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Abstract 

Batch-wise unfolded multiway principal component analysis (MPCA) is a powerful tool for 

online monitoring of batch processes. However, it is constrained by the fact that all calibration 

and validation batches must have the same duration, otherwise they need to be time-aligned 

(synchronized) before being unfolded into a two-dimensional matrix. To overcome this 

problem, Westad et al. (2015) proposed a methodology based on a variable-wise unfolded 

PCA, which aims at modelling a normal trajectory of the process in the score space though a 

grid-search algorithm. This modelling methodology is called assumption-free, because the 

assumption that all batches must have the same length is no longer required. In this thesis, 

assumption-free models and batch-wise unfolded models are developed and tested to monitor 

five benchmark processes with different characteristics. For each process, the number of 

missed faults, false faults and false alarms are computed. The assumption-free model is able 

to recognize most faulty batches, without raising a significant number of false alarms; 

however, its performances are strongly affected by the shape of the normal trajectory of the 

process and by the quality of calibration batches. Moreover, the assumption-free models tend 

to recognize batches according to the number of consecutive scores (or residuals) out of the 

confidence limits, but they do not consider the overall path of the scores: this may lead to 

missing fault detection. The batch-wise unfolded models are able to recognize abnormal 

batches, but they may raise several false alarms (especially for normal batches). 

  



 

 

 

  



 

 

 

Riassunto 

I processi batch sono ampiamente utilizzati nellôindustria manufatturiera per la produzione di 

prodotti ad elevato valore aggiunto. Un efficiente monitoraggio di questi processi, unito a un 

intervento tempestivo da parte dellôoperatore in caso di anomalia, è fondamentale  per ridurre 

eventuali sprechi di materiale, tempo e denaro. Lôelevato numero di variabili che influenzano 

il processo, e la numerosità delle reazioni chimiche che possono aver luogo 

contemporaneamente, rendono complesso il monitoraggio del processo. Uno strumento 

modellistico che negli ultimi anni si è rilevato molto utile non solo per la comprensione delle 

relazioni tra le variabili misurate, ma anche per il monitoraggio dellôintero processo, ¯ la PCA 

(principal component analysis). Tale metodologia consiste nel rappresentare grandi quantità 

di informazioni, relative alle variabili di processo, in uno spazio di ridotta dimensione. Per 

poter calibrare un modello PCA, è necessario che la matrice di calibrazione, contenente 

misurazioni effettuate su processi batch in condizioni operative normali, sia in forma 

bidimensionale. Dati tridimensionali possono essere organizzati in matrici variable-wise 

unfolded o batch-wise unfolded. Nel caso di questôultima, ¯ necessario che tutti i batch di 

calibrazione abbiano la stessa durata (stesso numero di istanti di tempo campionati), 

situazione che non sempre si verifica in un comune impianto industriale, rendendo necessario 

il ricorso a metodi di sincronizzazione delle traiettorie temporali, i quali possono avere 

conseguenze sulle prestazioni del modello. Per evitare di ricorrere ad un processo di 

sincronizzazione dei batch, Westad et al. (2015) hanno proposto un modello di monitoraggio 

che non richiede come condizione lôeguaglianza della durata dei batch. Questo approccio 

viene denominato assumption-free. Tale modello PCA è basato su una matrice di calibrazione 

variable-wise unfolded, e utilizza un algoritmo di ricerca a griglia per modellare una 

traiettoria nello score plot, rappresentativa di un processo in condizioni operative normali. In 

questa tesi, due tecniche modellistiche, una assumption-free e una batch-wise, sono sviluppate 

e testate con 5 diversi dataset, al fine di determinare quale dei due è il più appropriato per il 

monitoraggio di processi batch. 

Per quanto riguarda il modello assumption-free, sono considerate diverse configurazioni di 

griglia sullo score plot, e per ogni cella di ogni griglia si ricercano gli scores in essa contenuti: 

se una cella contiene almeno uno score per ogni batch di calibrazione, allora è ritenuta 

ñvalidaò. Lôalgoritmo seleziona come griglia ottimale quella che, con il maggior numero di 

celle valide, è in grado di catturare almeno il 95% di tutti gli scores di calibrazione. Per ogni 

cella valida (della griglia ottimale), è calcolata la media di tutti gli scores in essa contenuti; 

quindi, per interpolazione di tutte le medie calcolate, si ottiene la traiettoria rappresentativa di 

un processo normale. Per ogni cella valida, si calcolano la distanza degli scores dalla 

traiettoria e i residui Q corrispondenti, quindi vengono calcolati i limiti relativi agli scores e ai 



 

 

residui Q. Infine, gli allarmi sullo score plot e sui residui sono calibrati considerando i batch 

di calibrazione. 

Il modello in batch-wise unfolding è sviluppato con lo scopo di effettuare un monitoraggio in 

tempo reale; pertanto, ad ogni istante di tempo è necessario stimare i valori mancanti delle 

variabili, relativi agli istanti di tempo futuri. In questo caso, si adotta la procedura suggerita da 

Nomikos & MacGregor (1994). 

Al termine del test dei due modelli con tutti i batch disponibili per la convalida, il modello 

assumption-free si rivela in grado di riconoscere i batch anomali. Tuttavia, una forma 

complessa della traiettoria del processo, data ad esempio dalla presenza di rapidi cambi di 

direzione (curve strette o angoli), modellata con un esiguo numero di celle valide, può 

abbassare drasticamente la sensibilità degli allarmi, portando al mancato riconoscimento dei 

batch anomali e compromettendo quindi le prestazioni del modello. Un mancato 

riconoscimento dellôanomalia pu¸ verificarsi anche nel caso in cui il dataset di calibrazione 

contenga almeno un batch la cui traiettoria si discosta molto da quelle degli altri batch: dal 

momento che lôallarme ¯ calibrato considerando tutti i batch allo stesso modo, un solo batch 

di calibrazione con un elevato numero di scores consecutivi fuori dai limiti di confidenza è 

sufficiente per ridurre la sensibilit¨ dellôallarme. Un ulteriore limite di questo modello, 

osservato nel caso del dataset n.4, consiste nellôincapacit¨ di riconoscere un batch anomalo 

nel caso in cui gli scores si trovino allôinterno dellôarea di confidenza, ma seguano una 

traiettoria diversa da quella rappresentativa del processo normale (modellata attraverso 

lôalgoritmo di ricerca a griglia). Il modello batch-wise, invece, è in grado di riconoscere i 

batch anomali in ogni occasione; tuttavia, presenta numerosi falsi allarmi nel caso di batch 

normali; nel caso dei dataset n.3, n.4 e n.5, tutti i batch normali risultano essere anomali.  
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Introduction  

Batch processes are very common in the industrial manufacturing of several high-value 

compounds like chemicals, drugs, fermented foods, polymers and semi-conductors, as 

mentioned by Kosanovich et al. (1996), Wang (2015) and Jeffy et al. (2018). Most of batch 

processes involve expensive raw materials, and an online process monitoring would allow 

materials, time and money savings. As mentioned by Chai et al. (2013), the complexity of 

process monitoring is due to the high number of variables affecting the process, the nigh 

number of samples collected, the complexity of the process itself, with several reactions 

occurring at the same time, and the limited time available for process monitoring (and 

control). As mentioned before, batch products are high-value compounds. Therefore, 

detecting promptly a fault occurring in the process and acting to bring the manufacturing 

process to normal operating conditions is paramount to saving money and time, to avoiding 

waste of raw materials, and to increasing efficiency and product quality. Statistical process 

control (SPC) methodologies, and in particular multiway principal component analysis 

(MPCA), have become the main tool for on-line process monitoring and fault detection in last 

years for two main reasons. The first reason is that they allow an easier and more effective 

process understanding by compressing data and projecting them onto a low-dimensional 

space, in which main correlations between variables can be identified clearly (Nomikos and 

MacGregor, 1994). The second reason is that they allow one to build a model of the process 

under normal operating conditions without any knowledge about the process and its kinetics, 

exploiting only data collected from an appropriate number of batches running in normal 

operating conditions (NOC) and whose products are within specifications (Camacho et al., 

2009). New samples of the batch to monitor are projected onto the model representing a 

normal process, and faults can be identified; then, the engineer can exploit his or her 

knowledge to manipulate variables in order to obtain a final product within specifications. 

Industrial data are usually collected in three-dimensional matrix that need to be unfolded 

before performing a PCA analysis. Several unfolding methodologies have been reported by 

Camacho et al. (2008) and Camacho et al. (2009), and two main approaches can be identified: 

the batch wise unfolding and the variable-wise unfolding.  

As mentioned by Camacho et al. (2008), the first one allows for a representation of the 

complete batch, while the second one treats data collected at each time instant: while in the 

second case new data can be projected onto the model as they are at each time instant, in the 

case of batch-wise unfolding the entire matrix of new samples must be completed; however 

only at the end of the process all real data are available. The consequence is that if a new 

batch need to be projected in real time onto a batch-wise model, missing data for future time 

instants need to be predicted. To this purpose, Nomikos and MacGregor (1994) suggested that 
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keeping the deviation from the mean of the last time instant constant for the remaining time 

instants revealed to be a good prediction of missing future samples. The other issue regarding 

the batch-wise unfolding model is related to batch length: in many manufacturing processes 

the duration of a batch may vary across batches. In order to apply batch-wise unfolding PCA, 

data collected need to be aligned such that all batches have the same number of samples 

(Camacho et al., 2008).  

A solution to avoid these issues was proposed by Westad et al. (2015), and consists in a 

variable-wise unfolding model which aims at modelling a normal trajectory of the process, 

without the need of missing data imputation for data alignment. The model is based on a grid-

search algorithm that is able to model the process trajectory based on data collected from 

batches under normal operating conditions; confidence limits are calculated to define the 

region inside which new projected data are deemed normal. New data collected from the 

process at every time instant are projected onto the model and compared to the trajectory 

modelled and its limits: if a fault is detected (i.e., if the new batch trajectory deviates from the 

normal one, thus going out of confidence limits), the main  causes are investigated and 

corrective actions can be taken.  

The objective of this thesis is to investigate the monitoring approach proposed by Westad et 

al. (2015), and to compare it with a batch-wise monitoring approach in order to assess which 

one is more suitable for process monitoring. It is important to notice that the variable-wise 

model is not described in detail by Westad et al. (2015); in particular, neither the grid-search 

algorithm criteria and parameters, nor assumptions and methods for confidence limits 

calculation, are described in detail in the original manuscript.  

The thesis is organized in 4 Chapters. Chapter 1 contains the principles of principal 

component analysis and of a typical batch-wise model. Chapter 2 includes the description of 

the 5 datasets available in the literature, with different characteristics and related to different 

processes. In Chapter 3 the procedure used to develop the assumption-free model is discussed. 

In Chapter 4 all the case studies are presented together with their results. 

 

  



 

 

Chapter 1 

Process monitoring models 

Two modelling strategies are considered in this thesis for the purpose of process monitoring. 

Both of them use principal component analysis (PCA) (Nomikos and MacGregor, 1994; Jeffy 

et al., 2018) as a modelling platform. The first modelling approach is based on batch-wise 

unfolded dataset, and exploits the score plot, Hotelling T2 statistics and Q residuals to detect 

process abnormalities. The second one is an assumption-free model calibrated with variable-

wise unfolded dataset and consists in a trajectory in the score plot representing batch in 

normal operating conditions: a new batch is considered like faulty if it deviates from this 

trajectory. 

 

1.1 Multi -way principal component analysis  (MPCA) 

As discussed by Nomikos & MacGregor (1994), multi-way principal component analysis is a 

powerful statistical technique that allows one to explain the variance and covariance within a 

multivariate dataset through a linear combination of few terms. The dataset is decomposed in 

order to capture directions of maximum variability: these directions define the new low-

dimension coordinate system on which the original data are projected, allowing an easier 

overview of batch history and correlations between variables. Industrial datasets are usually 

available in three-dimensional arrays in the form ╧ ╓Ὅ ὐ ὑ , like reported in Figure 1.1, 

where I represents the number of batches sampled, J is the number of variables and K the 

number of time instants sampled for each variable for each batch.  

Figure 1.1. Structure of a three-dimensional matrix. I is the number of batches, J is 

the number of column and K is the number of samples (time instants). Each 

horizontal ñlayerò contains K samples for J variables of one batch 

Carrying out an MPCA is like performing a PCA on a large two-dimensional dataset obtained 

by unfolding the original three-dimensional dataset while preserving the dimension of I 
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batches (obtaining a batch-wise unfolded matrix of dimensions Ὅ ὐὑ), as described by 

Nomikos and MacGregor (1994) and Camacho et al. (2009) or the dimension of J variables 

(obtaining a variable-wise unfolded matrix of dimensions ὑὍὐ). The matrix obtained after 

unfolding is autoscaled: the mean of each column is subtracted to the column itself, which is 

then scaled on its variance. The resulting pre-processed matrix has all columns with mean 

equal to zero and unit variance. In order to define the reduced latent space, directions of 

maximum variability of the data are calculated starting from the covariance matrix defined by 

Wise et al. (2006) like 

ÃÏÖἦ
ἦἢἦ

 , (1.1) 

where X is the unfolded matrix and m is its number of rows. Its eigenvalues and 

corresponding eigenvectors are then calculated by Wise et al. (2006)  according to 

ÃÏÖἦἸ ʇἸ  , (1.2) 

in which ʇ is the eigenvalue associated to the eigenvector Ἰ . Ἰ  are called ñloadingsò and 

are vectors that provide directions of maximum variability of the data. Multiplying the 

loading matrix Ἔ  by the unfolded matrix X, the projections of original data onto the new 

low-dimensional space can be obtained (Jeffy et al., 2018; Wise et al., 2006): 

ἢ ἦἜ  . (1.3) 

T is the score matrix and contains coordinates of original data into the reduced space. Since 

the objective of the PCA model is to simplify data inspection representing them in a low-

dimensional space, a good approach is to build the PCA model using only few principal 

components PC (i.e., few dimensions in the new coordinate system) to represent data, without 

significant loss of information. For this purpose, eigenvalues and corresponding eigenvectors 

are ordered in descending order: the higher the eigenvalue, the higher the variance of data 

explained by its eigenvector (loading). As a consequence, the X matrix results to be 

ἦ ἢἜἢ Ἇ ἦ Ἇ , (1.4) 

in which P is the truncated matrix of loadings, and E is the error matrix containing the part of 

data unexplained by the model (data modelled by discarded principal components, and 

usually representing measurement noise). Each score Ἴ is representative of one sampled batch 

(row of X), so information about how batches are related to each other can be extracted from 

the score plot, in which clusters can be identified. The loadings Ἰ are representative of 

variables (columns of X), and correlations between different variables can be identified from 

the loading plot. Different criteria can be adopted to select the number of principal 
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components (PCs) to retain into the PCA model. In this thesis the root-mean-square-error of 

cross validation (RMSECV) is used for every case study.  

In Wise et al. (2006), the RMSECV is defined as 

2-3%#6
ρ

ὤ
ώ ώ  

, (1.5) 

in which the ώ are predictions for samples that are not included in model formulation, and ώ 

are Z real samples that are not included in model formulation. n refers to the number of 

principal components used to build the model on which the RMSECV is then calculated. The 

optimal number of principal components to use to build the model is the one at which the 

curve of the RMSECV reaches its minimum, or the one at which the curve RMSECV vs PCs 

shows an ñelbowò. A measure of the variation of each sample within the PCA model is given 

by the Hotelling T2 statistic, which is defined by Jeffy et al. (2018) and Wise et al. (2006) as 

the sum of the squares of scores: 

Ὕ Ἴ Ἴἢ ὀ Ἔ Ἔἢὀἢ  . (1.6) 

The Ἴ is i th row of the score matrix T, while ὀ is the i th row of the unfolded matrix X. 

 is the diagonal matrix containing eigenvalues ɚn up to the last one retained in the PCA 

model: 

ʇ π π
π ȣ π
π π ʇ

. (1.7) 

From a mathematical point of view, Ὕ  represents the distance of the projection of the sample 

i onto the new space from the origin of the coordinate system (i.e. from the mean of 

multivariate samples): very high Ὕ  means that the sample is well fitted by the model, but it 

deviates a lot form the mean of other samples (values of variables are much larger or smaller 

than the ones of other samples). A sample that is not fitted appropriately by the model shows 

a very large Q statistic, instead, defined by Jeffy et al. (2018) and Wise et al. (2006) as 

ὗ ἭἭἢ ὀἓ ἜἜἢὀἢ , (1.8) 

where Qi is the Q statistic for the sample i, ei is the vector of errors for sample i (i th row in the 

error matrix E), and I  is the identity matrix. Q is a measure of the orthogonal distance of the 

sample from the plane of the new space, so it is an index of the amount of information of a 

sample that are not represented by the PCA model. A large Q is common when a fault occurs 

in the process causing a changing in the correlation structure of variables. 
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In order to classify new samples as normal or abnormal, it is necessary to establish control 

limits for scores, Hotelling T2 and Q statistic. Limits for the scores are calculated according to 

the Studentôs t-distribution: considering the nth PC, 1-Ŭ confidence limit for the scores on 

principal component n is calculated as 

ὸȟ ʇὸ ȟȾ ,  (1.9) 

where ʇ is the eigenvalue corresponding to the principal component n, m is the number of 

samples (rows in the unfolded matrix) and ὸ ȟȾ is the probability point on the single-sided 

t-distribution (e.g., for 95% confidence limits ɻ πȢπυ).  

Most of the variance of the original dataset is typically captured by the first two principal 

components. For this study, only two-dimensional score plots will be considered and used for 

process monitoring.  

Confidence limits for the Hotelling T2 are calculated by Wise et al. (2006) considering the F-

distribution, according to the formula: 

Ὕȟȟ Ὂȟ ȟ ,  (1.10) 

where N is the number of principal components retained by the model and Ὂȟ ȟ the  

(1-Ŭ) probability point of the F-distribution.  

Limits for the Q statistic are calculated by Wise et al. (2006) with the formula: 

ὗ ɡ ρ , (1.11) 

where 

ɡ ‗  for i=1,2,3 (1.12) 

and 

Ὤ ρ  . (1.13) 

ὧ is the standard normal deviate corresponding to the 1-Ŭ upper percentile. 

These approaches for confidence limits calculation are based on the assumption that samples 

are randomly distributed, thus scores are normally distributed: if this assumption is violated, 

confidence limits are not completely reliable. 
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1.2 Batch -wise unfolded MPCA model  

A ñbatch-wise unfolded modelò is MPCA model in which the original three-dimensional 

matrix is unfolded along the variable direction: if the original matrix is X3D(I×J×K) with I 

batches, J variables and K time instants, the batch-wise unfolded matrix X(I×JK) is a matrix 

with I rows and JK columns (Nomikos and MacGregor, 1994; Camacho et al., 2009), as 

showed in Figure 1.2. 

Figure 1.2. Scheme of a batch-wise unfolded matrix. Three-dimensional matrix is 

ñslicedò vertically: each ñsliceò corresponds to a k time instant and contains J 

variables sampled for all I batches. A I×(JK) matrix results 

Each i th row of the unfolded matrix contains all samples of all time instants of the i th batch, 

while first J columns are samples of J variables at the first time instant for all I batches. In 

order to carry out a batch-wise unfolding, a fundamental prerequisite must be respected by the 

dataset: all batches must have the same length (i.e., same number of time instants sampled). 

Performing a principal component analysis on the batch-wise unfolded matrix, using the 

RMSECV criteria described in §1.1 for the selection of the N number of principal components 

to retain into the model, a I× (JK) score matrix and a (JK)×N loading matrix are obtained.  

As mentioned in §1.1, scores relate to rows of the unfolded matrix (in this case, each row 

corresponds to one batch) and it is common to represent the scores by considering only first 

two principal components: Figure 1.3 is an example of a score plot in which scores are 

multinormally distributed, so the fundamental assumption on which confidence limits for 

scores, Hotelling T2 and Q statistic are calculated is respected. Batches inside the confidence 

ellipse are considered normal batches, while batch no.12 and batch no.16, that are out of the 

confidence area, are probably abnormal batches.  
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Despite it is very useful for a preliminary identification of a faulty batch, the score plot has a 

limit: since each score resumes the entire history of a batch, it may happen that if some 

variables are abnormal in excess and others are abnormal in defect, a compensation effect 

occurs and the batch score results to be inside the confidence region. 

Figure 1.3. Example of a score plot for a batch-wise unfolding model. Each dot 

represents a batch (e.g. dot no.26 represents batch no.26), resuming its entire 

process considering all variables over all time. Dashed line corresponds the 95% 

confidence limit for scores. Percentage in squared brackets is the variance captured 

by the corresponding principal component. This figure is related to the dataset 

described in §2.1 and used by Nomikos and MacGregor (1994) 

Monitoring the process in real time is useful to detect promptly when a fault occurs, and 

possibly act on the manipulated variables: at every time instant, the new batch dataset is 

projected into the model so that at the end of the process a trajectory of the batch is available 

in the score, Hotelling T2 and Q residual plots. As mentioned at the beginning of this section, 

a new batch can be projected onto the model only if the number of samples (time instants) is 

the same of the one of calibration batches. In the case of online monitoring, only k samples 

for each variable are available at time k: in order to be able to project the new batch at time 

instant k (so during the entire process and not only at the end), the remaining K-k future 

samples need to be estimated. As discussed in Nomikos and MacGregor (1994), a good 

prediction of the score tnew of the new batch that would result if the new matrix was complete 

is obtained by assuming that future deviations from the mean of calibration batches remain 

constant for the rest of the process and equal to the ones of the last observation k. New data 

projection is obtained in the following way: 

1. The new matrix available up to time instant k is scaled on the calibration matrix 

(truncated at time instant k): mean of calibration matrix is subtracted to the new 

matrix, which is then divided by the standard deviation of the calibration matrix; 
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2. The last sample of the scaled matrix is repeated K-k times, until filling the new matrix 

Xnew;  

3. Score of the new batch, Hotelling T2 and Q residual are calculated with equations 

(1.3), (1.6), and (1.8), putting ἦ ἦ : 

Ἴ ἦ Ἔ , (1.14) 

Ὕ Ἴ Ἴἢ ἦ Ἔ Ἔἢἦἢ  , (1.15) 

ὗ Ἥ Ἥἢ ἦ ἓ ἜἜἢἦἢ  , (1.16) 

where Ἴ ,  Ὕ  and ὗ  are the score, the Hotelling T2 and Q residual of the new 

batch. 

In this way the evolution of the new batch is represented in the model. 

As mentioned in §1.1, the Hotelling T2 calculated with the (1.6) is useful to recognise outlier 

batches: a batch with a high T2 is a batch which operating conditions are far from the mean of 

other batches (see batch no.12 and batch no.16 in Figure 1.4). 

Figure 1.4. Example of a Hotelling T2 plot. Each dot represents a batch. The 95% 

confidence limit is reported. This figure is related to the dataset described in §2.1 

and used by Nomikos and MacGregor (1994) 

An example of a Hotelling T2 plot is reported in Figure 1.4: similarly to the score plot, batches 

represented by points that are below the confidence limit are considered like normal batches, 

while batches with a T2 over the limit may be in faulty conditions. In this case the assumption 

of random distribution on which the calculation of limits is based is verified, and the 

confidence limit reported can be considered reliable for a primarily batch classification (i.e., 

to say if a batch is normal or not). As mentioned in §1.1, also the Q residuals calculated with 

(1.8) are useful to detect outlier batches: an example of Q residual plot is reported in Figure 

1.5. The Q residual corresponds to the orthogonal distance between data and the reduced 

space, and can be interpreted like the part of data not represented by the model: a batch with a 
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large Q is not fitted well by the model and shows a different correlation structure between 

variables, which can be due to a fault in the process. Since residuals are calculated over rows, 

the number of points appearing in the plot is equal to the number of batches in the case of a 

batch-wise unfolded matrix. Like in the case of the Hotelling T2 plot, also in this one the 

assumption of randomly distributed points (Q residuals) is respected, and the limit can be 

considered reliable for an appropriate calibration of the PCA model.  

Figure 1.5. Example of a Q residual plot. All batches result to be inside the 95% 

confidence region, whose limit is identified by the dashed line. This figure is related 

to the dataset described in §2.1 and used by Nomikos and MacGregor (1994) 

The fault diagnostics in the case of a batch-wise unfolding model can be done by analysing 

the contribution plots for both the Hotelling T2 and the Q residual. The t contribution 

quantifies the contribution of each variable at each time instant to a batch score t i and is 

defined by Wise et al. (2006) like 

Ἴ ȟ Ἴ Ἔἢ ὀἜ Ἔἢ , (1.17) 

where Ἴ ȟ is the vector containing contributions of all variables at all time instants to the 

score of batch i. From the score contribution, the T2 contribution is then calculated (Wise et 

al., 2006) like 

ἢ ȟ Ἴ ȟἼ ȟ
ἢ , (1.18) 

where ἢ ȟ is the vector containing contributions of all variables at all time instants to the 

Hotelling T2 of batch i.  

In order to determine which are variables responsible of the fault, some limits inside which 

variables contributions should lay must be defined. Limits are not the same for all variables 

and vary along the time, so they must be calculated for each time instant. For the (1-Ŭ) % 

confidence limit calculation, the basic assumption is that T2 contributions of each variable at 
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each time instant are normally distributed with mean and standard deviation equal to the mean 

and standard deviation of contributions of that variable at that time instant.  

Similarly, the Q contribution quantifies the contribution of each variable, at every time 

instant, to the total Q residual of a sample (batch). The Q contribution for a batch i 

corresponds to the i th row of the error array E, according to Wise et al. (2006):  

Ἕ ȟ Ἥ . (1.19) 

Differently from the T2 contributions, the Q contributions retain the sign of the deviation. 

Also in this case, limit calculation is done for each variable at each time instant and based on 

the assumption of normal distribution of errors, with mean and standard deviation equal to the 

mean and standard deviations of the error related to a variable at a specific time instant. 

As mentioned in §1.1, scores in the score plot represent batches considering all their variables 

along the entire process, so some compensations phenomena may occur and a score could be 

inside confidence ellipse in the score plot also if the batch is abnormal, especially if the model 

is calibrated with non-random batches (as discussed in §2.2). For this reason, the Hotelling T2 

and the Q residual plots should always be checked to avoid missing fault detection, then 

contribution plots should be analysed to identify the cause of the abnormality and its 

magnitude.  

Considering the on-line monitoring in the Hotelling T2 plot and Q residual plots, in both cases 

the alarm is set to start after 3 consecutive points out of confidence limits for all cases 

reported in §4. 

 

1.3 Assumption -free model  

The assumption-free model is a variable-wise unfolding-based model proposed by Westad et 

al. (2015). The models developed in this thesis are an attempt to reproduce it; however, since 

all modelling steps are not described in detail in the paper, some assumptions and modelling 

decisions have been necessary. Differently from the batch-wise model, the variable-wise one 

does not require a dataset containing batches with the same number of samples: this is a great 

advantage considering that it is very common to have different batch durations to obtain the 

same product. The objective of this approach is to model a trajectory of a normal process in 

the score plot using a dataset of batches in normal operating conditions: monitoring of a new 

batch is made comparing its trajectory with the normal one and its confidence limits. The 

procedure followed to develop the assumption-free model is described in the flowchart of 

Figure 1.6.  

First of all, the three-dimensional matrix is unfolded while preserving the dimension of 

variables (usually data are already available in a variable-wise form and unfolding is not 

necessary; moreover, in real industry processes usually have different durations and a three-
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dimensional matrix is not available), then it is autoscaled and a principal component analysis 

(PCA) is performed as described in §1.1, using the RMSECV criteria for the selection of the 

number of principal components. A grid search algorithm is used to model the trajectory of 

the process: it considers different grid resolutions and selects the one that gives the highest 

number of grid elements (i.e., a trajectory with the highest number of points). For each grid 

element, the overall mean of all samples and the mean for each batch are calculated: the first 

one is used for trajectory modelling, while the second one is used for the calculation of the 

confidence limits around trajectory. According to Westad et al. (2015), all scores must be 

included into grid elements, so all of the scores must be used for trajectory modelling. Overall 

means are interpolated to draw the trajectory, while batch means are projected into trajectory 

and their distance in the model space is estimated. The standard deviation of distances is 

calculated and limits are plotted following the direction of the trajectory, avoiding crossing. 

For each grid element Q residuals are calculated and a limit for each grid element is 

calculated. Methods and assumptions for limits calculation are not provided by the author. 

 

Figure 1.6. Procedure for assumption-free model development, according to Westad 

et al. (2015) 

In the end, a new batch can be projected onto the model for fault detection and diagnosis: the 

distance between scores of the new batch data and trajectory and Q residuals are calculated. 

The state of the new process (relative time) is estimated according to the relative position of 

new scores with respect to trajectory modelled. The procedure followed to develop the 

assumption-free model and to implement the grid-search algorithm is reported in §3. 

 

 



 

 

Chapter 2 

Available datasets 

To test the models developed, datasets of different batch processes have been considered. 

Experimental and simulated data found in the literature (sources will be reported for each 

dataset) have been reorganized in order to have all datasets with a similar structure. 

Unfortunately, not all information are available for each dataset: in some cases, the units of 

measure are unknown. A calibration dataset and a validation one with normal and faulty 

batches are provided for each process. Table 2.1 summarizes available datasets: 2 of them 

(dataset no.1 and dataset no.3) are simulated datasets obtained though mathematical models, 

while the other 3 contain real industrial data. Not all datasets contain batches with the same 

number of samples: dataset no.3 and dataset no.5 contain batches with different lengths, 

which means that an alignment procedure is needed before carrying out a batch-wise 

unfolding MPCA analysis. 

Table 2.1. Available datasets summary 

Dataset no. Description 
Experimental/ 

simulated 

Equal no. of samples  

for all batches 

1 SBR polymerization Simulated Yes 

2 Industrial batch polymerization Experimental Yes 

3 Saccharomyces Cerevisiae production Simulated No 

4 Bakerôs yeast production Experimental Yes 

5 Herbicide production Experimental No 

 

More information about all datasets, such as the number of calibration batches available, the 

number and the description of variables sampled, and the number of samples, are reported in 

the paragraph corresponding to each single dataset.    

 

2.1 Dataset 1  ï Polymerization of a styrene -butad iene rubber  

The dataset is related to a simulation of the semibatch polymerization of styrene-butadiene 

rubber (SBR) and has been tested firstly by Nomikos and MacGregor (1994) using a batch-

wise unfolding model to discriminate normal and faulty batches after process completion.  

 

2.1.1 Process description 

According to the model developed by Broadhead et al. (1985), before starting the process the 

reactor is charged with all raw materials necessary to obtain the desired product: SBR 

particles, an initiator (S2O8), a chain transfer agent (aliphatic mercaptan), an emulsifier (fatty 
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acid soap), water and a small quantity of styrene and butadiene monomers, while more of 

these monomers will be fed to the reactor at constant rate until the end of the process. The 

jacked-reactor is assumed to be perfectly mixed with a cylindrical geometry. The temperature 

inside is kept under control manipulating the cooling water flowrate to the jacket. Steady state 

concentration of the initiator, located only in the water phase, is assumed. Other reactions, not 

involved in radical initiation, can be considered negligible. The reaction starts with the 

decomposition of S2O8 into radicals, according to reaction reported in Broadhead (1984): 

3/ ᴼ ς 3/Ͻ , (2.1) 

3/Ͻ  - O  3/ -Ͻ , (2.2) 

where M can be either styrene (S) or butadiene (B). 

With radical monomers the propagation phase begins: double bonds in position cis,1-4 and 

trans,1-4 are assumed to have equal reactivity, while bonds 1,2 are the most reactive ones. 

Diffusion-controlled propagation need to be taken into account only in the case of very high 

proportions of styrene: this is not the case because styrene and butadiene flowrates are equal.  

Propagation can occur with different combinations: 

3ͯϽ  3 O  ͯ33Ͻ , (2.3) 

3ͯϽ  " O  ͯ3"Ͻ , (2.4) 

"ͯϽ  3 O  ͯ"3Ͻ , (2.5) 

"ͯϽ  " O "ͯ"Ͻ , (2.6) 

Radical termination, instantaneous for small particles, is assumed to occur only in the 

polymer phase because of chain transfer to monomer, polymer or modifier (chain transfer 

agent).  

A noise has been added to the initial charge purity and butadiene flowrate. Additional 

measurement noise has been introduced in the feedôs temperature measurements. How the 

noise has been introduced is not explained in Nomikos and MacGregor (1994), however it 

could be reasonable to think that it consists in a random numerical noise (random number) 

added during the numerical implementation of the model. 

 

2.1.2 Calibration dataset 

As summarized in Table 2.2, the original calibration dataset contains normal batches with 

equal number of samples, so no alignment of batches is necessary. All  45 simulated batches 

have a duration of 1000 min, corresponding to 200 samples. Every 5 min 9 variables are 

measured, as reported in Table 2.3: the styrene and butadiene flowrates, the rubber density 

and the temperature of the feed, the reactor, the cooling water and the jacket of the reactor. 
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The total conversion and the instantaneous net rate of energy released are estimated though 

energy balance around the reactor.   

Table 2.2. Dataset 1: Calibration data summary 

Experimental/ 

simulated 

No. of  

batches 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned 

dataset) 

No. of 

variables 

3D matrix 

dimensions 

Simulated 45 1000 min Yes 200 9 50×9×200 

Table 2.3. Dataset 1: Measured and estimated variables 

Variable no. Type Description Units 

1 Measured Styrene flowrate  

2 Measured Butadiene flowrate  

3 Measured Feed temperature °C 

4 Measured Reactor temperature °C 

5 Measured Cooling water temperature °C 

6 Measured Reactor jacket temperature °C 

7 Measured Latex density in the reactor g/L 

8 Estimated Total conversion - 

9 Estimated Instantaneous rate of energy J/min 

 

The total conversion is dimensionless and varies between 0 and 1. In this case the maximum 

conversion reached is lower than 0.7, as showed in the figure D1-V8.jpg reported in §A.1.1.  

(a) (b) 

Figure 2.1. Mean profiles of (a) temperature and (b) net energy released along the 

process duration. The shaded area corresponds to variability across batches  

As shown in Figure 2.1, the reactor temperature profile has a peak at the beginning of the 

process, indicating a very fast dynamics of the reaction; however it tends to stabilize very 

quickly remaining constants for the rest of the process duration, except for some fluctuations. 

The net energy released increases rapidly at the beginning of the process, when the 

polymerization reaction rate is very fast due to high concentrations monomers; then, it 
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stabilizes at about 800 J/min and remains constant for the rest of the process duration, except 

for some fluctuations. Profiles of other variables are reported in Appendix 1 at §A.1.1.  

 

2.1.3 Validation dataset 

The validation dataset available, described in Table 2.4, includes 8 batches: 6 in normal 

operating conditions and 2 in abnormal conditions. All batches have the same duration of 

1000 min, which corresponds to the one of calibration batches. Also for the validation 

datasets, 9 variables are measured at 209 time instants (samples). 

Table 2.4. Dataset 1: Validation dataset summary  

Experimental/ 

simulated 
No. of batches 

Batches 

type 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned 

dataset) 

No. of 

variables 

Simulated 8 
6 normal 

2 faulty 

1000 min Yes 209 9 

Table 2.5. Dataset 1: Validation batches characteristics 

Batch no. Type Fault time Fault cause 

1-5, 53 Normal   

99 Faulty Half-way of the process Contamination in butadiene feed 

106 Faulty Beginning of the process Contamination in butadiene feed 

 

As reported in Table 2.5, the fault batch no.106 consists in a contamination in the butadiene 

feed at the beginning of the process, while batch no.99 presents the same type of fault halfway 

through the process.  

 

2.2 Dataset 2 ï Industrial batch polymerization  

This dataset is a collection of real industrial data of a polymerization process carried out in a 

DuPont batch reactor, as reported by Nomikos and MacGregor (1995). In this case, units of 

measure of the variables and a detailed description of the process (including also reactions 

and raw materials) are missing, to protect data confidentiality. 

 

2.2.1 Process description 

The process is carried out in two stages, each one lasting approximatively 1 h, with reactants 

loaded into the reactor at the beginning of the first stage. The first part of the process consists 

in the removal of the solvent in which raw materials are initially dissolved to be charged into 

the reactor, through a vigorous vaporization without the need of stirring. Reaction is then 

completed in the second stage, at the end of which the final polymer product is obtained and 

can be discharged from the vessel. In order to keep the pressure and temperature profiles 

under control for all the reaction duration, the flows of the heating/cooling medium are 

adjusted during the entire process. 
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2.2.2 Calibration dataset 

As summarized in Table 2.6, the experimental (industrial) dataset available is already aligned: 

all calibration and validation batches have the same duration (2 h) and number of samples 

(100 samples) for each of the 10 variables measured, reported in Table 2.7: 3 temperatures, 3 

pressures, 2 temperatures of the heating/cooling medium and 2 flowrates. 

Table 2.6. Dataset 2: Calibration dataset summary 

Experimental/ 

simulated 

No. of  

batches 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned 

dataset) 

No. of 

variables 

3D matrix 

dimensions 

Experimental 50 2 h Yes 100 10 50×10×100 

Table 2.7. Dataset 2: Measured variables 

Variable no. Description Units 

1 Temperature 1  

2 Temperature 2  

3 Temperature 3  

4 Pressure 1  

5 Flowrate 1  

6 Temperature 1 (heat/cool medium)  

7 Temperature 2 (heat/cool medium)  

8 Pressure 2  

9 Pressure 3  

10 Flowrate 2  

 

Figure 2.2 shows two examples of variables profiles meaned over all batches and the interval 

of variation (coloured area) between batches.  

(a) (b) 

Figure 2.2. Mean profiles of (a) pressure 1 and (b) temperature 1 in the 

heating/cooling system along the process duration. The shaded area corresponds to 

variability across batches 

Pressure 1 remains constant for almost half of the process, then it decreases rapidly and 

increases again towards the end. Temperature 1 of the heating/cooling medium remains 



18 Chapter 2 

 

 

almost constant until half of the reaction, then it decreases rapidly. Profiles of other variables 

are reported in Appendix 1 at §A.1.2.  

 

2.2.3 Validation dataset 

The validation dataset available, described in Table 2.8, includes 4 normal batches and only 1 

faulty batch. The 5-batch validation dataset is created with the batch of the original dataset 

indicated as faulty and 4 normal batches randomly selected from the ones in normal operating 

conditions. All batches have the same duration (2 h) of the calibration dataset. The same 10 

variables of Table 2.7 are measured 100 times. 

Table 2.8. Dataset 2: Validation dataset summary  

Experimental/ 

simulated 

No. of  

batches 

Batches 

type 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned dataset) 

No. of 

variables 

Experimental 5 
4 normal 

1 faulty 

2 h Yes 100 10 

Table 2.9. Dataset 2: Validation batches characteristics 

Batch no. Type Fault time Fault cause 

2 Normal   

10 Normal   

15 Normal   

39 Normal   

49 Faulty Beginning of the process  

 

As reported in Table 2.9, in batch no.49 the fault occurs at the beginning of the process (i.e. at 

the first time instant), but its cause is unknown. Having only one faulty batch is quite limiting: 

more faulty batches will be useful to calibrate and test models in a more appropriate way. 

 

2.3 Dataset 3 ï Saccharomy ces Cerevisiae  production  

This dataset is included in the MVBatch Toolbox, freely available for Matlab at 

https://github.com/jogonmar/MVBatch/releases, as reported in González-Martínez et al. 

(2018). The simulated process is the fermentation of the Saccharomyces Cerevisiae 

cultivation, under normal and abnormal operating conditions, whose model has been 

developed by Lei et al. (2001). Both calibration and validation dataset contain batches with 

different number of samples. Variables units of measure are unknown.  

 

2.3.1 Process description 

The fermentation process consists in 4 phases: a lag phase, two phases of exponential growth, 

and a stationary final phase. The first phase, in which the yeast acclimates to the 

heterogeneous media for a couple of hours, is followed by two exponential growth phases 

whose reactions are schematized in Figure 2.3. In the first growth phase, glucose fed to the 

https://github.com/jogonmar/MVBatch/releases
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reactor is metabolized into pyruvate through r1 (catabolic reaction) and biomass through r7 

(anabolic reaction).  

Figure 2.3. Scheme of the catabolic and anabolic reactions occurring inside the 

reactor. Glucose and acetate lead to biomass growth (anabolic path), however they 

participate also to catabolic reactions that produce ethanol and carbon dioxide. 

This figure is from Lei et al. (2001) 

At low glucose flowrate, pyruvate is completely converted into TCA (tricarboxylic acid) 

through r2 and consequently into CO2, but when the flowrate increases, pyruvate 

dehydrogenase saturates and pyruvate is consumed in r3 leading to acetaldehyde formation. 

Acetaldehyde is then consumed by the main reaction r4, increasing the acetate concentration 

in the reactor; however at higher concentration of acetaldehyde, the acetaldehyde 

dehydrogenase saturates and the r6 equilibria side reaction occurs leading to ethanol 

formation. When all glucose is consumed and it canôt be used as nutrient by the growing cell, 

ethanol is used as substrate in the second exponential growth: it is converted into acetate, 

which can be used in the catabolic reaction r5, leading to CO2 formation, or in the anabolic 

reaction r8, leading to biomass formation. A perfect abiotic system is assumed.  

 

2.3.2 Calibration dataset 

The available calibration dataset contains batches with a different number of samples: in order 

to use the dataset with both MPCA models (assumption-free model and the one in batch-wise 

unfolding), a multy-sinchro alignment has been performed though the MVBatch Toolbox, as 

suggested by González-Martínez et al. (2018). The dataset is summarized in Table 2.10 and 

includes 40 simulated batches with a duration of about 35 h, varying from batch to batch. The 

number of samples is the same (209 samples) for all batches only after alignment.  
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10 variables are measured and described in Table 2.11: concentrations of glucose, pyruvate, 

acetaldehyde, acetate, ethanol, biomass, active cell material and acetaldehyde dehydrogenase, 

the specific oxygen uptake rate and the specific CO2 evolution rate. 

Table 2.10. Dataset 3: Calibration dataset summary  

Experimental/ 

simulated 

No. of  

batches 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of 

samples 

(aligned 

dataset) 

No. of 

variables 

3D matrix 

dimensions 

Simulated 40 ḗ35 h No 209 10 40×10×209 

Table 2.11. Dataset 3: Measured variables 

Variable no. Description Units 

1 Glucose concentration  

2 Pyruvate concentration  

3 Acetaldehyde concentration  

4 Acetate concentration  

5 Ethanol concentration  

6 Biomass concentration  

7 Active cell material  

8 Acetaldehyde dehydrogenase  

9 Specific oxygen uptake rate  

10 Specific CO2 evolution rate  

 

Only substances concentrations are measured, while any information related to temperature 

and pressure is not provided: they do not appear between measured variables.  

(a)  (b) 

Figure 2.4. Mean profiles of (a) pyruvate concentration and (b) active cell material 

along the process duration. The shaded area corresponds to variability across 

batches 

Two examples of variables profiles along batch time are shown in Figure 2.4: during the first 

exponential growth of cell material, pyruvate is produced rapidly, then after about one-fourth 

of the process cells stop growing and pyruvate is rapidly consumed. In the last part of the 
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reaction cells are subjected to another exponential growth, while pyruvate concentration 

fluctuates around zero. In Appendix 1 at §A.1.3 are reported figures with profiles of all 

variables.  

 

2.3.3 Validation dataset 

A 55-batch validation dataset is already available in the toolbox. As reported in Table 2.12, 

the first 25 sampled batches are in normal operating conditions, while the remaining 30 

batches are faulty. The batch duration and number of samples (209 samples) are the same for 

all batches (and equal to the ones of calibration batches) only after alignment. The same 10 

variables of Table 2.11 are measured for each batch. 

Table 2.12. Dataset 3: Validation dataset summary  

Experimental/ 

simulated 

No. of  

batches 

Batches 

type 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned dataset) 

No. of 

variables 

Simulated 55 
25 normal 

30 faulty 

ḗ35 h No 209 10 

Table 2.13. Dataset 3: Validation batches characteristics 

Batch no. Type Fault time Fault cause 

1-25 Normal   

26-55 Faulty 
N/A Glucose uptake system, ethanol 

formation, biomass concentration sensor 

 

In Table 2.13, three types of faults are reported for faulty batches: the first one is related to the 

glucose uptake system and the glycolytic pathway, the second one is due to ethanol formation 

from acetaldehyde, while the third one is a fault of the biomass concentration sensor. Times at 

which faults occur are not provided, neither the exact identity of fault (among the three 

possible causes) for every faulty batch. 

 

2.4 Dataset 4 ï Bakerôs yeast production 

This dataset has been provided by Jästbolaget AB (Sweden) and consists in an industrial 

dataset regarding bakerôs yeast batch production. Two examples of MPCA monitoring 

approach using this dataset are discussed in Eriksson et al. (2013). Variables units of measure 

for this dataset are unknown. 

 

2.4.1 Process description 

The dataset is related to the last of the five phases that constitute yeastôs production process. 

The process, briefly described in George et al. (1998), starts when ammonia and a mixture 

mainly constituted by sucrose are fed to the reactor as yeastôs carbon source. Molasses 

flowrate is increased during the first part of the process, causing an exponential biomass 
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growth, and it is set constant in a second moment in order to avoid cooling limitations and an 

overflow metabolism that would results in an excessive ethanol production. Yeast invertase 

hydrolyses molasses into a mixture of ethanol, glucose and fructose (greatest part): glucose 

and fructose are consumed first, then when their concentrations decrease ethanol is consumed 

and a higher yield is reached in the end. During the final stage of the process, ammonia and 

molasses flowrates are reduced to zero. At the end of the process, cells are harvested and 

dewatered, then yeast is packed. The process is carried out in sugar limitation: when the sugar 

exceeds a critical value (critical concentration), cells are not able to fully consume the entire 

amount of sugar provided, which starts to be converted into ethanol. Also if ethanol is then 

used for biomass growth, the total biomass yield from glucose is lower if combustion of 

glucose passes through ethanol. More details about process reactions are not provided by 

authors, however the process is similar to the one of dataset §2.3: what differs is that in this 

case the process includes only the last part of yeast production and dataset contains real 

industrial data (not simulated). 

 

2.4.2 Calibration dataset 

As reported in Table 2.14, 16 calibration batches available have all the same duration of 14 h, 

corresponding to 83 time instants sampled for each batch: no dataset alignment is needed in 

this case. 7 variables are measured, as described in Table 2.15: the ethanol content, the 

temperature, the molasses, ammonia and air flowrates entering the reactor, the tank level and 

the pH. 

Table 2.14. Dataset 4: Calibration dataset summary 

Experimental/ 

simulated 

No. of  

batches 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned 

dataset) 

No. of 

variables 

3D matrix 

dimensions 

Experimental 16 14 h Yes 83 7 16×7×83 

Table 2.15. Dataset 4: Measured variables  

Variable no. Description Units 

1 Ethanol content  

2 Temperature  

3 Molasses flowrate  

4 NH3 flowrate  

5 Air flowrate  

6 Tank level  

7 pH  

 

Variability between batches is very high due to variable fluctuations and changes in their 

relationships during the batch process: this phenomenon is particularly present in variables 

like the ethanol content, the reactor temperature, the ammonia flowrate and the pH. 
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All mean profiles of variables are reported in Appendix 1 at §A.1.4, where a wide coloured 

area represents large variability between batches profiles. 

(a) (b) 

Figure 2.5. Mean profiles of (a) ethanol content and (b) air flowrate along the 

process duration. The shaded area corresponds to variability across batches 

As shown in Figure 2.5, ethanol is produced in the first 30 samples and then consumed in the 

second part of the process. The air flowrate is constantly increased at the beginning of the 

process, then it is kept constant for about 30 samples before being decreased towards the end 

of the procedure.  

 

2.4.3 Validation dataset 

For validation, 17 batches are available each one containing 83 samples, the same number of 

the one of calibration batches, as reported in Table 2.16. Similarly to the calibration dataset of 

Table 2.14, the number of samples is the same for each batch, so no alignment is needed to 

perform a batch-wise PCA analysis. 

Table 2.16. Dataset 4: Validation dataset summary 

Experimental/ 

simulated 

No. of  

batches 

Batches 

type 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned dataset) 

No. of 

variables 

Experimental 17 Unknown 14 h Yes 83 7 

 

Differently from previous datasets, in this case information about the type of validation 

batches (i.e., normal or faulty) are not available, and so it is also for the time at which the 

fault eventually occurs. This represents a limitation for the purpose of the study because it is 

not possible to evaluate in an appropriate way the performance of two models without 

knowing what the model should detect and at which time.  
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2.5 Dataset 5 ï Herbicide production  

A dataset provided by FMC corporation, as reported in the Aspen ProMV Getting Started 

Guide (2017), and containing data of an industrial batch dryer reactor for an herbicide 

production is available in Aspen ProMV, an AspenTech software, at the path 

C:\ProgramData\AspenTech\Aspen ProMV Desktop\Examples (both the dataset and the 

Getting Started Guide can be downloaded). It contains normal batches (i.e., batches whose 

final quality variables are on specifications) and off-specification batches, and it is available 

in both aligned and unaligned forms. For the purpose of the study, dataset is reorganized into 

two datasets: one for calibration containing normal batches and one for validation containing 

normal and out of specifications batches. Units of measure for all variables are not available. 

 

2.5.1 Process description 

As described by García-Muñoz et al. (2003), the purpose of the process is to dry an herbicide 

product evaporating the solvent present in the wet cake and collecting it in a tank. A scheme 

of the batch process is reported in Figure 2.6, imported from Aspen ProMV Getting Started 

Guide (2017) . Reactions are not available. The total real duration of the process is unknown. 

Figure 2.6. Scheme of the drying process for an herbicide production in an FMC 

Corporation plant. The stirred reactor is heated by hot water flowing into the jacket, 

while evaporating solvent is collected in a separate tank. The agitator speed and the 

temperatures set-points are adjusted according to properties of the cake. (Aspen 

ProMV Getting Started Guide, 2017) 

The operation starts with the charging of the wet cake, whose volume can vary from batch to 

batch, into the reactor: while the tank level is measured, the amount of solvent present in the 

cake is unknown. At the beginning of the process the agitator runs at low speed while the hot 

water is already flowing into the jacket making the temperature inside the batch increasing. In 

a second moment, determined by the control system according to properties of the material 
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inside the reactor, the agitator speed is increased rapidly and then decreased just before the 

temperature inside the reactor reaches its maximum. After the temperature peak, the product 

is cooled down; then, toward the end of the process, the agitator speed is increased for some 

time. All the solvent vaporized is recovered in a separated tank.  

 

2.5.2 Calibration dataset 

The calibration dataset, summarized in Table 2.17, contains 30 batches in normal operating 

conditions with different number of samples: an alignment process is needed to perform a 

batch-wise unfolding; however the aligned dataset, with batches lasting all 325 time instants, 

is already available in the software together with the unaligned one. For each batch, 10 

variables reported in Table 2.18 are measured: the solvent collector tank level, the differential 

pressure in the dryer, the dryer pressure, the power provided to the agitator and its speed, the 

torque resistance, the set points of the jacket and dryer temperatures and the actual jacket and 

dryer temperatures. 

Table 2.17. Dataset 5: Calibration dataset summary 

Experimental/ 

simulated 

No. of  

batches 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned 

dataset) 

No. of 

variables 

3D matrix 

dimensions 

Experimental 30 N/A No 325 10 30×10×325 

Table 2.18. Dataset 5: Measured variables 

Variable no. Description Units 

1 Solvent collector tank level  

2 Differential pressure  

3 Dryer pressure  

4 Power  

5 Agitator speed  

6 Torque  

7 Jacket temperature set point  

8 Jacked temperature measured  

9 Dryer temperature set point  

10 Dryer temperature measured  

 

The amount of solvent contained in every wet cake is not constant (as evidenced by the large 

variability of the level of the solvent collector tank reported in Figure 2.7), so times at which 

set points of temperatures and agitator speed change are not fixed from batch to batch. 
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 All of the profiles of variables and their variability are reported in Appendix 1 at §A.1.5. 

 (a)  (b) 

Figure 2.7. Mean profiles of (a) solvent collector tank and (b) dryer temperature 

along the process duration. The shaded area corresponds to variability across 

batches 

In Figure 2.7 it can be observed how the level of the solvent collector tank and the 

temperature inside the dryer change during operation. The tank level increases almost 

constantly for the greatest part of the process and tends to stabilize at the end: the cake inside 

the reactor is completely dry and no more solvent is vaporized. The temperature inside the 

drier increases rapidly in the last part of the process: energy is continuing to be provided to 

the reactor through hot water flowing into the jacket, however since there is no more solvent 

to be vaporized inside the reactor, the energy causes a rapid increasing in temperature. 
 

2.5.3 Validation dataset 

The validation dataset contains 41 batches, as reported in Table 2.19: 3 batches are normal, 

while the others are faulty, which means that their final product quality is out of specification. 

The number of samples for each batch is different in the case of the unaligned dataset and it is 

the same of the ones of calibration batches (325 samples) in the case of the aligned dataset.  

Table 2.19. Dataset 5: Validation dataset summary  

Experimental/ 

simulated 

No. of  

batches 

Batches 

type 

Batch 

duration 

Equal no. of 

samples for all 

batches 

No. of samples 

(aligned dataset) 

No. of 

variables 

Experimental 41 
3 normal 

38 faulty 

N/A  No 325 10 

 

For this dataset times at which faults occur and fault causes are not known: also if the batch 

can be classified by the model like normal of faulty, it is not possible to state if alarms are 

false or they are reporting a real fault and if the real cause of fault is detected.   



 

 

Chapter 3 

The assumption-free model 

This section contains the description of how the assumption-free model has been developed in 

this thesis and in particular how the grid-search algorithm has been implemented. To explain 

step by step the procedure, the dataset of an industrial polymerization reaction is considered 

(Nomikos and MacGregor, 1995) and described in §2.2. 

 

3.1 The PCA model  

Industrial data are usually collected in a variable-wise form, which consists in a matrix with a 

number of columns equal to the number of variables sampled, and a number of rows equal to 

the sum of all time instants sampled of all batches (Camacho et al., 2009). Since the number 

of samples can vary from batch to batch, an additional column representing time is necessary 

(usually, it corresponds to the first column of the matrix) to identify the beginning and the end 

of each batch. Specifications on how data should be arranged to be loaded into the algorithm 

are reported in a file attached to the algorithm Matlab files. If all batches have the same 

duration, data collected from batches under normal operating conditions can be arranged into 

a three-dimensional matrix and then unfolded as reported in Figure 3.1.  

Figure 3.1. Scheme of a variable-wise unfolded matrix. Three-dimension matrix is 

ñslicedò horizontally: each ñsliceò corresponds to a i batch and contains J 

variables sampled for K time instants. The resulting matrix is a (KI)×J matrix 

After performing a PCA analysis on the unfolding matrix, using RMSECV criteria described 

in §1.1 for the selection of the number of principal components to retain into the model, a 
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(KI)×J score matrix and a J×NPCs loading matrix are obtained. More details on the PCA 

model are provided in §4.2.1, where the entire case study with validation is reported. 

The loading plot is useful to capture correlations between variables considering the entire 

process duration. In this case, the loading plot resulting from the principal component analysis 

is reported in Figure 3.2. 

Figure 3.2. Example of a loading plot for a variable-wise unfolding PCA. Each 

circle represents a variable considering the entire process duration. This figure is 

related to dataset no.2 

Considering the first principal component PC1, pressures, flowrates and temperatures in the 

heating/cooling medium are all correlated (on the right side of the plot), while they are anti-

correlated to temperatures 1, 2 and 3 (on the left side of the plot). Correlation between two 

variables means that if a variable increases, the other increases too; on the other hand, if a 

variable increases and the other decreases, the situation is of anti-correlation.  

Figure 3.3. Example of a score plot. Each score (point) represents a batch at a 

specific time instant. Arrows indicate directions along which the process evolves: 

from the south-east to the south-west area. Percentage in squared brackets is the 

variance captured by the corresponding principal component. The model has been 

calibrated using all 50 calibration batches of the dataset no.2 

In the score plot of Figure 3.3 the entire process history for all batches is reported: the 

assumption-free model is built on these 50 batch normal trajectories. 












































































































































































