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Introduction

Throughout the first 200 years of the development of the calculus of variations, following
the work of Gauss, Steiner, Lord Kelvin, Dirichlet and Riemann, the classical approach
involved looking for necessary conditions which would have to be satisfied by minimiz-
ers. This is what is now known as the classical indirect approach, and it is based on
the somewhat optimistic idea that every minimization problem does in fact have a so-
lution. An analysis of the necessary conditions (for example, the Euler equation which
is to be satisfied by a sufficiently regular minimizer u) permits one to eliminate many
candidates, however, without having proven the existence of a minimizer, one in general
cannot identify a unique solution. These considerations, among many others, brought
mathematicians to try to attack the minimum problem directly, by attempting to im-
mediately prove the existence of a minimizer. This approach, which in turn would also
yield existence theorems for solutions to Euler equations satisfying prescribed conditions,
is usually referred to as the direct method of the calculus of variations, and it specifically
originated from the work of Gauss, Lord Kelvin, Dirichlet and Riemann following their
work on boundary value problems for the potential equation ∆u = 0.

In the nineteenth century, this method was refined by Tonelli, who realized (expand-
ing on the work of Baire and Lebesgue) that Ascoli-Arzelà’s compactness theorem and
Baire’s semicontinuity concept could be transferred to the calculus of variations and used
as tools to demonstrate the existence of minimizers of one-dimensional variational inte-
grals by means of direct methods. Under these assumptions, Tonelli worked inside the
class of absolutely continuous functions defined on a closed and bounded interval I ¦ R.
He popularised these ideas, which are nowadays very much a part of our mathematical
culture, in a series of lectures and published papers during the first thirty years of the
century, applying them to a wide range of variational problems [1].

In this thesis we will apply Tonelli’s ideas, in the more modern setting of so-called
Sobolev spaces, to minimum problems for variational integrals with an added constraint,
given in the form of an integral of a specified Lagrangian. Specifically, we will first of all
prove an existence result for solutions to minimum problems of specified type, then inves-
tigate the regularity properties of these extrema as a function of the given Lagrangians
and finally distinguish between the behaviour of regular and singular extrema. We will
see that the theory can be developed in all one-dimensional Sobolev spaces H1,p(I), with
p g 1, and that the solutions actually inherit the regularity properties of the objective
and constraint Lagrangians.

Conclusively, in the last chapter, we will investigate a specific parametric Dirichlet-
energy constrained minimization problem of the aforementioned type and study the reg-
ularity of its solutions. This will prove to be particularly difficult for a certain choice of
parameters, for which the question of whether a minimizer is necessarily regular with re-
spect to the constraint remains open. This question turns out to be particularly interesting
because, in case of an affirmative answer, it would provide an example of a “corner-type”
extremal, in contraposition to results like those in [5] and [4] which explicitly prove the
non-minimality of such functions in different contexts.
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Chapter 1

Existence theory

Let I = (a, b) ¦ R be a bounded open interval, n g 1 and p g 1. Given the Lagrangians
G : Ī ×R → R

n, F : Ī ×R×R → R, with G ∈ C1(I ×R,Rn) and F ∈ C1(I ×R×R,R),
we respectively define the objective and constraint functionals

F : H1,p(I) → R, G : H1,p(I) → R
n

as

F(u) :=

∫ b

a

F (x, u(x), u′(x))dx, G(u) :=

∫ b

a

G(x, u(x))dx,

where H1,p(I) is a one-dimensional Sobolev space which will be rigorously defined in the
next section.
The aim of this chapter is to prove the following theorem:

Theorem 1 (Tonelli’s existence theorem). Let p > 1 and suppose that the Lagrangian
F ∈ C1(I × R× R,R) satisfies the following conditions:

1. F (x, z, À) is convex in À, meaning that À 7→ F (x, z, À) is convex ∀(x, z) ∈ Ī × R ;

2. F (x, z, À) has polynomial growth, meaning ∃ c0, c1 ∈ R such that given (x, z) ∈ Ī×R,

c0|À|
p f F (x, z, À) f c1(1 + |À|p) ∀À ∈ R; (1.1)

3. Cp(³, ´) := {u ∈ H1,p(I) | u(a) = ³, u(b) = ´ and G(u) = 0} ≠ ∅.

Then there exists a minimizer of F under the constraint G(u) = 0 in the class Cp(³, ´),
where ³, ´ ∈ R are fixed.

In the last section of this chapter we will prove that the same theorem extends to
functions in H1,1(I) if we replace condition (2.) with

2. F (x, z, À) has superlinear growth, meaning there exists a function ¹(À) such that

{

F (x, z, À) g ¹(À), ∀(x, z, À) ∈ Ī × R× R

¹(À)/|À| → ∞, as |À| → ∞.
(1.2)
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This will require a more detailed weak compactness criterion, as L1(I) (and thus H1,1(I))
is not reflexive.

1.1 Background

We give a brief overview of the main definitions and results (without proof) regarding
Sobolev spaces in dimension 1 and absolutely continuous functions, which will be used
throughout the entire thesis.

Definition 1 (Sobolev spaces in dimension 1). Given an open interval I ¦ R and p g 1,
we denote by X the linear subspace of C1(I) consisting of functions u for which

||u||H1,p(I) :=

(
∫

I

(|u|p + |u′|p)dx

)1/p

<∞.

|| · ||H1,p(I) is a norm on X, and the completion of X with respect to this norm is denoted
by H1,p(I) and referred to as a Sobolev space. If p = 2, it is conventional to denote
H1(I) := H1,2(I), which is also a Hilbert space.

Definition 2 (Absolutely continuous functions). A function f : (a, b) → R is said to be
absolutely continuous (in the sense of Vitali) if, for every ϵ > 0, there is a ¶ > 0 such that

N
∑

i=1

(´i − ³i) < ¶ =⇒
N
∑

i=1

|f(´i)− f(³i)| < ϵ

whenever (³1, ´i), . . . , (³N , ´N) are disjoint segments in (a, b). The class of absolutely
continuous functions is denoted by AC(a, b).

Theorem 2. We have
AC(a, b) = H1,1(a, b).

More precisely, every u ∈ AC(a, b) has an almost everywhere classical derivative u′ which
belongs to L1(a, b), and viewed as an element of L1, u′ is the weak derivative of u. Con-
versely, every u ∈ H1,1(a, b), modulo a modification on a set of measure zero, is an ab-
solutely continuous function. Finally, u ∈ AC(a, b) if and only if u is almost everywhere
differentiable in a classical sense, u′ belongs to L1(a, b) and the fundamental theorem of
calculus holds true, i.e. for all x, y ∈ (a, b) we have

u(x)− u(y) =

∫ x

y

u′(t)dt.

Theorem 3. Given an open interval I ¦ R, we have

i) Every function in H1,1(I) is uniformly continuous in I, in particular

H1,1(I) ¦ C0(Ī);
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ii) if u ∈ H1,p(I), p > 1, then u ∈ C0,1−1/p(I) and for all x, y ∈ Ī we have

|u(x)− u(y)| f

(
∫

I

|u′|pdx

)1/p

|x− y|1−1/p.

1.2 Tonelli’s semicontinuity Theorem

In order to prove Theorem 1 we need a semicontinuity result for F(u) under the assump-
tion that F is convex in À:

Theorem 4 (Tonelli’s semicontinuity theorem). Let I = (a, b) ¦ R be a bounded open
interval and let F ∈ C1(I × R× R,R) satisfy:

1. F is non-negative (or bounded below by an L1 function);

2. F (x, z, À) is convex in À ∈ R for all (x, z) ∈ Ī × R.

Then the functional F(u) is sequentially weakly lower semicontinuous in H1,p(I) for all
p g 1, meaning that if uk á u weakly in H1,p, then

F(u) f lim inf
k→∞

F(uk). (1.3)

The proof relies on three standard results from integration theory, which we state here
(for proofs of these results, see [2]):

Theorem (Egorov). Let f, fk : I → R, k ∈ N be measurable functions such that fk(x) →
f(x) for a.e. x ∈ I. Then for all ϵ > 0, there exists a compact set K ¦ I with meas(I \
K) < ϵ such that fk ⇒ f on K.

Theorem (Lusin). Let f : I → R be measurable. Then for all ϵ > 0 there exists a
compact set K ¦ I such that meas(I \K) < ϵ and f : K → R is continuous.

Theorem (Absolute continuity of the Lebesgue integral). Let f : I → R be integrable.
Then for all ϵ > 0 there exists ¶ > 0 such that

A ¦ I, meas(A) < ¶ =⇒

∫

A

|f | < ϵ.

Proof of Theorem 2. We first notice that it is sufficient to consider the case p = 1. In fact,
if p > 1, since meas(I) < ∞ we have a continuous inclusion H1,p(I) ↪→ H1,1(I), which
remains continuous if both spaces are equipped with their respective weak topologies.
This means that if {uk} converges weakly to u in H1,p(I), it also converges weakly to u
in H1,1(I).
At this point, let {uk} ¦ H1,1(I) be a sequence which converges weakly to u in H1,1(I).
It is a consequence of the Banach-Steinhaus Theorem that the sequence is bounded in
H1,1(I). Furthermore, the inclusion H1,1(I) ↪→ L1(I) is compact [Brezis, Theorem 8.8
page 213] so after possibly passing to a subsequence we can assume that {uk} converges
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strongly to u in L1(I) hence almost everywhere.
At this point, assume F(u) <∞. Given an ϵ > 0 we obtain ¶ > 0 from the absolute con-
tinuity theorem above applied to F (x, u, u′), and applying Egorov’s and Lusin’s theorem
we find a compact subset K ¦ I with meas(I \K) < ¶ such that

uk ⇒ u in K, u, u′ are continuous in K
and by construction

∫

K

F (x, u, u′)dx g

∫

I

F (x, u, u′)dx− ϵ.

Since F is convex in À and continuously differentiable we have

F (x, z, À1) g F (x, z, À2) +
∂F

∂À
(x, z, À2)(À1 − À2), ∀À1, À2 ∈ R.

Applying this with À1 = u′k and À2 = uk we obtain

F(uk) g

∫

K

F (x, uk, u
′
k)dx

g

∫

K

∂F

∂À
(x, uk, u

′)(u′k − u′)dx+

∫

K

F (x, uk, u
′)dx

=

∫

K

F (x, uk, u
′)dx+

∫

K

∂F

∂À
(x, u, u′)(u′k − u′)dx

+

∫

K

(

∂F

∂À
(x, uk, u

′)−
∂F

∂À
(x, u, u′)

)

(u′k − u′)dx.

Now, becauseK is compact and ∂ÀF is continuous we have that ∂ÀF (·, u(·), u
′(·)) ∈ L∞(K)

and thus
∫

K

∂F

∂À
(x, u, u′)(u′k − u′)dx→ 0, for k → ∞

by definition of weak convergence u′k á u′ in L1(K).
Furthermore, (∂ÀF (x, uk, u

′)−∂À(x, u, u
′))k∈N converges uniformly to zero onK as k → ∞.

In fact, F is continuous in (x, z, À) by hypothesis and given ϵ > 0 we have |uk(x)−u(x)| <
ϵ ∀x ∈ K for sufficiently large k ∈ N. Since (u′k − u′)k∈N is equibounded in L1(I) (follows
from the weak convergence) we obtain

∣

∣

∣

∣

∫

K

(

∂F

∂À
(x, uk, u

′)−
∂F

∂À
(x, u, u′)

)

(u′k − u′)dx

∣

∣

∣

∣

f ||u′k − u′||L1(I)

∣

∣

∣

∣

∣

∣

∣

∣

∂F

∂À
(x, uk, u

′)−
∂F

∂À
(x, u, u′)

∣

∣

∣

∣

∣

∣

∣

∣

L∞(K)

→ 0, for k → ∞.

Using Fatou’s lemma to exchange limes inferior and integration we obtain that for all
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ϵ > 0

lim inf
k→∞

F(uk) g lim inf
k→∞

∫

K

F (x, uk, u
′)dx

g

∫

K

F (x, u, u′)dx g

∫

I

F (x, u, u′)dx− ϵ.

Since ϵ > 0 is arbitrary, the Theorem follows.
Finally, if F(u) = ∞, given ϵ > 0 we can choose K compact like before such that

∫

K

F (x, u, u′)dx g
1

ϵ

holds. Reasoning exactly as above we arrive at

lim inf
k→∞

∫

K

F (x, uk, u
′
k)dx g

∫

K

F (x, u, u′)dx g
1

ϵ

so lim infk→∞ F(uk) = ∞ as claimed.

1.3 Tonelli’s existence Theorem

We are now ready to prove Theorem 1. We will first prove it in H1,p(I) with p > 1, then
introduce a weak compactness criterion in L1 that will be used to prove the version in
H1,1(I).

1.3.1 In H1,p(I), p > 1

Proof of Theorem 1. Because of the polynomial growth in (1.1), the functional F is
bounded from below by 0. Let {uk}k∈N ¦ Cp(³, ´) be a minimizing sequence for F ,
i.e. limk→∞ F(uk) = infv∈Cp(³,´) F(v) (this is possible since Cp(³, ´) is non-empty by as-
sumption).
If limk→∞ F(uk) = +∞, then F ≡ +∞ on Cp(³, ´), therefore we may assume without
loss of generality that limk→∞ F(uk) < +∞.
At this point, we want to show that {uk} is bounded in H1,p(I). Since H1,p(I) is reflexive
for p > 1, it is a consequence of Kakutani’s Theorem that in this case we can extract a
subsequence converging weakly in H1,p(I) to some u. By Tonelli’s semicontinuity Theo-
rem, we then see that u is a candidate minimizer for F in Cp(³, ´).
From the polynomial growth of F we deduce

sup
k∈N

∫

I

|u′k|
pdx f sup

k∈N

1

c1

∫

I

F (x, uk, u
′
k)dx =

1

c1
sup
k∈N

F(uk) < +∞,
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so u′k are equibounded in Lp(I). Furthermore, because I is bounded, we have H1,p(I) ¦
AC(I) and thus

uk(x) = ³ +

∫ x

a

u′k(s)ds =⇒ |uk(x)| f |³|+ ||u′k||Lp(I) meas(I)1/p
′

f C||u′k||Lp(I), (1.4)

for some C ∈ R depending on ³, I and p, for all x ∈ I. From this it follows that

sup
k∈N

||uk||Lp(I) f C

(

sup
k∈N

||u′k||Lp(I)

)

meas(I)1/p <∞

and thus uk is bounded in H1,p(I).
It remains to verify that u ∈ Cp(³, ´), i.e. u(a) = ³, u(b) = ´ and G(u) = 0. From eq.
(1.4) it follows that uk are equibounded, further we have

|uk(y)− uk(x)| f

∫ y

x

|u′k(s)|ds f

(

sup
k∈N

||u′k||Lp(I)

)

|x− y|1/p
′

,

therefore the sequence is also equicontinuous. Since Ī is compact, it follows from the
Ascoli-Arzelà compactness Theorem that, after passing to a subsequence, uki converges
uniformly to u on Ī which implies u(a) = ³ and u(b) = ´.
The constraint follows since the uki are equibounded, G is continuous and Ī is compact.
This means that the family of functions x 7→ G(x, uki(x)) is equibounded and thus by
dominated convergence

G(u) = lim
k→∞

G(uk) = 0.

1.3.2 In H1,1(I)

We recall the following definition regarding Radon measures:

Definition 3 (Radon measure and total variation). A Radon measure µ on a topological
space (X, Ä) is an outer measure that satisfies:

1. µ is outer regular with respect to the family of open sets, i.e.

µ(E) = inf{µ(A) : A ∈ Ä, E ¦ A};

2. µ(K) <∞ for all compact K;

3. for all A ∈ Ä we have

µ(A) = sup{µ(K) : K compact, K ¦ A}.

Given a Radon measure µ³, the total variation of µ³ is defined by

||µ³|| := sup{³(f) : f ∈ C0
c , |f(x)| f 1 ∀x ∈ X}, (1.5)

10



where ³ is a continuous linear mapping C0
c (X) → R of the form

³(f) =

∫

fdu³, ∀f ∈ C0
c (X). (1.6)

Remark 1. Riesz’s Theorem identifies Radon measures with continuous linear functionals
on C0

c (X), in the sense that every ³ ∈ L (C0
c (X),R) can be expressed as in eq.(1.6) for

some Radon measure µ³.

In what follows we will also use the following result, which is a consequence of the
Banach-Alaouglu theorem applied to the space of Radon measures equipped with its
natural weak* topology:

Lemma 1. The space of Radon measures with bounded total variation is a Banach space
with the norm || · || in (1.5). Furthermore, from every subsequence {µk}k∈N of Radon
measures with equibounded total variation we can extract a subsequence {µki}i∈N that
converges weakly in the sense of measures to another Radon measure µ, i.e.

ïµki , ϕð :=

∫

ϕdµki → ïµ, ϕð, ∀ϕ ∈ C0
c (X).

Remark 2. Every function u ∈ L1(a, b) defines a Radon measure u dx on (a, b). Thus we
conclude that, after possibly passing to a subsequence, every bounded sequence {uk}k∈N ¦
L1(a, b) converges in the sense of measures to some Radon measure µ, i.e.

∫ b

a

ϕuk dx→ ïµ, ϕð, ∀ϕ ∈ C0
c (a, b).

We are now ready to prove the following Theorem, which gives a sufficient condition
for a bounded set in L1 to be sequentially weakly compact in L1:

Theorem 5. Let Ω ¦ R
n be a bounded open set, and let {uk}k∈N ¦ L1(Ω) satisfy

(i) supk∈N ||uk||L1(Ω) <∞;

(ii) the set functions

E 7→

∫

E

|uk| dx, E ¦ Ω measurable

are equiabsolutely continuous, i.e. ∀ϵ > 0 ∃¶ > 0 such that

∫

E

|uk| dx < ϵ ∀k ∈ N, ∀E ¦ Ω with meas(E) < ¶.

Then there exists a subsequence of {uk}k∈N that converges weakly in L1(Ω).

Proof. As explained in Remark 2, property (i) implies that there exists a subsequence
{uki} and a Radon measure ³ such that ïukidx, ϕð → ³(ϕ), for all ϕ ∈ C0

c (Ω). We will
now show that the limit

lim
i→∞

∫

B

uki dx =: µ(B) (1.7)
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exists for all measurable sets B ¦ Ω by proving that {
∫

B
uki dx} is a Cauchy sequence.

Since the characteristic function ÇB is measurable and bounded by 1, applying Lusin’s
Theorem we find a sequence {ϕh}h∈N ¦ C0

c (Ω) such that ||ϕh||L∞ f 1 for all h ∈ N and
ϕh(x) → ÇB(x) for a.e. x ∈ Ω. In correspondence with the ¶ > 0 given by condition (ii),
we find by Egorov’s Theorem an open set B¶ ¦ Ω such that meas(B¶) < ¶ and ϕh ⇒ ÇB

on Ω \B¶. Now we have

∣

∣

∣

∣

∫

Ω

(uki − ukj)ÇB dx

∣

∣

∣

∣

f

∣

∣

∣

∣

∫

Bδ

(uki − ukj)(ÇB − ϕh) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

(uki − ukj)ϕh dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω\Bδ

(uki − ukj)(ÇB − ϕh) dx

∣

∣

∣

∣

f 2

∫

Bδ

(|uki |+ |ukj |) dx+ sup
Ω\Bδ

|ÇB − ϕh|

∫

Ω

(|uki |+ |ukj |) dx

+

∣

∣

∣

∣

∫

Ω

(uki − ukj)ϕh dx

∣

∣

∣

∣

.

For any ϵ > 0 ∃h0 ∈ N such that supΩ\Bδ
|ÇB − ϕh| < ϵ ∀h g h0 by uniform convergence

of ϕh on Ω \B¶. Since ϕh0
∈ C0

c (Ω), the sequence {
∫

Ω
ukiϕh0

dx}i∈N is a Cauchy sequence,
and thus

∣

∣

∣

∣

∫

Ω

(uki − ukj)ϕh0
dx

∣

∣

∣

∣

< ϵ

for all i, j larger than some k0(h0, ϵ) ∈ N. We therefore obtain that there exists a suitably
large constant K > 0 such that

∣

∣

∣

∣

∫

B

(uki − ukj) dx

∣

∣

∣

∣

f 4ϵ+ 2ϵK + ϵ = (5 + 2K)ϵ ∀i, j g k0,

which proves (1.7).
At this point, we claim that actually µ(B) = ³(B) for all measurable sets B ¦ Ω. Given
ϵ > 0, let 0 < ¶ < ϵ/2 be given by the equiabsolute continuity property. since ³ is a Radon
measure, there exist a compact set K and an open set U with K ¦ B ¦ U satisfying
³(B \K), ³(U \B) < ¶ and meas(U \K) < ¶. We may now take a ϕ ∈ C0

c (Ω) such that
0 f ϕ f 1, ϕ|K ≡ 1 and suppϕ ¦ U . This yields

∣

∣

∣

∣

∫

B

ukidx− ³(B)

∣

∣

∣

∣

f

∣

∣

∣

∣

∫

Ω

uki(ÇB − ϕ)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

ukiϕdx− ³(ϕ)

∣

∣

∣

∣

+ |³(ϕ)− ³(B)|.

Now
∣

∣

∣

∣

∫

Ω

uki(ÇB − ϕ)dx

∣

∣

∣

∣

f

∫

U\K

|uki | < ϵ

by assumption (ii),

lim
i→∞

∣

∣

∣

∣

∫

Ω

ukiϕdx− ³(ϕ)

∣

∣

∣

∣

= 0

by definition of ³ and |³(ϕ)−³(B)| f
∫

Ω
|ϕ−ÇB|d³ f ³(U \K) < 2¶ < ϵ. Therefore the
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claim is verified, and in particular we deduce that ³ is absolutely continuous with respect
to the Lebesgue measure. Hence, by the Radon-Nikodym theorem, it is represented by a
function u ∈ L1(Ω). Since step functions of measurable sets are dense in L∞(Ω), relation
(1.7) together with a direct application of the dominated convergence theorem implies
that {uki} converges weakly to u in L1(Ω), and the theorem is proved.

Remark 3. The converse also holds, i.e. if {uk}k∈N converges weakly in L1(Ω) then
(i) and (ii) hold true, but we omit the proof. The full theorem, proving the equivalence
between these two statements, is sometimes referred to as the Dunford-Pettis Theorem.

We now prove a theorem which collects criteria for sequential weak compactness in
L1(Ω); to prove Tonelli’s existence theorem in H1,1(I) we will in particular make use of
the implication (i4) =⇒ (i1).

Theorem 6. Let F ¦ L1(Ω). The following claims are equivalent:

1. F is sequentially weakly compact in L1(Ω);

2. F is bounded in L1(Ω) and the set functions

E 7→

∫

E

|u| dx, E ¦ Ω measurable, u ∈ F ,

are equiabsolutely continuous;

3. the functions u ∈ F are uniformly integrable, i.e.

lim
c→∞

∫

{x∈Ω:|u(x)|>c}

|u(x)|dx = 0

uniformly for u ∈ F ;

4. there exists a function Θ : (0,∞) → R (which can be taken convex and increasing)
such that

lim
t→∞

Θ(t)

t
= ∞ and sup

u∈F

∫

Ω

Θ(|u|)dx <∞.

Proof. The equivalence (i1) ⇐⇒ (i2) is the content of the Dunford-Pettis Theorem.
(i3 =⇒ i2) : we suppose that the functions in F are uniformly integrable. We have the
elementary inequality

∫

E

|u|dx f cmeas(E) +

∫

{x∈Ω:|u(x)|>c}

|u(x)|dx, ∀E ¦ Ω measurable, ∀u ∈ F .

We can choose c > 0 such that the latter term is less than ϵ/2. Choosing E = Ω we obtain
equiboundedness in L1(Ω) (since Ω is bounded), while choosing ¶ = ϵ/(2c) we satisfy the
equiabsolute continuity condition for all ϵ > 0.
(i2 =⇒ i3) : Given c > 0 and u ∈ F , let E := {x ∈ Ω : |u(x)| > c}. We have by

13



definition of E that meas(E)c f ||u||L1(E) f supu∈F ||u||L1(Ω). Given ϵ > 0, choosing
c = (1/¶) supu∈F ||u||L1(Ω), where ¶ > 0 is the number appearing in condition (i2), we find

∫

{x∈Ω:|u(x)|>c}

|u(x)|dx f ϵ, ∀u ∈ F .

(i4) =⇒ (i3) : Given a Θ with the required properties, let M := supu∈F ||Θ(|u|)||L1(Ω <
∞. Given ϵ > 0, we choose c > 0 such that Θ(t)/t g M/ϵ for all t g c. Then |u| f
ϵΘ(|u|)/M on {x ∈ Ω : |u(x)| > c}, and thus

∫

{x∈Ω:|u(x)|>c}

|u|dx f
ϵ

M

∫

{x∈Ω:|u(x)|>c}

Θ(|u|)dx f ϵ ∀u ∈ F .

(i3) =⇒ (i4) : We construct a function Θ : (0,∞) → R of the form Θ(t) =
∫ t

0
g(s)ds,

where g is an increasing function with g(0) = 0 and lims→∞ g(s) = ∞ which assumes
constant values on each interval (n, n+ 1), n ∈ N. For u ∈ F , n ∈ N we define

an(u) :=

∫

{x∈Ω:|u(x)|gn}

|u(x)|dx;

It follows that

∫

Ω

Θ(|u|)dx =

∫

Ω

(

∫ |u(x)|

0

g(s)ds

)

dx =

∫ ∞

0

(
∫

{|u(x)|gs}

g(s)dx

)

ds

=
∞
∑

n=0

∫ n+1

n

(
∫

{|u(x)|gs}

g(s)dx

)

ds =
∞
∑

n=0

∫ n+1

n

(gn meas{|u(x)| g s})

f
∞
∑

n=0

gn

(
∫

{|u(x)|gn}

|u(x)|dx

)

=
∞
∑

n=0

gnan(u),

where we have used Fubini-Tonelli’s theorem twice. At this point, using the assumption
of uniform integrability we can choose integers cn → ∞ such that

∫

{x∈Ω:|u(x)|gcn}

|u(x)|dx f 2−n, ∀u ∈ F , n ∈ N.

By construction of the cn, it follows that the numbers

∞
∑

n=0

∞
∑

k=cn

ak(u)

are uniformly bounded for u ∈ F . Because this sum can be written in the form
∑

k gkak(u)
(where gk = |{n ∈ N : cn < k}|), we can find a sequence of values gn → ∞ such that Θ as
constructed satisfies the required conditions.

We are now ready to prove Theorem 1 in H1,1(I):

14



Proof of Theorem 1 in H1,1(I). By the superlinear growth of F , the functional F is bounded
from below. Let {uk} be a minimizing sequence in C1(³, ´) (we may assume that
infk F(uK) < +∞, otherwise F(u) ≡ +∞ on C1(³, ´)). Using that F has superlin-
ear growth we obtain that the sequence {u′k} ¦ L1(I) is bounded. Moreover, since the
functions are absolutely continuous, the fundamental theorem of calculus holds true and
thus it follows that {uk} is bounded in H1,1(I). By assumption on F ,

sup
k

∫

I

¹(u′k)dx f sup
k

∫

I

F (x, uk, u
′
k)dx = sup

k
F(uk) < +∞

so that the integrals {
∫

I
¹(u′k)dx} are equibounded. By Theorem 4, this is equivalent to

saying that the family {u′k} is equiabsolutely integrable, i.e. the set functions E 7→
∫

E
u′kdx

for E ¦ I measurable are equiabsolutely continuous.
From the H1,1(I)-boundedness of {uk} we infer that (a suitable subsequence of) {uk}
converges strongly in L1(I) to some function u (this is becauseH1,1(I) ↪→ L1(I) is compact
for meas(I) <∞, as we have already seen). Further, taking the equiabsolute integrability
of {u′k} into account, it is a consequence of Ascoli-Arzelà’s theorem that a subsequence
of {uk} converges uniformly to u.
At this point, by Theorem 4, passing to another subsequence, {u′k} converges weakly in
L1(I) to some w ∈ L1(I). We have the relations

−

∫

I

ukϕ
′dx =

∫

I

u′kϕdx→

∫

I

wϕ for all ϕ ∈ C1
c (I)

and

−

∫

I

ukϕ
′dx→ −

∫

I

uϕ′dx;

hence u′ = w in the sense of distributions, and uk á u in H1,1(I). Theorem 2 then yields

F(u) f lim inf
k→∞

F(uk).

Finally, u obtains values of ³ and ´ respectively at a and b because of the uniform
convergence uk ⇒ u on Ī, and the constraint G(u) = 0 follows from the dominated
convergence theorem as in the case of H1,p(I) with p > 1. We conclude that u is a
minimizer of F in C1(³, ´).
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Chapter 2

Regular Minimizers

In the following chapter we will prove a regularity result for G-regular minimizers of F in
C(³, ´). Specifically, we will prove the following Theorem:

Theorem 7. Let I = (a, b) ¦ R be a bounded open interval, F ∈ C1(Ī × R× R,R) with
F (x, z, ·) ∈ C2(R) and G ∈ C1(Ī × R,Rn) satisfying the following conditions:

1. There exists c ∈ R such that

F (x, z, À) f c(1 + |À|2), ∀(x, z, À) ∈ Ī × R× R; (2.1)

2. There exists c3 ∈ R such that for all (x, z, À) ∈ Ī × R× R we have

∣

∣

∣

∣

∂F

∂z
(x, z, À)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂F

∂À
(x, z, À)

∣

∣

∣

∣

f c3(1 + |À|); (2.2)

3. There exists ¶ > 0 such that for all (x, z, À) ∈ Ī × R× R

∂2F

∂À2
(x, z, À) > ¶. (2.3)

If u ∈ AC(I) is a G-regular minimizer for F , then u ∈ C1(I). Furthermore, if F and G
are of class Ck for some 2 f k f ∞, then u ∈ Ck(I).

2.1 Lagrange multipliers for G-regular extrema

In this section we first introduce the concepts of G-regular and G-singular extrema and
then prove the Lagrange multiplier Theorem for the former.

Definition 4 (Singular extremal). We say that u ∈ AC(I) is a G-singular extremal if for
all È1, . . . , Èn ∈ C∞

c (I,R) we have

det JÄΨ(0) = 0,

17



where Ψ : Rn → R
n is given by Ψ(Ä) := G(u +

∑n
i=1 ÄiÈi) and JÄ denotes the Jacobian

matrix of Ψ with respect to Ä .

Remark 4 (Regular extremal). If u ∈ AC(I) is a G-regular extremal then ∃È1, . . . , Èn ∈
C∞

c (I,R) such that det(JÄΨ(0)) ̸= 0. For i, j ∈ {1, . . . , n} we have

(JÄΨ)i,j(0) =
∂Ψi

∂Äj
(0) =

∂

∂Äj
Gi

(

u+
n
∑

k=1

ÄkÈk

)∣

∣

∣

∣

∣

Ä=0

=

=
∂

∂Äj

∫

I

Gi

(

x, u+
n
∑

k=1

ÄkÈk

)

dx

∣

∣

∣

∣

∣

Ä=0

.

Exchanging differentiation and integration by the Leibniz integral rule we obtain

(JÄΨ)i,j(0) =

∫

I

∂Gi

∂z
(x, u)Èjdx. (2.4)

This remark will be used to prove the following Theorem:

Theorem 8 (Lagrange multipliers). Let u ∈ AC(I) be a G-regular minimizer of F in
C(³, ´). Then ∃¼1, . . . , ¼n ∈ R such that

d

dϵ

(

∫

I

F (x, u+ ϵϕ, u′ + ϵϕ′)dx−
n
∑

i=1

¼i

∫

I

Gi(x, u+ ϵϕ)dx

)∣

∣

∣

∣

∣

ϵ=0

= 0 (2.5)

for all ϕ ∈ C∞
c (I) (this is the weak Euler-Lagrange equation). Further, if u ∈ C2(I) it

also satisfies the strong Euler-Lagrange equation:

∂F

∂z
(x, u, u′)−

d

dx

∂F

∂À
(x, u, u′)−

n
∑

i=1

¼i
∂Gi

∂z
(x, u) = 0, ∀x ∈ I. (2.6)

Proof. We fix 0 < ϵ0, Ä0 << 1 and let Q := {(ϵ, Ä) ∈ R × R
n : |ϵ| < ϵ0, |Äi| < Ä0 ∀i ∈

{1, . . . , n}}. Given ϕ ∈ C∞
c (I) and È1, . . . , Èn ∈ C∞

c (I) we define Φ : Q → R and
Ψ : Q → R

n as

Φ(ϵ, Ä) := F

(

u+ ϵϕ+
n
∑

i=1

ÄiÈi

)

and Ψ(ϵ, Ä) := G

(

u+ ϵϕ+
n
∑

i=1

ÄiÈi

)

respectively.
We have Ψ(0, 0) = 0 by assumption and, since u is a regular minimizer, there exist
È1, . . . , Èn ∈ C∞

c (I) such that JÄΨ(0, 0) is invertible. Since Ψ ∈ C1(Q,Rn), we apply the
implicit function theorem and obtain a curve Ä ∈ C1((−ϵ0, ϵ0),R

n) such that Ψ(ϵ, Ä(ϵ)) =

18



0, for |ϵ| < ϵ0. From this we deduce that

0 =
d

dϵ
Ψ(ϵ, Ä(ϵ))

∣

∣

∣

∣

∣

ϵ=0

=

∫

I

DzG(x, u)

(

ϕ+
n
∑

k=1

Ä ′k(0)Èk

)

dx

=⇒ −

∫

I

DzG(x, u)ϕdx =
n
∑

k=1

Ä ′k(0)

∫

I

DzG(x, u)Èkdx = JÄΨ(0, 0) · Ä ′(0),

where we used the definition of Ψ in the last equivalence. Using that JÄΨ(0, 0) is invertible
we get

Ä ′(0) = −[JÄΨ(0, 0)]−1 ·

∫

I

DzG(x, u)ϕdx, (2.7)

or component-wise

Ä ′i(0) = −
n
∑

i=1

Mik

∫

I

∂Gk

∂z
(y, u)ϕ(y)dy, ∀i ∈ {1, . . . , n},

where M := [JÄΨ(0, 0)]−1 ∈ GLn(R).
We now want to compute the derivative of Φ(ϵ, Ä(ϵ)) with respect to ϵ. We let ϕ ∈ C∞

c (I)
be arbitrary, by the assumption of minimality of u we have:

0 =
d

dϵ
Φ(ϵ, Ä(ϵ))

∣

∣

∣

∣

∣

ϵ=0

=

∫

I

d

dϵ

(

F (x, u+ ϵϕ+
n
∑

i=1

Äi(ϵ)Èi, u
′ + ϵϕ′ +

n
∑

i=1

Äi(ϵ)È
′
i)

)∣

∣

∣

∣

∣

ϵ=0

dx

=

∫

I

{

∂F

∂z
(x, u, u′)

(

ϕ+
n
∑

i=1

Ä ′i(0)Èi

)

+
∂F

∂À
(x, u, u′)

(

ϕ′ +
n
∑

i=1

Ä ′i(0)È
′
i

)}

dx

=: I + II + III + IV

For term II we use relation (2.7):

II :=

∫

I

∂F

∂z
(x, u, u′)

n
∑

i=1

Ä ′i(0)Èi(x)dx

= −

∫

I

∂F

∂z
(x, u, u′)

n
∑

i=1

(

n
∑

k=1

Mik

∫

I

∂Gk

∂z
(y, u)ϕ(y)dy

)

Èi(x)dx

= −
n
∑

i,k=1

Mik

∫

I

∂F

∂z
(x, u, u′)Èi(x)

(
∫

I

∂Gk

∂z
(y, u)ϕ(y)dy

)

dx

= −
n
∑

i,k=1

Mik

∫

I

∂Gk

∂z
(y, u)ϕ(y)

(
∫

I

∂F

∂z
(x, u, u′)Èi(x)dx

)

dy,
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where we have used Fubini-Tonelli’s theorem in the last line in order to switch the order
of integration. Regarding IV , a similar computation yields

IV :=

∫

I

∂F

∂À
(x, u, u′)

n
∑

i=1

Ä ′i(0)È
′
i(x)dx

= −
n
∑

i,k=1

Mik

∫

I

∂Gk

∂z
(y, u)ϕ(y)

(
∫

I

∂F

∂À
(x, u, u′)Èi(x)dx

)

dy.

Adding everything back together using these identities we get, for all ϕ ∈ C∞
c (I),

∫

I

{(

∂F

∂z
(x, u, u′)−

n
∑

i,k=1

Mik
∂Gk

∂z
(x, u)

∫

I

[

∂F

∂z
(y, u, u′)Èi(y) +

∂F

∂À
(y, u, u′)È′

i(y)

]

dy

)

ϕ(x)

+
∂F

∂À
(x, u, u′)ϕ′(x)

}

= 0.

We can now define Lagrange multipliers (independent of ϕ for all k ∈ {1, . . . , n}) as

¼k :=
n
∑

i=1

Mik

∫

I

[

∂F

∂z
(y, u, u′)Èi(y) +

∂F

∂À
(y, u, u′)È′

i(y)

]

dy, ∀k ∈ {1, . . . , n}.

In terms of Φ and Ψ, we have shown that

∂ϵΦ(0, 0)− ∂ÄΦ(0, 0)
T [JÄΨ(0, 0)]−1∂ϵΨ(0, 0) = 0,

where ∂ÄΦ(0, 0)
T [JÄΨ(0, 0)]−1 := ¼ ∈ R

n is the vector of Lagrange multipliers. This proves
that u satisfies the weak Euler-Lagrange equation in (2.5) associated to the minimization
problem in question.
If u ∈ C2(I), we can perform an integration by parts for the term involving ϕ′(x). We
thus obtain that for all ϕ ∈ C∞

c (I)

∫

I

{

∂F

∂z
(x, u, u′)−

d

dx

∂F

∂À
(x, u, u′)−

n
∑

k=1

¼k
∂Gk

∂z
(x, u)

}

ϕ(x)dx = 0.

Since the equation holds for all ϕ ∈ C∞
c (I), we conclude that u satisfies the strong Euler-

Lagrange equation in (2.6).
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2.2 Regularity results for G-regular extrema

The aim of this section is to prove that a G-regular extremal of the minimization problem

min{F(u) | u ∈ AC(I), u(a) = ³, u(b) = ´ and G(u) = 0} (2.8)

inherits the regularity of F and G. We define the Lagrangian of the constrained problem
H : I × R× R → R as

H(x, z, À) := F (x, z, À)−
n
∑

k=1

¼kGk(x, z),

where ¼1, . . . , ¼n are the multipliers from Theorem 6. Further, we define the functional
H : AC(I) → R as

H(u) :=

∫

I

H(x, u(x), u′(x))dx.

Remark 5. The functional H is well defined for u ∈ AC(I). In fact, since u and u′ are
measurable and H : I ×R×R → R is continuous, the composition x 7→ H(x, u(x), u′(x))
is measurable. The bound in (2.1) guarantees the integrability of x 7→ F (x, u(x), u′(x))
while the uniform continuity of u guarantees the integrability of x 7→ G(x, u(x)), since Ī
is compact.

We are now ready to prove the first regularity result:

Proposition 1. Under the assumption in Theorem 5, if u ∈ AC(I) is a G-regular mini-
mizer of problem (2.8) then u ∈ C1(I).

Proof. Firstly, we observe that the mappings x 7→ ∂H
∂z

(x, u(x), u′(x)) and
x 7→ ∂H

∂À
(x, u(x), u′(x)) are measurable. As in Remark 5, since Ī is compact, they are in

L1(I) by condition (2.2). The weak Euler-Lagrange equation (2.5) then reads

∫

I

(

∂H

∂z
(x, u, u′)ϕ(x) +

∂H

∂À
(x, u, u′)ϕ′(x)

)

dx = 0, ∀ϕ ∈ C∞
c (I). (2.9)

Integrating the first terms by parts we obtain

∫

I

∂H

∂z
(x, u, u′)ϕ(x)dx =

(
∫ x

a

∂H

∂z
(s, u, u′)ds

)

ϕ(x)
∣

∣

∣

x=b

x=a
−

∫

I

(
∫ x

a

∂H

∂u
(s, u, u′)ds

)

ϕ′(x)dx

= −

∫

I

(
∫ x

a

∂H

∂z
(s, u, u′)ds

)

ϕ′(x)dx,

where we have used that ϕ has compact support. Equation (2.9) becomes

∫

I

(

∂H

∂À
(x, u, u′)−

∫ x

a

∂H

∂z
(s, u, u′)ds

)

ϕ′(x)dx = 0, ∀ϕ ∈ C∞
c (I).
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By the du Bois-Raymond Lemma (see [3]) we deduce that there exists a constant c ∈ R

such that

∂H

∂À
(x, u, u′) = c+

∫ x

a

∂H

∂z
(s, u, u′)ds =: Ã(x) for a.e. x ∈ I, (2.10)

where Ã(x) ∈ AC(I).
We now define a mapping Γ : Ī × R× R → Ī × R× R as Γ(x, z, À) = (x, z, ∂ÀH(x, z, À)).
Condition (2.3) implies that ∂ÀH(x, u,R) = R for all fixed (x, z) ∈ Ī × R, therefore
ImΓ = Ī × R × R. Further, for fixed (x, z) ∈ Ī × R, the mapping À 7→ ∂ÀH(x, z, À) is
continuously differentiable and ∂2ÀH(x, z, À) > ¶ > 0 for all À ∈ R by condition (2.3), thus
the inverse map ∂ÀH

−1(x, z, ·) exists and is C1. Therefore, Γ : Ī ×R×R → Ī ×R×R is
a C1 diffeomorphism.
At this point, we define the curves

Ã(x) := (x, u(x), u′(x)) and e(x) := (x, u(x), Ã(x)),

where Ã is defined a.e. in Ī, while e is defined for all x ∈ Ī since Ã, u : Ī → R are
absolutely continuous. Identity (2.10) gives

Γ(Ã(x)) = e(x) for a.e. x ∈ Ī . (2.11)

Because ImΓ = Ī × R × R, Γ−1(e(x)) is well-defined and continuous for all x ∈ Ī. We
deduce that there exists a function v ∈ C(Ī) such that Γ−1(e(x)) = (x, u(x), v(x)) for all
x ∈ Ī. Then (2.11) implies

(x, u(x), u′(x)) = (x, u(x), v(x)), for a.e. x ∈ Ī ,

so that in particular u′(x) = v(x) a.e. in Ī. Since u is absolutely continuous, we have

u(x) = u(a) +

∫ x

a

u′(s)ds = u(a) +

∫ x

a

v(s)ds,

and thus u ∈ C1(I).

Let us now use this result to prove that a G-regular minimizer of Problem (2.8) actually
inherits the regularity properties of F and G.

Proof of Theorem 4. Let u ∈ AC(I) be a G-regular minimizer of Problem (2.8). We prove
by induction that u ∈ Ck(I) for all k ∈ N whenever F and G are of class Ck.
We have proved in Proposition 1 that u ∈ C1(I). Let us now show that we have u ∈ C2(I),
which will be our base step.
To do this, let P : Ī × R → R be given by

P (x, À) :=
∂H

∂À
(x, u(x), À)− Ã(x),

where Ã(x) is as in (2.10). Since u ∈ C1(I), we have that both (x, À) 7→ ∂ÀH(x, u(x), À)
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and Ã : Ī → R are of class C1, so P ∈ C1(I ×R,R). Moreover, still by relation (2.10), we
have P (x, u′(x)) = 0 for all x ∈ I and

∂P

∂À
(x, À) =

∂2F

∂2À
(x, u(x), À) > 0, ∀(x, À) ∈ I × R,

by assumption (2.3). In particular we have that ∂ÀP (x, u
′) > 0. By the implicit function

theorem, there exists an open neighbourhood Ux ¦ I and a function v ∈ C1(Ux) such that
v(x) = u′(x) for all x ∈ Ux. As in the proof of Proposition 1, this implies u ∈ C2(Ux).
However, x ∈ I can be chosen arbitrarily, therefore u ∈ C2(I).
For the inductive step, we let k ∈ N, k g 2 be arbitrary, u ∈ Ck(I) and we show that u ∈
Ck+1(I). Exactly the same as above we see that under these assumptions P ∈ Ck(I ×R)
and the implicit function theorem guarantees the existence of some v ∈ Ck(Ux) such that
v(x) = u′(x) in some open neighbourhood Ux ¦ I of x. As before, this yields u ∈ Ck+1(I)
by the arbitrariness of x. This concludes the inductive step and the proof.
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Chapter 3

Singular extrema for a Dirichlet
energy minimization problem

In this chapter we turn to the study of the following minimization problem:

min
u∈H1(I)

{F(u) : u(±1) = 1 and G(u) = Vh,k}, (3.1)

where I := [−1, 1] ¦ R, h, k ∈ Ng1 and Vh,k = 4k2

(2k+1)(2kh+k+h)
. The functionals F and G

are defined by:

F(u) :=
1

2

∫

I

|u′(x)|2dx, G(u) :=

∫

I

(

x2hu(x)−
u(x)2k+1

2k + 1

)

dx.

Remark 6. The Lagrangian F (À) = 1
2
|À|2 and the constraint G(x, z) = x2hz−z2k+1/(2k+

1) are of class C∞. Further, F is well-defined for u ∈ H1(I) and G is well-defined because
u is continuous.

Remark 7. the value Vh,k might initially appear arbitrary; we will see that it is exactly
the value of G(u) for a singular extremal u.

Remark 8. Note that there exists a minimizer u ∈ H1(I) of (3.1), since the conditions
of Theorem 1 hold: F has quadratic growth and is convex.

Our goal in this chapter is to determine (as a function of the parameters h, k ∈ N)
whether or not there exists singular minimizers of problem (3.1). If u is a singular extremal
of (3.1), then by definition we have

d

dϵ
G(u+ ϵÈ)|ϵ=0 = 0,

for all È ∈ C∞
c (I̊). In our case, this implies

∂

∂u

(

x2hu−
u2k+1

2k + 1

)

= 0, ∀x ∈ I,
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which yields u(x) = |x|h/k. We note that this is a smooth function for h > k, it is
Lipschitz-continuous but not C1(I) if h = k and not even Lipschitz if h < k.
Using that u is even on I we obtain

G(u) = 2

∫ 1

0

G(x, u(x))dx = 2

∫ 1

0

(

x(2kh+h)/k −
x(2kh+h)/k

2k + 1

)

dx

=
4k2

(2k + 1)(2hk + h+ k)
= Vh,k,

which motivates the latter’s definition.

3.1 h ̸= k

In this case, we have the following

Theorem 9. For all h, k ∈ N, h ̸= k, the minimizer u ∈ H1(I) of problem (3.1) is
G-regular.

The proof of this theorem is described in detail in [5], in this section we limit ourselves
to outlining the basic idea underlining the argument.
First of all, we note that the function u above is an even function for all choices of h, k ∈ N,
therefore we can restrict our attention to I = [0, 1] and extend the result by symmetry.
Given a ¶ > 0, the idea is the following: let ϵ > 0 and ¸ ∈ R be fixed and define

u¶ϵ(x) :=



































ϵ : x f ¶

u(x) : x ∈ [¶, 1
2
]

m1x+ d1 : x ∈ [1
2
, 1
2
+ |¸|]

u(x) + ¸ : x ∈ [1
2
+ |¸|, 3

4
− |¸|]

m2x+ d2 : x ∈ [3
4
− |¸|, 3

4
]

u(x) : x g 3
4
,

where m1(¸, h, k), d1(¸, h, k),m2(¸, h, k), d2(¸, h, k) ∈ R. In order for u¸ϵ to be continuous
we choose ¶ = ϵk/h; since u¸ϵ is bounded and Lipschitz-continuous on I we have u ∈
H1,∞ ¦ H1(I).
At this point, it is possible to prove that, if h ̸= k, there exists an ¸(ϵ) ∈ R such that the
constraint G(u¸ϵ ) = Vh,k is satisfied. Finally, from the same calculations it follows that for
ϵ > 0 small enough we have F(u¸ϵ )−F(u) < 0; this means that u cannot be a minimizer
of problem (3.1) and thus any such function must be G-regular.

3.2 An open problem

We are left with the question of what happens if h = k. In this case, unfortunately,
the construction described in the previous section fails, as the linear terms of a Taylor
expansion cancel and it is impossible to find ¸(ϵ).
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Another approach would be to compare analytically regular and singular extrema. By
assumption v ∈ H1(I), F ∈ C∞(R) and G ∈ C∞(I × R,R); further, F has quadratic
growth, it satisfies ∂ϵF = ϵ f (1 + ϵ) and ∂2ϵF = 1 > 0 so all conditions of Theorem 7
hold. This means that a G-regular minimizer v of (3.1) will actually satisfy v ∈ C∞(I) and
we can thus compute the associated Euler Lagrange equation. Specifically, there exists
some ¼ ∈ R such that

∂F

∂z
(x, v′)−

d

dx

∂F

∂À
(x, v′)− ¼

∂G

∂z
(x, v) = 0.

In our case, this equation leads to the following boundary value problem:

{

v′′(x) = ¼v2k(x)− ¼x2h, ∀x ∈ I;
v(−1) = v(1) = 1.

(3.2)

Using the results from the previous chapter, we recall that the Lagrange multiplier ¼ can
be expressed as ¼ := ∂ÄΦ(0, 0)

T∂ÄΨ(0, 0)−1, where Φ(ϵ, Ä) = F(v, ϵϕ + ÄÈ), Ψ(ϵ, Ä) =
G(v + ϵϕ + ÄÈ), ϕ ∈ C∞

c (I,R) is arbitrary and È ∈ C∞
c (I,R) is such that ∂ÄΨ(0, 0) ̸= 0.

Using the explicit formulas for F and G we arrive at

¼ =

∫

I
v′(x)È′(x)dx

∫

I
(x2h − v2k(x))È(x)dx

.

At this point, one could express È (at least implicitly) as a function of v and, using the
previous formula for ¼, write (3.2) as a Cauchy problem only dependent on v. This would
allow us, at least in theory, to compute the analytically regular extrema and compare
their Dirichlet energy to that of our candidate minimizer. Unfortunately, the resulting
expression turns out to be very complicated and of little practical use, therefore this
approach has not been followed.

An alternative line of reasoning we attempted to follow involved studying how the
functionals behaved as a result of perturbations to our candidate minimizer u(x) = |x|.
This approach was motivated by the following observation: if we take h = k = 1 and
consider the perturbed functional |x|+ w(x), where w ∈ H1(I), we obtain the first order
variation

G(| · |+ w)− G(| · |) = −
1

3
+

∫

I

(

x2(|x|+ w)−
(|x|+ w(x))3

3

)

dx =

= −

∫

I

(

|x|w(x)2 +
w(x)3

3

)

dx. (3.3)

The first term in this expression is always negative, while the second is of higher order in
w. If we could establish a sufficiently strong bound on the second term

∫

I
w3/3, uniformly

for w ∈ H1(I) with ||w||H1(I) < ¶, then we could prove that our candidate minizer u is
an isolated point with respect to our constraint G in the Sobolev metric, and thus at
least a local minimum. Unfortunately, this conclusion turns out to be false (and thus the
approach is deemed ineffectual). In fact, by taking w := −ϵÇ[−¶,¶] with ¶ < 2/3ϵ, the
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term in (3.3) turns out positive. If we then convolve w with an appropriate regularisation
kernel, we can make sure the resulting function is also in H1(I).

It is likely that this problem might require more advanced and refined techniques.
That said, it is interesting to note that, in various different contexts, there have been
results proven which explicitly disallow such “corner-type singularities” to be extrema of
certain classes of variational problems. For example, in [5], the author proves the following
result regarding constrained Dirichlet-energy minimization problems in H1(I):

Theorem 10. Let G ∈ C∞(I × R,R) be such that there exists ¶ ∈ (0, 1) with

∂2zG(0, 0)∂
2
zG(¶, ¶) < 0.

If u(x) = |x| is a G-singular extremal then u is not a solution of the minimization problem

min
v∈H1(I)

{F(u) : u(±1) = 1,G(u) = G(| · |)},

where F is the Dirichlet-energy functional.

To take another recent example, in [4] the author proves that length-minimizing curves
with respect to a certain type of metric do not have corner-type singularities. In the case
of curves, however, we are free to perturb candidate minimizers with more liberty, since
we are not constrained to graphs of one-dimensional functions.
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