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Sommario

La necessità di un’accurata stima di canale nei multiuser detector coerenti è ben nota.
Essi infatti si basano sull’assunzione che i segnali ricevuti vengano perfettamente stimati, e
questo in realtà non viene mai completamente ottenuto. Inoltre i trasmettitori e i ricevitori
utilizzati praticamente sono afflitti da alcune non idealità come il rumore di fase, rendendo
il problema della stima di canale ancora più impegnativo.

Un’altra questione ben nota è la considerevole complessità computazionale delle tecniche
multi-utente. Per questa ragione in questo progetto è stata data particolare attenzione
ad architetture per ricevitori altamente parallelizzate e la possibilità di parallelizzare gli
algoritmi di stima di canale. Le schede grafiche CUDA prodotte da Nvidia bene si adattano
ad affrontare problemi che possono essere espressi in calcolo parallelo. Quest’ultimo compito
è molto impegnativo ed ambizioso, dal momento che l’utilizzo di tali schede per il progetto
di ricevitori è ancora nella sua fase embrionale.

In questa tesi viene descritto il lavoro svolto durante uno stage presso l’Agenzia Spaziale
Tedesca (DLR) dove la realizzazione di un ricevitore multiutente è attualmente studiata.
Gli obiettivi finali fissati per il lavoro erano i seguenti: messa a punto e miglioramento
dell’attuale algoritmo di stima di canale; esplorazione della metodologia basata su factor
graph in modo da migliorare la qualità della stima e sviluppare algoritmi adatti ad essere
parallelizzati; implementazione in parallelo degli algoritmi su scheda grafica CUDA.

Tutti gli obiettivi sono stati raggiunti. Due diversi miglioramenti per lo stimatore di
fase attualmente implementato vengono proposti. Entrambi si basano sulla stessa approssi-
mazione del modello di fase di Wiener-Levy e richiedono la stessa conoscenza statistica al
ricevitore.

Adottando l’approcio a factor graph, presentiamo due algoritmi già esistenti in lettera-
tura per la stima di fase in una nuova versione parallela e mostriamo come, allo stesso tempo,
migliorano la qualità della stima e risultano idonei per essere implementati in parallelo sulla
scheda.

I miglioramenti delle prestazioni in termini di Errore Quadratico Medio ottenuti per tutti
gli algoritmi sono convalidati attraverso una serie di campagne simulative svolte per diversi
scenari, molti dei quali caratterizzati da forte rumore di fase e bassi rapporti segnale-rumore.

Infine presentiamo gli algoritmi paralleli per la stima di fase che operano su scheda grafica
CUDA e mostriamo come, in alcuni casi, siamo in presenza di una massiccia parallelizzazione
nel quale viene raggiunto un incremento di velocità superiore alle 200 volte, rispetto alla
versione seriale dello stesso algoritmo.

I risultati ottenuti rappresentano un punto di partenza per la realizzaione di un Ricevi-
tore Parallelo Iterativo da inserire nel multiuser detector esistente e completamente eseguito
su scheda grafica CUDA.
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Abstract

The necessity of accurate channel estimation for coherent multiuser detectors is well
known. Indeed they are based on the assumption that signals are perfectly estimated,
and this is never completely achieved in practice. Furthermore, practical transmitters and
receivers are affected by many non-idealities like strong phase noise, and thus the task of
channel estimation is all the more challenging.

Another notorious issue is the high computational complexity of multiuser techniques.
This project has devoted significant attention for massively parallel receiver architectures
and the possibility to parallelize channel estimation algorithms. Nvidia CUDA graphic
cards are especially well-suited to address problems that can be expressed as data parallel
computations. This task is very challenging and ambitious, since the usage of such cards for
receiver design is still at its infant stage.

This thesis describes the work carried out at German Aerospace Center (DLR) where a
real-world multiuser detector is studied. The desired goals were the following: fine tuning
of the already existing channel estimation algorithm; exploration of the factor graph ap-
proach in order to improve the estimation quality and to develop algorithms suitable to be
parallelized; parallel implementation of the algorithms on CUDA graphic card.

All these points have been covered. Two different improvements for the already imple-
mented phase estimator are proposed. Both are based on the same approximation of the
Wiener-Levy phase model and assume the same knowledge at the receiver.

By adopting the factor graph approach, we present two existing algorithms for the phase
estimation in a new parallel fashion and we show that, at the same time, they improve the
estimation quality, and they are suitable to be parallelized on the board.

The performance improvement for all estimators proposed in terms of Mean Square
Error are validated through several simulation campaigns carried out in different scenarios,
most of them characterized by strong phase noise and low signal-to-noise ratios.

Finally we present several parallel phase estimation algorithms working on CUDA graphic
card and we show that, in some cases, we are in presence of a massive parallelization in which
is achieved a speedup more than 200 times compared to the serial implementation.

The results obtained represent a starting point for the implementation of a Parallel

Iterative Receiver to be inserted in the existing multiuser detector and completely executed

on CUDA graphic card.
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Chapter 1

Introduction

This thesis represents a detailed description of the work carried out during an in-
ternship at German Aerospace Center (DLR) located near Munich, Germany. The
purpose of this preliminary chapter is to explain the real scenario and to introduce
the already existing system. After that we will motivate the necessity of an improve-
ment in the already implemented channel estimation algorithm and the particular
challenge of the parallel implementation on graphic cards. Finally the outline of the
work and of the thesis will be given.

1.1 The real scenario

The German Aerospace Center (DLR) is involved in the development of a real-world
multiuser detector (MUD). Many users are transmitting at the same time and in the
same frequency through a satellite channel to a common receiver, which is imagined
to be a ground station (Fig. 1.1).

MUD

Figure 1.1: The scenario.
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2 Introduction

The multiuser detector studied at DLR is based on coherent modulation and
therefore requires precise channel estimation at the receiver. One of the main per-
formance limitations for this architecture is the error propagation due to imperfect
channel estimation. The entire concept of coherent multiuser detection is based on
the premise that the received signal can be reliably estimated. While communication
systems are by definition designed to allow the transmitted signal to be recovered, re-
constructing the user signals in multiuser detectors requires an accurate description
of:

• what was transmitted;

• what the channel did to that transmission.

Inaccurate channel estimation is a problem for coherent MUD since it is based
on the assumption that signals are perfectly estimated, and this is never completely
achieved in practice. This error propagation causes later users to have unacceptably
bad performance, causing a major fairness problem as well as on overall degradation
in bit error rate and system capacity. The importance of channel estimation un-
der these conditions can not be downplayed and algorithms that enable to achieve
accurate channel estimation are of paramount importance. Different methods have
been proposed for addressing this problem. One of the most appealing technique is
the one that concern Iterative Channel Estimation, as we will see soon, this is the
architecture choice for the already existing multiuser detector.

It is also important to remark that the transmitters and the receiver will be
affected by many non-idealities like strong phase noise, and thus the task of channel
estimation is all the more challenging. Indeed during the early years of commu-
nication this impairment was of secondary concern. Since communication systems
were used to operate far from the performance bound, i.e., the channel capacity,
the main goal was to develop efficient error-correcting techniques in order to close
the gap between the performance of practical communication systems and channel
capacity. Recent iterative decoding techniques lead the communication systems to
operate close to the ultimate performance limits, so issues such as synchronization
have now become one of the major limiting factors in the design of communication
systems. In this thesis, we are focused on phase estimation, i.e., the alignment of
the phase of the local oscillator at the receiver to the phase of the incoming carrier.

1.2 The already existing system

A simulator of the system introduced already exists. Such system is composed by
U users that transmit simultaneously and in the same frequency to the common
receiver. All involved nodes are equipped with a single antenna and spreading is not
used.



1.2 The already existing system 3

For the specific system model adopted the transmission channel is a frequency flat
Additive White Gaussian Noise (AWGN) channel which adds complex zero mean
circularly symmetric White Gaussian Noise (WGN) with variance per dimension σ2

ω.
Its impulse response takes the following form:

h(t) = |h(t)|ejθ(t)

The channel is not assumed to be slowly time varying, this means that it may
change from symbol to symbol. This variability of the channel coefficient is induced
at least by the phase noise due to the oscillator instabilities. The purpose of Chap-
ter 2 is to describe the channel models adopted in this thesis, however we anticipate
that such type of channel shows up, for example, with mobile users due to Doppler
effect, or when phase noise is not negligible. The impact of phase noise is particu-
larly relevant for applications at high carrier frequency (say Ku or Ka band, typical
in modern satellite environments), where high stability oscillators can be very ex-
pensive; furthermore cheap, consumer-grade terminals are significantly affected by
such problem.

At the receiver side the multiuser detector performs a matched filtering and sam-
pling, obtaining a sequence of received samples yk, k denotes the discrete temporal
index.

yk =
U∑

u=1

hukx
u
k + ωk (1.1)

huk is the frequency flat complex channel at time k for the user u, xuk is the modulated
symbol transmitted at time k by user u, and ωk is the complex WGN.

After that it performs a Multistage MUD [5] in which each stage is provided with
Iterative Channel Estimation and Decoding blocks [6]. In order to fight the channel
variability, an iterative channel estimation/channel decoding algorithm is adopted.
The outputs of the block are the bit and channel estimates.

Since this thesis is focused on the phase estimation we report that, in the existing
system, it is performed iteratively by adopting the following update rule, j denotes
the iteration index:

θ̂j+1
k = arg

{
k+W∑

i=k−W

x̂∗ji yi

}

(1.2)

As we can see, since the channel is time variant, the channel estimation is per-
formed over a sliding window of size N = 2W + 1 samples around the desired time
index k. The window parameter W depends on the coherence time of the channel
[1].

Eq. (1.2) corresponds to the Maximum Likelihood (ML) estimator for the phase
process and its performance in terms of estimation quality depends on the win-
dow size N . For this reason the first goal of the proposed work was to study and
implement advanced phase estimation methods for the existing system.



4 Introduction

1.3 The demonstration

The multiuser detector will be in the end demonstrated by means of a demo. The
scenario will be relatively simple: two users will transmit simultaneously and in
the same frequency over a satellite channel. The channel is emulated by a Channel
Emulator and the common receiver is implemented on a cluster server. The senders
will employ conventional, non-spreaded modulation.

Channel
Emulator

Figure 1.2: The demo.

Fig. 1.2 shows the system setup and also reveals an important issue. Indeed the
cluster that will implement the multiuser detector is provided withGraphic Processor
Units (GPU) explicitly developed for scientific programming. These boards are
developed by Nvidia and their particular architecture is called CUDA [16], [17], [18].

In recent years, driven by the insatiable multimedia market demand for realtime,
high-definition and 3D graphics, the GPU has evolved into highly parallel, mul-
tithreaded, many-core processor with high computational power and bandwidth.
The reason behind this is the difference in the floating-point capability between
the canonical CPU and the GPU. The latter is specialized for computer-intensive,
highly parallel computation for graphic rendering and therefore it is designed such
that more chip area is devoted to data processing rather then data caching and flow
control.

Many algorithms outside the field of image processing and video rendering can
be accelerated by data parallel processing. Thus actual GPUs are especially well-
suited to address problems that can be expressed as data parallel computations. The
reason is that when an arithmetic intensity, i.e., the ratio of arithmetic operations
to memory operations, is high, there is a lower requirement for sophisticated flow
control. CUDA refers to a general purpose parallel computing architecture with a
new parallel programming model and instruction set introduced by Nvidia. Hence
another important element that sets this project apart is the attention for massively
parallel computer architectures and the possibility to parallelize the algorithms. An
important and desired goal is to design such channel estimation methods so as to
exploit a massively parallel architecture.
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In this regard the factor graph approach [11] applied to the phase estimation has
been investigated. Indeed a possible change for the architecture described previously
is to place an Iterative Receiver [14] in the Multistage MUD that performs jointly
channel estimation and channel decoding. The topic of phase estimation on factor
graph has been widely and exhaustively covered in literature [8] and our purpose is
to revisited the already existing factor graph algorithms in a new parallel fashion in
order to obtain an efficient parallel implementation on the GPU.

1.4 Outline of the thesis

The outline of the work can be split in three major parts:

1. Fine tuning and performance improvement of the already existing phase esti-
mator.

2. Exploration of the factor graph approach in order to find algorithms that, at
the same time, improve the estimation quality and are suitable to be paral-
lelized on GPU.

3. Implementation of such algorithms on the graphic card in order to have such
systems that exploit the computational power as efficiently as possible.

Finally this thesis has been structured as follows:

• Chapter 1 gives an introduction of the work and the thesis outline.

• Chapter 2 regards the channel models adopted and the phase noise phe-
nomenon.

• Chapter 3 represents a brief introduction on factor graph.

• Chapter 4 concerns the first goal of the outline above. Validated by experi-
mental results two improvements for the existing estimator will be given.

• Chapter 5, based on the work in [8], reports an investigation on factor graph
estimators revisited in order to obtain a good parallel implementation.

• Chapter 6 introduces the CUDA programming model and its basic concepts.

• Chapter 7 reports some details on the parallel implementation of the algo-
rithms on the graphic card.

• Chapter 8 gathers conclusions and future work.
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Chapter 2

Channel model and Phase noise

The aim of this chapter is to describe the two channel models considered in this
thesis. They are a simple description of a single-carrier passband communication
system that takes into account the phase offsets between the received carrier and
the local carrier of the receiver, but disregards timing offsets. In particular we will
encounter the well known phase noise phenomenon produced by random fluctuations
in local oscillators and clocks.

This chapter is organized as follows: in Section 2.1 we review the basic notion
of passband systems and in Section 2.2 a first simple stochastic model in which the
phase offset is constant will be presented. After that, in Section 2.3 we present
through some examples how phase noise degrades the performance of a communi-
cation system and in Section 2.4 a more defined stochastic channel model. In this
chapter we closely follow the description reported in [8].

2.1 Passband systems

The two major categories of analog waveforms are baseband and passband signals
and they lead to different architectures for the transmitter and the receiver. Base-
band signals are pulse trains in which the information is encoded in the amplitude of
the pulses. They are used in applications such Integrated Services Digital Networks
(ISDN), Local Area Networks (LANs) and digital magnetic recording systems. In
passband communication systems, a baseband signal is modulated onto a sinusoidal
carrier such that the resulting waveform fits into the frequency range available for
the transmission [8]. In radio, wireless and satellite communication systems infor-
mation is transmitted by means of passband signals, for this reason we will focus on
such systems. In the following outline we will assume that the noisy medium solely
adds white noise ω(t) to the transmitted signal s(t). The received signal is then
given by

r(t) = s(t− τC) + ω(t) (2.1)

where τC is the delay introduced by the channel.

7



8 Channel model and Phase noise

The basic block diagram of a passband communication system is depicted in
Fig. 2.1.

bn

b̂n

xk

yk

Tb

Tb T

T

t0 + kT

BMAP

IBMAP

Transmit

FilterFilter

FilterFilter

Receiver

Band-Pass

Low-Pass

Noisy
Channel

cT (t)

cR(t)

baseband

baseband

Figure 2.1: Passband communication system.

At the transmission side the Bit mapper (BMAP) takes a series of encoded
bits {bn} and maps it to a channel symbols xk. This operation can be made in
different ways. The most common mapping is the Gray encoding where adjacent
(M -ary) signal amplitudes differs by one binary digit. The two most widespread
used modulation schemes in wireless communications are Quadrature Amplitude
Modulation (QAM) and Phase Shift Keying (PSK). In QAM the symbol xk takes
the form

xk = ak + jbk (2.2)

where ak and bk belong to {±1,±3, . . . ,±(M − 1)}. On the other hand in PSK the
symbol takes the form

xk = ejαk (2.3)

with αk ∈ {0, 2π/M, . . . , 2π(M − 1)/M}. In both cases M denotes the modulation
order. Fig. 2.2 shows an example of constellations for such schemes.

1101

00 10

00

11

0110

akak

bk bk

Figure 2.2: 4-PSK and 4-QAM modulation.
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The information symbol xk is then filtered by a Transmit Filter (a.k.a. Pulse
shaping filter) with impulse response gT (t) obtaining a baseband signal sBB(t)

sBB(t) =
∑

k

xkgT (t− kT ) (2.4)

where T denotes the symbol period.
After that it is modulated onto a sinusoid denoted by cT (t) with frequency fT

cT (t) = ej2πfT t (2.5)

amounting the passband signal

sPB(t) = Re
{

sBB(t)e
j2πfT t

}

(2.6)

Before the signal sPB(t) is transmitted over the Noisy Channel it is fed into a Band-
Pass filter.

At the receiver, the received signal is first processed by a pre-filter (not shown
in Fig. 2.1) which purpose is to eliminate the out of band noise, and then down-
converted to a baseband signal by using a local carrier cR(t) and a Low-pass filter.
The output of this filter is then processed by a baseband receiver. We must now
take a closer look on the signal processing performed in a passband receiver.

The output signal of the low-pass filter illustrated can be represented as the
complex signal

y(t) = ej(2πνt+θ)sBB(t) + ω(t) (2.7)

where

• ω(t) denotes a wide band low pass noise whose bandwidth is wider of the
bandwidth of the signal sBB(t).

• ν = fR−fL is referred to as the carrier frequency offset. fR is the frequency of
the incoming carrier and due to the Doppler effect and the clock instabilities
it may differ from fT the frequency of the transmitted carrier [1].

• θ = θL−θR−2πfRτ is a phase offset where θL and θR is the phase of the local
carrier and the incoming carrier and τ is the timing offset.

• We have assumed that the low-pass filter has a unity frequency response for
the low pass signal components.

The received signal is processed by the Receiver filter (a.k.a. Matched filter)
whose impulse response is gR(t) = gT (τR−t) where τR is chosen such that gT (τR−t)
is a causal function. The last assumptions are made in order to allow the convolution
h(t) = (gT ∗ gR)(t− τR) to satisfy the Nyquist criterion [1], i.e.,

h(kT ) =

{

1 for kT = 0

0 for kT 6= 0
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The output of the received filter is given by

ỹ(t) = (y ∗ gR)(t) =

∫ ∞

0
y(t− u)gR(u)du+ ω̃(t) (2.8)

where ω̃(t) = (n ∗ gR)(t). The following approximation holds:

ỹ(t) =

∫ ∞

0

[

ej(2πν(t−u)+θ)sBB(t− u)
]

gR(u)du+ ω̃(t)

=
∑

l

xl

∫ ∞

0
ej(2πν(t−u)+θ)gT (t− u− lT − τC)gT (τR − u)du+ ω̃(t)

≈ ej(2πνt+θ)
∑

l

xlh(t− lT − τR − τC) + ω̃(t) (2.9)

as long as the phase θ(t) = 2πνt + θ varies only little over a time interval equal to
the symbol period T .

Finally sampling ỹ(t) at the instants t = t0 + kT yields to a received sampled
signal

yk = ej(2πν(t0+kT )+θ)
∑

l

xlh(τ + (k − l)T ) + ωk (2.10)

where ωk = ω̃(t0+ kT ), yk = y(t0+ kT ) and τ = t0− τR − τC is the timing offset. If

t0 = tideal = τR + τC (2.11)

the timing offset is equal to 0 and, as a consequence of the Nyquist criterion, the
expression can be simplified to

yk = ej(2πν(tideal+kT )+θ)xk + ωk (2.12)

As we can see the symbol yk depends only on the channel symbol xk; otherwise it
is in principle affected by all channel symbols. This effect is called “inter-symbol in-
terference” (ISI) [1]. In many practical receivers a timing synchronization algorithm
(see Fig. 2.3 ) tries to align the sampler to the incoming signal in order to avoid
as possible ISI. However small deviations between t0 and tideal are unavoidable. An
alternative approach is not to adjust t0 at all, but to use a free running sample clock
instead. The timing offset τ is then estimated from the received samples, and the
ISI is compensated by digital signal processing, for instance, using linear equalizer
(LE) or differential feedback equalizer (DFE) [1].

In contrast with timing offsets, the carrier offsets, do not lead to inter-symbol
interference as long as the phase offset remains small. Most of the passband receiver
are equipped with algorithms to track the carrier offsets and the timing offsets, the
following picture shows one possible architecture.
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Figure 2.3: Timing and carrier synchronization in a passband receiver.

2.2 Constant phase model

We now introduce a first simple stochastic channel model for a single carrier pass-
band communication system. The model is called Constant phase model and is
defined as follows.

Def. Let yk be the received symbol and xk the transmitted symbol at time index k,
the Constant-phase model is

yk = xke
jθ + ωk (2.13)

where θ ∈ [−π, π) denotes a random phase and ωk is a zero-mean complex Gaussian
random variable with variance per component σ2

ω, i.e ωk ∼ CN (0, 2σ2
ω).

Since the model above is a stochastic model, all the variables involved are random
variables.

The conditions under which this channel model is valid are the following.

a) A timing synchronization algorithm as depicted in Fig. 2.3 is adopted to track
the timing offsets. This means that Eq. (2.12) represents a good description
of the received symbol yk.

b) The frequency offset ν = 0.

c) The phase offset θ = θL − θR − 2πfRτ is constant.

As we will see, the Constant phase model can be a strong assumption in some
communications systems. Indeed in this model it is assumed that the phase offset
is constant, but this is typically not met. Often the phase offset undergoes random
fluctuations due to different noisy sources and there exist more refined models that
try to take this into account. Before presenting a more refined channel model we
take a closer look to the reason of these fluctuations, the phase noise phenomenon.

2.3 Phase noise

Oscillators used in practical systems deviate from ideal spectral characteristics. In-
deed the signals generated are not perfectly periodic. Due to this, unpleasant per-
formance issues arise.
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A/D and D/A converters used in digital receivers use sampling clocks (for sam-
pling or sample and hold) which are derived from sinusoidal oscillators. Practical
clocks are affected by phase and frequency instabilities called phase noise. In or-
der to understand how phase noise degrades the performance of communications
systems, we illustrate some examples.

The transition of an oscillator used as time reference can be affected by timing
jitter. Indeed the spacing between those transitions is ideally constant but in practice
they will be variable due to phase noise. This has a harmful effect on the sampling
process as depicted in Fig. 2.4: the uncertainty in the sampling times translates
directly to uncertainty in the sampled value.

θk θk+1 θk+2

kT (k + 1)T (k + 2)T

s(t)

tt

Sampling
error

Timing Jitter

Figure 2.4: Timing jitter and sampling error due to timing jitter.

Phase noise also has a deteriorating influence on the down conversion in a pass-
band receiver. The demodulators used in pass-band receivers, like the one that we
have illustrated in the previous section, are classified as coherent because they use
a carrier signal, which ideally should have the same frequency as the carrier at the
transmitter, to demodulate the received signal. Ideal sinusoidal oscillators of fre-
quency f0 have a mathematically strict spectrum in the form of delta functions,
centered at −f0 and f0. However, real oscillators seldom exhibit this kind of clean
spectrum. They tend to have spreading of spectral energy around the carrier fre-
quency. Due to this non ideality, background signals in the frequency band adjacent
to the incoming data signal are down converted and interfere with the desired base-
band signal. This phenomenon is known as interchannel interference and is shown
in Fig. 2.5.

Finally from a communication system performance point of view, significant
phase noise results in an irreducible error floor in bit error rate (BER) at high signal
to noise ratio (SNR) [10] as illustrated in Fig. 2.6.
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Figure 2.5: Interchannel interference.

Figure 2.6: Phase noise causes a floor on the BER: uncoded BPSK for different
levels of phase noise standard deviation in degrees [10].
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Oscillators are typically perturbed by short-term and long-term instabilities.
Long-term instabilities, also known as drifts or trends, may be due to aging of
the resonator material. These usually very slow changes are much less critical than
short-term instabilities, caused by noise sources such thermal, shot, and flicker noise
in electronic components. The signal out from an oscillator may also interfere with
other signals from the same electronic device. This kind of interference can often be
avoided by carefully system design.

Since oscillators are ubiquitous in communication systems, phase noise has been
studied intensively in the past. Nevertheless, a generally accepted model for phase
noise does not seem to exist. Until now we have discussed the influence of this
phenomenon in order to understand why a phase noise compensation is required. If
one is interested in modeling the impact of phase noise in passband systems it is
also of crucial importance to have a good understanding of the nature of the random
fluctuations of phase in an oscillator. For an excellent description of the nature of
the noise sources and on the way they lead to phase noise we refer to [8], for our
purposes it is sufficient to have a description of the following stochastic model used
in literature, the Wiener-Levy phase model [8].

2.4 Wiener-Levy phase model

The Wiener-Levy phase model, or Random-walk phase model, is a widely used
stochastic channel model for phase noise in free running clocks. It is valid if the
oscillator only contains white noise sources such as shot noise and thermal noise
while other sources, like flicker noise, are not considered. It can be derived by
extending the model (2.13) with random phase fluctuations.

Def. Let yk be the received symbol and xk the transmitted symbol at time index k,
the Wiener-Levy phase model is

yk = xke
jθk + ωk (2.14)

where
θk = θk−1 +∆k (2.15)

denote a random phase and ∆k is a zero-mean Gaussian random variable with vari-
ance σ2

p, i.e., ∆k ∼ N (0, σ2
p). ωk is a zero-mean complex Gaussian random variable

with variance per component σ2
ω.

In words: the phase process undergoes a Gaussian random walk process. The
variable ∆k is the stepsize of the walk and its variance sets the speed of the process.
Fig. 2.7 shows a realization of the phase process.
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Figure 2.7: A realization of the phase process with phase noise variance σ2
p = 5(◦)2.

A key property of such process is that its variance grows linearly with the time
index [8], i.e.,

E[θ2k] = kσ2
p (2.16)

As we will see in Chapter 4, this property will be exploited in the development of
the algorithms.

In summary the model describes the received symbols yk accurately under the
following assumptions.

a) A timing synchronization algorithm is adopted to track the timing offsets.

b) The frequency offset ν = 0.

c) The fluctuations of the phase offset θ = θL − θR − 2πfRτ can be described as
a random-walk process.

With respect to the last assumption, it is met, for example, if the oscillator
at the transmitter and at the receiver are free-running clocks perturbed by white
noise sources, the frequency fR is approximately constant, and the relative distance
between the transmitter and receiver is constant.



16 Channel model and Phase noise



Chapter 3

Factor Graphs

This chapter seeks to give an introduction from a general point of view to Factor
Graphs and the Sum Product Algorithm (SPA). A large variety of algorithms in
coding, signal processing, and artificial intelligence may be viewed as instances of
the SPA which operates by message passing on this graphical model. This elegant
approach has been widely treated in literature after its introduction in 2001 by
Kschinchang et. al. in their article [11]. To give a complete description of this
graphical models is out of the scopes of this thesis. We only give some basic concepts
and definitions. For further details about this topic we remind [11], [12], [13], [14].
In this chapter we will indicate the domain of the variables with capital letters and
the variables with small letters.

3.1 Factor Graphs

A common situation in digital communications is to consider algorithms that deal
with complicated global functions of many variables. By exploiting the way in which
the global function factors into a product of simpler local functions, each of which
depends on a subset of the variables, this algorithms can reach more computational
efficiency. With factor graph approach this particularity is highlighted first by de-
picting the global function as a graph and then by developing an algorithm which
works as a message passing on it. Let us dive right in and introduce the concept of
factor graphs.

Let f be a real value function of many variables

f : X1 ×X2 × . . . Xn → R (3.1)

Suppose that f factors into a product of several local functions, each having some
subset of {X1 ×X2 × . . . Xn} as argument, for instance suppose that it can be fac-
torized in K factors such that

f(x1, x2, . . . , xn) =

K∏

i=1

fk(Sk) (3.2)

17
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where Sk ⊆ {X1 ×X2 × . . . Xn} is the k-th variable subset, and fk(·) is a real-valued
function.

Def. A factor graph for f is a bipartite graph that expresses the structure of the
factorization (3.2). A factor graph has a variable node for each variable xi, a factor
node for each local function fk(·), and an edge-connecting variable node xi to factor
node fk(·) if and only if xi is an argument of fk(·).

Factor graphs are thus a standard bipartite graphical representation of a math-
ematical relation, in this case, the “is an argument of” relation between variables
and local functions. For example consider the function

f(x1, x2, x3, x4) = fA(x1)fB(x1, x2)fC(x1, x3, x4) (3.3)

The corresponding factor graph results as in Fig. 3.1.

fA

fB

fC

x1

x2 x3

x4

Figure 3.1: A factor graph representation of the function in (3.3).

3.2 The Sum Product Algorithm

In many situations, for instance when f represents a joint probability density func-
tion, we are interested in computing the marginal functions gi(xi) with respect the
variables involved. In general a marginal can be written as

gi(xi) =

∫

∼{xi}
f(x1, x2, . . . , xn) (3.4)

where the notation ∼ {xi} refers to all the variables except xi and the symbol
∫

indicates the summary operation. For our purposes, depending on the nature of the
variable, it denotes an integration over the whole range of a continuous variable or
a summation for each element of the alphabet of a discrete variable.

The direct computation of a marginals could be cumbersome. The marginals of
a function can be determined in a computationally elegant way by messages passing
over the edges of the corresponding factor graph. This must be done according to
the Sum product rule defined as follows.
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Def. Sum product rule. The message sent from a generic node v on a edge e is
the product of the local function at v with all the messages received on edges other
than e, summarized for the variable associated with e. If v is a variable node the
local function corresponds to the unit function.

For instance, let µxi→fi(xi) be the message sent from the variable node xi to the
factor fi, and µfi→xi

(xi) be the message sent from node fi to node xi. Also, let n(v)
denote the set of neighbors of the node v in a factor graph. The sum product rule
leads to express this messages as follows:

µxi→fi(xi) =
∏

j∈n(xi)\{fi}

µj→xi
(xi) (3.5)

µfi→xi
(xi) =

∫

∼{xi}



f(Si)
∏

j∈n(fi)\{xi}

µj→fi(j)



 (3.6)

By adopting systematically this rule working on a factor graph we obtain the
Sum Product Algorithm whose purpose is to compute the marginal functions for all
the variables. The algorithm is reported in pseudo-code in the following [14].

The Sum Product Algorithm

• Initialization
∀ factor node fi connected to a single variable node xi transmit the message

µfi→xi
(xi) = fi(xi)

∀ variable node xi connected to a single factor node fi transmit the message

µxi→fi(xi) = 1

• Repeat

– select a node connected to D edges which has received incoming messages
on at least D − 1 edges.

– compute the outgoing message on the remaining edge by adopting the
Sum product rule as in Eq. (3.5) and Eq. (3.6).

• until all messages are computed.

• for each variable nodes Xi compute the marginal by

gi(xi) =
∏

h∈n(xi)

µh→xi
(xi)

• end for
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For example consider again the function in Eq. (3.3) represented as factor graph
in Fig. 3.1 and assume that all the variables are continuous. The Sum product
algorithm proceeds as follows:

1. Start from the nodes fA, x2, x3, and x4

µfA→x1(x1) = fA(x1)

µx2→fB (x2) = 1

µx3→fB (x3) = 1

µx4→fB (x4) = 1

2. Messages sent from fB and fC to x1

µfB→x1(x1) =

∫

x2

fB(x1, x2)µx2→fB (x2)dx2

µfC→x1(x1) =

∫

x2

∫

x3

fC(x1, x3, x4)µx3→fB (x3)µx4→fB (x4)dx3dx4

3. Node x1 has received the messages from all its neighbors and it is ready to
send back informations

µx1→fA(x1) = µfB→x1(x1)µfC→x1(x1)

µx1→fB (x1) = µfA→x1(x1)µfC→x1(x1)

µx1→fC (x1) = µfA→x1(x1)µfB→x1(x1)

4. Messages are transmitted from fB and fC to them extern neighbors

µfB→x2(x2) =

∫

x1

fB(x1, x2)µx1→fB (x1)dx1

µfC→x3(x3) =

∫

x1

∫

x4

fC(x1, x3, x4)µx1→fB (x1)µx4→fB (x4)dx1dx4

µfC→x4(x4) =

∫

x1

∫

x3

fC(x1, x3, x4)µx1→fB (x1)µx3→fB (x3)dx1dx3

5. The marginals of all the variables can be computed by the product of all the
incoming messages

g1(x1) = µfA→x1(x1)µfB→x1(x1)µfC→x1(x1)

g2(x2) = µfB→x2(x2)

g3(x3) = µfC→x3(x3)

g4(x4) = µfC→x4(x4)
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Figure 3.2: Sum Product Algorithm, message scheduling.

The particular message scheduling for the algorithm is shown in Fig. 3.2. Before
continuing our discussion we make some observations.

• It can be shown that the SPA computes the exact marginals when the factor
graph has no cycles, i.e., when the graph is a tree. When the graph has cycles
the SPA has no natural initialization and termination. In this case the initial-
ization can be forced by introducing artificial messages, while termination is
achieved by simply aborting the SPA after some time. The resulting marginals
are not exact but approximated.

• At Step 3) of the algorithm the node x1 literally broadcasts its information to
the neighbors. This situation is referred when the factor graph is a tree and
x1 is considered as the root. The messages, which have started the message
passing from the leafs of the tree, begin to come back from the root to the
leafs.

3.3 Factor Graphs for Statistical Inference

In our specific case we are interested in factor graphs for the phase estimation
problem. Indeed the factor graph approach can be used to solve estimation problems
and more generally, inference problems. In this context they are important first of
all because they allow to reformulate several important algorithms with the same
notation and terminology. Algorithms such as the Viterbi Algorithm, the Kalman
Filtering and the Forward-Backward Algorithm can all be cast in the factor graph
framework in a natural way [11], [12]. Furthermore they lead us to deliver new,
optimal (sub-optimal) inference algorithms in a straightforward way. Applying the
factor graph approach relies solely on local computations in basic blocks. For the
details about how the phase estimation problem can be solved with the factor graph
approach we refer to Chapter 5.

In general, in statistical inference we are interested in obtaining information
regarding certain variable x on the basis of an observation y. Factor graphs can
help to solve the following common problems in communications:

• find the likelihood function p(y|M) of the channel model M ;
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• find the A Posteriori Distribution p(x|y,M) of x given the observation y and
the model M ;

• find the Maximum A Posteriori (MAP) estimation of x,

x̂MAP = argmax
x

p(x|y,M)

given the observation y and the model M .

To solve the first two situations the general idea is to create a factor graph of a
factorization of the joint probability distribution and to implement the SPA on this
graph. The third problem is solved by adopting the Max Product Algorithm which is
an alternative to the SPA [11]. Otherwise one can think to develop another algorithm
which works as message passing in a graph but is not an instance of the SPA. In
these cases the factor graph approach may be useful to highlight particular nature
of the problems and details (see Steepest ascent algorithm in Chapter 5).

Messages and their representation

Finally we give some considerations regarding the message representation. For dis-
crete variables the messages can be represented by vectors of three types: probability
mass functions, log-likelihoods, and log-likelihood ratios. For continuous variables, it
is required to adopt an approximations method since the SPA can lead to intractable
integrals over continuous ranges. Approximation methods can be quantization, para-
metric representations or particle representations [14]. As we will see in Chapter 5
different approximations lead to different algorithms.

We conclude the chapter by recalling that the SPA guarantees the exact marginals
only for cycle-free factor graphs but, as expected, the most of the cases in commu-
nications are applications on cyclic factor graphs. This is naturally translated in
iterative algorithms and it is in general accepted that the marginals obtained at
convergence (the beliefs) are approximations of the true marginal a posteriori dis-
tributions. Empirical results support this claim.



Chapter 4

Maximum Likelihood estimators

After presenting the already existing system and the channel models chosen for this
work, with this chapter we start the development of the phase estimation algorithms.
Every oscillator used in passband communication systems suffers from an instability
of their phase. This phenomenon is known as phase noise and, if left unaddressed,
can lead to great degradation of the system performance. By using the popular
statistical methodology known as Maximum Likelihood (ML) estimation [2] we will
investigate and compare different estimators for a channel affected by phase noise.

The organization of the chapter is the following: first we briefly review the system
model. Finally, depending on the statistical description adopted for the channel, we
will obtain different ML estimators and their performance will be compared in
different scenarios.

4.1 System Model description

Fig. 4.1 shows the general block diagram of the system under consideration in its
baseband equivalent representation.

xk

ωk

M-PSK symbols

AWGN

Channel output

Complex amplitude

Aejθk

yk = xkAe
jθk + ωk

Figure 4.1: System model.
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Information bits are modulated using a M -Phase Shift Keying (M -PSK) mod-
ulation to obtain the complex symbols xk = ejαk where αk can take values in
{0, 2π/M, . . . , 2π(M − 1)/M}; M denotes the modulation order.

The symbols are then multiplied by the channel phasor Aejθk where θk is a
random variable that accounts for the instabilities of the frequency source in the
system, and A is the channel amplitude. The signal is then passed through an
Additive White Gaussian Noise (AWGN) channel. In summary, the input-output
relation for our system is:

yk = xkAe
jθk + ωk (4.1)

where the real amplitude A is assumed to be known, θk is the random phase that
takes into account the phase noise, and finally, ωk is a zero-mean complex Gaussian
random variable with variance per component σ2

ω. The symbols xk are normalized
by multiplying by a suitable factor so that E[|xk|

2] = 1. The time index is denoted
by k.

The phase estimation is performed over a sliding window of size N = 2W + 1
samples. The parameter W should depend on the coherence time of the channel.
More precisely, let x be a vector of N = 2W + 1 transmitted symbols and y the
observation at the receiver

x = [x−W , ..., x0, ..., xW ]

y = [y−W , ..., y0, ..., yW ]

The ML estimators seek to find the estimate of the phase θ0 of the sample x0 in the
middle of the window from the whole observation y.

4.2 The ML estimator

As we already told, the algorithm actually implemented for the phase estimation
is equivalent to a ML phase estimator for a signal observed over a time interval in
stationary Gaussian noise. In the following we briefly review how it is obtained by
using the ML approach.

Usually in literature x is called the missing data while y is called the incomplete
data. Finally we call κ = (x,y) the complete data [9], [7]. If θ is the parameter
that we want to estimate, when κ is available, ML estimation of θ is obtained by
maximizing the likelihood function

θ̂ML = argmax
θ

p(x,y|θ) (4.2)

In particular the above definition tells that we are interested in the likelihood func-
tion as a function of the unknown parameter θ when the complete data κ acts as a
fixed parameter. The principle of maximum likelihood requires us to choose as an
estimate of the unknown parameter that value of θ for which the likelihood function
assumes its largest value.
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In a communication system the incomplete data is the only available information
at the receiver side, i.e., no a priori information on the source distribution is available.
In such situation ML estimation becomes:

θ̂ML = argmax
θ

p(y|θ) (4.3)

It is usually more convenient, for many situations, to consider the logarithm of
the likelihood function, the log-likelihood function. Since the logarithm is a mono-
tonic function, the maximization of the likelihood and log-likelihood functions is
equivalent, that is, θ̂ML maximizes the likelihood function if and only if it also de-
termines the largest value of the log-likelihood. In this thesis we will mainly assume
the log-likelihood function. In this case the ML estimation criterion becomes:

θ̂ML = argmax
θ

log p(y|θ) (4.4)

In order to determine an estimator one needs to assume a stochastic model for
the unknown parameter. In the first ML estimator we assume that the phase θ
obeys the Constant phase model that we briefly recall.

θk = θ ∈ [−π, π) ∀k ∈ [−W, . . . ,W ] (4.5)

The above model is a stochastic model, so the variable θ is a random variable,
we refer to Section 2.2 for further details.

The likelihood function is obtained by conditioning on the unknown parameter
θ the distribution of the received samples p(y) (a.k.a. evidence [1]). In this way
the observation yk is a function of the Gaussian variable ωk. Thus the observa-
tion vector y has a multivariate Gaussian distribution. Since all the noise samples
are independent and identically distributed (i.i.d.), the likelihood function can be
factorized obtaining the following, well known, distribution:

p(y|θ) =
1

(2πσ2
ω)

N
2

exp

[

−
1

2σ2
ω

W∑

k=−W

|yk −Aejθxk|
2

]

(4.6)

The log-likelihood function is straightforward and results in the following:

log p(y|θ) = −
N

2
log(2πσ2

ω)−
1

2σ2
ω

W∑

k=−W

|yk −Aejθxk|
2 (4.7)

The major issue now is to find a way to maximize the log-likelihood function. In
this case we can apply the likelihood equation [3]:

∂ log p(y|θ)

∂θ
= 0 (4.8)

In other situations, when a closed form does not exist, other approaches like the
gradient methods are required, it will be discuss in the factor graph contest in the
next chapter.
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In summary by applying the Eq. (4.8) under the assumptions that:

• the received symbols are being corrupted by white Gaussian noise;

• the Constant phase model is adopted;

we obtain the first ML estimator that is:

θ̂ML = arg

{
W∑

k=−W

ykx̂
∗
k

}

(4.9)

Before continuing our analysis we state that xk is not known and is replaced in
the previous equation by x̂k that could denote the pilot symbols or the estimates
of the transmitted symbols provided by other components of the receiver. In the
particular case of the iterative algorithm used, during each iteration these estimates
are updated and lead, hopefully, to a better channel estimation until convergence is
reached.

Performance of the ML estimator

We start by reporting in the following picture a realization of the phase process and
its ML estimate, see Fig. 4.2.
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Figure 4.2: ML phase estimation: SNR = 4 dB, σ2
p = 25(◦)2, N = 101.

The previous figure graphically supports the idea that the estimation process is
equal to the moving average of the phase process. For us this issue has an important
role since it has a direct consequence on the implementation of the estimator.
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The operation of moving average can be implemented by a FIR filtering. We
indicate by hML = [h0, . . . , hN ] the FIR filter, which in this case has a rect impulse
response and when computes the average it does not favor any sample in the window.
A block diagram of the ML estimator is shown in Fig. 4.3.

yk ẏk zk

x̂∗k

θ̂k
hML arg

Figure 4.3: Maximum Likelihood phase estimation as a moving average.

The performance of the estimator are being evaluated in terms of the Mean
Square Error (MSE) for the phase estimation. We recall that if θ is the unknown
parameter and θ̂ its estimate, the MSE is defined as

MSE = E[|θ − θ̂|2] (4.10)

In the following figures we present the MSE as function of the signal to noise ratio
SNR (Fig. 4.4) and of the phase noise variance σ2

p (Fig. 4.5).
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Figure 4.4: Mean Square Error as a function of SNR, N = 101.

By observing Fig. 4.4 we can see how the estimation strongly degrades as the
phase noise increases. We are conscious that a phase process with variance 5(◦)2

represents a very bad situation for a passband receiver; we can infer that in presence
of strong phase noise there seems to exist an error floor for at high SNR.
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p, N = 101.

On the other hand we observe in Fig. 4.5 how the differences between the three
cases proposed are less pronounced. In particular there exists just a small offset
between the curves for SNR = 2 dB and SNR = 20 dB and it is still constant in
the variation of the phase noise variance. This also confirms what we have already
asserted and, in conclusion, we can say that the ML estimator seems to be less
robust to the phase noise rather than the thermal noise.

The reason is that the Constant phase model can be a strong assumption in
some communications systems. In this model it is assumed that the phase offset
is constant, but this assumption is typically not met. Indeed it often undergoes
random fluctuations as described by the Wiener-Levy phase model (which was the
case of Fig. 4.3, Fig. 4.4, and Fig. 4.5). Due the nature of the real phase noise, the
performance of this estimator is strongly dependent on the window size N , hence
by the value of W . Indeed in the previous simulations this parameter was fixed on
purpose and equal to N = 101 samples. This choice was suggested by the intuition
that the designer may be induced to use a larger window in order to fight the channel
variability. To validate this thesis we have investigated the MSE as a function of
the SNR for different window sizes. The phase noise is fixed and has variance
σ2
p = 25(◦)2. For the same purposes we present also the MSE versus the phase

noise variance in the case of a very low thermal noise, SNR = 20 dB.
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Figure 4.6: Mean Square Error as a function of SNR, for different window sizes,
σ2
p = 25(◦)2.
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As we can see the performance of the ML estimator in terms of MSE clearly
depends on the window size. In Fig. 4.6 it can be observed that for high SNR
values (greater then 10 dB) the smaller window leads to a better estimation. This
is not valid for low SNR where the larger window works better. In Fig. 4.7 it
is evident how in presence of a good thermal noise environment a smaller window
size determines best results. The reason for this is that in the presence of strong
phase noise, non-adjacent symbols are weakly correlated, so the width of the selected
window should be quite small. On the other hand thermal noise has an important
role. In case the thermal noise is dominant over the phase noise, it may be necessary
to choose a wide window so that the estimator can average over a larger number of
samples.

After these first results, in order to determine an improvement for the phase
estimation, we decide to adopt a more refined statistical model for the phase noise.
In Section 4.3 another ML estimator will be obtained whereas in Section 4.4 through
a qualitative study, in which is investigated the behavior of the first estimator for
different window sizes, we will obtain a way to make an “optimal” choice for the
window parameter W . With a slight abuse of notation we refer to these estimators
as the ML estimator improved and the ML estimator with optimal window.

4.3 The ML estimator improved

In order to improve the phase estimation some considerations on the received symbol
yk are first performed, after that we will adopt the Wiener-Levy phase model and
through an approximation another estimator will be obtained.

We start by multiplying the received sample by x̂∗k in order to get rid of the
dependency of the data.

ẏk = ykx̂
∗
k = |x̂k|

2Aejθk + ωkx̂
∗
k = Aejθk + ω̇k (4.11)

This operation is equivalent to a rotation for the symbol yk and it does not change
the statistical properties of ωk so the resulting ω̇k is still a complex Gaussian variable.
Note that, as mentioned before, x̂k could be a pilot symbol or the estimate of a data
symbol.

Now we write the general channel phase θk as a function of the desired phase
θ0. By considering the Wiener-Levy phase model (see Eq. (2.14)), the phase noise
in the sliding window can be written as follows:

θk = θ0 +
∑

i

sgn(i)∆i (4.12)

where i ∈ [−k, ..., 0] if k < 0 or i ∈ [0, ..., k] if k > 0.
This lets us introduce an approximation by assuming that the variable

∑

i sgn(i)∆i

has a small value compared to one:

ejθk = ej(θ0+
∑

i sgn(i)∆i) = ejθ0ej
∑

i sgn(i)∆i ≈ ejθ0

(

1 + j
∑

i

sgn(i)∆i

)

(4.13)
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With the above simplification the rotated received symbol ẏk becomes:

ẏk = Aejθ0

(

1 + j
∑

i

sgn(i)∆i

)

+ ω̇k =

= Aejθ0 + jAejθ0

(
∑

i

sgn(i)∆i

)

+ ω̇k =

= Aejθ0 + ηk (4.14)

where we have denoted as ηk a new equivalent noise that we need to statistically
characterize in order to find the new ML estimator for θ0.

The equivalent noise ηk has the following form:

ηk = jAejθ0

(
∑

i

sgn(i)∆i

)

+ ω̇k (4.15)

As we can see, it is a function of two independent Gaussian random variables (namely
the total phase offset

∑

i sgn(i)∆i and AWGN process ω̇k).
In order to statistically characterize it, we start by evaluating its mean and its

statistical power:
E [ηk] = 0 ∀ k (4.16)

E
[
|ηk|

2
]
= A2|k|σ2

p + σ2
ω = σ2

η,k (4.17)

We observe a first difference respect to the first phase model. In this case we
obtain for the new noise ηk a power profile that is time variant within a window as
shown in Eq. (4.17). The reason is that we have have assumed a model for θk whose
variance grows linearly with the time index. In particular, as we move far from
the sample in the middle of the window, the statical power increases. For example
Fig. 4.8 reports a power profile of ηk for σ2

p = 10 (◦)2 and SNR = 2 dB.
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Figure 4.8: Power profile of ηk for σ2
p = 10 (◦)2 and SNR = 2 dB.



32 Maximum Likelihood estimators

We remark that for the Constant phase model the noise power profile is constant
along all the window size.

We can also evaluate the covariance matrix Ση that is equal to the autocorrela-
tion matrix Rη since ηk is a zero-mean process. Let be η a vector of noise samples:

η = [η−W , ..., η0, ..., ηW ]T

the correlation matrix is:

Rη = E
[
ηηH

]












A2Wσ2
p + σ2

ω 0 . . . . . . 0

0
. . . 0

... σ2
ω

...
...

. . .
...

0 . . . . . . 0 A2Wσ2
p + σ2

ω












.

Since it is a diagonal matrix we can conclude that the process ηk is white and still
has a Gaussian distribution because is obtained by a sum of independent Gaussian
random variables.

As we already did for the estimator of Section 4.2, we adopt the ML approach
and, by conditioning on the value θ0, we see that the rotated received symbol ẏk is
a function of two independent random variables, thus the observed vector ẏ has in
general a multivariate Gaussian distribution. The likelihood function is:

p(ẏ|θ0) =
1

[(2π)Ndet(Ση)]
1
2

exp

[

−
1

2
(ẏ−m)TΣ−1

η (ẏ−m)

]

where the mean vector m is:

m = E[ẏk][11 . . . 1]
T = Aejθ0 [11 . . . 1]T

Since the symbols are independent, the likelihood function can be factorized as:

p(ẏ|θ0) =
1

[(2π)Ndet(Ση)]
1
2

exp

[

−
1

2

W∑

k=−W

|ẏk −Aejθ0 |2

σ2
η,k

]

By taking the natural logarithm we obtain the log-likelihood:

log p(ẏ|θ0) = −
1

2
log((2π)Ndet(Ση))−

1

2

W∑

k=−W

|ẏk −Aejθ0 |2

σ2
η,k

.

As it is known the probability density function p(ẏ|θ0) is maximized when the log-
likelihood is maximized and, since the latter is a concave function, we can find the
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new ML estimator by writing ∂ log p(ẏ|θ0)/∂θ0 = 0. In this particular case we
report all the steps:

∂ log p(ẏ|θ0)

∂θ0
= −

1

2

W∑

k=−W

∂

∂θ0

|ẏk −Aejθ0 |2

σ2
η,k

=

= −
1

2

W∑

k=−W

∂

∂θ0

(ẏk −Aejθ0)(ẏ∗k −Ae−jθ0)

σ2
η,k

=

= −
1

2

W∑

k=−W

∂

∂θ0

|ẏk|
2 − ẏkAe

−jθ0 − ẏ∗kAe
jθ0 +A2

σ2
η,k

=

= −
jA

2

W∑

k=−W

ẏke
−jθ0 − ẏ∗ke

jθ0

σ2
η,k

=

= A
W∑

k=−W

ℑ
[
ẏke

−jθ0
]

σ2
η,k

= 0 (4.18)

The last equation is satisfied when:

e−jθ0

(
W∑

k=−W

ẏk
σ2
η,k

)

∈ R (4.19)

In particular:

arg

{
W∑

k=−W

ẏk
σ2
η,k

}

− θ0 = 0 +mπ m ∈ Z (4.20)

Finally by considering only the solution for m = 0 and denoting θ0 as θ̂MLi
, the ML

estimator improved, is:

θ̂MLi
= arg

{
W∑

k=−W

ykx̂
∗
k

σ2
η,k

}

(4.21)

We can observe how this second ML estimator is quite similar to the previous,
the only difference is that in this case are present the coefficients 1/σ2

η,k within the
sum. As a consequence, the filter hML (see Fig. 4.3) of the second estimator has
an impulse response related to the power profile σ2

η,k, indeed each coefficient can be
obtained as follows:

hML,k =
1

σ2
η,k

k = [−W, ...,W ] (4.22)

For example Fig. 4.9 depicts the impulse response of the FIR filter corresponding
to the noise power profile in Fig. 4.8. The meaning is that the second ML estimator
acts as a weighted moving average for the phase process, where each phase sample
is weighted with a coefficient related to its position within the observation window.
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Figure 4.9: Estimator filter hML for SNR = 2 dB and σ2
p = 10(◦)2.

By observing Fig. 4.9 it is easy to understand that the estimator computes a
weighted moving average privileging the sample in the middle of the window, i.e.,
the sample whose phase we try to estimate, because of the particular properties of
the Wiener-Levy phase process.

Before doing a performance comparison between the two ML estimators we
prefer to focus on another issue, the behavior of the first estimator for different values
of the window parameter W . Section 4.5 will report the performance comparison.

4.4 The ML estimator with optimal window

We have seen that the choice of the window size N , i.e., of the window parameter
W , is important for the performance of the first ML estimator and it should depend
on both the phase noise and the thermal noise.

In this regard we report a experimental study done by a series of simulations
in order to investigate the ML estimator’s behavior for different W . These are the
adopted simulation parameters:

• Number of uncoded BPSK symbols L = 2000.

• SNR range [−4, . . . , 10] dB.

• Phase noise variance σ2
p range [0.1, . . . , 25] (◦)2.

• Window size N range [1, ... , 201] corresponding to a range [0, . . . , 100] for the
parameter W .
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In all the simulations the phase noise random process θk is generated by means
of a random walk. The performance are evaluated in terms of the MSE of the phase
estimation. In the following sections we refer to the optimal window parameter W
as the parameter that determines the smallest MSE among all the tests performed.

Optimal W as a function of the phase noise variance

In this first series of simulation is evaluated the optimal window parameter as a
function of the phase noise variance σ2

p. For each realization the MSE is computed
for different parameters W and then the one that minimizes the MSE is chosen.
We have done simulations for 8 different variances of the thermal noise. The results
are shown in Fig. 4.10.
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Figure 4.10: Optimal W as a function of σ2
p (logarithmic x,y-axis).

As expected we can observe that, as the phase noise variance increases the op-
timum window size decreases. The saturation phenomenon for small values of σ2

p is
due to the chosen upper limit on the range of W . Anyway we observe that in case
of weak phase noise the choice of a larger window determines in general a better
estimation. We can also note that the slope of all the curves is ≈ 1/2.

Optimal W as a function of the SNR

The next series of simulations is complementary to the previous set. In this case,
we investigate the behavior of the estimator as function of the signal to noise ratio
(SNR) for different phase noise scenarios (Fig. 4.11).
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As in the previous plots, the curves have a decreasing trend but less pronounced.
A saturation is also present for low SNR that confirms our hypothesis on the esti-
mator behavior, in case the thermal noise is dominant over the phase noise it advised
to average on as large a number of samples as possible.
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Figure 4.11: Optimal W as a function of the SNR.

Optimal W as a function of σ2
p/σ

2
ω

Since the estimator seems to have a similar behavior as a function of the phase noise
and of the thermal noise variance, we seek to evaluate its performance as a function
of a quantity that takes both into account, in particular we consider the ratio σ2

p/σ
2
ω.

This choice is done keeping in mind the approximation of the Wiener-Levy phase
model adopted in Section 4.3. Indeed consider the Eq. (4.17) re-written as follows:

σ2
η,k = σ2

ω

(

A2|k|
σ2
p

σ2
ω

+ 1

)

(4.23)

By reporting the latter in decibel we can observe an interesting issue:

(σ2
η,k)dB = (σ2

ω)dB +

(

A2|k|
σ2
p

σ2
ω

+ 1

)

dB

(4.24)

As we can see the approximation adopted suggests to have a further degradation
factor in addition to the thermal noise. This factor depends both on the phase noise
variance and the thermal noise, i.e., on the ratio σ2

p/σ
2
ω. There is also the scale term

A2 that we do not consider since in our simulations is set to 1.
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To avoid the saturation, in the following simulations we have increased the window
parameter range for the tests.

First we report in Fig. 4.12 the optimal W as a function of the ratio, plotted
with a linear scale.
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Figure 4.12: Optimal W as a function of the ratio σ2
p/σ

2
ω.

As we can see the quantities involved are related by some kind of inverse relation:

y =
K

xn

In this regard it could be useful to plot the same result with a logarithmic scale
for both axis. This should enable us to evaluate the slope of the curve. Indeed by
taking the logarithm we obtain:

log y = log
K

xn
= logK − n log x

In this case the points should follow a straight line whose slope should be easy to
evaluate, i.e., the value of n. This last issue is shown in Fig. 4.13.

By observing it, we can see how ever two decades on the x-axis the curve decreases
by one decade on the y-axis. The slope of the curve is n ≈ 1/2. Also by experimental
tests we have found that the coefficient K ≈ 1.88. In this way we can infer the
relation between the “optimal” parameter Wopt and the ratio σ2

p/σ
2
ω that is:

Wopt ≈
1.88

√

σ2
p/σ

2
ω

(4.25)
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Until now, in order to improve the ML phase estimation already implemented
in the receiver, it has been assumed an approximation of the Wiener-Levy phase
model and we have obtained respectively, a new ML estimator and a way to choose
the optimal window size Wopt.

The two solutions proposed have in common the fact that they require more
knowledge at the receiver, that is usually not provided in typical communication
systems. Indeed while for the ML estimator improved the two parameters σ2

p and
σ2
ω are necessary for the design of the hML filter, on the other hand, one can think

to design a receiver able to evaluate the ratio σ2
p/σ

2
ω and then the choice of the best

window size will be straightforward by using Eq. (4.25).

In this regard we can assert that in our case, since the final goal of the global
project is to demonstrate the system described in Chapter 1 by means of a demo in
which a Channel emulator will be used, we can assume that these parameters are
known. On the other hand there exist other phase estimation techniques based on
factor graph approach which require the same knowledge. In the next chapter we will
explore this last channel estimation techniques in a revisited fashion as a first step
to find a parallel version of the algorithms, but before we report the performance of
the two improvements of the ML estimator.

4.5 Performance evaluation and comparison

In this section we will evaluate the performance of three different ML estimators
for a phase process corrupted by a phase noise. We assume that the phase noise is
due to white noise sources in the local oscillator at the receiver. For this reason the
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phase process is generated by means of a random walk (see Section 2.4 for further
details). The three different ML estimators are:

• Maximum Likelihood estimator (ML)

• Maximum Likelihood estimator improved (MLi)

• Maximum Likelihood estimator with optimal W (MLopt)

We start by reporting the results of the three different approach on one phase
realization. In this way we can have first indication on the three different behaviors.
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Figure 4.14: Maximum likelihood estimations, SNR = 10 dB, σ2
p = 10(◦)2, N = 101

samples, Wopt = 8 samples.

We can observed in Fig. 5.12 how the three approaches lead to different results
and, in this particular case, the differences between them are very marked. The MLi
estimator seems to determine a better estimation compared to the canonical ML
estimator, indeed the resulting estimate process seems to follow the phase variation
more closely than the latter. On the other hand by adopting the optimal window
size the phase estimation quality increases very much, the resulting curve is very
close to the real phase process. In order to confirm these initial insights we compute
the MSE for the three estimates.

MSEML = 0.0303 MSEMLi = 0.0184 MSEMLopt = 0.0076

Basically we can assert that the strong differences are due to the different window
sizes adopted in the estimations, i.e. N = 101 samples for ML estimator and MLi
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estimator and N = 8 samples for the MLopt estimator. The previous results are
quite intuitive and depend on the particular scenario we have proposed. Indeed
is present of a very strong phase noise (σ2

p = 10(◦)2) and, based on the previous
considerations, is expected that the window size must be quite small in order to
follow the variation of the random process.

In order to compare the real performance have been performed some simula-
tions over a larger number of realizations. We start now with reporting the results
obtained. After that some conclusions will be given.

MSE as a function of SNR

In this series of simulations we report the MSE versus the SNR in three different
cases where the following phase noise variances were chosen:

σ2
p = 25 (◦)2 σ2

p = 5 (◦)2 σ2
p = 0.1 (◦)2

As we can see the cases represent three very different phase noise scenarios. While
a phase noise variance equal to σ2

p = 0.1(◦)2 is a very common situation for many
passband receivers, a phase noise with a variance of σ2

p = 5(◦)2 is a typical situation
in satellite communications where we have a strong phase noise and an accurate
compensation is required. Finally a phase noise variance of σ2

p = 25(◦)2 is absolutely
a disastrous situation for a receiver, but allow us to determine the robustness of the
estimators to this impairment. In the following pictures we report the results of the
simulations.
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Figure 4.15: MSE as a function of SNR, σ2
p = 25 (◦)2.
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Figure 4.16: MSE as a function of SNR, σ2
p = 5 (◦)2.
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Figure 4.17: MSE as a function of SNR, σ2
p = 0.1 (◦)2.
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From these first results we can see how the two alternative estimators determine
in all cases a performance improvement with respect to the canonical ML estimator.
In particular we can see that in a bad phase noise environment (Fig. 4.15) while
the ML estimator is characterized by an error floor at high SNR the two new
estimators improve their performance as the thermal noise decrease. This situation
is also present in the second case depicted in Fig. 4.16 where the phase noise is still
strong (σ2

p = 5(◦)2) but closer to a practical situation. Finally we observe how in
presence of a weak phase noise the ML estimator and the MLi estimator lead to
the same results while the choice of the optimal window works better at low SNR
(see Fig. 4.16).

MSE as a function of σ2
p

As already done previously, in the next series of simulations we evaluated the MSE
versus σ2

p for different SNR. The SNR chosen are:

SNR = −4 dB SNR = 2 dB SNR = 20 dB.

Regarding these choices we can say that they represent three totally different sce-
narios. The most common situation is to have a SNR = 2 dB while a SNR = −4
dB represents a bad thermal noise environment, but not impossible in some commu-
nication systems such as satellite ones. Finally to have a SNR = 20 dB is the limit
case, even if it is a rare case, it will enable us to highlight some differences between
the estimators.
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Figure 4.18: MSE as a function of σ2
p, SNR = -4 dB.
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Figure 4.19: MSE as a function of σ2
p, SNR = 2 dB.
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Figure 4.20: MSE as a function of σ2
p, SNR = 20 dB.
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By observing Fig. 4.18 we can see how the MLopt estimator is more robust to
the phase noise, while the second improvement found has just a slightly difference
compared to the ML estimator. The most interesting situation is the one depicted
in Fig. 4.19 and, as we can see, the performance improvement is present and very
marked for both new estimators. In particular the ML estimator with the optimal
window determines the best estimate in terms of mean square error. Finally in the
limit case depicted in Fig. 4.20, even if it does not represent a common situation
for practical communications systems, it is clear how the two new estimators work
better for high SNR.

It should be interesting now to give a comparison between the two improvements
found. Indeed by using the same knowledge at the receiver (the parameter σ2

p and
σ2
ω) one can think to determine the optimal window (Eq. (4.25)) and also design the

hML filter such in Eq. (4.22) obtaining some kind of ML estimator improved with
optimal window size. In the following we report the same typology of simulations
done previously in which we compare this last estimator called MLi,opt with the
Mopt because it has yielded the best improvement.

0 5 10 15 20
10

−2

10
−1

10
0

 

 
ML

opt

ML
i,opt

M
S
E

SNR (dB)

Figure 4.21: MSE as a function of SNR, σ2
p = 25 (◦)2.
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Figure 4.22: MSE as a function of SNR, σ2
p = 5 (◦)2.
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Figure 4.23: MSE as a function of SNR, σ2
p = 0.1 (◦)2.
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Figure 4.24: MSE as a function of σ2
p, SNR = -4 dB.

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 

 
ML

opt

ML
i,opt

M
S
E

σ2
p

Figure 4.25: MSE as a function of σ2
p, SNR = 2 dB.
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Figure 4.26: MSE as a function of σ2
p, SNR = 20 dB.

We can see how the two estimators are quite equivalent in most of the proposed
cases. Only in the limit case depicted in Fig. 4.26 the differences are marked. This
is due to the peak of the hML that has a high amplitude for high SNR, in this
way in the weighted moving average operation the estimator privileges the sample
in the middle of the window. In the other cases the differences are negligible, this
clearly reveals that the biggest performance improvement is obtained by reducing
the observation window in the MLopt estimator rather than designing a new filter
as done in the MLi estimator.

4.6 Conclusions

After have presented the system model and the already implemented ML estimator,
which assumes the Constant phase model, we have developed two different improve-
ments in order to obtain best performance for the phase estimation. We have called
these new estimators with a slight abuse of notation respectively ML estimator with
optimal window (MLopt) and ML estimator improved (MLi).

Indeed the already existing estimator can be viewed as a moving average and its
performance depends on the observation window size. In presence of a strong phase
noise the window size should be small because non adjacent symbols are strongly
uncorrelated, on the other hand when the thermal noise is dominant over the phase
noise it may be necessary to choose a large window so that the estimator can average
over a larger number of samples.

By adopting an approximation of the more realistic Wiener-Levy phase model
we have developed a new ML estimator where the design of the hML filter is done
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taking into account both the phase noise and the thermal noise, in particular the
coefficients of the filter are related to these quantities by the following relation:

hML,k =
1

σ2
η,k

=
1

A2|k|σ2
p + σ2

ω

k = [−W, ...,W ]

In this way the filter has a piqued impulse response as depicted in Fig. 4.9 and the
operation performed on the rotated received symbol is a weighted moving average.
This can be viewed also as a smarter way to reduce the window size.

The same reasoning has allowed us to think our received symbol affected by an
equivalent noise ηk made by the sum of two impairment, the thermal noise and a
further degradation related to the ratio σ2

p/σ
2
ω (see Eq. (4.24)). In this regard we

have done an experimental study through a series of simulation campaigns in order
to investigate the qualitative relation between the optimal window parameter Wopt

(optimal in the sense that it determines the best phase estimation in terms of MSE
among all the tested values) and the ratio σ2

p/σ
2
ω. As result we have inferred that

these two quantities are related by the following inverse relation:

Wopt ≈
1.88

√

σ2
p/σ

2
ω

This means that, assuming to have the same knowledge at the receiver, we can
think to re-design hML filter or to choose the optimal window parameter in order
to improve the performance.

Simulations have shown that, comparing with the already existingML estimator,
there is a performance improvement for both cases and in particular the MLopt

estimator seems to lead best results and at the same time to be more robust to the
phase noise.

Finally we have also experimentally demonstrated how the biggest improvement
is achieved by adapting the window size to the particular scenario rather than de-
signing a new hML filter for the moving average.



Chapter 5

Factor Graphs estimators

Factor graphs represent an unified approach for a large variety of topics in coding,
signal processing, machine learning and statistics. In particular many algorithms in
these fields may be viewed as instances of the Summary Product algorithms, i.e., the
Sum Product algorithm (SPA) and the Max Product algorithm (MPA) that operate
by a message passing in a factor graph.

In this chapter we will present two phase estimation algorithms already known
in literature, revisited in order to obtain a parallel implementation. We will start
with a short description of how our communications system can be translated to
the corresponding factor graph representing the joint probability density function of
the variables involved. Then we will focus on the Channel model block introducing
a first simple model based on the Constant phase model. After that by assuming
the Wiener-Levy phase model we will obtain two different algorithms working on
a factor graph and some specific implementation details will be chosen keeping in
mind the parallel implementation on the graphic card.

In order to be consistent with the notation of Chapter 3 we will indicate by capital
letters the domain of the variables and with small letters the random variables.
Finally, p(x) could denote a probability density function (pdf) or a probability mass
function (pmf) depending on the nature of the variable x.

5.1 System Model description

The input-output relation for our system is:

yk = Aejθkxk + ωk (5.1)

where the channel input symbol xk belongs to a M -PSK constellation normalized
by multiplying by a suitable factor so that E[|xk|

2] = 1 while yk denotes the corre-
sponding received symbol. A is a real amplitude assumed to be known and θk is the
unknown phase, a random variable that accounts for the total phase noise. Finally,
ωk is a zero-mean complex Gaussian random variable with variance per component
σ2
ω. The time index is denote by k.

49
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We consider the transmission of frames of N = 2W + 1 symbols so we will use
the following notation:

• The vector of the input symbols:

x = [x1, . . . , xN ]

• The vector of the output symbols:

y = [y1, . . . , yN ]

• The vector of the unknown phase samples:

θ = [θ1, . . . , θN ]

Another general assumption is that the input symbols are protected by channel
coding. In order to maintain the similarities with recent standards for satellite
communication systems, like DVB-S2, we will refer to a Low Density Parity Check
(LDPC) code.

In the development of the algorithm we will evaluate the stochastic models pre-
sented in Chapter 2.

Constant phase model

θk = θ ∈ [−π, π) ∀k ∈ [1, . . . , N ]

where θ is an unknown constant.

Wiener-Levy phase model

θk = θk−1 +∆k ∈ [−π, π)

where ∆k is the step-size of the walk and is a zero-mean Gaussian random variable
with variance σ2

p.

5.2 Factor Graph of the System

In general an algorithm for joint decoding and channel estimation may be derived
from a factor graph of the code and the channel. This approach usually leads to an
algorithm that represents an approximation of the symbol-wise MAP decoder [8]. In
this case it can be obtained by maximizing the marginals for the symbol variables:

x̂MAP
k = argmax

xk

p(xk|y,θ) = argmax
xk

∫

∼{xk}
p(x,y,θ) (5.2)

The function p(x,y,θ) stands for the joint probability density function of x, y and
θ; it is a probability density function (pdf) in θ and y, due to their continuous
nature, and a probability mass function (pmf) in x.
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The term approximation it is not used by change, indeed since the main factor
graph of the system usually contains cycles, the resulting instance of the SPA leads
to an iterative algorithm and does not compute the exact marginals of the variables
involved.

The general recipe to obtain a message passing algorithm working on factor graph
can be split in three basic steps:

1. The probability function p(x,y,θ) must be represented by a factor graph.

2. Message type are chosen and message update rules are computed.

3. A message update schedule is chosen.

Usually the messages that are exchanging between the nodes are probability mass
function for the discrete variables, or probability density function for the continuous
random variables. As we will see earlier different representations and approximations
are possible for the messages and the choice leads to different algorithms. Naturally
also different strategies are possible in Step 3) and they result in different instances
of the SPA.

For representing our system we use conventional factor graph notation used in
[11] where the square-nodes represent factor nodes and circle-nodes represent vari-
able nodes. The system described in Eq. (5.1) is translated into the factor graph
shown in Fig. 5.1 which represents the joint probability function of all variables
involved.

y1 yN

b
(1)
1 b

(L)
1 b

(1)
N

b
(L)
N

x1 xN

p(y1|x1, θ1) p(yN |xN , θN )

LDPC code model

Channel model

BMAPBMAP

Figure 5.1: Factor graph of the system model.
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The upper part of the graph is the indicator function of the LDPC code. We
recall that by a factor graph for some code C, we mean a factor graph obtained from
(some factorization of) the membership indicator function of C [13].

The block BMAP indicates the bit mapping operation of a block of L = log2M

bits to the symbol xk. We have denoted by b
(l)
k , k ∈ [1, . . . , N ], l ∈ [1, . . . , L] the

information bits. This operation is deterministic.

The factor nodes in bottom row of the graph is the likelihood function of the
whole observation vector y which, since all the samples are supposed to be i.i.d.,
can be nicely factorized. Each node represents the factor

p(yk|xk, θk) =
1

√

2πσ2
ω

e
−

|yk−xkAejθk |2

2σ2
ω (5.3)

We now focus on the Channel model block. First we will present a simple model
by assuming the Constant phase model. This will be useful as an example on how
a real algorithm can be developed by using the factor graph approach but, since a
closed form solution exists for this problem, we will not pay too much attention on
it. After that by using the Wiener-Levy phase model we will obtain a more defined
factor graph contest for developing our algorithms.

We will see that for the finite-alphabet variables the messages that are exchanged
by the nodes are probability mass functions and the message-update rules are han-
dled by the standard sum product rule, which involved finite sums. Instead for
continuous variable the messages are probability density functions and the sum
product rule leads to intractable integrals which can be approximated in several
ways, each approximations corresponds to a certain message type and results in a
different algorithm.

5.3 A first simple model

In this paragraph is given an example of a first model in which is considered the
Constant phase model. We will obtain a factor graph and an instance of the SPA
algorithm working on it. In the following, input symbols will be replaced by their
estimates.

We start by considering the joint probability density function of all the variables
involved. Since no a priori information is available for the phase θ and the input
symbols x we can write:

p(y,x, θ) ∝ p(y|x, θ) (5.4)

As already done for the ML estimator in Chapter 4, by conditioning on x and θ
the probability density function of the random vector y is a Gaussian distribution

p(y|x, θ) =
1

(2πσ2
ω)

N
2

exp

[

−
1

2σ2
ω

N∑

k=1

|yk − xkAe
jθ|2

]

(5.5)
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In order to find its representation as a factor graph we need to write it in a
suitable form, i.e., finding a factorization. As we know the form above is obtained
by exploiting the fact that all the noise samples are i.i.d., we come back to the initial
general form:

p(y|x, θ) =
N∏

k=1

1
√

2πσ2
ω

exp

[

−
1

2

|yk − xkAe
jθ|2

σ2
ω

]

=

=
N∏

k=1

fk(yk, xk, θ) (5.6)

Now that we have the joint probability function represented by a “nice” factor-
ization in Fig. 5.2 we show the corresponding factor graph.

y1 y2 yN

x1 x2 xN

f1 f2 fN

θ

Figure 5.2: Factor graph for the phase estimation, Constant-phase model.

As a first observation we assert that since the resulting graph is cycle-free the SPA
leads to the exact marginals for the variables after a finite number of iterations.

Straightforward application of the sum-product algorithm in the graph results
as following.

Sum-product algorithm for the Constant phase model

1. Initialization

µxi→fi(xi) = p(xi) ∀ i = 1, ..., N

µyi→fi(yi) = 1 ∀ i = 1, ..., N

2. Messages from factor nodes fi toward variable node θ

µfi→θ(θ) =

∫

∼{θ}
fi(yi, xi, θ)µxi→fi(xi)µyi→fi(yi) ∀ i = 1, ..., N
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3. Messages from θ toward factor nodes fi

µθ→fi(θ) =
∏

j 6=i

µfj→θ(θ) ∀ i, j = 1, ..., N

4. Messages from factor nodes fi toward variable nodes xi

µfi→xi
(xi) =

∫

∼{xi}
fi(yi, xi, θ)µθ→fi(θ)µyi→fi(yi) ∀ i = 1, ..., N

With the symbol
∫

∼{x} we denote the summary operation over all variables except
x.

If we think to this graph as a Channel block inserted in a general graph like
the one depicted in Fig. 5.1, after these steps the block can propagate the “beliefs”
of the variables xk to the demapping and the decoding blocks. However we are
interested to the phase estimation, and we know that it is possible to compute the
marginal probability density function of θ as a product of the incoming messages to
the corresponding variable node.

p(θ) =
N∏

i=1

µfi→θ(θ)

To obtain an estimation for θ by an usual criterion as the MAP criterion would
be straightforward, but in this particular case the factor graph is not useful for this
purpose. Indeed we observe that the integrals in Step 4) involved an integration over
the continuous range of θ so, from an implementation point of view of the algorithm,
they need to be approximated by numerical methods with the consequent loss of
precision. In this example it is possible to obtain a closed form solution for the
problem which corresponds to the ML estimator (see Eq. (4.9)). However in other
situations there is no closed form solution for the problem, and in such cases one
may apply numerical methods.

5.4 Factor graph of a Markovian channel

In this section we consider the Wiener-Levy phase model as channel model. In order
to obtain the factor graph we require the a priori distribution of θk according to the
new stochastic model. Since in this case the phase process is described by a random-
walk, the channel, i.e., the phase θk, varies according to a first-order Markov model.
If we denote with θ the vector of the phase samples in a window of size N , its a
priori distribution is:

p(θ) = p(θ1)
N∏

k=2

p(θk|θk−1) (5.7)
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The initial distribution p(θ1) and the transition probabilities p(θk|θk−1) are re-
quired to be known at the receiver. In the case of the random walk model, if σ2

p is
the phase noise variance, the transition probability takes form

p(θk|θk−1) =
1

√

2πσ2
p

exp

{
(θk − θk−1)

2

2σ2
p

}

(5.8)

The initial distribution p(θ1) instead is unknown, hence it is assumed to be uniform
in [−π, π).

By following the general approach we want to find a factorization of the joint
probability density function suitable to be represented as a factor graph. In order
to do this we report the following steps

p(y,x,θ) ∝ p(y|x,θ)p(θ) =

=

(
N∏

k=1

fk(yk, xk, θk)

)(

p(θ1)
N∏

k=2

p(θk|θk−1)

)

= p(θ1)f1(y1, x1, θ1)
N∏

k=2

fk(yk, xk, θk)p(θk|θk−1) (5.9)

The corresponding factor graph is depicted in Fig. 5.3.

y1 y2 yN

x1 x2 xN

f1 f2 fN

θ1 θ2 θN

p p2,1 pN,N−1

Figure 5.3: Factor graph for the phase estimation, Wiener-Levy phase model.

In the figure above we have denoted the factor nodes in the upper part of the graph
by pk,k−1 = p(θk|θk−1). In addition we have also reported the factor node of the a
priori distribution of θ1 even if in our case it is assumed to be unknown.

Also in this case we observed that the graph depicting the factorization does
not contain cycles, this means that the SPA developed on it will lead to the exact
marginals for the variables. We report now the general SPA algorithm concerning
this channel model.
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Sum-product algorithm for the Wiener-Levy phase model

1. Initialization:

µxi→fi(xi) = p(xi) ∀ i = 1, . . . , N

µyi→fi(yi) = 1 ∀ i = 1, . . . , N

µp→θ1(θ1) = p(θ1)

2. Messages from factor nodes fi toward variable nodes θi:

µfi→θi(θi) =

∫

∼{θi}
fi(yi, xi, θi)µxi→fi(xi)µyi→fi(yi) ∀ i = 1, . . . , N

3. Forward messages and backward messages computed in parallel:

µθ1→p2,1(θ1) = µf1→θ1(θ1)µp→θ1(θ1)

µθN→pN,N−1
(θN ) = µfN→θN (θN )

µpi,i−1→θi(θi) =

∫

∼{θi}
pi,i−1µθi−1→pi,i−1(θi−1) ∀ i = 2, . . . , N

µpi,i−1→θi−1(θi−1) =

∫

∼{θi−1}
pi,i−1µθi→pi,i−1(θi) ∀ i = N, . . . , 2

µθi→pi+1,i(θi) = µpi,i−1→θi(θi)µfi→θi(θi) ∀ i = 2, . . . , N − 1

µθi→pi,i−1(θi) = µpi+1,i→θi(θi)µfi→θi(θi) ∀ i = N − 1, . . . , 2

4. Messages from variable nodes θi toward factor variables fi:

µθ1→f1(θ1) = µp→θ1(θ1)µp2,1→θ1(θ1)

µθN→fN (θN ) = µpN,N−1→θN (θN )

µθi→fi(θi) = µpi,i−1→θi(θi)µpi+1,i→θi(θi) ∀ i = 2, . . . , N − 1

5. Messages from factor nodes fi toward variable nodes xi:

µfi→xi
(xi) =

∫

∼{xi}
fi(yi, xi, θi)µθi→fi(θi)µyi→fi(yi) ∀ i = 1, . . . , N



5.4 Factor graph of a Markovian channel 57

1

1 1 1

1 1

1

2 2 2

33

3

4 4 4

5 5 5

3

y1 y2 yN

x1 x2 xN

f1 f2 fN

θ1 θ2 θN

p p2,1 pN,N−1

Figure 5.4: SPA message scheduling.

In Fig. 5.4 we have depicted the message scheduling. After these steps the block
can propagate the “beliefs” of the variables xk to the demapping and the decoding
blocks. It is also possible to compute the marginal probability density function for
all θi as a product of the incoming messages and obtaining a phase estimation by
the MAP criterion.

p(θ1) = µp→θ1(θ1)µf1→θ1(θ1)µp2,1→θ1(θ1)

p(θN ) = µfN→θN (θN )µpN,N−1→θN (θN )

p(θi) = µfi→θi(θi)µpi,i−1→θi(θi)µpi+1,i→θi(θi) ∀ i = 2, . . . , N − 1

θ̂MAP
i = argmax

θi
p(θi) ∀ i (5.10)

Approximation methods

The summary operations in Steps 3) and 4) lead to intractable integrals since con-
tinuous variables are involved. In this case does not exist a closed form solution so
we need an approximative integration methods. In the exhaustive work did in [8]
more possibilities can be found in this regard. Among all the proposals we have
picked:

• Quantization.

• Gradient algorithm.

They have been suggested by our final goal of finding a good parallel channel es-
timation algorithm running on the graphic card. In the following sections we will
explain the resulting algorithms from a general point of view and we will motivate
these choices. A detailed description of the parallel implementation will be give in
Chapter 7.
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5.5 Quantized Sum Product Algorithm

The most natural way to circumvent the integration problem is by quantization of
the domains of the continuous variable. In this way we obtain the quantized version
of the functions and the messages. Essentially the probability density functions are
approximated with probability mass functions. The basic idea is that continuous
variables are quantized and after that, the integrals over the whole range can be
replaced by a finite sums. There exist several quantization techniques, and basically
they differ depending on how the quantization levels are chosen.

The simplest method is the uniform quantization that leads the simplest nu-
merical integration rule, i.e., the rectangular rule. As example consider the simple
factor graph involving three variable nodes, namely x1, x2 and y, and a factor node
f(y, x1, x2) (see Fig. 5.5).

f

x1 x2

y

Figure 5.5: Factor graph of the function f(y, x1, x2).

The variables x1 and x2 are continuous and we decide to quantize their domains
with L levels. The general integral-product rule in the SPA algorithm can be eval-
uated as follow

µf→y(y) =

∫

x1

∫

x2

f(y, x1, x2)µx1→f (x1)µx2→f (x2)dx1dx2 =

≈
L−1∑

i=0

L−1∑

i=0

f(y, x
(i)
1 , x

(i)
2 )µx1→f (x

(i)
1 )µx2→f (x

(i)
2 ) (5.11)

where x
(i)
k is the i-th quantization level of xk. In this way the integrand

f(y, x1, x2)µx1→f (x1)µx2→f (x2)

is approximated as a piecewise constant function and the messages are represented
by their function values at the quantization levels. This last assumption is shown in
Fig 5.6.
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g(x) µ(x)

Rectangular rule Quantized message

Figure 5.6: Rectangular integration rule and quantized message.

In our particular case the continuous variables that need to be quantized are θk.
We assume that the channel phase samples take value on the following finite set:

θk ∈

[

−π,−π +
2π

L
, . . . , π

L− 2

L

]

(5.12)

In order to obtain the quantized version of the previous algorithm we only need
to replace the continuous variable with their quantized versions and the message
update rules will be obtain by applying the sum product rule for discrete variables.

The algorithm obtained with the quantized version of the variable represents an
instance of the SPA algorithm with only discrete variables. This means that this
approach becomes “optimal”, in the sense that it approaches the performance of the
exact SPA, for a sufficiently large number of quantization levels, at the cost of an
increasing computational complexity. Indeed the drawback of this technique, and
of the quantization techniques in general, is that the complexity and the memory
requirements scale in the number of quantization levels L.

The reason why we have chosen this particular approximation technique is the
knowledge of the device (the graphic card) we will use to implement the algorithm.
The resulting algorithm has a high computational complexity correlated to the num-
ber of quantization levels. On the other hand the GPU seems to allow a good
performance improvement for several types of applications.

Another specialization we have thought regards the computation of the forward
and backward messages. We have called this Markov Chain update rule and it is
described in the next section.

5.5.1 Markov Chain update rule

By adopting the quantization method the messages can be represented in a computer
program by discrete vectors:

µ(x) =
[

µ(x(1)), . . . , µ(x(L))
]

(5.13)

where L indicates the cardinality of the quantized domain decided for the variable
x. Each element of the vector denotes the value of the message computed in the
corresponding quantized value of x.
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With this assumption what the nodes pass are the true messages, so the message-
passing correspond to a real “belief” propagation. This means that the message-
update rules are handled by standard sum product rule where the summary opera-
tion correspond to a finite sum.

We focus now on the i-th forward transaction of the Markov Chain depicted in
the upper part of the graph. Due the Markovian nature of the system, one can
think to obtain the messages passing through the chain by a simple evaluation of
a one step transition of a Markov Chain. In Fig. 5.7 we have reported the general
forward transition of the SPA with a simplified notation and where all the variables
are supposed to be quantized.

µF (θi−1) µF (θi)

µf (θi−1)

pi−1,i

θi−1 θi

Figure 5.7: General forward message propagation of the quantized SPA.

The forward message µF (θi) is obtained by the sum product rule:

µF (θi) =
L∑

j=1

p(θi|θ
(j)
i−1)µF (θ

(j)
i−1)µf (θ

(j)
i−1) (5.14)

As well known, for a discrete Markov Chain, the first order transition matrix
stores all the transition probability functions. By quantizing with L levels the con-
tinuous variables the matrix has dimension L× L and results as follows:

P =












p(θ
(1)
i |θ

(1)
i−1) p(θ

(2)
i |θ

(1)
i−1) . . . . . . p(θ

(L)
i |θ

(1)
i−1)

p(θ
(1)
i |θ

(1)
i−1)

. . . p(θ
(L)
i |θ

(1)
i−1)

... p(θ
(j)
i |θ

(j)
i−1)
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p(θ
(1)
i |θ

(L)
i−1) . . . . . . p(θ

(L−1)
i |θ

(L)
i−1) p(θ

(L)
i |θ

(L)
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In this way Eq. (5.14) can be write in vectorial notation as a vector×matrix product:

µF (θi) = (µF (θi−1) · µf (θi−1))P (5.15)

where the symbol · denotes the pointwise product between the two incoming messages
(functions) in θi−1. The same considerations hold for the backward messages:

µB(θi−1) = (µB(θi) · µf (θi))P (5.16)
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The reason of the last considerations is that we hope it will result in a more
suitable algorithm to be implemented in our computer simulations. In particular,
the knowledge of the CUDA programming model suggests us that this method could
exploit the GPU compute capability for the vector × matrix product computation
since it is an operation that can be parallelized. More details about the imple-
mentation will be give in Chapter 7. In the following section we report the phase
estimation algorithm with quantized variables and the Markov chain update rule.

5.5.2 Quantized SPA for phase estimation

We suppose that the observation vector y and the input symbol estimates vector
x̂ are available as inputs for the algorithm. The latter is provided by the decoding
block (see Fig. 5.1). The variable θi are assumed quantized with L levels and take
values as in Eq. 5.12. No a a priori knowledge for θ1.

1. Messages from factor nodes fi toward variable nodes θi:

µf (θi) = f(yi, x̂i, θi) ∀ i ∈ [1, . . . , N ]

2. Forward and backward messages computed by the Markov chain update rule:

µF (θ2) = µf (θ1)P

µF (θi) = (µF (θi−1) · µf (θi−1))P ∀ i ∈ [3, . . . , N ]

µB(θN−1) = µf (θN )P

µB(θi−1) = (µB(θi) · µf (θi))P ∀ i ∈ [1, . . . , N − 2]

3. Marginals of the θi variables as pointwise product of the incoming messages:

p(θ1) = µB(θ1) · µf (θ1)

p(θi) = µF (θi) · µB(θi) · µf (θi) ∀ i ∈ [2, . . . , N − 1]

p(θN ) = µF (θN ) · µf (θN )

4. Phase estimation by using the MAP criterion:

θ̂MAP
i = argmax

θi
p(θi) ∀ i ∈ [1, . . . , N ]

After these steps we obtain a phase estimation, i.e, the phase sample θi is associated
to a quantized value in the range. It is clear that the estimation quality depends on
the number of quantization levels adopted and a quantization error floor is unavoid-
able. For a performance evaluation of the estimator we refer to Section 7.3.
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5.6 Steepest Ascent algorithm

A probability density function can be represented by a single or a set of values
describing its properties. The typical example is the Gaussian distribution which
can be completely described by the knowledge of its mean and its variance. However
a general function f(x) can be represented with a single value such as:

• its mode;

• its mean;

• its median;

• a sample value from f .

In our case we are interested in the mode of the function which is defined as follows:

xMAX = argmax
x

f(x)

The probability density function is then approximated by the Dirac delta δ(x −
xMAX) as depicted in Fig. 5.8.

xMAX

f(x)

fMAX

x

Figure 5.8: A probability density function and its approximation by a Dirac delta
located at its mode.

Since the messages exchanged in our factor graph are basically probability density
functions this assumption leads us to represent them as single values. Consider the
example done in Section 5.5 and illustrated in Fig. 5.5, the sum product rule becomes

µf→y(y) = f(y, x̂1, x̂2) (5.17)

where x̂1 and x̂2 are the modes of the two incoming messages for the factor node f ,
i.e., µx1→f (x1) and µx2→f (x2). Note that we have used the hat notation since they
are the hard estimates of the variables x1 and x2.

We can think now that for each variable node in the graph, if its marginal
function is available, its mode correspond to the MAP estimation of the variable.
We already know that, if a closed-form solution for the MAP estimate does not exist,
we need a method to find it. It might be found iteratively by a gradient method and,
as we can see, this approach can also be viewed as a message passing working on
the corresponding factor graph [8]. We briefly review this family of algorithms.
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5.6.1 Gradient algorithms

Consider a general function f(x) defined R
n → R. One method for optimizing a

function, which means in general to minimize or maximize it, is to iterate in such a
way that:

f(x(j+1)) < f(x(j))

unless:
f(x(j+1)) = f(x(j))

in which case an extremum point is reached. The index j denotes the j-th iteration.
A common way to accomplish this is to update the argument vector x(j) in each

iteration by applying the following general rule:

x(j+1) = x(j) + λjgj

where λj is a scalar called step size, and gj is a direction of motion, selected so that
the successive steps decrease the function f . Depending on the vector gj selected, we
can get different gradient algorithms like steepest descent(ascent), conjugate-gradient
descent(ascent), or other. Before specializing this general framework in our case it
is worth to point out that iterating the general rule will not necessarily reach the
global minimum of the function. For example consider the function illustrated in
the next figure.

x(0)

x̃

f(x)

x

Figure 5.9: A function with a local and a global minimum.

It is clear that depending on the starting point x(0) this method can lead to
different results. In the situation depicted in Fig. 5.9 the algorithm will reach the
local minimum x̃ and not the global minimum.

5.6.2 A parallel implementation

The final goal for the phase estimation is reached by maximizing the joint probability
function in θ, i.e. finding the phase vector that leads to its largest value. A widely
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used method for maximizing a function f is the steepest ascent, which is applicable
to differentiable functions.

Let us consider the joint probability function where y and x̂ act as parameters,
so that we can write p(y, x̂,θ) = f(θ). By adopting the steepest ascent algorithm
the following general update rule is obtained:

θ(j) = θ(j−1) + λj∇θf(θ)|θ(j−1) (5.18)

Alternatively, since the logarithm is a monotonic function, we can also consider the
rule:

θ(j) = θ(j−1) + λj∇θ log f(θ)|θ(j−1) (5.19)

Due to the particular nature of the problem we know that the joint probability
density function can be nicely factorized in order to be represented as a factor graph.
This fact can also be exploit to find a parallel phase estimation algorithm based on
the steepest ascent. In order to do this we focus on the generic θi variable node
illustrated in Fig. 5.10.

x̂i yi

fi

θipi,i−1 pi+1,i

∇f j
i

∇pji,i−1 ∇pji+1,i

θ̂ji

θ̂ji θ̂ji

Figure 5.10: Local Steepest Ascent computation

The function depicted in the picture is:

g(θi) = fi(yi, x̂i, θi)p(θi|θi−1)p(θi+1|θi) (5.20)

By taking the logarithm:

log g(θi) = log fi(yi, x̂i, θi) + log p(θi|θi−1) + log p(θi+1|θi) (5.21)

Now one can think to apply the steepest ascent algorithm locally for the function
in (5.21). Straightforward mono-dimensional application of the rules in Eq. (5.19)
leads to:

θ(j) = θ(j−1) + λj∇θi log g(θi)|θ(j−1)
i

(5.22)
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The gradient is obtained by summation of three terms, each corresponding to one
factor node:

∇θi log g(θi) =
∂ log fi(yi, x̂i, θi)

∂θi
+

∂ log p(θi|θi−1)

∂θi
+

∂ log p(θi+1|θi)

∂θi
(5.23)

The three terms constituting the gradient are the following:

∂ log fi(yi, x̂i, θi)

∂θi
=

ℑ
{
yix̂

∗
iAe

−jθi
}

σ2
ω

(5.24)

∂ log p(θi|θi−1)

∂θi
= −

θi − θi−1

σ2
p

(5.25)

∂ log p(θi+1|θi)

∂θi
=

θi+1 − θi
σ2
p

(5.26)

The same reasoning can be applied to all the phase variables in the factor graph
resulting in a local update rule for each of them. As we will see this consideration
will be exploited in the parallel implementation on the graphic card. Indeed since
we split a global optimization problem (Eq. (5.19)) in N local optimization problems
we are applying the basic concept of data parallelism (see Section 6.2): working on
different data with the same operations and at the same time.

Only one issue remains to be covered, the choice of the initial guess θ(0). As we
told the starting point for a gradient algorithm is important for the final result. In
this regard we decide to adopt as initial guess for our steepest ascent algorithm the
Maximum Likelihood estimate of the phase vector (see Chapter 4). In this way we
are quite sure the algorithm will start from a point near to the global maximum.
Of course this does not represent the optimum choice, indeed in presence of a bad
scenario the resulting poor ML estimate could force the algorithm to start from a
point far from the desired solution.

Finally we will adopt for our algorithm a constant step size for each iteration.
The parameter λj in Eq. (5.19) determines how far we move at step j and it should
depend on the iteration index. Frequently, steepest ascent algorithms use λj = λ for
some constant λ. There exist some versions of the gradient algorithm that optimize
the step size at each iteration but for our purposes it is sufficient to keep it fixed.
An optimization of the step size for our particular case will be probably future work.

This algorithm does not represent an instance of the SPA working on a factor
graph but, since it is suggested by the factorization of the joint probability density
function, one can think to see it as a message passing algorithm on the corresponding

graph. At each j-th iteration the variable nodes broadcast the current estimate θ
(j)
i

to the neighbor factor nodes which reply with the corresponding term of the local
gradient computed in the current estimated value. After that the local update rule
is performed. The phase estimation is obtain when convergence is reached.

In the next section we report the specific algorithm we have developed for the
phase estimation based on the steepest ascent method and in Fig 5.11 a details of
particular message passing in the upper part of the graph.
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5.6.3 Steepest Ascent algorithm for phase estimation

We suppose that the observation vector y and the input symbol estimates vector
x̂ are available as inputs for the algorithm. The latter is provided by the decoding
block (see Fig. 5.1). No a priori knowledge for θ1 is available.

1. Initialization with ML estimation:

θ(0) = θ̂
ML

= argmax
θ

log p(y|x̂,θ)

All nodes θi broadcast their initial guess θ
(0)
i .

2. Iterative part ∀ i ∈ [1, . . . , N ], set j = 1.

a) Each factor node computes its corresponding term of the local gradient:

∂ log fi(yi, x̂i, θi)

∂θi
|
θ
(j−1)
i

∂ log fi(yi, x̂i, θi)

∂θi
|
θ
(j−1)
i

∂ log p(θi+1|θi)

∂θi
|
θ
(j−1)
i

and sends back the result to its neighbors.

b) Each node θi updates its estimate by the local update rule:

θ(j) = θ(j−1) + λj∇θi log g(θi)|θ(j−1)
i

c) Set j = j + 1 and back to a) until convergence.

b

a

b

a

b

a

b

a

a

b

a

b

b

a

a

θ1 θ2 θN

p2,1 pN,N−1

Figure 5.11: Steepest Ascent as message passing.
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5.7 Performance comparison

Until now we have developed two different phase estimation algorithms working on
the factor graph of the receiver. In order to obtain an indication on the quality of the
estimate we report the results of a simulation campaign. Since it mimics the one did
for the ML estimators we remind the general simulation parameters of Section 4.5.
The specific parameters adopted for the two proposed algorithms are:

• Number of quantization levels for Quantized SPA, L = 256.

• Number of iteration for Steepest ascent, Nit = 1000.

• Fixed step size λ = 0.03. It has been experimentally evaluated.

Since all simulations reported in this thesis were done with the graphic card the
parameter chosen have not resulted in a particular long simulation time.

In order to have a first qualitative evaluation of the two different methods, we
report in the following the phase estimation performed on one realization of the
phase process (Fig. 5.12).

100 200 300 400 500 600 700 800 900 1000
−3

−2

−1

0

1

2

3

 

 
θ(kT)
θ

SA
(kT)

θ
Q−SPA

(kT)

θ(
k
T
)

kT

Figure 5.12: Factor graph estimations, SNR = 7 dB, σ2
p = 7(◦)2, N = 101 samples.

As it can be observed, the two estimates lead to similar results, as the MSE are
respectively:

MSEQ−SPA = 0.00943 MSESA = 0.0099
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In order to have valid indications on the estimators performance, we have carried
out a similar study to the one for the ML estimators of Chapter 4. The MSE is
evaluated as a function of the thermal noise (SNR) and the phase noise (σ2

p) for
different scenarios.

MSE as a function of SNR

0 5 10 15 20
10

−2

10
−1

10
0

 

 
Steepest ascent
SPA Quantized

M
S
E

SNR (dB)

Figure 5.13: MSE as a function of SNR, σ2
p = 25(◦)2.
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Figure 5.14: MSE as a function of SNR, σ2
p = 5(◦)2.
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Figure 5.15: MSE as a function of SNR, σ2
p = 0.1(◦)2.
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Figure 5.17: MSE as a function of σ2
p, SNR = 2 dB.
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Figure 5.18: MSE as a function of σ2
p, SNR = 20 dB.
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As we can see the performance of the two estimators for different SNR are quite
similar (see Fig. 5.13 - Fig. 5.13). The reason is that they are different approxima-
tions of the same MAP criterion applied for phase estimation. It can be observed
that for low SNR the Steepest Ascent algorithm leads to a slightly better estimation
in all the cases proposed. This issue added to the well known low complexity of the
algorithm lead us to prefer it rather than the Quantized SPA for bad thermal noise
environment. In Fig. 5.15 it can be observed how for high SNR the unavoidable
quantization error in the quantized algorithm becomes dominant over the estimation
error and leads to a worst estimate for the process. This is due to the fact that,
in such kind of good scenario, the resulting quantized estimate it is not sufficiently
refined and, in order to increase the estimation quality, for low phase noise it is
required to increase the number of quantization levels. The next series of pictures
(Fig. 5.16 - Fig. 5.18) confirms these observations and reveals that the Steepest
Ascent algorithm is more robust to the phase noise than the Quantized SPA.

5.8 Conclusions

In this chapter we have presented two different phase estimation algorithms, both
obtained through the factor graph approach.

First of all we have presented the system model and shown how it can be nicely
translated into a factor graph depicting the joint probability density function of all
the variables involved (Fig. 5.1). After that, through a first simple example where
we have adopted the Constant phase model, we have shown how, in that particular
case, since there exists a closed form solution (equal to the ML estimator), the
factor graph approach does not result useful.

We have passed to a more refined stochastic model, i.e. the Wiener-Levy phase
model, and we have seen how its Markovian nature can be highlighted by depicting
it as a factor graph (Fig. 5.3). We have reported the general Sum Product Algorithm
working on the graph and the message schedule that, since the graph is cycle-free,
leads to the exact marginals for each variable.

Since the SPA requires the computation of intractable integrals over continuous
range we need to approximate them. Keeping in mind the final parallel implementa-
tion on the graphic card, among all the proposals in [8], we have chosen two different
approximation methods: Quantization and Gradient algorithm.

For both methodologies some tricks were devised in order to obtain a suitable
parallel implementation. Without going into details on how the algorithm will be
finally implemented on the GPU (purpose of Chapter 7), we have presented the
Markov Chain update rule for the Quantized SPA. In this way the forward and
backward messages are obtained by vector × matrix products which are operations
suitable to be parallelized.

Regarding the Gradient based algorithm, we have developed an iterative Steepest
Ascent algorithm for the phase estimation which performs a local and distributed
optimization on each phase sample. In this way we have split a global problem
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in N sub-problems applying the basic concept of data parallelism (see Section 6.2),
work on different data with the same operation independently and at the same time.
The resulting algorithm, in contrast with the Quantized SPA, does not represent an
instance of the SPA but can be viewed as a message flow through the graph.

Finally as already done for the ML estimators we have presented a simulation
campaign where the performance of the two factor graph estimators have been com-
pared in terms of MSE. In particular as a function of the SNR and the phase noise
variance σ2

p for different scenarios. We have observed how the two estimators lead
to quite similar results since they are different approximation of the same MAP
criterion for the phase estimation. However in some limit cases the unavoidable
quantization error for the Quantized SPA determines a slightly worst estimate than
the Steepest Ascent.



Chapter 6

An introduction to CUDA

With CUDA is referred at the same time to a general purpose parallel programming
architecture and a programming model and instruction set provided by Nvidia in
November 2006. Without the ambition to be exhaustive, with this chapter we give an
introduction to CUDA in order to provide a basic background for the understanding
of the next chapter where is described the parallel implementation of the channel
estimation algorithms.

We start by reporting the reasons why the modern graphic cards can be view as
massively parallel processors and a short description of the CUDA hardware archi-
tecture. After that the basic concepts of the programming model will be presented.
The description in the following is based on [18] and [16], we refer the reader to
them for further details.

6.1 GPUs as Massively Parallel processors

Since the early 2000 years, the semiconductor industry has settled two main roads
for designing microprocessors. The multi-core trajectory seeks to maintain the exe-
cution speed of sequential program while moving into multiple cores. Starting with
two-core processors, the number of cores approximately doubling with each semicon-
ductor process generation. In contrast, the many-cores trajectory, is more focused
on the execution throughput of parallel execution. The many-cores began as a large
number of much smaller cores, and, once again, the number of cores doubles with
each generation.

The Graphic Processor Unit (GPU) belong to this latter family and, since 2003,
they have led the race of floating point performance. As shown in Fig. 6.1, while
the performance improvement of general-purpose microprocessor has slowed signif-
icantly, the GPUs have continued to improve relentlessly. As we can see the ratio
between the GPU and CPU, in terms of floating point computation throughput,
is about 10 to 1. This is not necessarily the achievable applications speeds but is
merely the raw speed that the execution resources can potentially support.

73
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Figure 6.1: Performance gap between GPUs and CPUs [18].

The reason for this large performance gap lies in the differences in the funda-
mental design philosophies between the two types of processors. The design of a
modern CPU is optimized for sequential code by using sophisticated control logic.
Furthermore, large cache memories are provided to reduce the instruction and data
access latencies of high complex applications. The actual general purpose multi-core
processors have four large processor cores designed to deliver strong sequential code
performance. On the other hand, the design philosophies of GPUs is driven by the
fast growing video game industry, which makes pressure for the ability to perform
a massive number of floating-point calculations per video frame in advanced video
games. This has resulted in a maximization of the chip area dedicated to floating
point calculations. This differences are schematically showed in Fig. 6.2.

Figure 6.2: Different architectures for CPU and GPU [16].
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Architecture of a CUDA GPU

A modern CUDA GPU is organized into an array of highly threaded streaming
multiprocessors (SMs). In Fig. 6.3 two SMs form a building block, the number of SMs
in a specific building block can vary from one generation of CUDA GPUs to another.
Each streaming multiprocessor has a number of streaming processors (SPs) that
share control logic and instruction cache. Since each SP is massively threaded it can
run thousands of threads per application. A good application typically runs 5000-
12000 threads simultaneously on these chips. We note that actual CPUs, depending
on the model, supports from 2 to at most 8 threads.

Figure 6.3: Architecture of a CUDA-capable GPU [18].

Each graphic card has its own graphics double data rate DRAM (GDDR) referred
to as global memory. This memory differs from the system DRAM on the CPU
motherboard in that they are essentially the frame buffer memory that is used
for graphics. While for graphic applications it holds video images, textures for
3D models etc., for computing it acts as a very high bandwidth off-chip memory.
Modern GPUs can transfer data from and to this memory at more than 140 GBps.

The communications bandwidth between the CPU mother board and the GPU
through the PCI EXPRESS interface is much lower, and it may seem like a limitation
in some cases. For this reason the data transfers between the CPU and the GPU
should be minimized in the applications.
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6.2 Programming Model, basic concepts

In this section are presented the basic concepts of the CUDA software model. Our
purpose is not to give a detailed description of the programming model proposed by
Nvidia, but just to indicate the basics. For further readings about this topic we refer
to [16]. Before describing the programming model we want to discuss the concept
of data parallelism since it has an important role in the development of the parallel
algorithms.

Data parallelism

With data parallelism is referred the property of an algorithm whereby many arith-
metic operations can be safely performed on the data structures independently and
at the same time. This concept can be nicely illustrate by the matrix - matrix
multiplication example[18].

Let be A and B two matrices and C the matrix obtained by the matrix multi-
plication of the two. The operation is schematically showed in Fig. 6.4.

AB = C

A

B

C

Figure 6.4: Data parallelism in matrix multiplication.

Each element of the result is obtained by performing the dot product between a
row of the input matrix A and a column of the input matrix B. This dot product
operations can be simultaneously performed for each element of C and note that non
of the dot products affects the result of each other. Therefore matrix multiplication
of large dimensions can have a large amount of data parallelism. The Markov Chain
update rule (Section 5.5.1) has been suggested by these considerations.
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Heterogeneous Programming

In CUDA jargon a system consists of a host, which is a traditional central process-
ing unit (CPU), and one or more devices, which are massively parallel processors
equipped with a large number of execution units.

A CUDA program is constituted of one or more parts that are executed on
either the host or a device. The code that exhibits small or no data parallelism is
implemented on the host. In contrast the phases that are suitable to be parallelized
are implemented in the device code and executed on the GPU. A CUDA program is
a unified source code gathers both the host code and the device code. While the host
code is written in canonical ANSI C, the device code is written in CUDA C which is
an extension of the ANSI C with keywords for labeling data parallel functions and
their associated data structures.

The typical execution of a CUDA program is shown in Fig. 6.5. The execution
starts on the host. When a kernel function is launched the execution is moved
to a device where a large number of threads run. All the kernels are collected in
grid. How this grid is organized will be discuss later. Finally when all the threads
have completed the execution the corresponding grid terminates, and the program
continues on the host until another kernel is invoked.

Figure 6.5: Heterogenous programming model, serial code executed on the host and
parallel code executed on the device [16].
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Kernels

CUDA C extends the canonical ANSI C and leads the programmer to define new
functions that, when invoked, are executed N times in parallel by N different CUDA
threads. This functions are known as kernels and they are showed on Fig. 6.6.

Figure 6.6: Kernel definition and invocation in CUDA C [16].

In the upper part is reported the kernel definition. As we can see it is defined
like a normal C function with in addition the global specifier. It indicates the
function being declared is a CUDA kernel function and it will be executed only on
the device. It can only be called from the host to generate a grid of threads on a
device.

In CUDA a kernel specifies the code to be executed by all threads during a
parallel phase. In the example showed in Fig. 6.6 the kernel performs the pointwise
vector addition between two input vectors, namely A and B and stores the result
vector C. In particular each thread computes the addition between two entries and
stores the result in the corresponding cell of the output array.

Thread hierarchy

Since all the threads execute the same kernel code it is required a mechanism to
allow them to distinguish themselves and direct themselves toward the particular
parts of the data portion that they are designated to work on. Each thread that
executes the kernel is associated to a unique thread ID that is accessible within
the kernel through the built-in threadIdx variable (see Fig. 6.6). It is a three
dimensional vector so that each thread can be identified by a one-dimensional, two-
dimensional or three-dimensional index. In this way they can form one-dimensional,
two-dimensional or three-dimensional blocks of threads. This provide a natural way
to match the computation across the data in a domain such a vector, matrix or
volume.
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The index of a thread and its relative thread ID are related by the following
relations depending on the block dimension.

Block dim. index thread ID

1 D x x

2 D (x, y) x+ yDx

3 D (x, y, z) x+ yDx + zDxDy

Table 6.1: Relation between thread index and thread ID.

In the table above Dx, Dy denote the x and y block dimensions. There exists also
Dz which is not shown.

Since all threads of a block reside on the same SP they must share the limited
memory resources of that core. For this reason the number of threads per block is
limited. On current GPUs, a thread block may contain up to 1024 threads. However,
a kernel can be executed by multiple equally-shaped thread blocks, so that the total
number of threads is equal to the number of threads per block times the number
of blocks. Blocks are organized into a one-dimensional or two-dimensional grid of
thread blocks as illustrated by Fig. 6.7. The particular choice of the number of
blocks in a grid is usually suggested by the size of the data being processed or the
number of processors in the system.

Figure 6.7: Grid of blocks [16].

The number of CUDA threads that executes that kernel is specified inside the
main() function by using the execution configuration syntax indicated in Fig. 6.6
with the <<< . . . >>> brackets. The first parameter denotes the grid dimensions,
i.e., the number of blocks, while the second parameter denotes the block dimension,
i.e., the number of threads constituting each block. Similarly to threads, each block
in the grid can be identified by a one-dimensional or two-dimensional index accessible
within the kernel through the built-in blockIdx variable. The dimension of the block
is accessible within the kernel through the built-in blockDim variable.
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Memory hierarchy

CUDA supports several types of memory that can be used by the programmers to
achieve high performance and high execution speed in their kernel. Fig. 6.8 shows
these memories. In the bottom of the figure we have the already introduced global
memory and the new constant memory. They can be written and read by the host
by calling specific Application Programming Interface (API) functions provided by
Nvidia. While the global memory can be written and read by the device, the constant
memory represents a short-latency, high bandwidth, read-only memory particularly
useful when all the threads need to simultaneously access to the same data.

Registers and shared memory are on-chip memories. Data stored in these type
of memory can be accessed and manipulated at very high speed. While registers
are allocated to individual threads shared memory is allocated to blocks. All the
threads within a block can access to the variables stored in shared memory resulting
in a efficient means for threads cooperation. Indeed they can share input data and
intermediate results of the work. Sharing data through shared memory requires the
synchronization of the execution to coordinate memory accesses. In CUDA C specific
synchronization points in the kernel are achieved by calling the syncthreads()
function. Basically it acts as a barrier at which all threads in the block must wait
before any is allowed to proceed. Finally for efficient cooperation, the shared memory
is expected to be a low-latency memory near each processor core (like a L1 cache).

Figure 6.8: CUDA memories [18].

The description reported in this chapter represents only a glimpse to the CUDA
architecture and the CUDA programming model. Further details can be found in
the official documentation provided by Nvidia [16], [17], and also in [18] and [19].



Chapter 7

Parallel implementation on

Graphic Card

The purpose of this chapter is to describe the implementation on the graphic card.
As we will see some of the channel estimation algorithms developed are more suitable
than others for parallel implementation. Some of the recommendations proposed in
[17] and [16] have been adopted in order to obtain a good parallelization.

The chapter starts with a briefly illustration of the basic concepts to take under
consideration when approach the development of algorithms on the graphic card
and some technical specifications of the device we have used, the TESLA C2070
computing system. After that some details on how we have implemented in parallel
the channel estimation algorithms will be give and finally is presented a perfor-
mance comparison between the serial implementation on the CPU and the parallel
implementation on the GPU.

7.1 Programming Guidelines and the Device

In our experience we have tried to obtain the biggest benefit as possible from the
parallel implementation by assuming three basic guidelines:

• Finding ways to parallelize sequential code.

• Maximize parallel execution.

• Optimize memory usage as much as possible.

To get the improvement from CUDA we need to focus first on finding a way to
parallelize our sequential algorithm, i.e., to exploit the data parallelism. The amount
of performance benefit for an application depends entirely on the extent to which it
can be parallelized. Code that cannot be sufficiently parallelized should run on the
host otherwise it will result in excessive overhead due to transfers between the host
and the device.

81
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The maximum speedup expected by parallelizing portions of a serial program is
stated by the Amdahl’s law [17]. It says that the maximum improvement in terms
of speed S of a program is

S =
1

(1− P ) + P
N

(7.1)

where P is the fraction of the total serial execution time taken by the portion of code
that can be parallelized, and N is the number of processors over which the parallel
portion of the code runs. As we can see if we increase the number of processors the
equation can be approximated into S = 1/1 − P . In this case if the portion of the
program to parallelize is 3/4 the maximum speedup obtained over serial code is just
4. The key point asserted by the law is that the greater P , the greater is the speedup
obtained. In addition, if P is small, increasing N does just a little improvement. So
to get the larger lift, it is suggested to spend more effort on finding a good way to
parallelize the algorithm, that is, to increase P .

To maximize the utilization we need to maximize the parallel execution. This
means that the application should be structured in a way that it exposes as much
parallelism as possible but also efficiently maps this parallelism to the various com-
ponents of the system. At high level the application should optimize the parallel
execution between the host and the devices. Basically it should assign to each pro-
cessor the type of work it can do best: serial workloads to the host, parallel workloads
to the device. It could happen that for a parallel workload the parallelism is broken
because some threads need to synchronize in order to share data with each other. In
the case the threads belong to the same block they should use the synchthreads()

function and share data through the shared memory. Otherwise, if they belong to
different blocks, they must share data through global memory with the consequent
loss of performance. The occurrence of this last kind of situation must be minimized
by mapping the algorithm to the CUDA programming model in such a way that the
computations that require inter-thread communication are performed within a single
block as much as possible.

This also brings us to evaluate the third rule about the memory usage. The first
step in maximizing overall memory throughput for the application is to minimize
data transfers with low bandwidth. Basically this means that the data transfers
between the host and the device since they have much lower bandwidth than data
transfers in the device (see Section. 6.2). One way to accomplish this is to move code
from the host to the device, even if it means running kernels with low parallelism.
Intermediate data structures may be created in device memory, operated on by the
device, and finally destroyed without being copied to host memory.

Further improvements can be also achieved by maximizing the usage of on-chip
memories such as shared memory and constant memory. In particular the shared
memory is equivalent to a user-managed cache on which the application can explicitly
allocate and access.
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The typical programming pattern is to have each thread of a block that:

• Loads data from the device memory to shared memory.

• Synchronizes with all the other threads of the block so that each one can safely
read shared memory locations that were populated by other threads.

• Processes the data in shared memory.

• Synchronizes again if necessary to make sure that shared memory has been
updated with the results.

• Writes the results back to the device memory.

The Device

In order to obtain good results it is also necessary to know the specific properties of
the graphic card used. In our case the code has been developed to be executed on
a Nvidia TESLA C2070. This card is based on the current CUDA architecture co-
denamed Fermi. The Fermi based GPUs, implemented with 3.0 billion transistors,
features 448 CUDA cores. Each CUDA core executes a floating point or integer
instruction per clock for a thread. All cores are organized in 14 Streaming Multipro-
cessors of 32 cores each. This GPU has six 64-bit memory partitions, for a 384-bit
memory interface, supporting a total of 6 GB of GDDR5 DRAM memory. A host
interface connects the GPU to the CPU via PCI-EXPRESS.

For our purposes it is important to know the properties of our board in terms
of the CUDA programming model, i.e, maximum number of threads, of blocks etc..
The DeviceQuery application provided with the Nvidia GPU Computing SDK code
samples returns all the specifics of the card. From the output of such program we
can obtain the following useful information.

Total amount of global memory 5636554752 bytes
Multiprocessors x Cores/MP 4 x 32 = 448 (Cores)

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Maximum number of threads per block: 1024

Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1

Table 7.1: TESLA C2070 properties.
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7.2 Parallel implementation of the algorithms

By following the basic guidelines described above we have developed our channel es-
timation algorithms in order to match as well as possible the properties illustrated in
Tab. 7.1. In total have been implemented the following phase estimation algorithms:

• ML estimators.

• Quantized SPA.

• Steepest Ascent algorithm.

For each of them has been thought a different implementation and some specific
tricks. In the following section we report the details.

7.2.1 Parallel Maximum Likelihood estimators

All the maximum likelihood estimators developed in Chapter. 4 are based on the
moving average operation which is performed by a FIR filtering. Hence we are
focused on the implementation of the convolution operation on the graphic card. In
this regard we have developed two different parallel algorithms:

• Parallel time domain convolution.

• Parallel Overlap save method.

Parallel time domain convolution

A discrete time-invariant linear system, i.e., a filter, is shown in Fig. 7.1 where x and
y are respectively the finite length input data sequence and output data sequence.
The impulse response of the system is denoted by h.

x y
h

Figure 7.1: Discrete time linear system (filter).

For the system depicted the relation between a finite length input sequence x and
the output sequence y is given by the convolution operation:

y(k) =
M−1∑

i=0

x(k − i)h(i) k ∈ [0, . . . , L+M − 2] (7.2)

where L is the length of the input and M the length of the filter. Since the input
sequence has finite length, in order to adopt the equation above in a computer
program it is usual to perform a zero padding at the beginning and at the end with
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M−1 zeros. In the following the input data sequence is assumed to be padded. The
output data sequence has length Ny = L+M − 1.

Every sample of the output is obtained by a dot product between the impulse
response h and a portion of the input signal of the same length, the whole input
sequence is then spanned in order to obtain all the output samples. The following
picture shows this operation in a graphic representation for an impulse response of
length M = 5.

h0h1h2h3h4

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0

Figure 7.2: Serial convolution in time domain, M = 5.

In order to obtain a parallel implementation of this algorithm we need to indi-
viduate how to carry out the same operations on different data independently, i.e.,
to reveal the data parallelism of the algorithm. By observing Fig. 7.2 one can think
to perform the same dot product operation simultaneously on different portions of
the input data, the only requirement to consider is that these portions must not
be overlapped in order to work independently. This last assumption is shown in
Fig. 7.3.

h0h0h0h0 h1h1h1h1 h2h2h2h2 h3h3h3h3 h4h4h4h4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19

y0 y5 y10 y15

Figure 7.3: Parallel convolution in time domain, Nb = 4, Nthreads = M.
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At this point the parallel implementation on the CUDA GPU is straightfor-
ward. We have Nb mono-dimensional blocks each one constituted by a number of
threads equal to the length of the impulse response M . By working on different
non-overlapped portions of the input, each block executes the dot product opera-
tion between the impulse response and its own portion of the input, independently,
and at the same time. In this way instead of obtaining just one sample of the output
(y0 in Fig. 7.2) we can obtain many samples as the number of blocks, (y0, y5, y10, y15
in Fig. 7.3). After that each block needs to be shifted by one sample and the next
series of output samples is computed. This can be done for a number of shifts equal
to the length of the impulse response. After that indeed each block would start to
re-compute the output samples already computed by other blocks. This can be over-
come by shifting the whole input data by a number of sample equal to M× (Nb−1).
The procedure is repeated until the input sequence is finished.

We focus now on the execution of one block, the dot product operation. The
computation consists of two steps. First, we multiply corresponding elements of
the two input vectors, after that we sum all the partial results to produce a single
scalar output. For example for the first block in Fig. 7.3 we get an equation like the
following

[x0, x1, x2, x3, x4] · [h4, h3, h2, h1, h0] = x0h4 + x1h3 + x2h2 + x3h1 + x4h0 = y0

The first step can be done with each thread of the block multiplies a pair of
corresponding entries. The partial result is a vector and we decide to store it in a
temporary buffer in shared memory. At this point of the algorithm we need to sum
all the temporary values that have been placed in the buffer. There is a potentially
danger situation that occurs when a thread seeks to read an entry in the cache
before each thread has finished the pointwise multiplication. To guarantee that all
the threads writes to the buffer completely before anyone tries to read we need
to use the syncthreads() function that assures every thread within a block has
completed its instruction before its call.

Now that we have guaranteed that the temporary buffer has been filled, we
need to sum the values in it. In general the process of taking an input array and
performing some computations that produce a smaller array of results is called
reduction. The serial way to accomplish this reduction would be having one thread
iterates over the buffer in shared memory and calculates a running sum. This will
take a time proportional to the length of the array. However this reduction can be
done in parallel and takes a time that is proportional to the logarithm of the length
of the array.

By adopting the sequential addressing summation reduction [21], [19] each thread
adds two of the values in buffer and stores the result back to the buffer. Since each
thread combines two entries into one we complete this step with half as many entries
as we started with (see Fig. 7.4). In the next step this process is performed on the
remaining half and repeated until only one entry remain, i.e. the dot product result.
A limitation is that the length of the two vectors must be a power of 2.
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Figure 7.4: One step of the sequential addressing summation reduction.

Parallel Overlap save method

For very long input sequence the convolution can be computed on blocks of the
input signal and by recombining the partial results. These techniques are based on
the Fast Fourier Transform (FFT) algorithm and one of them is the Overlap save
method [1]. The adoption of this algorithm has been suggested first of all because it
is very suitable to be parallelized and by the availability of the very efficient CUFFT
library. The availability of this library has allowed us to focus on the organization
of the data structures in memory.

In this algorithm the input sequence is divided in overlapped blocks of length
L where each block has the last M − 1 samples in common with the first M −
1 samples of the successive block. The convolution between each block and the
impulse response is performed by using the FFT algorithm. After that the iFFT is
performed on the result and only the last K = L−M −1 samples is saved obtaining
K samples of the output.

Let be x
(L)
i the i-th block of L samples and h the impulse response, the algorithm

works on each block as follows:

• Padding of the impulse response in order to reach a length of L:

h(L) = [h0, h1, . . . , hM−1,

L−M zeros
︷ ︸︸ ︷

0, . . . , 0 ]

• L points FFT on the padded impulse response and on the i-th block:

H = FFT [h(L)]

X
(L)
i = FFT [x

(L)
i ]

• Point-wise multiplication:

Y
(L)
i = H ·Xi

• Inverse transform and save the partial result, the first M − 1 samples are
neglected:

y
(K)
i = iFFT [Y

(L)
i ] = [

M−1
︷ ︸︸ ︷

#, . . . ,#, yM−1, . . . , yL−1]
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x
yS/P

P/S
FFT iFFT

OVERLAP OVERLAP
H

Figure 7.5: Overlap save method

The block diagram of the algorithm implemented on the graphic card is shown
in Fig. 7.5. First of all is performed an overlapped serial to parallel conversion of the
input sequence. The data are organized in a matrix where each column of length
L has in common M − 1 samples. After that the L dimensional FFT is performed
on the graphic card by the CUFFT library on each column of the matrix and on
the (padded) impulse response. The pointwise multiplication is executed between
each column of the transformed matrix and the transformed impulse response H
in parallel. We have a number of blocks equal to the number of columns, each of
them consists of L threads. Each block works independently on one columns and
each thread multiplies its corresponding entries. The CUFFT library is used also
to perform efficiently the iFFT on the result of the multiplication, and finally a
parallel to serial conversion is performed disregarding the first M − 1 samples of
each column.

7.2.2 Parallel Quantized SPA

In order to exploit the computational capability of the card we have decided to
parallelize the Quantized SPA in the number of quantized levels. Our hope is to
obtain a good estimation quality by choosing a relative high number of levels, and
at the same time to keep small the execution time. If we denote with L the number
of uniform levels, we can think that each thread within a block is focused on the
computation of one element of the resulting quantized marginal function for each
phase sample variable.

Since it is important to minimize the memory transfers between the host and
the device the algorithm works on the whole observation vector y and the input
symbols estimate vector x̂, the result will be the whole estimated phase vector θ̂.
This means that, if N is the observation window size and Ns the total number of
received symbols we launch Nb = ⌈Ns/N⌉ blocks each one with L threads.

The particularity of our implementation is the Markov Chain update rule de-
scribed in Section 5.5.1. Since all messages are represented as vectors, the forward
and backward messages through the Markov Chain are evaluated by a vector × ma-
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trix multiplication as follows:

µF (θi) = (µF (θi−1) · µf (θi−1))P (7.3)

µB(θi−1) = (µB(θi) · µf (θi))P (7.4)

where P denotes the L×L first order transition matrix and stores all the transition
probabilities for all the L states of the chain.

The j-th elements of the quantized forward message µF (θi) is obtained by the
dot product of the incoming message and the j-th column of the matrix as shown
in Fig. 7.6.

µF (θi−1) · µf (θi−1) µF (θi)

P

× =

Figure 7.6: Dot product involved in the Markov chain update rule

Hence all dot products involved in the forward and backward recursion have been
implemented in parallel by adopting the same principle described in Section 7.2.1
for the Parallel time domain convolution.

In summary the algorithm works as follows:

• Load the observation vector y, the input symbols estimate vector x̂ and the
first order transition matrix P in global memory.

• Each block by working on its specific portion of the inputs of size N :

– computes the µf (θi) messages ∀ i ∈ [1, . . . , N ] and stores the messages in
global memory. The marginals will be obtained starting from this partial
results;

– executes the forward and backward recursion by adopting the Markov
chain update rule. Once a the i-th forward message has been computed
updates the marginals for the phase variable θi in memory, the same holds
for the i-th backward message;

– when all the marginals have been computed performs a MAP estimation
for each phase variable node θi.

• The estimated phase vector θ̂ is stored in global memory.
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Before continuing our discussion we anticipate that this algorithm has confirmed
the well known high memory requirements for the quantization techniques. Indeed
all messages must be stored in intermediate data structures until the phase estima-
tion is performed. The amount of memory required depends both on the number of
quantization levels L and the observation window size N . In our experience shared
memory has not been used for this purpose because it is about 49 KByte in our
specific graphic card (see Tab. 7.1) which is resulted not sufficient. For this reason
all intermediate data structures have been moved in global memory and the shared
memory has been exploited for the partial results of the Markov Chain update rule.

Furthermore some kind of bottle neck of the algorithm is the forward and back-
ward recursion in the upper part of the factor graph which are inherently serial
algorithms. Indeed in order to obtain each forward (backward) message we need
to wait for the computation of the previous message, and this cannot be nicely
parallelized in this specific implementation.

7.2.3 Parallel Steepest Ascent algorithm

Finally we give some details on the parallel implementation of the Steepest Ascent
algorithm for the phase estimation, and we can assert that the most of the work has
already been explained in Chapter 5. Indeed the specific algorithm developed in Sec-
tion 5.6.2 represents already a parallel implementation suggested by the particular
nature of the problem.

The possibility to work locally for each phase sample and to perform local op-
timizations perfectly matches with the CUDA programming model. As for the
Quantized SPA we have implemented in parallel our algorithm in such a way that
it works on the whole inputs by launching Nb = ⌈Ns/N⌉ each one with N thread.
Each threads computes locally and independently the following update rule for each
sample θi:

θ
(j)
i = θ

(j−1)
i + λj∇θi log g(θi)|θ(j−1)

i

(7.5)

where the local gradient log g(θi) consists of the summation of the three terms:

∂ log fi(yi, x̂i, θi)

∂θi
=

ℑ
{
yix̂

∗
iAe

−jθi
}

σ2
ω

(7.6)

∂ log p(θi|θi−1)

∂θi
= −

θi − θi−1

σ2
p

(7.7)

∂ log p(θi+1|θi)

∂θi
=

θi+1 − θi
σ2
p

(7.8)

evaluated at the current estimates θ
(j−1)
i−1 , θ

(j−1)
i and θ

(j−1)
i+1 . We are in presence

of a total parallelization of the algorithm since it performs exactly the same op-
erations independently and at the same time on different data. Furthermore the
optimizations are completely performed in shared memory in order to improve the
performance.
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The parallel implemented algorithm is executed on the GPU as follows:

• Each block loads its corresponding portion of the initial guess θ̂
(0)

from global
memory to shared memory.

• Each thread iteratively update its corresponding phase estimate θ̂i
(j)

by com-
puting the local update rule (7.5).

• When convergence is reached each block stores the resulting portion of the
phase estimate θ̂ from shared memory to global memory.

We expected for this algorithm the biggest performance improvement among all
the algorithms implemented. In order to validate this we report in the next section
the performance comparison between the serial and the parallel implementation of
our channel estimation algorithms.

7.3 Performance comparison

In this section is reported a performance comparison between the serial implemen-
tation running on the CPU and the parallel implementation running on the GPU
for all the algorithms proposed. All the experiments have been executed on a work-
station with a quad-core Intel Xeon E5620 CPU running at 2.4 GHz and provided
with the Nvidia TESLA C2070 GPU. Tab. 7.2 summarizes the experimental setup.

CPU GPU

Platform Intel Xeon E5620 Nvidia TESLA C2070

Language C/C++ C/C++ & CUDA C

Number of cores 4 448

Clock freq. 2.40 GHz 1.15 GHz

OS Ubuntu Server 10.04 Ubuntu Server 10.04

Table 7.2: Experimental setup

The metrics measured are the following:

• Execution time.

• Number of clock cycles.

• Effective Bandwidth.

• Average Throughput.

The Execution time is simply the measure of the time taken by the portion of code
that is executed, this must be measured both for the CPU and the GPU. This metric
is widely used in literature (for example in [20]) and it is useful to have a qualitative
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indication on the performance. In this regard, while for measuring the execution
time on the CPU are used the canonical C system timers, for code implemented
on the graphic card it is suggested to use the CUDA GPU Timers. Indeed since
many CUDA functions are asynchronous they return back the control to the host
prior to completing their work. Also all the kernels launched are asynchronous so, to
accurately measure the elapsed time, CUDA programming model provides a series
of API functions in order to create and destroy events, record events and convert
timestamp differences into floating point values in milliseconds. For details on the
utilization of this functions and for a listing that illustrates their use we refer to [17].

Another metric we propose is the Number of clock cycles. In this way we can
obtain an indication of the performance independent from the specific architecture
used. It is simply the ratio between the execution time and the clock period of the
main time reference in the core.

In general the bandwidth is defined as the rate at which data can be transferred
and for us is the most important gating factors to obtain an indication of the per-
formance. The bandwidth can be dramatically affected by the choice of memory in
which data are stored, i.e., global memory rather than shared memory. To measure
the performance it is useful to calculate the Effective Bandwidth achieved by the
algorithm.

The Effective Bandwidth is calculated by timing the specific program activities
and by knowing how data is accessed by the program. Basically we have to think
to our algorithms as black boxes that read a certain amount of Bytes and return as
output another quantity of data. The Effective Bandwidth is defined as follows [17]:

Be =
(BR +BW )

T
[Bps] (7.9)

Here BR is the number of Bytes read by the algorithm and BW is the number of
Bytes written by the algorithm. T is the execution time in seconds.

Finally the Average Throughput is the average rate of useful data processed by
the algorithm. It is measured in bps and in our case takes this form:

Thr =
BO

E[T ]
[bps] (7.10)

where BO is the number of useful bits returned as output by the function and E[T ]
the average execution time in seconds.

Execution time and number of clock cycles

The next tables report the execution times and the number of clock cycles of the
algorithms for different data input sizes in terms of M -PSK symbols. The time
values are expressed in seconds.
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Time domain convolution

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 0.042 0.043 0.34 3.36 33.62

GPU 0.0032 0.0034 0.024 0.24 2.54

Overlap save method

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 0.0014 0.0018 0.01 0.25 0.62

GPU 0.000061 0.000077 0.00032 0.0027 0.026

Quantized SPA

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 1.74 17.43 173.06 1722.67 17309

GPU 0.23 1.17 10.06 100.11 1008.94

Steepest ascent algorithm

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 0.2 1.97 19.69 197.24 1952.08

GPU 0.0043 0.0112 0.0902 0.912 9.5767

Table 7.3: Execution time for the algorithms.
Time domain convolution

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 1.01e08 1.03e08 8.16e08 8.06e09 8.07e10

GPU 3.68e06 3.91e06 2.76e07 2.76e08 2.92e09

Overlap save method

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 3.36e06 4.32e06 2.40e07 6.00e08 1.49e09

GPU 7.02e04 8.86e04 3.45e05 3.11e06 2.99e07

Quantized SPA

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 4.18e09 4.18e10 4.15e11 4.13e12 4.15e13

GPU 2.65e08 1.35e09 1.16e10 1.15e11 1.16e12

Steepest ascent algorithm

Number of symbols 10e03 10e04 10e05 10e06 10e07

CPU 4.80e08 4.73e09 4.73e10 4.73e11 4.68e12

GPU 4.95e06 1.29e07 1.04e08 1.05e09 1.10e10

Table 7.4: Number of clock cycles.
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From a first observation on the values reported we can assert that a performance
improvement is present in all the cases. Furthermore the execution time of all the
algorithms increase quite linearly with the input size (with the exception of the
time domain convolution algorithms with short inputs). This is due to the fact that
for both the implementations, in presence of long inputs, it is required to work on
different portions and then to scan all the data with shift operations. The second
table confirms these observations, just from an architecture-independent point of
view.

After these first qualitative evaluations, in order to validate these results, we
report a comparison in terms of Effective Bandwidth in the following section.

Effective bandwidth

Fig. 7.7 shows a comparison in terms of Effective Bandwidth. Bandwidth values
are reported in MBps and, since the Overlap save method leads to an effective
bandwidth of GBps we have depicted the graph with a logarithmic y-axes. The
Effective Bandwidth values are in Tab. 7.5.

Figure 7.7: Effective bandwidth.

By evaluating the slope of the lines in Fig. 7.7 we have a visual indication on the
real performance improvement obtained by the parallel implementation. It is clear
that the Steepest Ascent algorithm achieved the biggest speedup by the execution
on the GPU. Indeed the Effective Bandwidth goes from 0.28 MBps for the serial
implementation on the CPU to 61.71 MBps for the parallel implementation on the
GPU, for an improvement of more than 220 times. This was expected since, in the
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development of the algorithm, the data parallelism has been exploited and this has
resulted in a real massive parallelization. Regarding the other algorithms it is also
present an improvement but not of the same order as for the Steepest ascent (see
Tab 7.5).

CPU GPU Speedup

Time domain convolution 9.5 MBps 125.5 MBps up to 13 ×
Overlap save method 0.57 GBps 13.5 GBps up to 23 ×

Quantized SPA 0.054 MBps 0.71 MBps up to 13 ×
Steepest ascent algorithm 0.28 MBps 61.71 MBps up to 220 ×

Table 7.5: Effective Bandwidth values.

In absolute terms of Effective Bandwidth, the Overlap save method achieves the
best results among all the algorithms tested. In order to obtain a fair comparison,
for the serial implementation on the CPU, the FFTW library has been used. This
library is a standard choice for the computation of the FFT in C/C++ programs.
With an effective bandwidth of 13 GBps the Overlap save method achieves about the
10% of the total bandwidth of the graphic card which is equal to 144 GBps. We recall
that this last value it is not reffered to the effective speedup achievable since the real
performance depends on the specific algorithm. However we assert that this result is
due first of all, because the Overlap save method it is already a fast algorithm for the
computation of the convolution, furthermore the utilization of the CUFFT library,
which is probably optimized, helps in this sense. Another confirm obtained from this
results is the high complexity of the quantization techniques. Indeed the Quantized
SPA has the smallest effective bandwidth among all the algorithms. However an
improvement is present also in this case. Finally excellent results has been obtained
for the Time domain convolution with an Effective bandwidth of about 125 MBps.

Average Throughput

Finally in Tab. 7.6 we report the values of the Average Throughput for the different
implementations.

CPU GPU Speedup

Time domain convolution 19.2 Mbps 261.72 Mbps up to 13 ×
Overlap save method 2.24 Gbps 54.160 Gbps up to 23 ×

Quantized SPA 0.144 Mbps 1.9 Mbps up to 13 ×
Steepest ascent algorithm 0.75 Mbps 164.56 Mbps up to 220 ×

Table 7.6: Throughput of the algorithms.

In this way we can obtain an indication of the performance for the algorithm
inserted in a real communication system like the one shown in the introduction
chapter (see Section 1.3).
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As we can see all the parallel implementations lead to good performance and the
differences in terms of speedup between the serial implementation and the parallel
implementation are equal to those observed for the Effective Bandwidth.

7.4 Conclusions

In this chapter we have reported some details on the parallel implementation for the
algorithms proposed in this thesis. First of all we have reported the programming
guidelines followed in the development and some informations about the specific
graphic card used, the Nvidia TESLA C2070.

In order to evaluate the performance speedup obtained a comparison in terms of
Execution time, Number of clock cycles, Effective Bandwidth and Average Through-
put has been reported between the serial implementation on the CPU and the par-
allel implementation running on the GPU. The results lead us to make the following
observations:

• A performance improvement is present in all the cases.

• The execution time increases, both for the serial and the parallel implemen-
tation, quite linearly with the input data size. This is due to the necessity of
spanning the data for large inputs.

• The Steepest Ascent algorithm achieves the biggest speedup by the execution
on the GPU (up to 220 × faster). This has been obtained by exploiting the
data parallelism in the development of the algorithm. We can assert that in
this specific case we are in presence of a massive parallelization.

• With an effective bandwidth of 13 GBps the Overlap save method achieves the
best result in terms of absolute Effective bandwidth among all the algorithms
tested.

• By comparing the Average Throughput we observe how the parallel implemen-
tation of all the algorithms leads to good performance. In our opinion this is
an important result for the future implementation of the demo.



Chapter 8

Conclusions and future work

We recall that the goals of the work were the following.

1. Fine tuning and performance improvement of the already existing phase esti-
mator.

2. Exploration of the factor graph approach in order to find algorithms that, at
the same time, improve the estimation quality and are suitable to be paral-
lelized on GPU.

3. Implementation of such algorithms on the graphic card and to have such sys-
tems that exploit the computational power as efficiently as possible.

We can assert that all the points have been covered. In this chapter we summarize
the results obtained and give the future work for the project.

The first point has been addressed in Chapter 4 in which, through an approxima-
tion of the Wiener-Levy phase model, two different improvements for the existing
ML phase estimator have been proposed, they are the ML estimator improved
(MLi) and the ML estimator with optimal window (MLopt).

Both estimators require the same knowledge at the receiver, i.e, the parameter
σ2
p and σ2

ω. While the ML estimator improved is based on a new design for the
hML filter used in the moving average operation, the ML estimator with optimal
window seeks to adapt the observation window size to the particular scenario. The
performance in term of MSE for the phase estimation have been evaluated and
compared to the benchmark (the canonical ML estimator already implemented)
and an improvement is present for both cases. In particular the so called MLopt

estimator seems to lead best results and, at the same time, to be more robust to
strong phase noise. Finally it has been experimentally demonstrated how the biggest
improvement is achieved by adapting the window size to the particular scenario
rather than design a new hML filter for the moving average.

The factor graph approach for the phase estimation has been investigated in
Chapter 5 in order to obtain a phase estimation algorithm that has best performance
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compared to the benchmark, but also can be nicely implemented on the graphic card.
In this regard, based on the work did in [8], we have presented the Sum Product
Algorithm for the phase estimation working on the factor graph of the Wiener-Levy
phase model and two appriximated algorithms have been developed in a new parallel
fashion. They are respectively the Quantized SPA and the Steepest Ascent algorithm.

Indeed, since the SPA leads to intractable integrals, approximations are required.
The particular approximation method chosen for representing the messages in the
Sum Product Algorithm have been suggested by some considerations related to the
final implementation on the graphic card. This has also led us to develop specific
tricks, like the Markov Chain update rule, and particular message scheduling, like
the one for the Steepest Ascent algorithm.

The performance of the two estimators proposed are quite similar in terms of
MSE, only slightly differences can be observed due to the unavoidable quantization
error in the Quantized SPA. The reason of this similarity is that both factor graph
estimators represent different approximations of the Maximum a Posteriori (MAP)
estimator for the phase process.

At this point we report a performance comparison for all the estimators developed
in order to determine which of them leads to best results. The following pictures
depict the two more realistic situations already evaluated in our previous simulation
campaigns (SNR = 2 dB and σ2

p = 5(◦)2).
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Figure 8.1: MSE as a function of SNR, σ2
p = 5(◦)2.
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From the figures above it is clear how all the estimators proposed have best
performance compared to the existing estimator. In particular the MLopt and the
Steepest Ascent algorithm have comparable results for different thermal noise sce-
narios (see Fig. 8.1). Furthermore as depicted in Fig. 8.2 the ML with optimal
window seems to be more robust to the strong phase noise compared with all the
others.

Important results were finally obtained for the parallel implementation of the al-
gorithms on the graphic card. Among all the implementations the biggest speedup
obtained by the execution on the GPU regard the Steepest Ascent algorithm that
achieves an improvement of up to 220 times compared to the serial implementa-
tion. The reason of this result lies in the development of the algorithm done in
Chapter 5 where the concept of data parallelism has been exploited and a massive
parallelization has been obtained.

Also for the other algorithms good performance improvement in terms of Ef-
fective bandwidth and Average Throughput have been achieved. In particular the
Overlap save method reaches an Effective Bandwidth equal to more than 13 GBps,
corresponding to an Average Throughput of about 54.160 Gbps. In our opinion this
represents a good result for the future implementation of the multiuser receiver on
the cluster server used in the demonstration.

Finally as future work for the project we proposed the following aspects to in-
vestigate.

• The two improvements found in Chapter 4 must be tested in the already exist-
ing simulator of the multiuser detector presented in Section 1.2. In this way it
can be validate how the best phase estimation could lead to best performance
in terms of bit error rate (BER) for the system.
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• The Steepest Ascent algorithm has to be optimized. Indeed in our simulation
the step size λ was fixed in each iteration. The resulting Optimal Steepest
Ascent algorithm can achieve convergence in fewer iterations. We recall that
in our case the number of iteration was quite big, Nit = 1000.

• Realization of a Parallel Iterative Receiver as the one described in Section 5.2
completely executed on the graphic card. This requires the parallel implemen-
tation of the LDPC decoder.
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