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Introduction

Broadly speaking, interest rate derivatives are financial instruments enabling companies
and financial institutions to effectively manage their cash and funding needs. Indeed,
interest rate derivatives are normally purchased because they offer insurance against ad-
verse changes of interest rates, i.e. they are acquired for hedging purpose. However, there
exist also two other reasons leading agents to enter interest rate derivative contracts: spec-
ulation and arbitrage. Speculators use derivatives as bets on future market movements,
while arbitrageurs use derivatives to exploit riskless opportunities in financial markets.
The goal of this thesis is to discuss interest rate derivatives pricing, its evolution after the
financial crisis of 2007 and, finally, the implementation of a calibration algorithm for the
term structure of the interest rate.

In the first part of this dissertation we discuss the paradigm shift unleashed by the
financial crisis in interest rate modelling: before the crisis, practitioners used to adopt
a pricing framework based on a single yield curve, which was used both for determining
future payments and for discounting them. However, the financial markets undergone a
deep evolution after the crisis. Indeed, counterparty and liquidity risk - which were not
considered until the financial disruption - suddenly become essential to determine the
future value of a contract. The new pricing framework took the name of multiple curve
framework, since it is characterised by the presence of a single discount curve - usually
bootstrapped by OIS bonds if the derivative contract is collateralized - and by multiple
yield curves to determine future payments - one yield curve for each different IBOR tenor
structure. These issues are presented and discussed in Chapter 1.
In Chapter 2 we illustrate the different steps a practitioner should undertake when pricing
derivatives and we then focus on the most critical passages. The first step to price an
interest rate derivative is to build an appropriate set of yield and discount curves; this
can be done applying the bootstrapping and interpolation methods we indicate in Section
2.1. Another important step regards the term structure modelling of interest rates. We
present the analysis of short rate models provided by Grbac and Runggaldier (2015),
which provide a framework with multiple factors which can be used to describe the term
structure equation of several short rate models. Finally, Monte Carlo simulation for
derivatives’ prices is introduced.
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In Chapter 3 we present the proof of the Vasicek and of the Hull-White models for the
short rate. We then describe the payoffs of interest rate options using the Hull-White
model and we use this formulation to describe the price of cap and floor options by
considering them as portfolios of, respectively, put and call options1. The theoretical
formulations provided in Chapter 3 are then translated in MATLAB code in Chapter 4:
indeed, we use market quotes of cap options’ volatilities and prices, entering them in the
calibration scheme for the Hull-White model described in Chapter 3.

Finally, we remark that the Hull-White calibration algorithm discussed and imple-
mented respectively in Chapter 3 and Chapter 4 is not anymore considered by practitioners
when dealing with interest rate derivatives pricing, because they are not able to effectively
describe the volatility. Conversely, nowadays practitioners prefer to adopt term structure
models which allow to account for more complex volatility terms. Therefore, the reader
should consider the analysis developed in Chapter 3 and Chapter 4 more as an exercise
than a practical tool to be used in daily fixed-income trading desk’s operations. Fur-
thermore, we refer to the introduction of Part 2 for some important assumptions on the
distribution of interest rates. These assumptions are necessary to calibrate the Hull-White
model according to the framework provided in Chapter 3.

1The formulation of cap option as a portfolio of put options is presented in Section 3.3.1.
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Part I

The multiple curve framework: a
general introduction
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Chapter 1

Basic concepts

The purpose of this chapter is to provide the reader with the essential tools to understand
the theoretical developments and the practical applications that are, respectively, deep-
ened and implemented in the following chapters.
This chapter is structured into two main sections. In the first section we present some
basic concepts of interest rate theory, introducing the key assumptions and elements upon
which interest rate models have been built and studied in the last decades; furthermore,
we provide a general overview of term structure modelling in the single curve framework,
from short rate models to Libor market models. In the second section, we briefly describe
how the financial crisis begun in the second half of 2007 radically changed long-standing
habits; furthermore, we relate these behavioural shifts to the evolution of the one curve
framework, which was adopted before the financial crisis by market agents when pricing
OTC plain vanilla and exotic interest rate derivatives. The findings we introduce in the
last section are necessary to understand why the one curve world and the multiple curve
world must be studied with two distinct approach. The multiple curve framework is then
developed in the second chapter of this thesis.
There exist a broad literature discussing term structure modelling in the single curve
world. The most important contributions we have considered when developing the first
and the second section are - for the term structure modelling - Björk (2009) and Brigo
and Mercurio (2006) and - for the shift from the single to the multiple curve framework
- Grbac and Runggaldier (2015) and Bianchetti and Carlicchi (2013).

1.1 Interest rate theory: basic concepts

In this section we explain how to model zero coupon bond price processes P (t, T ) with
T > 0 under the no arbitrage hypothesis. The first step is to define the short rate process
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as the solution of a SDE under the objective probability measure P

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW P(t) (1.1)

and to define the price process of a money market account, B(t), as

dB(t) = r(t)B(t)dt (1.2)

We observe that the short rate r(t) is given a priori and, consequently, the money market
account B(t) is the only exogenously known (risk-free) asset.
We assume that the financial market is composed of a number M of zero coupon bonds,
in addition to the risk-free asset B(t). However, these assumptions imply that a market
conceived in this way lacks of completeness because there are no exogenously given assets
other than the risk-free asset. Therefore, it is not possible to completely determine the
price of the other M bonds depending only on the short rate process r(t) and on the con-
dition of no arbitrage. This negative answer is quite straightforward: since we consider
bonds as interest rate derivatives, we need a sufficient number of exogenously given un-
derlying assets in order to carry out arbitrage pricing. Indeed, the completeness condition
is satisfied if and only if the number n of exogenously given assets - not considering in
this group the risk-free account B(t) - equals the number m of random sources.
According to Björk (2009), we can solve this problem taking as given the price of a bond
with maturity j and pricing the bonds with maturities i < j and i = 0, 1, ..., j−1 in terms
of the short rate process r(t) and of the price of the j-bond.
Therefore, the author assumes that the price of a bond j for every maturity j is a function
F of three real variables t, r(t) and T

P (t, T ) = F (t, r(t);T ) (1.3)

where F (T, r;T ) = 1 for all r(t).
We select a portfolio V composed by two bonds with maturities S and T and weights
given by (uS, uT ). The portfolio is described by the process

dV = V

{
uT
dF T

F T
+ uS

dF S

F S

}
(1.4)

where the price processes of the two i-bonds, with i = S, T , are determined by the Itô
formula

dF i = F iαidt+ F iσidW
P

where

αi =
F i
t + µF i

r + 1
2
σ2F i

rr

F i
,

σi =
σF i

r

F i
.
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The resulting portfolio is risk-free because its process is determined by the drift term only.
Furthermore, given that the self-financing and the no arbitrage conditions are satisfied,
we obtain that the portfolio’s return must be equal to the to the short rate r(t). Hence,
we obtain that the process of the portfolio can be also represented as

dV = V

{
αSσT − αTσS
σT − σS

}
dt = V r(t)dt (1.5)

where the second equivalence of equation (1.5) implies that

αS(t)− r(t)
σS(t)

=
αT (t)− r(t)

σT (t)
= λ(t). (1.6)

The implication of equation (1.6) represents one of the key assumptions upon which term
structure modelling is built: all the zero coupon bonds P (t, T ) which are freely traded in
a no-arbitrage market have the same risk premium, λ(t), also called market price of risk.

The elements defined until this point are useful to finally introduce the term struc-
ture equation, a partial differential equation (PDE) satisfied by the process F (t)F T

t + {µ− λσ}F T
r + 1

2
σ2F T

rr − rF T = 0,

F T (T, r) = 1
(1.7)

Unfortunately, the term structure equation (1.7) cannot be solved until the parameters
λ, µ and σ are exogenously taken.
A stochastic representation of equations (1.7) can be obtained through the application of
Itô formula to the process

exp

{
−
∫ s

0

r(u)du

}
F T (s, r(s)),

and assuming that F T satisfies the term structure equation.
Finally, using the methodology we have employed in Appendix A, we are able to obtain
the Feynman-Kac transformation of F T .
Therefore, we are able to define the following representation of the general term structure
equation for the price Π(t,Φ), where Φ(r(T )) is a general claim at time T ,Ft + {µ− λσ}Fr + 1

2
σ2Frr − rF = 0,

F (T, r) = Φ(r).
(1.8)

where F (t, r;T ) is represented as

F (t, r;T ) = EQ
[
exp

{
−
∫ T

t

r(s)ds

}
× Φ(r(T ))

∣∣∣∣F(t)

]
, (1.9)
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where F(t) is a sigma-algebra and the expectation is taken under the λ-depending mar-
tingale measure Q, considering for the r-dynamics under the risk neutral measure Qdr(s) = {µ− λσ}ds+ σdWQ(s),

r(t) = r.
(1.10)

Before moving on to a broad description of the most important models for the
short rate, we should first introduce the Girsanov’s theorem. Indeed, we need a Girsanov
transformation to move from an interest rate process under the objective probability
measure P to a corresponding process under the risk neutral probability measure Q. The
Girsanov transformation is important because it affects only the drift term of a process,
but not its diffusion term. This property allows us to estimate the diffusion term under
the objective probability measure P, and then estimating the other paramenters using the
estimated diffusion parameter in the process under the risk neutral probability measure
Q.
Therefore, according to the definition provided by Björk (2009), a Girsanov transformation
of a standard Brownian motion under the objective probability measure P into a process
with a Brownian motion under the risk neutral measure Q is

dW P = φ(t)dt+ dWQ(t), (1.11)

where the Brownian motion W P is defined in the probability space (Ω, F , P) and φ(t) is
a vector process. The transformation is operated through a process GdG(t) = φ(t)G(t)dW P(t),

G(0) = 1

whose expected value under the objective measure P is assumed to be

EP[G(T )
]

= 1,

and the risk neutral probability measure on the sigma-algebra F(T ) is defined as

G(T ) =
dQ
dP

.

1.1.1 Models for the short rate

We present some of the standard models that are used to describe the short rate under
the risk neutral measure Q. These models are characterized by a parameter vector α,
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affecting both the drift and the diffusion terms

dr(t) = µ(t, r(t);α)dt+ σ(t, r(t);α)dWQ(t). (1.12)

The assessment of the parameter vector α in the general case (1.12) can be attained
through the procedure we have briefly outlined after having applied the Girsanov’s theo-
rem to the interest rate process in the P measure. Hence, the first step we need to take is
to define the drift term, but - unfortunately - we are not able to retrieve the drift term’s
parameters directly from the observation of r(t) under the real measure P. Therefore,
we should first select a specific model involving a given number of parameters. Then, we
should compare the theoretical term structure solving the term structure equation (1.7),
P (t, T ;α), with the empirical term structure that we have built after having collected
market data, P ∗(t, T ;α). Finally, we should recursively input the parameter vector α in
equation (1.12) until the theoretical term structure matches the empirical term structure.
Therefore, we obtain an estimated parameter α∗.
We put the estimated value of α, α∗, into µ and σ, using the risk neutral probability
measure Q.
This procedure enables us to calculate the price, Π(t,Φ), of an interest rate derivative
enabling owner to exercise a claim Φ(r(T )) at time T. The price process of the interest
rate derivative is the solution of the term structure equation (1.8).
The procedure we have just described in general terms is called the calibration of an
interest rate model using market data and, as we show theoretically in Chapter 3 and em-
pirically in Chapter 4, it represents the core element around which this final dissertation
is built. Indeed, we present in the following chapters the results of the calibration of the
Hull-White model, a short rate model, using the market data of cap volatilities.

Many of the models that we discuss later can easily be treated with an analytical
and a computational perspective if they have an affine term structure. A model possesses
an affine term structure if the term structure is

P (t, T ) = F (t, r(t);T ) (1.13)

where
F (t, r;T ) = exp

[
A(t, T )−B(t, T )r

]
(1.14)

where A(t, T ) and B(t, T ) are deterministic functions. Furthermore, the model can be
defined effortlessly if the parameters of the drift term and of the diffusion term are also
affine and time dependent

µ(t, r) = α(t)r + β(t)

σ(t, r) =
√
γ(t)r + δ(t)

Thus, the model has an affine term structure whose deterministic functions A(t, T ) and
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B(t, T ) - according to Björk (2009) - solve the systems of equations
∂B(t,T )
∂t

+ α(t)B(t, T )− 1
2
γ(t)B2(t, T ) = −1

B(T, T ) = 0
(1.15)

and 
∂A(t,T )
∂t

= β(t)B(t, T )− 1
2
γ(t)B2(t, T )

A(T, T ) = 0.
(1.16)

Analytical tractability for affine term structure models is used to better understand the
Vasicek and the Hull-White version of the Vasicek model which we analyze in detail in
Chapter 3.

An in-depth discussion of the different classes is out of the scope of this thesis; in-
deed, there already exist a huge literature - among the most popular textbooks on interest
rate modelling there are Brigo and Mercurio (2006), Björk (2009) and, for modelling in
the multiple curve framework, Caspers and Kienitz (2017). Therefore, we briefly sketch
only the most popular short rate models, as they were listed in the textbook of Brigo and
Mercurio (2006).

1. Vasicek
dr(t) = k[θ − r(t)]dt+ σdWQ(t) (1.17)

2. Cox-Ingersoll-Ross

dr(t) = k[θ − r(t)]dt+ σ
√
r(t)dWQ(t) (1.18)

3. Dothan
dr(t) = ar(t)dt+ σr(t)dWQ(t) (1.19)

4. Exponential Vasicek

dr(t) = r(t)[η − a ln r(t)]dt+ σr(t)dWQ(t) (1.20)

5. Hull-WHite
dr(t) = k[θ(t)− r(t)]dt+ σdWQ(t) (1.21)

6. Black-Karasinski

dr(t) = r(t)[η(t)− a ln r(t)]dt+ σr(t)dWQ(t) (1.22)
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7. CIR++ dr(t) = k[θ − x(t)]dt+ σ
√
x(t)dWQ(t)

r(t) = φ(t) + x(t)
(1.23)

8. Shifted exponential Vasicekdr(t) = x(t)[η − a lnx(t)]dt+ σx(t)dWQ(t)

r(t) = φ(t) + x(t)
(1.24)

Short rate models were the first interest rate models to be developed and they are still
extremely useful for practitioners for risk management and pricing. Indeed, the processes
we have just listed are necessary to describe the stochastic discount factor which is used
to compute the present value of the expected payoff Φ(r(T ))

P (t, T ) = EQ
[
exp

{
−
∫ T

t

r(s)ds

}
× Φ(r(T ))

∣∣∣∣F(t)

]
.

The different models are driven by different factors, shaping in different ways both the
drift and the stochastic terms. In order to be used in practice, interest rate models should
have the important feature of being flexible and numerically tractable; this particular
characteristic is held by interest rate models with an affine term structure, and, observing
the list we have sketched above, all the short rate models except for the Dothan model
have an affine term structure.
Short rate models can be distinguished - according to the classification operated by
Caspers and Kienitz (2017) - into Gaussian models (e.g. Vasicek model, Ho-Lee model
and Hull-White model), square root models (e.g. Cox-Ingersoll-Ross model) and multiple
factors models (e.g. G2++ m. and Hull-White 2 factors model).

Another important class of interest rate models is the one of instantaneous for-
ward rate models. These models were developed on the Heath-Jarrow-Morton (HJM)
framework. The HJM framework can be formulated using the following SDEdf(t, T ) = µ(t, T )dt+ σ(t, T )dWQ(t)

f(0, T ) = fmkt(0, T )
(1.25)

where fmkt(0, T ) is the instantaneous forward rate which is observed in the market at
time 0. The parameters can be calculated applying a calibration algorithm symilar to the
one we have previously described when discussing short rate models. Therefore, it can be
proved1 that, by the no-arbitrage principle, the drift parameter can be also represented
as

µ(t, T ) = σ(t, T )

(∫ T

t

σ(t, u)du

)
.

1See Brigo and Mercurio (2006).
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Finally, the HJM model can be represented asdf(t, T ) = σ(t, T )

(∫ T
t
σ(t, u)du

)
dt+ σ(t, T )dWQ(t)

f(0, T ) = fmkt(0, T )

(1.26)

and following Section 5.1 in Brigo and Mercurio (2006) the zero coupon bond price process
can be calculated applying the Itô formula to the equation of the instantaneous forward
rate; furthermore, the authors derive the instantaneous short rate from the fact that
it is equal to the instantaneous forward rate. The implication of the HJM framework
is very important for interest rate theory: indeed, specifying the drift term using the
volatility structure enables us to determine the whole yield curve by simply specifying the
initial condition and the volatility σ. According to Caspers and Kienitz (2017), the most
considerable disadvantage of the HJM model is that a general volatility function could
lead to a model which is not anymore Markovian and, consequently, which could not be
solved anymore with a PDE.

Another important class of interest rate models is the one represented by market
models. As the name suggests, market models differ from short rate and instantaneous
forward rate models because they are used to model interest rates which are directly
observed in the market. Depending on the type of rate observed, we distinguish between
Libor market models and Swap market models. We refer to Brigo and Mercurio (2006)
and to Caspers and Kienitz (2017) to a complete analysis of Libor and Swap market
models.

1.1.2 Overview of linear interest rate instruments

In this section we briefly introduce the most significant plain vanilla interest rate instru-
ments. We discuss the instrument’s payoff and pricing formulas using as main reference
the pricing framework provided in Ametrano and Bianchetti (2013) and Bianchetti and
Morini (2013). We use vector notation for Swaps and Overnight Indexed Swaps (OIS).

Deposits

Deposits (Depos) are zero coupon unsecured contracts and they are usually OTC traded.
The payoff of a Depo is

D(Ti, Ti) = N [1 +Rdepo(t, Ti)τi], (1.27)

where Rdepo is the interest rate paid over the deposit, τi indicates the time partition
occurring in the time interval [t, Ti], N is the notional amount of the deposit account, and
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Ti is the maturity of the deposit. The discounted value of a depo account at time t is

D(t, Ti) = NP (t, Ti)
[
1 +Rdepo(t, Ti)τi

]
(1.28)

where P (t, Ti) is the zero coupon bond used for discounting.

Forward Rate Agreement

Forward Rate Agreements (FRAs) have two different legs starting at time t. The float-
ing leg pays the spot IBOR rate L(Ti−1, Ti)

2 fixed at time t = Ti−1−∆
3 over the period

[Ti−1, Ti]. The fixed leg pays the fixed rate K over the period [Ti−1, Ti].
The price of the FRA at time t is

FRA(t, Ti, K) = NP (t, Ti)

{
EQTi
t

[
L(Ti−1, Ti)−K

]}
τi

= NP (t, Ti)

[
F (t, Ti−1, Ti)−K

]
τi

(1.29)

where the expected value is computed under the Ti-forward measure QTi with numeraire
P (t, Ti). The relationship between the market IBOR rate and the bond implied forward
rate is described in (1.33).
The FRA rate is defined as the fixed rate K making null the price of the FRA, therefore

RFRA(t, Ti) = F (t, Ti−1, Ti). (1.30)

The FRAs are priced in the market according to the following principle: payments oc-
curring at time Ti are anticipated (and discounted) at time Ti−1. Before introducing the
FRA market price, we should apply a small variation in the notation. Indeed, we note the
curves used to discount the payoffs in a different way to the forward curves used to assess
the future value of the payoffs. The discount curve is then noted with a subscript d. The
reason for this different notation regards the coexistence of curves used only for discount-
ing and of curves used to assess the forward payments. Notwithstanding we discuss this
argument in Chapter 2, we need to use this notation to make this formulation consistent
with the developments we provide later. Ametrano and Bianchetti (2013) derived the
price of a market FRA

FRAmkt(t, Ti, K) = NPd(t, Ti−1)

×
{

1− 1 +Kτi
1 + Fd(t, Ti−1, Ti)τd,i

EQTi
t

[
1 + Ld(Ti−1, Ti)τd,i
1 + L(Ti−1, Ti)τi

]}
,

(1.31)

2In this thesis we refer to the spot IBOR rate as L(Ti−1, Ti) and to the forward IBOR rate as
L(t, Ti−1, Ti).

3For simplicity we assume that the time when the FRA starts coincides with the time when the IBOR
rate is fixed.
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where τd,i represents the time partition occurring in the discount curve and τi the time
partition in the other yield curves. The FRA rate of the market-priced FRA is

RFRA,mkt(t, Ti) =
1

τi

{
1 + Fd(t, Ti−1, Ti)τd,i

EQTi
t

[
1+Ld(Ti−1,Ti)τd,i

1+L(Ti−1,Ti)τi

] − 1

}
. (1.32)

We observe that the market price of a FRA depends on the models for the spot and
forward rates which are used as the reference rates for the discount curve

Ld(Ti−1, Ti) =
1

τd,i

[
1

Pd(Ti−1, Ti)
− 1

]
,

Fd(t, Ti−1, Ti) =
1

τd,i

[
Pd(t, Ti−1)

Pd(t, Ti)
− 1

]
.

(1.33)

Before the crisis, the forward IBOR rate was assumed to be equal to the forward rate
defined using zero coupon bonds. However, this equivalence is not anymore satisfied: as
we discuss in Section 1.2 and in Section 2.2.2, the financial crisis operated as a breaking
mechanism, making the forward IBOR rate riskier than the forward rate.

Futures

Futures are interest rates derivatives whose payoff is comparable to the FRA one: the dif-
ference between these two products is that futures contracts are exchange-traded deriva-
tives, while FRAs are OTC contracts. The Futures’ payoff at time Ti−1, the interest fixing
date, is

Π(Ti−1, Ti) = N

[
1− L(Ti−1, Ti)

]
, (1.34)

and futures present value at time t is given by

Futures(t, Ti) = EQ
t

[
Π(Ti−1, Ti)

]
= N

{
1− EQ

t

[
L(Ti−1, Ti)

]}
= N

[
1−RFutures(t, Ti)

]
,

(1.35)

where RFutures(t, Ti) is the futures’ rate, Q is the risk neutral probability measure asso-
ciated with the bank account numeraire and the settlement date of futures payments is
Ti−1.
However, the forward rate L(t, Ti−1, Ti) is not a martingale under the measure Q, requir-
ing a model for the dynamics of the forward rate with a convexity adjustment term4.

4The forward rate L(t, Ti−1, Ti) was a martingale under Q in the single curve framework which was
commonly adopted before the financial crisis. Nowadays, this relationship is not true anymore. We
discuss this issue in the Chapter 2.
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The convexity adjustment generally accounts for the volatility of the forward rate and the
correlations between spot rates and forward rates. Therefore, the Futures’ rate takes the
form

RFutures(t, Ti) = EQ
t

[
L(Ti−1, Ti)

]
= EQTi

t

[
L(Ti−1, Ti)

]
+ CFutures(t, Ti−1) (1.36)

where QTi is the Ti-forward probability measure associated to the numeraire P (t, Ti) and
CFutures is the convexity adjustment term.
Since futures contracts are traded on public exchanges, they need to be regulated through
the day-by-day marking to market of their market movements. Therefore, daily losses and
profits on futures contracts need to be considered through the computation of a margin
account, which - according to Ametrano and Bianchetti (2013) - takes the form

∆(t, t− 1, Ti) =
N ′

n
[Futures(t, Ti)− Futures(t− 1, Ti)],

where n is the tenor of the contract and N ′ is the number of a traded unit with size of 1
million USD.
The standard structure of the contract, the daily margination and the low transaction
costs make futures contracts very liquid interest rate derivatives.

Swap

Swaps contracts are OTC-traded interest rate derivatives consisting of two different legs.
The floating leg depends on the IBOR rate L(Ti−1, Ti) and the fixed leg depends on a
rate K. The two counterparties of the contract agree to exchange the net cash flows
according to a predetermined time schedule T = t, T1, ..., Tn. The interest rate swap
could be considered as a collection of FRA contracts on different time intervals. Hence,
the price of an interest rate swap (IRS) is - using vector notation - equal to

IRS(t,T, K) = N [RIRS(t,T)−K]A(t,T), (1.37)

where N is the notional amount and the annuity A(t,T) is

A(t,T) =
n∑
i=1

Pd(t, Ti)τi (1.38)

and the swap rate RIRS(t) is defined as

RIRS(t,T) =

∑n
i=1 Pd(t, Ti)F (t, Ti−1, Ti)τi

A(t,T)
, (1.39)
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where the numerator indicates the present value of the floating leg. The relation between
the IRS rate and the swap annuity is such that the price of a portfolio of ZCBs could be
represented as

RIRS(t,T)× A(t,T) ∼= P (t, T0)− P (t, Tn). (1.40)

OIS

Overnight Indexed Swaps (OIS) are a particular version of IRS where the floating leg de-
pends on overnight interest rates. The floating leg pays a compounded rate, Rovernight(Ti,T),
compounded from the overnight rates payed over the intervals (Ti−1, Ti)

5. We should
note that the compounded rate Rovernight(Ti,T) is different from the single overnight
rate Rovernight(Ti,j−1, Ti,j) payed over the period [Ti,j−1, Ti,j]. Finally, the compounded
overnight rate is

Rovernight(Ti,T) =
1

τi

{
ni∏
j=1

[
1 +Rovernight(Ti,j−1, Ti,j)τj)

]
− 1

}
(1.41)

where τj is the overnight time partition and τi is the yearly time partition. Therefore, the
present value of the OIS contract is

OIS(t,T, Rovernight, K) = N

[
ROIS(t,T)−K

]
A(t,T) (1.42)

where

ROIS(t,T) =

∑n
i=1 P (t, Ti)R

overnight(t,T)τi
A(t,T)

(1.43)

Assuming an hedging strategy with perfect collateral, we can formulate the OIS overnight
rate ROIS(t,T) is equal to

A(t,T)ROIS(t,T) = P (t, T0)− P (t, Tn)

ROIS(t,T) =
P (t, T0)− P (t, Tn)

A(t,T)

(1.44)

where P (t, T ) are ZCBs used as collateral.

Basis swap

Basis swaps are interest rate derivatives where two counterparties exchange the net cash
flows resulting from two floating legs. The two floating legs depends on two floating IBOR
rates with two different tenors x and y. The reason for consider two different tenors is
related to the multiple curve framework and we adopt this notation to make these formulas

5T indicates the time schedule for the compounded rate Rovernight(Ti,T).
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consistent with the bootstrapping formulas in Section 2.1.1.
Basis swaps are defined in two ways, depending on the structure of the contract. We
indicate the payment schedules of the two IRSs, with respective tenors x and y, as Tx

and Ty.
The first method we can use to build a basis swap consists of a swap with two floating
legs plus an interest rate spread ∆. Therefore, we can define the present value of this
portfolio as

BSS(t,Tx,Ty,∆) = IRS(t,Tx)− IRS(t,Ty,∆)

= N

[
nx∑
i=1

Px(t, Ti)Fx(t, Ti−1, Ti)τx,i−

−
ny∑
j=1

Py(t, Tj) [Fy(t, Tj−1, Tj) + ∆(t;Tx,Ty)] τy,j

]
= IRS(t,Tx)− IRS(t,Ty)−N∆(t,Tx,Ty)Ay(t,Ty),

(1.45)

where τ represents the time partition and the annuity is

Ay(t,Ty) =

ny∑
j=1

Py(t, Tj)τy,j (1.46)

and, imposing the portfolio’s present value equal to zero, we obtain the basis swap spread

∆(t,Tx,Ty) =
IRS(t,Tx)− IRS(t,Ty)

NAy(t,Ty)
. (1.47)

In the second method, we build a portfolio using two floating vs fixed swaps. The two
swaps have different tenors and they have the same fixed leg K6. We define the two swaps
borrowing from equation (1.37)

IRSx(t,Tx,T, K) = N [RIRS
x (t,Tx,T)−K]A(t,T) = 0

IRSy(t,Ty,T, K) = N [RIRS
y (t,Ty,T)−K]A(t,T) = 0

(1.48)

and the interest rate spread is defined as

∆(t,Tx,Ty,T) = RIRS
x (t,Tx,T)−RIRS

y (t,Ty,T)

=

∑nx
i=1 Px(t, Ti)Fx(t, Ti−1, Ti)τx,i −

∑ny
j=1 Py(t, Tj)Fy(t, Tj−1, Tj)τy,j

A(t,T)

=
IRS(t,Tx)− IRS(t,Ty)

NA(t,T)
.

(1.49)
As observed by Ametrano and Bianchetti (2013) the two methods of building a basis swap
return two different results and the difference between the two results is measured by the

6We generally refer to the payment schedule of the fixed legs as T.
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spread

∆(t,Tx,Ty) =
Ay(t,Ty)

A(t,T)
∆(t,Tx,Ty,T). (1.50)

The basis swap spread is non-negative when the floating rate of the first swap is greater
than the floating rate of the second swap.

1.1.3 Overview of most used interest rates

The spot IBOR rate L(Ti−1, Ti) we have defined in the previous sections is the underlying
interest rate of the vast majority of interest rate derivatives. There are many typologies
of IBOR interest rates in the interbank money markets, depending on the currency area
they are located in. IBOR rates differ for fixing and publication methods, tenor and panel
of the contributing banks. In this section we briefly describe the most important interest
rates used in the interbank market, such as the London Interbank Offered Rate (LIBOR),
the Euro Interbank Offered Rate (EURIBOR) and the Euro Overnight Index Average
(EONIA). The descriptions of each single interest rate refer to the publicly available in-
formations which have been publishen on the official website of the designated contributor
agent; all the informations are updated as of June 2020.

LIBOR

The London Interbank Offered Rate (LIBOR) was published for the first time in 1986 by
the British Banker’s Association, the LIBOR is under the admnistrative responsibility of
the Intercontinental Exchange (ICE) and it is actually calculated by the data provider
Thomson Reuters. The LIBOR is the primary benchmark rate set by the International
Swaps and Derivatives Association (ISDA) for the OTC transactions. However, ISDA is
reforming its reference parameters and LIBOR will not be published anymore after the
end of 2021.
The LIBOR is fixed depending on the declarations of a group of selected banks, which
- every business day of the London business calendar - submit to Thomson Reuters the
interest rate they could borrow funds at in a reasonable inter-bank market size just prior
to 11 a.m. GMT for some maturities in different currencies. Thomson Reuters computes
the rate fixings at 11:45 a.m. GMT - after waiting the banks had adjusted their initial
submissions. For each maturity, the calculation agent computes the average of the interest
rates lying in the second and third quartiles of the polled data.
LIBOR rates are calculated for seven tenors (overnight, one week, one month, two months,
three months, six months, one year) with respect to five different currencies (CHF, EUR,
GBP, JPY, USD), then resulting in 35 single rates for every London business day.
There are 8, 12 or 16 selected banks for each currency and they are deputed by an
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independent committee. The contributors panel is built with the aim of giving the closest
representation of the trading activity related to a single currency in the London money
market. The set of the contributors is reviewed semiannually depending on the dimension
of the trading activity, the reputation and the trading expertise of the selected financial
institutions. Table 1.1 shows the LIBOR panel composition as of June 2020.

Panel composition - LIBOR
USD GBP EUR CHF JPY

Bank of America NA X
Barclays Bank plc X X X X X
BNP Paribas SA X
Citibank NA X X X X
Cooperatieve Rabobank U.A. X X X
Crédit Agricole CIB X X
Credit Suisse AG X X X
Deutsche Bank AG X X X X X
HSBC Bank plc X X X X X
JPMorgan Chase Bank NA X X X X X
Lloyds Bank plc X X X X X
Mizuho Bank Ltd X X X
MUFG Bank Ltd X X X X X
National Westminster Bank plc X X X X X
Royal Bank of Canada X X X
Santander UK plc X X
Société Générale X X X X
Sumitomo Mitsui BC Ltd X X
The Norinchukin Bank X X
UBS AG X X X X X

Table 1.1: Contributing banks for each single LIBOR currency. Source: Intercontinental
Exchange.

EURIBOR

EURIBOR was published for the first time in 1998, it is actually under the administrative
responsibility of the European Money Market Institute (EMMI) and the Global Rate Set
System Ltd (GRSS) is its calculation agent. It is the rate at which financial institutions
located in EU and EFTA countries could borrow funds in the unsecured money market.
EURIBOR is compliant with the Benchmarks Regulation (BMR) and, after the adjust-
ment process to the new regulatory framework, has been confirmed as the reference rate
for existing contracts and for contracts starting by January 2020 .
EURIBOR is published on every TARGET27 calendar day at 11 a.m. CET for five dif-

7TARGET2 is the payment infrastructure owned and managed by the Eurosystem. It is the platform
for processing and executing payments denominated in EUR between the EU countries central banks and
the commercial banks whose branches and subsidiaries are located in the European Union.
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ferent tenors (one week, one month, three months, six months, one year). EURIBOR is
computed as the average of the submissions received by a panel of selected contributing
banks, after discarding the top and the bottom 15% of the polled interest rates.
The panel of banks submitting EURIBOR rates is made of 18 entities, which are displayed
in Table 1.2. The banks are selected to guarantee an adequate representation of the euro
money market and they are required to cope with the requirements and the obligations
set by EMMI in the EURIBOR Governance Framework.
As anticipated before, EURIBOR is the object of a recently started reform plan of the

Panel composition - EURIBOR
Belgium Belfius Luxembourg Caisse d’Epargne de l’Etat
France BNP-Paribas Netherlands ING Bank

HSBC France Portugal Caixa Geral De Depositos
Natixis Spain Banco Bilbao Vizcaya Argentaria
Crédit Agricole Banco Santander
Société Générale CECABANK

Germany Deutsche Bank CaixaBank SA
DZ Bank UK Barclays

Italy Intesa Sanpaolo
Unicredit

Table 1.2: Contributing banks for country. Source: European Money Markets Institute.

EMMI authority. The final goal of the process is to enhance benchmark standards, in or-
der to preserve the market from manipulation opportunities, to improve the transparency
of the submitted rates and to augment the market’s capability to be more robust and
resilient during stress periods.

Other IBOR rates

There are many other IBOR rates, referring to currency areas characterised by smaller
and less developed money markets. We just list the other IBOR rates, without deepen-
ing their features: AUD BBSW (Australian Bank Bill Rate, published by the Australian
Financial Markets Association), BUBOR (Budapest Interbank Offered Rate, published
by the Hungarian Forex Company), CAD CDOR (Canadian Dealer Offered Rate, pub-
lished by the Montreal Exchange), DKK CIBOR (Copenaghen Interbank Offered Rate,
published by the Danish Bankers Association), JIBAR (Johannesburg Interbank Average
Rate, published by the Johannesburg Stock Exchange) and JPY TIBOR (Tokyo Interbank
Offered Rate, published by the Japanese Bankers Association).
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EONIA

The Euro Overnight Index Average (EONIA) is the weighted average of the interest rates
paid over unsecured overnight interbank lending transactions executed by banks located
in EU and EFTA countries. EONIA was published for the first time in January 1999;
on October 2019, the EMMI decides that the EONIA will be computed - until 3 January
2022 - applying a fixed spread of 8.5 basis points over the Euro Short Term Rate (eSTR).
eSTR is the new unsecured overnight benchmark rate substituting EONIA. The European
Central Bank calculates the EONIA rate on behalf of the EMMI and it publishes EONIA
at 9.15 a.m. CET on each TARGET2 calendar business day.

eSTR

eSTR represents the wholesale unsecured overnight interbank borrowing cost of euro area
banks. It was published for the first time on 2 October 2019, following the recommenda-
tions of a private working group and a public consultation which lead EMMI to release a
new benchmark framework.
eSTR is computed as a volume weighted trimmed average of the volume-weighted distri-
bution of interest rates lying between the second and third quartiles of the distribution.
The observations are extracted from the wholesale market deposits reported by the credit
institutions according to the standards set by the Money Market Statistical Regulation.
eSTR is published by the European Central Bank at 8:00 a.m. CET on each TARGET2
calendar business day.
Among the most important result of the overnight interest rates reform, there is the in-
dication of the private sector group which is working on behalf of the EMMI authority:
indeed, market participants in operations involving overnight rates in the Euro Money
Market are invited to smoothly substitute EONIA with eSTR as the benchmark interest
rate for all contracts and products.

FED Fund Rate

The Federal Fund Rate is the interest rate paid on USD overnight unsecured borrowing
transactions of reserve balances at the Federal Reserve Bank of New York between depos-
itory institutions (banks and credit unions). FED Fund Rate is under the administrative
responsibility of the Federal Reserve Bank of New York since its first publication in 1954.
It is computed as a volume weighted average and it is published every business day at
9:00 a.m. EST.

23



SOFR

The Secured Overnight Financing Rate (SOFR) is the interest rate paid on overnight
borrowing transactions of USD cash with the collateralization of USD Treasury bonds. It
is under the administrative responsibility of the Federal Reserve Bank of New York and
it was published for the first time in April 2018. It is calculated as a volume weighted
trimmed average and it is published every business day at 8:30 a.m. EST.

SONIA

The Sterling Overnight Index Average (SONIA) is the interest rate paid on GBP overnight
unsecured borrowing bilateral or brokered transactions of wholesale funds. It is under the
administrative responsibility of the Bank of England; it was published for the first time
in March 1997 and it was reformed in April 2018. It is computed as a volume-weighted
trimmed average depending on the second and third quartiles of the volume weighted
distribution of interest rates of the daily data of GBP money market. It is published
every business day at 9:00 a.m. GMT.

SARON

The Swiss Average Rate Overnight (SARON) is the interest rate paid on overnight repo
transactions in the CHF money market. It was published for the first time in 2009
and it was reformed in 2017 according to the new standards set by the International
Organization of Securities Commissions (IOSCO). It is calculated as a volume weighted
average of the interest rates paid on repos concluded during the current trading day:
indeed, it is published every ten minutes.

TONAR

The Tokyo Overnight Average Rate (TONAR, also called MUTAN) is the interest rate
paid on JPY overnight unsecured borrowing transactions in the JPY money market. It is
under the administrative responsibility of the Bank of Japan and it was published for the
first time in 1996. It is calculated as the volume weighted average of the interest rates
submitted by a set of selected brokers of the JPY money market. TONAR is published
every business day at 10 a.m. JST.
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Figure 1.1: OTC derivatives notional amount outstanding by derivative class. Semi-
annual observations over the period 1998-2019. Source: Bank for International Settle-
ments.

1.2 The market after the credit crunch: a new pricing

framework

In the last twenty years, the volume of outstanding derivatives which are traded over-the-
counter (from now on we refer to them as OTC derivatives) has been constantly stepping
up. As we can see from the Figure 1.1, the OTC derivatives notional amount was equal
to 72 trillions of US dollars on January 1998 and it increased up to 558.5 trillions of US
dollars on December 2019 - it was approximately 6.5 times the world GDP in 2018.
OTC interest rate derivatives are the largest share of OTC derivatives, accounting for
448.97 trillions of US dollars: interest rate derivatives’ share is nearly 80% and FX and
credit derivatives - the other two biggest class of derivatives - weigh respectively 16.50%
and 1.45%. The dimension of the OTC derivatives market seems impressively big if com-
pared with the world GDP. However, focusing only on the notional value of derivative
contracts could be misleading. Indeed, we should consider a second measure in order to
have closest view of the real size of the OTC derivatives market: the gross market value,
which is defined as the replacement cost of a contract at its market value. The gross
market value of the global OTC derivatives market was equal to 11.59 trillions of US
dollars in the second half of 2019.
The Tables 1.3 and 1.4 show, respectively, the notional amounts outstanding and the
gross market values of the three main classes of interest rate derivatives - forward rate
agreements (FRAs), swaps and options - depending on the currencies they are denomi-
nated in, during the second half of 2019. We observe that interest rate derivatives are
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most frequently denominated in the following currencies: EUR denominated interest rate
derivatives’ gross market value accounts for 4.09 trillions USD, USD interest rate deriva-
tives’ gross value is 1.65 trillions USD and GBP interest rate derivatives’ gross value is
1.19 trillions USD. Observing the type of derivative contract, we notice that swap con-
tracts are the most popular type of interest rate derivatives: indeed, swaps’ gross market
value amounts for nearly 90% of the gross value of all OTC interest rate derivatives.
The financial instruments in Tables 1.3 and 1.4 are the elementary tools of the interest
rate risk management strategies that are adopted by major financial institutions all over
the world, not only in the currency area they refer to.

Notional amounts outstanding - second semester 2019
TOT USD EUR JPY GBP CHF

Total interest rate contracts 448965 159804 117173 37843 44146 3669
FRAs 67431 34984 19763 20 6954 630
Swaps 341292 103019 83863 36151 35368 3012
Total options 39916 21801 13547 1673 1824 26

Table 1.3: The notional amount of OTC interest rate derivatives depending on the curren-
cies the contracts are denominated in. The amounts are expressed in billions of US dollars
and they refer to the second half of 2019. Source: Bank for International Settlements.

The interest rate derivatives’ market radically changed after the financial crisis in
2007, permanently modifying the conception of uncertainty and the risk aversion of the
agents operating in financial markets. Grbac and Runggaldier (2015) consider the histor-
ical IBOR-OIS swap spread as a measure for the additional risk paid on swap contracts
after the financial crisis. The IBOR-OIS swap spread best describes the reason behind
the collapse of the financial sector: EURIBOR dynamics in the period from January 2007
to December 2012 reflects the increase of credit and liquidity risk within the European
interbank unsecured market, leading the EURIBOR-EONIA swap spread to peak during
2009 and during the sovereign debt crisis in 2012. As Veronesi (2016), we take the spread
between EURIBOR rates and EONIA as a proxy of the disruption suffered by financial
markets. In Figure 1.2 we reproduce the spreads between four different maturities EURI-
BOR rates (1M, 3M, 6M, 12M) and the EONIA rate in the time interval from January

Gross market values - second semester 2019
TOT USD EUR JPY GBP CHF

Total interest rate contracts 8352 1657 4093 471 1194 58
FRAs 204 47 96 0 24 2
Swaps 7463 1395 3625 445 1120 52
Total options 685 215 372 25 50 3

Table 1.4: The gross market value of OTC interest rate derivatives depending on the-
currencies the contracts are denominated in. The amounts are expressed in billions ofUS
dollars and they refer to the second half of 2019. Source: Bank for International Settle-
ments.
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Figure 1.2: Monthly historical observations for EURIBOR1M-EONIA spread,
EURIBOR3M-EONIA spread, EURIBOR6M-EONIA spread, EURIBOR1Y-EONIA
spread in the period Jan2003-Dec2013. Spread values are measured in basis points on
the left side. Sources: Thomson Reuters’ Eikon; ECB.

2003 to December 2013. We observe that the spread was negligible before the financial
crisis, since the credit and liquidity risk premia paid in the interbank market were insignif-
icant; after August 2007, the spread dramatically increased and it started decreasing only
after central banks adopted monetary policies to counteract the financial distress.
The divergence between the EURIBOR rates and EONIA can also be appreciated in Fig-
ure 1.3, where we have plotted the monthly historical observations of the rates in the time
interval from January 1994 to July 2020. Furthermore, we note that the interest rates’
curves whose tenor is greater are perceived as riskier.

The greater risk attributed to interest rates with a long-term maturity can be
decomposed into three risk sub-elements. Indeed, when two counterparties enter into an
interest rate swap whose floating leg is tied to EURIBOR rate with a given tenor, the two
entities could face:

1. Borrowing and liquidity risk: counterparty 1 needs to borrow funds to pay counter-
party 2, but it is prevented from borrowing because of a liquidity crunch;

2. Counterparty 1’s default risk: counterparty 1 fails and does not settle the required
payment;

3. Counterparty 2’s default risk: counterparty 2 fails and does not settle the required
payment.

As indicated by Grbac and Runggaldier (2015), a study of Filipovic and Trolle (2013)
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Figure 1.3: Monthly historical observations for EONIA, EURIBOR1M, EURIBOR3M,
EURIBOR6M, EURIBOR1Y in the period Jan1994-Jul2020. Interest rates are measured
in basis points on the left side. Sources: Thomson Reuters’ Eikon; ECB.

assess that the default risk component was the main driver of the overall interbank risk
during the period from August 2007 to January 2011.
The interbank risk was considered to be negligible before the financial crisis and, conse-
quently, it didn’t entered the interest rate derivatives pricing framework which was used
by financial markets practitioners until 2007. However, after the credit crunch suffered
by financial markets in 2007, these elements could not be neglected anymore: liquidity
and default risks implied by IBOR rates were too significant to make IBOR rates dynam-
ics close to the one of OIS rates8 and they must be necessarily considered when pricing
interest rate derivatives whose payments are tied to IBOR rates.
We should moreover consider that, as we have observed in Figure 1.2 and Figure 1.3,
additional interbank riskiness affects in a different way IBOR interest rates depending on
their tenor. The displacement of the IBOR curves after the financial crisis is described in
Bianchetti (2011) and it can be depicted as the representation in Figure 1.4: on the left
side of the figure we have the IBOR curve before the credit crunch; on the right side of the
curve we have a market segmentation into different rate curves with different tenors, the
highest segmented curve correspond to the curve bearing the highest perceived risk. The
segment on the top right represents the IBOR12M curve, the segment below represents
the IBOR6M curve and so on until we reach the segment on the bottom right, which
represents the OIS rate curve.
Therefore, the credit and liquidity crunch unleashed by the financial crisis of 2007 can be
considered - according to Bianchetti (2011) - as a "simmetry breaking mechanism" lead-

8As we pointed out in Subsection 1.1.3, EONIA is considered the benchmark risk-free rate from market
participants.
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ing to a world where a single short rate process is not sufficient anymore to model and
describe the term structure of interest rate curves with different tenors; indeed, interest
rate derivatives whose underlying interest rates have different tenors must be considered
as characterised by dissimilar interest rate dynamics when assessing their future value.
We try to better explain the shift in the pricing framework after the financial crisis intro-
ducing the pricing of a basis swap. Before the credit crunch, all floating legs were priced
using a single IBOR curve and, therefore, they had the same future value; the future
cash flows were then discounted using the same IBOR curve. After the credit crunch, the
floating legs may not be replicated anymore with a single yield curve but they were de-
termined using different IBOR curves for each different payment’s tenor; then, the future
cash flows were discounted using an IBOR curve, in case of unsecured transactions, or an
OIS curve, in case of secured transactions.
The relationship between forward IBOR rates L(t, Ti−1, Ti) and bond implied forward
rates F (t, Ti−1, Ti) before the financial crisis was equal to

L(t, Ti−1, Ti) =
1

τi
EQTi

[
1

P (Ti−1, Ti)
− 1

∣∣∣∣F(t)

]
=

1

τd,i

[
Pd(t, Ti−1)

Pd(t, Ti)
− 1

]
= F (t, Ti−1, Ti).

(1.51)
Indeed, the forward IBOR rate was calculated as the conditional expected value of the
spot IBOR rate under the Ti-forward probability measure QTi . However, after the market
segmentation unleashed by the financial crisis, the relationship in equation (1.51) was not
satisfied anymore

L(Ti−1, Ti) =
1

τi

[
1

P (Ti−1, Ti)
− 1

]
. (1.52)

A new representation of the spot and forward IBOR rates is provided in Section 2.2.2.
The combination of OIS discounting and the presence of different risky rates for different
yield curves dislodged interest rate modelling from a single curve framework to a multiple
curve one. The multiple curve framework is discussed in detail in Chapter 2.

1.2.1 Unsecured and secured transactions

In this section we broadly describe the characteristics of unsecured and secured financial
transactions, pointing how the financial crisis impacted on the collateral choices of finan-
cial operators.
Starting from the foundations, we refer to a collateral as the cash amount or the set of
assets which a borrower pledges to a lender when entering into a secured loan. Therefore,
we can define a secured financial transaction as an agreement where the lender receives
the collateral if the borrower fails to repay the debt she owes or, if the borrower meets her
obligations, the collateral - and, eventually, the interest accumulated on it - is returned
by the lender to the borrower. Vice versa, an unsecured transaction doesn’t provide any
protection for the lender because no collateral is required to any of the two counterparties
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Figure 1.4: Graphic reprentation of the curve displacement after the financial crisis. The
left side of the figure represents the single IBOR yield curve which was used to derive all
the i -tenor yield curves before the finacial crisis. The right side of the figure represents
the market segmentation occurred after the financial crisis: the i -tenor yield curve is
derived by instruments with different underlying i -tenor interest rate dynamics. Source:
Bianchetti (2011).

when entering the transaction.
After the financial crisis, it becomes clear that counterparty credit risk was an important
element to consider. Indeed, we observe a contraction of unsecured transactions in Fig-
ure 1.5: while the share in total average turnover of unsecured inter-bank transactions
in the Euro Money Market was approximately equal to one fifth before 2007, it started
decreasing until it reached 4.45% in 2013. On the opposite side, secured market consol-
idated as the largest share of the Euro Money Market immediately after the crisis. As
indicated by the Financial Stability Review released by the ECB on December 2010, the
secured market transactions cleared by central counterparties increased from a 41% share
of total turnover in 2009 to a 45% in 2010; the reason underlying this shift is twofold: to-
gether with the necessity of lowering counterparty credit risk, the increase was related to
a greater number of European financial institutions joining the repo platforms developed
by central counterparties.
When entering into a secured financial transaction the two counterparties have to commit
an agreed amount to a collateral account. The collateral, which remains a property of
the collateral giver, is object of two different analysis. The first one is related to the
periodical mark-to-market activity of the value of the financial contract and it concerns
the integration of the value of the collateral by the counterparty whose position has lost
in value. The second analysis entering the contract is related to the computation and the
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Figure 1.5: Shares in total average daily turnover of inter-bank transactions executed in
the Euro Money Market during the time period from January 2003 to December 2013.
The share of unsecured market transaction generally refers to all market segments and
instruments. Source: Money Market Survey, ECB data.

payment of the interests accredited to a single counterparty on her collateral account. The
mechanisms ruling the continuous assessment of the market value of the contract and of
the compounded interests on the collateral account are defined depending the transaction
is bilateral or between multiple counterparties.
There exist two main contract structure in order to regulate an OTC secured transaction:

1. The most used contracts for two counterparties entering an OTC bilateral transac-
tion are the ISDA master agreement and the Credit Support Annex (CSA). Master
agreements are proposed and defined by the International Swaps and Derivatives
Association (ISDA), they provide the general terms applying to a certain type of
transactions; ISDA master agreements have three attached documents - the Sched-
ule, the Confirmation letter and, the most important, the CSA. The CSA establishes
the collateral characteristics and the margination rules; it can be considered as the
core document of the contract. In Europe, the market practice is represented by
the UK CSA with the transferral of the property of the collateral to the creditor
from the debitor. In USA, the market practice is represented by the US CSA with
no transferral of the property of the collareral.

2. The alternative used by multiple counterparties when entering a secured contract
is the central clearing of the contract. Central clearing is operated by central coun-
terparties (CCPs) or clearing houses (CHs), which usually specialize in particular
market segments and market instruments, e.g. the most important CCPs for the
clearing of IRS and credit default swaps are the ones operated by Intercontinental
Exchange (ICE) in USA and UK. The role of a CCP is to centralise the OTC trans-
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actions and to reduce the counterparty risk borrowed by each single agent entering
the contract. Risk reduction is obtained by the CCP imposing participation con-
straints, providing a guarantee fund and asking for the posting of collateral into the
CCP’s account - an initial margin is posted at the beginning and a variation margin
is posted by the counterparty whenever the value of the daily marked-to-market po-
sition of any counterparty decreases. Furthermore, the CCP nets all the payments
between the counterparties, minimizing the liquidity needs - and the liquidity risk -
of counterparties involved in multiple payments.

As we have observed in Figure 1.5, the secured transactions represents the lion share in
the inter-bank money market. The predominance of secured transactions is mainly jus-
tified by three reasons: the individual preferences of market agents towards transactions
with limited counterparty risk, the market practice of entering into contracts regulated
by CSA agreements or by central clearing and, finally, the regulatory framework that was
built by national and international regulators after the financial crisis.
European Market Infrastructure Regulation (EMIR) represents one of the most consider-
able effort put bu the European regulator with the aim to reduce the systemic risk and
to improve the financial stability of European financial markets. The regulation imposes
mandatory risk management practices and disclosure requirements to financial counter-
parties, which have to adapt their operations to a set of common rules regarding OTC
derivatives, CCPs and trade repositories.
In order to provide an example, we now consider the EMIR collatereal requirements on
the derivatives’ transactions of the investment funds located in the Euro area. According
to the observations reported in the Financial Stability Review of May 2020, the notional
amount of the cumulated derivative exposures of investment funds was close to 13 EUR
trillion with interest rate derivatives, equity derivatives, and foreign exchange derivatives
accounting for almost 90% of the overall notional value; Figure 1.6 explains the compo-
sition of derivative portfolios for each class of mandate pursued by an investment fund.
The regulation introduced daily settlement of initial/variation margins for a large amount
of derivative portfolios. The effect, which can be observed in Figure 1.7, was an increase
of the collateralisation of derivative portfolios in the last year, in order to comply with
the deadlines set by the EMIR with the posting of initial and variation margin - also for
non central-cleared transactions.

The shift from unsecured to secured financial transactions after the financial crisis
led financial counterparties to another shift in their operations: from IBOR discounting
curve to OIS discounting curve. Indeed, as observed by Hull and White (2013), almost
every financial institutions entering into a collateralized transaction, notwithstanding it is
regulated by central clearing or by a bilateral ISDA master agreement, adopts OIS rates
as a proxy of the risk-free interest rates in order to evaluate their portfolios; vice versa,
IBOR rates are used by financial institutions when discounting the future value of their
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Figure 1.6: Derivative portfolios by fund strategy. Derivatives are measured in EUR
billions and they represent the size observed as of March 2020. Source: EMIR reporting
data, European Central Bank (2020).

Figure 1.7: Collateralisation of derivative portfolios of euro area investment funds. Data
are shown as percentages of the notional amount estimated at the end of the respective
quarter. Source: EMIR reporting data, European Central Bank (2020).
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uncollateralized portfolios.
These conclusions are implied by the assumption of no arbitrage. Indeed, the future cash
flows deriving from a collateralized transaction should be discounted using the same in-
terest rate of the funding rate which, in this case, is equal to the collateral rate. Being
the collateral posted as a cash amount or as a portfolio of very liquid and safe assets,
e.g. treasury bonds, the interest rate applied to the collateral is the risk-free one. On the
opposite side - by the same no arbitrage assumption, the future cash flows of uncollater-
alized contracts are discounted using the funding rate on the money market.
The differences between OIS and IBOR discounting are analyzed in Bianchetti and Car-
licchi (2013), which observe the differences of the premia paid over caps and floors when
discounted using the EONIA-based discount curve and the EURIBOR-based discount
curve: the premia computed using the EURIBOR curve imply an higher risk premia than
the premia obtained through EONIA discounting; the same relationship is obtained by
the authors when observing that the EONIA implied volatilities are systemically lower
than the EURIBOR implied volatilities.

Summing up, in this chapter we observed the sources accompanying pricing frame-
works in financial markets from a single curve world to a multiple curve world: the pres-
ence of risky interest rates leading to multiple yield curves used to evaluate future cash
flows and - depending on the collateralization of the contract - the presence of different
discounting curves.
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Chapter 2

Pricing derivatives with the multiple
curve framework

Interest rate derivatives pricing in the multiple curve framework is adopted by practition-
ers when market quotes are not available because of the complexity of the derivative’s
structure they need to price. These kind of interest rate derivatives are commonly called
exotic derivatives and their payoffs depend on multiple segments of the term structure
- e.g. Bermudan swaptions depend on as many swap rates as there are exercise dates;
on the opposite side, less complex or vanilla interest rate derivatives depend only on one
or two rates in the term structure - e.g. cap and floor options are commonly priced as
portfolios of caplets and floorlets, and each single payment depends only on a single rate.
The procedure a quantitative analyst should follow in order to price an exotic interest
rate derivative can be generalized in the following steps:

1. Bootstrapping a single discount curve, multiple yield curves and multiple volatility
cubes1 using linear financial instruments and vanilla options;

2. Assume a specific model to evaluate an interest rate process - for example, selecting
the Hull-White model to describe the short rate;

3. Select a vanilla interest rate derivative which can be priced assuming no arbitrage
and whose prices are quoted by data providers - for example, cap and floor options
can be priced using the Black formula and treating them as portfolios of caplets and
floorlets;

1Volatility cubes are matrices whose dimensions are given by date, tenor and volatility. The volatility
cube is usually interpolated from volatilities quotes through a bootstrapping algorithm. For example,
caps/floors volatility cubes are normally quoted by data providers and they are usually represented as
a matrix - like the one we provided in Table 4.1, representing a simplified version whose dimensions are
given only by the expiry and the strike value.
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4. Calibrate - using an appropriate calibration algorithm - the chosen model using the
quotes of the financial instruments we have selected in the previous step;

5. Price exotic interest rate derivatives using the calibrated model and a Monte Carlo
simulation;

6. Build an hedging strategy deriving the Greeks and using a set of linear financial
instruments as hedging instruments.

This chapter can be considered as the general framework in which the analysis and the
study we develop in Chapter 3 and Chapter 4 can be contextualized. Our goal is not to
build a comprehensive pricing tool for exotic options, implementing all the different steps
we listed above. Conversely, we limit ourselves to the implementation of a calibration
algorithm in Chapter 4, estimating the parameters of the Hull-White model using the
quoted volatilities of cap options. Therefore, we discuss in the first section of this chapter
the principal bootstrapping procedures of the discount curve and of the yield curves. The
key steps of term structure modelling - points from 2. to 4. - are presented in the second
section, discussing the multiple curve extension of short rate models and focusing on the
Hull-White version of the Vasicek short rate model. In the third and last section we
shortly discuss Monte Carlo simulation for short rate models.

2.1 Yield curves construction

2.1.1 Bootstrapping formulas

According to Grbac and Runggaldier (2015) and Henrard (2014) there exist two dis-
tinct methods of constructing multiple yield curves starting from market quotes: the first
method is the exact fit, where yield curves are retrieved applying bootstrapping and inter-
polation to a set of linear financial instruments; the second method is the best fit, where
the yield curves are assumed to have a precise form, e.g. Nelson-Siegel formula or Svens-
son formula, whose parameters are later calibrated from market data. As the section’s
title makes clear, we discuss only the first method.
Before diving in the bootstrapping formulas, the selection of financial instruments must
be done according to two principles: homogeneity and funding, which make bootstrapping
consistent with the IBOR curves’ segmentation involved by the multiple curve framework.
These general principles can be found both in Ametrano and Bianchetti (2013) and in
Henrard (2014). The homogeneity rule requires that the linear financial instruments used
to bootstrap the yield curves must have the same rate tenor of the interest rate deriva-
tives which are priced using the bootstrapped yield curves; the same applies for the linear
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financial instruments used to hedge interest rate derivatives. The funding rule requires
that the discounting curve must be derived by an interest rate which is consistent with
the interest rate payed over the funding account; this relationship satisfies the principle
of no-arbitrage.
The recursive procedure underlying the bootstrapping of financial instruments radically
changed with respect to the one based on the single curve framework we have described
in Chapter 1. The presence of multiple yield curves and of a single discount curve leads to
the development of a new approach when dealing with vanilla financial instruments; this
approach is best described by Ametrano and Bianchetti (2013), representing, together
with Andersen and Piterbarg (2010), the principal reference we have considered for this
section.
The multiple curve framework requires the adoption of several yield curves ymtn, depend-
ing on the m-fundamental variable of the term structure and on the different tenor
tn of the interest rate. In our analysis we consider the fundamental variables m =

Ptn(t, T ), FRA(t, Ti, K). We then contemplate yield curves derived by zero coupon bonds
Ptn(t, T ) paying an interest rate with tenor tn and yield curves derived by FRA rates
RFRA,mkt
tn (t, T + tn), which are derived by zero coupon bonds with tenor tn2. The most

common tenors are tn = {overnight, 1M, 3M, 6M, 12M}.
Ametrano and Bianchetti (2013) define the yield curves for t < T

yFRAtn (t) := {T −→ Ftn(t, T, T + tn)}, (2.1)

yPtn(t) := {Ti −→ Ptn(t, T )}, (2.2)

Bootstrapping requires we carefully handle all the specific instruments used to build a
particular section of the term structure. The complexity of bootstrapping instruments
selection arises from the observation that similar market instruments could present very
different prices depending on their underlying. Moreover, they could present a different
market liquidity, making their quotes less informative.
These features, together with the respect of the homogeneity and the funding principles,
require that we carefully select which instruments we should include when bootstrapping
points of the curve at a given maturity. Furthermore, we should consider that many
instruments overlap in many section of the term structure: these overlaps could affect
the quality of the bootstrapped curve, since the vector of dates of the term structure -
the bootstrapping pillars of the term structure - coincides with the time schedule of the
selected instruments.
When approaching yield curve bootstrapping, a practitioner should consider that the
resulting bootstrapped curve is characterised by several features. Indeed, the main char-
acteristics of a yield curve are:

2Remember from equation (1.30) that RFRA,mkt
tn (t, T + tn) = F (t, T, T + tn).
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1. the ZCB’s rate conventions - the day count convention in European financial markets
equals the year fraction of the rate process to actual

365
;

2. the FRA rate conventions - the day count convention in European financial markets
equals the year fraction of the rate process to actual

360
;

3. the reference date t of the the yield curve, such that P (t, t) = 1. The reference date
in European markets is equal to the spot date, which is fixed two business days after
today;

4. time pillars, determining which points of the yield curve are obtained through boot-
strapping and which other are obtained through interpolation;

5. the currency;

6. the business calendar - TARGET2 calendar is adopted in European financial mar-
kets;

7. type of interpolation, see Subsection 2.1.2;

8. the choice between endogenous or exogenous discount curves.

One of the most subtle issues among those we have just listed regards the difference
between endogenous and exogenous bootstrapping. Endogenous bootstrapping is coherent
with the assumptions of the single curve framework and it consists in discounting a general
yield curve ymtn using the yield curve of zero coupon bonds, yPtn; on the opposite, exogenous
bootstrapping is consistent with the funding principle of the multiple curve framework
and it requires that the discount factors are taken from an a priori given yield curve yPd ,
which is consistent with the yield curve of the collateral. This issue is discussed both
in Ametrano and Bianchetti (2013) and in Henrard (2014). They both conclude that -
using Henrard (2014) words - endogenous bootstrapping is the "wrong number used in
the wrong formula to obtain the correct result". Indeed, notwithstanding endogenous
bootstrapping is not consistent with the new pricing framework and it leads to important
deviations of the prices and hedging strategies of interest rate derivatives, it is still a
good option to get the right market prices of bootstrapped linear financial instruments,
e.g. FRA and IRS. Endogenous bootstrapping is discussed later in this chapter, when
presenting the pseudo bonds used for discounting in Section 2.2.
Finally, yield curves are built using different type of bootstrapping instruments, which
are selected after considering for probable overlaps in some sections of the term structure
and trying to exclude the majority of overlapping financial instruments. Furthermore,
practitioners should consider instruments which are as liquid as possible, because their
quotations are more reliable. The construction of a yield curve over the time interval
from today to a long term maturity, e.g. 30 years, is also considered when selecting
bootstrapping instruments.
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In the following paragraphs, the bootstrapping formulas related to the most popular
bootstrapping instruments are presented.

Deposits

In Chapter 1 we defined the present value of an OTC traded Deposit as equation (1.28).
Exchange traded deposits are normally selected to build the short-term section of the
yield curves ymtn. Indeed, the first pillar of the FRA curve (2.1) is directly obtained from
the market rate Rdepo

tn (t, Ti) = L(t, Ti), which refer to a set of i-deposits with maturity
Ti and tenor tn = Ti − t. The reader should note that, with respect to equation (1.28),
we added the subscript tn to the deposit and to the depo rate, in order to account for
the different tenors of the considered interest rates. Indeed, a deposit paying IBOR rate
with a long tenor bears a greater amount of risk than deposit paying an IBOR rate with
a shorter tenor.
The pillars at time t < Ti of the discount curve (2.2) are extracted from

Ptn(t, Ti) =
1

1 +Rdepo
tn (t, Ti)τi

(2.3)

where the variable τi indicates the time partition.

FRA

Market FRAs are used to bootstrap the short-term section of the yield curves ymtn. The
pillars of the curve yFRAtn for t < Ti are directly obtained using the market FRA rates
RFRA,mkt
tn (t, Ti). The pillars of the discount curve yPtn for t < Ti are obtained applying a

bootstrapping algorithm based on

Ptn(t, Ti) =
Ptn(t, Ti−1)

1 +RFRA,mkt
tn (t, Ti)τi

. (2.4)

The limit of the market FRA rate for Ti−1 going to t is equal to the interest rate of the
exchange traded deposit

lim
Ti−1→t

RFRA,mkt
tn (t, Ti) = Rdepo

tn (t, Ti). (2.5)

Futures

Market future, Futures(t, Ti), can be used to build the pillars of the FRA curve yFRAtn for
t < Ti. The pillars of the FRA curve are directly obtained modifying equation (1.36) and
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they are equal to

Ftn(t, Ti−1, Ti) = RFutures
tn (t, Ti)− CFutures

tn (t, T ei ) (2.6)

where T ei is the expiry date of the contract and CFutures is the convexity adjustment term.
The expiry date T ei is defined such that the settlement lag is equal to the time interval
between the fixing date and the expiry date.
On the other side, the pillars of the discount curve yPtn for t < Ti are obtained applying a
recursive algorithm based on

Ptn(t, Ti) =
Ptn(t, Ti−1)

1 + [RFutures
tn (t, Ti)− CFutures

tn (t, T ei )]τi
(2.7)

where τi represents the year fraction occurring between the expiry date T ei and Ti.

IRS

IRS contracts are used to bootstrap the long-term section of the yield curves. The fixed leg
of the IRS is paid annually and it follows the payment schedule S = {s, ..., Sj}, while the
floating leg follows the calendar of the underlying IBOR rate and, therefore, its payment
schedule is T = {t, ..., Ti}. We refer to the notation introduced in Section 2.1.1. The
pillars of the discount curve yPtn and the pillars of the FRA curve yFRAtn when Ti = Sj are
respectively obtained applying the bootstrapping algorithms

Ftn(t, Ti−1, Ti) =
RIRS
tn (t, Ti)Ad(t, Ti)−

∑i−1
α=1 Pd(t, Tα)Ftn(t, Tα−1, Tα)τi

Pd(t, Ti)τi
(2.8)

Ptn(t, Ti) =
Pd(t, Ti)Ptn(t, Ti−1)

RIRS
tn (t, Ti)Ad(t, Ti)−

∑i−1
α=1 Pd(t, Tα)Ftn(t, Tα−1, Tα)τi + Pd(t, Ti)

(2.9)

where

Ad(t, Ti) =
i∑

α=1

Pd(t, Tα)τi = Ad(t, Ti−1) + Pd(t, Ti)τi. (2.10)

If the fixed schedule S and the floating schedule T are equal, the above equations reduce
to

Ftn(t, Ti−1, Ti) =
RIRS
tn (t, Ti)Ad(t, Ti)−RIRS

tn (t, Ti−1)Ad(t, Ti−1)

Pd(t, Ti)τi
(2.11)

Ptn(t, Ti) =
Pd(t, Ti)Ptn(t, Ti−1)

RIRS
tn (t, Ti)Ad(t, Ti)−RIRS

tn (t, Ti−1)Ad(t, Ti−1) + Pd(t, Ti)
. (2.12)
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OIS

As already mentioned at the end of Chapter 1, OIS contracts are used to bootstrap the
discount curve. Indeed, the collateral rate used for collateralised financial instruments is
the overnight rate underlying OIS contracts and, according to the funding principle we
have previously outlined, this rate must be consistent with the one used for discounting.
The FRA curve, whose tenor, tn, is overnight and whose time fraction τ is equal to 1 day,
is obtained as

Fc(t, Ti−1, Ti) =
1

τi

{
Pc(t, Ti−1)

[
1 +ROIS

tn (t, Ti)τi
][

ROIS
tn (t, Ti−1)−ROIS

tn (t, Ti)
]
Ac(t, Ti−1) + Pc(t, Ti−1)

− 1

}
, (2.13)

and the discount curve is obtained as

Pc(t, Ti) =

[
ROIS
tn (t, Ti−1)−ROIS

tn (t, Ti)]Ac(t, Ti) + Pc(t, Ti−1)

1 +ROIS
tn (t, Ti)τi

, (2.14)

where the subscript c refers to the fact that the rate of the collateral is used as the rate
of the discounting curve and the annuity term Ac(t, Ti) is defined in equation (1.38).
Ametrano and Bianchetti (2013) provide also the single curve version of equations (2.13)
and (2.14), which can then be represented as

Fc(t, Ti−1, Ti) =
1

τi

{
Pc(t, Ti−1)

[
1 +ROIS

tn (t, Ti−1)τi
]

1−ROIS
tn (t, Ti)Ac(t, Ti−1)

− 1

}
, (2.15)

Pc(t, Ti) =
1−ROIS

tn (t, Ti)Ac(t, Ti)

1 +ROIS
tn (t, Ti)τi

. (2.16)

Basis swaps

Basis swaps are used to bootstrap the long-term section of the yield curves. Basis swaps
are used in the multiple curve framework to retrieve IRS on multiple underlying IBOR
tenor (e.g. 1M, 3M, 12M), starting from a different IBOR tenor (e.g. 6M).
Therefore, we can extrapolate the IRS rate on a given tenor, tn, from a basis swap
receiving IBOR with tenor tn and paying IBOR 6M

RIRS
tn (t,T,S) = RIRS

6M (t,T,S) + ∆(t,Ttn,T6M,S) (2.17)

where the quoted basis spread ∆(t,Ttn,T6M,S) for an interest rate basis swap with the
two aforementioned swaps as underlying satisfies the following equation

∆(t,Ttn,T6M,S) = −∆(t,T6M,Ttn,S). (2.18)
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2.1.2 Interpolation

The financial instruments we have listed in the previous section are used to build the
pillars of a discrete yield curve. However, if we want to build a continuous curve for a
period longer than two years3, we need more informations to fill the empty areas between
the nodes we have retrieved with the bootstrapping procedures illustrated before. The
technique of completing the missing values of the yield curve is called interpolation. In
this section we provide a review of the most considered local and global interpolation
methods, underlining their strengths and their critical issues.
Interpolation must be handled with care because, depending on the technique we decide
to apply, a wrongly-interpolated curve could lead to slightly different economic interpre-
tations or it could lead to sub-optimal hedging strategies after having computed imprecise
risk factors (i.e. sensitivities) over some portions of the interpolated curve. This subsec-
tion refers extensively to the analysis developed in Chapter 5 of Kienitz (2014).

Constant interpolation

Constant interpolation is the most simple method. The constant interpolation can be
obtained equalling the missing values to the closest node on the left or, alternatively, to
the closest node on the right. However, we observe from Figure 2.1 that the resulting
curve is not continuous and, therefore, we can say that constant interpolation doesn’t
represent a reasonable approach.

Linear interpolation

Linear interpolation is a simple method too. The yield curve at time t, yt, is obtained
applying the straightforward formula

yt =
t− ti−1

ti − ti−1

xi +
ti − t
ti − ti−1

xi−1

where xi and xi−1 are the values of the nodes for ti−1 ≤ t ≤ ti. We observe from Figure
2.1 that the yield curve is continuous but not globally differentiable. A broad review of
the most common linear interpolators can be found in Hagan and West (2006), which
focus their analysis on linear and cubic spline methods.

3Henrard (2014) states that for period longer than two years there is quite often only one yearly
observation for a specific yield curve and, consequently, there are as many missing values as the number
of business days.
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Figure 2.1: Different interpolation methods applied to an hypothetical yield curve. We
apply the interpolation methods of the Matlab function interp1 to an hypothetical yield
curve. The pchip method refers to shape-preserving piecewise cubic interpolation. The
makima method refers to a modified Akima cubic Hermite interpolation and it is modified
to avoid outliers. The spline method refers to a spline interpolation using not-a-knot end
conditions.

Cubic spline interpolation

The spline interpolation returns us a continuous and differentiable yield curve. It is
obtained applying the function

yt = ai(t− ti)3 + bi(t− ti)2 + ci(t− ti) + di. (2.19)

The equation has 4(n − 1) unknown parameters, where n is the number of interpolated
time pillars. The equation has also the following constraints: n− 1 left interval bounds,
n − 1 right interval bounds, n − 2 constraints given by the differentiability assumption
and additional constraints on the partial derivatives of the curve with respect to time.
Therefore, when we choose the values of the partial derivatives of the curve we are also
choosing the slope of the interpolated curve. We now provide a series of methods - as they
are listed in Kienitz (2014) - fixing additional n constraints to fully assess the functional
dependence.

1. Together with n − 2 differentiability constraints, we postulate equal to zero the
second partial derivatives of the curve with respect to time when time is equal to t1
and tn. This interpolation method is called natural cubic spline;

2. Together with n−2 differentiability constraints, we apply linear interpolation to the
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nodes between t0 and t1 and we apply constant interpolation to the nodes between
tn−1 and tn;

3. Together with n−2 differentiability constraints, we apply quadratic interpolation to
the nodes between t0 and t1 and we apply linear interpolation to the nodes between
tn−1 and tn. This is the McCulloch-Kochin spline interpolator;

4. Together with n − 2 differentiability constraints, we choose the parameters c1 and
cN , which represent respectively the slope of the quadratic function passing through
the first three points and the slope of the function passing through last three nodes.
This is the deBoor spline interpolator;

The different cubic spline interpolation methods could distinctly affect the quality and
the behavior of the interpolated curve. Indeed, the simple splines we have introduced
in this subsection show sometimes oscillatory behavior, other times they do not lead to
a monotonic behavior, or, since we use nodes from different intervals, these methods
could lead extreme convexity and lack of locality. Locality is an important property to
consider when evaluating different interpolation methods: a curve is interpolated with a
local method if the effect of a change of its underlying rate is observed only in a time
interval which is as close as possible to the time of the interest rate’s shift; indeed, an
interpolation method is local if it "takes into account the data in that region, and not the
data some distance away" (Hagan and West (2006)). Lack of locality could negatively
affect the assessment of the risk factors over the interpolated curve.
Another considerable issue is related to the fact that the bootstrapping procedures require
the interpolation of unknown values inside the bootstrapping mechanism itself: indeed,
when dealing with different financial instruments with different time schedules, it is quite
unusual - if not impossible - that the bootstrapped rates up to a given time exactly
match the schedule of the inputs which are necessary to compute the rates from then on.
Ametrano and Bianchetti (2013) address three main vulnerabilities of applying non-local
interpolation techniques inside the bootstrapping algorithm. The first issue is that the
shape of the early sections of the yield curve continuously change while adding other nodes
to the bootstrapped yield curve. The second problem is related to imprecise deltas, whose
effect overcomes the node upon which the hedging ratio is calculated. Finally, they observe
a lower computational performance of the bootstrapping algorithm and, consequently, a
smaller efficiency of the computed hedging ratios.
In the next subsections we introduce some alternatives which have been proposed to
overcome those critical issues.

44



Hermite splines

Hermite splines try to solve the locality problem setting the parameters of equation (2.19)
as

ai−1 =
−2xi−xi−1

ti−ti−1
− si − si−1

(ti − ti−1)2
,

bi−1 =
3xi−xi−1

ti−ti−1
− si − 2si−1

ti − ti−1

,

ci−1 = si−1 and di−1 = xi−1,

where the parameter si can be freely chosen by the analyst.

Bessel splines

Bessel splines are obtained imposing the following shape to the parameter si

si−1 =
(ti − ti−1)xi−xi−1

ti−ti−1
+ (ti − ti−1)xi−1−xi−2

ti−1−ti−2

ti − ti−1

We refer to Kienitz (2014) for further improvements of Bessel splines by considering
different formulations of the parameter si. Bessel splines make interpolation as local as
possible.

Harmonic splines

Harmonic splines are obtained imposing the following formulation to the parameter si

1

si−1

=

[
ti−1 − ti−2 + 2(ti − ti−1)

]
(ti−1 − ti−2)

3(ti − ti−2)(xi−1 − xi−2)
+

[
2(ti−1 − ti) + ti − ti−1

]
(ti − ti−1)

3(ti − ti−2)(xi − xi−1)

Harmonic splines consistently limit the problem of non-locality of interpolation.

Kruger splines

The interpolated curve resulting from Kruger splines is monotonic. The lack of mono-
tonicity is solved imposing the following constraints to the partial derivative of the curve
at each time ti

∂y(ti)

∂t
=


0 if slope changes after ti

2

(
ti+1−ti
xi+1−xi −

ti−ti−1

xi−xi+1

)−1

otherwise
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and the partial derivatives of the curve at time t1 and at time tn are set to be respectively
equal to

∂y(t1)

∂t
=

3(x2 − x1)

2(t2 − t1)
− y(t2)

2
and

∂y(tn)

∂t
=

3(xn − xn−1)

2(tn − tn−1)
− y(tn)

2
.

Tension splines

Tension splines are useful to limit non-locality problems of interpolated curves. Tension
splines are determined by additional n constraints on the second partial derivative of the
curve

∂2y(t)

∂t2
=

ti+1 − t
ti+1 − ti

(
∂2y(ti)

∂t2
− σ2y(ti)

)
+

t− ti
ti+1 − ti

(
∂2y(ti+1)

∂t2
− σ2y(ti+1)

)
+ σ2y(t)

where σ is the tension parameter which is used to localize the tension spline. A broad
review about tension splines can be found in Andersen (2007), but, according to Henrard
(2014), the interpolation framework proposed by the author should be handled with care,
since it is not suitable for the multiple curve framework.

Effects of interpolation on hedging strategies

When dealing with options modelling in Chapter 4, we don’t consider hedging strate-
gies. However, we believe it is useful to introduce the effects that different interpolation
techniques could have on hedging; and we address this issue by referring to the results
reported by Henrard (2014). Before going on, we should remember that, when computing
hedging ratios, only the interest rate’s level and the chosen interpolator method affect the
sensitivities: indeed, the market price of a single financial instruments used to determine
a single node of the interpolated curve does not affect the prices of the other instruments
in the calibrating basket.
Henrard (2014) computes the hedging ratios for a forward swap starting in 18 months and
with a maturity of 7 years and 6 months. The hedging strategies are obtained as a ratio
between the delta of the forward swap at each node and the delta of the financial instru-
ent used to calibrate that node. The author reports huge differences between the deltas
computed in different interpolation schemes, accounting for differences between different
sensitivities for a single node up to 30%. The divergences between deltas under different
interpolation schemes lead to contrasting hedging strategies. Considering a forward swap
with a notional amount of 100 million USD, the linear interpolation requires hedging spot
instruments with a notional amount of 200 million, the cubic spline technique requires
530 million and the double quadratic technique requires 330 million.
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2.2 Short rate models in the multiple curve framework

Term structure modelling is one of the most important step of the pricing mechanism de-
scribed at the beginning of this chapter. In this section, we discuss only short rate models
for the term structure in the multiple curve framework. We focus on exponentially affine
factor models, avoiding to consider for exponentially quadratic models. We discuss only
this specific class of term structure models because it is preparatory to the construction
of the calibration algorithm for the Hull-White model we describe in the second part of
this dissertation.
One of the most complete analysis of short rate models in the multiple curve framework
is the one provided in Chapter 2 of Grbac and Runggaldier (2015), which emphasize the
study of Vasicek and Hull-White models.
The exponentially affine models discussed by Grbac and Runggaldier (2015) show cor-
relation between the short rate and the spread payed over different tenors. The three
elements to be considered to understand the framework developed by the two authors are
the short rate r(t), the spread stn(t) for each tenor tn and the difference ∆(t) between
two consecutive spreads, e.g. ∆(t) = s2(t) − s1(t) for tn = 1, 2. In order to simplify the
presentation, Grbac and Runggaldier (2015) consider just two tenors.

The framework developed by Grbac and Runggaldier (2015) is built on the as-
sumption that the short rate r(t), the spread stn(t) and the spread difference ∆(t) are
driven by different factors ψi(t) with i = 1, 2, 3, 4. The processes of the factors under the
risk neutral probability measure Q can be specified as

dψi(t) =
(
ai − biψi(t)

)
dt+ σi

√
ciψi(t) + didW

Q
i (t). (2.20)

Each i-factor is independent of the others because its Brownian motionWQ
i (t) is indepen-

dent of the other random motions. The first factor drives the short rate, the rate spread
and the difference between spreads; the authors consider for the correlations between the
short rate and the spreads and between the short rate and the spread difference adding a
multiplicative factor ρ to the dynamics of the three objects. Furthermore, the other three
factors are considered to be specific of each process they appear in. We can describe the
three processes as

r(t) = ψ1(t) + ψ2(t)

s(t) = ρsψ1(t) + ψ3(t)

∆(t) = ρ∆ψ1(t) + ψ4(t)

(2.21)

where the first factor is described by equation (2.20) with c1 = 0 and d1 = 1

dψ1(t) =
(
a1 − b1ψ1(t)

)
dt+ σ1dW

Q
1 (t) (2.22)

while the other factors are described by equation (2.20).
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There are several ways to improve the capacity of the processes to fit the original term
structure. Indeed, parameters ai can be modified to be time varying parameters rather
than constant parameters. This choice ascribes additional complexity to the analytical
and computational treatments. Another strategy to improve the term structure fit is the
construction of a different formulation for r(t)

r(t) = ψ1(t) + ψ2(t) + φ(t)

where φ(t) represents a time deterministic shift. Using time varying ai parameters in the
equation representing a mean-reverting process, (2.22), yields the Hull-White model.

2.2.1 The affine model class: Vasicek and CIR models

According to Grbac and Runggaldier (2015), the process ψ(t) can be modelled using a
Vasicek representation assuming that the parameters in equation (2.20) take the form
ci = 0 and di = 1.

dψ(t) =
(
a− bψ(t)

)
dt+ σdWQ(t). (2.23)

The authors studied the term structure equation starting from a transformation of the
factor ψ(t) and considering two additional parameters γ and K. The transformation of
ψ(t) can be represented as a conditional expectation on the sigma-algebra F(t)

E

{
exp

[
−
∫ T

t

γψ(s)ds−Kψ(T )

]∣∣∣∣F(t)

}
= exp

[
A(t, T )−B(t, T )ψ(t)

]
. (2.24)

The terms A(t, T ) and B(t, T ) satisfy the system
∂B(t,T )
∂t
− bB(t, T ) + γ = 0

∂A(t,T )
∂t

= aB(t, T )− σ2

2
B2(t, T )

(2.25)

where A(T, T ) = 0 and B(T, T ) = K and the solutions solving the system are

B(t, T ) = K exp
(
− b(T − t)

)
− γ

b

[
exp

(
− b(T − t)

)
− 1

]
A(t, T ) = −a

∫ T

t

B(s, T )ds+
σ2

2

∫ T

t

B2(s, T )ds

= −a

[
1− exp

(
− b(T − t)

)
b

(
K − γ

b

)
+
γ

b
(T − t)

]

+
σ2

2

[
1− exp

(
− 2b(T − t)

)
2b

(
K2 +

γ2

b2
− 2K

γ

b

)

+
γ2

b2
(T − t)− 2

(
1− γ

b
K

)
1− exp

(
− b(T − t)

)
b

]
.

(2.26)
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A proof of the Vasicek model can be found in Chapter 3 where we present the single factor
version of the model.

The Cox-Ingersoll-Ross version of the Vasicek model is obtained substituting for
ci = 1 and di = 0 in factors’ equations (2.21) and, omitting the i-subscript to generalize,
we obtain that

dψ(t) =
(
a− bψ(t)

)
dt+ σ

√
ψ(t)dWQ(t). (2.27)

Furthermore, the values of A(t, T ) and B(t, T ) in the expected value of equation (2.24)
conditional on the sigma-algebra F(t) become

∂B(t,T )
∂t
− bB(t, T )− σ2

2
B2(t, T ) + γ = 0

∂A(t,T )
∂t

= aB(t, T )
(2.28)

with B(T, T ) = K and A(T, T ) = 0 and the solution solving the system are provided by
Grbac and Runggaldier (2015)

B(t, T ) =
K
(
h+ b+ exp

(
h(T − t)

)
(h− b)

)
+ 2γ

(
exp

(
h(T − t)

)
− 1
)

Kσ2
(

exp
(
h(T − t)

)
− 1
)

+ h− b+ exp
(
h(T − t)

)
(h+ b)

A(t, T ) =
2a

σ2
log

(
2h exp

( (T−t)(h+b)
2

)
Kσ2

(
exp

(
h(T − t)

)
− 1
)

+ h− b+ exp
(
h(T − t)

)
(h+ b)

) (2.29)

where h =
√
b2 + 2γσ2. Finally, the authors found that the price of an OIS bond can be

represented - for γ = 1 and K = 0 - as

P (t, T ) = EQ
{

exp

[
−
∫ T

t

(
ψ1(u) + ψ2(u)

)
du

]∣∣∣∣F(t)

}
= exp

[
A1(t, T ) + A2(t, T )−B1(t, T )ψ1(t)−B2(t, T )ψ2(t)

]
.

Example: a three factors framework

Grbac and Runggaldier (2015) provided also a framework with three factors. The pro-
cesses of the factors under the risk neutral probability Q are

dψ1(t) = (a1 − b1ψ1(t))dt+ σ1dW
Q
1 (t)

dψi(t) = (ai − biψi(t))dt+ σi
√
ciψi(t) + didW

Q
i (t), i = 2, 3.

(2.30)
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Furthermore, the processes of the factors under the T -forward measure QT are

dψ1(t) =
(
a1 −

(
σ1

)2
B1(t, T )− b1ψ1(t)

)
dt+ σ1dW

QT
1 (t)

dψ2(t) =
(
a2 − d2σ

2
2B2(t, T )− ψ2(t)

(
b2 + c2σ

2
2B2(t, T )

))
dt+ σ2

√
c2ψ2(t) + d2dW

QT
2 (t)

dψ3(t) =
(
a3 − b3ψ3(t)

)
dt+ σ3

√
c3ψ3(t) + d3dW

QT
3 (t)

(2.31)
where the WQT

i Brownian motions with i = 1, 2, 3 are mutually independent and the
functions B1(t, T ) and B2(t, T ) are given by

B1(t, T ) = −1

b

[
exp

(
− b(T − t)

)
− 1
]

B2(t, T ) =
2
[

exp
(
h(T − t)

)
− 1
]

h− b+ (h+ b) exp
(
h(T − t)

)
with h :=

√
b2 + 2σ2. The proof is provided in Section 2.1.2 of Grbac and Runggaldier

(2015).
The probability distribution of the process of the first factor under the T -forward measure
QT is Normal with mean µψ1 and variance σψ1 which are respectively given by

µψ1 = exp(−b1t)

(
ψ1(0) +

(a1

b1

− σ2
1

b2
1

)(
exp(b1t− 1)

)
+
σ2

1

2b2
1

exp(−b1T )
(

exp(2b1t)− 1
))

σψ1 =
σ2

1

2b1

(
exp(2b1t)− 1

)
exp(−2b1t).

Conversely, the distribution of the processes of the other two factors follow different dis-
tributions depending on the values of the parameter ci and di for i = 2, 3 in equation
(2.30). Indeed, for ci = 1 and di = 0 the processes follow a Noncentral chi-squared distri-
bution under the T -forward measure QT with k degrees of freedom and the a parameter
λ. Conversely, for ci = 0 and di = 1 the processes have a Normal distribution.

2.2.2 Formulation of the IBOR rate after the crisis

As introduced in Chapter 1, after the credit crunch unleashed by the financial crisis of 2007
the IBOR rates L(T, S) for S > T were determined also by counterparty and liquidity
risk, such that the spread between IBOR and OIS rates became not negligible anymore

L(T, S) 6= F (T, T, S) =
1

S − T

( 1

P (T, S)
− 1
)
. (2.32)

The approach developed by Henrard (2014) is to use "pseudo-discount factors" derived
by pseudo bond P ∗(t, T ) which are not traded in public markets and are supposed to be
affected by the same risks determining the IBOR rates. Therefore, the IBOR rate can be
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represented as

L(T, S) =
1

S − T

( 1

P ∗(T, S)
− 1
)
. (2.33)

The expected value of the pseudo bond price P ∗(t, T ) conditional on the sigma-algebra
F(t) under the risk neutral probability measure Q is given by the short rate process r(t)
and by a spread process s(t) incorporating the risks borne by interbank transactions

P ∗(t, T ) = EQ
[

exp

(
−
∫ T

t

(
ru + su

)
du

)∣∣∣∣F(t)

]
. (2.34)

Grbac and Runggaldier (2015) used a variation of the model presented in (2.21) to obtain
a representation of P ∗(t, T ) and of prices of interest rate derivatives. They assume that
the short rate and the spread are respectively described by

r(t) = ψ1(t) + ψ2(t)

s(t) = ρψ1(t) + ψ3(t)
(2.35)

where the coefficient ρ measures the intensity of the correlation between factor ψ1(t) and
factor ψ2(t). Furthermore, the authors assume that the processes of factor ψ1(t) has the
same form of (2.22) and factors ψ2(t) and ψ3(t) have the same form of (2.20) with ci = 0.
Therefore, the three factors follow mean-reverting Vasicek-like dynamics under the risk
neutral probability Q

dψ1(t) =
(
a1 − b1ψ1(t)

)
dt+ σ1dW

Q
1 (t)

dψ2(t) =
(
a2 − b2ψ2(t)

)
dt+ σ2dW

Q
2 (t)

dψ3(t) =
(
a3 − b3ψ3(t)

)
dt+ σ3dW

Q
3 (t)

(2.36)

Grbac and Runggaldier (2015) obtain that the price of a zero coupon bond on the OIS
rate can be described as

P (t, T ) = exp
(
A(t, T )−B1(t, T )ψ1(t)−B2(t, T )ψ2(t)

)
(2.37)

while the pseudo bond can be described as

P ∗(t, T ) = exp
(
A∗(t, T )−B1(t, T )ψ1(t)−B2(t, T )ψ2(t)−B∗3(t, T )ψ3(t)− ρB1(t, T )ψ1(t)

)
= P (t, T ) exp

(
A∗(t, T )− A(t, T )− ρB1(t, T )ψ1(t)−B∗3(t, T )ψ3(t)

)
(2.38)

where the terms A(t, T ), A∗(t, T ) and Bi(t, T ) for i = 1, 2, 3 are given by (2.26). The above
formulation allows for the definition of the price of the pseudo bond P ∗(t, T ) in terms of
the OIS zero coupon bond P (t, T ), providing the theoretical foundations to develop an
adjustment factor which accounts for the prices’ shift after the financial crisis.
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Finally, the authors provide the representation of the forward IBOR rate

L(t, T, S) =
1

S − T

[
exp

(
A(t, S)− A∗(t, S) + ρB1(t, S)ψ1(t) +B3(t, S)ψ3(t)

)
P (t, S)

− 1

]

The short rate models described in this section are used by practitioners to assume
that the investigated stochastic variable, i.e. the short rate, can be described by one given
model. The assessment of the parameters of the model is done applying the appropriate
calibration algorithm to a basket of calibration instruments whose prices and volatilities
are quoted in the market. The calibrated parameters are then used to price more complex
interest rate derivatives using Monte Carlo simulation to estimate future payments of the
exotic derivative. In the following section we briefly discuss the functioning of Monte
Carlo simulation.

2.3 Monte Carlo simulation for short rate models

Monte Carlo simulations and their practical application have been extensively discussed:
indeed, Section 3.9.4 and Section 3.11.2 of Brigo and Mercurio (2006) provide several
solutions to approach the Monte Carlo simulation of the prices of swaptions and Bermudan
swaptions, while Chapter 7 and Chapter 8 of Kienitz and Wetterau (2012) and Appendix
A of Caspers and Kienitz (2017) provide a more general framework. Moreover, we refer
to Tebaldi and Veronesi (2016) for the numerical representation of the Vasicek and CIR
models: the models are first represented as discretizations of the corresponding continuous
processes and they are used to effectively sample the short rates. Tebaldi and Veronesi
(2016) also provide a Monte Carlo simulation for the evaluation of callable bonds and,
more generally, of American options.
Monte Carlo simulation is based on the evolution governing the stochastic processes we
are interested in. The key idea underlying the Monte Carlo simulation is that we can
repeat several times a random experiment in order to evaluate risky events, e.g. future
payments. Indeed, the future payoffs of a financial instrument are assumed to be governed
by a path or a scheme, returning the simulated payoffs. The estimated payoffs are then
discounted and averaged to obtain the price of the interest rate derivative. Usually,
practitioners simulate payoffs under different Monte Carlo scenarios, leading them to as
many simulated prices as the number of different scenarios. The distribution of the prices
is then statistically evaluated, returning the mean price in the pre-selected confidence
interval.
We assume that the payoff of an interest rate derivative at time T is a function V (T, r(T ))

depending on time and on the short rate r(t). The present value of the payoff under the
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risk neutral measure Q is equal to

V (t) = EQ
[
−
∫ T

t

r(u)du× V (T, r(T ))

∣∣∣∣F(t)

]
,

requiring thus the Monte Carlo simulation of the short rates in the time interval [t, T ].
Under the T -forward measure QT the expected value becomes

V (t) = P (t, T )EQT
[
V (T, r(T ))|F(t)

]
,

requiring the simulation of the short rate at time T and the analytical formulation of the
zero coupon bond price P (t, T ). The logical structure of Monte Carlo simulation of the
derivative price under the T -forward measure can be summarized as:

1. Choose an appropriate T -forward measure such that t < Tn = T , where Tn is the
last date of the specified time grid for simulation T :=

{
T1, ..., Tn

}
with t < T1;

2. Create a recursive sequence of statements, normally called loop in computing lan-
guage, for each j Monte Carlo scenario with j = 1, ...,m

(a) use the selected short rate model under the T -forward measure QT to create a
sample of the underlying short rates with tenor tn

{
rjtn(T1), ..., rjtn(Tn)

}
and a

sample of the short rates used for discounting
{
rjd(T1), ..., rjd(Tn)

}
;

(b) simulate the pillars of the yield curve for each different date
{
T1, ..., Tn

}
;

(c) first compute the prices of zero coupon bonds

{
P j
tn(t, T1), P j

tn(t, T1 + tn), ..., P j
tn(t, Tn), P j

tn(t, Tn + tn)
}

and then compute the equivalent forward rates for i = 1, ..., n

F j
tn(t, Ti, Ti + tn) =

1

τ

[(
P j
tn(t, Ti + tn)

P j
tn(t, Ti)

)
− 1

]
;

(d) compute the prices of the zero coupon bonds used as discount factors

{
P j
d (t, T1), ..., P j

d (t, Tn)
}

;

(e) compute the future cash flows of the derivative
{
V j(T1), ..., V j(Tn)

}
;

3. Compute the final price as the average of the sum of the payoffs under each different
j-scenario

V (t) = Pd(t, T )

[
1

m

m∑
j=1

n∑
i=1

V j(Ti)

P j
d (Ti, T )

]
.

53



2.4 Three-factor model: a simulation

The goal of this Section is to exploit the multiple curve models developed by Grbac and
Runggaldier (2015) to build a simulation framework that enables us to analyse the future
evolution of interest rates. The framework is based on the decomposition of interest rates
in the risk-free component and in the spread component. Indeed, the simulation is used to
describe the relationship between risky rates with different tenors and the risk-free rate,
which it has been already discussed in this Chapter and in Chapter 1. As we already
know, the interest rate curves are characterised by different spreads depending on their
underlying tenors: the interest rates whose tenors are longer are higher than interest rates
with shorter tenors. The spreads between the OIS rate and IBOR rates depend on equa-
tions (2.32) and (2.33). The graphical representation of tenor related spreads affecting
interest rate curves is provided in Figure 1.4.
The algorithm in Appendix D simulates the interest rate curves depending on the param-
eters we have selected to model the stochastic processes of the factors characterizing the
risk-free and the spread components. Therefore, the simulation algorithm can be used
to represent the segmentation of the interest rate curves by considering the effect that
different values of the parameters of the factor models have on the interest rates.
We assume that the interest rates are described by the same three-factor Vasicek model
presented in Subsection 2.2.2. Indeed, we assume that the OIS rate - the risk-free rate r(t)
of the model - is modelled by two Vasicek-like factors, ψ1 and ψ2. Conversely, the risky
rates - r(t) + s(t) - are described by the same two factors of the risk-free rate and by an
additional factor. Since the model in Subsection 2.2.2 considers only for two tenors, the
third factor is used to describe the magnitude of the spread related to the longest tenor.
Therefore, we assume that there exist as many stochastic factors ψtn3 as the number of
considered tenors. The tenors we consider in our analysis are tn = 1M , 3M , 6M , 12M .
Furthermore, we also consider factor correlation between the risk-free rate and the spread.
Finally, the decomposition of the risky rates in two components - the risk-free rate and
the spread - can be represented as

r(t) = ψ1(t) + ψ2(t)

stn(t) = ρψ1(t) + ψtn3 (t),
(2.39)

where ρ is the correlation and the factors of the model are described by the equations

dψ1(t) =
(
a1 − b1ψ1(t)

)
dt+ σ1dW

Q
1 (t)

dψ2(t) =
(
a2 − b2ψ2(t)

)
dt+ σ2dW

Q
2 (t)

dψtn3 (t) =
(
atn3 − b3ψ

tn
3 (t)

)
dt+ σ3dW

Q,tn
3 (t)

(2.40)

where the index tn refers to the different LIBOR tenors tn = 1M , 3M , 6M , 12M and
where the Brownian motions are mutually independent. We are thus able to evaluate
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how the mean reversion level ai, the reversion speed bi and the volatility σi influence the
interest rate curves.
A short explanation of the functioning of the algorithm is therefore provided and the
evidence of the simulation of USD LIBOR rates with different tenors - 1M, 3M, 6M and
12M - and of the USD OIS interest rate is provided at the end of the Section.

Simulation technique

The simulation algorithm in Appendix D is built using MATLAB and it is composed of
a main.m function and of an object, hwfactor.m. The object uses a priori values of
the model parameters and observed interest rate curves as inputs to simulate risk-free
interest rates and risky interest rates. The output of the simulation algorithm is a set
of 100 matrices with dimensions 61×45. Each matrix represents a simulation trial k
for k=1,...,100. Every k-matrix contains as many interest rate curves as the number of
dates of the time schedule of the input interest rate curves: indeed, the starting date of
the simulated i-curve of the k-matrix is the date ti for i=1,...,45 of the time schedule of
the input curve. The i-curve is simulated from the date ti up to 5 years (the simulation
interval is composed of 60 months), where the dates of the simulation interval are generally
indicated as tj,ki where j=1,...,60. The simulated curves are obtained by a zero coupon
bond starting at time ti and with maturity tj,ki .
The algorithm works according to the following steps:

1. Input: market observed risky rate curve (i.e. LIBOR6M), market observed proxy of
risk-free rate curve (i.e. OIS rate)4, a priori values of the parameters in the equations
(2.40), number of trials of the simulation (i.e. 100 trials), length of the simulation
interval (i.e. 5 years), yearly partition of the simulation interval (i.e. 1

12
);

2. The parameters are used to build the Vasicek models of the three factors using the
hwv MATLAB function;

3. The factors are simulated using the simBySolution property of the hwv function.
We first consider the time schedule of the market rate curves we have defined at
step 1, where each date is referred as ti with i = 1, ..., 45. The factors of the model
are then simulated up to 5 years (60 months) - the selected simulation interval -
starting from the initial date t1. We therefore obtain simulated values for each date
tj1 for j=1,...,60. The simulation is then repeated 100 times, resulting in 60×100
simulated values for each tj,k1 date for k = 1, ..., 100. Finally, the factors are recur-
sively simulated up to 5 years taking every single date ti as initial date, resulting in
60×45×100 simulated values for each tj,ki date.

4The time schedule of the risk-free rate curve and the time schedule of the risky rate curve must be
the same, i.e. ti for i = 1, ..., 45.
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Eventually, the simulated paths of the three factors are collected in as many matri-
ces as the number of trials, 100. The number of rows of each matrix is equal to the
number of dates of the simulation interval, 60, and the number of columns is equal
to the number of dates ti of the time schedule of the market rate curves;

4. The price of a risk-free bond and the price of a risky bond are computed using
respectively equation (2.37) and equation (2.38), the simulated factors at step 3
and the a priori values of the parameters. The prices are collected in as many
matrices as the number of trials, where the matrices have the same dimensions of
the factors’ matrices;

5. The simulated risk-free rates and the simulated risky rates are retrieved by the
prices at step 4 and they are allocated in a scheme of matrices similar to the one
used for the prices, with the only exception that there is an additional row used to
contain the interest rates observed in the market. The resulting 100 matrices have
dimensions 61×45.
Eventually, the LIBOR rates in the matrices can be generally represented as L(ti, t

j,k
i )

for i=1,...,61 and k=1,...,100.

We apply the simulation algorithm to observed market rates as of 19 June 2020: USD
OIS rate, LIBOR1M rate, LIBOR3M rate, LIBOR6M rate and LIBOR12M rate. The
data are retrieved by the data provider Thomson Reuters’ Eikon. The length of the time
schedule of the interest rate curves is 30 years and the initial point of the time schedule
is 3M (i.e. 3 months after the 19 June 2020).
The choice of the fictitious parameters to model the stochastic factors considers for the
fact that the Vasicek model allows the factors to be negative with a not null probability.
Therefore, we must select the parameters of the factors’ models in order to have a very high
probability of obtaining positive spreads between the risky rates and the risk-free rate. The
parameter guaranteeing this condition is satisfied is obviously the mean reversion level,
together with reasonable values of the reversion speed and of the volatility. Finally, the
parameters are selected in order to describe different levels of risk: the factors modelling
the risk-free rate have lower mean reversion levels than the additional factors modelling
the interest rate spreads. The values of the parameters we consider in our simulation are
similar to the ones selected by Grasselli and Miglietta (2016), which use values of 0.01
and 0.005 for the volatility and a factor correlation of 0.5.
We use the parameters a1 = 0.002×0.1, b1 = 0.1, σ1 = 0.003, a2 = 0.004×0.08, b2 = 0.08,
σ2 = 0.003, aLIBOR1M

3 = 0.004×0.08, aLIBOR3M
3 = 0.008×0.08, aLIBOR6M

3 = 0.011×0.08,
aLIBOR12M

3 = 0.016 × 0.08, b3 = 0.08,σ3 = 0.005. The correlation parameter, ρ, is fix
to 0.4. Finally, we choose 100 trials and a simulation period of 5 years with monthly
partition. The average values of the simulated interest rates for the next 5 years starting
from time 19 June 2020 + 3M (i.e. the initial date of the time schedule of the market
curves) is represented in Figure 2.2. To put it another way, the mean is obtained by
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Figure 2.2: Simulated interest rates in the interval from 3 months to 5 years after 19 June
2020.

averaging the elements of the first columns of the 100 matrices with dimension 61×45
which we have obtained as output of the simulation algorithm: the result is a 61×1
vector containing the average simulated values up to 5 years. We observe that the selected
parameters are coherent with the hypothesis that the spreads between each risky rates
and the risk-free rate are strictly positive and that the spreads are increasing with the
length of the underlying tenor of the interest rate. We observe that this relationship is
not satisfied anymore if we increase the volatility of the factors: σ1 = 0.011, σ2 = 0.01,
σ3 = 0.015. In Figure 2.3 the increased volatility makes the interest rate curves less steady,
since the shifts of the interest rates are sharper than the shifts in Figure 2.2. The high
volatility determines negative LIBOR1M-OIS and LIBOR3M-OIS spreads and it makes
the LIBOR6M riskier than the LIBOR12M rate.
Finally, we consider the scenario where the reversion speed is lower than in the base

scenario in Figure 2.2: b1 = 0.02, b2 = 0.02, b3 = 0.03. We observe in Figure 2.4 that the
lower reversion speed makes the interest rate curves converge to smaller values after five
years (LIBOR12M is 0.008, while it was close to 0.014 in the base scenario). Furthermore,
the LIBOR1M-OIS spread, the LIBOR3M-OIS spread and the LIBOR6M-OIS spread are
null or negative for the first three years.
Conversely, if we consider for very small volatilities and higher values of the reversion

speed, we obtain steady interest rate curves, strictly positive spreads and we reduce the
probability of overlaps between the risky curves.
Figures 2.2, 2.3 and 2.4 represent the interest rates which are simulated in the time interval
going from 3 months after 19 June 2020 up to 5 years later. However, the algorithm
simulates the interest rates in the following 5 years from each date of the schedule of the
market observed curves: for example, we can simulate interest rate from 6 months after
19 June 2020 up to 5 years. Plotting together the simulated curves starting for each date
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Figure 2.3: Simulated interest rates in the interval from 3 months to 5 years after 19
June 2020. The stochastic factors have higher volatilities than the factors determining
the risk-free rate and the spreads in Figure 2.2.

Figure 2.4: Simulated interest rates in the interval from 3 months to 5 years after 19 June
2020. The stochastic factors have lower reversion speed than the factors determining the
risk-free rate and the spreads in Figure 2.2.
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Figure 2.5: Interest rate surfaces for OIS, LIBOR1M, LIBOR3M, LIBOR6M, LIBOR12M.
The interest rates are the average of 100 interest rate surfaces retrieved by different
simulated price paths.

of the time schedule of the market curves results in the surface displayed in Figure 2.5
and Figure 2.6. The axis on the bottom right of Figure 2.5 indicates the starting dates
(e.g. 6 months after 19 June 2020) of each single simulated interest rate curve. The axis
on the bottom left indicates the time interval of 5 years we consider for the simulation.
The vertical axis represents the interest rate value.
We observe that the surfaces aggregating the simulated curves point the different levels
of riskiness up: the LIBOR12M surface is the riskiest one and, on the opposite, the OIS
surface is the least risky one; the other surfaces lay between the OIS and the LIBOR12M.
Finally, we consider a zero coupon bond with a notional value of 100 and 5 years of
maturity. The bond is issued at time 0 (i.e. 19 June 2020). Eventually, the price of
the bond after 3 months is determined using the simulated interest rates and the price
expression (2.38). Thus the simulation algorithm can be used to obtain the price of a
bond with a notional value of 100, 5 years of maturity and an issuing date belonging to
the time schedule of the market interest rate curves we retrieved from Thomson Reuters’
Eikon - from 3M to 30Y after 19 June 2020. Therefore, we obtain the path of the price of
the bond up to its maturity. The procedure is used to obtain multiple price paths, where
the number of price paths is equal to the number of trials of the simulation algorithm.
The price paths of a bond on the OIS rate are displayed in Figure 2.7 and the price paths
of a bond on the LIBOR3M rate are displayed in Figure 2.8.
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Figure 2.6: Interest rate surfaces for OIS, LIBOR1M, LIBOR3M, LIBOR6M, LIBOR12M.

Figure 2.7: Simulation of the price of a risk-free zero coupon bond with 5 years of maturity
and a notional value equal to 100.
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Figure 2.8: Simulation of the price of a risk-free zero coupon bond with 5 years of maturity
and a notional value equal to 100.
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Part II

An empirical analysis: calibration of
the Hull-White model using cap

volatilities
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A necessary premise

When dealing with the pricing of interest rate derivatives in the multiple curve frame-
work, we need to consider the ψi(t) multiple factors specification as in (2.31) under the
T -forward measure QT . The modelling of the processes of the factors is quite simple
when pricing forward rate agreements; however, the complexity increases when approach-
ing more complicated instruments like cap and floor options. The complexity is due to
the necessity of considering one different forward measure for each single tenor structure.
Notwithstanding the results and the evidence regarding the necessity of adopting a pricing
framework which considers the existence of multiple T -forward measure, we have decided
to use a strong assumption when building the Hull-White calibration algorithm. Indeed,
our calibration algorithm uses only a single curve to evaluate and discount each single
caplets. The main reason behind this strong assumption lies in the simplicity and in the
clearness of the caps calibration algorithm developed in Chapter 3 of Brigo and Mercu-
rio (2006): indeed, the calibration algorithm is built on the Hull-White model for short
rates, an extension of the Vasicek model, and it represents one of the most comprehensi-
ble framework for early practitioners. Therefore, the reader can consider the MATLAB
written calibration algorithm provided in Chapter 4 as an introductory tool to understand
the basics of interest rate derivatives pricing theory. The calibration algorithm uses USD
IBOR3M cap volatilities which have been published by Reuters in June 2020. Notwith-
standing the assumption that the term structure is described by the Hull-White model,
we need to handle market quotes which are presented as Black implied cap volatilities.
Therefore, we also present - together with other models which represent nowadays the
market practice for cap pricing - the Black model: the Black model is used as part of the
calibration algorithm to obtain the Black cap prices from cap volatilities. The Hull-White
model is then calibrated by the minimization of the difference between Black cap prices
and the fictitious Hull-White cap prices. The calibration algorithm is built on the as-
sumption that the LIBOR rate is lognormal: this property enables the caps to be priced
as portfolios of put options, whose future payoffs are described by the two considered
models, i.e. Black and Hull-White.
Finally, the Hull-White model is not anymore considered by practitioners when pricing
complex interest rate derivatives. Nowadays, pricing frameworks are based on Libor Mar-
ket Models adjusted with Heston-type or SABR-type volatility stochastic processes, which
better fit the volatility smiles of more complex interest rate derivatives.
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Chapter 3

The Hull-White model

3.1 A starting point: the Vasicek model

In this section we briefly introduce the Vasicek model, the basic short rate model upon
which Hull and White built the short rate model which bears their name. Using the
analysis developed in Section 3.2 of Brigo and Mercurio (2006), we describe the short rate
process r(t) under the risk-neutral probability Q as

dr(t) = k[θ − r(t)]dt+ σdWQ(t) (3.1)

where k,θ and σ are positive constants and the initial point r(0) = r0 is positive.
Multiplying (3.1) by ekt and integrating the resulting equation in the time interval from
s to t, we obtain

dr(t) = kθdt− kr(t)dt+ σdWQ(t)

ektdr(t) + kektr(t)dt = ektkθdt+ ektσdWQ(t)

d

(
ektr(t)

)
= ektkθdt+ ektσdWQ(t)∫ t

s

d

(
ekur(u)

)
= kθ

∫ t

s

ekudu+ σ

∫ t

s

ekudWQ(u)

ektr(t)− eksr(s) = kθ
ekt − eks

k
+ σ

∫ t

s

ekudWQ(u)

r(t) = r(s)e−k(t−s) + θ

(
1− e−k(t−s)

)
+ σ

∫ t

s

e−k(t−u)dWQ(u).

(3.2)

We observe that the short rate r(t) has a Normal distribution with a conditional expected
value and a conditional variance given by

E
[
r(t)

∣∣F(s)
]

= r(s)e−k(t−s) + θ

(
1− e−k(t−s)

)
(3.3)
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V ar
[
r(t)

∣∣F(s)
]

= V ar

[
σ

∫ t

s

e−k(t−u)dWQ(u)

]
= σ2

∫ t

s

exp
(
− 2k(t− u)

)
du

=
σ2

2k

(
1− exp

(
− 2k(t− s)

))
.

(3.4)

The rate r(t) is mean reverting, since it goes close to θ when t goes to infinity; moreover,
there is a positive probability that r(t) is smaller than zero.
Now, we study the behaviour of zero coupon bond price. We first integrate the short rate
in the time interval from s to T∫ T

s

r(t)dt = r(s)

∫ T

s

exp(−k(t− s))dt+ θ

∫ T

s

(
1− exp(−k(t− s))

)
dt

+ σ

∫ T

s

∫ t

s

exp(−k(t− u))dWQ(u)dt

= r(s)

(
1− exp(−k(T − s))

k

)
+ θ

[ ∫ T

s

dt−
∫ T

s

exp(−k(t− s))dt
]

+ σ

∫ T

s

∫ T

u

exp(−k(t− u))dtdWQ(u)

= r(s)

(
1− exp(−k(T − s))

k

)
+ θ

[
T − s− 1− exp(−k(T − s))

k

]
+
σ

k

∫ T

s

(
1− exp(−k(T − u))

)
dWQ(u)

We observe that the distribution of
∫ T
s
r(t)dt is Normal with mean and variance given

respectively by

E

[ ∫ T

s

r(t)dt

]
= r(s)

(
1− exp(−k(T − s))

k

)
+ θ

[
T − s− 1− exp(−k(T − s))

k

]
V ar

[ ∫ T

s

r(t)dt

]
= V ar

[
σ

k

∫ T

s

(
1− exp(−k(T − u))

)
dWQ(u)

]
=
σ2

k2

∫ T

s

(
1− exp(−k(T − u))

)2

du

=
σ2

k2

∫ T

s

(
1 + exp(−2k(T − u))− 2 exp(−k(T − u))

)
du

=
σ2

k2

[
T − s+

1− exp(−2k(T − s))
2k

− 2

k

(
1− exp(−k(T − s))

)]
=

σ2

2k3

[
2k(T − s)− exp(−2k(T − s)) + 4 exp(−k(T − s))− 3

]
(3.5)
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where we used the Itô isometry in the third equation.
Finally, we use the results in (3.5) to find the price of a zero coupon bond

P (t, T ) = E

[
exp

(
−
∫ T

t

r(u)du

)∣∣∣∣F(t)

]
= exp

{
− E

[ ∫ T

t

r(u)du

]
+

1

2
V ar

[ ∫ T

t

r(u)du

]}
= exp

{
− r(t)

(
1− exp(−k(T − t))

k

)
− θ
[
T − t− 1− exp(−k(T − t))

k

]
+

σ2

2k3

[
2k(T − t)− exp(−2k(T − t)) + 4 exp(−k(T − t))− 3

]}
= exp

{
− r(t)

(
1− exp(−k(T − t))

k

)
+

(
θ − σ2

2k2

)[
1− exp(−k(T − t))

k
− T + t

]
− σ2

4k

[
1− exp(−k(T − t))

k

]2}
(3.6)

where the first equation is valid because it is the Laplace transformation of the exponential
of a variable,

∫ T
s
r(t)dt, with Normal distribution.

From Brigo and Mercurio (2006), we know that the price (3.6) can be also represented as

P (t, T ) = A(t, T ) exp

(
−B(t, T )r(t)

)
(3.7)

where the functions A(t, T ) and B(t, T ) are given by

A(t, T ) = exp

[(
θ − σ2

2k2

)(
B(t, T )− T + t

)
− σ2

4k
B(t, T )2

]
B(t, T ) =

1− exp(−k(T − t))
k

(3.8)

Now, we change the probability measure from the risk neutral measure Q, im-
plied by the bank account numeraire B(t, T ), to the forward measure QT , implied by the
zero coupon bond numeraire P (t, T ). The conversion from the risk neutral probability
is operated through the toolkit developed by Brigo and Mercurio (2006), which is briefly
described in Appendix C. We substitute the numeraire U(t) and S(t) in the Appendix
with, respectively, P (t, T ) and B(t, T ); furthermore, the volatility σT (t) is obtained ap-
plying the Itô formula to equation (3.7) and it is hence equal to −σB(t, T )P (t, T ); lastly,
the equations in Appendix C further simplify because the correlation coefficient is ρ = 1.
The dynamics of their processes under the forward measure QT are

dB(t, T ) = (·)dt

dP (t, T ) = (·)dt+ σT (t)dWQT (t).
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The drift of the process r(t) under QT is then equal to

µT (t, r(t)) =

[
kθ − kr(t)− σ(t, x(t))(0− σT (t)

P (t, T )
)

]
=

[
kθ − kr(t)− σ2(t, x(t))B(t, T )

] (3.9)

and the diffusion term is characterised by

dWQT (t) = dW (t) + σB(t, T )dt. (3.10)

Finally, using the equations (3.9) and (3.10), we observe that the r(t) process under the
forward measure QT becomes

dr(t) =

[
k

(
θ − r(t)

)
− σ2B(t, T )

]
dt+ σdWQT (t). (3.11)

Integrating the process (3.11) in the time interval from 0 to s we obtain that r(t) is

r(t) = r(s) exp(−k(t− s)) +

(
θ − σ2

k2

)(
1− exp(−k(t− s))

)
+

σ2

2k2

[
exp(−k(T − t))− exp(−k(T + t− 2s))

]
+ σ

∫ t

s

exp(−k(t− u))dWQT (u)

(3.12)
where r(t) follows a Normal distribution with expected value and variance under QT are
respectively given by

EQT [r(t)∣∣F(s)
]

= r(s) exp(−k(t− s)) +

(
θ − σ2

k2

)(
1− exp(−k(t− s))

)
+

σ2

2k2

[
exp(−k(T − t))− exp(−k(T + t− 2s))

]
,

V arQ
T [
r(t)

∣∣F(s)
]

=
σ2

2k

[
1− exp(−2k(t− s))

]
.

(3.13)

The Vasicek model can be calibrated using the quoted prices and the volatilities of
interest rate options. The present value of the expected payoff at time T of a European
option with a zero coupon bond as underlying asset, strike K and maturity T under the
T -forward probability measure is equal to

ZBOption(t, T, S,K) = EQT
[

exp

(
−
∫ T

t

r(s)ds

)(
ω(P (T, S)−K)

)+∣∣∣∣F(t)

]
(3.14)

where the future value of the option’s payoff
(
ω(P (T, S)−K)

)+

is given - according to
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the D Appendix of Brigo and Mercurio (2006) - by

ω exp

(
µp +

1

2
σ2
p

)
Φ

[
ω
µp − ln(K) + σ2

p

σp

]
− ωKΦ

[
ω
µp − ln(K)

σp

]
. (3.15)

The parameters µp and σp refer respectively to the mean and the volatility of the natural
logarithm of P (T, S); the parameter ω ∈ {−1, 1} is a generalization to consider both for
call and put options; Φ(·) indicates the cumulative standard Normal distribution function.
Therefore, using equations (3.14) and (3.15) we obtain that the price of a European option
is

ZBOption(t, T, S,K) = ω

[
P (t, S)Φ(ωh)−KP (t, T )Φ(ω(h− σp))

]
(3.16)

where σp and h are respectively given by

σp = σ

√
1− exp(−2k(T − t))

2k
B(T, S)

h =
σp
2

+
1

σp
ln

(
P (t, S)

P (t, T )K

)
.

(3.17)

Finally, the calibration of the Vasicek model can be executed applying the equations (3.16)
and (3.17): these formulas are used in the calibration algorithm we developed in Chapter
4, where we consider cap options as a portfolio of put options.

3.1.1 Connections between the risk-neutral and the objective world

In this subsection we explore the relationship between the dynamics of the interest rate
in the risk-neutral world and in the objective world, which is associated to an objective
probability measure P. Indeed, we are going to illustrate the concepts we have previously
introduced in Chapter 1, analysing how the process λ(t) in equation (1.6) adapts to the
Vasicek case.
We are usually interested to study stochastic processes under the risk-neutral probability
measure Q, so that we are able to compute prices as expectations under this measure.
However, in the real world we observe historical data, not the process r(t) under the risk-
neutral measure. As we have explained in Section 1.1, we use the distribution of r(t) in
the objective world to compute the diffusion coefficient σ, which is equal to the diffusion
parameter under the risk-neutral measure.
The Vasicek model under the objective probability measure takes the form

dr(t) =

[
kθ − kr(t)− λσr(t)

]
dt+ σdW P (3.18)

where r(0) = r0 and λ is the constant market risk parameter. We observe that the short
rate process under the measure P is equal to the short rate process under Q in equation
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(3.1). Furthermore, we know from Brigo and Mercurio (2006) that the change of measure
making equal the process under the risk-neutral and the objective measures is

dQ
dP

= exp

(
− 1

2

∫ t

0

λ2r(s)2ds+

∫ t

0

λr(s)dW P(s)

)
(3.19)

where the change of measure is calculated applying the Girsanov’s theorem we have intro-
duced in Chapter 1. According to Brigo and Mercurio (2006), the necessary assumption
satisfying equation (3.19) is that λ(t) in equation (1.6) - the market price of risk - is equal
to λr(t).
Therefore, we are able to estimate firstly the diffusion parameter σ under the objective
measure P - e.g. employing an ML estimator (Björk (2009)) - and, afterwards, to calibrate
the other parameters to market data.
These assumptions are also valid for an important extension of the Vasicek model, the
Hull-White model: indeed, using an approach similar to the one we have outlined in
this section, we calibrate the Hull-White model in Chapter 4, using market data of cap
volatilities.

3.2 The theoretical model

In this section we describe the Hull-White model of short rate dynamics. The formal
description of the model is mainly taken by Brigo and Mercurio (2006). The Hull-White
1990 model is an extension of the Vasicek model and it belongs to the family of the affine-
term structure models we described in the previous part of this disseration.
The short rate process under the risk neutral probability measure Q is assumed to be

dr(t) = [θ(t)− a(t)r(t)]dt+ σ(t)dWQ(t) (3.20)

where the functions θ, a and σ are deterministic.
The 1990 formalization was modified imposing a and σ as positive constants, in order
to exactly fit the term structure of interest rates1. The 1994 version of the Hull-White
model, the only one we consider from now on, is

dr(t) = [θ(t)− ar(t)]dt+ σdWQ(t). (3.21)

In this chapter, we use only the risk neutral probability Q. Hence, we omit the notation
in the following equations.
We now derive the Hull-White short rate dynamics. First, we simplify assuming that the
short rate is composed by two components r(t) = x(t)+α(t), where α(t) is a deterministic

1The Hull-White 1990 was built to be calibrated to the term structure of the interest rates and the
term structure of spot-rate volatilities and forward rate volatilities.
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function and x(t) is a stochastic process satisfyingdx(t) = −ax(t)dt+ σdW (t)

x(0) = 0
(3.22)

The derivation of the deterministic function α(t) is slightly complicated. In order to
achieve this result, we first represent the price of the zero coupon bond with maturity T

P (0, T ) = E

[
exp

(
−
∫ T

0

r(t)dt

)]
= E

[
exp

(
−
∫ T

0

x(t) + α(t)dt

)]
= exp

(
−
∫ T

0

α(t)dt

)
E

[
exp

(
−
∫ T

0

x(t)dt

)]
= exp

(
−
∫ T

0

α(t)dt

)
exp

{
− E

[ ∫ T

0

x(t)dt

]
+

1

2
V ar

[ ∫ T

0

x(t)dt

]} (3.23)

where the last equation is valid because it is the Laplace transformation of the exponential
of a variable,

∫ T
0
r(t)dt, with Normal distribution.

Solving the problem (3.22), we get

dx(t) = −ax(t)dt+ σdW (t)

exp(at)dx(t) + a exp(at)x(t)dt = exp(at)σdW (t)

d

(
exp(at)x(t)

)
= exp(at)σdW (t)∫ t

s

d

(
exp(au)x(u)

)
= σ

∫ t

s

exp(au)dW (u)

exp(at)x(t)− exp(as)x(s) = σ

∫ t

s

exp(au)dW (u).

Therefore, we obtain that, for s < t, the solution is

x(t) = x(s) exp(−a(t− s)) + σ

∫ t

s

exp(−a(t− u))dW (u), (3.24)

which, for s = 0, is equal to

x(t) = x(0) exp(−at) + σ

∫ t

0

exp(−a(t− u))dW (u)

x(t) = σ

∫ t

0

exp(−a(t− u))dW (u)

(3.25)

70



Integrating x(t) in the time interval from 0 to T , we obtain∫ T

0

x(t)dt =

∫ T

0

σ

∫ t

0

exp(−a(t− u))dW (u)dt

= σ

∫ T

0

∫ T

u

exp(−a(t− u))dtdW (u)

=
σ

a

∫ T

0

(
1− exp(−a(T − u))

)
dW (u)

(3.26)

where we changed the integration interval and the order of integration in the second
equation.
Finally, we can determine the expected value and the variance of

∫ T
0
x(t)dt. Indeed, we

have proven in equation (3.26) that the stochastic integral
∫ T

0
x(t)dt is deterministic and,

consequently, it follows a Normal distribution with

E

[ ∫ T

0

x(t)dt

]
= E

[
σ

a

∫ T

0

(
1− exp(−a(T − u))

)
dW (u)

]
= 0

V ar

[ ∫ T

0

x(t)dt

]
= V ar

[
σ

a

∫ T

0

(
1− exp(−a(T − u))

)
dW (u)

]
=
σ2

a2

∫ T

0

[
1− exp(−a(T − u))

]2

du

=
σ2

a2

∫ T

0

[
1 + exp(−2a(T − u))− 2 exp(−a(t− u))

]
du

=
σ2

a2

{∫ T

0

du+

∫ T

0

exp(−2a(T − u))du− 2

∫ T

0

exp(−a(T − u))du

}

=
σ2

a2

{
T +

1− exp(−2aT )

2a
− 2

1− exp(−aT )

a

}
=

σ2

2a3

{
2aT − exp(−2aT )− 3− 4 exp(−aT )

}
.

(3.27)
where we used the Itô isometry in the third equation.
Therefore, we can use the expected value and the variance of

∫ T
0
x(t)dt to get the price of

the zero coupon bond with maturity T in equation (3.23)

P (0, T ) = exp

(
−
∫ T

0

α(t)dt

)
exp

{
− E

[ ∫ T

0

x(t)dt

]
+

1

2
V ar

[ ∫ T

0

x(t)dt

]}
= exp

{
−
∫ T

0

α(t)dt+
σ2

4a3

(
2aT − exp(−2aT )− 3 + 4 exp(−aT )

)}
.

(3.28)

We get the equation for
∫ T

0
α(t)dt taking the natural logarithm of equation (3.28)∫ T

0

α(t)dt = −lnP (0, T ) +
σ2

4a3

(
2aT − exp(−2aT )− 3 + 4 exp(−aT )

)
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Therefore, we obtain the values of α(T ) and ∂α(T )
∂T

α(T ) =
∂

∂T

∫ T

0

α(t)dt =
∂

∂T

[
− lnP (0, T )

+
σ2

4a3

(
2aT − exp(−2aT )− 3 + 4 exp(−aT )

)]
=

∂

∂T

(∫ T

0

f(0, u)du

)
+

σ2

4a3

(
2a+ 2a exp(−2aT )− 4a exp(−aT )

)
= f(0, T ) +

σ2

2a2

(
1 + exp(−2aT )− 2 exp(−aT )

)
= f(0, T ) +

σ2

2a2

(
1− exp(−aT )

)2

(3.29)

∂α(T )

∂T
=

∂

∂T
f(0, T ) +

σ2

4a3

(
− 4a2 exp(−2aT ) + 4a2 exp(−aT )

)
=

∂

∂T
f(0, T ) +

σ2

a

(
exp(−aT )− exp(−2aT )

) (3.30)

We can use equations (3.29) and (3.30) to determine the value of the deterministic function
θ. We define θ(t) = aα(t) + ∂α(T )

∂T
using the assumption that r(t) = x(t) + α(t) and

equations (3.22)
dr(t) = dx(t) + dα(t)

= −ax(t)dt+ σdW (t) + dα(t)

= −a(r(t)− α(t))dt+ σdW (t)) + dα(t)

=

(
aα(t) +

∂α(t)

∂t
− ar(t)

)
dt+ σdW (t).

Substituting equations (3.29) and (3.30) in θ(t) = aα(t) + ∂α(t)
∂t

we obtain

θ(t) = aα(t) +
∂α(t)

∂t

= af(0, t) +
σ2

2a

(
1 + exp(−2at)− 2 exp(−at)

)
+
∂

∂t
f(0, t) +

σ2

a

(
exp(−at)− exp(−2at)

)
= af(0, t) +

σ2

2a

(
1 + exp(−2at)− 2 exp(−at)

)
+
∂

∂t
f(0, t) +

σ2

a

(
exp(−at)− exp(−2at)

)
= af(0, t) +

σ2

2a

(
1− exp(−2at)

)
+
∂

∂t
f(0, T ).
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Finally, we can represent the short rate process of the Hull-White model as

dr(t) = (θ(t)− ar(t))dt+ σdW (t)

=

[
af(0, t) +

σ2

2a

(
1− exp(−2at)

)
+
∂

∂t
f(0, t)− ar(t)

]
dt+ σdW (t).

(3.31)

Now we discuss the Normal distribution of the short rate and the dynamics of the
zero coupon bond price in the Hull-White model. We first multiply equation (3.31) for
eat; then, we integrate the resulting equation in the time interval from s to t in order to
obtain the short rate behaviour

eatdr(t) + ar(t)eatdt =

[
aeatf(0, t) + eat

∂

∂t
f(0, t) +

σ2

2a

(
eat − e−at

)]
dt+ σdW (t)∫ t

s

d

(
eaur(u)

)
=

∫ t

s

d

(
eauf(0, u)

)
+
σ2

2a

∫ t

s

(
eau − e−au

)
du+ σ

∫ t

s

eaudW (u)

eatr(t)− easr(s) = eatf(0, t)− easf(0, s) +
σ2

2a2

(
eat − eas + e−at − e−as

)
+ σ

∫ t

s

eaudW (u).

Therefore, the short rate r(t) can be represented as

r(t) = exp(−a(t− s))
(
r(s)− f(0, s)

)
+ f(0, t) +

σ2

2a2

[
1− exp(−a(t− s))

+ exp(−2at)− exp(−a(t+ s))

]
+ σ

∫ t

s

exp(−a(t− u))dW (u)

= exp(−a(t− s))
(
r(s)− f(0, s)

)
+ f(0, t)

+
σ2

2a2

(
1− exp(−a(t− s))

)(
1− exp(−a(t+ s))

)
+ σ

∫ t

s

exp(−a(t− u))dW (u)

= r(s) exp(−a(t− s)) + α(t)− α(s) exp(−a(t− s))

+ σ

∫ t

s

exp(−a(t− u))dW (u).

(3.32)

We observe that r(t) has a Normal distribution with a conditional expected value and a
conditional variance given by

E[r(t)|F(s)] = r(s) exp(−a(t− s))
(
r(s)− f(0, s)

)
+ f(0, t)

+
σ2

2a2

(
1− exp(−a(t− s))

)(
1− exp(−a(t+ s))

)
= r(s) exp(−a(t− s)) + α(t)− α(s) exp(−a(t− s))

(3.33)
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V ar[r(t)|F(s)] = V ar

[
σ

∫ t

s

exp(−a(t− u))dW (u)

]
= σ2

∫ t

s

exp(−2a(t− u))du

=
σ2

2a

(
1− exp(−2a(t− s))

) (3.34)

Now, we study the behaviour of zero coupon bond price. We first integrate the short rate
in the time interval from s to T∫ T

s

r(t)dt = (r(s)− f(0, s))

∫ T

s

exp(−a(t− s))dt+

∫ T

s

f(0, t)dt

+
σ2

2a2

∫ T

s

(
1− exp(−a(t− s))

)(
1− exp(−a(t+ s))

)
dt

+ σ

∫ T

s

∫ t

s

exp(−a(t− u))dW (u)dt

= (r(s)− f(0, s))

(
exp(−a(t− s))− 1

−a

)
+

∫ T

s

f(0, t)dt

+
σ2

2a2

[ ∫ T

s

dt−
∫ T

s

exp(−a(t− s))dt+

∫ T

s

exp(−2at)dt−
∫ T

s

exp(−a(t+ s))dt

]
+ σ

∫ T

s

∫ T

u

exp(−a(t− u))dtdW (u)

= (r(s)− f(0, s))

(
exp(−a(t− s))− 1

−a

)
+

∫ T

s

f(0, t)dt

+
σ2

2a2

[ ∫ T

s

dt−
∫ T

s

exp(−a(t− s))dt+

∫ T

s

exp(−2at)dt−
∫ T

s

exp(−a(t+ s))dt

]
+ σ

∫ T

s

∫ T

u

exp(−a(t− u))dtdW (u)

= (r(s)− f(0, s))

(
exp(−a(t− s))− 1

−a

)
+

∫ T

s

f(0, t)dt

+
σ2

2a2

[
(T − s) +

1

a

(
exp(−a(T − s))− 1

)
− 1

2a

(
exp(−2aT )− exp(−2as)

)
+

1

a

(
exp(−a(T + s))− exp(−2as)

)]
+
σ

a

∫ T

s

(
1− exp(−a(T − u))

)
dW (u)

= (r(s)− f(0, s))

(
exp(−a(t− s))− 1

−a

)
+

∫ T

s

f(0, t)dt

+
σ2

2a2

[
(T − s) +

exp(−a(T − s))
a

− 1

a
− exp(−2aT ) + exp(−2as)− 2 exp(−a(T − s))

2a

]
+
σ

a

∫ T

s

(
1− exp(−a(T − u))

)
dW (u)
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= (r(s)− f(0, s))

(
1− exp(−a(t− s))

a

)
+

∫ T

s

f(0, t)dt

+
σ2

2a3

[
a(T − s) + exp(−a(T − s))− 1− 1

2

(
exp(−aT )− exp(−as)

)2]
+
σ

a

∫ T

s

(
1− exp(−a(T − u))

)
dW (u).

Therefore, we observe that
∫ T
s
r(t)dt has a Normal distribution with expected value and

variance given respectively by

E

[ ∫ T

s

r(t)dt

∣∣∣∣F(s)

]
= (r(s)− f(0, s))

(
1− exp(−a(T − s))

a

)
− lnP (0, T )

P (0, s)

+
σ2

2a3

[
a(T − s) + exp(−a(T − s))− 1

− 1

2

(
exp(−aT )− exp(−as)

)2]
V ar

[ ∫ T

s

r(t)dt

∣∣∣∣F(s)

]
= V ar

[
σ

a

∫ T

s

(
1− exp(−a(T − u))

)
dW (u)

]
=
σ2

a2

∫ T

s

(
1 + exp(−2a(T − u))− 2 exp(−a(T − u))

)
du

=
σ2

a2

[
(T − s)− 3

2a
− exp(−2a(T − s))

2a
+

2 exp(−a(T − s))
a

]
(3.35)

Hence, using (3.35) we obtain the zero coupon bond price at time t

P (t, T ) = E

[
exp

(
−
∫ T

t

r(u)du

)]
= exp

{
− E

[ ∫ T

t

r(u)du

]
+

1

2
V ar

[ ∫ T

t

r(u)du

]}
= exp

{
(f(0, t)− r(t))

(
1− exp(−a(T − t))

a

)
+ ln

P (0, T )

P (0, t)

− σ2

4a3

[
− 2 exp(−a(T − t)) + exp(−2a(T − t))−

(
exp(−aT )− exp(−as)

)2

+ 1

]}
= exp

{
(f(0, t)− r(t))

(
1− exp(−a(T − t))

a

)
+ ln

P (0, T )

P (0, t)

− σ2

4a3

[(
1− exp(−a(T − t))

)2

−
(

exp(−aT )− exp(−as)
)2]}

=
P (0, T )

P (0, t)
exp

{
(f(0, t)− r(t))

(
1− exp(−a(T − t))

a

)
− σ2

4a3

[(
exp(−aT )− exp(−as)

)2(
exp(2as)− 1

)]}
.

(3.36)

Using the analysis of Brigo and Mercurio (2006), we observe that the price of the
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zero coupon bond can be also represented as

P (t, T ) = A(t, T )e−B(t,T )r(t), (3.37)

where the terms A(t, T ) and B(t, T ) are the solutions of the affine term structure we have
generally described in (1.16) and (1.29)Bt(t, T )− aB(t, T ) = −1

B(T, T ) = 1
(3.38)

and At(t, T ) = θ(t)B(t, T )− 1
2
σ2B2(t, T )

A(T, T ) = 0.
(3.39)

Finally, the solutions of the systems can be represented as

B(t, T ) =
1

a
[1− exp(−a(T − t))] (3.40)

A(t, T ) =
P (0, T )

P (0, t)
exp

{
B(t, T )f(0, t)− σ2

4a

[
1− exp(−2at)

]
B(t, T )2

}
. (3.41)

3.3 Caps/Floors: pre-crisis pricing framework

In this section we analyse one of the most popular families of interest rate derivatives,
the caps and floors. The aim of this section is to provide the pricing framework we use
to calibrate the Hull-White model. The results exposed in this section are mostly taken
by Brigo and Mercurio (2006) and Kienitz (2014).
The discounted payoff of a cap and the discounted payoff of a floor can be generally
represented as

n∑
i=1

P (t, Ti)Nτ(L(Ti−1, Ti)−K)+

n∑
i=1

P (t, Ti)Nτ(K − L(Ti−1, Ti))
+

where P (t, Ti) is the single yield curve curve2, N is the notional amount, τ is the time
interval separating each caplet/floorlet payment, K is the strike price and L(Ti−1, Ti) is
the IBOR rate.
The pricing approach that was commonly adopted before the financial crisis considers a
cap as a portfolio of European puts written on zero coupon bond and, conversely, a floor
option as a portfolio of European calls. In this section we analyze the price of a cap by

2Note that there is no need to distinguish between the curve used to discount and the one used for
derive the forward rates; indeed, we are discussing option pricing in the single curve framework. Therefore,
we don’t use the subscript notation d to distinguish between the two curves.
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considering it as a portfolio of puts. Therefore, the first step is to remark that the price
of a put option written on a zero coupon bond under the risk-neutral probability Q is

Put(t, T, S,K) = E

[
exp

(
−
∫ T

t

r(s)ds

)(
K − P (T, S)

)+∣∣∣∣F(t)

]
(3.42)

and, changing the bank account numeraire B(t) with the zero coupon bond numeraire
P (t, T ), we are able to move to the forward measure QT through the Radon-Nikodym
derivative

dQT

Q
=
P (T, T )B(0)

P (0, T )B(T )
=

exp

(
−
∫ T

0
r(s)ds

)
P (0, T )

. (3.43)

Finally, the price of the put option under the forward measure QT can be expressed as

Put(t, T, S,K) = P (t, T )EQT
[(
K − P (T, S)

)+∣∣∣∣F(t)

]
. (3.44)

Equation (3.44) is very useful when the distribution of P (T, S) is lognormal with zero
drift conditional on the sigma-algebra F(t): indeed, it reduces to the Black price formula
we introduce later.

Given that the price of a cap is equal to the sum of the present values of each single
caplet, we first consider the present value of a general i-caplet

Caplet(·) = E

[
exp

(
−
∫ Ti

t

r(s)ds

)
τN

(
L(Ti−1, Ti)−K

)+∣∣∣∣F(t)

]
= NE

[
exp

(
−
∫ Ti−1

t

r(s)ds

)
P (Ti−1, Ti)τ

(
L(Ti−1, Ti)−K

)+∣∣∣∣F(t)

]
= NE

[
exp

(
−
∫ Ti−1

t

r(s)ds

)
P (Ti−1, Ti)

(
1

P (Ti−1, Ti)
− 1− τK

)+∣∣∣∣F(t)

]
= NE

[
exp

(
−
∫ Ti−1

t

r(s)ds

)(
1− P (Ti−1, Ti)− τP (Ti−1, Ti)K

)+∣∣∣∣F(t)

]
= N(1 +Kτ)Put(t, Ti−1, Ti, Kadj)

(3.45)
where, in the fourth equation, we simplified by considering a put option with a strike
value Kadj = 1

1+Kτ
.

Eventually, summing up the present value of each caplet we obtain that the price of a cap
is

Cap(t, τ, N,K) =
n∑
i=1

N(1 +Kτ)Put(t, Ti−1, Ti, Kadj). (3.46)

The price of a floor option can be obtained using the same method and, conversely, the
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final price is the sum of the present values of call options with strike Kadj = 1
1+Kτ

Floor(t, τ, N,K) =
n∑
i=1

N(1 +Kτ)Call(t, Ti−1, Ti, Kadj). (3.47)

A cap/floor is defined to be at-the-money (ATM) iff the strike value K is equal to

KATM =
P (0, t)− P (0, Tn)∑n

i=1 τP (0, Ti)
(3.48)

The cap is defined to be in-the-money (ITM) if K < KATM and it is called out-of-the-
money (OTM) if K > KATM .

The general framework we have just depicted can be used to get explicit methods
to derive the prices of caps and floors. In the following sections, we provide two principal
pricing frameworks. In the first one, we present the price of a cap as a portfolio of put
options, whose underlying asset P (t, Ti) depend on an Hull-White rate. In the second
framework the price of a cap is determined assuming that the future payoffs are described
by a Black formula. These two pricing frameworks are then used in the calibration
algorithm presented in Chapter 4. The necessary assumption for the validity of the two
frameworks is that the IBOR rate L(Ti−1, Ti) has a lognormal distribution.

3.3.1 Pricing under the Hull-White model

In the previous sections we have analysed option pricing when the short rate dynamics
follows the Vasicek model. In this section we finally bring together the findings we have
previously acquired: we show how to price cap option written on a zero coupon bond
whose short rate is determined by the Hull-White model.

We remember that the price of a European put written on a zero coupon bond
P (t, T ) with strike K and maturity T is obtained from (3.44), where the expectation is
taken under the forward measure QT .
From Brigo and Mercurio (2006), we know that the stochastic process x(t) in (3.22) is
equal to the r(t) Vasicek-process (3.11) with the parameter θ = 0. Therefore, the x(t)

process is

dx(t) =

[
− ax(t)−B(t, T )σ2

]
dt+ σdW T (t) (3.49)

where dW T (t) is equal to (3.10), the Brownian motion under the forward measure QT .
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Integrating the process x(t) we obtain an equation equal to (3.12) with θ = 0

x(t) = x(s) exp(−a(t− s))− σ2

a2

(
1− exp(−a(t− s))

)
+

σ2

2a2

[
exp(−a(T − t))

− exp(−a(T + t− 2s))

]
+ σ

∫ t

s

exp(−a(t− u))dWQT (u)

(3.50)

Therefore, using the same technique we developed in section 3.2, we observe that r(t) has
a Normal distribution also under the forward measure QT , with a conditional expected
value and a conditional variance equal to

EQT [r(t)∣∣Fs] = x(s) exp(−a(t− s))− σ2

a2

[
1− exp(−a(t− s))

]
+

σ2

2a2

[
exp(−a(T − t))− exp(−a(T + t− 2s))

]
+ α(t)

V arQ
T [
r(t)

∣∣Fs] =
σ2

2a

[
1− exp(−2a(t− s))

]
.

(3.51)

Finally, the price of a put option written on a zero coupon bond P (t, S) with strike K
and maturity T is equal to the general formulation we provided in (3.16) with ω = −1

Put(t, T, S,K) = KP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h) (3.52)

where σp and h coincide with (3.17)

σp = σ

√
1− exp(−2a(T − t))

2a
B(T, S)

h =
σp
2

+
1

σp
ln

(
P (t, S)

P (t, T )K

)
.

(3.53)

We know from Section 3.3 and - particularly - from equation (3.46), that a cap
option can be treated as a portfolio of different put options. Therefore, we are able to
obtain the price of a cap with strike K, nominal value N and a payment schedule divided
into n time intervals with an equal length τ

Cap(t, τ, N,K) = N

n∑
i=1

(
1 + τK

)
Put(t, Ti−1, Ti, Kadj)

= N

n∑
i=1

[
P (t, Ti−1)Φ(−hi + σip)− (1 + τK)P (t, Ti)Φ(−hi)

] (3.54)
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where
Kadj =

1

1 + τK

σip = σ

√
1− exp(−2a(Ti−1 − t))

2a
B(Ti−1, Ti)

hi =
σip
2

+
1

σip
ln

(
(1 + τK)P (t, Ti)

P (t, Ti−1)

)
.

In a similar way, the price of a floor option with corresponding parameters is

Floor(t, τ, N,K) = N
n∑
i=1

[
(1 + τK)P (t, Ti)Φ(hi)− P (t, Ti−1)Φ(hi − σip)

]
. (3.55)

3.3.2 Other pricing models

In the next subsections we show how to derive the price of cap and floor with the Black
model - the one we use in the calibration in Chapter 4 to transform the quoted volatilities
into cap prices - and we briefly introduce option pricing under the Bachelier model and
the Shifted Black model, which represent the new market practice for pricing interest rate
derivatives.

Black model

In this section, we price a cap as the sum of the expected values of each i-caplet under
the Ti-forward measure associated with the zero coupon bond numeraire P (0, Ti).
As observed by Kienitz (2014), we note that applying the change of numeraire (3.43) to
equation (3.45) we obtain the following formulation of the i-caplet’s present value under
the Ti-forward probability measure

Caplet(·) = P (0, Ti)E
QTi
[

1

P (Ti, Ti)
τN

(
L(Ti−1, Ti)−K

)+∣∣∣∣F(t)

]
= P (0, Ti)NτE

QTi
[(
L(Ti−1, Ti)−K

)+∣∣∣∣F(t)

] (3.56)

The calibration algorithm in Chapter 4 is built on the assumption that the forward rate
L(t, Ti−1, Ti) has a lognormal distribution under the Ti-forward measure with the zero
coupon bond numeraire P (0, Ti), therefore its process can be described using a Black
model3. If lognormality is satisfied, the value of a cap can be represented as the discounted

3This assumption was not necessary before the financial crisis: indeed, the forward rate was described
by a martingale process under the Ti-forward measure, with the lognormality of its distribution as a
consequence.
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sum of each single i-caplet

CapBlack(·) = N

n∑
i=1

P (0, Ti)τBlack(K,F (0, Ti−1, Ti), νi, 1) (3.57)

where the Black formula4 is

Black(K,F, ν, ω) = FωΦ(ωd1(K,F, ν))−KωΦ(ωd2(K,F, ν)) (3.58)

with

d1(K,F, ν, ω) =
ln( F

K
) + ν2

2

ν

d2(K,F, ν, ω) =
ln( F

K
)− ν2

2

ν

νi = σcap
√
Ti−1

where σcap is the volatility quoted in the market for a given cap.
The same pricing formula applies to the floor option

FloorBlack = N
n∑
i=1

P (0, Ti)τBlack(K,F (0, Ti−1, Ti), νi,−1) (3.59)

The reader should note that the cap price under the forward measure is calculated as the
sum of the present values of a portfolio of call options, while, in the general formulation
we have provided in (3.45), we have treated caps as portfolios of put options.

Finally, we show how to derive Greeks formulas for a single caplet in the price
equation (3.57). The Greeks are the sensitivities which are calculated for risk management
purposes and they correspond to the derivatives of the caplet’s formula with respect to
the parameters of the model.
Before illustrating the main Greeks, we mention again two important concepts. The first
is that the price of a single caplet at time t = 0 can be represented as

Caplet(·) = NP (0, Ti)τ

[
FΦ(d1)−KΦ(d2)

]
, (3.60)

where Φ is the cumulative standard Normal distribution function. For simplicity we call
σcap as σ until the end of the Black model’s subsection. The second concept is that the

4The derivation of the Black formula is provided in the Appendix B.
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probability density function f(d2) can be written as

f(d2) = f(d1 − σ
√
Ti−1) =

exp

(
− 1

2
(d1 − σ

√
Ti−1)2

)
√

2π

=

exp

(
− d21

2
− σ2t

2
+ d1σ

√
Ti−1

)
√

2π

= f(d1) exp

(
− σ2t

2
+ d1σ

√
Ti−1

)
= f(d1)

F

K

Finally, we can list the following Greeks

∆ =
∂Caplet(·)

∂F
= NP (t, Ti)τ

[
Φ(d1) + f(d1)F

∂d1

∂F
− f(d1 − σ

√
Ti−1)K

∂d1

∂F

]
= NP (t, Ti)τ

[
Φ(d1) + f(d1)F

∂d1

∂F
− f(d1)F

∂d1

∂F

]
= NP (t, Ti)τΦ(d1)

Γ =
∂2Caplet(·)

∂F 2
= NP (t, Ti)τ

[
f(d1)

∂d1

∂F

]
= NP (t, Ti)τ

[
f(d1)

Fσ
√
Ti−1

]
V =

∂Caplet(·)
∂σ

= NP (t, Ti)τ

[
f(d1)F

∂d1

∂σ
−Kf(d1)

F

K

∂d1 − σ
√
Ti−1

∂σ

]
= NP (t, Ti)τ

[
F
√
Ti−1f(d1)

]
Θ =

∂Caplet(·)
∂t

= NP (t, Ti)τ
∂

∂t

[
FΦ(d1)−KΦ(d2)

]
+N

∂P (t, Ti)

∂t
τ

[
FΦ(d1)−KΦ(d2)

]
= NP (t, Ti)τ

[
f(d1)F

∂d1

∂t
− f

(
d1 − σ

√
Ti−1

)
K

]
+N

∂P (t, Ti)

∂t
τ

[
FΦ(d1)−KΦ(d2)

]
= NP (t, Ti)τ

[
f(d1)F

∂d1

∂t
− f(d1)F

(∂d1

∂t
+

σ

2
√
Ti−1

)]
+
Caplet(·)
P (t, Ti)

∂P (t, Ti)

∂t

= NP (t, Ti)τ

[
f(d1)

Fσ

2
√
Ti−1

]
+
Caplet(·)
P (t, Ti)

∂P (t, Ti)

∂t
(3.61)

Normal model

In the first part of this thesis, we have discussed the evolution interest rate modelling
has faced after the financial crisis of 2008. The shift to OIS discounting and the negative
rates implied by the yield curves of several currencies forced financial operators to consider
models other than the Black model, which represented the common practice before interest
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rates related to several primary currencies turned to be negative.

The Normal model, which is also referred as Bachelier model, provides a different
formulation of the dynamic of the asset S(t)5 with respect to the one given by the Black
model dS(t) = σNdW (t)

S(0) = s
(3.62)

The prices of European Call and European Put options written on the asset S(t) with
strike K and maturity T are, according to Kienitz (2014), respectively given by

CallN =

(
S(0)− k exp(−rT )

)
Φ

(
S(0)−K
σN
√
T

)
+ σ
√
TΦ

(
S(0)−K
σN
√
T

)
PutN =

(
K − S(0)

)
Φ

(
− S(0)−K

σN
√
T

)
+ σ
√
TΦ

(
S(0)−K
σN
√
T

) (3.63)

where Φ is the cumulative standard Normal distribution function and σ is the volatility
of the option. The volatility σ can be substituted by the implied volatilities quoted on
the market to retrieve the market price of the option.

Shifted Black model

The Shifted Black model, which is also called Displaced diffusion model, assume that the
dynamics of the asset S(t) followsdS(t) = (S + a)σdW (t)

S(0) = s
(3.64)

where a is the shift parameter. The prices of European Call and European Put options
written on the asset S(t) with strike K and maturity T are respectively given by

CallSB = (S(0) + a)Φ(d1)− (K + a)Φ(d2)

PutSB = (K + a)Φ(−d2)− (S(0) + a)Φ(−d1)
(3.65)

where d1 and d2 are respectively given by

d1 =
ln
(
S+a
K+a

)
+ σ2T

2

σ
√
T

d2 = d1 − σ
√
T .

5We refer to a general asset S(t) and not to the forward rate we indicate in the formulation of the
Black model.
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Shifted models are used by practitioners because they are useful to model term structures
with skewed volatilities. Indeed, the introduction of the displacement parameter a allows
for a more representative volatility surface. For a complete discussion of displaced diffusion
models we refer to Chapter 7 of Andersen and Piterbarg (2010).
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Chapter 4

Calibration of the Hull-White model

In this chapter we analyze the calibration algorithm for the Hull-White short rate model.
We use market quotes for the volatilities of USD LIBOR3M caps. The calibration algo-
rithm reproduces the formulas we provided in Chapter 3. As already explained in the
introduction to the second part of this dissertation, the calibration of the Hull-White
model is done using a single yield curve both for discounting and for retrieving forward
rates. We stress again that the assumption validating this bootstrapping technique is that
the USD LIBOR3M curve has a lognormal distribution. Furthermore, the choice of using
a single yield curve - even if conceptually wrong in a multiple curve world - shouldn’t lead
to considerable errors when comparing the market prices of derivatives with the prices
computed using the single curve approach: indeed, the interbank credit and liquidity
risks are weakened in a market environment where the Federal Reserve Bank (FED) is
still committed on monetary easing policies1 and where the FED promptly and effectively
reacts in order to prevent financial distress, as it did during the Covid-19 pandemic crisis2.
We test this hypothesis in Section 4.1, where we find a reasonable mean squared error
between the market prices and the prices of cap options computed using the single curve
approach.
In the first Section, we present the market data related to caps’ volatilities and premia
and how we built the discount curve. In the second Section, we describe the algorithm
used to calibrate the Hull-White model, whose theoretical basis is rooted in the results
we present throughout Chapter 3 and particularly in Section 3.3.1. In the final Section,
we report the results of our study.

1See the Statement on Longer-Run Goals and Monetary Policy Strategy adopted by the FED on 24
January 2012 and amended as effective on 27 August 2020.

2See the transcript of the Chair Powell’s press conference after the Federal Open Market Committee
(FOMC) meeting on 29 July 2020.
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4.1 Market data selection

The market data we use to calibrate the Hull-White model are the quotes of USD LI-
BOR3M caps’ volatilities and premium; the single curve is instead bootstrapped by a set
of financial instruments and it was directly calculated using the Thomson Reuters’ Eikon
bootstrapping tool for Microsoft Excel.

Quotes for cap options

In this thesis we often referred to caps’ volatilities and premia as market data. However,
since interest rate derivatives are OTC traded, caps’ volatilities and premia shouldn’t
be interpreted as quotes resulting of public market transactions. On the opposite, their
prices are not directly executed on public exchanges and they are quoted for informational
purposes only.
Caps’ volatilities and premium data were retrieved by the tables published by ICAP PLC
on the financial data streaming platform Thomson Reuters’ Eikon. ICAP PLC is an
inter-dealer broker providing execution and information services. It is a global supplier of
financial data for OTC fixed income and derivative pricing. When providing these quotes,
ICAP PLC also publishes the statement "These prices are not executable. They are for
informational purposes only".
ICAP PLC publishes volatilities and premia implied both by the Black and the Normal
model for USD caps whose caplets occur every three months. The notional amount is
equal to USD 10000. We took the data for Black-implied volatilities and premia as of 19
June 2020, their tables are respectively depicted in 4.1 and in 4.2. We also provided the
premium surface in Figure 4.1 and the volatility surface in Figure 4.2. We can appreciate
that the cap’s premium is increasing on the maturity of the cap and it increases as long
as its strike gets closer to the ATM-strike. On the other hand, volatility is greater for
caps with shorter maturities and it is greater for caps whose strike is closer to the value
quoted as ATM-strike. We observe in Table 4.1 that, obviously, the data provider doesn’t
quote premia for in-the-money (ITM) caps, but only for out-of-the-money (OTM) and
at-the-money (ATM) caps. Unfortunately, the data doesn’t clearly disclose any other
information other than the ones we already provided: indeed, the data provider doesn’t
reveal if it imposes any additional constraint or if it formulates additional assumption
on the Black model we have presented in section 3.3.2; moreover, we don’t know which
instruments were used to build the discount curve and the forward yield curve to assess
caps’ prices and volatilities.
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USD Caps - Premium Indications
STK ATM 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00 6.00 7.00

1Y 0.28 4.6 1.3 0.8 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2
2Y 0.24 18.6 18.1 6.6 4.3 3.4 2.6 2.3 2.0 1.9 1.8 1.7 1.6 1.6
3Y 0.26 43.7 21.9 13.7 9.9 6.7 5.3 4.6 4.2 3.6 3.3 3.1 3.0
4Y 0.30 80.5 54.8 36.3 25.2 13.8 9.0 6.8 5.5 4.3 3.7 3.4 3.2
5Y 0.37 130.0 106 75.6 54.6 30.2 18.6 12.8 9.6 6.5 5.1 4.3 3.9
6Y 0.44 191.0 176 132 99.2 57.6 35.7 24.0 17.4 10.9 8.0 6.4 5.4
7Y 0.51 259.0 202 157 95.1 60.1 40.3 28.9 17.4 12.2 9.4 7.7
8Y 0.57 335.0 284 225 142 91.8 62.2 44.5 26.4 18.1 13.6 10.9
9Y 0.63 413.0 374 301 196 129 88.4 63.4 37.4 25.3 18.7 14.8
10Y 0.68 494.0 468 382 255 171 119 85.9 50.6 34.0 24.9 19.5
12Y 0.76 666.0 561 388 270 192 141 84.2 56.5 41.2 32.0
15Y 0.84 934.0 842 604 435 318 238 147 101 75.2 59.3
20Y 0.93 1391 1332 990 735 551 421 265 183 136 107

Table 4.1: Indications of Cap premia for USD as of 19.06.2020. Source: Thomson Reuters’
Eikon - Inter-dealer broker (IDB), ICAP PLC.

USD Caps - Black Implied Volatilities
STK ATM 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00 5.00 6.00 7.00

1Y 0.28 77.41 84.6 81.6 96.4 106 120 129 136 142 151 158 164 169
2Y 0.24 119.8 117 96.3 101 106 114 120 125 129 135 140 144 148
3Y 0.26 150.2 154 107 99.2 96.5 96.4 98.2 100 102 106 109 112 114
4Y 0.30 155.1 185 116 97.7 87.6 77.7 74.3 73.5 73.9 75.7 77.8 79.9 81.8
5Y 0.37 149.4 223 121 97.5 84.3 70.5 64.5 61.8 60.8 60.8 61.8 63.1 64.4
6Y 0.44 136.8 290 124 96.2 81.4 65.9 58.7 55.1 53.4 52.3 52.6 53.2 54.1
7Y 0.51 123.1 499 124 94.3 78.7 62.5 54.7 50.7 48.6 47.0 46.8 47.1 47.6
8Y 0.57 112.3 485 125 92.9 76.9 60.4 52.3 48.0 45.7 43.7 43.2 43.3 43.6
9Y 0.63 104.1 486 126 91.9 75.6 58.9 50.7 46.2 43.7 41.4 40.7 40.7 40.9
10Y 0.68 98.97 414 129 91.9 75.2 58.3 50.0 45.4 42.7 40.2 39.3 39.1 39.1
12Y 0.76 91.33 498 136 92.4 74.7 57.4 48.9 44.1 41.2 38.3 37.2 36.7 36.6
15Y 0.84 85.70 706 161 94.8 74.9 56.8 48.0 43.0 40.0 36.9 35.7 35.1 35.0
20Y 0.93 81.31 729 487 100 76.0 56.2 47.0 41.7 38.5 35.0 33.4 32.6 32.2

Table 4.2: USD Caps/Floors/ATM straddles Black volatilities for USD as of 19.06.2020.
Source: Thomson Reuters’ Eikon - Inter-dealer Broker (IDB), ICAP PLC.
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Figure 4.1: Caps’ premia surface. Source: Thomson Reuters’ Eikon - Inter-dealer Broker
(IDB), ICAP PLC.

Figure 4.2: Black implied volatility surface of Caps/Floors/ATM straddles for USD as of
19.06.2020. Source: Thomson Reuters’ Eikon - Inter-dealer Broker (IDB), ICAP PLC.
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Figure 4.3: The discount curve we used in the calibration algorithm and the corresponding
spot rate curve. The two curves are bootstrapped using USD Deposit, USD LIBOR3M
futures and USD LIBOR3M IRS as of 19 June 2020. Source: Thomson Reuters’ Eikon.

Single yield curve bootstrapping

The single interest rate yield curve was directly bootstrapped using the Thomson Reuters’
Eikon bootstrapping tool for Microsoft Excel. The yield curve is bootstrapped from the
prices of linear interest rate instruments with different maturities as of 19 June 2020: we
select short-term USD deposit to bootstrap the pillar at the third month, i.e. 3M-pillar,
USD LIBOR3M futures for the pillars in the interval from 6M and 1Y9M and, for the
long term period, USD LIBOR3M IRS covering the interval from 2Y to 20Y. The se-
lection of linear interest rate instruments is done according to the indications provided
by Bianchetti and Morini (2013) when discussing the single curve framework. The boot-
strapping formulas adopted by Thomson Reuters’ Eikon are equal to the bootstrapping
equations (2.3), (2.7) and (2.12) we provided in Section 2.1.1. According to the method-
ology disclosure of Thomson Reuters’ Eikon as of June 2020, the curves "are calculated
using Adfin Analytics and source the best-in-class real-time quotes from major trading
platforms such as Tradeweb as well as major broking firms". Furthermore, the curves
are bootstrapped interpolating the missing pillars with the Anderson version of the basis
spline approach.
The spot curve and the discount curve are displayed in Figure 4.3.

The goodness of the single curve is tested by computing the mean squared error
between the prices provided by ICAP PLC in Table 4.1 and the prices retrieved by apply-
ing the Black formula to the Black implied volatilities provided by ICAP PLC in Table
4.2. The resulting mean squared error is equal to 0.0126, a value we consider acceptable
for our modelling purposes.
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4.2 Calibration algorithm

In this section we present the MATLAB implementation of the calibration technique.
We present the MATLAB code, explaining the meaning and the reasoning behind each
different function.

Data entry

The data are entered into the calibration algorithm by converting prices and volatilities
into usable arrays. We present below lines from 1 to 26 of the main.m function.

1 cap_dataset = readtab l e ( ’ cap . x l sx ’ ) ;
2 zcurve_dataset = readtab l e ( ’ zcurve . x l sx ’ ) ;
3 cap_dataset = tab l e2a r ray ( cap_dataset ) ;
4

5 n_cap = length ( cap_dataset ) ;
6

7 sigma_data = cap_dataset ( : , 2 ) ;
8 sigma_data = sigma_data . / 1 0 0 ;
9

10 s t r ike_data = cap_dataset ( : , 3 ) ;
11 s t r ike_data = str ike_data . / 1 0 0 ;
12

13 premium_data = cap_dataset ( : , 4 ) ;
14

15 zc_maturity = tab l e2a r ray ( zcurve_dataset ( : , 5 ) ) ;
16 zc_maturity = [ 0 , t ranspose ( zc_maturity ) ] ;
17 zc_maturity = transpose ( zc_maturity ) ;
18

19 d i scount = tab l e2a r ray ( zcurve_dataset ( : , 3 ) ) ;
20 d i scount = transpose ( [ 1 , t ranspose ( d i s count ) ] ) ;
21

22 tau = 0 . 2 5 ;
23

24 P_m2 = int e rp1 ( zc_maturity , d iscount , 0 . 0 0 1 , ’ l i n e a r ’ ) ;
25 P_m1 = int e rp1 ( zc_maturity , d iscount , 0 , ’ l i n e a r ’ ) ;
26 f_0 = −( l og (P_m2)−l og (P_m1) ) / (0 . 001 ) ;

The lines from 24 to 26 are used to determine the instantaneous forward rate.
Since the interpolated discount curve is not differentiable, we use a numerical method to
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compute the derivative: we take the logarithm of the discount curve at time 0 and at time
0.001, then we divide the difference between the two logarithms for the time delta. The
instantaneous forward rate is equal to 0.0014.

Determine the prices using implied volatilities

We present below the lines from 27 to 59 of the main.m function. The lines describe how
to compute the mean squared error we use to test the goodness of the discount curve.
We first price each single cap using the Black implied volatilities in Table 4.2 and the
Black formula for cap options. Then, we compute the mean square error between the
quoted prices and the prices obtained by applying the Black formula.
Unfortunately, we are not able to test the quality of the Black prices whose strikes are
smaller than the quoted strike for a given maturity. Indeed, ICAP doesn’t publish this
type of premium data. Therefore, we don’t consider the observations whose quoted prices
are missing.

1 cap_builder = c e l l (1 , n_cap) ;
2

3 f o r i = 1 : n_cap
4 n = 1+round ( cap_dataset ( i , 5 ) / tau ) ;
5 i_cap = ze ro s (n , 4 ) ;
6 i_cap ( : , 1 ) = transpose ( 0 : tau : cap_dataset ( i , 5 ) ) ;
7

8 f o r j = 1 : n
9 i_cap ( j , 2 ) = in t e rp1 ( zc_maturity , d iscount , i_cap ( j , 1 ) , ’

s p l i n e ’ ) ;
10 end
11

12 i_cap ( : , 3 ) = sigma_data ( i , 1 ) ;
13 i_cap ( : , 4 ) = str ike_data ( i , 1 ) ;
14

15 cap_builder { i } = i_cap ;
16

17 end
18

19 caps_black = ze ro s (n_cap , 1 ) ;
20

21 f o r i = 1 : n_cap
22

23 i_cap = cap_builder { i } ;
24 i_cap_black_price = cap_black_formula ( i_cap ) ;
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25 caps_black ( i ) = i_cap_black_price ;
26

27 end
28

29 undefined_premium = sum( isnan (premium_data ) ) ;
30 premium_data ( i snan (premium_data ) ,1 ) = caps_black ( i snan (

premium_data ) ,1 ) ;
31 premium_diff = ( ( caps_black . / premium_data )−1) . ^2 ;
32 mse_premium = (sum( premium_diff ) ) /( s i z e ( premium_diff , 1 )−

undefined_premium ) ;

The function cap_black_formula.m refers to the Black pricing formula for cap op-
tions in equation (3.57) and it is equal to

1 f unc t i on y = cap_black_formula ( i_cap )
2 h = s i z e ( i_cap , 1 ) ;
3 cap = 0 ;
4 N = 10000;
5 tau = 0 . 2 5 ;
6

7 f o r j = 2 : h
8 P = i_cap ( j , 2 ) ;
9 F = (( i_cap ( j −1 ,2)/ i_cap ( j , 2 ) )−1)/ tau ;

10 STK = i_cap ( j , 4 ) ;
11 sigma = i_cap ( j , 3 ) ;
12 v = sigma∗ s q r t ( i_cap ( j −1 ,1) ) ;
13 d_1 = ( log (F/STK)+(v^2) /2) /v ;
14 d_2 = ( log (F/STK)−(v^2) /2) /v ;
15 Nd_1 = normcdf (d_1) ;
16 Nd_2 = normcdf (d_2) ;
17 black = F∗Nd_1−STK∗Nd_2;
18 cap l e t = N∗P∗ tau∗black ;
19 cap = cap+cap l e t ;
20 end
21

22 y = cap ;
23

24 end
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Minimization function

For t = 0 we observe that equation (3.41) reduces to

A(0, T ) = P (0, T ) exp
(
B(0, T )r(0)

)
,

where we substitute the instantaneous forward rate with the short rate at time t = 0,
since f(0, 0) = r(0). Hence, we don’t need to calibrate the value r(0).
Furthermore, we observe that for t = 0 we are not able to calibrate the parameters of the
Hull-White model, a and σ, using equations (3.40) and (3.41). However, we know that
the bond price P (0, T ) is equal to the bond price Pmkt(0, T ) implied by the zero rates
observed in the market at time t = 0, thus leading to equation (3.37). Therefore, we
are able to calibrate the Hull-White model directly by using equation (3.37) in equation
(3.52): indeed, we observe that the parameters of the model, a and σ, finally enter into
the newly obtained equation for t = 0.

We use a minimization function to calibrate the Hull-White model’s parameters a
and σ in equation (3.21). The reverse calibration procedure can be summarized as:

1. define an interest rate dynamics using the Hull-White model;

2. price a zero coupon bond using the Hull-White interest rate dynamics;

3. price a put option using the zero coupon bond;

4. price the caplets using the zero coupon put;

5. price the cap as a sum of caplets (HW cap);

6. find the Black implied volatilities minimizing the absolute difference between the
Black prices and the HW prices;

7. minimize the mean squared error between the quoted Black implied volatilities and
the volatilities we found in the previous step.

The minimization function is indicated in lines from 61 to 68 of the main.m function.

1 t a r g e t = @(x )mse (x (1 ) , x (2 ) , cap_builder , sigma_data ) ;
2 setup_x = [ 0 . 1 , 1 ] ;
3 lb = [ 0 , 0 . 0 1 ] ;
4 ub = [+ Inf ,+ In f ] ;
5 [ x , mse_sigma ] = fmincon ( target , setup_x , [ ] , [ ] , [ ] , [ ] , lb , ub ) ;
6
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7 a_star = x (1) ;
8 sigma_star = x (2) ;

The function mse.m computes the mean squared error between the quoted Black
implied volatilities and the fictitious Black implied volatilities minimizing the MSE be-
tween Black and the HW prices.

1 f unc t i on y = mse (a , sigma , cap_builder , sigma_data )
2

3 n = s i z e ( cap_builder , 2 ) ;
4

5 d i f f_va lue = sigma_data−sigma_black_finder ( a , sigma ,
cap_builder ) ;

6 y = (sum( d i f f_va lue .^2) ) /n ;
7

8 end

The function sigma_black_finder.m finds the fictitious Black implied volatilities
by the minimization of the absolute difference between Black and HW prices.

1 f unc t i on y = sigma_black_finder ( a , sigma , cap_builder )
2

3 n = s i z e ( cap_builder , 2 ) ;
4 caps_hw = ze ro s (n , 1 ) ;
5 sigma_black = ze ro s (n , 1 ) ;
6

7 f o r i = 1 : n
8

9 i_cap = cap_builder { i } ;
10 caps_hw( i ) = cap_hw_put_formula (a , sigma , i_cap ) ;
11

12 t a r g e t = @(x ) ( abs ( cap_black_formula_vol ( i_cap , x (1 ) ) −
caps_hw( i ) ) ) ;

13 setup_x = 0 ;
14 lb = 0 ;
15 ub = In f ;
16

17 sigma_black ( i ) = fmincon ( target , setup_x , [ ] , [ ] , [ ] , [ ] , lb , ub
) ;

18
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19 end
20

21 y = sigma_black ;
22

23 end

The function cap_black_formula_vol.m is used to find the value for Black implied
volatilities.

1 cap funct ion y = cap_black_formula_vol ( i_cap , sigma )
2 h = s i z e ( i_cap , 1 ) ;
3 cap = 0 ;
4 N = 10000;
5 tau = 0 . 2 5 ;
6

7 f o r j = 2 : h
8 P = i_cap ( j , 2 ) ;
9 F = (( i_cap ( j −1 ,2)/ i_cap ( j , 2 ) )−1)/ tau ;

10 STK = i_cap ( j , 4 ) ;
11 v = sigma∗ s q r t ( i_cap ( j −1 ,1) ) ;
12 d_1 = ( log (F/STK)+(v^2) /2) /v ;
13 d_2 = ( log (F/STK)−(v^2) /2) /v ;
14 Nd_1 = normcdf (d_1) ;
15 Nd_2 = normcdf (d_2) ;
16 black = F∗Nd_1−STK∗Nd_2;
17 cap l e t = N∗P∗ tau∗black ;
18 cap = cap+cap l e t ;
19 end
20

21 y = cap ;
22 end

The function cap_hw_put_formula.m computes the price of a cap by considering
a cap as a portfolios of put options, summing up the present values of the future payments.

1 f unc t i on y = cap_hw_put_formula (a , sigma , i_cap )
2

3 n = s i z e ( i_cap , 1 ) ;
4 p r i c e = 0 ;
5

95



6 f o r i = 2 : n
7

8 p r i c e = p r i c e+caplets_hw_put_formula (a , sigma , i_cap ( i
−1 ,1) , i_cap ( i , 1 ) , i_cap ( i −1 ,2) , i_cap ( i , 2 ) , i_cap ( i , 4 ) ) ;

9

10 end
11

12 y = pr i c e ;
13

14 end

The function caplets_hw_put_formula.m computes the price of a single caplets
applying equation (3.54).

1 f unc t i on y = caplets_hw_put_formula (a , sigma ,T, S ,P_1,P,STK)
2

3 N = 10000;
4 tau = 0 . 2 5 ;
5 STK_model = 1+STK∗ tau ;
6 y = N∗(1+STK∗ tau )∗zbp_hw(a , sigma ,T, S ,P_1,P, STK_model) ;
7

8 end

The function zbp_hw.m finds the price of a put option whose underlying asset is a
zero coupon bond depending on a interest rate process described by the Hull-White model.

1 f unc t i on y = zbp_hw(a , sigma ,T, S ,P_1,P,STK)
2

3 t = 0 ;
4

5 B_T_S = (1/ a )∗(1−exp(−a∗(S−T) ) ) ;
6

7 sigma_p = sigma∗ s q r t ((1−exp(−2∗a∗(T−t ) ) ) /(2∗ a ) )∗B_T_S;
8 h = (1/ sigma_p )∗ l og ( (P∗STK) /(P_1) )+sigma_p /2 ;
9

10 PHI_STK = normcdf(−h+sigma_p ) ;
11 PHI_1 = normcdf(−h) ;
12

13 y = STK∗P_1∗PHI_STK−P∗PHI_1 ;
14
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15 end

We test the goodness of the calibration algorithm by rearranging the structure of
the main.m function in the following way: after having selected some a priori values for
the parameters a and σ, we calculate the zero rate curve and the Black implied volatilities;
then, we calibrate the model using the implied volatilities. We observe that the values
of the calibrated parameters are equal to the values we selected at the beginning of the
testing procedure. Therefore, we conclude that the algorithm is correct and that it can
be used to calibrate the Hull-White model from cap volatilities.
Finally, executing the MATLAB code returns us the following values of the calibrated
parameters:

• a = 0.0771

• σ = 0.0102.

Using this parameters, we build a vector of Black implied volatilities using the function
sigma_black_finder.m and we compare this vector with the one containing quoted Black
implied volatilities. We observe that the average absolute deviation is equal to 1.3710.
Therefore, we conclude that there some disturbance elements in the calibration algorithm.
We already know that we have not lost any relevant information using the bootstrapped
LIBOR3M curve, notwithstanding we adopt a single curve approach instead of the mul-
tiple curve one. Furthermore, we know that the MATLAB code shouldn’t lose relevant
informations while calibrating the algorithm: as already mentioned, we test the algorithm
inputting fictitious values for a and σ parameters and we observe that the procedure is
able to reproduce the original values. The reason we obtain a huge value for the aver-
age absolute deviation lies, according to Kienitz (2014), on the fact that the volatility
is increasing for in-the-money (ITM) and out-of-the-money (OTM) options3. Indeed, we
observe that cap volatilities in Figure 4.2 have extreme values for ITM and OTM strikes.
This problem could be solved by restricting the size of the matrix in Table 4.2, selecting an
area which presents more homogeneous volatilities. However, we also know that applying
this selection will reduce consistently the size of the data, thus imposing an additional
loss of information.

According to Caspers and Kienitz (2017), we could solve the volatility problem
by shifting to models which incorporates non constant volatilities. Caspers and Kienitz
(2017) divide volatility models in two main classes. In the first class they account for local
volatility models, which consider a deterministic function σ(r(t), t) depending both on the

3The graph displaying volatilities as a function of strike values is called volatility smile and it is a
bidimensional version of the volatility surface we have depicted in Figure 4.2. The volatility is normally
higher when the strike tends to be more ITM or more OTM.

97



rate r(t) and on the time t. The second class represents stochastic volatility models, which
are characterised by a stochastic representation of the volatility term

dσ(t) = µσ(t)dt+ ν(t)dW (t)

where µσ is the drift parameter, ν is the diffusion parameter andW is a Brownian motion.

The calibrated parameters can then be used to model the term structure equation,
determining the future evolution of the single yield curve. Indeed, we could apply the
term structure model for pricing purposes, following the steps we have outlined at the
beginning of Chapter 2. According to Caspers and Kienitz (2017), the requirements that
a calibrated model should satisfy in order to be used for pricing are robustness, flexibility
and efficiency; the model should enable the analyst to turn the model parameters into
market prices.
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Appendix A

SDE and PDE

Given three functions µ(t, x), σ(t, x) and Φ(x), we have the following problem

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x) = 0,

F (T, x) = Φ(x).

(A.1)

We assume that there exists a solution F to the problem A.1 on [0, T ]×R.
Firstly, we define a stochastic process X as a solution of the following SDE in the interval
[t, T ] under the probability measure Q

dXs = µ(s,Xs)ds+ σ(s,Xs)dW
Q
s ,

Xt = x.
(A.2)

Therefore, we apply the Itô formula to F (s,X(s)) and we obtain

F (T,XT ) = F (t,Xt) +

∫ T

t

{
∂F

∂t
(s,Xs) + µ(t, x)

∂F (s,Xs)

∂x

+
1

2
σ2(t, x)

∂2F (s,Xs)

∂x2

}
ds+

∫ T

t

σ(s,Xs)
∂F

∂x
(s,Xs)dWs.

(A.3)

We can avoid to consider the time integral and the stochastic integral because of the
assumption that F is a solution of the problem A.1 and because σ(s,Xs)

∂F
∂x

(s,Xs) is
integrable. Finally, given a value Xt = x at the start point t, we provide the Feynman-
Kac representation

F (t, x) = Et,x[Φ(XT )]. (A.4)

We now have the following parabolic problem with the functions µ(t, x), σ(t, x), Φ(t, x)
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and r(t, x)

∂F

∂t
(t, x) + µ(t, x)

∂F

∂x
(t, x) +

1

2
σ2(t, x)

∂2F

∂x2
(t, x)− r(t, x)F (t, x) = 0,

F (T, x) = Φ(x).

(A.5)

We define a stochastic process equal to (A.2) under the probability measure Q and the
process

Z(s) = exp

{
−
∫ s

t

r(u,Xu)du

}
F (s,Xs). (A.6)

We apply the product decomposition to the Itô process (A.6)

dZ = d

[
exp

{
−
∫ s

t

r(u,Xu)du

}]
F (s,Xs) + exp

{
−
∫ s

t

r(u,Xu)du

}
dF (s,Xs)

+d

[
exp

{
−
∫ s

t

r(u,Xu)du

}]
dF (s,Xs)

(A.7)

where the third term is equal to zero because

d

[
exp

{
−
∫ s

t

r(u,Xu)du

}]
= −r(s,Xs)exp

{
−
∫ s

t

r(u,Xu)du

}
ds. (A.8)

Therefore, we apply the Itô formula to dF (s,Xs) and we get

dZ = exp

{
−
∫ s

t

r(u,Xu)du

}(
− r(s,Xs)F (s,Xs) + µ(s,Xs)

∂F

∂x
+
∂F

∂t

+
1

2
σ2(s,Xs)

∂2F

∂x2

)
ds+ exp

{
−
∫ s

t

r(u,Xu)du

}
σ(s,Xs)

∂F

∂x
dWQ.

(A.9)

The time integral vanishes and, integrating equation (A.9), we obtain

Z(T ) = Z(t) +

∫ T

t

exp

{
−
∫ s

t

r(u,Xu)du

}
σ(s,Xs)

∂F

∂x
dWQ. (A.10)

Taking the conditional expectation, we observe that the Itô integral has zero expected
value. Therefore, it follows that

E[Z(T )|Xt = x] = E[Z(t)|Xt = x] = F (t, x) (A.11)

and, finally, we obtain the solution of the parabolic problem under the probability measure
Q

F (t, x) = EQ
[
exp

{
−
∫ T

t

r(u,Xu)du

}
× Φ(XT )

∣∣∣∣Xt = x

]
. (A.12)
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Appendix B

Derivation of option prices under the
Black model

We derive the price of an option whose underlying asset’s dynamics is described by the
Black model

dS(t) = σS(t)dW (t). (B.1)

Applying Itô’s lemma to the natural logarithm of the underlying asset, we have

f(t, S(t)) = lnS(t)

df(t, S(t)) = − 1

2S2(t)
S2(t)σ2dt+

1

S(t)
S(t)σdW (t) = σdW (t)− σ2t

2

Integrating the last equation in the time interval from 0 to t, we obtain∫ t

0

d lnS(u) = σ

∫ t

0

dW (u)− σ2

2

∫ t

0

du

ln
S(t)

S(0)
= σW (t)− σ2t

2

S(t) = S(0) exp

(
σW (t)− σ2t

2

)
Therefore, f(t, S(t)) = lnS(t) has a Normal distribution and its mean and variance are
given respectively by

E[f(t, S(t))] = E

[
lnS(0) + σW (t)− σ2t

2

]
= lnS(0)− σ2t

2

V ar[f(t, S(t))] = V ar

[
lnS(0) + σW (t)− σ2t

2

]
= σ2(t− 0) = σ2t
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The payoff at time t of a call option under the risk-neutral probability measure is expressed
as

Call = EQ
[
(S(t)−K)+

]
= EQ

[
S(t)× 1{S(t)>K}

]
− EQ

[
K × 1{S(t)>K}

]
.

Before we analyse separately the two terms, we introduce the density function f of y(t) =

f(t, S(t))

fy(t)(y) =
1

σ
√

2πt
exp

[
−
(
y − lnS(0) + σ2t

2

)2

2σ2t

]
(B.2)

and, consequently, the density function fS(t)(S) of the underlying asset

fS(t)(S) =
dy

dS
fy(t)(y) =

1

Sσ
√

2πt
exp

[
−
(
y − lnS(0) + σ2t

2

)2

2σ2t

]
.

Therefore, we can calculate the first expectation

EQ
[
S(t)× 1{S(t)>K}

]
=

∫ ∞
K

S
dy

dS
fy(t)(y) =

1

Sσ
√

2πt
exp

[
−
(
y − lnS(0) + σ2t

2

)2

2σ2t

]
dS

We introduce a variable x

x =
lnS − lnS(0) + σ2t

2

σ
√
t

where
dS = Sσ

√
tdx = exp

(
xσ
√
t+ lnS(0)− σ2t

2

)
σ
√
tdx.

When the call is at-the-money, i.e. the asset value S is equal to the strike K, we have

x =
ln K

S(0)
+ σ2t

2

σ
√
t

.

Therefore, changing the integration variable S with x we obtain

EQ
[
S(t)× 1{S(t)>K}

]
=

∫ ∞
ln K
S(0)

+σ
2t
2

σ
√
t

1

σ
√

2πt
exp

(
− x2

2
+ xσ

√
t+ lnS(0)− σ2t

2

)
σ
√
tdx

= S(0)

∫ ∞
ln K
S(0)

+σ
2t
2

σ
√
t

1√
2π

exp

(
− (x− σ

√
t)2

2

)
dx

Notice that the term x− σ
√
t has a standard Normal distribution function which allows

us to represent the expectation as

EQ
[
S(t)× 1{S(t)>K}

]
= S(0)Φ

(
ln S(0)

K
+ σ2t

2

σ
√
t

)
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The second expectation reduces to

EQ
[
K × 1S(t)>K

]
= KEQ[1S(t)>K ] = KP [S(t) > K] = KP

[
S(0) exp

(
σW (t)− σ2t

2

)
> K

]
= KP

[
W (t)√

t
>

ln K
S(0)

+ σ2t
2

σ
√
t

]
= KΦ

(
ln S(0)

K
− σ2t

2

σ
√
t

)

where the last equivalence is true because the term W (t)√
t

has a standard Normal distribu-
tion. Finally, we can express the payoff of the Call option as

CallBlack = S(0)Φ

(
ln S(0)

K
+ σ2t

2

σ
√
t

)
−KΦ

(
ln S(0)

K
− σ2t

2

σ
√
t

)
= S(0)Φ(d1)−KΦ(d2)

We can apply a further generalization introducing the parameter ω, which is equal to 1 if
the option is a call and to -1 if the option is a put. Hence, we have

Black = ωS(0)Φ(ωd1)− ωKΦ(ωd2).
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Appendix C

Change of numeraire: the
Brigo-Mercurio toolkit

We first consider the dynamics of a process x(t) under the measure QS

dx(t) = µS(t, x(t))dt+ σ(t, x(t))CdW S(t).

Brigo and Mercurio (2006) developed a toolkit to express the process x(t) under a different
measure QU

dx(t) = µU(t, x(t))dt+ σ(t, x(t))CdWU(t).

The toolkit requires that the processes of the two numeraires S and U are - under the
measure QU - equal to

dS(t) = (·)dt+ σS(t)CdWQU (t)dU(t) = (·)dt+ σU(t)CdWQU (t) (C.1)

The authors use the following formulas to determine, respectively, the drift and the dif-
fusion terms

µU(t, x(t)) = µS(t, x(t))− σ(t, x(t))ρ

(
σS(t)

S(t)
− σU(t)

U(t)

)
CdW S(t) = CdWU(t)− ρ

(
σS(t)

S(t)
− σU(t)

U(t)

)
dt.
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Appendix D

Simulation algorithm

D.1 Main function

1 OIS_curve = readtab l e ( ’OIS_USD. x l sx ’ ) ;
2 OIS_dates = tab l e2a r ray (OIS_curve ( 1 : 4 5 , 7 ) ) ;
3 OIS_rates = tab l e2a r ray (OIS_curve ( 1 : 4 5 , 3 ) ) ;
4 OIS_rates = OIS_rates . / 1 0 0 ;
5

6 LIBOR1M_curve = readtab l e ( ’swap_1m . x l sx ’ ) ;
7 LIBOR1M_dates = tab l e2a r ray (LIBOR1M_curve ( 1 : 4 5 , 7 ) ) ;
8 LIBOR1M_rates = tab l e2a r ray (LIBOR1M_curve ( 1 : 4 5 , 3 ) ) ;
9 LIBOR1M_rates = LIBOR1M_rates . / 1 0 0 ;

10

11 LIBOR3M_curve = readtab l e ( ’swap_3m . x l sx ’ ) ;
12 LIBOR3M_dates = tab l e2a r ray (LIBOR3M_curve ( 1 : 4 5 , 7 ) ) ;
13 LIBOR3M_rates = tab l e2a r ray (LIBOR3M_curve ( 1 : 4 5 , 3 ) ) ;
14 LIBOR3M_rates = LIBOR3M_rates . / 1 0 0 ;
15

16 LIBOR6M_curve = readtab l e ( ’swap_6m . x l sx ’ ) ;
17 LIBOR6M_dates = tab l e2a r ray (LIBOR6M_curve ( 1 : 4 5 , 7 ) ) ;
18 LIBOR6M_rates = tab l e2a r ray (LIBOR6M_curve ( 1 : 4 5 , 3 ) ) ;
19 LIBOR6M_rates = LIBOR6M_rates . / 1 0 0 ;
20

21 LIBOR12M_curve = readtab l e ( ’swap_12m . x l sx ’ ) ;
22 LIBOR12M_dates = tab l e2a r ray (LIBOR12M_curve ( 1 : 4 5 , 7 ) ) ;
23 LIBOR12M_rates = tab l e2a r ray (LIBOR12M_curve ( 1 : 4 5 , 3 ) ) ;
24 LIBOR12M_rates = LIBOR12M_rates . / 1 0 0 ;
25
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26 t r i a l = 100 ;
27 n = 12∗5 ; %12months ∗ 5 years
28

29 %Dates are equal f o r each type o f i n t e r e s t r a t e . There fore we
only use OIS_dates

30

31 sett lement_date = datenum( ’19−Jun−2020 ’ ) ;
32 dates = datemnth ( sett lement_date ,12∗OIS_dates ) ;
33

34 OIS_propert ies = in t env s e t ( ’ Rates ’ , OIS_rates , ’ EndDates ’ , dates , ’
StartDate ’ , sett lement_date ) ;

35 LIBOR1M_properties = in t env s e t ( ’ Rates ’ ,LIBOR1M_rates , ’ EndDates ’ ,
dates , ’ StartDate ’ , sett lement_date ) ;

36 LIBOR3M_properties = in t env s e t ( ’ Rates ’ ,LIBOR3M_rates , ’ EndDates ’ ,
dates , ’ StartDate ’ , sett lement_date ) ;

37 LIBOR6M_properties = in t env s e t ( ’ Rates ’ ,LIBOR6M_rates , ’ EndDates ’ ,
dates , ’ StartDate ’ , sett lement_date ) ;

38 LIBOR12M_properties = in t env s e t ( ’ Rates ’ ,LIBOR12M_rates , ’ EndDates
’ , dates , ’ StartDate ’ , sett lement_date ) ;

39

40 alpha1 = 0 . 1 ;
41 sigma1 = 0 . 0 0 4 ;
42 theta1 = 0 . 0 0 2 ;
43 alpha2 = 0 . 1 ;
44 sigma2 = 0 . 0 0 3 ;
45 theta2 = 0 . 0 0 4 ;
46 alpha3 = 0 . 0 8 ;
47 sigma3 = 0 . 0 0 6 ;
48

49 i n t e r e s t_ra t e1 = hwfactor ( OIS_properties , LIBOR1M_properties ,
alpha1 , sigma1 , theta1 , . . .

50 alpha2 , sigma2 , theta2 , alpha3 , sigma3 , 0 . 0 0 4 ) ;
51 i n t e r e s t_ra t e3 = hwfactor ( OIS_properties , LIBOR3M_properties ,

alpha1 , sigma1 , theta1 , . . .
52 alpha2 , sigma2 , theta2 , alpha3 , sigma3 , 0 . 0 0 8 ) ;
53 i n t e r e s t_ra t e6 = hwfactor ( OIS_properties , LIBOR6M_properties ,

alpha1 , sigma1 , theta1 , . . .
54 alpha2 , sigma2 , theta2 , alpha3 , sigma3 , 0 . 0 1 1 ) ;
55 i n t e r e s t_ra t e12 = hwfactor ( OIS_properties , LIBOR12M_properties ,

alpha1 , sigma1 , theta1 , . . .
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56 alpha2 , sigma2 , theta2 , alpha3 , sigma3 , 0 . 0 1 4 ) ;
57

58 % rf_rate1 , r f_rate3 , r f_rate6 and r f_rate12 are a l l equal .
59

60 [ r f_rate1 , market1M_rate ] = rate_s imulator ( in t e r e s t_rate1 , n , ’
nTr i a l s ’ , t r i a l , ’ DeltaTimes ’ ,1/12) ;

61 [ r f_rate3 , market3M_rate ] = rate_s imulator ( in t e r e s t_rate3 , n , ’
nTr i a l s ’ , t r i a l , ’ DeltaTimes ’ ,1/12) ;

62 [ r f_rate6 , market6M_rate ] = rate_s imulator ( in t e r e s t_rate6 , n , ’
nTr i a l s ’ , t r i a l , ’ DeltaTimes ’ ,1/12) ;

63 [ r f_rate12 , market12M_rate ] = rate_s imulator ( in t e r e s t_rate12 , n , ’
nTr i a l s ’ , t r i a l , ’ DeltaTimes ’ ,1/12) ;

64

65 maturity = datemnth ( sett lement_date , n ) ;
66 coupon = 0 ;
67

68 sim_date = datemnth ( sett lement_date , 1 : n ) ;
69

70 sim_OIS_price = ze ro s (n+1, t r i a l ) ;
71 sim_OIS_price ( 1 , : , : ) = bondbyzero ( OIS_properties , coupon ,

sett lement_date , maturity ) ;
72 sim_OIS_price ( end , : , : ) = 100 ;
73

74 sim_market1M_price = ze ro s (n+1, t r i a l ) ;
75 sim_market1M_price ( 1 , : , : ) = bondbyzero ( LIBOR1M_properties , coupon

, sett lement_date , maturity ) ;
76 sim_market1M_price ( end , : , : ) = 100 ;
77

78 sim_market3M_price = ze ro s (n+1, t r i a l ) ;
79 sim_market3M_price ( 1 , : , : ) = bondbyzero ( LIBOR3M_properties , coupon

, sett lement_date , maturity ) ;
80 sim_market3M_price ( end , : , : ) = 100 ;
81

82 sim_market6M_price = ze ro s (n+1, t r i a l ) ;
83 sim_market6M_price ( 1 , : , : ) = bondbyzero ( LIBOR6M_properties , coupon

, sett lement_date , maturity ) ;
84 sim_market6M_price ( end , : , : ) = 100 ;
85

86 sim_market12M_price = ze ro s (n+1, t r i a l ) ;
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87 sim_market12M_price ( 1 , : , : ) = bondbyzero ( LIBOR12M_properties ,
coupon , sett lement_date , maturity ) ;

88 sim_market12M_price ( end , : , : ) = 100 ;
89

90 f o r i =1:n−1
91

92 s t ruct_r f_rate1 = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

93 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
r f_rate1 ( i +1 , : , : ) ) ) ;

94 sim_OIS_price ( i +1 , : ) = bondbyzero ( struct_rf_rate1 , coupon ,
sim_date ( i ) , maturity ) ;

95

96 struct_market1M_rate = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

97 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
market1M_rate ( i +1 , : , : ) ) ) ;

98 sim_market1M_price ( i +1 , : ) = bondbyzero ( struct_market1M_rate ,
coupon , sim_date ( i ) , maturity ) ;

99

100 end
101

102 f o r i =1:n−1
103

104 s t ruct_r f_rate3 = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

105 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
r f_rate3 ( i +1 , : , : ) ) ) ;

106 sim_OIS_price ( i +1 , : ) = bondbyzero ( struct_rf_rate3 , coupon ,
sim_date ( i ) , maturity ) ;

107

108 struct_market3M_rate = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

109 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
market3M_rate ( i +1 , : , : ) ) ) ;

110 sim_market3M_price ( i +1 , : ) = bondbyzero ( struct_market3M_rate ,
coupon , sim_date ( i ) , maturity ) ;

111

112 end
113
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114 f o r i =1:n−1
115

116 s t ruct_r f_rate6 = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

117 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
r f_rate6 ( i +1 , : , : ) ) ) ;

118 sim_OIS_price ( i +1 , : ) = bondbyzero ( struct_rf_rate6 , coupon ,
sim_date ( i ) , maturity ) ;

119

120 struct_market6M_rate = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

121 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
market6M_rate ( i +1 , : , : ) ) ) ;

122 sim_market6M_price ( i +1 , : ) = bondbyzero ( struct_market6M_rate ,
coupon , sim_date ( i ) , maturity ) ;

123

124 end
125

126 f o r i =1:n−1
127

128 s t ruct_r f_rate12 = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

129 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
r f_rate12 ( i +1 , : , : ) ) ) ;

130 sim_OIS_price ( i +1 , : ) = bondbyzero ( struct_rf_rate12 , coupon ,
sim_date ( i ) , maturity ) ;

131

132 struct_market12M_rate = in t env s e t ( ’ StartDate ’ , sim_date ( i ) , ’
EndDates ’ , . . .

133 datemnth ( sim_date ( i ) ,12∗OIS_dates ) , ’ Rates ’ , squeeze (
market12M_rate ( i +1 , : , : ) ) ) ;

134 sim_market12M_price ( i +1 , : ) = bondbyzero (
struct_market12M_rate , coupon , sim_date ( i ) , maturity ) ;

135

136 end
137

138 est imated_rf_rate = mean( r f_rate1 ( 2 : 6 1 , : , : ) , 3 ) ;
139 estimated_1M_rate = mean(market1M_rate ( 2 : 6 1 , : , : ) , 3 ) ;
140 estimated_3M_rate = mean(market3M_rate ( 2 : 6 1 , : , : ) , 3 ) ;
141 estimated_6M_rate = mean(market6M_rate ( 2 : 6 1 , : , : ) , 3 ) ;
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142 estimated_12M_rate = mean(market12M_rate ( 2 : 6 1 , : , : ) , 3 ) ;
143

144 f i g u r e (1 )
145 p lo t ( [ sett lement_date sim_date ] , sim_OIS_price )
146 da t e t i c k
147 y l ab e l ( ’Bond Pr i ce ’ )
148 x l ab e l ( ’ S imulat ion Dates ’ )
149 t i t l e ( ’ Simulated Risk−f r e e Bond Pr i ce ’ )
150 plot_dates = transpose (OIS_dates ) ;
151 f i g u r e (2 )
152 s u r f ( plot_dates , 1 : 6 0 , est imated_rf_rate , ’ FaceColor ’ , ’ r ’ )
153 y t i c k s ( 1 2 : 1 2 : 6 0 )
154 y t i c k l a b e l s ({ ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ })
155 hold on
156 s u r f ( plot_dates , 1 : 6 0 , estimated_1M_rate , ’ FaceColor ’ , ’m’ )
157 hold on
158 s u r f ( plot_dates , 1 : 6 0 , estimated_3M_rate , ’ FaceColor ’ , ’ b ’ )
159 hold on
160 s u r f ( plot_dates , 1 : 6 0 , estimated_6M_rate , ’ FaceColor ’ , ’ y ’ )
161 hold on
162 s u r f ( plot_dates , 1 : 6 0 , estimated_12M_rate , ’ FaceColor ’ , ’ g ’ )
163 hold o f f

D.2 hwfactor object

1 c l a s s d e f hwfactor
2

3 p r op e r t i e s
4 OIS_curve
5 r i sky_curve
6 alpha1
7 sigma1
8 theta1
9 alpha2

10 sigma2
11 theta2
12 alpha3
13 sigma3
14 theta3
15 end
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16 p r op e r t i e s ( Access = pr i va t e )
17 SDE1
18 SDE2
19 SDE3
20 PM
21 end
22

23 methods ( Access = pub l i c )
24 f unc t i on obj = hwfactor ( inOIS_curve , inr i sky_curve ,

inalpha1 , insigma1 , intheta1 , inalpha2 , insigma2 , intheta2
, inalpha3 , insigma3 , in the ta3 )

25

26 narginchk (11 ,11) ;
27

28 i f i s a f i n ( inOIS_curve , ’ RateSpec ’ )
29 obj . OIS_curve = IRDataCurve ( ’ Zero ’ , inOIS_curve .

ValuationDate , inOIS_curve . EndDates , . . .
30 inOIS_curve . Rates , ’ Bas i s ’ , inOIS_curve . Basis ,

’Compounding ’ , inOIS_curve . Compounding ) ;
31 e l s e i f i s a ( inOIS_curve , ’ IRDataCurve ’ )
32 obj . OIS_curve = inOIS_curve ;
33 e l s e
34 e r r o r ( ’ e r r o r ’ ) ;
35 end
36

37 i f i s a f i n ( inr i sky_curve , ’ RateSpec ’ )
38 obj . r i sky_curve = IRDataCurve ( ’ Zero ’ ,

inr i sky_curve . ValuationDate , inr i sky_curve .
EndDates , . . .

39 in r i sky_curve . Rates , ’ Bas i s ’ , in r i sky_curve .
Basis , ’Compounding ’ , inr i sky_curve .
Compounding ) ;

40 e l s e i f i s a ( inr i sky_curve , ’ IRDataCurve ’ )
41 obj . r i sky_curve = inr i sky_curve ;
42 e l s e
43 e r r o r ( ’ e r r o r ’ ) ;
44 end
45

46 i f i s a ( inalpha1 , ’ funct ion_handle ’ )
47 obj . alpha1 = @( t ,V) ina lpha1 ( t ) ;
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48 e l s e i f i s s c a l a r ( ina lpha1 )
49 i f ina lpha1 == 0
50 obj . alpha1 = @( t ,V) eps ;
51 e l s e
52 obj . alpha1 = @( t ,V) ina lpha1 ;
53 end
54 e l s e
55 e r r o r ( ’ e r r o r ’ ) ;
56 end
57

58 i f i s a ( inalpha2 , ’ funct ion_handle ’ )
59 obj . alpha2 = @( t ,V) ina lpha2 ( t ) ;
60 e l s e i f i s s c a l a r ( ina lpha2 )
61 i f ina lpha2 == 0
62 obj . alpha2 = @( t ,V) eps ;
63 e l s e
64 obj . alpha2 = @( t ,V) ina lpha2 ;
65 end
66 e l s e
67 e r r o r ( ’ e r r o r ’ ) ;
68 end
69

70 i f i s a ( inalpha3 , ’ funct ion_handle ’ )
71 obj . alpha3 = @( t ,V) ina lpha3 ( t ) ;
72 e l s e i f i s s c a l a r ( ina lpha3 )
73 i f ina lpha3 == 0
74 obj . alpha3 = @( t ,V) eps ;
75 e l s e
76 obj . alpha3 = @( t ,V) ina lpha3 ;
77 end
78 e l s e
79 e r r o r ( ’ e r r o r ’ ) ;
80 end
81

82 i f i s a ( insigma1 , ’ funct ion_handle ’ )
83 obj . sigma1 = @( t ,V) ins igma1 ( t ) ;
84 e l s e i f i s s c a l a r ( ins igma1 )
85 obj . sigma1 = @( t ,V) ins igma1 ;
86 e l s e
87 e r r o r ( ’ e r r o r ’ ) ;
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88 end
89

90 i f i s a ( insigma2 , ’ funct ion_handle ’ )
91 obj . sigma2 = @( t ,V) ins igma2 ( t ) ;
92 e l s e i f i s s c a l a r ( ins igma2 )
93 obj . sigma2 = @( t ,V) ins igma2 ;
94 e l s e
95 e r r o r ( ’ e r r o r ’ ) ;
96 end
97

98 i f i s a ( insigma3 , ’ funct ion_handle ’ )
99 obj . sigma3 = @( t ,V) ins igma3 ( t ) ;

100 e l s e i f i s s c a l a r ( ins igma3 )
101 obj . sigma3 = @( t ,V) ins igma3 ;
102 e l s e
103 e r r o r ( ’ e r r o r ’ ) ;
104 end
105

106 i f i s a ( intheta1 , ’ funct ion_handle ’ )
107 obj . theta1 = @( t ,V) in the ta1 ( t ) ;
108 e l s e i f i s s c a l a r ( in the ta1 )
109 obj . theta1 = @( t ,V) in the ta1 ;
110 e l s e
111 e r r o r ( ’ e r r o r ’ ) ;
112 end
113

114 i f i s a ( intheta2 , ’ funct ion_handle ’ )
115 obj . theta2 = @( t ,V) in the ta2 ( t ) ;
116 e l s e i f i s s c a l a r ( in the ta1 )
117 obj . theta2 = @( t ,V) in the ta2 ;
118 e l s e
119 e r r o r ( ’ e r r o r ’ ) ;
120 end
121

122 i f i s a ( intheta3 , ’ funct ion_handle ’ )
123 obj . theta3 = @( t ,V) in the ta3 ( t ) ;
124 e l s e i f i s s c a l a r ( in the ta3 )
125 obj . theta3 = @( t ,V) in the ta3 ;
126 e l s e
127 e r r o r ( ’ e r r o r ’ ) ;
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128 end
129

130 i f any ( obj . OIS_curve . Bas i s == [0 2 3 8 9 10 12 ] )
131 obj .PM = @( t ) obj . OIS_curve . getDiscountFactors (

daysadd ( obj . OIS_curve . S e t t l e , round (365∗ t ) , obj
. OIS_curve . Bas i s ) ) ’ ;

132 e l s e
133 obj .PM = @( t ) obj . OIS_curve . getDiscountFactors (

daysadd ( obj . OIS_curve . S e t t l e , round (360∗ t ) , obj
. OIS_curve . Bas i s ) ) ’ ;

134 end
135

136 obj . SDE1 = hwv(@( t ,X) obj . alpha1 ( t ) ,@( t ,X) obj . theta1
( t ) ,@( t ,X) obj . sigma1 ( t ) , ’ S t a r tS ta t e ’ , 0 ) ;

137 obj . SDE2 = hwv(@( t ,X) obj . alpha2 ( t ) ,@( t ,X) obj . theta2
( t ) ,@( t ,X) obj . sigma2 ( t ) , ’ S t a r tS ta t e ’ , 0 ) ;

138 obj . SDE3 = hwv(@( t ,X) obj . alpha3 ( t ) ,@( t ,X) obj . theta3
( t ) ,@( t ,X) obj . sigma3 ( t ) , ’ S t a r tS ta t e ’ , 0 ) ;

139

140 end
141 f unc t i on [ r f_rate , market_rate ] = rate_s imulator ( obj ,

n_period , vara rg in )
142

143 narginchk (2 ,12 ) ;
144

145 p = inputParser ;
146

147 p . addParameter ( ’ nTr i a l s ’ , 1 ) ;
148 p . addParameter ( ’ DeltaTimes ’ , 1 ) ;
149 p . addParameter ( ’ tenor ’ , [ ] ) ;
150 p . addParameter ( ’ Ant i th e t i c ’ , f a l s e ) ;
151 p . addParameter ( ’Z ’ , [ ] ) ;
152

153 t ry
154 p . parse ( vara rg in { : } ) ;
155 catch ME
156 newMsg = message ( ’ f i n i n s t : HullWhite1F :

opt i ona l InputEr ro r ’ ) ;
157 newME = MException (newMsg . I d e n t i f i e r , g e tS t r i ng (

newMsg) ) ;
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158 newME = addCause (newME, ME) ;
159 throw (newME)
160 end
161

162 n = p . Resu l t s . nTr i a l s ;
163 de l t a = p . Resu l t s . DeltaTimes ;
164 tenor = p . Resu l t s . tenor ;
165 Ant i th e t i c = p . Resu l t s . Ant i th e t i c ;
166 Z = p . Resu l t s . Z ;
167

168 i f isempty ( tenor )
169 tenor = yea r f r a c ( obj . OIS_curve . S e t t l e , obj .

OIS_curve . Dates , obj . OIS_curve . Bas i s ) ;
170 i n i t z e r o_ra t e = obj . OIS_curve . Data ;
171 in i tmarket_rate = obj . r i sky_curve . Data ;
172 e l s e
173 t_dates = daysadd ( obj . OIS_curve . S e t t l e ,360∗ tenor

, 1 ) ;
174 i n i t z e r o_ra t e = obj . OIS_curve . getzero_rate (

t_dates ) ;
175 in i tmarket_rate = obj . r i sky_curve . getzero_rate (

t_dates ) ;
176 end
177

178 tenor = reshape ( tenor , 1 , l ength ( tenor ) ) ;
179

180 % Generate f a c t o r s and shor t r a t e s
181 [ f a c to r1 , SimTimes1 ] = obj . SDE1 . s imBySolution (

n_period , ’ nTr i a l s ’ ,n , ’ DeltaTime ’ , de l ta , ’
Ant i th e t i c ’ , Ant i thet i c , ’Z ’ ,Z) ;

182

183 [ f a c to r2 , SimTimes2 ] = obj . SDE2 . s imBySolution (
n_period , ’ nTr i a l s ’ ,n , . . .

184 ’ DeltaTime ’ , de l ta , ’ Ant i th e t i c ’ , Ant i the t i c , ’Z ’ ,Z)
;

185

186 [ f a c to r3 , SimTimes3 ] = obj . SDE3 . s imBySolution (
n_period , ’ nTr i a l s ’ ,n , ’ DeltaTime ’ , de l ta , ’
Ant i th e t i c ’ , Ant i thet i c , ’Z ’ ,Z) ;

187
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188 n_tenor = length ( tenor ) ;
189

190 r f_rate = ze ro s ( n_period+1,n_tenor , n ) ;
191 market_rate = ze ro s ( n_period+1,n_tenor , n ) ;
192

193 r f_rate ( 1 , : , : ) = repmat ( in i t z e ro_ra t e ’ , [ 1 1 n ] ) ;
194 market_rate ( 1 , : , : ) = repmat ( in itmarket_rate ’ , [ 1 1 n

] ) ;
195

196 k = 0 . 4 ;
197

198 B_1 = @( t ,T) −1/obj . alpha1 ( t ) ∗( exp(−obj . alpha1 ( t ) ∗(T
−t ) )−1) ;

199 B_2 = @( t ,T) −1/obj . alpha2 ( t ) ∗( exp(−obj . alpha2 ( t ) ∗(T
−t ) )−1) ;

200 B_3 = @( t ,T) −1/obj . alpha1 ( t ) ∗( exp(−obj . alpha1 ( t ) ∗(T
−t ) )−1) ;

201

202 B_1_squared = @( t ,T) (−1/obj . alpha1 ( t ) ∗( exp(−obj .
alpha1 ( t ) ∗(T−t ) )−1) ) . ^ 2 ;

203 B_2_squared = @( t ,T) (−1/obj . alpha2 ( t ) ∗( exp(−obj .
alpha2 ( t ) ∗(T−t ) )−1) ) . ^ 2 ;

204 B_3_squared = @( t ,T) (−1/obj . alpha3 ( t ) ∗( exp(−obj .
alpha3 ( t ) ∗(T−t ) )−1) ) . ^ 2 ;

205

206 A_1 = @( t ,T) (B_1( t ,T)−T+t ) ∗( obj . theta1 ( t )∗ obj .
alpha1 ( t ) ∗ ( ( obj . sigma1 ( t ) ) ^2) ) /( obj . alpha1 ( t ) ^2)
. . .

207 −(( obj . sigma1 ( t ) ) ^2) .∗B_1_squared ( t ,T) . / ( 4∗ obj .
alpha1 ( t ) ) ;

208 A_2 = @( t ,T) (B_2( t ,T)−T+t ) ∗( obj . theta2 ( t )∗ obj .
alpha2 ( t ) ∗ ( ( obj . sigma2 ( t ) ) ^2) ) /( obj . alpha2 ( t ) ^2)
. . .

209 −(( obj . sigma2 ( t ) ) ^2) .∗B_2_squared ( t ,T) . / ( 4∗ obj .
alpha2 ( t ) ) ;

210 A_3 = @( t ,T) (B_3( t ,T)−T+t ) ∗( obj . theta3 ( t )∗ obj .
alpha3 ( t ) ∗ ( ( obj . sigma3 ( t ) ) ^2) ) /( obj . alpha3 ( t ) ^2)
. . .

211 −(( obj . sigma3 ( t ) ) ^2) .∗B_3_squared ( t ,T) . / ( 4∗ obj .
alpha3 ( t ) ) ;
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212 d i s c = @( t ,T) obj .PM(T) . / obj .PM( t ) ;
213

214 A_m = @( t ,T) (1+k)∗A_1( t ,T)+A_2( t ,T)+A_3( t ,T) ;
215

216 f o r i =2: n_period+1
217 t = SimTimes1 ( i ) ;
218 discount_zero = exp ( bsxfun (@plus ,A_1( t , t+tenor ) ,

A_2( t , t+tenor ) ) ) . . .
219 .∗ exp(−bsxfun (@times ,B_1( t , t+tenor ) , f a c t o r 1 (

i , : , : ) ) ) . . .
220 .∗ exp(−bsxfun (@times ,B_2( t , t+tenor ) , f a c t o r 2 (

i , : , : ) ) ) ;
221 r f_rate ( i , : , : ) = bsxfun ( @rdivide ,− l og (

discount_zero ) , tenor ) ;
222

223 discount_market = d i s c ( t , t+tenor ) .∗ exp (A_m( t , t+
tenor ) ) . ∗ . . .

224 exp(−bsxfun (@times ,B_1( t , t+tenor ) , f a c t o r 1 ( i
, : , : ) ) ) .∗ . . .

225 exp(−bsxfun (@times ,B_2( t , t+tenor ) , f a c t o r 2 ( i
, : , : ) ) ) .∗ . . .

226 exp(−bsxfun (@times ,B_3( t , t+tenor ) , f a c t o r 3 ( i
, : , : ) ) ) .∗ . . .

227 exp(−bsxfun (@times , k∗B_1( t , t+tenor ) , f a c t o r 1 (
i , : , : ) ) ) ;

228 market_rate ( i , : , : ) = bsxfun ( @rdivide ,− l og (
discount_market ) , tenor ) ;

229 end
230 end
231 end
232 end
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