(W, f*V)

¢ (f"¢) 0w

is bijective. Since we can decompose f as follows

(2.6)

H —— H/kerf

G «———— Imf
to describe f, explicity, it suffices to treat the two following cases:
(a) m: H —- H/N, for some N < H.
(b) i: H— G.

Let W € Repy. In (a),
W =Ww",

where the action of H/N is given by
hN.x = h.x forall h € H,x € WV,

Moreover, wyy is the projection of W onto W defined as in the Proposition
2.2.1. In (b),
Lw - W — Z*W

is an inclusion and

Z*W = @jO’jVV,
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where the o; are representatives of the left cosets o;H of H in G. Given

o € G, the action of G on i, W is defined by

a.(Zajyj) = Zaa(j)ﬂ,’j.yj, for y; € W,
J J

where the subscript o(j) and 7,; € H are uniquely determined by

00 = Og(j)To,j-
In particular we have that:
e if xy is the character of a representation V' of GG, then
fxv(T) = xv(f(r)), for T € H,
is the character of f*V;

e if ¢y is the character of a representation W of H, then

febw (o Z > ¢W(7')a for o € G,

neG reH: f(r)=non—
is the character of f.WV (see [11, p. 14]).
Definition 2.14. Let H be a subgroup of G and let
f:H—=>G

be the relative inslusion map.

(2.7)

o res$V = f*V is called the restriction to H of the representation V

of GG.

o IndG W = f.W is called the representation of G induced by the rep-

resentation W of H.

Let V' be a representation of G. Equating the dimensions of the spaces on

each side of the isomorphism (2.6), we obtain the relation

(fevw,xv)a = (Wbw, ['xv)m

called Frobenius reciprocity (see [10, Ch. 7, 10.2]).

(2.8)
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Definition 2.15. A representation V' of a group G and its character xy
are called monomzal if there exist a 1-dimensional representation W of a
subgroup H of G such that

V =IndSW,

or, equivalently, if V' is a direct sum of 1-dimensional subspaces which are
permutated transitevely by G.

Theorem 2.2.4 (Brauer). Every character x of a finite group G is a linear
combination with integral coefficients of monomial characters.

Proof. See [12, Ch. 10, §5, Theorem 20)]. ]

Definition 2.16. The character

XV:G%(CX

of a 1-dimensional representation V' of GG is a group homomorphism called
abelian character.

The abelian characters form an abelian group Hom(G,C*) under multipli-
cation. Moreover, if G is abelian, they are the only irreducible characters.
In fact, if

p:G— GL(V)

be an irreducible complex representation, for any fixed g € G, then
p(9)rlg’) = plgg’) = p(g'g) = p(g')p(g), for cach ¢ € G,

1.e.

plg): V=V

is a G-equivariant map. Since V is irreducible, by Theorem 2.2.3,
p(g) = Ajidy, for some A\, € C.

Therefore, every subspace of V' is invariant under GG. Due to irreducibility,
V must be 1-dimensional.

Definition 2.17. If GG is an abelian group, then
G = Hom(G, C*)

is called the character group of G.
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Consider the map R
eRiYe
defined by
o(g) : G — C~
X — x(9)

First, note that ¢ is injective. In fact, let g € G sucht that

X(9) = ¢(9)(x) = xc(g) = 1 for all y € G.
Assume g # 1. Consider
Gl =pi" D,
where py,...,p, are primes and ey, ...,e, € N>;. Then
G=Cp X ... x Cper

with

Cpei = (g) for each i =1,...,r.

So, we can write
g=1(9" -, 9"),
for some a1, ...,a, € N. Since g # 1, we can find N € {1,...,r} sucht that

gn" # 1.

Thus, if for each i = 1,...,r we choose a p;*-th root of unity (; € C, we can
define a character of x of G as

X(la"'alagialw"al):Q

foralli=1,...,r. Then, we have that
X(9) = x(gt, o) =] ¢ # 1.
=1

Now, let x € G. Note that, X is completely determined by
X(g;) = ¢ foreach i =1,....r,

where (; are p;’-th root of unity. Then we have the bijective correspondence

GEY (G, ) =1, =1, 1) (2.9)

)
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By (2.9), we have )
Gl =pi" ... Py =Gl
It follows that A .
Gl =G| =1G|. (2.10)

Then, by the injectivity of ¢, (2.10) implies

~
~

GG (2.11)
Moreover, the map
Hom(G1, G3) N Hom(G>, G1)
defined by

O(f): Gy — Gy
h— hof

is also an isomorphism. In fact, let f, g € Hom(G1, G3) such that
U(f) =1(9). (2.12)
By (2.12), for all h € Gs,
hof=1(f)(h)=1v(g)(h) =hog.
In particular, if A is the trivial representation of G5, then
f(o) =g(o) for all o € Gs.

Thus, ¢ is injective.
Now, by the isomorphism (2.11), we have that

Hom(G1, Gy) = Hom(él, ég)
In particular,
Hom(G1, Gs)| = [Hom(G1, Ga)). (2.13)
Moreover, by the injectivity of ¢, we obtain the composition of embeddings
Hom(G1, Gs) — Hom(Gy, Gy) — Hom(él, éz)
Then, by (2.13), we obtain
|Hom(Gy, Go)| = [Hom(Gs, G1)|.
Finally, by the injectivity of ¥, we can conclude that
Hom(G1, G3) = Hom(Gs, Gy).
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L-functions

3.1 Ideal class characters

Definition 3.1. A level is a pair m = (my, m,,) where
e my is an ideal in O;
e m,, is a set of real places of k.

my =[] A,

Pu|l1‘lf

In particular,

where the P, are finite places of £ and m, € N.
Definition 3.2. For a,b € Oy, we write
a = b mod*m
if
e ¢ and b are prime to m;
e a =bmod my, ie. a—0b€my
e 0,(a/b) > 0 for each place v € m.

Definition 3.3. A fractional ideal of O, is a Op-submodule I of k such
that al C Oy for some a € Oy \ {0}.

Denote with Z; the group of fractional ideal in k. Let

km1={ce€k*: ¢=a/bfor some a,b € O with a = b mod™ m}.

29
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Let Z, denote the group of fractional ideals prime to the level m = (my, my,),
i.e. generated by prime ideals not dividing m¢. Since, for any ¢ € ky, 1, the
ideal (c) lies in Zy,, then the map

1 kﬁm71 — Ty
¢ (c)

is well defined. Set
Pm = ’L.(k’m’l).

Definition 3.4. The quotient group
Co = Zn/Pn
is called the ray class group modulo m.
Lemma 3.1.1. Every pair of homomorphisms
AL Yo
of abelian groups gives rise to an exact sequence
0 — Ker f — Ker go f — Ker g — Coker f — Coker go f — Coker g — 0.

Proof. See [9, Lemma A.2|. O

Theorem 3.1.2. Let k be a field and let

|_ |17""|_ |n

be pairwise inequivalent nontrivial absolute values on k. Let aq,...,a, € k
and let 1, ..., &, be positive real numbers. Then there exists x € k such that

|z —a;]; < e for 1 <i<n.
Proof. See [10, Ch. 2, Theorem 3.4]. O

Theorem 3.1.3. For every level m = (my, my) of k, there is an ezact se-
quence

O = (O/mg)”" x {£1}™ — Cy — C, — 0,

where

o C;. = Cy is the usual ideal class group;
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o {£1}™= denotes the product of |my| groups of order two, representing
the possible choices of signs at the real places v € My, .
Proof. Define the map
g:kn— Iy

¢ (c)

where
kw = {a € k™ : ais prime to m}.

Then the sequence

0= 0 = kn 5Ty —C—0 (3.1)

is exact. In fact, let I € Z,. Since k is a Dedekind domain, I admits a unique
prime ideal factorization
I=]J»
p

In particular, we may write
I'=15LI,

I = H p™ and I = H p"e

ptmy plmys

where

are coprime. If we hoose a uniformizer m, for each p|m; and set
o= H T,
plmy

then al and I represent the same ideal class in C,. Therefore, since al € Z,,,
we can conclude that the cokernel of g is Cy.
Consider the composition of maps

kot <D ke % T (3.2)
By (3.1), the kernel of (3.2) is
km,l N Ol:a

and its cokernel is
Im/g<km,1) - Im/Pm - Cm-
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Hence, by Lemma 3.1.1, we obtain the exact sequence
0= kn1 NOF = OF = kn/kn1 — Cw — C — 0.

Note that we can write each ¢ € ky as ¢ = a/b for some a,b € Oy such
that (a) and (b) are coprime to m; and to each other. In particular, the
ideals (a) and (b) are uniquely determined by ¢, even though a and b are not.
In fact, if we assume

a/b=d /v,
then
ab' = a'b.
Hence, we obtain
(a) (V) = (a)(D).
Since (a) and (b) are coprime to each other, we must have
(a) = (a') and (b) = (V'),
by unique factorization of ideals. We now define the homomorphism
Q kn — (Ok/mf)X X {:l:l}moo
crH € X H sgn(oy,(c))
VEMoo

where B

c=ab™ € (Op/my)”,

because a,b € (Or/m¢)*, since (a) and (b) are coprime to m;. In particular,
@ is a canonical homomorphism, because ¢ depends only on the uniquely
determined ideals (a) and (b). In fact, if we replace a with o’ = au for some
u € Oy, we must replace b with b = bu.

Now, we want to prove that ¢ is surjective. So, let

a x H )" e (O /myp)™ x {£1}m,

VEMoo

where a € Oy and m, € {0,1}. First, note that, by the Chinese remainder
theorem,

(On/ms) = T O/ P

Pv\mf

For each finite absolute value v of k such that P,|my, let a, € O with
€ (Oy/P)* such that

a = a, mod P". (3.3)
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Thus, by Theorem 3.1.2, there exists ¢ € k such that
(NPU)—Ofdpy(c—av) = |c — ayly < (NP,)™ ",

for each finite absolute value v of k such that P,|my, and

7u(e = (~1)™)] =Je = (<™, < 5.

for all v € m,. Equivalently,
¢ = a mod my,

and
sgn(oy(c)) = (=1)",

for all v € m.
It remains to check that ¢ € k. By contradiction, assume that

((C)7 mg ) # L.
Then, there exists a finite absolute value vy of k such that
P, |(c) and P, |m;.

This means that
¢ ¢ (Or/Py)",

which is a contradiction by (3.3).
Finally, since the kernel of ¢ is ky 1, thus ¢ induces the isomorphism

kw/kma = (Og/my)™ x {£1}™>.
Hence we obtain the exact sequence

O = (Op/my)™ x {£1}" = Cp — C — 0.

Corollary 3.1.4. The group Cy s finite.

Proof. By Theorem 3.1.3, we have the exact sequence
OF — (Og/mp)* x {£1}" — Cy — C — 0.

By the finiteness of Cy (see [10, Ch. 1, Theorem 6.3]), we can conclude. [J
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Definition 3.5. Let m be a level for a number field k. A (generalized)
tdeal class character mod m is a group homomorphism

XLy — C*

which is trivial on P,. In particular, x is the same as a character of the
group Cp.

Note that, for each a € Cy,

(@) = x(d) = x(1) =1,

i.e. the values of an ideal class character y are complex roots of 1. In
particular, they have absolute value 1.

Example 3. A function
f:Z—-C

is called an arithmetic function. We say that f is multiplicative if

f(mn) = f(m)f(n)

holds for all relatively prime m,n € Z, and totally multiplicative (or com-
pletely multiplicative) if this holds for all m,n € Z. For m € Z-,, we say
that f is m-periodic if
fn+m)=f(n)
for all n € Z, and call m the period of f if it is the least m for which this
holds.
A Dirichlet character is an arithmetic function

x:Z—C

that is both totally multiplicative and periodic.

Note that each m-periodic Dirichlet character y restricts to a group char-
acter x on (Z/mZ)*. Conversely, every group character x of (Z/mZ)* can
be extended to a Dirichlet character y by defining

x(n) =0 forn ¢ (Z/mZ)*.

A Dirichlet character mod m is an m-periodic Dirichlet character y that
is the zero-extension of a group character on (Z/mZ)*. Equivalently, a char-
acter for which

n € (Z/mZ)* < x(n) # 0.

Let £ = Q. If we identify ideals prime to m € Z with their positive
integer generators, then an ideal class character mod (mZ, {oc}) is the same
as a Dirichlet character mod m (see [11, p. 10]).
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Note that the set of levels of a number field is partially ordered under the
relation
my <m, < (my)g[(m,)r and (My)oo C (M2)eo- (3.4)

In particular, if my < msy, the identity map on ideals induces a surjective
homomorphism

Cry = Cony - (3.5)

This allows us to identify characters mod m; with certain characters mod
ms.

Definition 3.6. Let k£ be a number field and let m be a level of k. A
congruence subgroup for the level m is a subgroup C of Z,, that contains
P

Example 4. Let m be a level for a number field k. The kernel of an ideal
class character mod m is a congruence subgroup.

Definition 3.7. Let m; and my be two level of a number field k. If C; is a
congruence subgroup for m; and C, is a congruence subgroup for my, then
we say that C; and Cy are equivalent and write C; ~ Cy whenever

T, NCy =Ty, NCy,
as subgroups of Zj.
If C; and Cy have the same level m; = mo, then
Ci ~Cy & C =0Cs.
In fact, if C; and C, are equivalent, then
Ci =Ty, NC =Ty, NCL =Ty, NCy =TIy, NCy = Co.
On the other hand, if C; = C,, then
Ty NCo =Ty, NCy =Ty, N C.

By this, within an equivalence class of congruence subgroups there can be at
most one congruence subgroup for each level. Thus the partial ordering of
levels (3.4) induces a partial ordering of the congruence subgroups within an
equivalence class.
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Lemma 3.1.5. Let C; be a congruence subgroup of level my for a number
field k. There exists a congruence subgroup Cy of level mg|my equivalent to
Cy if and only if

Zn, NPy, C Cy.

In which case

Co = C1Pn,-
Proof. Let my be a level of k such that my|m;. This implies
C1 C Iy CLy,.
Now, suppose there exists a congruence subgroup Cs ~ C; of level my. Then
Ty NPy C Ly, NCo =Ly, NCy = Cy,
because Pn, C Cy. On the other hand, assume
Ly, NP, CCy.

Define the congruence subgroup of level m,

Since
Ci(Zmy N Pry) = Ly, N C1 Py = Ly NCo,
and
Cl(Iml N PmQ) C Clcl == Cl,

then

Zn, NCy C Cy.
In particular,

T, NCy =y,
because

Cl - Iml and Cl C CQ.

Therefore,

anmCQICl :ImﬁCl.

Finally, since the equivalence class of C; contains at most one congruence
subgroup of level m,, if one exists it must be

Co = C1Pr,-
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Proposition 3.1.6. Let C; and Cy be equivalent congruence subgroups of level
my and my, respectively. There exists a congruence subgroup C equivalent to
C1 and Cy of level n == ged(my, my).

Proof. Put
m = lem(my, my),
and
D= Iml OCQ = Im2 ﬂCl
Then

Pm - Pml ﬂPmQ C D C Iml ﬂImz — IITI-J
i.e. D is a congruence subgroup of level m. In particular,
Zoo NPy =Ziny NPy C Ly, NCy =D,
and similarly
T NPn, CD.

Thus, by Lemma 3.1.5,
D ~ Cl ~ CQ-

Now, let
a:=(a) € Ly NPy

By Theorem 3.1.2, we can choose 3 € ky Mk, 1 such that

Oéﬁ € kml,l'

Since
(B) € Zu NPy, C D,
and
pa = (af) € Iy N Pm, C D,
then
a=p"'8aeD.

By this,
Therefore, by Lemma 3.1.5,

C = Dpn

is a congruence subgroup of level n equivalent to D ~ C; ~ Cs. [



CHAPTER 3. L-FUNCTIONS 38

Corollary 3.1.7. Let C be a congruence subgroup of level m for a number
field k. There exists a unique congruence subgroup in the equivalence class
of C whose level ¢ divides the level of every congruence subgroup equivalent

to C.

Definition 3.8. Let C be a congruence subgroup of level m for a number
field k. The unique level given by Corollary 3.1.7 is called the conductor of
C, denoted ¢(C). If the conductor of C is equal to its level, then we say that
C is primitive.

Definition 3.9. Let m be a level for a number field k. Let x be an ideal class
character mod m. The conductor m, of x is the conductor of its kernel. We
say that x is primitive mod m, and imprimitive mod m for all m > m,.

3.2 Classical abelian L-functions

Definition 3.10. Let x be an ideal class character of conductor m,. A
classical abelian L-function

1
Lis, ) = l_p[ 1 — x(P)NP—=

is a function of complex variable s, defined in the right half-plane $(s) > 1
and where the product is over the prime ideals P not dividing m,,.

Proposition 3.2.1. Let x be an ideal class character of conductor m,. Then
Lis,x) = 3 x(I)NI,
I

where the sum is over all the integral ideals I prime to m,,.

Proof. Consider the multiplicative function
X(I) = x(I)NI*.
For x > 0 define

A, ={P C Oy, : P prime ideal not dividing m, with NP < z}.
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So

[[a-x@nt=]] > x(p)

PeA; PeA; n=0
Z [T xr
..) PEA,
s
(...onp,...) PcA;

=> X(I)

where the last sum is over all the integral ideals / prime to m, whose prime
factorization involves only prime ideals of the set A,. Now, consider

log (Hu - X(P)>1> =Y log (1 - X(P)) ") = 3 ~log (1 - X(P))

vy (i X(P))“)
— Zi 2(n+1) (X ()"

where the sum is over the prime ideals P not dividing m,. Note that it
converges absolutely for £(s) = ¢ > 1. In fact, since

[X(P)| = INP™*| = NP7,

then
\X > " NP~ 1
>y r <ZZ(NPU) “2 NPT NPT
P n=1 P n=1 P
Since

NP > p,
for all prime ideal P of Oy over a prime p € Z, then

NP° NP
> >1,
2 2
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that is
1 - 2
NPs -1 NP7
So we obtain the inequality
X (P 1 _
YP) BITLNE) SRCTE) Rl
P n=1 P P
Now, since
[{P : P is a prime ideal over the prime p € Z}| < [k : Q],
we have that
DIX(P) <Y NP <[k:Q-) p”.
P P P
Moreover, if we compare the sum
2
p
with the integral
00 n l—c M l—0
/ x %dr = lim x %dr = lim {x } — Tim ~ L = L
1 n—o0 1 n—oo —0’1 n—oo 1—0’ 0'—1
we can conclude that
[ X(P)]" 2[k : Q]
Lk SellvA B < '
2D S X
P n=1 P
This implies the absolute convergence of
log (H(l - X(P))1>
P
for R(s) = o > 1. Finally, since
o = (X(P)"
[t~ ) - s (23 20
P P n=1
then
ITa-x)
PEA,
converges absolutely and uniformly in £(s) =0 > 1 as 2 — 0.

40
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For xy = 1, the zeta function

Ce(s) = L(s,1)

is analytic in the whole plane except for a simple pole in s = 1 (see [10, Ch.
7, Corollary 1.7]).

If x # 1, Hecke proved that L(s,x) has an analytic continuation to the
whole s-plane. Moreover, he gives a functional equation relating L(1 — s, x)
and L(s, x) (see [10, Ch. 7, §2|). To express it, we need the gamma function

o0
['(2) :/ ¥ e "dx, N(z) > 0.
0
Consider some of its properties.
1. It is a meromorphic function on the complex plane.

2. It satisfies
I'(s+1)=sI'(s) and I'(1) = 1.

Hence
F'n+1)=nlforn=12 ...

3. It is nowhere zero and has simple poles only at
s =—n wheren=0,1,2, ...,

with residue

(-1

n!

4. It satisfies the Legendre duplication formula

r(%)r(s ;r 1) = 21=5 73T (s).

Hence

For a proof of these facts see [10, Ch. 7, Proposition 1.2]. So, for each infinite
place v of k, define

F(%) if v is real and v ¢ (mx)oo
s+l if v is real and v € (m,)

2
() if v is complex
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Then there exist constants B, > 0 and C, € C* such that the functions

A(s,x) = [ [ re(s: X)L(s. x)

v]oo

satisfy
A1 —s5,x) = CyBiA(s,X).

3.3 Artin L-functions

Let K/k be a finite Galois extension of number fields and G = Gk its
Galois group.

Definition 3.11. Let v be a place of k£ and let w be a place of K.

e If v is finite, then w lies above v if w = P, for some prime ideal P,
s.t. Py|P,.
e If v is infinite, then w lies above v if w = ¢! or w = {0/, 5.} for some

o K —C

extending o,. In particular, if v is real, then w could be real or complex.
If v is complex, then w must also be complex.

Let w be a place of K. GG acts on w as follows:

e if w is finite, then

gw = gP, for each g € G,

e if w is real, then

g.w = o, o g for each g € G,

e if w is complex, then

gw ={0,04g,5,0g} for each g € G.

Proposition 3.3.1. Let v = P, be a finite place of k. Then G acts transi-
tively on the set
{w : w lies over v}.
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Proof. Let w and w’ be places of K lying over v. By contradiction, assume
ow #w for all o € G.
By the Chinese remainder theroem, we may choose b € w’ such that

b=1mod o w for all o € G.

Then
a = Ngjp(b) = H o(b) =1 mod w.
oeG

Thus

a¢w, e a¢kNw=no.
But , fe e

CL:NK/k(b)ENK/k<w):va CPv:U,

where fr ,/r, = [Fu : F,], a contradiction. O

Definition 3.12. If w is a place of K which lies above a place v of k, its
stabilizer

Gy ={9€G:gw=uw}

is a subgroup of G called the decomposition group of w.

Proposition 3.3.2. Let w be a place of K which lies above a place v of k.
Then
Gw = GKw/kv

Proof. First note that the decomposition group G, consists precisely of those
automorphisms ¢ € G which are continuous with respect to the valuation w.
Indeed, let x € K such that

||, < 1. (3.6)

If we consider o € G, then
|0(2)|w = [2]o-1.0 = |70 < 1.

On the other hand, consider an arbitrary continuous automorphism o €
G. By (3.6), we have that (2"),ey is a w-nullsequence. By the continuity of
o, then
lim o(2") =0 ( lim x”) =0,

n—00 n—00
1.e.

((0(2))"nen = ((o(2"))nen
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is a w- nullsequence. Thus,
|| = |o(2)]0 < 1. (3.7)

The fact that (3.6) implies (3.7), is equivalent to the fact that w and o.w are
equivalent, as we can view in [10, p. 117]. Moreover, since

wly = v = (o.w)|,
then
w=o.w, i.e. 0 € Gy.

Now, since K is dense in K, then every automorphism o € G,, extends
to a continuous k,-automorphism ¢ of K,, defined as

o) = 7 (Jim o) = lim o(e) = lim ofr.),

for all € K, and for a suitable sequence (z,)ney in K. In particular, & is
unique. In fact, assume there exists another continuous k,-automorphism &’
of K, which extends o. If ¢’ is different from &, then there exists x € K,
such that

o'(x) # o(x).

Since K is dense in K, then

r= lim x,
n—oo

for a suitable sequence (x,)nen in K. Thus,

~t Y . T ~/ R T A~ oA . oA
o) =" (Jim o) = Jim &'(x.) = lim o() =7 (Jim 2,) = 0(x)

which is a contradiction. Hence, we obtain the well defined isomorphism

Gw — GKw/kv

o0

If v is finite, an element o € GG, induces an automorphism

og:F, — F,

g o(y)

where F,, = Ok /P, is the residue field of w.
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Proposition 3.3.3. The map

Tw : Gy — Gal(F,, /F,)
o0

1S a surjective group homomorphism.

Proof. First, note that m,, preserves the identity element. Moreover, for any
o, 7 € G, we have

a7(y) = o7(y) = o(y)7(y) = o(y)7(y) = a(9)7(),

because the action of G,, on Ok fixes w and commutes with quotienting by
w. Thus, 7, is an homomorphism.

Since F,/F, is a cyclic Galois extension, it is generated by some o € F.
By the Chinese remainder theorem, we can pick a € Ok such that

a = a mod w,

and
a=0mod o~ w for all ¢ € G\ G, (3.8)

Now, define
9(x) = [T (X = ola)) € O4[X].
oeCG
Let g denote the image of g in F,[X]. By (3.8), the image of o(a) in F,, is 0
for each o € G\ G,. So 0 is a root of g with multiplicity m = #(G \ G,,).
The remaining roots are («) for o € G,,, which are Galois conjugates of a.
It follows that B
9(Xx)

Xm
divides the minimal polynomial of «, which is irreducible in F,[X]. Then
(3.9) is the minimal polynomial of .. In particular, every conjugate of « is
of the form

(3.9)

() for some o € G,

Thus 7, is surjective. [

Definition 3.13. The kernel of 7, is called the inertia group of w and is
detoned by 1.

The order of I, is the ramification index ep, /r,. It is 1 for all but a finite
number of places v, those dividing the relative discriminant ideal dg /. By
Tw, We can view the quotient group G, /I, as the Galois group of the finite
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field extension F,/F,. Hence, G, /I, is cyclic and it has as generator the
Frobenius automorphism

Ow : Fyy — T,

x> x®
where ¢, = NP,.

Definition 3.14. The inverse image of the Frobenius automorphism ¢, of
Gal(F,,/F,) under the surjective group homomorphism

Tw : Gy — Gal(F, /F,),

defined in the Proposition 3.3.3, is called the Frobenius substitution of w,
and it is denoted by ¢,.

Let V' be a representation of GG. For a finite place v of k let
F,(T,V) =det(1 — ¢, T | 1)

be the characteristic polynomial of the action on V’» of a Frobenius auto-
morphism ¢,, attached to a place w of K above v. Although ¢,, is determined
only up to multiplication by an element of I, its action on V' is indepen-
dent of which element of a coset ¢,,1,, we chose. The polynomial F, (T, V)
depends only on the isomorphism class of V. Moreover, it also depends only
on v and not on the choice of w above v, because the places w above v are
all conjugate. Note that for v unramified in K, we have

I, = {1}, ie. VI* = V.

By this, F,,(T,V) is of degree dimV'. Finaly, F,(7,V) depends only on V' as
G,-module, not as G-module.

Definition 3.15. An Artin L-function is an Euler product
L(s,V) = HLv(s, V)

over the finite places v of k where

1
N det(l — Quy ® | Vfw)

Ly(s,V) = F,(NP,* V)"!

is called local L-function.
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Note that L(s, V') depends only on the isomorphism class of the representa-
tion V. By this, we can also denoted L(s, V') by

L(S7 XV)?

where

V- G—C
is the character of V.

Proposition 3.3.4. L(s, xy) converges absolutely and defines an analytic
function in the half plane R(s) > 1

Proof. Consider

log (L(s, xv)) = log (H L,(s, xv ) Zlog (s,xv)) (3.10)

where the sum is over the finite places v of k. Note that

det(1 — ¢uq, *lvr) = exp(Tr(log(l — ¢uwq, *lyiw)))-
Thus, for each finite place v of k, we obtain

log(Ly(s, xv)) = —log(det(1 — duq, |y ))
= —Tr(log(1 — ¢uq, *lvm))

= Ty (i(_l)wrl (_(ﬁwl‘;’zw st>n>

n=1
S o ()
n=1 nqgs
_ i Tr(dpy lvrw)
ngrs

Now, consider on (G, the restriction representation
W = resng.
By definition
xw(o) = xv(o), forall o € G,.

Let
Tw : Guw = Gy /1y
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be the canonical projection. So
() W = W
is the representation of G, /I, defined as
Tw(0).x = oz, for all 0 € G,z € Wiv.

Then . .
Tr(dplvie) = Tr(dylwi ) = xw(dn) = xv(dy),

where

Te(dplvr) = ﬁ Z Z xw (T)

NEGw /Tw TEGw: my(T)=n¢nn1

T X X i

’r]EG'w/Iw TEGw: Tw(T)=¢

1 |G,
= mu—l Z XV(T)

W reGy: Tw (T)=07,

=ﬁ S v

TEGy: Tw(T)=07,

is the average value of xy on the coset ¢ I, of I, by (2.7). So,
Tr(oylviw) Xv (¢ )
1Og S XV Z nqrs Z qre ’
By (3.10), we obtain

log (L(s, xv)) Z (Z XVq,w ) .

Let o = R(s). Now, note that

3 (X)) ey (1) -y

v n=1 v n=1

ngy,*

for some M € N such that

v (9] < M.
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Since
qQv = D,

for all finite place v of k such that P, is over a prime p € Z, then

qu q’U
— > =>1
2 2 — 7
that is
1 2
@ -1 " q
Since

[{P : P is a prime ideal over the prime p € Z}| < [k : Q,

we have that

qu <[k:Q]- Zp*"

Now, by the proof of Proposition 3.2.1, we have that

* 1
/ x %dx = . (3.11)
1

So, if we compare the sum

2.7
p
with the integral (3.11), we can conclude that
2M[k: Q]
<2M — < :
3 (3 P} conry < 2

v n=1
This implies the absolute convergence of

L(s,xv) = exp (Z (Z X;/ans )) (3.12)

n=1

XV (
nqgy®

for o = R(s) > 1. O

Proposition 3.3.5. Let V,W be two representations of G. Then

L(s, xvew) = L(s, xv)L(s, xw)- (3.13)
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Proof. Note that
Xvew (95 xv(dy) + XW(&J,)
() (g
-3 (o ) > ().

v n=1 v

By the equation (3.12) in the proof of Proposition 3.3.4, we obtain

L(s, xvew) = L(s, xv)L(s, xw)-
O
As a conseguence of Proposition 3.3.5, it is enough to consider irreducible
representations.

Assume that K is contained in a larger Galois extension K’ of k, i.e.
k C K C K'. By the Galois theory,

GZG//GK//K (314)

where G' := G . Let
G — G,/GK//K
be the canonical projection.

Definition 3.16. Let V' be a representation of G. The #nflation of V is the
G'-module
V=gV
having the same underlying vector space as V', with G’ acting through G as
follows
T =TxforTreG xeV.

Proposition 3.3.6. Let V' be a representation of G. Then
L(s, V') = L(s,V).

Proof. Let w' be a place of K’ above w, which is a place of K above v.
Thanks to the isomorphism (3.14), we have

Ow = ¢w'GK'/K and I, = [L,/GK'/K,
By the action of G’ in Definition 3.16, then
(V’)I;ﬂ’ _ VIw.

So
L(s, V') = L(s,V).
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Definition 3.17. The absolute Galois group of k is the Galois group
Gy = Gal(k/k)
where k is the algebraic closure of k.

Proposition 3.3.6 shows that L(s, V') really depends only on V viewed
as module V for Gj. Note that the isomorphism class of V as Gj-module
is independent of how we view K/k as subextension of k/k. Moreover, the
representations of the form V are, up to isomorphism, simply the C[Gy]-
modules X of finite dimension over C for which the action map

GkXX—>X

is continuous for the Krull topology in Gy and the discrete topology in X.

Proposition 3.3.7. Let H be a subgroup of G and consider the intermediate
field
k/ — KH

i.e. kC k' C K. Let W be a representation of H and set
V = Ind%W.

Then
L(s,W) = L(s,V).

Proof. Let v be a finite place of k and w be a place of K above v. Let
G =]]GuriH
i=1

be the expression of G as disjoint union of double cosets of G, and H. Set
w; = p;l.w

and let v} be the place of k' below w;. Since v, v}, ..., v, are places of k" above
v, then it suffices to show that

Lo(s,V) = ﬁLU;(s, w). (3.15)

For each i, let

Gw = HTU(GUJ N Hpi),

j=1
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where H? = p;Hp;'. Then

T my

G = HHTZJPZH

i=1 j=1

By definition of induced representation, V' contains W as an H-submodule.
Hence
V=aL,V, (3.16)

where
V; - @;n:leprW ~ InngmeipiW

is a G,-module for each i. Applying the automorphism p; to our situation,
we obtain by transport of structure,

Ly (s, W) = Ly, (s, piW), (3.17)

where v; is the place of p;k below w. If we put (3.16) and (3.17) in (3.15),
by (3.13), we have

H LU(S, ‘/%) = H Lvi(57 pZW)
=1 =1

By this, we can reduced to the local case G = G,.
Let I =1, and J = H NI be the inertia subgroups of G and H, respec-
tively. Consider the homomorphism

fiH—G/I

Since we can factor f as

H— G- G/I,

then
fW = (IndSW)! = V7,

Moreover, we can factor f as

H— H/J < G/I,

because
H/J~HI/I <G/I.
So,
£ W = Ind/ (W),
i.e.
V!~ Indgy) (W) (3.18)
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Thanks to (3.18), we can reduced to the local unramified case G = G/I
where V = V! and W = W,
In this case, G is cyclic and generated by the v-Frobenius automorphism

¢,. Moreover, H is the subgroup generated by the v’-Frobenius automor-
phism ¢, = ¢¥, where k = (G : H). Then

G k-1 4i
V =IndzW = @Z‘:()l W
So we can assume W is 1-dimensional with basis z. Let
Ppx = .

For each solution ¢ to X* = 5, the element

k—1
Y (TplreV

1=0

is an eigenvector for ¢, with eigenvalue (. In fact,

k—1 k—1 k—2
o (Z <i¢:’,x) = (e =M e+ > (Tl
=0 =0 =0
where

(ke =7 o = (e = (o
Then

k—2 k—2 k—1
Cr+ Y (o= (x +> c—“%:;“x) =< (:c +) c—fqzsz;x)
i=0 i=0 j=1

k—1 o
=(- ) (P,
j=0

that is,
k-1 k-1
o (Z c-w) =¢- > (Tl
i=0 i=0
Hence
v det(1 — o,q;%|v) 1—(q,°

¢ s.t. CF=n
Now, let (y be such that
G =,
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and ¢ be a k-th root of unity. Since

k—1
Xt —1=[[x-¢),
i=0
then
qsk: qs k k—1 qs qsk k—1
v _ rk —sk — [ 2v 1 = S v | o i_—8
0o = () -1 =TI )= % TI0 - )
that is
k—1 .
L=n(g,*)" = T](1 = &', ) IT a-<a.
=0 ¢ s.t. Ck=n
So
L,(s,V) = ! = ! L = Ly(s, W)

Example 5. If in Proposition 3.3.7 we choose H = 15 and W = C is the
trivial representation, then V' = C[G] is the regular representation of G.
Since

1 .
(Xi» Xcla) ZXZ X(C[G] |G\ -xi(1) - |G| = dimV;,
UEG

by (2.5), we obtain .
C[G] ~ @;V;*™",

where the V; are the irreducible representations of G. So, by (3.13), we have
Ci(s) = L(s,C) = L(s,C[G]) = [ ] L(s, Vi)™".

In particular, if we number the V; so that Vj is the trivial representation of
G, then
L(57 Vl) = Ck(5>7

by definition of Artin L-function. So, we obtain

Ci(s) = Gels) [ ] (s, Vi), (3.19)
i#1
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More generally, if k" is any intermediate field, and W the trivial representation
of H, then V = C[G/H] is the permutation representation of G' acting on
the set G/H of cosets of H. By Frobenius reciprocity, we have

<XVaXi>G’ = <XW7X2‘|H>H

Since the isotypical component of V; corresponding to the trivial representa-
tion W is V¥, then
m; = (xi, xv)o = dimV;",

1.e.

Vo~ @V
Since m; = 1, we obtain
Go(5) = Gls) [T Ls, Vi)™
i#1
3.4 Reciprocity and the relation between the
two kind of L-functions

Consider the following Takagi-Artin existence theorem

Theorem 3.4.1. For each level m, there is an abelian extension K, of k
with Galois group G,/ having the same invariants as, hence isomorphic
to, the generalized ideal class group Cou = Ln/Pn. In particular, the way in
which a prime ideal P of k decomposes in Ky 1s determined by the class of
P in Cy. Conversely, for each finite abelian extension K of k, there exists a
level m of k such that

GK/k = Cm.

Proof. See |2, Ch. 7, Theorem 5.1]. ]

Let a € Oy, such that a = 1 mod™m. The reciprocity law
(@ =]IFm=]]dm=1 (3.20)

by Artin (see |2, Ch. 7, §3.3]) allows us to prove the existence of the canonical
isomorphism

Cm = GKm/k (321)
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which, for each finite place v of & unramified in K, associates to the class of
the prime ideal P, the Frobenius substitution ¢,. From Takagi’s decompo-
sition law, it follows that

Ciels) = [T L(sox) = Guls) TT (5. ) (3.22)

x#1

where the first product is over all characters x of C, and the L(s,y) are
the classical abelian L-functions. Thanks to the isomorphism (3.21), the
factorizations (3.19) and (3.22) coincide.

Example 6. Let ¢ be a prime such that ¢ = 1 mod 4. Then, for the extension
Q(v/9)/Q, (3.20) implies that there is a non-trivial character x with

x(1) =2 mod ¢

such that
x(p) = <2) for primes p # q.
p

Since the only such character is

then
(See [11, p. 18]).

3.5 Application of Brauer’s theorem

Theorem 3.5.1. Every Artin L-function is meromorphic in the whole com-
plex plane.

Proof. Let V be a representation of a Galois group G, with xy its character.
By Theorem 2.2.4, there exist W;, 1-dimensional representations of some
subgroups H; of G, such that

Xv = Z nzlndgld)lv

where 1); is the character of H;. For each 7, let

k= K™
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be the fixed field of H;. So, by the Galois correspondence we have that
H; = Gal(K/k;).
Let k2 be the maximal abelian extension of k; contained in K. Set
H = Gal(k®/k;).

By the Galois theory,
H;lb = HZ/GK/k,;Ib

So, we can consider the canonical projection
m o Hy — H®.
Thus, it is uniquely determined a character
;- HY® — C*

of H® which makes the diagram

i s o

ab
Hz'

commutative. Let W/ be the corresponding representation. Consider the
inflation of W/
Vi = Infl(W)) = (m;)" W7,

where
Xi . H,L — (CX

is the corresponding character. Since
Xi(0) = Yi(mio) = (o)
for all ¢ € G, by Theorem 3.3.6, we have that
L(s, ) = L(s, xi) = L(s, ¥}).

Now, since k% /k; is an abelian extension, by Theorem 3.4.1, there exist a
level m; of k; such that
H" = Cy,,.
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Hence

) 1 1
L(S7¢i) :Hdet(l—gbw —s :H —

G lweryr) L1 = Guty [ weryn

where the product is over the finite places v of k;. Since W is a 1-
dimensional representation, then

(WY Iw = 0 or (Wab)lw = Wb,
Since each finite place v of k; such that
P,|m;
is ramified in k2°, we must have that
(Wt 0,

Moreover,
because W is 1-dimensional (see [17, Appendix, §3, Theorem 1-4|). Hence

N 1
L(Saqu)i) Hl_w(P)NP—w

where the product is over the finite places v of k; such that P, not dividing
m;. So, L(s,1!) is a classical abelian L-function, hence meromorphic on C,
and even entire for v; # 1. Since

L(s,xv) = L(s, VZ nalndg, = L(s Znilndc

—HLsIndG ”’—HLSWW—HL )™,

we can conclude. O

(3.24)

Note that, if the trivial representation does not occur in y, then one can
cancel on the right side of (3.24) all the terms in which ; is the trivial
character of H;. In fact, by Frobenius reciprocity, we have

(0 1oy = Y ni{Indf i 1a)e = > nats, Ly,)m, = an,

where J = {j : ¢; = 1p,}. Since

<X: 1G>G = 07
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then
L(s,x) = L(s, 1)>ies ™ . HL(S,%-)”" = HL(S,@/JZ-)”Z'.
i¢J i¢J
If in (3.24) n; > 0 and v¢; # 1 for all ¢, then L(s, x) is entire. However,
for most character y such an expression does not exist. Artin’s conjecture
that L(s, x) is holomorphic for irreducible y # 1 is much deeper (see |10, p.

525]). In particular, it implies the cancellation of the zeroes of the L(s, ;)
with n; < 0 with those of L(s,1;) with n; > 0 in (3.24).

3.6 Functional equation

Let v be an infinite place of k. Since the decomposition group G,, of a place
w of K above v is of order 1 or 2, then it has a unique generator, which we
denote by o,,.

Definition 3.18. If v is a real place, we set

L,(s,x) = (F (g) r (S ;L 1)>X(1) = (217 /al(s) )XV,

If v is a complex place, we set

x(1)—x(ow)

x(M+x(ow)
S 2 s+1 2
Lo(s,x) =T (-) r

Note that the local L-functions in the Definition 3.18 depend only on the
action of o, on V', i.e. only on V as G,,-module. Moreover,

x(1) + x(ow)

= <X|Gw7 1Gw>Gw = divaw7

2
and
1) — 1
x(1) 2X(Uw) = (1) — w = dimV — dimV% = codimV .
Let

As, V) =[] Lo(s,V) =T (g)r (S ; l)b L(s, V), (3.25)

where the product is over all the places of k, and where

a=a + ngimV,
b= ay + ngim‘/,
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with

a1 = Z dimV&»,

v real

ay = Z codimV .

v real

Note that, if V' and W are two representations of G then
A(s, Vo W) =A(s,V)Ls(s, W). (3.26)
Moreover, let V' be the inflation of V. Then
A(s, V') = A(s, V). (3.27)
Finally, let H be a subgroup of G' and consider the intermediate field
k=K,
ie. Kk C kK C K. Let W be a representation of H and set
V = Ind%W.

Then
A(s,WW) = A(s, V). (3.28)

The properties (3.26), (3.27) and (3.28) verified by the fact that (3.15) holds
for infinite v as well (see [11, p. 19]).

Consider an Artin L-function L(s, x). By Theorem 2.2.4, there exist 1;,
1-dimensional characters of some subgroups H; of G, such that

= HL(quvbl)n

In particular, our definition of A(s,1);) is consistent with Definition 3.10. So,
we know that there exist constants By, > 0 and Cy, € C* such that

A(l — S, 1/)1) = C¢1B21A(8,@Ez)
Thus, by (3.26), we have that
A(1 —s,%) HA — s, ;)" HC’"ZBS’:’A (s,10;)™

= CXB;A( $,X),s

(3.29)



CHAPTER 3. L-FUNCTIONS 61

where

B, =][[B; >0and C, =[] C.

3 2

In particular, B, and C, are uniquely determined by (3.29), independent of
the choice of the expression

X = Z niIndgi@Zzi.

Moreover, there exist unique constants A, > 0 with

A, =A

x —

and W, € C*, called an Artin root number, with

(W,| =1and Wy =W,,

such that the functions

£(s,x) == AY?A(s, x) = AT (g)r (3 ‘g 1>6L(3,X) (3.30)

satisfy
§(1—s,x) = Wy &(s, X)-
(see [2, p. 225]). In particular, Artin showed that
A MINF()

X TR

where dj, is the discriminant ideal of the extension k/Q and f(x) is an integral
ideal of O}, involving only primes ramified in K called the conductor of x (see
[10, Ch. 7, Theorem 12.6]).

Now, if we consider the case x = 1 and assuming W; = 1, we have that
the Dedekind zeta function ((s) satisfies the functional equation

§(1—s) = £(s), (3.31)

|d |X(1) s/2 S\ ri+re s+1\"
ﬂs)2(ﬁ) r(3) F< 2 ) Gils):

where
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Chapter 4

Basic Stark Conjecture

4.1 Class number formula

Theorem 4.1.1. Let k be a number field. The Dedekind zeta function (i(s)
has a simple pole at s = 1 with residue

2m (27T)T2 hkRk

VIde]  wr

where

e hy is the class number of k;
o Ry is the regulator of k;

e wy 18 the number of roots of unity contained in k.
Proof. See [10, Ch. 7, Corollary 5.11]. O

By means of the functional equation (3.31) of (x(s), the Theorem 4.1.1
can be reformulated to became true for s = 0.

Corollary 4.1.2. The Taylor expansion of (x(s) at s =0 starts as follows

Ck(s) = —ws””?_l +...
W

Therefore, by Corollary 4.1.2, the first non-vanishing Taylor coefficient of
Ck(s) at s = 0 is the product of a rational number —hy, /wy, with the regulator
Ry, which is the determinant of a matrix whose entries involve logarithms of
absolute values of units and whose size

T1+T2—1

is the order of vanishing of (x(s) at s = 0.

63
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4.2 S-imprimitive L-functions

Let S be a finite set of places of k£ containing S, the set of infinite places of
k, and let V' be a representation of the Galois group G' = G, of a Galois
extension K /k of number fields.

Definition 4.1. The S-imprimitive Artin L-functionis defined for R(s) >

1 as
Ls(s,V) =[] Lu(s. V).
v¢S

Note that, if V' and W are two representations of GG then
Ls(s,V® W)= Lg(s,V)Lg(s,W). (4.1)

Moreover, let V'’ be the inflation of V. Then

Ls(s, V') = Ls(s, V). (4.2)
Finally, let H be a subgroup of G and consider the intermediate field

k=K1,

i.e. k C k' C K. Let W be a representation of H and set V' = Ind%W. Then

Ls(s,W) = Lg(s,V). (4.3)

The properties (4.1), (4.2) and (4.3) are satisfy by the S-imprimitive Artin
L-functions since all of them hold place by place for the local L-functions
L,(s,V) (see [11, p. 21]).

Definition 4.2. We define the S-Dedekind zeta function of the field k as

1

Ckﬁ(s) = Ls(S, 1) = H m

P¢S

We can view (j s(s) as the zeta function associated with the Dedekind
domain

Ors={rek:|z|,= (NPU)_Orde(x) <1 forallv ¢ S},

consisting of the S-integers of k. Moreover, we denote the S-class number
by hi,s and the S-regulator by Ry g.
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Lemma 4.2.1. Let v be a place of k which is not contained in S and let
S'=Su{v}.

Let m be the order of v in the S-class group of k, which is the ideal class
group of Ok.s. Then

Iy, g1 =

hi. s
m )

and
Rkﬁ/ = m(log N’U)Rk,g.

Corollary 4.2.2. The Taylor expansion of (x s(s) at s = 0 starts as follows

hisR
Cog(s) = ——BEESSI=1
Wy,

(See [11, p. 21]).
Given an S-imprimitive Artin L-function, we write

Ls(s,x) = es(x)s™™ + ...,

where
r(x) =rs(x)

is the order of vanishing of Lg(s,x) at s = 0. In order to compute it, we
introduce some notation. Let Sk be the set of places of K lying above the
places of S. Let

Y =Ys,

be the free abelian group on Sk, and let
n:Y =7
be the surjective homomorphism such that
n(w) =1 for all w € Sk.
The kernel of n is denoted by
X = Xg,-
Thus we obtain the short exact sequence of G-modules

0—X—Y-57Z—0. (4.4)
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Now, given an abelian group B and a subring A of C, we set
AB = A ®Z B

By Proposition 3.3.1, G acts on CY by permuting the places of Sk, that is,

0. (a ® (H;IK nww>> —a® (w;:K Ny - a_w) ,

for all o € G and a ® (ZwESK n,w) € CY. Since CY is a permutation
representation of GG, then its character

Xy = Xcy

is integer valued (see |13, Proposition 7.2.5]). Similarly, we define the per-
mutation representation CX of G and the corresponding character

XX = Xcx-

In particular, tensoring the exact sequence (4.4) with C, we obtain the exact
sequence of C[G]-modules

0—->CX —>CY —-C—0. (4.5)
By semisemplicity, the exactness of (4.5) implies that
CYyCXaoC
as C|[G]-modules. By Ezample 2, we have

Xy = Xx + Xc, (4.6)
where ¢ is the trivial representation defined in Fzample 1.

Lemma 4.2.3. For each v € S, let us choose a place w of K lying above v.
Then we have the formula

rs(x) = _ dimV% —dimV9 = (xv, xx)¢ = dim(Hom(V*,CX)),
veES

where

V* = Home(V, C)

1s the dual representation to V.
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Proof. By Theorem 2.2.2,

<XV7XX>G = <XXaX€/>G’ = <X*V’XX>G' = dlm(HomG’(V*aCX>)a

where the first equality follows by the fact that yx is integer valued, as we
can see from (4.6).

Now, if we choose for each v € S a fixed place w € Sk lying above v, we
have an isomorphism of Z[G]-modules

Y = P ndf, Z = @ Z[G] @) Z.

veS vES

Tensoring with C, we obtain

CX & C=CY = Pndg, C.

veES
Thus
<XV7XX>G = <XV7XY - X(C)G = <XV7XY>G - (XV,XC>G,
where
(xv,xv)e = Z(Xw Indg, xc)e = Z(resngV, Xc)m = ZdimVG““,
vES vES vES
by (2.8), and

<XV7 XC)G - dlmVG

Finally, by Theorem 2.2./, there exist W;, 1-dimensional representations
of some subgroups H; of GG, such that

xv =Y nilndf ¢, (4.7)

where 1); is the character of H;. Since

LS(37 XV) = H LS($> wz)nza

then

r(x) = Znﬂ“(%) (4.8)
On the other hand, (4.7) and (2.8) imply that

(xv,xx)a = Zm(lﬂdgi% Xx)e = Zni@% resgiXx)u- (4.9)
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Comparing (4.8) and (4.9), it suffices to study the ;s instead of xy, that
is, we can reduced to prove

r(;) = Z dimVVi(Hi)“’ — dimM/iHi
vES
for all 4.
If ¢; = 1, then
Ls(s,1i) = Crs(8).
By Corollary 4.2.2, we have that

() =S| — 1= dimW ™ — dimw;™.

vES

If ¢; # 1, then
Wl =o.

Note that

Ls..(s,9i) = L(s,9).
Moreover, by Definition 3.15, for each finite place v, the Euler factor L, (s, 1;)
has neither a zero nor a pole at s = 1. The same holds for each real, or

complex, place v, by Definition 3.18. So, equating the orders at s = 0 in the
functional equation

§<Sawi) = Wdhg(l - Sa%)a

where

a b
E(s, ) = AYPN(s, ) = AYT (g) r (S ‘; 1) L(s, ),

by (3.30), we obtain
—a+rs, (xi) =0.
Since
a = aj + rodimW; = ay + 7o,
with
a; = Z dimWi(H")”,
v real

we have that
re(v) =a= Y dimWw".

VESso

Since

Lg(s,V) = HLv(s, V),

v¢S
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we obtain
r(i) = v € S\ Soo : ¥i((Hy)w) = 1} + s, (¥)
= > dimW " g ()
VESNSoo
=Y dimw,
veS
which is what we want. O

Corollary 4.2.4. IfV is a I-dimensional representation of G, then

_J HveS:GyCKer(x)} fx#1
s = S| - 1 fx=1"

4.3 Stark regulator

Given a character x, we will now introduce a regulator attached to x which
will appear in the formulation of the conjecture.
We denote by

U=Ugks, ={r € K:ordp,(z) =0 for all w¢ Sk}
the group of Sk-units of K, and we consider the logarithm map
AU —=RY

defined by
U Z log |ty - w.

wWESK

The image of A is in RX. In fact, for each u € U,

) (Z g, w) — " toglube - n(w) = log ( I \%) o

weSK weSK wWESK

because, by Theorem 2.1.3,

where Y is set of all places of K.

Theorem 4.3.1. The image of X is a lattice of full rank |S| — 1 in RX.
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Proof. See |6, Ch. 5, §1, Unit Theorem]. ]
We denote by px the kernel of A\, which consists of roots of unity in K.
Corollary 4.3.2. U/uy is a free abelian group on |S| — 1 generators.
Proof. See |6, Ch. 5, §1, Corollary|. ]

By Theorem 4.3.1, tensoring A\ with R, we get the G-equivariant isomor-
phism
1®A:RU —- RX, (4.10)

which we denote with the same symbol A\. Moreover, tensoring (4.10) with
C, we obtain an isomorphism of C[G]-modules

CU — CX,

also denoted by A. This implies that QX and QU are isomorphic as Q[G]-
modules, but not canonically so (see [12, p. 91]).

Definition 4.3. A set of units ¢, one for each place w € Sk, such that
£? =gy forall o € G,

and such that the only relation among them is
H Ew = 1,
wWESK

is called an Artin system of units.

For a proof of the existence of an Artin system of units, see [1, Ch.5, §3].
Note that an Artin system of units gives the Z[G]-module morphism

Y = U (4.11)

which sends w to g, for each w € Sk. By definition of X, (4.11) induces an
injective Z[G]-module morphism

X —=U. (4.12)

Now, if we tensor the exact sequence (4.4) with Q, we obtain the exact
sequence
0—-QX —-QY - Q —0.

It follows that

dimg(QX) = dimg(QY) — 1 = |Sk| — 1.
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Since
dimz(U) = |Sk| — 1

(see [10, Ch. 1, Corollary 11.7]), after tensoring (4.12) with Q, we get a
Q[G]-isomorphism
QX — QU.

Let
f: QX - QU

be a Q[G]-isomorphism. f induces an isomorphism of C[G]-modules

CX = CU,

which we denote by the same symbol. Composing with A\, we get a C[G]-
automorphism of CX
Ao f:CX —s CX. (4.13)

Moreover, given any representation V' of G, (4.13) induces an automorphism

(Ao f)y : Homg(V*,CX) — Homg(V*,CX)
pr—Aofoyp

Definition 4.4. The determinant

RV, f) = Rs(V, f) = det((Ao f)v) (4.14)
is called the Stark regulator.

Since the definition (4.14) does not depend on the choice of the representation
V', we write R(y, f) instead of R(V f).

4.4 Stark’s Basic Conjecture

Given a representation V' of a finite group G with character y = yxy, we
define

Q(x) = Q({x(0) : 0 € G}).

Let |G| = n for some n € N. Since x (o) is a sum of n-roots of 1 for all o € G,
then Q(y) is contained in a cyclotomic field, which is abelian. So, Q(x) is
an abelian extension of Q. Set

A, = Gal(Q()/Q).
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Lemma 4.4.1. Let K be a Galois extension of Q contained in C. The map

Aut(C) — Gal(K/Q)

a = alk

s a surjective homomorphism, and K is the fized field of its kernel.

(See |11, p. 23]).
Viewing o € Aut(C) as a base extension, we can define the functor

Reps — Repg
Ve C®,V

where the action of G on C ®, V' is given by
o(a®x)=ala) ®o.x,
forall 0 € G,a € C and x € V. The map

V - Ve

N (4.15)
r—=r9=1®«x

is an isomorphism of Q[G]-modules. In particular, (4.15) is an "a-linear"
map of C[G]-modules, since

(ax)* =1®ar = ala) ®x = ala)(l @ z) = a®z,

foralla € Cand x € V.
Now, fix ¢ € G. Let z be an eigenvector for the action of o on V of
eigenvalue p,, that is,
0.5 = [z

Then
0.(1®z)=a(l)®or =10 =a(p,) ®z = 21O ),

i.e. 1 ® x is an eigenvector for the action of o on V' of eigenvalue p. By
the isomorphism (4.15), we have that

{1®wv : v isin the eigenbasis for the action of o on V'}
is an eigenbasis for the action of o on V*. Then the character of V¢ is given

by
X% (o) = Tr(o|ye) = a(x(0)), forall o € G.
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By this, the character xy®, and hence the isomorphism class of V¢, depend
only on the image a|g) of @ in A,.

Now, consider a Galois extension of number fields K/k. Let V be a
representation of the Galois group G' = G/, with character x = xy. By
Lemma 4.2.3, we have

r(x) = (X xx)e ZX = dim(Hom,(V*,CX)) € N,

UEG

since Yy is integer valued. We thus have

r(x*) = (X% xx)a Zx (o) |G|Z

UGG ceG

|G|§ ) ‘Q(IG%X Thexle )
|ZX Jxx (o) =r(x),

for all @ € A,. Define

A(X> f) = AS(Xa f) =

Given any representation V' of G'g/, with character x, the Stark basic’s con-
jecture states that

o A(x, f) € Qx);
o A(x,f)*=A(x f), for all « € A,.

4.5 The case r(y) =1

Let x be an irreducible character of G = G/, for which
r(x) =rs(x) =1 (4.16)
for some S. This means that y has multiplicity 1 in CX. Moreover,
r(x®) =rx) =1
for all o € A = A, = Gal(Q(x)/Q). By (4.16),
VE=C®,V
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denotes the unique irreducible constituent of CX with character x®. Let

V=vh
such that

X’ =x
for some g € A. In particular,

Vv
The central idempotent

o x*(1) x(1) of -1
= oo = 2 S N ojr = 2L S 0o
|G| celG G| oceG
1
A S e i)
ceG

projects CX onto V¢, and Kkills all the other irreducible constituents of CX.

Consider the sum
o= Zef‘( € Q[G].

a€A

Note that 7 projects QX onto a Q[G]-submodule W of QX such that

Cw=> Vv

aEA

In particular,

XW:XC'XW:XCQ@W:XCW:ZXQ‘

aEA
For each C-valued function
h:A—C,
let
CW — CWwW
Z Vo Z h(a)vy (4.17)
acA aEA

be the endomorphism of CW which acts on V¢ as a scalar multiplication by
h(«). Note that (4.17) is induced by the action of the element

0, = Z h(a)ey.

aEA
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These operators 6, form a commutative ring which is canonically isomorphic
to C ®g Q(x) via the map
a® z— ab,,

with a € C, z € Q(x), and where
h,(a) == 2% for all @ € A.
Moreover, consider the isomorphism

C g Q(x) — C*
a@zr— (CL ' hz(a))aEA

So, we have an isomorphism between the commutative ring formed by the
operators 6, and C/4!,

Lemma 4.5.1. Let
h: A—=C

be a C-valued function. The following are equivalent conditions on h:
(1) h(1) € Q(x) and h(a) = h(1)* for all o € A.
(2) 0, € Q[G].
(3) O, W C W.
Proof. Denote with H; the set of C-valued functions
h:A—=C

satisfying the condition (i). Let h € H;. If 0 € G, the coefficient of ¢ in 6,
Is

x(1) e X(1) o —1ya _ X(1) “1\\a
th(a)x(a )" = th(l) x(o™)* = mZ(h(l)X(U )"

acA acA acA

h(D)x(e™!) € Qx).

Y (h(D)x(e™H))* € Q

a€A
because it is the trace from Q(x) to Q of h(1)x(c~1). Thus

0, € Q[G].
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Now, let h € Hy. Since W is a Q[G]-submodule of QX then

oW cC W,
ie. he Hg.
So, we know that
H, C Hy C H;.
Then, if we prove that

we obtain
H1 = Hg, ie. H3 C Hl.

Consider the map

Hy — Q(x)

h i h(1) (4.19)

Note that (4.19) is a bijection with inverse

Q(x) — H,
z+h,

In fact, for all h € Hy, we have

On the other hand, for all z € Q(x), we obtain
h.(1) = 2" = 2.
So, we have to show that
dim(@ H3 S |A’,

since
Al = [Q(x) : Q] = dimg H;
by the bijection (4.19). Now, the maps

H3 — EndQ[G](W)
h— Hh

and
C 03400) EndQ[G](W) — End(c[g] (CW)
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defined as

CW — CWw
bRz (ab) ® f(x)

are injective. Hence

dimg Hs < dimg End@[G](W) = dim¢(C 03400) EndQ[G](W))

< dim¢ Endgjg)(CW) = dime Endgg (Z Va)

acA
= dlm(c (H EndC[G](Va)> = |A|

aceA

Now let
f:QX - QU
be a Q[G]-homomorphism and put:
o A= ZQGA A(Xaa f)e)_(a'
® C = ZQEA C(Xa)e)_(a = ZaGA aSLS(()’ Xa)exa'
o R:= ZaEA R(Xaa f)eXa'
Theorem 4.5.2. Let x be an irreducible character of G such that
r(x) = 1.

Let
Wy = f(W) =xQU.

The following assertions are equivalent:
(1) Stark’s Basic Conjecture is true for x.

(3) For all z € Q(x)*,
7(z, x)QX C AQU),

where

v(z,x) = Z hz(a) - 0sLs(0, x“)exe.

aEA
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Proof. We start proving the equivalence between the conditions (1) and (2).
If we apply Lemma 4.5.1 with

h(a) = AX®, f),
we have that Stark’s Basic Conjecture holds for y if, and only if,
AW CW.

Note that each of the three operators A, c and R act injectively on CW. By
definition of W, we have that

W c AW.

Thus we have
AW CcW & W = AW & cW = cAW. (4.20)

By definition of A(y, f), we have that

cA=R,
because
exatys =0 ifa#p
Cxalys = ey ifa=p( "
So,
AW Cc W < cW = RW. (4.21)
It remains to prove that

For each o € A, R acts on V® by the scalar R(x%, f). By definition, the
Stark regulator R(x®, f) is the determinant of the endomorphism

()\ [¢) f)Va : Homc[g} (Va, CX) — HOm(c[G} (Va, (CX),

where

Hom@[g} (Va’ (CX) = HOHl((j[G] (Va’ Va).
Since, by Lemma 4.2.3,

dim Homeq)(V*, V) = r(x) = 1,
then R(x®, f) is the same as the scalar by which \ o f acts on V. Hence

RW = (Ao [)(W) = A(f(W)) = A(Wy).
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Thus, by (4.21), we can conclude that
AW C W < W = AX(Wy),

that is, the conditions (1) and (2) are equivalent.
Now, assume

cW = )\(WU)
If z = 0, we have that the condition (3) holds. If z # 0, then

0h.QX =W,
since 0, maps QX isomorphically in W. Hence
7(z,X)QX = ¢, QX = oW,

Since
W =xnU C QU,

we can conclude that

(2, X)QX = A(Wy) C AQU).

On the other hand, applying 7 to (3) with z = 1, we obtain

m(cQX) C m(AQU)),
where
m(cQX) = er(QX) = W,
and
T(AQU)) = AMx(QU)) = A(Wy)
with
(W) = A(7QU)) = A(7QX)) = A(W) = W,

Since

dimg(cW) = dimg(W) = dimg(A(Wy)),
by (4.22) we can conclude that

cW = )\(WU)

79

(4.22)
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4.6 Stark units

Let ¥ be a set of irreducible characters of G such that

(1) The trivial character is not contained in W.
(2) For all x € ¥, we have
X* € VU for all o € Aut(C).

Let (zy)yew be a family of complex numbers satisfying

ZXa = ZX

for all y € ¥ and for all @« € Aut(C). Assuming Stark’s Basic Conjecture,
Theorem 4.5.2 implies that

<Z 2,05 L (0, X)ex> - X C AQU), (4.23)

XEY

Since the trivial character is not in W, we can replace X by Y in (4.23). For
each w € Sk, then there exists a m € Ny and a Sk-unit € of K such that

Ae)=m Z 2,05Ls(0, x)ex - w. (4.24)
XEY

Suppose for simplicity that there is a v € S which splits completely, and fix
a place w of K lying above v. Since

we can rewrite (4.24) as

Me) =) (% D x(1)2,0Ls (0, X)X(U)> -ow,

XEY
where

Ae) = Z log|ely - u = Zlog |&|w - w' + Zlog |€]ow - oW,

u€SK w'ty oeG
Then the equation (4.24) is equivalent to the conditions

{ lelw =1 if w' v

og [elyw = 1 S yew X(1)20:Ls(0,X)x(0) forallo € G (4.25)
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Definition 4.5. A Sk-unit ¢ which solves the system of equations (4.25) is
called a Stark unit.

Note that, if a Stark unit exists, it is determined up to a root of unity in K.

Example 7. Suppose v is a real place which splits completely in K. Let w
be a place of K which lies above v given by the embedding

0w K — R,
Note that

£ = ®|oy(e)] = £|e| = £el8E,
Since for all 0 € G
O_—l

lelow = 1€7 |,

we find
—1

1 m
60 — i€10g|<€a |w — ielog‘s‘aw — ieﬁ er‘ll X(l)zxasLS(O’X)X(U)‘

If K/k is abelian and S contains the places v ramified in K, Stark has
conjectured that, if u(K) is the group of unity in K, then

m = |pu(K),
will do for the case
2, = 1 for all x.
The non-abelian case is unclear instead. So, in general one supposes m is

small, at least in the case K is totally real.
If we found a valid m and double it, we obtain for all o € G that

62071 = e\%n\ 2 vew X(1)zx0s Ls (0.x)x(o)

So we can calculate real numbers close to the conjugates of € at a real place w.
We can then compute approximations to the coefficients of the polynomial

F(X) = [1(x —¢7) e k[X],
ceG
and try to find the small integers in k which are those coefficients. Finally,

we can check that the roots of the polynomial f(X) generate the starting
extension of number fields K/k.

Example 8. Another special case in which the conjecture is a classical result
is when

E=Q
and K is the real subfield of the group of n-th roots of 1. In fact, we have
that the Stark unit is

2T
2-2 —).
COS(n)
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