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Abstract

Batchwise unfolaed multiway principal component analys{MPCA) is a powerful tool for
online monitoringof batchprocessesHowever it is constrained by the fatitatall calibration
and validationbatches must have the same duration, otherwise they needitoekmigned
(synchronized)before being unfolded into a twdimensionalmatrix. To overcome this
problem,Westad et al. (2015)roposed anethodologybased on a variableise unfolad
PCA, which aims at modelling a normal trajectory of the process in the score $paiggh a
grid-search algorithmThis modelling methodology is called assumpticee, because the
assumption that all batchesust have tle same lengtlis no longerrequired In this thesis
assumptiorfree moded andbatchwise unfoldedmodek are developed aneéstedto monitor
five benchmark processesith different characteristicsFor eachprocess the number of
missed faultsfalse faults and false alarmase computed.The assumptioffiree modelis able

to recognizemost faulty batches, withoutaising a significant number dhalse alarms;
however, its performances are strongly affected by the shape of the normal trajethary of
process antdy the quality of calibration batches. Moreover, gssumptioffree modek tend

to recognizebatches according to the number of consecutive scores (or residuals)tioait of
confidence limitsbut they donot consider the overall path tfe scores: thismay leadto
missing fault detectionThe batchwise unfolded modek areable to recognize abnormal
batches, buthey may raisseveralfalse alarms (especially for normal batches).






Riassunto

I processi batch sono ampiamente utilizzat:i
prodottiad elevato valore aggiunton efficiente monitoraggiai questi processunito a un

i ntervento tempestivo da paéafondamentale Ipér odpreer at or
eventualisprechi di materiale, tempo e dendt6 e | ev at o n u ntherirdluenzano v ar i a
il processp e la numerosita delle reazioni chimiche che possono averluogo
contemporaneamentaendono complesso il monitoraggio detocesso Uno strumento
modellisticoche negli ultimi anni si é rilevato molto utile non solo per la comprensiehe

relazioni tra le variabilmisurate ma anche per il monitoraggio
(principal component analygisTale netodologia consiste nel rappresentare grandi quantita

di informazioni, relative alle variabili di processo, in uno spatiioidotta dimensioe. Per

poter calibrare un modello PCA, e necessario che la matrice di calibrazione, contenente
misurazioni effettuate su processi batch in condizioni operativeormali, sia in forma
bidimensionale Dati tridimensionali possono essere organizzati in matwariable-wise

unfoldedo batchwise unfoldedN e | caso di guestoéul ti ma, N
calibrazione abbiano la stessa durata (stesso numero di istanti di tempo campionati),
situazionechenon sempresi verifica in un comune impianto industriatendendo necessario

il ricorso a metdi di sincronizzazione delle traiettorie tempoyraliquali possono avere
conseguenze sulle prestazioni del modelRer evitare di ricorrere ad un processo di
sincronizzazione dei batckyestad et al. (2019)anno proposto un modello di monitoraggio

che non richiede come condizione6 eguagl i anza dell a durata dc¢
viene denominatassumptiorfree Talemodelb PCA e basato su una matrice di calibrazione
variablewise unfoléd e utilizza un algoritmo di ricerca a griglia pemodellae una
traiettorianello score plot rappresentativa di un processocondizioni operativenormali In

guesta tesiduetecniche modellistichauna assumptioffree e ura batchwise sono sviluppat

e testat con 5 diversi dataset, al fine di determinaoalg dei due € il piu appropriato per il
monitoraggio di processi batch.

Per quanto riguarda il modellmssumptiorfree, sono consideratdiverse configurazioni di

griglia sullo score plot e per ogni cellai ogni grigliasi ricercano glscoresin essa ontenuti:

se una cella contiene almeno uscore per ogni batch di calibrazione, allorariéenuta

Aval Ldabgoritmo sel ezi ona cheoom#& maggior mumeroadi ot t i r
celle valide,e in grado di catturaralmeno il 95% di tutti glscoresdi calibrazione. Per ogni

cella valida (della griglia ottimale), & calcolata la media di tutti gli scores incesganuti;

quindi, perinterpolazione dtutte le medie calcolatsi ottiene la traiettoria rappresentatidi

un processo normalé?er ogni cella valida, si calcola la distanza degliscoresdalla

traiettoria e i residu@ corrispondentiquindi vengono calcolati i limiti relativi agéicorese ai



residuiQ. Infine, gli allarmi sulloscore plote sui residusono calibratconsiderando i batch

di calibrazione.

Il modello inbatchwise unfoldinge sviluppato con lo scopo difettuareun monitoraggio in
temporeale; pertantoad ogni istante di tempo & necessario stimaralari mancanti delle
variabili, relativi agli istanti di tempo futurin questo caso, si adotta la procedura suggerita da
Nomikos & MacGregor (1994)

Al termine del test dei due modelli con tuttbatchdisponibili per la convalidail modello
assumptioffree si rivela in grado di riconoscere i batch anomdluttavig una forma
complessa della traiettoria del processo, data ad esempio dalla presenza di rapidi cambi di
direzione (curve strette o angolinodellata con un esiguo numero di celle valide, puo
abbassardrasticamente la sensibilitagleallarmi, portando al mancato riconoscimento dei
batch anomali e compromettendo quindi le prestazioni del modéllo. mancato

ri conosci ment o diifedrdi @anehe mehtaso inaui ipdataset di calibrazione
contenga almeno un batch la cui traiettoria si discosta molto da quelle degli altridzdtch:
moment o che | dadndiderandoetutti i batctadllo stessa moaio solo batch

di calibrazione con un elevato numerostioresconsecutivi fuori dai limiti di confidenza e

sufficiente per r i du r Wneultetioee linsite di guedtoi nhodetlo, del |
osservato nel caso del dataset ki nsi st e nd ticondéscemecua patcic anbnialo
nel caso in cui gliscoress i trovino all édinterno dell dar ea

traiettoria diversa da quella rappresentativa del processo normale (modellata attraverso
| 6al gor it mo dill modelo batcbhvise mvecog,reiinggradoad) riconoscere i
batch anomalin ogni occasione; tuttaviggresenta numerogals allarmi nel caso di batch
normali; nel caso dei dataset n.3, n.4 e n.5, tutti i batch normali risultano essere anomali.
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Introduction

Batch processes are very commontlie industrial manufacturing of severaigh-value
compounds like chemicalsdrugs, fermented foods polymers and semiconductors, as
mentioned byKosanovich et al. (1996YVang (2015)and Jeffy et al. (2018)Most of batch
processes involve expensive raw materials, and an online process monitoring would allow
materia, time and money savingds mentionedoy Chai et al. (2013)the complexity of
process monitoring is due to the high number of variables affecting the process, the nigh
number of samples collected, the complexity of the process itgihf, several reactions
occurring at the same time, anke limited time available for process monitoring (and
control). As mentioned before, batch products &righ-value compounds Therefore,
detecting promptly a fault occurring in the process and acting to bringhémeifacturing
process tanormal operatingonditions $ paramounto sawng moneyandtime, to avoidng

waste of raw materialsandto increasng efficiency and product qualityStatistical process
control (SPC) methodologies and in particular multiway principal component analysis
(MPCA), have becoméhe main tool for ofline process monitoring and fault detection in last
years for two main reasonghe first reason is that thellow an easier and more effective
process understandingy compressing data and projecting them onto a-dowensional
space, in which main correlations between variables can be identified ¢larhikos and
MacGregor, 1994 The secondreason is that they alloaneto build a model of the process
undernormal operating conditions without any knowledge about the process and its kinetics,
exploiting only data collected from an appropriaemnberof batches running in normal
operating conditions (NOC) and whose produatewithin specificationg(Camacho tal.,

2009. New samples of the batch to monitor are projected onto the mepedsentinga
normal process, and faults can be identified; thtée engineercan exploit his or her
knowledge to manipulate variables in order to obtain a final produbinngpecifications.
Industrial data are usually collected in thodmensional matrix that need to be unfolded
before performing a PCA analysis. Several unfolding methodologies havedmatedby
Camacho et al. (2008ndCamacho et al. (2009andtwo main approaches can be identified:

the batch wise unfolding and the variablse unfolding.

As mentioned byCamacho et al. (2008}he first one allows for a representation of the
complete batch, while the second one treats data collected atiraacimngtant: while in the
second case new data can be projected onto the model as they are at each time instant, in the
case of batclwise unfolding the entire matrix of new samples must be completed; however
only at theend of the process all real data available. The consequence is that if a new
batch need to be projected in real time onto a baish model, missing data for future time
instants need to be predictéit this purposeNomikos and MacGregor (1994)iggestdthat
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keeping the deviation from the mean of the last time ingtam$tantfor the remaining time
instants revealed to be a good prediction of missing future samples. The other issue regarding
the batchwise unfolding model is related to batch lengthmany nanufacturing processes

the duration of a batch may vaagross batches$n order to apply batetvise unfoldng PCA,

data collected need to be aligned such that all batches have the same number of samples
(Camacho et al., 2008

A solution to avoid thesessues was proposed Westad et al. (2015and consists in a
variablewise unfolding model which aims at modelling a normal trajectory of the process,
without the need of missing data imputatfondata alignment. The model is based on a-grid
searchalgorithm that is able to model the proces®jectorybased on data collected from
batchesunder normal operating conditiongonfidence limits are calculated to define the
region inside which nevprojecteddata aredeemednormal. Newdata collected from the
process at every time instant are projected onto the model and compdhedrigectory
modelled and its limits: if a fault is detected (i.e., if the new batch trajectory deviates from the
normal one,thus going out of confidencdimits), the main causes are investigated and
corrective actions can be taken.

The objective of this thesis is tovestigatethe monitoring approaciproposed byWestad et

al. (2015) andto compare it with a batetvise monitoring approacim order toassessvhich

one is more suitable for process monitoritigs important to notice that the variablgse

model is not described in detail byestad et al. (2015)n particular, neither the grgearch
algorithm criteria and parameters, nor assumptiand methods forconfidence limits
calculation, are described in detail in the original manuscript.

The thesis is organized in €£hapters Chapter 1contains theprinciples of principal
component analysis and of a typical batdee model Chapter Z2includes the description of

the 5 datasetavailable in the literaturewith different characteristics and related to different
processs. In Chapter 3he procedure used to déwe the assumptiofree modeis discussed.

In Chapter 4ll thecase studies apesentedogether with their results.



Chapter 1

Process nonitoring models

Two modelling strategies are considered in this thesis for the purpose of process monitoring
Both of them use principal component analysis (P@¥9mikos and MacGregor, 1993effy

et al.,, 2018 as a modelling platformThe first modelling approachis based on bateWise
unfolded dataseand exploitsthe score plotHotelling T2 statistics and residuals to detect
process abnormalities. The second one is an assunif®model calibrated with variable

wise unfolded dataset and consigtsai trajectoryin the score plotepresenting batch in
normal operating conditions: a new batch is considered like faulty if it deviates from this
trajectory.

1.1 Multi -way principal component analysis (MPCA)

As discussed bilomikos& MacGregor (1994)multi-way principal componentanalysis & a
powerful statistical technique that allowseto explain the variance and covariance within a
multivariatedataset through linear combination of few term$he dataset is decomposed in
order to capture directions of maximum variability: these directions define the new low
dimensioncoordinatesystemon which the original data are projected, allowingn easier
overview of batch history and correlations between variabdesistrial datasstare usually
available in threglimensional arrays in thfierm == r O 0 U , like reported inFigure 11,
wherel represents the number of batches samplad,the number of variables ardthe
number of time instants sampled for each variable for each batch.

J

fig-1.1.jpg

Figure 1.1. Structure of a threglimensional matrix. | is the number of batches, J is
the number of column and K is the number of samples (time instants). Each
horizontal #Alayerd contains K samples for J var

Carrying out an MPCA is like perforing a PCA on a large twdimensional dataseibtained
by unfolding the original thredimensional datasewhile preservingthe dimension ofl
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batches ¢btaining a batchwise unfolded matrix of dimensiorn® 0 §, as described by
Nomikosand MacGregor (19949nd Camacho et al. (2009 the dimension of variables
(obtaining avariablewise unfolded matrix of dimensions ‘O ). The matrix obtained after
unfoldingis autoscaledthe mean of each column is subtracted to the coluseifjtwhich is
then scaled on its variance. The resultinggmecessed matrix has all columwith mean
equal to zero and unit variance order to define the reduced latent space, directions of
maximum variability of the data amlculated starting fra the covariance matridefined by
Wise et al. (2006ljke

Avp A (1.1)

where X is the unfolded matrix andm is its number of rows.lts eigenvalues and
corresponding eigenvectare thercalculatedoy Wise et al. (2006)according to

AT ®1 171, (12)

in whichl is the eigenvaluassociated tthe eigenvectot .| arecal | ed fhdoadi ng
are vectors that provide directions of maximum variability of the dslatiplying the

loading matrix "E by the unfolded matrix, the projections of original datanto the new
low-dimensionakpace can be obtainétkffy et al., 2018Wise et al., 2006

A AE . (1.3)
T is the score matrix and contains coordinates of original data into the reducedSipeee.
the objective of the PCA model te simplify data inspection representing them in a-low
dimensional spagea good approach is to build the PCA model using only peincipal
component$C (i.e., few dimensionsn the new coordinate syst¢no represent datavithout
significant loss of informationFor this purpose, eigenvalues and corresponding eigenvectors
are ordered irdescendingorder: the higher the eigenvaluthe higher the variance of data
explained by its eigenvector (loadings a consequence, tbematrix resulsto be

A A A 7 A (14)
in which P is thetruncatedmatrix of loadingsandE is the error matrixontainingthe part of
data unexplained by the mod@lata modelled by discarded principal components, and
usually representing measurement noiEarh scorél is representative ane sampled batch
(row of X), so information aboutow batches are related to each other can be extracotad
the score plgtin which clusters can be identified’he lbadingsl are representative of
variables(columns ofX), andcorrelations between different variables can be identffieh
the loadng plot Different criteria can be adopted to select the number of principal
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componerg (PCs)to retain into thePCA model In thisthesisthe rootmeansquareerror of
cross validatiofRMSECYV)is used for every case study.
In Wise et al. (2006)the RMSECYV is defined as

2-3%#6% T ! (1.5)

in which thew are predictions for samples that are not included in model formulatioiw

are Z real samples that are not included in model formulatiorefers to the number of
principal components used to build the model on whiclRIMSECV is then calculated. The
optimal number of principal components to use to build the model is the one atthich
curveof the RMSECVreachests minimum, or the one at which the curve RMSECV vs PCs
s hows anAmeadure of thé variation of each sample within the PCA model is given
by the HotellingT? statistic which is definedoy Jeffy et al. (2018)andWise et al. (20063s

the sum of thequares of scores:

Y 1 h oE CHoN (1.6)

The”l isi row of the scorenatrix T, while 6 is thei®" row of the unfolded matriX.
is the diagonal matrix containing eigenvalues up to the last oneetained in the PCA
model

] Tt
T .
]

11
m 8 a7

m T

From a mathematical point of vieWy represents the distance of the projectiothefsample

i onto the new spacé&om the origin of the coordinate system (i.e. from the mean of
multivariate samplgsvery high”Y means that the sampleull fitted by the modelbut it
deviates a lot fon the mean of other samples (values of variahlesnuch larger or smaller
thanthe ones obther samplgs A samplethatis not fitted appropriately by the model shows

a very largeQ statistic,instead definedby Jeffy et al. (2018andWise et al. (R06)as

0 "HHA o & "Ef o, (1.8)
whereQ; is theQ statisticfor the sample, & is the vector of errors for samglé" row in the
error matrixg), andl is the identity matrixQ is a measure of therthogonaldistance of the
samplefrom theplane of the new spaceo it is anndex of the amount ofnformationof a
samplethat are not represented by the PCA mo#dargeQ is common when a fault occurs
in the process causing a changing in the correlation structure of variables.
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In order to classify new samples as normal or abnormal, it is necessary to establish control
limits for scoresHotelling T? andQ statistic. Limitsfor thescoresare calculated according to

t he St tuidtébatibndcensidering the'” PC, 1U confidence limit for the scoresn
principal componemnt is calculated as

(o3 10 BT (1.9)

wherel is the eigenvalue corresponding to the principal compomemtis the number of
sampleqrows in the unfolded matrigndo ¢ is the probability point on the singiéded
t-distribution (e.g.for 95%confidence limits, T8t ).

Most of thevariance ofthe original dataset igypically captured by the first two principal
componentsFor this studyonly two-dimensional score pis will be considered and used for
process monitoring.

Confidence limits for the Hotelling? are calculatedy Wise et al. (2006}onsidering the=-
distribution according to the formula:

Yor —Or &, (110

whereN is the number of principal components retained by the modétynd j the
(1-U) probability point of thé=-distribution.
Limits for theQ statistic are calculatdaly Wise et al. (2006yvith the formula:

v g p — (1.11)
where
9 fori=1,2,3 (1212
and
Q p —. (1.13

o is the standard normal deviate corresponding to 4Hedper percentile

These approaches for confidence limits calculation are based on the assumption that samples
are randomly distributed, thus scores are normally distributed: if this assumptiotaisdjio
confidence limits are not completely reliable.
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1.2 Batch -wise unfolded MPCA model

AfAbawcéee unf olisgsMPCA modalie Which the original thredimensional
matrix is unfolded along the variable direction: if the original matriXds(I1xJxK) with |
batches,) variables anK time instants, the batehise unfolded matrixXX(Ix JK) is a matrix
with | rows andJK columns(Nomikos and MacGregor, 199€amacho et al., 2009as
showed inFigure 12.

J
I
K
J J

| |[k=1|k=2| ... |k=K

fig-1.2.jpg
Figure 12. Scheme of a batelvise unfolded matrix. Thredimensioml matrix is
fislicedod vefrstliiccadd ycoreraecshponds to a k time 1ins

variables sampled for all | batche&.Ix(JK) matrix results

Eachi" row of the unfolded matrix contains all samples of all time instants af'tbatch

while first J columnsare samples ol variables at the first time instant for albatchesin

order to carry out a batelise unfolding, a fundamental prerequisite must be respected by the
dataset: all batches must have the same lengths@iree number of time instargampled.
Performirg a principal component analysis on the bati$e unfolded matrixusing the
RMSECV criteriadescribed ir§1.1 for the selection of thd number of principal components

to retain iio the modelalx (JK) score matrix and @IK)x N loading matrix are obtained.

As mentioned irg81.1, scores relate tmws of theunfoldedmatrix (in this case, each row
corresponds to one batcaid it is common to represethie scoresby considering only first

two principal componentsFigure 13 is an example of a score plot in which scores are
multinormally distributed, so the fundamental assumption on which confidence limits for
scores, Hotellingr? andQ statistic are calculated is respectBdtches inside the confidence
ellipse are considered normal batches, while batch no.12 and batch no.16, that are out of the
confidence area, are probably abnormal batches.
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Despite it is very useful for a preliminary identification of a faulty batich,score plot has a

limit: since each score resumes the entire history of a batch, it may happen that if some
variables are abnormal in excess and others are abnormal in defect, a compensation effect
occurs and the batch score results to be inside tifedleace region.

40 95% Confidence limit

*16 o e

PC2 scores [10%)]

SP_B-1,jpg PC1 scores [15%)]

Figure 1.3. Example of a score plot for a batgfise unfolding model. Each dot
representsa batch (e.g. dot no.26 represents batch no,26suming its entire
processconsidering all variables over all time. Dashed line corresponds the 95%
confidence limit for score®ercentage in squared brackets is the variance captured
by the corresponding principal componefithis figure is related to the dataset
described in 82.And used bjNomikos and MacGregor (1994)

Monitoring the process in real time is useful to detect promptly when a fault panars
possibly act on the manipulatedriables: ateverytime instant, the new batch dataset is
projected into the modslo that at the end of the process a trajectory of the batch is available
in the score, Hotelling? andQ residual plots. As mentioned at the beginning of $keistion
a new batch can be peatedonto the model only if the number of samples (time instants) is
the same of the one of calibration batches. In the case of online monitorinds saryples
for each variablare available at timk: in order to be able to project the new batchraet
instantk (so during theentire process and not only at the end), the remaimiAg future
samplesneed to be estimated\s discussedn Nomikos and MacGregor (1994a good
prediction of the scorg.ewOf the new batch that would result if the newatrix wascomplete
is obtainedby assuming that future deviations from the meéralibration batchesemain
constant for the rest of the process and equal to the ones of the last obs&nh¢andata
projection is obtained in the following way:
1. The new matrix available up to time instdnis scaled on the calibration matrix
(truncated at time instark): mean of calibration matrix is subtracted to the new
matrix, which is then divided by the standard deviation of the calibration matrix
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2. The last sample of the scalethtrix is repeate#-k times until filling the new matrix

Xnew
3. Score of the new bel, Hotelling T?> and Q residualare calculatedwith equations

(1.3), (1.6), and (1.8)puttingl] N

| n E (1.14)
Yo oof E ERY (1.15)
5 CH R R & CEEFY (1.16)
where’l , Y and0 are the score, the Hotellinif andQ residual of the new

batch.
In this way the evolution of the new batchrepresenteth the model.
As mentioned ir§1.1, the HotellingT? calculated with th€1.6)is useful to recognise outlier
batchesa batch with a highi? is a batch which operating conditions are far fithie mean of
other batchegsee batchm12 and batchm16 inFigure 14).
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Figure 14. Example of a Hotelling ZTplot. Eachdot represens a batch. The 95%
confidence limit is reportedThis figure is related to the dataset described in §2.1
and used bjlomikos and MacGregor (1994)

An example of a Hotelling? plot is reported irFigure 14: similarly to the score plot, batches
represented by pointkatare below the confidence limit are considered like normal batches,
while batches with @2 over the limit may be in faulty conditions this case thassumption

of random distribution on which thealculation of limitsis basedis verified and the
confidence limit reportedan be considered reliable for a primarily batch classificdtien

to say if a batch is normal aot). As mentioned in 81.1alsothe Q residuas calculated with

(1.8) areusefulto detect outlier batchean example of) residualplot is reported irFigure

1.5 The Q residualcorresponds tdhe orthogonal distance between data and the reduced
spaceandcan be interpreted like the part of data not represented by the model: a batch with a
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large Q is not fitted well by the model and shows a different correlation structure between
variables, which &n be due to a fault in the proceSsice residualare calculated over rows,

the number of points appearing in the plot is equal to the number of batches in the case of a
batchwise unfolded matrixLike in the case of the Hotelling? plot, also in thisone the
assumption of randomlgistributedpoints Q residuals) is respected, and the limit can be
considered reliabléor an appropriatealibration of the PCA model.

95% Confidence limit
2000"'.'_""""3"
— b @ o0
T15008 ® et 0
'-g '.'....... .’ .f
2 1000 @ * 2% 0
C ® o
500
0
0 20 40
fig-1.5.jpg Batch no.

Figure 15. Example of a Q residual plot. All batches utgo be inside the 95%
confidence region, whose limit is identified by the dashed Tihis figure is related
to the dataset described in §2.1 and usedlbgnikos and MacGregor (1994)

The fault diagnostics in the case of a batebe unfolding model can b@goneby analysing
the contribution plots for both the Hotellinf? and theQ residual. The t contribution
quantifies the contribution of each variable at each time instaatlatchscoreti and is
definedby Wise et al. (2006ljke

TR T TR OE TH, (1.17)

where”l j is thevector containing contributions of all variables at all time instants to the
score of batch. From the score contribution, tAé contribution is then calculate@Vise et
al., 2009 like

Ao TR R, (118

wheref]  is the vector containing contributions of all variables at all time instants to the
Hotelling T2 of batchi.

In order to determingvhich are variables responsible of the fault, some limits inside which
variablescontributionsshouldlay must be defined. Limits are not the same for all variables
and vary along the timeso they must be calculated for each time instaot.the (*U) %
confidence limit calculationhe basic assumption is tHE& contributions ofeachvariableat
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each time instant are normally distributegith mean and standard deviation equal to the mean
and standard deviation of contributions of that variable atithatinstant.

Similarly, the Q contribution quantifies the contribution of each variable, at every time
instant, to the totalQ residual of a sample (batchJ.he Q contribution for a batch
corresponds to thi& row of the error arraf, according toVise et al. (2008)

‘E ; “H. (1.19)

Differently from theT? contributiors, the Q contributiors retain the sign of the deviation.
Also in this case, limit calculation is done for each variable at eachristent and based on

the assumption of normal distribution of errjorgéth mean and standard deviation equal to the
mean and standard deviations of the error related to a variable at a specific time instant.

As mentioned irgl.1, scores in the score plapresent batches considering all their variables
along the entire process, so some compensations phenomena may occur and a score could be
inside confidencellipsein the score ploalso if the batch is abnormal, especially if the model

is calibratedvith nonrandom batches (as discusse@2i2). For this reasorthe HotellingT?

and theQ residual plots should always be checked to avoid missing fault detetttem,
contribution plotsshould beanalysé to identify the cause of the abnormality and its
maghitude.

Considering the ofine monitoring in the Hotelling? plot andQ residual plas, in both cases

the alarm is set to start after 3 consecutive points out of confidence limits for all cases
reported ing4.

1.3 Assumption -free model

The asumptiorfree model is a variabl@ise unfoldingbased modgbroposedy Westad et
al. (2015) Themodek developedn thisthesis arean attempt to reprodude however,since
all modelling steps are not described in detail i plapersomeassumptions and modelling
decisions have been necess@iferently from the batchwise model, the variableise one
does notequire a dataset containing batches with the same number of samples: this is a great
advantageconsidering thait is very comnon to have different batch duratiotes obtain the
same product. The objective ofighapproach is to modeltrajectory of a normal process
the score plousing a dataset of batches in normal operating conditinasitoling of a new
batchis madecomparing its trajectory with thenormal one and its confidence limitsThe
procedure followed to develop the assumpfi@® model is described in the flowchart of
Figure 16.

First of all, he threedimensional matrix is unfoldewvhile preserving the dimension of
variables (usually data are already available in a variablise form and unfolding is not
necessarymoreover,in real industry processesually havalifferent durationsaand a three



12 Chaper 1

dimensional matrix is not availa)lghen it is autoscaled aradprincipal component analysis
(PCA) is performed aslescribed irgl1.1, using the RMSECYV criteria for theelection of the
number of principal components. gkid search algorithm is used to modeé trajectory of

the process: it considers different grid resolutiand selects the one that gives thghest

number ofgrid elements (i.e., a trajectory with theghest number of points). For each grid
element, the overall mean of all samples and the mean for each batch are calculated: the first
one is used for trajectory modelling, while the second one is usetdefaralculation of the
confidence limitsaroundtrajectory. According toWestad et al. (2015all scores must be
included into grid elements, so all of the scores must be used for trajectory modelling. Overall
means are interpolated to draw the trajectory, while batch means are projected intryraject
and their distance in the model space is estimated. The standard deviation of distances is
calculated and limits are plotted followirtige direction of the trajectory, avoiding crossing.

For each grid elemen residuat are calculated and a limit farach grid element is
calculated. Methods arassumptions foiimits calculation are not provided by the author.
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Figure 1.6. Procedure for assumptiefiee model developmergccording towWestad
et al. (2015)

In the endanew batch can be projectedto the modefor fault detection and diagnosithe
distance between scores of the new batch data and trajectofy rasitluals are calculated
The state of the new proce@slative time)is estimatedaccording to the relative position of
new scores with respect to trajectory modell&@tde procedure followedo develop the
assumptiorfree model and to implement the ggdarch algorithm is reported $3.
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Avalilable datasets

To testthe models developed, datasets of different batch processes have been considered.
Experimental and simulated ddtaund in the literature (sources will be reported for each
dataset) have been reorganized in order to have all datasets with a similar structure.
Unfortunately, not all information are available for each datasetome cases, thenits of
measure are umiown. A calibration dataset and a validation one with normal and faulty
batches are provided for each procé&sable 21 summarizes available datase?sof them
(dataset no.1 and dataset noaBg simulated datasets obtained thoogithematical models,

while the other 3 contain real industrial data. Not all datasets contain batches with the same
number of samples: dataset no.3 and dataset no.5 contain batches fergndiengths,

which means that an alignment procedure is needed before carrying out awilsatch
unfolding MPCA analysis.

Table 21. Available datasets summary

Dataset no. Description Experimental/ Equal no. of samples

simulated for all batches
1 SBR polymerization Simulated Yes
2 Industrial batch polymerization Experimental Yes
3 Saccharomices Cerevisiaproduction  Simulated No
4 Bakerdéds yeast Experimental Yes
5 Herbicide production Experimental No

More information abousll datased, such as the number of calibration batches available, the
number and the description of variables sampled, and the number of samples, are ireported
the paragraph correspondinggachsingle dataset.

2.1 Dataset 1 1 Polymerization of a styrene -butad iene rubber

The dataseis related to a simulation of treemibatch polymerization of styrebetadiene
rubber (SBR) andhas been tested firstly lyomikos and MacGregor (1994ising a batch
wise unfolding modedo discriminate normal and faulty batchadter process completion.

2.1.1 Process description

According to the model developed Byoadhead et al. (1983)efore starting th@rocesshe
reactor is charged with all raw materials necessary to oltendesired product: SBR
particles, an initiato(S;0Os), a chain transfer age(dliphaticmercaptan)an emulsifier(fatty
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acid soap)water and a small quantity of styrene and butadieaeomers, while more of
these monomers will be fed to the reactor at constant rate until the end of the.prbeess
jackedreactor is assumed to be perfectly mixed with a cylindrical geometry. The temperature
inside is kept under contratanipulatingthe @oling waterflowrate to the jacketSteady state
concentration of the initiator, located only in the water phiasessumed. Other reactions, not
involved in radical initiation, can be considered negligible reaction starts with the
decomposition 0&,0s into radicals, according to reaction reporte@imadhead (1984)

3/ ©¢3/2Q (2.1)

3/2 -03/ -3 (2.2)

where M can be either styrene (S) or butadiene (B).

With radical monomers the propagation phase begins: double bompdsition cis,14 and
trans1-4 are assumed to have equal reactivity, while bonds 1,2 are the most reactive ones.
Diffusion-controlled propagation need to be taken into account only inabe of very high
proportions of styrene: this is not the case because styrene and butadiene flowrates are equal.
Propagation can occur with different combinations:

x30 30x33 (2.3)
x3D3 " 0x3"] (2.4)
x"D) 30 x" 3 (2.5)
x"Q " oxm"n"y (2.6)

Radical termination instantaneous for small particlels, assumed taccur only in the

polymer phase because of chain transtemonomer poymer or modifier (chain transfer

agent).

A noise has been added to the initial charge purity and butadiene flowrate. Additional
measur ement noi se has been introduHoethe i n th
noise has been introduced is not explainethamikos and MacGregor (1994however it

could be reasonable to think that it consists in a random numerical (remsf®m number)

added during the numerical implementation of the model.

2.1.2 Calibration dataset

As summarizedn Table 22, the aiginal calibration dataset contaim®rmal batches with
equal number of samples, so no alignment of batsheecessg. All 45 simulatedbatches
have a duration of 100fin, corresponding to 200 sampldsvery 5min 9 variablesare
measured, as reported Trable 23: the styrene and butadiene flowratése rubber density
andthe temperature of the feed, the reactor, the cooling water and the jacket of the reactor
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The total conversion and the instantame net rate of energy released are estimated though
energy balance around the reactor.

Table 22. Dataset 1:Calibration datasummary

Equal no. of No. of samples

Experimental/  No. of Batch samples for all (aligned No. of 3D matrix
simulated batches duration variables dimensions
batches dataset)
Simulated 45 1000 min Yes 200 9 50x9x200
Table 23. Dataset 1:Measured and estimated variables
Variable no. Type Description Units
Measured Styrene flowrate
Measured Butadiene flowrate
Measured Feed temperature °C
Measured Reactor temperature °C

Measured Cooling water temperature °C
Measured Reactor jacket temperatur.  °C
Measured Latex density in the reacto g/L
Estimated Total conversion -
Estimated Instantaneous rate of ener¢ J/min

O©CoO~NOOOUTA~,WNE

The total conversion is dimensionlessdvaries between 0 and 1. this case the maximum
conversion reached is lower than,(agshowedn the figure D1V8.jpg reported irgA.1.1.
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Figure 2.1. Mean pofiles of(a) temperature andgb) net energy releasealong the
process durationThe shadedrea corresponds to variabilitgcrossbatches

As shown inFigure 21, the reactotemperature profile haa peakat the begining of the
processindicating a veryfast dynamicof the reactionhowever it tends to stabilize very
quickly remainingconstants for the rest of the process duragsuoeptfor some fluctuations.
The net energy released increases rapidly at lieginning of the process, when the
polymerization reaction rate is very fast due to high concentratiomsomers; then, it
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stabilizes at about 800 J/min and remains constant for the rest of the process duration, except
for some fluctuationsProfiles of oher variables are reported in Appendix BAtl.1.

2.1.3 Validation dataset

The \alidation dataseavailable described inTable 24, includes8 batches:6 in normal
operating conditions and in abnormal conditions. All batches have the same duration
1000 min,which corresponds to the one of calibration batcidso for the validation
datasets, 9 variables are measured at 209 time instants (samples).

Table 24. Dataset 1:Validation dataset summary

Equal no. of No. of samples

Experimental/ Batches Batch . No. of
. No. of batches ; samples for all (aligned )
simulated type duration batches dataset) variables
. 6 normal 1000 min Yes 209 9
Simulated 8 2 faulty

Table 25. Dataset 1:Validation batches characteristics

Batch no. Type Fault time Fault cause
1-5,53  Normal
99 Faulty Half-way of the process Contamination in butadiene fee
106 Faulty Beginning of the proces Contamination in butadiene fee

As reported inTable 25, the fault latchno.106 consists in a contamination in the butadiene
feed at théeginning of the proceswhile batchno 99 presents the same type of fadtiway
through the process.

2.2 Dataset 2 i Industrial batch polymerization

This dataset is a collection of real industrial dafta polymerization process carried out in a
DuPont batch reactpas reported bjNomikos and MacGregor (1999n this case, units of
measure of the variablesd a detailed description of the procéssluding also reactions
and raw materials) are missirig,protect data confidentiality.

2.2.1 Process description

The processs carried ouin two stages, each one lasting approximatively with reactants
loaded into the reactor at the beginning of the first stage. Thedirsof the processonsists

in the removal of the solveim which raw materials are initially dissolved becharged into
the reactor, through a vigorous vaporizatisithout the need of stirring. Reaction is then
completed in the second stage, at the end of which the final polymer product is oatained
can be discharged from the vesdal.order to keephe pressure and temperature profiles
under controlfor all the reaction duratio, the flows ofthe heating/cooling medium are
adjusted during the entire process.
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2.2.2 Calibration dataset

As summarized iffable 26, theexperimenal (industrial)dataset available is already aligned:
all calibration and validation batches have the sdomation (2 h and number of samples
(100 samples) for each of thé variables measuredeported inTable 27: 3 temperatures, 3
pressures, 2 temperatures of the heating/cooling medium and 2 flowrates.

Table 26. Dataset2: Calibration dataset summary

Equal no. of No. of samples

Experimental/  No. of Batch samples for all (aligned No. of 3D matrix
simulated batches duration P 9 variables dimensions
batches dataset)
Experimental 50 2h Yes 100 10 50x10x100

Table 2.7. Dataset?2: Measuredvariables

Variable no. Description Units
Temperature 1
Temperature 2
Temperature 3

Pressure 1

Flowrate 1
Temperature 1 (heat/cool mediur
Temperature 2 (heat/cool mediur

Pressure 2

Pressure 3

Flowrate 2
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Figure 22 shows two examples of variables profitaganed over all batches and the interval
of variation (coloured area) between batches.
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Figure 22. Mean pofiles of (a) pressure 1 and(b) temperature 1 in the
heating/cooling systemlong the process duratioifhe shadedrea corresponds to
variability acrossbatches

Pressurel remains constant for almost half the process, then it decreases rapidly and
increases again towards the end. Temperature 1 of the heating/cooling medium remains
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almost constant until half of the reaction, then it decreases rapidly. Profiles of other variables
are reported iM\ppendix lat 8A.1.2.

2.2.3 Validation dataset

The validation dataset availablescribed immable 28, includes 4 normal batches and ofly
faulty batch.The 5-batchvalidation dataset is created withe batch of the original dataset
indicated as faulty andl normal batchesandomly selectettom the ones in normal operating
conditions.All batches have the same duration (2 h) of the calibration dataset. The same 10
variables ofTable 27 are measuretl00 times.

Table 28. Dataset2: Validation dataset summary

Experimental/  No. of Batches Batch Equal no. of No. of samples No. of

simulated batches type duration samples for all (aligned dataset) variables
batches
4 normal 2h Yes 100 10

Experimental S 1 faulty

Table 29. Dataset2: Validation batches characteristics

Batch no. Type Fault time Fault cause
2 Normal
10 Normal
15 Normal
39 Normal
49 Faulty Beginning of the proces

As reported inTable 29, in batchno 49 the faultoccursat the beginning of the process (i.e. at
the first time instant)but its cause is unknowHaving only one faulty batch iguite limiting:
more faulty batches will be useful ¢alibrate andest models in a more appropriate way.

2.3 Dataset 3 1 Saccharomy ces Cerevisiae production

This dataset isincluded in the MVBatch Toolbox, freely available for Matlabat
https://github.com/jogonmar/MVBatch/releaseas reported inGonzalezMartinez et al.
(2018) The simulated process is the fermentation of the Saccharesn Cerevisiae
cultivation, under normal and abnormal operating conditioneose model has been
developed byLei et al. (2001)Both calibration and validation dataset contain batches with
different number of samples. Variables units of measure areowmk

2.3.1 Process description

The fermentation process consists in 4 phases: a lag phase, two phases of exponential growth,
and a stationary final phase. The first phase which the yeast acclimates to the
heterogeneous media for a couple of hpigdollowed bytwo exponential growth phases
whose reactions are schematizedrigure 23. In the first growth phase, glucose fed to the
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reactor is metabolized into pyruvate through(catabolic reaction) and biomass through
(anabolic reaction).

Pyvate  Catabolism Anabolism

Glucose

%

Pyruvate

Acetaldehyde |

Ethanol
i

Ethanol

v
Acetate

fig-2.3.jpg cell membrane

Figure 2.3. Scheme of the catabolic and anabolic reactions occurring inside the
reactor. Glucose and acetate lead to biomass growth (anabolic path), however they
participate also to catabolic reactions that produce ethanol and carbon dioxide.
This figure is froniei et al. (2001)

At low glucose flowrate, pyruvate is completely converted into T@#karboxylic acid

through r> and consequently into C£ but when the flowrate increasepyruvate
dehydrogenase saturates gyuvate is consumeith r3 leading to acetakhyde formation.
Acetaldehyde is then consumed by the main reactioimcreasing the acetate concentration

in the reactor however at higher concentration of acetaldehydhe acetaldehyde
dehydrogenase saturates and tleequilibria side reaction occurs leading to ethanol
formationWh en al | glucose is consumed and it can
ethanol is used as substrate in the second exponertiathg it is converted into acetate,

which can be used in the catabai@actionrs, leading to CQ formation or in the anabolic
reactionrg, leading to biomass formation. A perfect abiotic system is assumed.

2.3.2 Calibration dataset

Theavailablecalibration dataset contains batches with a different number of samples: in order
to use the dataset with bdhPCA models (assumptiefree model and the one in batalse
unfolding), a multysinchro alignment has been perforntedugh the MVBatchToolbox, as
suggested bysonzalezMartinez et al. (2018)The dataset is summarizad Table 210 and
includes 40 simulated batches with a duration of about 35ingafrom batch to batch. The
number of samples is the saf@209 sampleshor all batches only after alignment.
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10 variables are measured and describeBainle 211: concentrations of glucose, pyruvate,
acetaldehyde, acetate, ethanol, biomass, active cell material and acetaldehyde dehydrogenase,
the specific oxygen uptake rate and the specifie @&@Ilution rate.

Table 210. Dataset3: Calibration dataset summary

No. of
Experimental/  No. of Batch Equal no. of samples No. of 3D matrix
. ; samples for all . . . X
simulated batches  duration (aligned variables dimensions
batches
dataset)
Simulated 40 €35h No 209 10 40x10x209
Table 211. Dataset3: Measured variables
Variable no. Description Units

Glucose concentration
Pyruvate concentration
Acetaldehyde concentratior
Acetate concentration
Ethanol concentration
Biomassconcentration
Active cell material
Acetaldehyde dehydrogena:
Specific oxygen uptake rate
Specific CQ evolution rate

Boow~v~ouobwNnrk

Only substances concentrations are measured, wiylenformation related to temperature
and pressure is not provided: theyrdiappear between measured variables.
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Figure 2.4. Mean pofiles of(a) pyruvate concentration ang) active cell material
along the process durationThe shadedarea corresponds to variabilitacross
batches

Two examples of variables profiles along batch time are showigure 24: during the first
exponential growth of cell materjgdyruvate is produced rapidly, then after about-tmeth
of the process cells stop growing and pyruvate is rapidly consumed. In thpatasf the
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reaction cells are subjected to another exponential growth, while pyruvate concentration
fluctuates around zerdn Appendix 1 at8A.1.3 are reported figures with profiles of all
variables.

2.3.3 Validation dataset

A 55-batch validatiordatasetis already available in the toolboAs reported inTable 212,
the first 25 sampled batcheare in normal operating conditions, whilde remaining 30
batches ar#aulty. The katch duration and number of samp{69 samples) are the same for
all batche (and equal to the ones of calibration batches) only after alignifteantsame 10
variables ofTable 211 are measured for each batch.

Table 212. Dataset3: Validation dataset summary

Experimental/ No.of  Batches Batch Equal no. of No. of samples No. of
. ; samples for all . )
simulated batches type duration batches (aligned dataset) variables
. 25normal  é35h No 209 10
Simulated 55 30 faulty

Table 213. Dataset3: Validation batches characteristics

Batch no. Type Faulttime Fault cause
1-25 Normal
2655 Faulty N/A Glucose uptake system, ethanol

formation, biomass concentration sensc

In Table 213, threetypes of faults areeportedfor faulty batches: the first one is related to the
glucose uptake system and the glycolytic pathway, the second one is due to ethanol formation
from acetaldehyde, while the third one is a fault of the biomass concentration $@nssrat

which faults occurare not providedneither the exact identity of fault (among the three
possible causes) fewveryfaulty batch.

24Dataset4 iBaker 6s yeast production

This dataset has been provided lgtldolaget AB (Sweden) and consists in an industrial
dataset regdri ng baker 6s y e aBw exédngplesc diMPEA roditorlmg i o n .
approach using this dataset discussedn Eriksson et al. (2013)ariables units of measure

for this dataset are unknown.

2.4.1 Process description

The dataset is related to the last of the pvases hat constitute yeast ods
The processbriefly described inGeorge et al. (1998¥tarts wherammonia andh mixture

mainly constituted by sucrosare fed to ther eact or arlson soerce MalaSses ¢ a
flowrate is increased during the first part of the proceasigng an exponential biomass
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growth,andit is set constanin a second moment in order to aveimbling limitations andin

overflow metabolism that would results in an essive ethanol productioifYeast invertase
hydrolyses molasses intb mixtureof ethano] glucose and fructos@reatest part): glucose

and fructose are consumed first, then when their concentrations decrease ethanol is consumed
and a higher yield is reaet in the end. During the final stage of the process, ammonia and
molasses flowrates are reduced to zétbthe end of the process, cells are harvested and
dewatered, then yeast is pack€te process is carried out in sugar limitation: when the sugar
exceeds a critical value (critical concentration), cells are not able to fully consume the entire
amount of sugar provided, whiahartsto be caverted into ethanol. Alsd ethanol is then

used for biomass growth, the total biomass yield from glucose is lower if combustion of
glucose passes through ethanol. More details about process reactions are not provided by
authors, however the process is similar to the one ofa&d23. what differs is that in this

case the process includes only the last part of yeast production and dataset contains real
industrial data (not simulated).

2.4.2 Calibration dataset

As reported inTable 214, 16 calibration batches available have all the same duration of 14 h,
corresponding to 83 time instardampledfor each batchno dataset alignment is needed in

this case. 7 variables are measurasl,desébed in Table 215: the ethanol content, the
temperature, the molasses, ammonia and air flowrates entering the reactor, the tank level and
the pH.

Table 214. Dataset4: Calibration dataset summary

Equal no. of No. of samples

Experimental/  No. of Batch . No. of 3D matrix
. ; samples for all (aligned ; ! X
simulated batches duration variables dimensions
batches dataset)
Experimental 16 14 h Yes 83 7 16x7x83

Table 215. Dataset4: Measuredvariables

Variable no. Description Units
Ethanol content

Temperature
Molasses flowrate

NHj3 flowrate

Air flowrate

Tank level
pH

No ok, WNBE

Variability between batches is very higlue to variable fluctuations and changes in their
relationships during the batch procedtss phenomenon is particularfyresentin variables
like the ethanol content, the reactor temperature, the ammonia flowrate amktl the p
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All mean profiles of variables are reported in Appendix &Aafl.4, where a wide coloured
area represents large variability between batches profiles.
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Figure 25. Mean pofiles of (a) ethanol content andb) air flowrate along the
process durationThe shadedrea corresponds to variabilitgcrossbatches

As shown inFigure 25, ethanol is produceith the first 30 samples and then consumed in the
second part of the process. The air flowrate is constantly increased at the beginning of the
process, then it is kept cstant for about 30 samples before being decreased totharénd

of the procedure.

2.4.3 Validation dataset

For validation 17 batches are availabdach one containin@3 samplesthe same number of

the one otalibration batchesas reported ifable 216. Similarly to the calibration dataset of
Table 214, the number of santgs is the same for each batch, so no alignment is needed to
perform a batclwise PCA analysis.

Table 216. Dataset4: Validation dataset summary

. Batches Batch Equal no. of No. of samples No. of
Experimental/  No. of ; . )
. type duration samples for all (aligned dataset) variables
simulated batches
batches
Experimental 17 Unknown 14 h Yes 83 7

Differently from previous datasetsnithis case information about thgpe of validation
batches (i.e.normalor faulty) are not available, and soistalsofor the time at which the
fault eventually occurs. This represents a limitation for the purpose of the study becgause it
not possible to evaluaten an appropriate wayhe performance of two models without
knowing what the model should detect atavhich time.
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2.5 Dataset 5 i Herbicide production

A dateaset provided by FMC corporation, as reported in Alspen ProMV Getting Started
Guide (2017) and containing data of an industrial batch dryer reactor for an herbicide
production is available in Aspen ProMV, an AspenTech softwaae the path
C:\ProgramDate#spenTechAspen ProMV Desktofxamples (both the dataset and the
Getting Started Guide carelownloaded)It containsnormal batches (i.ebatches whose

final quality variablesare on specificationsand offspecification batchesand it is available

in both aligned and unaligned forms. Fbe purpose of the study, dataset is reorganized into
two datasets: one for calibration containing normal batches and one for validation containing
normal andut of specifications batcheblnits of measure for all variables are not available.

2.5.1 Process description

As describedy GarciaMufioz et al. (2003)the purpose of the process is to dry an herbicide
product evaporating the solvent present in the wet cake and collecting it in & tsectieme

of the batch process is reportedFigure 26, imported fromAspen ProMV Getting Started
Guide (2017) Reactions are not availablEhe total real duration of the process is unknown.
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Figure 2.6. Scheme of the dryingrocess for an herbicide production in an FMC
Corporation plant. The stirred reactor is heated by hot water flowing into the jacket,
while evaporating solvent is collected in a separate tank.agfitator speed and the
temperatures sqioints are adjustecccording to properties of the cakéAspen
ProMV Getting Started Guide, 20117

The operation starts with the charging of the wet cakt®sevolumecan vary from batch to
batch,into the reactarwhile the tank level is measulethe amount o§olvent present in the
cake is unknown. At the beginning of the prodgsagitator runs at low spewdhile the ot
wateris already flowingnto the jacket making the temperature inside the batch incredsing.
a second momentletermined by the contralystem according to properties of the material
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inside the reactotthe agitator speed is increased rapidly and then decreased just before the
temperature inside the reactor reaches its maximitar the temperature peatkie product

is cooled downthen,toward the end of the process, the agitator speed is increased for some
time. All thesolvent vaporized isecoveredn aseparated tank.

2.5.2 Calibration dataset

The calibration datasesummarized ifrable 217, contains 30 batches in normal operating
conditionswith different number of samplesn alignment process is needed to perform a
batchwise unfolding however the aligned datasetith batcles lasting all 325 time instants,

is already available in the software together with the unaligned Fmreeach batch, 10
variablesreported inTable 218 are measurk thesolventcollector tank level, the differential
pressuran the dryer the dryer pressure, the power provided to the agitator and its speed, the
torqueresistancgthe set points of the jacket and dryer temperatures and the actual jacket and
dryer tenperatures.

Table 217. Datasetb: Calibration dataset summary

. Batch Equal no. of No. of samples No. of 3D matrix
Experimental/  No. of ; . ) . X
. duration samples for all (aligned variables dimensions
simulated batches
batches dataset)
Experimental 30 N/A No 325 10 30x10x325

Table 218. Dataset5: Measured variables

Variable no. Description Units
Solvent collector tank level
Differential pressure
Dryer pressure
Power
Agitator speed
Torque
Jacket temperature set poir
Jacked temperature measur
Dryer temperature set poin
Dryer temperature measure

HBoo~voubrwnek

The amount of solvent contained in every wet cake is not constant (as evidenced by the large
variability of the level of the solvent collector tank reportedrigure 27), so times at which
set points of temperatures and agitator speed change are notdixebldich to batch.
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All of theprofiles of variablesnd their variabilityare reported in Appendix 1 8A.1.5.
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Figure 2.7. Mean pofiles of (a) solvent collector tank an¢b) dryer temperature
along the process duratio The shaded area corresponds to variability across
batches

In Figure 27 it can be observed how the level of the solvent collector tank and the
temperature inside the dryer change during operation. The tank level increases almost
constantly for the greatest paftthe process and tends to stabilize at the end: the cake inside
the reactor icompletelydry and no more solvent is vaporized. The temperature inside the
drier increases rapidly in the last part of the procesergy is continuing to be provided to
thereactor through hot water flowing into the jacket, however since there is no more solvent
to be vaporized inside the reactor, the energy causes a rapid increasing in temperature.

2.5.3 Validation dataset

The \alidation dataset contaifd batchesasreported inTable 219: 3 batches are normal
while the others are faulty, which means that their final proguality is out of specificatian

The rumber of samplefor each batch is different in the case of the unaligned dataset and it is
the same of the ones of calibration batq32% samplesin the case of the aligned dataset.

Table 219. Datasetb: Validation dataset summary

. Batches Batch Equal no. of No. of samples No. of
Experimental/  No. of ; . )
. type duration samples for all (aligned dataset) variables
simulated batches
batches
. 3 normal N/A No 325 10
Experimental 41 38 faulty

For this dataset times at which faults ocand fault causeare not known: also if the batch
can be classified by the model like normal of faultyisihot possible to state if alarms are
false orthey are reporting a real faahd if the real cause &ult is detected.
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The assumptionfree model

This section contains the description of howdssumptiorfree model has been developed in

this thesisand in particular how the grslearch algorithm has been implementgd explain

step by step the procedure, the dataset of an industrial polymerization reaction is considered
(Nomikos and MacGrego1,995 and described i82.2.

3.1 The PCA model

Industrial data are usually collected in a variablse form, which consists in a matrix with a
number ofcolumns equal to the number of variables sampled, and a number of rows equal to
the sum of all time instants sampled of all batai@&smacho et al., 2009Since the number

of samples can vary from batch to batch, an additional column representing tiseessary
(usually; it corresponds to the first column of the matrix) to identify the beginning and the end
of each batch. Specifications on how data should be arranged to be loaded into the algorithm
are reported in a file attached to the algorithm Isaffiles. If all batches have the same
duration data collected from batches undermal operating conditions can be arranged into

a threedimensional matrix and then unfolded as reportdeigare 31.

J
J K|i=1
| Kli=
i=l
fig-3.1.jpg
Figure 3.1. Scheme of a variabl@ise unfolded matrix. Thregimension matrix is
islicedd horizontally: each HfAsliced correspond

variables sampled for K time instants. The f#sg matrix is a (KI)xJ matrix

After performing a PCA analysisn the unfolding matrix, using RMSECufiteriadescribed
in 81.1 for the selection of the number of principal components to retain into the model, a



28 Chapter 3

(KIxJ score matrix and dxNPCsloading matrix are obtainedlore details on the PCA
model are provided i84.2.1, where the entire case study with validation is reported.
The loading plot is useful to capture correlations between variables congidee entire

process duratiorin this case, the loading plot resulting from the principal component analysis
is reportedn Figure 32.
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Figure 3.2. Example of a loading plot for a variablegise unfolding PCA. Each
circle represents a variable considering the entire process durafibis. figure is
related to dataseto.2

Considering the first principal component PC1, pressures, flowrates and temperatures in the
heating/cooling medium are all correlated (on the right side of the plot), while they are anti
correlated to temperatures 1, 2 and 3 (om left side of the plot). Correlation between two
variables means that if a variable increases, the other increases tbee other handf a
variable increases and the other decreases, the situation iscfrael@tion.

Figure 3.3. Example of a score plot. Each score (point) represents a batch at a
specific time instant. Arrows indicate directioa®ng which the process evolves:
from the soutkeast to the souttvest area. Percentage in squared brackets is the
variance aptured by the corresponding principal componéitie model has been
calibrated using all 5@alibration batches of the dataseb.2

In the score plot oFigure 33 the entire process histo for all batches is reportedhe
assumptiorfree model is built on thed® batchnormaltrajectories.


































































































































































































































































