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Chapter 1

Introduction

The Riemann Zeta function

ζ(s) =
∞∑
n=1

1

ns
(1.1)

was introduced in the first half of the eighteenth century by Leonhard Euler as
a function of a real variable, and extended to a complex variable by Riemann
in 1859. ζ(s) is defined in the half-plane <(s) > 1 and it extends to the whole
complex plane as a meromorphic function with only a simple pole at s = 1 by
analytic continuation. The Riemann Zeta function is an important analytic
object. For example, one of the main open problems in mathematics, the
Riemann Hypothesis, concerns the Riemann Zeta function. On the other
hand, thanks to its form as Euler product

ζ(s) =
∏

p prime

1

1− p−s
,

ζ(s) gives us some important properties on the distribution of prime numbers.
A generalization of (1.1) is given by theDedekind Zeta function, a complex-

valued function of the form

ζk(s) =
∑
I

1

NIs
=
∏
P

1

1−NP−s
(1.2)

defined in the half-plane <(s) > 1, where the sum is over all the nonzero
ideals I of the ring of integers Ok of the number field k and the product runs
over all the prime ideals P of Ok. There is a relationship between certain
algebraic invariants of the field k and (1.2). In fact, the analytic behavior
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of the function ζk allows us to prove purely algebraic facts about k. For
example, Dirichlet used the fact that the Riemann Zeta function

ζQ(s) = ζ(s)

has a simple pole at s = 1 in order to prove that there are infinitely many
primes in every arithmetic progression of the form

{a+ nb : n ∈ N},

where a and b are positive coprime integers. To prove this theorem, Dirichlet
also had to introduce a generalization of the Dedekind Zeta function for a
general ideal class character χ, called abelian L-function. It is defined as

L(s, χ) =
∑
I

χ(I)

NIs
=
∏
P

1

1− χ(P )NP−s
,

where the sum is over all the integral ideals I prime to the conductor mχ

associated to χ and the product is over the prime ideals P not dividing mχ.
In connection with his research into class field theory, in 1923 Emil Artin

introduced the Artin L-functions. More precisely, let K/k be a finite Galois
extension of number fields and let V be a complex representation of the
Galois group G = GK/k. For a finite place v = Pv of k, set

Lv(s, V ) =
1

det(1− φwNP−sv | V Iw )
,

where Iw is the inertia group of w, a places of K which lies above v, and

φw : Fw → Fw
x 7→ xqv

is the corresponding Frobenius automorphism. So, an Artin L-function is
defined as

L(s, V ) :=
∏
v

Lv(s, V ), (1.3)

where the product is over the finite places v of k. Since L(s, V ) depends
only on the isomorphism class of the representation V , we can also denoted
L(s, V ) by

L(s, χ),

where
χ : G→ C
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is the character corresponding to V . In particular, if G is abelian, we can
observe that (1.3) is an abelian L-function.

The Dirichlet class number formula states that the Dedekind Zeta func-
tion ζK(s) has a simple pole at s = 1 with residue

2r1(2π)r2√
|dK |

hKRK

wK
,

where

• r1 and r2 are the number of real and complex places of K respectively;

• hK is the class number of K;

• RK is the regulator of K;

• wK is the number of roots of unity contained in K;

• dK is the discriminant ideal of the extension K/Q.

By the functional equation (3.31) for ζK(s), the Dirichlet class number for-
mula can be reformulated to became true for s = 0. In this way, we have
that the Taylor expansion of ζK(s) at s = 0 starts as

ζK(s) = −hKRK

wK
sr1+r2−1 + . . . .

Note that, Example 5 gives us a relation between the Dedekind Zeta function
and the Artin L-functions, that is, the decompostion

ζK(s) =
∏
i

L(s, Vi)
dimVi , (1.4)

where Vi runs through the irreducible complex representations of G. In par-
ticular,

−hKRK

wK
(1.5)

is the ratio between the transcendental number RK and the algebraic number

−hK
wK

.

Stark Conjecture concerns the algebraicity of leading term of the Taylor
expansions of Artin L-functions, divided by suitable complex numbers, called
regulators. It has been inspired by the rationality of the result (1.5) and the
factorization (1.4) for the Dedekind Zeta function.



CHAPTER 1. INTRODUCTION 6

More precisely, let S be a finite set of places of k containing S∞, the
set of infinite places of k. We define the S-imprimitive Artin L-function for
<(s) > 1 as

LS(s, V ) :=
∏
v/∈S

Lv(s, V ).

We write
LS(s, V ) = cS(χ)srS(χ) + . . . ,

where
r(χ) = rS(χ)

is the order of vanishing of LS(s, V ) at s = 0.
Let SK be the set of places of K lying above the places of S. Let

Y = YSK

be the free abelian group on SK , and let

η : Y → Z

be the surjective homomorphism such that

η(w) = 1 for all w ∈ SK .

The kernel of η is denoted by

X = XSK .

Given an abelian group B and a subring A of C, we set

AB := A⊗Z B.

Denote by

U = UK,SK = {x ∈ K : ordPw(x) = 0 for all w /∈ SK}

the group of SK-units of K. Note that the logarithm map

λ : U → RY

defined by
u 7→

∑
w∈SK

log |u|w · w.



CHAPTER 1. INTRODUCTION 7

has image in RX. By Theorem 4.3.1, tensoring λ with R, we get the G-
equivariant isomorphism

1⊗ λ : RU → RX,

which we denote with the same symbol λ. Moreover, tensoring λ with C, we
obtain an isomorphism of C[G]-modules

CU → CX,

also denoted by λ.
Let

f : QX → QU

be a Q[G]-isomorphism. f induces an isomorphism of C[G]-modules

CX
∼=−→ CU,

which we denote by the same symbol. Composing f with λ, we get the
C[G]-automorphism of CX

λ ◦ f : CX −→ CX,

which induces an automorphism

(λ ◦ f)V : HomG(V ∗,CX) −→ HomG(V ∗,CX)

ϕ 7−→ λ ◦ f ◦ ϕ

where
V ∗ = HomC(V,C)

is the dual representation to V .
Define the Stark regulator as the determinant

R(V, f) := RS(V, f) = det((λ ◦ f)V ).

Since the definition of the Stark regulator does not depend on the choice of
the representation V , we write

R(χ, f)

instead of R(V, f). Set

Q(χ) := Q({χ(σ) : σ ∈ G}),
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and
∆χ := Gal(Q(χ)/Q).

Define
A(χ, f) = AS(χ, f) :=

R(χ, f)

c(χ)
.

Then, the Stark basic’s conjecture states that

• A(χ, f) ∈ Q(χ);

• A(χ, f)α = A(χα, f), for all α ∈ ∆χ.

In the case of rank 1, i.e. r(χ) = 1, assuming Stark Conjecture, one can
describe the leading term of the Taylor expansion of the Artin L-function,
divided by the regulator term, by means of the logarithm of certain units in
K, which are called Stark units. This can then be seen as a generalization of
the formula for the leading coefficient of the Dedekind Zeta function in terms
of the regulator, the class number and the number of roots of unity in K.



Chapter 2

Preliminaries

2.1 Number fields
Definition 2.1. A number field k is a finite extension of the field Q of
rationals.

Definition 2.2. The ring of integers Ok of a number field k is the ring of
all integral elements contained in k. In particular, if I is an ideal in Ok, we
set

NI = [Ok : I],

where [Ok : I] is the number of residue classes of I.

Definition 2.3. Let k be a number field with n = [k : Q]. Let α ∈ k and
f(X) be its minimal polynomial over Q. If α1 = α, . . . , αm are the roots of
f , then

Trk/Q(α) =
n

m
(α1 + · · ·+ αm)

is called the trace of α, and

Nk/Q(α) = (α1 · . . . · αm)
n
m

is called the norm of α.

Definition 2.4. A map
| − | : k → R≥0

is an absolute value if for all x, y ∈ k

(1) |x| = 0 ⇔ x = 0;

(2) |xy| = |x| · |y|;

9
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(3) |x+ y| ≤ |x|+ |y|;

(4) ∃ x ∈ k with |x| /∈ {0, 1}.

If (3) can be replaced by

(3′) |x+ y| ≤ max(|x|, |y|),

then it is said to be a nonarchimedean absolute value. Otherwise, say it is
archimedean.

Proposition 2.1.1. Let | − | be an absolute value on k. Then the function

d(x, y) = |x− y|

is a metric on k, invariant under translation, for which the field operations
are continuous. In particular, any absolute value on k makes k into a topo-
logical field.

Proof. Follows from the axioms.

Definition 2.5. Two absolute values on k are equivalent if they induce the
same metric topology on k.

Definition 2.6. A place of a field k is an equivalence class of non-trivial
absolute values on k. There are three types of places:

• finite, which correspond to a non-zero prime ideal in Ok;

• real, which correspond to an embedding of k into R;

• complex, which correspond to a pair of distinct complex conjugate
embeddings of k into C.

Let v be an absolute value. We consider the following normalizations.

• If v is finite, with Pv the corresponding non-zero prime ideal in Ok,
then

|x|v = (NPv)
−ordPv (x),

where ordPv(x) is the exponent of Pv in the prime factorization of (x).

• If v is real, then
|x|v = |σv(x)|,

where σv is the corresponding real embedding.
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• If v is complex, then

|x|v = |σv(x)|2 = σv(x)σ̄v(x),

where {σv, σ̄v} is the corresponding pair of complex conjugate embed-
dings.

Theorem 2.1.2. Let k be a field with an absolute value | − |. There exists a
field k̂ with an absolute value | − |ˆ, together with an isometric embedding

ι : k ↪→ k̂

such that:

(i) k̂ is complete w.r.t. the metric given by | − |ˆ;

(ii) ι(k) is dense in k̂;

(iii) any isometric embedding

λ : (k, | − |) ↪→ (k′, | − |′)

of k into a complete field k′ factors uniquely through ι.

Proof. Let

• R ⊂ kN be the ring of Cauchy sequences in k;

• I ⊂ R be the ideal of null sequences.

In particular, I is maximal. In fact, let

x = (xn)n∈N ∈ R \ I.

Fix N ∈ N. Since x /∈ I, there exists ε > 0 such that

|xn| ≥ ε for each n ≥ N.

Set

yn =

{
1
xn

if n ≥ N

0 if n < N
.

Now, let ε′ > 0. Since x is a Cauchy sequence, then there existsN ′ = N ′(ε′ε2)
such that for each m,n ≥ N ′

|xn − xm| < ε′ε2.
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Then, for each m,n ≥ max{N,N ′},

|yn − ym| =
|xm − xn|
|xmxn|

≤ |xn − xm|
ε2

<
ε′ε2

ε2
= ε′.

Hence, y = (yn)n∈N is a Cauchy sequence. In particular,

xy ∈ 1 + I.

So,
k̂ := R/I

is a field, i.e. I ER is maximal. Define the map

| − |ˆ : R→ R≥0

as
|(xn)n∈N|ˆ = lim

n→∞
|xn|,

with (xn)n∈N ∈ R. Let x = (xn)n∈N ∈ R. The inequality

−|xm − xn| ≤ |xm| − |xn| ≤ |xm − xn|

shows that (|xn|)n∈N is a Cauchy sequence in [0,∞), i.e. convergent in [0,∞).
Moreover, if (yn)n∈N represents the same coset in k̂ as (xn)n∈N, then

lim
n→∞

|xn − yn| = 0.

Therefore
lim
n→∞

|xn| = lim
n→∞

|yn|.

This shows that | − |ˆ is well defined on the field k̂. Now, note that:

• |x|ˆ = 0⇔ limn→∞ |xn| = 0⇔ limn→∞ xn = 0⇔ x ∈ I;

• if y = (yn)n∈N ∈ R, then

|xy|ˆ = lim
n→∞

|xnyn| = lim
n→∞

|xn||yn| = |x|ˆ|y|ˆ;

• |x+ y|ˆ = limn→∞ |xn + yn| ≤ limn→∞ (|xn|+ |yn|) = |x|ˆ + |y|ˆ;

• by definition of absolute value, there exists z ∈ k with |z| /∈ {0, 1}.
Define the Cauchy sequence (zn)n setting

zn = z for each n ∈ N.

Since
lim
n→∞

|zn| = lim
n→∞

|z| = |z|,

then
|(zn)n|ˆ /∈ {0, 1}.
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Therefore, | − |ˆ is an absolute value on k̂.
Now, for each a ∈ k, let

σa : N→ k

be a constant sequence defined by

σan := σa(n) = a for each n ∈ N.

This is a Cauchy sequence and so determines a coset in k̂. Then, the map

ι : k → k̂

a 7→ (σan)n∈N

is an embedding. In particular, ι is an isometry with respect to the metrics
induced by | − | and | − |ˆ and its image is dense in k̂. In fact, let x ∈ k̂ be
the equivalence class of (xn)n ∈ R. By the definition of Cauchy sequence, for
any ε > 0, there exists m ∈ N such that

|xn − xm| < ε for all n ≥ m.

Then
|x− ι(xm)|ˆ = lim

n→∞
|xn − σxmn | < ε.

Let (zn)n be a Cauchy sequence in k. Note that (ι(zn))n is a Cauchy sequence
in k̂. In fact, for any ε > 0, there exists N ∈ N such that

|zn − zm| < ε for all n,m ≥ N.

Hence,

|ι(zn)− ι(zm)|ˆ = lim
k→∞
|σznk − σ

zm
k | = lim

k→∞
|zn − zm| < ε,

for all n,m ≥ N . Let z ∈ k̂ be the equivalence class of (zn)n. Since

|z − ι(zn)|ˆ = lim
k→∞
|zk − σznk | < ε for all n ≥ N,

then (ι(zn))n coverges to z in k̂. Thus, every Cauchy sequence in k̂ that
consists entirely of elements of k converges in k̂.

Now, let (zn)n be a Cauchy sequence in k̂. Since k is dense in k̂, for each
zn we may pick xn ∈ k so that

|zn − ι(xn)|ˆ < 1

n
. (2.1)

In particular, for any ε > 0, there exists N ∈ N such that
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• |zm − ι(xm)|ˆ < ε/3;

• |zn − ι(xn)|ˆ < ε/3;

• |zm − zn|ˆ < ε/3,

for all m,n ≥ N . Then, it follows from the triangle inequality that

|xm − xn| = |ι(xm)− ι(xn)|ˆ
≤ |zm − ι(xm)|ˆ + |zn − ι(xn)|ˆ + |zm − zn|ˆ
< ε,

for all m,n ≥ N , i.e. (xn)n ∈ R. Hence, by (2.1), (zn)n is equivalent to a
Cauchy sequence in k. Then by above, (zn)n converges in k̂. Thus the pair
(k̂, | − |ˆ) satisfies the requirements of a completion.

Let λ as in the statement of the theorem. Define

τ : ι(k)→ λ(k)

by
τ(x) = λ ◦ ι−1(x), with x ∈ ι(k).

It follows that
τ−1(y) = ι ◦ λ−1(y), with y ∈ λ(k).

In particular, τ and τ−1 are both continuous. Since ι(k) and λ(k) are dense in
k̂ and k′, respectively, both τ and τ−1 have unique extensions to continuous
maps

τ : k̂ → k′ and τ−1 : k′ → k̂.

So, by the continuity, the extended maps are isometric isomorphisms.

Since the topology induced by an absolute value on k only depending on
its place v, then we indicate by kv the completion of k constructed in the
proof of Theorem 2.1.2.

Theorem 2.1.3. Let k be a number field and Σk be the set of all places of
k. Let x ∈ k∗. Then the product formula holds∏

v∈Σk

|x|v = 1. (2.2)

Proof. Note that the product is multiplicative in x. Then it suffices to check
(2.2) when x ∈ O∗k.

If x ∈ O×k , then
ordPv(x) = 0
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for each finite place v of k, i.e.

|x|v = 1

for each finite place v of k.
Let x ∈ O∗k rO×k . Consider the prime ideal factorization

xOk = P a1
v1
· · ·P ar

vr , (2.3)

for some finite places v1, . . . , vr of k and where

ai = ordPvi (x) ∈ N≥1, i = 1, . . . , r.

The only terms in the factorization (2.3) which are not necessarily 1 come
from the absolute values attached to these vi’s and to the real and complex
absolute values.

The contribution to (2.2) from the finite places is
r∏
i=1

|x|vi =
r∏
i=1

(NPvi)
−ordPvi (x) =

r∏
i=1

(NPvi)
−ai .

On the other hand, the contribution to (2.2) from the real and complex
absolute values is∏

v real

|x|v ·
∏

v complex

|x|v =
∏
v real

|σv(x)| ·
∏

v complex

|σv(x)|2 = |Nk/Q(x)|.

From the compatibility of the norm on principal ideals and elements, we
obtain

|Nk/Q(x)| = N(xOk) =
r∏
i=1

(NPvi)
ai .

Hence, ∏
v∈Σk

|x|v = |Nk/Q(x)| ·
r∏
i=1

(NPvi)
ai = 1.

We denote the number of real places by

r1 = r1(k),

and the number of complex places by

r2 = r2(k).

Moreover, for each finite place v, we denote the corresponding residue field
by

Fv = Ok/Pv,

and its cardinality by
qv = NPv.
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2.2 Representations of finite groups
Let G be a finite group.

Definition 2.7. A representation of G is a finite dimensional left C[G]-
module V where

C[G] =

{∑
g∈G

λgg, λg ∈ C

}
is the group algebra. Equivalently, a representaion of G is a finite dimensional
C-vector space V together with a morphism

ρ : G→ GL(V )

giving the action of G on V .

Definition 2.8. Two representations V and W are said to be isomorphic
if they are isomorphic as C[G]-module.

In the following, we use the symbol GL(V ) to denote Aut(V ) because a
basis for V gives an isomorphism

Aut(V )
∼−→ GLn(C)

where n = dim(V ). Moreover, we write

σ.x instead of ρ(σ)(x)

for x ∈ V and σ ∈ G, and define

V G := {x ∈ V : σ.x = x for each σ ∈ G}.

Definition 2.9. Given two representations

ρ : G→ GL(V ) and ν : G→ GL(W ),

a morphism, or a G-equivariant map, between V and W is a linear map

T : V → W

such that the diagram

V W

WV

................................................................................................................................................................... ............
T

..............................................................................................................................................................
.....
.......
.....

ν(σ)

..............................................................................................................................................................
.....
.......
.....

ρ(σ)

................................................................................................................................................................... ............
T
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commutes for all σ ∈ G, i.e.

ν(σ)T = Tρ(σ), for all σ ∈ G.

Furthermore, if T is invertible, it is called an isomorphism.

Example 1.

(1) The trivial representation is V = C where the action of G is given by

σ.x = x, for all σ ∈ G, x ∈ C.

(2) The regular representation is V = C[G] with the action of G given by
left multiplication, i.e. if σ ∈ G then

σ.g = σg, for all g ∈ G.

(3) If V and W are representations of G, then V ⊕W is a representation,
where the action is defined as

σ.(x⊕ y) := σ.x⊕ σ.y,

for all σ ∈ G, x ∈ V, y ∈ W .

(4) If V and W are representations of G, then V ⊗CW is a representation,
where the action is defined as

σ.(x⊗ y) := σ.x⊗ σ.y,

for all σ ∈ G, x ∈ V, y ∈ W .

(5) Let V andW be two representations of G. Then the space HomC(V,W )
of all linear maps f : V → W is a representation, where the action of
G is given by

fσ(x) = (σ.f)(x) = σ.(f(σ−1.x)),

for all σ ∈ G, f ∈ HomC(V,W ), x ∈ V . Note that

(fσ)τ = f τσ.

Set

HomG(V,W ) := {T : V → W such that T is a G-equivariant map}.

Hence,

HomC(V,W )G = {F ∈ HomC(V,W ) : F σ = F for each σ ∈ G}
= {F ∈ HomC(V,W ) : σ.Fσ−1 = F for each σ ∈ G}
= HomG(V,W ).
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(6) Let V be a representation of G. Then V ∗ = HomC(V,C) is the dual
representation to V , where the action of G is defined as

(σ.f)(x) = f(σ−1.x),

for all σ ∈ G, f ∈ V ∗, x ∈ V . In particular, we have

(V ∗)∗ = V,

and
HomC(V ∗,W ∗)

∼−→ HomC(W,V ).

Finally, we have an isomorphism

V ∗ ⊗C W
∼−→ HomC(V,W )

given by

f ⊗ w 7→ V → W

v 7→ f(v)w

Definition 2.10. Given a representation V of G, a subrepresentation is a
subspace U ⊂ V such that

g.U ⊂ U for each g ∈ G.

Definition 2.11. A representation V is called irreducible if it has no non-
trivial subrepresentations.

Definition 2.12. The character of a representation V of G is the function

χV : G −→ C

defined by
χV (σ) = Tr(σ|V ),

i.e. it is the trace of the map

V −→ V

x 7−→ σ.x

The degree of χV is
χV (1) = dimV.
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Let σ ∈ G, and n = |σ|. Let ρ : G → GL(V ) be a representation of G.
Note that

(ρ(σ))n = ρ(σn) = ρ(1) = 1,

i.e. the eigenvalues of ρ(σ) are all complex n-th roots of 1. Let ζ be a
primitive n-th root of 1. Then

χV (σ) = Tr(ρ(σ)) =
n−1∑
k=0

ζk,

i.e. χV (σ) is a sum of complex n-th roots of 1.

Example 2.

(1) If V = C is the trivial representation, then

χC(σ) = 1, for all σ ∈ G.

(2) If V = C[G] is the regular representation, then

χC[G](σ) =

{
|G| if σ = 1
0 if σ 6= 1

.

(3) If V and W are representations of G, then

χV⊕W (σ) = χV (σ) + χW (σ), for all σ ∈ G.

(4) If V is a representation of G, then

χV ∗(σ) = χV (σ−1) = χV (σ), for all σ ∈ G.

(5) If V and W are representations of G, then

χV⊗CW (σ) = χV (σ) · χW (σ), for all σ ∈ G.

By this,

χHomC(V,W )(σ) = χV ∗⊗CW (σ) = χV (σ) · χW (σ), for all σ ∈ G.

Let

FC(G,C) = {f : G→ C such that f(σ) = f(τστ−1) for each σ, τ ∈ G}
= {f : G→ C such that

∑
σ∈G f(σ)σ ∈ Z(C[G])}
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be the space of central functions on G. In particular, we can make this space
into a Hilbert space by putting

〈f, g〉G =
1

|G|
∑
σ∈G

f(σ)g(σ).

Let σ, σ′ ∈ G sucht that σ ∼ σ′, i.e. there exists τ ∈ G such that σ = τσ′τ−1.
Then

ρ(σ) = ρ(τσ′τ−1) = ρ(τ)ρ(σ′)ρ(τ)−1 = ρ(σ′),

i.e. χV ∈ FC(G,C).

Proposition 2.2.1. Let V be a representation of G. Then

1

|G|
∑
σ∈G

σ

is a projection of V onto V G.

Proof. Set P = 1
|G|
∑

σ∈G σ. Since P ∈ Z(C[G]), then

σ.(P.x) = P.(σ.x), for all σ ∈ G, x ∈ V.

So the action of P on V lies in EndG(V ). Note that

τP = P = Pτ, for all τ ∈ G.

Then

P 2 =

(
1

|G|
∑
σ∈G

σ

)
P =

1

|G|
∑
σ∈G

σP =
1

|G|
∑
σ∈G

P =
1

|G|
· |G|P = P,

i.e. P is a projection onto ImP . Now, let x = P.y for some y ∈ V . Then

σ.x = σ.(P.y) = P.y = x, for all σ ∈ G,

i.e. ImP ⊂ V G. Conversely, let x ∈ V G. Then

P.x =

(
1

|G|
∑
σ∈G

σ

)
.x =

1

|G|
∑
σ∈G

σ.x =
1

|G|
∑
σ∈G

x =
1

|G|
· |G|x = x,

i.e. V G ⊂ ImP . Then P is a projection of V onto V G.

Theorem 2.2.2. If V and W are representations of G, then

〈χV , χW 〉G = dim(HomG(V,W )).
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Proof. By Proposotion 2.2.1, 1
|G|
∑

σ∈G σ is a projection of HomC(V,W ) onto
HomC(V,W )G. Since the trace of a projection is the dimension of its image,
then

dim(HomC(V,W )G) = Tr
(

1
|G|
∑

σ∈G σ|HomC(V,W )
)

= 1
|G|
∑

σ∈G χHomC(V,W )(σ) = 1
|G|
∑

σ∈G χV ∗⊗CW (σ)

= 1
|G|
∑

σ∈G χV (σ) · χW (σ).

In particular, since this is an integer, we have that

dim(HomC(V,W )G) = dim(HomC(V,W )G) =
1

|G|
∑
σ∈G

χV (σ)χW (σ).

It follows that

〈χV , χW 〉G = 1
|G|
∑

σ∈G χV (σ)χW (σ) = dim(HomC(V,W )G)

= dim(HomG(V,W )).

Let {Vi} be a complete family of non-isomorphic irreducible representa-
tions of G, and χi be the corresponding characters. Consider the following

Theorem 2.2.3 (Schur’s Lemma). Let V and W be representations of G.

(1) If V 6∼= W , then
HomG(V,W ) = 0.

(2) If V ∼= W , then
HomG(V,W ) ∼= C.

Proof. See [12, Ch. 2, §2, Proposition 4].

So, by Theorem 2.2.2,

〈χi, χj〉G = dim(HomG(Vi, Vj)) =

{
0 if i 6= j
1 if i = j

,

i.e. the χi form an orthonormal system in FC(G,C). In particular, the χi
span FC(G,C). To show this, it suffices to prove that if f ∈ FC(G,C) such
that

〈f, χi〉G = 0, for each i,
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then f = 0. Let τ =
∑

σ∈G f(σ)σ. Since τ ∈ C[G], then it acts G-linearly on
every Vi. By Theorem 2.2.2, τ acts as a constant ci on V ∗i . So, we have

〈f, χi〉G = 1
|G| ·

∑
σ∈G f(σ)χi(σ) = 1

|G| · χV ∗i

(∑
σ∈G f(σ)σ

)
= 1
|G| · Tr(τ |V

∗
i ) = 1

|G| · cidimVi.

Thus
〈f, χi〉G = 0⇔ ci = 0⇔ τ.V ∗i = {0},

i.e. τ annihilates every irreducible representation. Note that, C[G] is semisim-
ple (see [12, Ch. 6, §1, Proposition 9]), i.e. every representation is a direct
sum of irreducible representation. By this,

τ.C[G] = {0}.

We can conclude that ∑
σ∈G

f(σ)σ = τ = 0,

that is f ≡ 0, by definition of C[G].
Consider

{δC , C conjugacy class in G}

where
δC(σ) =

{
1 if σ ∈ C
0 if σ /∈ C .

Note that this is a base for FC(G,C). So dimFC(G,C) is equal to the number
of conjugacy classes of G, hence to the number of isomorphism classes of the
irreducible representations Vi, by the above result.

Let V be a representation of G. By semisemplicity,

V = ⊕iV [i], (2.4)

where V [i] ∼= V ⊕nii is called the isotypical component of V . So we obtain the
decomposition,

HomG(Vi, V ) ' HomG(Vi, Vi)
⊕ni ' C⊕ni ,

which is not at all unique. But, since

χV =
∑
i

niχi,
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then the number of copies of Vi in (2.4)

dim(HomG(Vi, V )) = 〈χi, χV 〉G =
∑
j

nj〈χi, χj〉G = ni (2.5)

is unique and it is called the multiplicity of Vi in V . In particular, we can
denote the isotypical component of V corresponding to the trivial represen-
tation C by V G.

Define
pi :=

dimVi
|G|

∑
σ∈G

χi(σ)σ.

Since pi ∈ C[G], then
pi|Vj ∈ EndG(Vj) ' C.

In particular,

pi|Vj =
1

dimVj
Tr(pi|Vj),

where

Tr(pi|Vj) =
dimVi
|G|

∑
σ∈G

χi(σ)χj(σ) = dimVi · 〈χj, χi〉G = dimVi · δij.

Hence
pi|Vj =

{
idVi if i = j
0 if i 6= j

,

that is pi is the projection of V onto V [i]. So, if

x =
∑
i

xi ∈ V with xi ∈ V [i],

then
xi = pi(x) =

dimVi
|G|

∑
σ∈G

χi(σ)σx.

Hence, the decomosition (2.4) is unique.

Let RepG denote the category of representations of G. Let f : H → G be
a homomorphism of groups.

Definition 2.13. If V ∈ RepG, then the adjoint functor

f ∗ : RepG → RepH
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gives a representation f ∗V of H with the same underlying vector space as V
and where H acts through f , that is,

τ.x = f(τ).x for τ ∈ H, x ∈ V.

The adjoint functor
f∗ : RepH → RepG

comes with the canonical elements

ιW ∈ HomH(W, f ∗f∗W ) for W ∈ RepH ,

and is characterized by the fact that for every W ∈ RepH and V ∈ RepG,
the map

HomG(f∗W,V )→ HomH(W, f ∗V )

φ 7→ (f ∗φ) ◦ ιW
(2.6)

is bijective. Since we can decompose f as follows

H H/kerf

ImfG

.................................................................................................................................... ..................................................................................................................................................... .................

..............................................................................................................................................................
.....
.......
.....

'

..............................................................................................................................................................
.....
.......
.....

f

.............................................................................................................................................................. ................

to describe f∗ explicity, it suffices to treat the two following cases:

(a) π : H � H/N , for some N EH.

(b) i : H ↪→ G.

Let W ∈ RepH . In (a),
π∗W = WN ,

where the action of H/N is given by

hN.x = h.x for all h ∈ H, x ∈ WN .

Moreover, ιW is the projection of W onto WN defined as in the Proposition
2.2.1. In (b),

ιW : W ↪→ i∗W

is an inclusion and
i∗W = ⊕jσjW,
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where the σj are representatives of the left cosets σjH of H in G. Given
σ ∈ G, the action of G on i∗W is defined by

σ.

(∑
j

σjyj

)
=
∑
j

σσ(j)τσ,j.yj, for yj ∈ W,

where the subscript σ(j) and τσ,j ∈ H are uniquely determined by

σσj = σσ(j)τσ,j.

In particular we have that:

• if χV is the character of a representation V of G, then

f ∗χV (τ) := χV (f(τ)), for τ ∈ H,

is the character of f ∗V ;

• if ψW is the character of a representation W of H, then

f∗ψW (σ) :=
1

|H|
∑
η∈G

∑
τ∈H: f(τ)=ηση−1

ψW (τ), for σ ∈ G, (2.7)

is the character of f∗W (see [11, p. 14]).

Definition 2.14. Let H be a subgroup of G and let

f : H ↪→ G

be the relative inslusion map.

• resGHV := f ∗V is called the restriction to H of the representation V
of G.

• IndGHW := f∗W is called the representation of G induced by the rep-
resentation W of H.

Let V be a representation of G. Equating the dimensions of the spaces on
each side of the isomorphism (2.6), we obtain the relation

〈f∗ψW , χV 〉G = 〈ψW , f ∗χV 〉H , (2.8)

called Frobenius reciprocity (see [10, Ch. 7, 10.2]).
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Definition 2.15. A representation V of a group G and its character χV
are called monomial if there exist a 1-dimensional representation W of a
subgroup H of G such that

V = IndGHW,

or, equivalently, if V is a direct sum of 1-dimensional subspaces which are
permutated transitevely by G.

Theorem 2.2.4 (Brauer). Every character χ of a finite group G is a linear
combination with integral coefficients of monomial characters.

Proof. See [12, Ch. 10, §5, Theorem 20].

Definition 2.16. The character

χV : G→ C×

of a 1-dimensional representation V of G is a group homomorphism called
abelian character.

The abelian characters form an abelian group Hom(G,C×) under multipli-
cation. Moreover, if G is abelian, they are the only irreducible characters.
In fact, if

ρ : G→ GL(V )

be an irreducible complex representation, for any fixed g ∈ G, then

ρ(g)ρ(g′) = ρ(gg′) = ρ(g′g) = ρ(g′)ρ(g), for each g′ ∈ G,

i.e.
ρ(g) : V → V

is a G-equivariant map. Since V is irreducible, by Theorem 2.2.3,

ρ(g) = λgidV , for some λg ∈ C.

Therefore, every subspace of V is invariant under G. Due to irreducibility,
V must be 1-dimensional.

Definition 2.17. If G is an abelian group, then

Ĝ := Hom(G,C×)

is called the character group of G.
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Consider the map
G

ϕ−→ ˆ̂
G

defined by

ϕ(g) : Ĝ→ C×

χ 7→ χ(g)

First, note that ϕ is injective. In fact, let g ∈ G sucht that

χ(g) = ϕ(g)(χ) = χC(g) = 1 for all χ ∈ Ĝ.

Assume g 6= 1. Consider

|G| = pe11 · . . . · perr ,

where p1, . . . , pr are primes and e1, . . . , er ∈ N≥1. Then

G ∼= Cpe11
× . . .× Cperr

with
Cpeii = 〈gi〉 for each i = 1, . . . , r.

So, we can write
g = (gα1

1 , . . . , gαrr ),

for some α1, . . . , αr ∈ N. Since g 6= 1, we can find N ∈ {1, . . . , r} sucht that

gαNN 6= 1.

Thus, if for each i = 1, . . . , r we choose a peii -th root of unity ζi ∈ C, we can
define a character of χ of G as

χ(1, . . . , 1, gi, 1, . . . , 1) = ζi

for all i = 1, . . . , r. Then, we have that

χ(g) = χ(gα1
1 , . . . , gαrr ) =

r∏
i=1

ζαii 6= 1.

Now, let χ ∈ Ĝ. Note that, χ is completely determined by

χ(gi) = ζi for each i = 1, . . . , r,

where ζi are peii -th root of unity. Then we have the bijective correspondence

Ĝ
1:1←→ {(ζ1, . . . , ζr) : ζ

p
ei
i
i = 1, i = 1, . . . , r}. (2.9)
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By (2.9), we have
|Ĝ| = pe11 · . . . · perr = |G|.

It follows that
|G| = |Ĝ| = | ˆ̂G|. (2.10)

Then, by the injectivity of ϕ, (2.10) implies

G ∼= ˆ̂
G. (2.11)

Moreover, the map

Hom(G1, G2)
ψ−→ Hom(Ĝ2, Ĝ1)

defined by

ψ(f) : Ĝ2 → Ĝ1

h 7→ h ◦ f

is also an isomorphism. In fact, let f, g ∈ Hom(G1, G2) such that

ψ(f) = ψ(g). (2.12)

By (2.12), for all h ∈ Ĝ2,

h ◦ f = ψ(f)(h) = ψ(g)(h) = h ◦ g.

In particular, if h is the trivial representation of G2, then

f(σ) = g(σ) for all σ ∈ G2.

Thus, ψ is injective.
Now, by the isomorphism (2.11), we have that

Hom(G1, G2) ∼= Hom(
ˆ̂
G1,

ˆ̂
G2).

In particular,
|Hom(G1, G2)| = |Hom(

ˆ̂
G1,

ˆ̂
G2)|. (2.13)

Moreover, by the injectivity of ψ, we obtain the composition of embeddings

Hom(G1, G2) ↪→ Hom(Ĝ2, Ĝ1) ↪→ Hom(
ˆ̂
G1,

ˆ̂
G2).

Then, by (2.13), we obtain

|Hom(G1, G2)| = |Hom(Ĝ2, Ĝ1)|.

Finally, by the injectivity of ψ, we can conclude that

Hom(G1, G2) ∼= Hom(Ĝ2, Ĝ1).
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L-functions

3.1 Ideal class characters
Definition 3.1. A level is a pair m = (mf ,m∞) where

• mf is an ideal in Ok;

• m∞ is a set of real places of k.

In particular,
mf =

∏
Pv |mf

Pmv
v ,

where the Pv are finite places of k and mv ∈ N.

Definition 3.2. For a, b ∈ Ok, we write

a ≡ b mod×m

if

• a and b are prime to m;

• a ≡ b mod mf , i.e. a− b ∈ mf ;

• σv(a/b) > 0 for each place v ∈ m∞.

Definition 3.3. A fractional ideal of Ok is a Ok-submodule I of k such
that aI ⊂ Ok for some a ∈ Ok \ {0}.

Denote with Ik the group of fractional ideal in k. Let

km,1 = {c ∈ k× : c = a/b for some a, b ∈ Ok with a ≡ b mod×m}.

29
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Let Im denote the group of fractional ideals prime to the level m = (mf ,m∞),
i.e. generated by prime ideals not dividing mf . Since, for any c ∈ km,1, the
ideal (c) lies in Im, then the map

i : km,1 → Im
c 7→ (c)

is well defined. Set
Pm := i(km,1).

Definition 3.4. The quotient group

Cm := Im/Pm

is called the ray class group modulo m.

Lemma 3.1.1. Every pair of homomorphisms

A
f−→ B

g−→ C

of abelian groups gives rise to an exact sequence

0→ Ker f → Ker g ◦ f → Ker g → Coker f → Coker g ◦ f → Coker g → 0.

Proof. See [9, Lemma A.2].

Theorem 3.1.2. Let k be a field and let

| − |1, ..., | − |n

be pairwise inequivalent nontrivial absolute values on k. Let a1, ..., an ∈ k
and let ε1, ..., εn be positive real numbers. Then there exists x ∈ k such that

|x− ai|i < εi for 1 ≤ i ≤ n.

Proof. See [10, Ch. 2, Theorem 3.4].

Theorem 3.1.3. For every level m = (mf ,m∞) of k, there is an exact se-
quence

O×k → (Ok/mf )
× × {±1}m∞ → Cm → Ck → 0,

where

• Ck = C1 is the usual ideal class group;
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• {±1}m∞ denotes the product of |m∞| groups of order two, representing
the possible choices of signs at the real places v ∈ m∞.

Proof. Define the map

g : km → Im
c 7→ (c)

where
km = {a ∈ k× : a is prime to m}.

Then the sequence

0→ O×k → km
g−→ Im → Ck → 0 (3.1)

is exact. In fact, let I ∈ Ik. Since k is a Dedekind domain, I admits a unique
prime ideal factorization

I =
∏
p

pnp .

In particular, we may write
I = I1I2,

where
I1 :=

∏
p-mf

pnp and I2 :=
∏
p|mf

pnp

are coprime. If we hoose a uniformizer πp for each p|mf and set

α :=
∏
p|mf

π
−np
p ,

then αI and I represent the same ideal class in Ck. Therefore, since αI ∈ Im,
we can conclude that the cokernel of g is Ck.

Consider the composition of maps

km,1
f
↪−→ km

g−→ Im. (3.2)

By (3.1), the kernel of (3.2) is

km,1 ∩ O×k ,

and its cokernel is
Im/g(km,1) = Im/Pm = Cm.
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Hence, by Lemma 3.1.1, we obtain the exact sequence

0→ km,1 ∩ O×k → O
×
k → km/km,1 → Cm → Ck → 0.

Note that we can write each c ∈ km as c = a/b for some a, b ∈ Ok such
that (a) and (b) are coprime to mf and to each other. In particular, the
ideals (a) and (b) are uniquely determined by c, even though a and b are not.
In fact, if we assume

a/b = a′/b′,

then
ab′ = a′b.

Hence, we obtain
(a)(b′) = (a′)(b).

Since (a) and (b) are coprime to each other, we must have

(a) = (a′) and (b) = (b′),

by unique factorization of ideals. We now define the homomorphism

ϕ : km → (Ok/mf )
× × {±1}m∞

c 7→ c̄×
∏
v∈m∞

sgn(σv(c))

where
c̄ = āb̄−1 ∈ (Ok/mf )

×,

because ā, b̄ ∈ (Ok/mf )
×, since (a) and (b) are coprime to mf . In particular,

ϕ is a canonical homomorphism, because c̄ depends only on the uniquely
determined ideals (a) and (b). In fact, if we replace a with a′ = au for some
u ∈ Ok, we must replace b with b′ = bu.

Now, we want to prove that ϕ is surjective. So, let

a×
∏
v∈m∞

(−1)mv ∈ (Ok/mf )
× × {±1}m∞ ,

where a ∈ Ok and mv ∈ {0, 1}. First, note that, by the Chinese remainder
theorem,

(Ok/mf )
× ∼=

∏
Pv |mf

(Ok/P nv
v )×.

For each finite absolute value v of k such that Pv|mf , let av ∈ Ok with
av ∈ (Ok/P nv

v )× such that

a ≡ av mod P nv
v . (3.3)
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Thus, by Theorem 3.1.2, there exists c ∈ k such that

(NPv)
−ordPv (c−av) = |c− av|v < (NPv)

−nv ,

for each finite absolute value v of k such that Pv|mf , and

|σv(c− (−1)mv)| = |c− (−1)mv |v <
1

2
,

for all v ∈ m∞. Equivalently,

c ≡ a mod mf ,

and
sgn(σv(c)) = (−1)mv ,

for all v ∈ m∞.
It remains to check that c ∈ km. By contradiction, assume that

((c),mf ) 6= 1.

Then, there exists a finite absolute value v0 of k such that

Pv0|(c) and Pv0|mf .

This means that
c /∈ (Ok/P

nv0
v0 )×,

which is a contradiction by (3.3).
Finally, since the kernel of ϕ is km,1, thus ϕ induces the isomorphism

km/km,1 ∼= (Ok/mf )
× × {±1}m∞ .

Hence we obtain the exact sequence

O×k → (Ok/mf )
× × {±1}m∞ → Cm → Ck → 0.

Corollary 3.1.4. The group Cm is finite.

Proof. By Theorem 3.1.3, we have the exact sequence

O×k → (Ok/mf )
× × {±1}m∞ → Cm → Ck → 0.

By the finiteness of Ck (see [10, Ch. 1, Theorem 6.3]), we can conclude.
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Definition 3.5. Let m be a level for a number field k. A (generalized)
ideal class character mod m is a group homomorphism

χ : Im → C∗

which is trivial on Pm. In particular, χ is the same as a character of the
group Cm.

Note that, for each a ∈ Cm,

χ(a)|a| = χ(a|a|) = χ(1) = 1,

i.e. the values of an ideal class character χ are complex roots of 1. In
particular, they have absolute value 1.

Example 3. A function
f : Z→ C

is called an arithmetic function. We say that f is multiplicative if

f(mn) = f(m)f(n)

holds for all relatively prime m,n ∈ Z, and totally multiplicative (or com-
pletely multiplicative) if this holds for all m,n ∈ Z. For m ∈ Z≥1, we say
that f is m-periodic if

f(n+m) = f(n)

for all n ∈ Z, and call m the period of f if it is the least m for which this
holds.

A Dirichlet character is an arithmetic function

χ : Z→ C

that is both totally multiplicative and periodic.
Note that each m-periodic Dirichlet character χ restricts to a group char-

acter χ on (Z/mZ)×. Conversely, every group character χ of (Z/mZ)× can
be extended to a Dirichlet character χ by defining

χ(n) = 0 for n /∈ (Z/mZ)×.

A Dirichlet character mod m is an m-periodic Dirichlet character χ that
is the zero-extension of a group character on (Z/mZ)×. Equivalently, a char-
acter for which

n ∈ (Z/mZ)× ⇔ χ(n) 6= 0.

Let k = Q. If we identify ideals prime to m ∈ Z with their positive
integer generators, then an ideal class character mod (mZ, {∞}) is the same
as a Dirichlet character mod m (see [11, p. 10]).
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Note that the set of levels of a number field is partially ordered under the
relation

m1 ≤ m2 ⇔ (m1)f |(m2)f and (m1)∞ ⊂ (m2)∞. (3.4)

In particular, if m1 ≤ m2, the identity map on ideals induces a surjective
homomorphism

Cm2 → Cm1 . (3.5)

This allows us to identify characters mod m1 with certain characters mod
m2.

Definition 3.6. Let k be a number field and let m be a level of k. A
congruence subgroup for the level m is a subgroup C of Im that contains
Pm.

Example 4. Let m be a level for a number field k. The kernel of an ideal
class character mod m is a congruence subgroup.

Definition 3.7. Let m1 and m2 be two level of a number field k. If C1 is a
congruence subgroup for m1 and C2 is a congruence subgroup for m2, then
we say that C1 and C2 are equivalent and write C1 ∼ C2 whenever

Im1 ∩ C2 = Im2 ∩ C1,

as subgroups of Ik.

If C1 and C2 have the same level m1 = m2, then

C1 ∼ C2 ⇔ C1 = C2.

In fact, if C1 and C2 are equivalent, then

C1 = Im1 ∩ C1 = Im2 ∩ C1 = Im1 ∩ C2 = Im2 ∩ C2 = C2.

On the other hand, if C1 = C2, then

Im1 ∩ C2 = Im2 ∩ C2 = Im2 ∩ C1.

By this, within an equivalence class of congruence subgroups there can be at
most one congruence subgroup for each level. Thus the partial ordering of
levels (3.4) induces a partial ordering of the congruence subgroups within an
equivalence class.
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Lemma 3.1.5. Let C1 be a congruence subgroup of level m1 for a number
field k. There exists a congruence subgroup C2 of level m2|m1 equivalent to
C1 if and only if

Im1 ∩ Pm2 ⊂ C1.

In which case
C2 = C1Pm2 .

Proof. Let m2 be a level of k such that m2|m1. This implies

C1 ⊂ Im1 ⊂ Im2 .

Now, suppose there exists a congruence subgroup C2 ∼ C1 of level m2. Then

Im1 ∩ Pm2 ⊂ Im1 ∩ C2 = Im2 ∩ C1 = C1,

because Pm2 ⊂ C2. On the other hand, assume

Im1 ∩ Pm2 ⊂ C1.

Define the congruence subgroup of level m2

C2 := C1Pm2 .

Since
C1(Im1 ∩ Pm2) = Im1 ∩ C1Pm2 = Im1 ∩ C2,

and
C1(Im1 ∩ Pm2) ⊂ C1C1 = C1,

then
Im1 ∩ C2 ⊂ C1.

In particular,
Im1 ∩ C2 = C1,

because
C1 ⊂ Im1 and C1 ⊂ C2.

Therefore,
Im1 ∩ C2 = C1 = Im2 ∩ C1.

Finally, since the equivalence class of C1 contains at most one congruence
subgroup of level m2, if one exists it must be

C2 = C1Pm2 .
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Proposition 3.1.6. Let C1 and C2 be equivalent congruence subgroups of level
m1 and m2, respectively. There exists a congruence subgroup C equivalent to
C1 and C2 of level n := gcd(m1,m2).

Proof. Put
m := lcm(m1,m2),

and
D := Im1 ∩ C2 = Im2 ∩ C1.

Then
Pm = Pm1 ∩ Pm2 ⊂ D ⊂ Im1 ∩ Im2 = Im,

i.e. D is a congruence subgroup of level m. In particular,

Im ∩ Pm1 = Im2 ∩ Pm1 ⊂ Im2 ∩ C1 = D,

and similarly
Im ∩ Pm2 ⊂ D.

Thus, by Lemma 3.1.5,
D ∼ C1 ∼ C2.

Now, let
a := (α) ∈ Im ∩ Pn.

By Theorem 3.1.2, we can choose β ∈ km ∩ km2,1 such that

αβ ∈ km1,1.

Since
(β) ∈ Im ∩ Pm2 ⊂ D,

and
βa = (αβ) ∈ Im ∩ Pm1 ⊂ D,

then
a = β−1βa ∈ D.

By this,
Im ∩ Pn ⊂ D.

Therefore, by Lemma 3.1.5,
C := DPn

is a congruence subgroup of level n equivalent to D ∼ C1 ∼ C2.



CHAPTER 3. L-FUNCTIONS 38

Corollary 3.1.7. Let C be a congruence subgroup of level m for a number
field k. There exists a unique congruence subgroup in the equivalence class
of C whose level c divides the level of every congruence subgroup equivalent
to C.

Definition 3.8. Let C be a congruence subgroup of level m for a number
field k. The unique level given by Corollary 3.1.7 is called the conductor of
C, denoted c(C). If the conductor of C is equal to its level, then we say that
C is primitive.

Definition 3.9. Let m be a level for a number field k. Let χ be an ideal class
character mod m. The conductor mχ of χ is the conductor of its kernel. We
say that χ is primitive mod mχ and imprimitive mod m for all m > mχ.

3.2 Classical abelian L-functions
Definition 3.10. Let χ be an ideal class character of conductor mχ. A
classical abelian L-function

L(s, χ) :=
∏
P

1

1− χ(P )NP−s

is a function of complex variable s, defined in the right half-plane <(s) > 1
and where the product is over the prime ideals P not dividing mχ.

Proposition 3.2.1. Let χ be an ideal class character of conductor mχ. Then

L(s, χ) =
∑
I

χ(I)NI−s,

where the sum is over all the integral ideals I prime to mχ.

Proof. Consider the multiplicative function

X(I) := χ(I)NI−s.

For x > 0 define

Ax = {P ⊂ Ok : P prime ideal not dividing mχ with NP ≤ x}.
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So ∏
P∈Ax

(1−X(P ))−1 =
∏
P∈Ax

∞∑
n=0

X(P )n

=
∑

(...,nP ,...)

∏
P∈Ax

X(P )nP

=
∑

(...,nP ,...)

X

( ∏
P∈Ax

P nP

)
=
∑
I

X(I),

where the last sum is over all the integral ideals I prime to mχ whose prime
factorization involves only prime ideals of the set Ax. Now, consider

log

(∏
P

(1−X(P ))−1

)
=
∑
P

log
(
(1−X(P ))−1

)
=
∑
P

− log (1−X(P ))

=
∑
P

−

(
∞∑
n=1

(−1)n+1 (−X(P ))n

n

)

=
∑
P

∞∑
n=1

(−1)2(n+1) (X(P ))n

n

=
∑
P

∞∑
n=1

(X(P ))n

n
,

where the sum is over the prime ideals P not dividing mχ. Note that it
converges absolutely for <(s) = σ > 1. In fact, since

|X(P )| = |NP−s| = NP−σ,

then∑
P

∞∑
n=1

|X(P )|n

n
<
∑
P

∞∑
n=1

(
1

NP σ

)n
=
∑
P

NP−σ

1−NP−σ
=
∑
P

1

NP σ − 1
.

Since
NP ≥ p,

for all prime ideal P of Ok over a prime p ∈ Z, then

NP σ

2
>

NP

2
≥ 1,



CHAPTER 3. L-FUNCTIONS 40

that is
1

NP σ − 1
<

2

NP σ
.

So we obtain the inequality∑
P

∞∑
n=1

|X(P )|n

n
< 2

∑
P

1

NP σ
= 2

∑
P

|X(P )|.

Now, since

|{P : P is a prime ideal over the prime p ∈ Z}| ≤ [k : Q],

we have that ∑
P

|X(P )| ≤
∑
P

NP−σ ≤ [k : Q] ·
∑
p

p−σ.

Moreover, if we compare the sum ∑
p

p−σ

with the integral∫ ∞
1

x−σdx = lim
n→∞

∫ n

1

x−σdx = lim
n→∞

[
x1−σ

1− σ

]n
1

= lim
n→∞

n1−σ − 1

1− σ
=

1

σ − 1
,

we can conclude that∑
P

∞∑
n=1

|X(P )|n

n
< 2

∑
P

|X(P )| ≤ 2[k : Q]

σ − 1
.

This implies the absolute convergence of

log

(∏
P

(1−X(P ))−1

)
for <(s) = σ > 1. Finally, since

∏
P

(1−X(P ))−1 = exp

(∑
P

∞∑
n=1

(X(P ))n

n

)
,

then ∏
P∈Ax

(1−X(P ))−1

converges absolutely and uniformly in <(s) = σ > 1 as x→∞.
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For χ = 1, the zeta function

ζk(s) := L(s, 1)

is analytic in the whole plane except for a simple pole in s = 1 (see [10, Ch.
7, Corollary 1.7]).

If χ 6= 1, Hecke proved that L(s, χ) has an analytic continuation to the
whole s-plane. Moreover, he gives a functional equation relating L(1− s, χ)
and L(s, χ̄) (see [10, Ch. 7, §2]). To express it, we need the gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx, <(z) > 0.

Consider some of its properties.

1. It is a meromorphic function on the complex plane.

2. It satisfies
Γ(s+ 1) = sΓ(s) and Γ(1) = 1.

Hence
Γ(n+ 1) = n! for n = 1, 2, ....

3. It is nowhere zero and has simple poles only at

s = −n where n = 0, 1, 2, ...,

with residue
(−1)n

n!
.

4. It satisfies the Legendre duplication formula

Γ
(s

2

)
Γ
(s+ 1

2

)
= 21−sπ

1
2 Γ(s).

Hence
Γ
(1

2

)
=
√
π.

For a proof of these facts see [10, Ch. 7, Proposition 1.2]. So, for each infinite
place v of k, define

γv(s, χ) =


Γ( s

2
) if v is real and v /∈ (mχ)∞

Γ( s+1
2

) if v is real and v ∈ (mχ)∞

Γ( s
2
)Γ( s+1

2
) if v is complex

.
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Then there exist constants Bχ > 0 and Cχ ∈ C∗ such that the functions

Λ(s, χ) :=
∏
v|∞

γv(s, χ)L(s, χ)

satisfy
Λ(1− s, χ) = CχB

s
χΛ(s, χ̄).

3.3 Artin L-functions
Let K/k be a finite Galois extension of number fields and G = GK/k its
Galois group.

Definition 3.11. Let v be a place of k and let w be a place of K.

• If v is finite, then w lies above v if w = Pw for some prime ideal Pw
s.t. Pw|Pv.

• If v is infinite, then w lies above v if w = σ′v or w = {σ′v, σ̄′v} for some

σ′v : K → C

extending σv. In particular, if v is real, then w could be real or complex.
If v is complex, then w must also be complex.

Let w be a place of K. G acts on w as follows:

• if w is finite, then

g.w = gPw for each g ∈ G;

• if w is real, then

g.w = σw ◦ g for each g ∈ G;

• if w is complex, then

g.w = {σw ◦ g, σ̄w ◦ g} for each g ∈ G.

Proposition 3.3.1. Let v = Pv be a finite place of k. Then G acts transi-
tively on the set

{w : w lies over v}.
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Proof. Let w and w′ be places of K lying over v. By contradiction, assume

σ.w 6= w′ for all σ ∈ G.

By the Chinese remainder theroem, we may choose b ∈ w′ such that

b ≡ 1 mod σ−1.w for all σ ∈ G.

Then
a := NK/k(b) =

∏
σ∈G

σ(b) ≡ 1 mod w.

Thus
a /∈ w, i.e. a /∈ k ∩ w = v.

But
a = NK/k(b) ∈ NK/k(w

′) = P
fFw′/Fv
v ⊂ Pv = v,

where fFw′/Fv = [Fw′ : Fv], a contradiction.

Definition 3.12. If w is a place of K which lies above a place v of k, its
stabilizer

Gw := {g ∈ G : g.w = w}

is a subgroup of G called the decomposition group of w.

Proposition 3.3.2. Let w be a place of K which lies above a place v of k.
Then

Gw
∼= GKw/kv

Proof. First note that the decomposition group Gw consists precisely of those
automorphisms σ ∈ G which are continuous with respect to the valuation w.
Indeed, let x ∈ K such that

|x|w < 1. (3.6)

If we consider σ ∈ Gw, then

|σ(x)|w = |x|σ−1.w = |x|w < 1.

On the other hand, consider an arbitrary continuous automorphism σ ∈
G. By (3.6), we have that (xn)n∈N is a w-nullsequence. By the continuity of
σ, then

lim
n→∞

σ(xn) = σ
(

lim
n→∞

xn
)

= 0,

i.e.
((σ(x))n)n∈N = ((σ(xn))n∈N
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is a w- nullsequence. Thus,

|x|σ.w = |σ(x)|w < 1. (3.7)

The fact that (3.6) implies (3.7), is equivalent to the fact that w and σ.w are
equivalent, as we can view in [10, p. 117]. Moreover, since

w|k = v = (σ.w)|k,

then
w = σ.w, i.e. σ ∈ Gw.

Now, since K is dense in Kw, then every automorphism σ ∈ Gw extends
to a continuous kv-automorphism σ̂ of Kw defined as

σ̂(x) = σ̂
(

lim
n→∞

xn

)
= lim

n→∞
σ̂(xn) = lim

n→∞
σ(xn),

for all x ∈ Kw and for a suitable sequence (xn)n∈N in K. In particular, σ̂ is
unique. In fact, assume there exists another continuous kv-automorphism σ̂′

of Kw which extends σ. If σ̂′ is different from σ̂, then there exists x ∈ Kw

such that
σ̂′(x) 6= σ̂(x).

Since K is dense in Kw, then

x = lim
n→∞

xn

for a suitable sequence (xn)n∈N in K. Thus,

σ̂′(x) = σ̂′
(

lim
n→∞

xn

)
= lim

n→∞
σ̂′(xn) = lim

n→∞
σ̂(xn) = σ̂

(
lim
n→∞

xn

)
= σ̂(x),

which is a contradiction. Hence, we obtain the well defined isomorphism

Gw → GKw/kv

σ 7→ σ̂

If v is finite, an element σ ∈ Gw induces an automorphism

σ̄ : Fw → Fw
ȳ 7→ σ(y)

where Fw = OK/Pw is the residue field of w.
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Proposition 3.3.3. The map

πw : Gw → Gal(Fw/Fv)
σ 7→ σ̄

is a surjective group homomorphism.

Proof. First, note that πw preserves the identity element. Moreover, for any
σ, τ ∈ Gw, we have

στ(ȳ) = στ(y) = σ(y)τ(y) = σ(y)τ(y) = σ̄(ȳ)τ̄(ȳ),

because the action of Gw on OK fixes w and commutes with quotienting by
w. Thus, πw is an homomorphism.

Since Fw/Fv is a cyclic Galois extension, it is generated by some α ∈ F×w .
By the Chinese remainder theorem, we can pick a ∈ OK such that

a ≡ α mod w,

and
a ≡ 0 mod σ−1.w for all σ ∈ GrGw. (3.8)

Now, define
g(X) :=

∏
σ∈G

(X − σ(a)) ∈ Ok[X].

Let g denote the image of g in Fv[X]. By (3.8), the image of σ(a) in Fw is 0
for each σ ∈ GrGw. So 0 is a root of g with multiplicity m = #(GrGw).
The remaining roots are σ(α) for σ ∈ Gw, which are Galois conjugates of α.
It follows that

g(X)

Xm
(3.9)

divides the minimal polynomial of α, which is irreducible in Fv[X]. Then
(3.9) is the minimal polynomial of α. In particular, every conjugate of α is
of the form

σ(α) for some σ ∈ Gw.

Thus πw is surjective.

Definition 3.13. The kernel of πw is called the inertia group of w and is
detoned by Iw.

The order of Iw is the ramification index eFw/Fv . It is 1 for all but a finite
number of places v, those dividing the relative discriminant ideal dK/k. By
πw, we can view the quotient group Gw/Iw as the Galois group of the finite
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field extension Fw/Fv. Hence, Gw/Iw is cyclic and it has as generator the
Frobenius automorphism

φw : Fw → Fw
x 7→ xqv

where qv = NPv.

Definition 3.14. The inverse image of the Frobenius automorphism φv of
Gal(Fw/Fv) under the surjective group homomorphism

πw : Gw → Gal(Fw/Fv),

defined in the Proposition 3.3.3, is called the Frobenius substitution of w,
and it is denoted by φ̃w.

Let V be a representation of G. For a finite place v of k let

Fv(T, V ) = det(1− φwT | V Iw )

be the characteristic polynomial of the action on V Iw of a Frobenius auto-
morphism φw attached to a place w of K above v. Although φw is determined
only up to multiplication by an element of Iw, its action on V Iw is indepen-
dent of which element of a coset φwIw we chose. The polynomial Fv(T, V )
depends only on the isomorphism class of V . Moreover, it also depends only
on v and not on the choice of w above v, because the places w above v are
all conjugate. Note that for v unramified in K, we have

Iw = {1}, i.e. V Iw = V.

By this, Fv(T, V ) is of degree dimV . Finaly, Fv(T, V ) depends only on V as
Gw-module, not as G-module.

Definition 3.15. An Artin L-function is an Euler product

L(s, V ) :=
∏
v

Lv(s, V )

over the finite places v of k where

Lv(s, V ) := Fv(NP−sv , V )−1 =
1

det(1− φwq−sv | V Iw )

is called local L-function.
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Note that L(s, V ) depends only on the isomorphism class of the representa-
tion V . By this, we can also denoted L(s, V ) by

L(s, χV ),

where
χV : G→ C

is the character of V .

Proposition 3.3.4. L(s, χV ) converges absolutely and defines an analytic
function in the half plane <(s) > 1.

Proof. Consider

log (L(s, χV )) = log

(∏
v

Lv(s, χV )

)
=
∑
v

log(Lv(s, χV )), (3.10)

where the sum is over the finite places v of k. Note that

det(1− φwq−sv |V Iw ) = exp(Tr(log(1− φwq−sv |V Iw ))).

Thus, for each finite place v of k, we obtain

log(Lv(s, χV )) = − log(det(1− φwq−sv |V Iw ))

= −Tr(log(1− φwq−sv |V Iw ))

= −Tr

(
∞∑
n=1

(−1)n+1 (−φw|V Iw q−sv )n

n

)

=
∞∑
n=1

(−1)2(n+1)Tr
(
φnw|V Iw
nqnsv

)
=
∞∑
n=1

Tr(φnw|V Iw )

nqnsv
.

Now, consider on Gw the restriction representation

W = resGGwV.

By definition
χW (σ) = χV (σ), for all σ ∈ Gw.

Let
πw : Gw → Gw/Iw
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be the canonical projection. So

(πw)∗W = W Iw

is the representation of Gw/Iw defined as

πw(σ).x = σ.x, for all σ ∈ Gw, x ∈ W Iw .

Then
Tr(φnw|V Iw ) = Tr(φnw|W Iw ) = χW (φ̃nw) = χV (φ̃nw),

where

Tr(φnw|V Iw ) =
1

|Gw|
∑

η∈Gw/Iw

∑
τ∈Gw: πw(τ)=ηφnwη

−1

χW (τ)

=
1

|Gw|
∑

η∈Gw/Iw

∑
τ∈Gw: πw(τ)=φnw

χV (τ)

=
1

|Gw|
|Gw|
|Iw|

∑
τ∈Gw: πw(τ)=φnw

χV (τ)

=
1

|Iw|
∑

τ∈Gw: πw(τ)=φnw

χV (τ)

is the average value of χV on the coset φnwIw of Iw by (2.7). So,

log(Lv(s, χV )) =
∞∑
n=1

Tr(φnw|V Iw )

nqnsv
=
∞∑
n=1

χV (φ̃nw)

nqnsv
.

By (3.10), we obtain

log (L(s, χV )) =
∑
v

(
∞∑
n=1

χV (φ̃nw)

nqnsv

)
.

Let σ = <(s). Now, note that

∑
v

(
∞∑
n=1

∣∣∣∣∣χV (φ̃nw)

nqnsv

∣∣∣∣∣
)
< M

∑
v

∞∑
n=1

(
1

qσv

)n
= M

∑
v

q−σv
1− q−σv

= M
∑
v

1

qσv − 1

for some M ∈ N such that

|χV (φ̃nw)| ≤M.
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Since
qv ≥ p,

for all finite place v of k such that Pv is over a prime p ∈ Z, then

qσv
2
>
qv
2
≥ 1,

that is
1

qσv − 1
<

2

qσv
.

Since

|{P : P is a prime ideal over the prime p ∈ Z}| ≤ [k : Q],

we have that ∑
v

q−σv ≤ [k : Q] ·
∑
p

p−σ.

Now, by the proof of Proposition 3.2.1, we have that∫ ∞
1

x−σdx =
1

σ − 1
. (3.11)

So, if we compare the sum ∑
p

p−σ

with the integral (3.11), we can conclude that

∑
v

(
∞∑
n=1

∣∣∣∣∣χV (φ̃nw)

nqnsv

∣∣∣∣∣
)
< 2M

∑
v

1

qσv
≤ 2M [k : Q]

σ − 1
.

This implies the absolute convergence of

L(s, χV ) = exp

(∑
v

(
∞∑
n=1

χV (φ̃nw)

nqnsv

))
(3.12)

for σ = <(s) > 1.

Proposition 3.3.5. Let V,W be two representations of G. Then

L(s, χV⊕W ) = L(s, χV )L(s, χW ). (3.13)
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Proof. Note that∑
v

(
∞∑
n=1

χV⊕W (φ̃nw)

nqnsv

)
=
∑
v

(
∞∑
n=1

χV (φ̃nw) + χW (φ̃nw)

nqnsv

)

=
∑
v

(
∞∑
n=1

φ̃V (φnw)

nqnsv

)
+
∑
v

(
∞∑
n=1

χW (φ̃nw)

nqnsv

)
.

By the equation (3.12) in the proof of Proposition 3.3.4, we obtain

L(s, χV⊕W ) = L(s, χV )L(s, χW ).

As a conseguence of Proposition 3.3.5, it is enough to consider irreducible
representations.

Assume that K is contained in a larger Galois extension K ′ of k, i.e.
k ⊂ K ⊂ K ′. By the Galois theory,

G ' G′/GK′/K (3.14)

where G′ := GK′/k. Let
π : G′ → G′/GK′/K

be the canonical projection.

Definition 3.16. Let V be a representation of G. The inflation of V is the
G′-module

V ′ := π∗V

having the same underlying vector space as V , with G′ acting through G as
follows

τ.x := τ̄ .x for τ ∈ G′, x ∈ V.
Proposition 3.3.6. Let V be a representation of G. Then

L(s, V ′) = L(s, V ).

Proof. Let w′ be a place of K ′ above w, which is a place of K above v.
Thanks to the isomorphism (3.14), we have

φw = φw′GK′/K and Iw = I ′w′GK′/K ,

By the action of G′ in Definition 3.16, then

(V ′)I
′
w′ = V Iw .

So
L(s, V ′) = L(s, V ).
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Definition 3.17. The absolute Galois group of k is the Galois group

Gk := Gal(k̄/k)

where k̄ is the algebraic closure of k.

Proposition 3.3.6 shows that L(s, V ) really depends only on V viewed
as module V for Gk. Note that the isomorphism class of V as Gk-module
is independent of how we view K/k as subextension of k̄/k. Moreover, the
representations of the form V are, up to isomorphism, simply the C[Gk]-
modules X of finite dimension over C for which the action map

Gk ×X → X

is continuous for the Krull topology in Gk and the discrete topology in X.

Proposition 3.3.7. Let H be a subgroup of G and consider the intermediate
field

k′ := KH ,

i.e. k ⊂ k′ ⊂ K. Let W be a representation of H and set

V = IndGHW.

Then
L(s,W ) = L(s, V ).

Proof. Let v be a finite place of k and w be a place of K above v. Let

G =
r∐
i=1

GwρiH

be the expression of G as disjoint union of double cosets of Gw and H. Set

wi = ρ−1
i .w

and let v′i be the place of k′ below wi. Since v′1, v′2, ..., v′r are places of k′ above
v, then it suffices to show that

Lv(s, V ) =
r∏
i=1

Lv′i(s,W ). (3.15)

For each i, let

Gw =

mi∐
j=1

τij(Gw ∩Hρi),
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where Hρi = ρiHρ
−1
i . Then

G =
r∐
i=1

mi∐
j=1

τijρiH.

By definition of induced representation, V contains W as an H-submodule.
Hence

V = ⊕ri=1Vi, (3.16)

where
Vi = ⊕mij=1τijρiW ' IndGwGw∩HρiρiW

is a Gw-module for each i. Applying the automorphism ρi to our situation,
we obtain by transport of structure,

Lv′i(s,W ) = Lvi(s, ρiW ), (3.17)

where vi is the place of ρik below w. If we put (3.16) and (3.17) in (3.15),
by (3.13), we have

r∏
i=1

Lv(s, Vi) =
r∏
i=1

Lvi(s, ρiW ).

By this, we can reduced to the local case G = Gw.
Let I = Iw and J = H ∩ I be the inertia subgroups of G and H, respec-

tively. Consider the homomorphism

f : H → G/I.

Since we can factor f as
H ↪→ G→ G/I,

then
f∗W = (IndGHW )I = V I .

Moreover, we can factor f as

H → H/J ↪→ G/I,

because
H/J ' HI/I ≤ G/I.

So,
f∗W = IndG/IH/J(W J),

i.e.
V I ' IndG/IH/J(W J). (3.18)
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Thanks to (3.18), we can reduced to the local unramified case G = G/I
where V = V I and W = W J .

In this case, G is cyclic and generated by the v-Frobenius automorphism
φv. Moreover, H is the subgroup generated by the v′-Frobenius automor-
phism φv′ = φkv , where k = (G : H). Then

V = IndGHW = ⊕k−1
i=0 φ

i
vW.

So we can assume W is 1-dimensional with basis x. Let

φv′x = ηx.

For each solution ζ to Xk = η, the element

k−1∑
i=0

ζ−iφivx ∈ V

is an eigenvector for φv with eigenvalue ζ. In fact,

φv

(
k−1∑
i=0

ζ−iφivx

)
=

k−1∑
i=0

ζ−iφi+1
v x = ζ−k+1φkvx+

k−2∑
i=0

ζ−iφi+1
v x,

where
ζ−k+1φkvx = η−1ζφv′x = ζη−1ηx = ζx.

Then

ζx+
k−2∑
i=0

ζ−iφi+1
v x = ζ

(
x+

k−2∑
i=0

ζ−(i+1)φi+1
v x

)
= ζ

(
x+

k−1∑
j=1

ζ−jφjvx

)

= ζ ·
k−1∑
j=0

ζ−jφjvx,

that is,

φv

(
k−1∑
i=0

ζ−iφivx

)
= ζ ·

k−1∑
i=0

ζ−iφivx.

Hence
Lv(s, V ) =

1

det(1− σvq−sv |V )
=

∏
ζ s.t. ζk=η

1

1− ζq−sv
.

Now, let ζ0 be such that
ζk0 = η,
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and ξ be a k-th root of unity. Since

Xk − 1 =
k−1∏
i=0

(X − ξi),

then

qskv
ζk0

(
1− ζk0 q−skv

)
=

(
qsv
ζ0

)k
− 1 =

k−1∏
i=0

(
qsv
ζ0

− ξi) =
qskv
ζk0
·
k−1∏
i=0

(1− ζ0ξ
iq−sv ),

that is,

1− η(q−sv )k =
k−1∏
i=0

(1− ζ0ξ
iq−sv ) =

∏
ζ s.t. ζk=η

(1− ζq−sv ).

So

Lv(s, V ) =
1

1− η(q−sv )k
=

1

1− η(qkv )−s
=

1

det(1− η(qkv )−s|W )
= Lv′(s,W ).

Example 5. If in Proposition 3.3.7 we choose H = 1G and W = C is the
trivial representation, then V = C[G] is the regular representation of G.
Since

〈χi, χC[G]〉G =
1

|G|
∑
σ∈G

χi(σ)χC[G](σ) =
1

|G|
· χi(1) · |G| = dimVi,

by (2.5), we obtain
C[G] ' ⊕iV dimVi

i ,

where the Vi are the irreducible representations of G. So, by (3.13), we have

ζK(s) = L(s,C) = L(s,C[G]) =
∏
i

L(s, Vi)
dimVi .

In particular, if we number the Vi so that V1 is the trivial representation of
G, then

L(s, V1) = ζk(s),

by definition of Artin L-function. So, we obtain

ζK(s) = ζk(s)
∏
i 6=1

L(s, Vi)
dimVi . (3.19)
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More generally, if k′ is any intermediate field, andW the trivial representation
of H, then V = C[G/H] is the permutation representation of G acting on
the set G/H of cosets of H. By Frobenius reciprocity, we have

〈χV , χi〉G = 〈χW , χi|H〉H

Since the isotypical component of Vi corresponding to the trivial representa-
tion W is V H

i , then
mi := 〈χi, χV 〉G = dimV H

i ,

i.e.
V ' ⊕iV mi

i .

Since m1 = 1, we obtain

ζk′(s) = ζk(s)
∏
i 6=1

L(s, Vi)
mi .

3.4 Reciprocity and the relation between the
two kind of L-functions

Consider the following Takagi-Artin existence theorem

Theorem 3.4.1. For each level m, there is an abelian extension Km of k
with Galois group GKm/k having the same invariants as, hence isomorphic
to, the generalized ideal class group Cm = Im/Pm. In particular, the way in
which a prime ideal P of k decomposes in Km is determined by the class of
P in Cm. Conversely, for each finite abelian extension K of k, there exists a
level m of k such that

GK/k
∼= Cm.

Proof. See [2, Ch. 7, Theorem 5.1].

Let a ∈ Ok such that a ≡ 1 mod×m. The reciprocity law

(a) =
∏
v

Pmv
v ⇒

∏
v

φ̃mvw = 1 (3.20)

by Artin (see [2, Ch. 7, §3.3]) allows us to prove the existence of the canonical
isomorphism

Cm
∼−→ GKm/k (3.21)
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which, for each finite place v of k unramified in K, associates to the class of
the prime ideal Pv the Frobenius substitution φ̃w. From Takagi’s decompo-
sition law, it follows that

ζK(s) =
∏
χ

L(s, χ) = ζk(s)
∏
χ 6=1

L(s, χ), (3.22)

where the first product is over all characters χ of Cm and the L(s, χ) are
the classical abelian L-functions. Thanks to the isomorphism (3.21), the
factorizations (3.19) and (3.22) coincide.

Example 6. Let q be a prime such that q ≡ 1 mod 4. Then, for the extension
Q(
√
q)/Q, (3.20) implies that there is a non-trivial character χ with

χ(1) ≡ 2 mod q

such that
χ(p) =

(q
p

)
for primes p 6= q.

Since the only such character is

p 7→
(p
q

)
,

then (q
p

)
=
(p
q

)
.

(See [11, p. 18]).

3.5 Application of Brauer’s theorem
Theorem 3.5.1. Every Artin L-function is meromorphic in the whole com-
plex plane.

Proof. Let V be a representation of a Galois group G, with χV its character.
By Theorem 2.2.4, there exist Wi, 1-dimensional representations of some
subgroups Hi of G, such that

χV =
∑
i

niIndGHiψi,

where ψi is the character of Hi. For each i, let

ki = KHi
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be the fixed field of Hi. So, by the Galois correspondence we have that

Hi = Gal(K/ki).

Let kabi be the maximal abelian extension of ki contained in K. Set

Hab
i := Gal(kabi /ki).

By the Galois theory,
Hab
i
∼= Hi/GK/kabi

.

So, we can consider the canonical projection

πi : Hi → Hab
i .

Thus, it is uniquely determined a character

ψ′i : Hab
i → C×

of Hab
i which makes the diagram

Hi C×

Hab
i

................................................................................................................................................................................................................... ............
ψi

.......................................................................................................................... ........
....

.........................................................................................................................
......
.........
.......
.

πi
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

ψ′i

commutative. Let W ′
i be the corresponding representation. Consider the

inflation of W ′
i

Vi := Infl(W ′
i ) = (πi)

∗W ′
i ,

where
χi : Hi → C×

is the corresponding character. Since

χi(σ) = ψ′i(πiσ) = ψi(σ)

for all σ ∈ G, by Theorem 3.3.6, we have that

L(s, ψi) = L(s, χi) = L(s, ψ′i).

Now, since kabi /ki is an abelian extension, by Theorem 3.4.1, there exist a
level mi of ki such that

Hab
i
∼= Cmi .
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Hence

L(s, ψ′i) =
∏
v

1

det(1− φwq−sv |(Wab
i )Iw )

=
∏
v

1

1− φwq−sv |(Wab
i )Iw

,

where the product is over the finite places v of ki. Since W ab
i is a 1-

dimensional representation, then

(W ab
i )Iw = 0 or (W ab

i )Iw = W ab
i .

Since each finite place v of ki such that

Pv|mi

is ramified in kabi , we must have that

(W ab
i )Iw = 0.

Moreover,
φw.x = ψ′i(φw)x = ψ′i(Pv)x, (3.23)

because W ab
i is 1-dimensional (see [17, Appendix, §3, Theorem 1-4]). Hence

L(s, ψ′i) =
∏
v

1

1− ψ′i(Pv)NPv−s
,

where the product is over the finite places v of ki such that Pv not dividing
mi. So, L(s, ψ′i) is a classical abelian L-function, hence meromorphic on C,
and even entire for ψi 6= 1. Since

L(s, χV ) = L(s, V∑
i niIndGHiψi

) = L(s,
∑
i

niIndGHiWi)

=
∏
i

L(s, IndGHiWi)
ni =

∏
i

L(s,Wi)
ni =

∏
i

L(s, ψi)
ni ,

(3.24)

we can conclude.

Note that, if the trivial representation does not occur in χ, then one can
cancel on the right side of (3.24) all the terms in which ψi is the trivial
character of Hi. In fact, by Frobenius reciprocity, we have

〈χ, 1G〉G =
∑
i

ni〈IndGHiψi, 1G〉G =
∑
i

ni〈ψi, 1Hi〉Hi =
∑
i∈J

ni,

where J = {j : ψj = 1Hj}. Since

〈χ, 1G〉G = 0,
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then
L(s, χ) = L(s, 1H)

∑
i∈J ni ·

∏
i/∈J

L(s, ψi)
ni =

∏
i/∈J

L(s, ψi)
ni .

If in (3.24) ni ≥ 0 and ψi 6= 1 for all i, then L(s, χ) is entire. However,
for most character χ such an expression does not exist. Artin’s conjecture
that L(s, χ) is holomorphic for irreducible χ 6= 1 is much deeper (see [10, p.
525]). In particular, it implies the cancellation of the zeroes of the L(s, ψi)
with ni < 0 with those of L(s, ψi) with ni > 0 in (3.24).

3.6 Functional equation
Let v be an infinite place of k. Since the decomposition group Gw of a place
w of K above v is of order 1 or 2, then it has a unique generator, which we
denote by σw.

Definition 3.18. If v is a real place, we set

Lv(s, χ) =

(
Γ
(s

2

)
Γ

(
s+ 1

2

))χ(1)

= (21−s√πΓ(s))χ(1).

If v is a complex place, we set

Lv(s, χ) = Γ
(s

2

)χ(1)+χ(σw)
2

Γ

(
s+ 1

2

)χ(1)−χ(σw)
2

.

Note that the local L-functions in the Definition 3.18 depend only on the
action of σw on V , i.e. only on V as Gw-module. Moreover,

χ(1) + χ(σw)

2
= 〈χ|Gw , 1Gw〉Gw = dimV Gw ,

and

χ(1)− χ(σw)

2
= χ(1)− χ(1) + χ(σw)

2
= dimV − dimV Gw = codimV Gw .

Let

Λ(s, V ) :=
∏
v

Ls(s, V ) = Γ
(s

2

)a
Γ

(
s+ 1

2

)b
L(s, V ), (3.25)

where the product is over all the places of k, and where

a = a1 + r2dimV,
b = a2 + r2dimV,
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with

a1 =
∑
v real

dimV Gw ,

a2 =
∑
v real

codimV Gw .

Note that, if V and W are two representations of G then

Λ(s, V ⊕W ) = Λ(s, V )LS(s,W ). (3.26)

Moreover, let V ′ be the inflation of V . Then

Λ(s, V ′) = Λ(s, V ). (3.27)

Finally, let H be a subgroup of G and consider the intermediate field

k′ := KH ,

i.e. k ⊂ k′ ⊂ K. Let W be a representation of H and set

V = IndGHW.

Then
Λ(s,W ) = Λ(s, V ). (3.28)

The properties (3.26), (3.27) and (3.28) verified by the fact that (3.15) holds
for infinite v as well (see [11, p. 19]).

Consider an Artin L-function L(s, χ). By Theorem 2.2.4, there exist ψi,
1-dimensional characters of some subgroups Hi of G, such that

L(s, χ) =
∏
i

L(s, ψi)
ni .

In particular, our definition of Λ(s, ψi) is consistent with Definition 3.10. So,
we know that there exist constants Bψi > 0 and Cψi ∈ C∗ such that

Λ(1− s, ψi) = CψiB
s
ψi

Λ(s, ψ̄i).

Thus, by (3.26), we have that

Λ(1− s, χ) =
∏
i

Λ(1− s, ψi)ni =
∏
i

Cni
ψi
Bsni
ψi

Λ(s, ψ̄i)
ni

= CχB
s
χΛ(s, χ̄),

(3.29)
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where
Bχ =

∏
i

Bsi
ψi
> 0 and Cχ =

∏
i

Cni
ψi
.

In particular, Bχ and Cχ are uniquely determined by (3.29), independent of
the choice of the expression

χ =
∑
i

niIndGHiψi.

Moreover, there exist unique constants Aχ > 0 with

Aχ = Aχ̄,

and Wχ ∈ C∗, called an Artin root number, with

|Wχ| = 1 and Wχ̄ = W χ,

such that the functions

ξ(s, χ) := As/2χ Λ(s, χ) = As/2χ Γ
(s

2

)a
Γ

(
s+ 1

2

)b
L(s, χ) (3.30)

satisfy
ξ(1− s, χ) = Wχξ(s, χ̄).

(see [2, p. 225]). In particular, Artin showed that

Aχ =
|dk|χ(1)Nf(χ)

π[k:Q]χ(1)
,

where dk is the discriminant ideal of the extension k/Q and f(χ) is an integral
ideal of Ok involving only primes ramified in K called the conductor of χ (see
[10, Ch. 7, Theorem 12.6]).

Now, if we consider the case χ = 1 and assuming W1 = 1, we have that
the Dedekind zeta function ζk(s) satisfies the functional equation

ξ(1− s) = ξ(s), (3.31)

where

ξ(s) =

(
|dk|χ(1)

π[k:Q]

)s/2
Γ
(s

2

)r1+r2
Γ

(
s+ 1

2

)r2
ζk(s).
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Chapter 4

Basic Stark Conjecture

4.1 Class number formula
Theorem 4.1.1. Let k be a number field. The Dedekind zeta function ζk(s)
has a simple pole at s = 1 with residue

2r1(2π)r2√
|dk|

hkRk

wk
,

where

• hk is the class number of k;

• Rk is the regulator of k;

• wk is the number of roots of unity contained in k.

Proof. See [10, Ch. 7, Corollary 5.11].

By means of the functional equation (3.31) of ζk(s), the Theorem 4.1.1
can be reformulated to became true for s = 0.

Corollary 4.1.2. The Taylor expansion of ζk(s) at s = 0 starts as follows

ζk(s) = −hkRk

wk
sr1+r2−1 + . . .

Therefore, by Corollary 4.1.2, the first non-vanishing Taylor coefficient of
ζk(s) at s = 0 is the product of a rational number −hk/wk with the regulator
Rk, which is the determinant of a matrix whose entries involve logarithms of
absolute values of units and whose size

r1 + r2 − 1

is the order of vanishing of ζk(s) at s = 0.

63
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4.2 S-imprimitive L-functions
Let S be a finite set of places of k containing S∞, the set of infinite places of
k, and let V be a representation of the Galois group G = GK/k of a Galois
extension K/k of number fields.

Definition 4.1. The S-imprimitive Artin L-function is defined for <(s) >
1 as

LS(s, V ) :=
∏
v/∈S

Lv(s, V ).

Note that, if V and W are two representations of G then

LS(s, V ⊕W ) = LS(s, V )LS(s,W ). (4.1)

Moreover, let V ′ be the inflation of V . Then

LS(s, V ′) = LS(s, V ). (4.2)

Finally, let H be a subgroup of G and consider the intermediate field

k′ := KH ,

i.e. k ⊂ k′ ⊂ K. Let W be a representation of H and set V = IndGHW . Then

LS(s,W ) = LS(s, V ). (4.3)

The properties (4.1), (4.2) and (4.3) are satisfy by the S-imprimitive Artin
L-functions since all of them hold place by place for the local L-functions
Lv(s, V ) (see [11, p. 21]).

Definition 4.2. We define the S-Dedekind zeta function of the field k as

ζk,S(s) := LS(s, 1) =
∏
P /∈S

1

1−NP−s
.

We can view ζk,S(s) as the zeta function associated with the Dedekind
domain

Ok,S = {x ∈ k : |x|v = (NPv)
−ordPv (x) ≤ 1 for all v /∈ S},

consisting of the S-integers of k. Moreover, we denote the S-class number
by hk,S and the S-regulator by Rk,S.
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Lemma 4.2.1. Let v be a place of k which is not contained in S and let

S ′ = S ∪ {v}.

Let m be the order of v in the S-class group of k, which is the ideal class
group of Ok,S. Then

hk,S′ =
hk,S
m

,

and
Rk,S′ = m(logNv)Rk,S.

Corollary 4.2.2. The Taylor expansion of ζk,S(s) at s = 0 starts as follows

ζk,S(s) = −hk,SRk,S

wk
s|S|−1 + . . .

(See [11, p. 21]).
Given an S-imprimitive Artin L-function, we write

LS(s, χ) = cS(χ)srS(χ) + . . . ,

where
r(χ) = rS(χ)

is the order of vanishing of LS(s, χ) at s = 0. In order to compute it, we
introduce some notation. Let SK be the set of places of K lying above the
places of S. Let

Y = YSK

be the free abelian group on SK , and let

η : Y → Z

be the surjective homomorphism such that

η(w) = 1 for all w ∈ SK .

The kernel of η is denoted by

X = XSK .

Thus we obtain the short exact sequence of G-modules

0 −→ X −→ Y
η−→ Z −→ 0. (4.4)
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Now, given an abelian group B and a subring A of C, we set

AB := A⊗Z B.

By Proposition 3.3.1, G acts on CY by permuting the places of SK , that is,

σ.

(
a⊗

(∑
w∈SK

nww

))
= a⊗

(∑
w∈SK

nw · σ.w

)
,

for all σ ∈ G and a ⊗
(∑

w∈SK nww
)
∈ CY . Since CY is a permutation

representation of G, then its character

χY := χCY

is integer valued (see [13, Proposition 7.2.5]). Similarly, we define the per-
mutation representation CX of G and the corresponding character

χX := χCX .

In particular, tensoring the exact sequence (4.4) with C, we obtain the exact
sequence of C[G]-modules

0→ CX → CY → C→ 0. (4.5)

By semisemplicity, the exactness of (4.5) implies that

CY ∼= CX ⊕ C

as C[G]-modules. By Example 2, we have

χY = χX + χC, (4.6)

where χC is the trivial representation defined in Example 1.

Lemma 4.2.3. For each v ∈ S, let us choose a place w of K lying above v.
Then we have the formula

rS(χ) =
∑
v∈S

dimV Gw − dimV G = 〈χV , χX〉G = dim(HomG(V ∗,CX)),

where
V ∗ = HomC(V,C)

is the dual representation to V .
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Proof. By Theorem 2.2.2,

〈χV , χX〉G = 〈χX , χ∗V 〉G = 〈χ∗V , χX〉G = dim(HomG(V ∗,CX)),

where the first equality follows by the fact that χX is integer valued, as we
can see from (4.6).

Now, if we choose for each v ∈ S a fixed place w ∈ SK lying above v, we
have an isomorphism of Z[G]-modules

Y ∼=
⊕
v∈S

IndGGwZ =
⊕
v∈S

Z[G]⊗Z[G] Z.

Tensoring with C, we obtain

CX ⊕ C ∼= CY ∼=
⊕
v∈S

IndGGwC.

Thus
〈χV , χX〉G = 〈χV , χY − χC〉G = 〈χV , χY 〉G − 〈χV , χC〉G,

where

〈χV , χY 〉G =
∑
v∈S

〈χV , IndGGwχC〉G =
∑
v∈S

〈resGGwχV , χC〉H =
∑
v∈S

dimV Gw ,

by (2.8), and
〈χV , χC〉G = dimV G.

Finally, by Theorem 2.2.4, there exist Wi, 1-dimensional representations
of some subgroups Hi of G, such that

χV =
∑
i

niIndGHiψi, (4.7)

where ψi is the character of Hi. Since

LS(s, χV ) =
∏
i

LS(s, ψi)
ni ,

then
r(χ) =

∑
i

nir(ψi). (4.8)

On the other hand, (4.7) and (2.8) imply that

〈χV , χX〉G =
∑
i

ni〈IndGHiψi, χX〉G =
∑
i

ni〈ψi, resGHχX〉H . (4.9)
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Comparing (4.8) and (4.9), it suffices to study the ψi’s instead of χV , that
is, we can reduced to prove

r(ψi) =
∑
v∈S

dimW (Hi)w
i − dimWHi

i

for all i.
If ψi = 1, then

LS(s, ψi) = ζk,S(s).

By Corollary 4.2.2, we have that

r(ψi) = |S| − 1 =
∑
v∈S

dimW (Hi)w
i − dimWHi

i .

If ψi 6= 1, then
WHi
i = 0.

Note that
LS∞(s, ψi) = L(s, ψ).

Moreover, by Definition 3.15, for each finite place v, the Euler factor Lv(s, ψi)
has neither a zero nor a pole at s = 1. The same holds for each real, or
complex, place v, by Definition 3.18. So, equating the orders at s = 0 in the
functional equation

ξ(s, ψi) = Wψiξ(1− s, ψi),
where

ξ(s, ψi) := A
s/2
ψi

Λ(s, ψi) = A
s/2
ψi

Γ
(s

2

)a
Γ

(
s+ 1

2

)b
L(s, ψi),

by (3.30), we obtain
−a+ rS∞(χi) = 0.

Since
a = a1 + r2dimWi = a1 + r2,

with
a1 =

∑
v real

dimW (Hi)w
i ,

we have that
rS∞(χi) = a =

∑
v∈S∞

dimW (Hi)w
i .

Since
LS(s, V ) :=

∏
v/∈S

Lv(s, V ),
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we obtain

r(ψi) = |{v ∈ S r S∞ : ψi((Hi)w) = 1}|+ rS∞(ψi)

=
∑

v∈SrS∞

dimW (Hi)w
i + rS∞(ψi)

=
∑
v∈S

dimW (Hi)w
i ,

which is what we want.

Corollary 4.2.4. If V is a 1-dimensional representation of G, then

rS(χ) =

{
|{v ∈ S : Gw ⊂ Ker(χ)}| if χ 6= 1

|S| − 1 if χ = 1
.

4.3 Stark regulator
Given a character χ, we will now introduce a regulator attached to χ which
will appear in the formulation of the conjecture.

We denote by

U = UK,SK = {x ∈ K : ordPw(x) = 0 for all w /∈ SK}

the group of SK-units of K, and we consider the logarithm map

λ : U → RY

defined by
u 7→

∑
w∈SK

log |u|w · w.

The image of λ is in RX. In fact, for each u ∈ U ,

η

(∑
w∈SK

log |u|w · w

)
=
∑
w∈SK

log |u|w · η(w) = log

( ∏
w∈SK

|u|w

)
= 0

because, by Theorem 2.1.3,∏
w∈SK

|u|w =
∏
w∈ΣK

|u|w = 1,

where ΣK is set of all places of K.

Theorem 4.3.1. The image of λ is a lattice of full rank |S| − 1 in RX.
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Proof. See [6, Ch. 5, §1, Unit Theorem].

We denote by µK the kernel of λ, which consists of roots of unity in K.

Corollary 4.3.2. U/µK is a free abelian group on |S| − 1 generators.

Proof. See [6, Ch. 5, §1, Corollary].

By Theorem 4.3.1, tensoring λ with R, we get the G-equivariant isomor-
phism

1⊗ λ : RU → RX, (4.10)

which we denote with the same symbol λ. Moreover, tensoring (4.10) with
C, we obtain an isomorphism of C[G]-modules

CU → CX,

also denoted by λ. This implies that QX and QU are isomorphic as Q[G]-
modules, but not canonically so (see [12, p. 91]).

Definition 4.3. A set of units εw, one for each place w ∈ SK , such that

εσw = εwσ for all σ ∈ G,

and such that the only relation among them is∏
w∈SK

εw = 1,

is called an Artin system of units.

For a proof of the existence of an Artin system of units, see [1, Ch.5, §3].
Note that an Artin system of units gives the Z[G]-module morphism

Y → U (4.11)

which sends w to εw for each w ∈ SK . By definition of X, (4.11) induces an
injective Z[G]-module morphism

X ↪→ U. (4.12)

Now, if we tensor the exact sequence (4.4) with Q, we obtain the exact
sequence

0→ QX → QY → Q→ 0.

It follows that

dimQ(QX) = dimQ(QY )− 1 = |SK | − 1.
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Since
dimZ(U) = |SK | − 1

(see [10, Ch. 1, Corollary 11.7]), after tensoring (4.12) with Q, we get a
Q[G]-isomorphism

QX → QU.

Let
f : QX → QU

be a Q[G]-isomorphism. f induces an isomorphism of C[G]-modules

CX
∼=−→ CU,

which we denote by the same symbol. Composing with λ, we get a C[G]-
automorphism of CX

λ ◦ f : CX −→ CX. (4.13)

Moreover, given any representation V of G, (4.13) induces an automorphism

(λ ◦ f)V : HomG(V ∗,CX) −→ HomG(V ∗,CX)

ϕ 7−→ λ ◦ f ◦ ϕ

Definition 4.4. The determinant

R(V, f) := RS(V, f) = det((λ ◦ f)V ) (4.14)

is called the Stark regulator.

Since the definition (4.14) does not depend on the choice of the representation
V , we write R(χ, f) instead of R(V, f).

4.4 Stark’s Basic Conjecture
Given a representation V of a finite group G with character χ = χV , we
define

Q(χ) := Q({χ(σ) : σ ∈ G}).

Let |G| = n for some n ∈ N. Since χ(σ) is a sum of n-roots of 1 for all σ ∈ G,
then Q(χ) is contained in a cyclotomic field, which is abelian. So, Q(χ) is
an abelian extension of Q. Set

∆χ := Gal(Q(χ)/Q).
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Lemma 4.4.1. Let K be a Galois extension of Q contained in C. The map

Aut(C)→ Gal(K/Q)

α 7→ α|K

is a surjective homomorphism, and K is the fixed field of its kernel.

(See [11, p. 23]).
Viewing α ∈ Aut(C) as a base extension, we can define the functor

RepG → RepG
V 7→ C⊗α V

where the action of G on C⊗α V is given by

σ.(a⊗ x) = α(a)⊗ σ.x,

for all σ ∈ G, a ∈ C and x ∈ V . The map

V → V α

x 7→ xα := 1⊗ x
(4.15)

is an isomorphism of Q[G]-modules. In particular, (4.15) is an "α-linear"
map of C[G]-modules, since

(ax)α = 1⊗ ax = α(a)⊗ x = α(a)(1⊗ x) = aαxα,

for all a ∈ C and x ∈ V .
Now, fix σ ∈ G. Let x be an eigenvector for the action of σ on V of

eigenvalue µx, that is,
σ.x = µxx.

Then

σ.(1⊗ x) = α(1)⊗ σ.x = 1⊗ µx = α(µx)⊗ x = µαx(1⊗ x),

i.e. 1 ⊗ x is an eigenvector for the action of σ on V α of eigenvalue µαx . By
the isomorphism (4.15), we have that

{1⊗ v : v is in the eigenbasis for the action of σ on V }

is an eigenbasis for the action of σ on V α. Then the character of V α is given
by

χα(σ) := Tr(σ|V α) = α(χ(σ)), for all σ ∈ G.
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By this, the character χα, and hence the isomorphism class of V α, depend
only on the image α|Q(χ) of α in ∆χ.

Now, consider a Galois extension of number fields K/k. Let V be a
representation of the Galois group G = GK/k with character χ = χV . By
Lemma 4.2.3, we have

r(χ) = 〈χ, χX〉G =
1

|G|
∑
σ∈G

χ(σ)χX(σ) = dim(HomG(V ∗,CX)) ∈ N,

since χX is integer valued. We thus have

r(χα) = 〈χα, χX〉G =
1

|G|
∑
σ∈G

χα(σ)χX(σ) =
1

|G|
∑
σ∈G

α(χ(σ))χX(σ)

=
1

|G|
∑
σ∈G

α(χ(σ)χX(σ)) = α

(
1

|G|
∑
σ∈G

χ(σ)χX(σ)

)

=
1

|G|
∑
σ∈G

χ(σ)χX(σ) = r(χ),

for all α ∈ ∆χ. Define

A(χ, f) = AS(χ, f) :=
R(χ, f)

c(χ)
.

Given any representation V of GK/k with character χ, the Stark basic’s con-
jecture states that

• A(χ, f) ∈ Q(χ);

• A(χ, f)α = A(χα, f), for all α ∈ ∆χ.

4.5 The case r(χ) = 1

Let χ be an irreducible character of G = GK/k for which

r(χ) = rS(χ) = 1 (4.16)

for some S. This means that χ has multiplicity 1 in CX. Moreover,

r(χα) = r(χ) = 1

for all α ∈ ∆ = ∆χ = Gal(Q(χ)/Q). By (4.16),

V α = C⊗α V
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denotes the unique irreducible constituent of CX with character χα. Let

V̄ := V β

such that
χβ = χ̄

for some β ∈ ∆. In particular,

V̄ ∼= V ∗.

The central idempotent

eαχ := eχα =
χα(1)

|G|
∑
σ∈G

χα(σ)σ =
χ(1)

|G|
∑
σ∈G

χα(σ−1)σ

=
χ(1)

|G|
∑
σ∈G

(χ(σ−1))ασ ∈ C[G]

projects CX onto V α, and kills all the other irreducible constituents of CX.
Consider the sum

π :=
∑
α∈∆

eαχ ∈ Q[G].

Note that π projects QX onto a Q[G]-submodule W of QX such that

CW =
∑
α∈∆

V α.

In particular,

χW = χC · χW = χC⊗W = χCW =
∑
α∈∆

χα.

For each C-valued function
h : ∆→ C,

let

CW → CW∑
α∈∆

vα 7→
∑
α∈∆

h(α)vα
(4.17)

be the endomorphism of CW which acts on V α as a scalar multiplication by
h(α). Note that (4.17) is induced by the action of the element

θh :=
∑
α∈∆

h(α)eαχ.
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These operators θh form a commutative ring which is canonically isomorphic
to C⊗Q Q(χ) via the map

a⊗ z 7→ aθhz ,

with a ∈ C, z ∈ Q(χ), and where

hz(α) := zα for all α ∈ ∆.

Moreover, consider the isomorphism

C⊗Q Q(χ)→ C|∆|

a⊗ z 7→ (a · hz(α))α∈∆

So, we have an isomorphism between the commutative ring formed by the
operators θh and C|∆|.

Lemma 4.5.1. Let
h : ∆→ C

be a C-valued function. The following are equivalent conditions on h:

(1) h(1) ∈ Q(χ) and h(α) = h(1)α for all α ∈ ∆.

(2) θh ∈ Q[G].

(3) θhW ⊂ W .

Proof. Denote with Hi the set of C-valued functions

h : ∆→ C

satisfying the condition (i). Let h ∈ H1. If σ ∈ G, the coefficient of σ in θh
is

χ(1)

|G|
∑
α∈∆

h(α)χ(σ−1)α =
χ(1)

|G|
∑
α∈∆

h(1)αχ(σ−1)α =
χ(1)

|G|
∑
α∈∆

(h(1)χ(σ−1))α.

By (1),
h(1)χ(σ−1) ∈ Q(χ).

Then ∑
α∈∆

(h(1)χ(σ−1))α ∈ Q

because it is the trace from Q(χ) to Q of h(1)χ(σ−1). Thus

θh ∈ Q[G].
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Now, let h ∈ H2. Since W is a Q[G]-submodule of QX, then

θhW ⊂ W,

i.e. h ∈ H3.
So, we know that

H1 ⊂ H2 ⊂ H3.

Then, if we prove that
dimQH3 ≤ dimQH1, (4.18)

we obtain
H1 = H3, i.e. H3 ⊂ H1.

Consider the map

H1 → Q(χ)

h 7→ h(1)
(4.19)

Note that (4.19) is a bijection with inverse

Q(χ)→ H1

z 7→ hz

In fact, for all h ∈ H1, we have

hh(1)(α) = h(1)α = h(α).

On the other hand, for all z ∈ Q(χ), we obtain

hz(1) = z1 = z.

So, we have to show that
dimQH3 ≤ |∆|,

since
|∆| = [Q(χ) : Q] = dimQH1

by the bijection (4.19). Now, the maps

H3 → EndQ[G](W )

h 7→ θh

and
C⊗Q EndQ[G](W )→ EndC[G](CW )
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defined as

CW → CW
b⊗ x 7→ (ab)⊗ f(x)

are injective. Hence

dimQH3 ≤ dimQ EndQ[G](W ) = dimC(C⊗Q EndQ[G](W ))

≤ dimC EndC[G](CW ) = dimC EndC[G]

(∑
α∈∆

V α

)

= dimC

(∏
α∈∆

EndC[G](V
α)

)
= |∆|.

Now let
f : QX → QU

be a Q[G]-homomorphism and put:

• A :=
∑

α∈∆ A(χα, f)eχ̄α .

• c :=
∑

α∈∆ c(χ
α)eχ̄α =

∑
α∈∆ ∂sLS(0, χα)eχ̄α .

• R :=
∑

α∈∆R(χα, f)eχ̄α .

Theorem 4.5.2. Let χ be an irreducible character of G such that

r(χ) = 1.

Let
WU := f(W ) = πQU.

The following assertions are equivalent:

(1) Stark’s Basic Conjecture is true for χ.

(2) cW = λ(WU).

(3) For all z ∈ Q(χ)∗,
γ(z, χ)QX ⊂ λ(QU),

where
γ(z, χ) :=

∑
α∈∆

hz(α) · ∂sLS(0, χα)eχ̄α .
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Proof. We start proving the equivalence between the conditions (1) and (2).
If we apply Lemma 4.5.1 with

h(α) = A(χα, f),

we have that Stark’s Basic Conjecture holds for χ if, and only if,

AW ⊂ W.

Note that each of the three operators A, c and R act injectively on CW . By
definition of W , we have that

W ⊂ AW.

Thus we have
AW ⊂ W ⇔ W = AW ⇔ cW = cAW. (4.20)

By definition of A(χ, f), we have that

cA = R,

because {
eχ̄αeχ̄β = 0 if α 6= β
eχ̄αeχ̄β = eχ̄α if α = β

.

So,
AW ⊂ W ⇔ cW = RW. (4.21)

It remains to prove that
RW = λ(WU).

For each α ∈ ∆, R acts on V̄ α by the scalar R(χα, f). By definition, the
Stark regulator R(χα, f) is the determinant of the endomorphism

(λ ◦ f)V α : HomC[G](V̄
α,CX) −→ HomC[G](V̄

α,CX),

where
HomC[G](V̄

α,CX) = HomC[G](V̄
α, V̄ α).

Since, by Lemma 4.2.3,

dimHomC[G](V̄
α, V̄ α) = r(χ) = 1,

then R(χα, f) is the same as the scalar by which λ ◦ f acts on V̄ α. Hence

RW = (λ ◦ f)(W ) = λ(f(W )) = λ(WU).
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Thus, by (4.21), we can conclude that

AW ⊂ W ⇔ cW = λ(WU),

that is, the conditions (1) and (2) are equivalent.
Now, assume

cW = λ(WU).

If z = 0, we have that the condition (3) holds. If z 6= 0, then

θhzQX = W,

since θhz maps QX isomorphically in W . Hence

γ(z, χ)QX = cθhzQX = cW.

Since
W = πU ⊂ QU,

we can conclude that

γ(z, χ)QX = λ(WU) ⊂ λ(QU).

On the other hand, applying π to (3) with z = 1, we obtain

π(cQX) ⊂ π(λ(QU)), (4.22)

where
π(cQX) = cπ(QX) = cW,

and
π(λ(QU)) = λ(π(QU)) = λ(WU)

with
λ(WU) = λ(πQU)) ∼= λ(πQX)) = λ(W ) ∼= W.

Since
dimQ(cW ) = dimQ(W ) = dimQ(λ(WU)),

by (4.22) we can conclude that

cW = λ(WU).
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4.6 Stark units
Let Ψ be a set of irreducible characters of G such that

(1) The trivial character is not contained in Ψ.

(2) For all χ ∈ Ψ, we have

χα ∈ Ψ for all α ∈ Aut(C).

Let (zχ)χ∈Ψ be a family of complex numbers satisfying

zχα = zαχ

for all χ ∈ Ψ and for all α ∈ Aut(C). Assuming Stark’s Basic Conjecture,
Theorem 4.5.2 implies that(∑

χ∈Ψ

zχ∂sLS(0, χ)eχ̄

)
·X ⊂ λ(QU), (4.23)

Since the trivial character is not in Ψ, we can replace X by Y in (4.23). For
each w ∈ SK , then there exists a m ∈ N>0 and a SK-unit ε of K such that

λ(ε) = m
∑
χ∈Ψ

zχ∂sLS(0, χ)eχ̄ · w. (4.24)

Suppose for simplicity that there is a v ∈ S which splits completely, and fix
a place w of K lying above v. Since

eχ̄ =
χ(1)

|G|
∑
σ∈G

χ(σ)σ,

we can rewrite (4.24) as

λ(ε) =
∑
σ∈G

(
m

|G|
∑
χ∈Ψ

χ(1)zχ∂sLS(0, χ)χ(σ)

)
· σw,

where

λ(ε) =
∑
u∈SK

log |ε|u · u =
∑
w′-v

log |ε|w′ · w′ +
∑
σ∈G

log |ε|σw · σw.

Then the equation (4.24) is equivalent to the conditions{
|ε|w′ = 1 if w′ - v
log |ε|σw = m

|G|
∑

χ∈Ψ χ(1)zχ∂sLS(0, χ)χ(σ) for all σ ∈ G . (4.25)
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Definition 4.5. A SK-unit ε which solves the system of equations (4.25) is
called a Stark unit.

Note that, if a Stark unit exists, it is determined up to a root of unity in K.

Example 7. Suppose v is a real place which splits completely in K. Let w
be a place of K which lies above v given by the embedding

σw : K ↪→ R.

Note that
ε = ±|σw(ε)| = ±|ε|w = ±elog |ε|w .

Since for all σ ∈ G
|ε|σw = |εσ−1|w,

we find

εσ
−1

= ±elog |εσ−1 |w = ±elog |ε|σw = ±e
m
|G|

∑
χ∈Ψ χ(1)zχ∂sLS(0,χ)χ(σ).

If K/k is abelian and S contains the places v ramified in K, Stark has
conjectured that, if µ(K) is the group of unity in K, then

m = |µ(K)|,
will do for the case

zχ = 1 for all χ.
The non-abelian case is unclear instead. So, in general one supposes m is
small, at least in the case K is totally real.

If we found a valid m and double it, we obtain for all σ ∈ G that

ε2σ−1

= e
2m
|G|

∑
χ∈Ψ χ(1)zχ∂sLS(0,χ)χ(σ).

So we can calculate real numbers close to the conjugates of ε at a real place w.
We can then compute approximations to the coefficients of the polynomial

f(X) =
∏
σ∈G

(X − εσ) ∈ k[X],

and try to find the small integers in k which are those coefficients. Finally,
we can check that the roots of the polynomial f(X) generate the starting
extension of number fields K/k.

Example 8. Another special case in which the conjecture is a classical result
is when

k = Q
and K is the real subfield of the group of n-th roots of 1. In fact, we have
that the Stark unit is

2− 2 cos(
2π

n
).
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