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Introduction

The definition of the fundamental group related to a real manifold arose
in the end of XIX century, in a paper of Henri Poincaré named Analysis
Situs ; in this paper, it was defined as the group of lateral classes of the
loops. Nevertheless, already in the opus of Bernhard Riemann the idea of
the fundamental group was present, throughout the study of the covers of
Riemann surfaces, hence in a complex context. Later, Shreeram Shankar
Abhyankar extended the notion of the fundamental group for varieties over
a generic algebraically closed field: he defined the fundamental group as the
inverse system of the Galois unramified extensions of the function field of the
variety.

This construction motivated Alexander Grothendieck to define the fun-
damental group in an algebraic context: given an algebraic variety over a
field, its étale fundamental group is given by the inverse limit of the Galois
groups of the étale covers of the variety. Beyond the étale case, which re-
mains nevertheless the central one, Grothendieck developed the concept of
Galois category, with the aim of considering the most general construction
of a category having associated a fundamental group.

Furthermore, Grothendieck linked the category of étale covers of an alge-
braic variety over C to the category of topological covers of the underlying
topological space of the variety, with results in the so-called G.A.G.A. con-
text (Algebraic geometry and Analytic geometry). In particular, the étale
fundamental group of an algebraic variety over C turns out to be nothing
but the profinite completion of the topological fundamental group.

In this writing, we study the properties of a Galois category and we show
the construction of the fundamental group associated to it. Then, we prove
that the étale covers of a connected scheme form in fact a Galois category
and the fundamental group associated will be the étale fundamental group of
the scheme. We present some results on étale fundamental groups in various
settings and we end by recalling the link with the topological fundamental
group that G.A.G.A. results give rise to.
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Notation

Categories
Definition. A category C consists in the following data: a class of object of
C, denoted by Obj(C); for every pair of objectsX, Y in C, a set HomC(X, Y ) of
morphism between X and Y ; for every X, Y, Z objects in C, the composition
law:

◦ : HomC(Y, Z)× HomC(X, Y ) −→ HomC(X,Z)

(g, f) 7−→ g ◦ f

which is associative and such that for every object X there exists a morphism
idX ∈ HomC(X) called the identity such that for every Y, Z objects and
f ∈ HomC(X, Y ) and g ∈ HomC(Z,X) one has:

f ◦ idX = f idX ◦ g = g.

We will usually write X ∈ C to mean X ∈ Obj(C).

Definition. Let C be a category. An object C ∈ C is said to be:

• initial if for every X ∈ C there exists a unique morphism C → X;

• terminal if for every X ∈ C there exists a unique morphism X → C;

• zero object if it is both initial and terminal.

Definition. A morphism f ∈ HomC(X, Y ) is an isomorphism if there exists
g ∈ HomC(Y,X) such that f ◦ g = idX and g ◦ f = idY . In this case we say
that X is isomorphic to Y and we write X ' Y.

We will denote by IsomC(X, Y ) the set of isomorphisms from X to Y and by
AutC(X) the set IsomC(X,X).

Definition. Let C and D be two categories. A covariant functor from C to
D is a law F : C → D that:
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• to every X ∈ C assigns an object F (X) ∈ D;

• to every morphism f ∈ HomC(X, Y ) assigns a morphism

F (f) ∈ HomC(F (X), F (Y ))

such that F (idX) = idF (X) and if g ∈ HomC(Y, Z) one has F (g ◦ f) =
F (g) ◦ F (f).

We will say functor to mean covariant functor.

Definition. Let F,G : C → D be two functors. A natural transformation
betweem F and G is a family η = { ηX }X∈C of morphisms ηX : F (X) →
G(X) such that for every f ∈ HomC(X, Y ) the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

ηX

F (f) G(f)

ηY

The natural transformation η is said natural isomorphism if for every X ∈ C
the morphism ηX is an isomorphism; in this case we will write F ≈ G.

Definition. A functor F : C → D is called an equivalence (of categories) if
there exists a functor G : D → C such that G ◦ F ≈ idC and F ◦G ≈ idD.

Definition. A functor F : C → D is said to be:

• essentially surjective if for every Y ∈ D there exists X ∈ C such that
F (X) ' Y ;

• fully faithful if for every X, Y ∈ C the map

ΦX,Y : HomC(X, Y ) −→ HomD(F (X), F (Y ))

f 7−→ F (f)

is bijective.

Proposition 0.0.1. Let F : C → D be a functor. F is an equivalence of
categories if and only if it is fully faithful and essentially surjective.

We denote by Sets the category of sets (the morphisms are maps between
sets), by FSets the full sub-category of finite sets, by Top the category of
topological spaces (morphisms are continuous maps).
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Algebraic geometry
Definition. Let X be a topological space and consider the category Top(X)
(the partially ordered set of open subsets of X). A presheaf of abelian
groups (resp. of rings) F on X is a contravariant functor from Top(X) to
the category of abelian groups (resp. of rings). A morphism between two
presheaves F ,G on X is a natural transformation between the two functors.

If V ⊂ U ⊂ X and s ∈ F(U), we write s|V to mean the image of s under the
map F(U)→ F(V ).

Definition. Let X be a topological space and F a presheaf on X. Given
x ∈ X, the stalk of F at x is given by:

Fx := lim−→
x∈U∈Top(X)

F(U).

Definition. Let X be a topological space; a sheaf of abelian groups (resp.
of rings) F on X is a presheaf of abelian groups (resp. of rings) such that
for any open covering {Ui }i∈I of an open subset U ⊂ X and for any family
{ si }i∈I with si ∈ F(Ui) such that si|Ui∩Uj = sj|Uj∩Ui for any i, j ∈ I, then
there exists a unique s ∈ F(U) such that s|Ui = si for any i ∈ I.

Definition. A ringed topological space X consists of a topological space |X|
(sometimes we will denote the topological space again by X if there is no
possible confusion) together with a sheaf of rings OX on X. We denote
it by (|X|,OX). A morphism f : X → Y between two ringed topological
spaces X = (|X|,OX) and Y = (|Y |,OY ) is given by a continuous map
|f | : |X| → |Y | together with a morphism of sheaves f ] : OY → f∗OX .
We say that a ringed topological space (|X|,OX) is a locally ringed topological
space if for every x ∈ |X| the stalk OX,x is a local ring.

Definition. An affine scheme is a locally ringed topological space (|X|,OX)
where |X| = SpecA with A a ring and the sheaf OX is generated by the
following definition on a basis: OSpecA(D(f)) := Af .

Definition. The category Sch of schemes is the full subcategory of the
category of locally ringed space whose objects are the locally ringed space
X = (|X|,OX) such that every point x ∈ |X| has an open neighbourhood U
such that (U,OX|U) is an affine scheme.

Definition. A morphism f : X → Y of schemes is said:

• affine if for every V ⊂ Y open affine subset, f−1(V ) is an affine open
subset of X;
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• open immersion if it induces an isomorphism with an open subscheme
of Y ;

• closed immersion if |f | induces an homeomorphism between |X| and a
closed subset of |Y | and f ] is surjective;

• separated if the diagonal morphism ∆f : X → X ×f,Y,f X is a closed
immersion;

• universally closed if for any morphism Y ′ → Y the base change mor-
phism X ×Y Y ′ → Y ′ is closed;

• locally of finite type if for every affine open subset V ⊂ Y and for every
affine open subset U ⊂ f−1V the morphism OY (V ) → OX(U) makes
OX(U) a finitely generated OY (V )-algebra;

• of finite type if it is locally of finite type and quasi-compact;

• proper if it is of finite type, separated and universally closed.
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Chapter 1

Galois categories

In this chapter we develop one of the main tools of this production: the ma-
chinery of Galois categories. In the first section we give a quick recall on the
fundamental topological group, an enlightening starting point to understand
the construction of the Galois fundamental group; in the second section, we
present the definition of a Galois category and some results on objects and
morphisms of this category; the entire third section is dedicated to the proof
of the Main Theorem, which tells that a Galois category is in fact equivalent
to the category of finite sets endowed with the action of a suitable group, the
Galois fundamental group.

1.1 The fundamental group of a topological space
In this section we briefly recall the construction of the fundamental group
of a topological space; even though maybe it is already well known and this
part could be tedious for someone, it will give a practical idea of the more
general construction that we are developping for Galois categories. From our
point of view, the reader may find usefull the short recovery we report here.
The setting in this section is the category of topological spaces, Top.

Covers and group actions

Definition. Consider X ∈ Top. The category SpOv(X) of spaces over X
is a category whose objects are the couple (Y, p) where Y is a topological
space and p : Y → X is a continuous map; a morphism between two objects
(Y1, p1), (Y2, p2) ∈ SpOv(X) is a continuous map f : Y1 → Y2 such that
p2 ◦ f = p1.

Definition. The category Cov(X) of covers of X is the full sub-category
of SpOv(X) whose objects (Y, p) satisfy the following condition: each point

1



2 CHAPTER 1. GALOIS CATEGORIES

x ∈ X has an open neighbourhood V for which p−1(V ) is a disjoint union of
open subsets Ui ⊂ Y such that p|Ui : Ui → V is a homeomorphism.

It is possible to verify that if X is connected, the fibres of p are all home-
omorphic to the same discrete space I. We define what is an automorphism
of a cover:

Definition. Given (Y, p) ∈ Cov(X), we define the group Aut(Y |X) of auto-
morphism of (Y, p) as the group of automorphism of Y as topological space,
i.e. homeomorphism φ : Y → Y , such that p = p ◦ φ.

We proceed by looking at actions of groups on topological spaces.

Definition. Let G a group acting continuously from the left on a topologi-
cal space Y . We say that the action of G is even (sometimes one may find
"properly discontinuous" instead) if each point y ∈ Y has some open neigh-
bourhood U such that the open sets gU are pairwise disjoint for all g ∈ G.

If G is a group acting on a topological space Y , one may consider the
quotient space G \ Y whose elements are the orbits under the action of G
and the topology is the quotient one (the finest one making the projection
π : Y → G \ Y continuous). We recall that the quotient space has the
following universal property: if f : Y → Z is a continuous map which is
G-invariant, there exists a unique map f̄ : G \ Y → Z such that f = f̄ ◦ π.

Example. If p : Y → X is a cover, we may consider the action Aut(Y |X) y Y
and look at the quotient space Aut(Y |X) \ Y ; notice that in this case, since
p◦φ = p for all φ ∈ Aut(Y |X), for every x ∈ X we may think that Aut(Y |X)
acts on the fibre p−1(x).

Now we link the notion of an even action of a group on a topological space
with the notion of a cover:

Lemma 1.1.1. Given a group G acting evenly on a connected space Y , the
projection p : Y → G \ Y makes (Y, p) a cover of G \ Y.

Using the notions we introduced above, it is possible to prove the following
statement:

Proposition 1.1.2. If (Y, p) ∈ Cov(X) is a connected cover of a locally con-
nected topological space X, the action of Aut(Y |X) on Y is even. Conversely,
if G is a group acting evenly on a connected space Y , the automorphism group
of the cover pG : Y → G \ Y is precisely G.
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Notice now that if (Y, p) is a connected cover of X, we may consider
the group Aut(Y |X) acting on Y and look at the quotient of this action
Aut(Y |X)\Y . The cover map p : Y → X is Aut(Y |X)-invariant by definition
of Aut(Y |X), hence using the universal property of the quotient π : Y →
Aut(Y |X) \ Y we find a continuous map p̄ : Aut(Y |X) \ Y → X making the
following diagram commutative:

Y Aut(Y |X) \ Y

X

π

p
p̄

Definition. (Y, p) ∈ Cov(X) is Galois if Y is connected and the induced
map p̄ is an homeomorphism.

An important characterization for Galois covers is the following:

Proposition 1.1.3. A connected cover (Y, p) ∈ Cov(X) is Galois if and
only if Aut(Y |X) acts transitively on each fibre of p.

The fundamental group

Definition. Let X a topological space;

• a path in X is a continuous map f : [0, 1]→ X;

• a loop in X is a path f such that f(0) = f(1).;

• two path f, g in X are said homotopic if f(0) = g(0), f(1) = g(1) and
there exists a continuous map h : [0, 1]× [0, 1]→ X with h(0, x) = f(x)
and h(1, x) = g(x) for all x ∈ X. It is possible to verify that the relation
of being homotopic is an equivalence, we write it f ∼ g and we indicate
with [f ] the homotopy equivalence class of the path f.

If f, g are two paths in X with f(1) = g(0), we may consider the path
obtained by composing them:

f ∗ g : [0, 1]→ X

defined by: f ∗ g(x) = g(2x) for 0 ≤ x ≤ 1/2, f ∗ g(x) = f(2x − 1) for
1/2 ≤ x ≤ 1. It is easy to see that this operation passes to a well defined
operation on the quotient by homotopy equivalence: [f ]∗[g] := [f ∗g]. In fact,
if we fix a point x ∈ X, the set of homotopy classes of loops starting (and
ending) in x equipped with this operation is a group, which we will denote
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by π1(X, x): the identity is the class of the constant path i(s) = x for all
s ∈ [0, 1] and if f is a generic loop, we have [f ]−1 := [f̃ ] where f̃(s) = f(1−s)
for all s ∈ [0, 1]. π1(X, x) is the fundamental group of X with base point x.
The following technical lemma holds; it allows us to lift up a path through a
cover map:

Lemma 1.1.4. Let (Y, p) ∈ Cov(X), y ∈ Y with x = p(y).

1. Given a path f : [0, 1] → X with f(0) = x, there is a unique path
f̃ : [0, 1]→ Y with f̃(0) = y and p ◦ f̃ = f.

2. Assume moreover given a second path g : [0, 1]→ X with f ∼ g. Then
the unique lifting g̃ of the previous point is such that f̃ ∼ g̃.

Now we are ready to state the theorem that we should keep in mind for the
rest of the chapter, as it gives the idea of what we are going to construct with
Galois category in a more general setting than covers of topological spaces.
Let us fix a connected and locally simply connected topological space X and
a point x ∈ X. We consider the category of sets with left π1(X, x)-action,
π1(X, x)-Sets, and we define the functor

Fibx : Cov(X) −→ π1(X, x)-Sets
(Y, p) 7−→ p−1(x)

(f : (Y, p)→ (Z, q)) 7−→ f|p−1(x) : p−1(x)→ q−1(x).

It is a well defined functor since f respects the fibre by definition.

Theorem 1.1.5. In the setting above, the functor Fibx induces an equiva-
lence of categories. In particular, connected covers correspond to π1(X, x)-
sets with transitive action and Galois covers to coset spaces of normal sub-
groups of π1(X, x).

1.2 Definitions and first properties

Definition. Let C be a category; a morphism u ∈ HomC(X, Y ) is a strict
epimorphism if there exists the fibre product in C

X ×Y X X

X Y

p2

p1 u

u
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and for any object Z ∈ C the map

· ◦ u : HomC(Y, Z) −→ HomC(X,Z)

f 7−→ f ◦ u

is injective with image

{h ∈ HomC(X,Z) | h ◦ p1 = h ◦ p2 } .

Example. (Strict epimorphism in FSets) As an easy example, we show that
in the category FSets being a strict epimorphism is equivalent to being
surjective. Let us consider X, Y ∈ FSets and u ∈ HomFSets(X, Y );

Suppose u surjective, we prove that u is strict epimorphism. Firstly we
notice that the fibre product always exists in FSets:

X ×Y X = { (x, y) ∈ X ×X | u(x) = u(y) } .

For every Z ∈ FSets the map · ◦ u : Hom(Y, Z) → Hom(X,Z) is clearly
injective: if f, g ∈ Hom(Y, Z) with f ◦ u = g ◦ u, we have f = g since u is
surjective (i.e. an epimorphism in FSets). We consider a map h : X → Z
such that h ◦ p1 = h ◦ p2, where pi : X ×Y X → X are the projections given
by the fibre product; we want to find f : Y → Z such that f ◦ u = h. We
define the map f in the natural way: ∀y ∈ Y

f(y) := h(u−1(y)).

It remains just to verify that this is a proper definition: if y = u(a) = u(b),
then (a, b) ∈ X ×Y X and h ◦ p1(a, b) = h(a) = h ◦ p2(a, b) = h(b), so
f(y) = h(a) = h(b) is well defined and f ◦ u = h.

The converse is easy: if u strict epimorphism, then · ◦ u is injective and
this precisely means that u is epimorphism in FSets so a surjective map.

Example. A more interesting example is the following: consider a topological
space X ∈ Top and U1, U2 ⊂ X open subsets such that X = U1 ∪ U2. We
have the map u : U1 t U2 → X induced by the inclusion; we prove that this
map is a strict epimorphism in the category Top. We have to show firstly
that there exists the fibre product (U1 t U2) ×X (U1 t U2). As in the case
above, we have:

(U1 t U2)×X (U1 t U2) = { (x, y) ∈ (U1 t U2)2 | u(x) = u(y) }

and u(x) = x, u(y) = y. Hence we have

(U1 t U2)×X (U1 t U2) = ∆(U1tU2)×(U1tU2).
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We have that for any topological space Z ∈ Top, · ◦ u : Hom(X,Z) →
Hom(U1 t U2, Z) is injective: indeed u is surjective (hence an epimorphism
in Top) as we are supposing X = U1 ∪ U2.

Now consider f ∈ Hom(U1 t U2, Z) such that f ◦ p1 = f ◦ p2, where
pi is the projection on the i-th component of (U1 t U2) ×X (U1 t U2). f is
defined on U1 t U2, hence it is given by f1 := f ◦ e1 :∈ Hom(U1, Z) and
f2 := f ◦ e2 ∈ Hom(U2, Z), where ei : Ui → U1 t U2 is the natural inclusion.
Notice that f1 and f2 are compatible on U1 ∩ U2: indeed if x ∈ U1 ∩ U2 and
we call xi = x the copy of x in Ui, we have:

f1(x1) = f ◦ e1(x1) = f ◦ p1(x1, x2) = f ◦ p2(x1, x2) = f ◦ e2(x2) = f2(x2).

But then f1, f2 are continuous maps and they coincide on the open subset
U1∩U2, hence we can glue them and we find a continuous map g : U1∪U2 =
X → Z such that g|Ui = fi; thus f = g ◦ u.

Before being able to define what a Galois category is, we need the notion
of categorical quotient by a group; maybe it is already well known but we
recall it anyway.

Definition. Let X ∈ C and G a subgroup of the group AutC(X). The
quotient of X by G is an object X/G ∈ C with a morphism π : X → X/G
such that:

• π ◦ σ = π for every σ ∈ G;

• for every morphism f : X → Y such that f ◦σ = f for all σ ∈ G, there
exists a unique morphism g : X/G→ Y such that f = g ◦ π.

Now we can proceed in giving the definition of a Galois category:

Definition. A category C is a Galois category if there exists a covariant
functor F : C → FSets, which we will call fibre functor, with the following
properties:

(i) C has final object eC and finite fibre products exist in C;

(ii) finite coproducts exist in C and categorical quotients by finite groups
of automorphisms exist in C;

(iii) any morphism u : X → Y in C factors as X u′→ Y ′
u′′→ Y with u′ a

strict epimorphism and u′′ a monomorphism that is an isomorphism
on a direct summand of Y , i.e. we can write Y ' Y ′ t Y ′′ with u′′

isomorphic to the immersion of the first component;
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(iv) F sends final objects to final objects and commutes with fibre products;

(v) F commutes with coproducts and quotients by finite groups of auto-
morphisms and sends strict epimorphisms to strict epimorphisms;

(vi) if u ∈ HomC(X, Y ), u is an isomorphism if and only if F (u) is an
isomorphism.

Remark. We will always suppose that a Galois category is essentially small.
The definitions could be given without this assumption but it will become
important later, when we will want to consider direct limits indexed in our
category. However, this assumption is not so restrictive as every Galois
category we are interested in is essentially small.

In a Galois category there exists automatically an initial object: indeed
the category has coproducts and it is well known that the coproduct over the
empty set is an initial object. We will denote it by ∅C.

We start to investigate the first properties of a Galois category: in the rest
of this section, we describe the behaviour of monomorphism and epimorphism
in a Galois category and we discover the usefulness of the notion of strict
epimorphism in describing isomorphism. Indeed, as it is well known, in a
general category a morphism that is both mono and epi is not necessarily
an isomorphism: we find that this becomes true in a Galois category if we
substitute epimorphism with strict epimorphism.

Lemma 1.2.1. Let C a category admitting finite fibre products and let u ∈
HomC(X, Y ); the following are equivalent:

(i) u is a monomorphism;

(ii) the first projection p1 : X ×Y X → X is an isomorphism;

(iii) the diagonal morphism ∆ : X → X ×Y X is an isomorphism;

(iv) the two projections p1 and p2 coincide.

Proof. (i) ⇒ (ii) We suppose u monomorphism and we prove that p1 is an
isomorphism. Consider the following commutative diagram:

X

X ×Y X X

X Y

∆

idX

idX

p2

p1 u

u
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From u◦p1 = u◦p2 and using the fact that u is mono, we have p1 = p2. Now
we prove that p1 is an isomorphisms by showing that its inverse is ∆.

By the definition of ∆ we have p1 ◦∆ = idX ; it remains to show ∆ ◦ p1 =
idX×YX . We consider the following diagram:

X ×Y X

X ×Y X X

X Y

∆◦p1

p2

p1 u

u

where we have:

• p1 ◦∆ ◦ p1 = idX ◦ p1 = p1;

• p2 ◦∆ ◦ p1 = idX ◦ p1 = p1 = p2.

But there exists also the identity map idX×YX satisfying the same condition,
hence by the unicity in the universal property of the pull-back we conclude
∆ ◦ p1 = idX×YX as wanted.

(ii)⇒ (iii) If p1 is an isomorphism, it is immediate that ∆ is its inverse:
by definition of diagonal morphism, p1 ◦ ∆ = idX and so if h is the inverse
of p1 we get:

h = h ◦ idX = h ◦ p1 ◦∆ = idX×YX ◦∆ = ∆.

(iii) ⇒ (iv) If ∆ is an isomorphism, as in the previous points p1 is its
inverse. But then:

p2 = p2 ◦ idX×YX = p2 ◦∆ ◦ p1 = idX ◦ p1 = p1.

(iv)⇒ (i) Assume p1 = p2 and consider f, g ∈ HomC(Z,X) with u ◦ f =
u ◦ g; we want to prove that f = g. We have then the following commutative
diagram:

W

X ×Y X X

X Y

(f,g)

f

g

p2

p1 u

u
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where (f, g) is the map given by the universal property of the pull-back
applied to f and g. But since p1 = p2 one obtain:

f = p1 ◦ (f, g) = p2 ◦ (f, g) = g.

Lemma 1.2.2. Let C be a Galois category and F be a fibre functor; consider
u ∈ HomC(X, Y ). Then u is a monomorphism if and only if F (u) is a
monomorphism.

Proof. By Lemma 1.2.1, u is a monomorphism if and only if p1 : X×YX → X
is an isomorphism; furthermore, from axiom (vi) p1 is an isomorphism if and
only if F (p1) is an isomorphism and from axiom (iv) F commutes with finite
fibre product. Hence we have F (X ×Y X) = F (X) ×F (Y ) F (X) with the
following pull-back diagram:

F (X)×F (Y ) F (X) F (X)

F (X) F (Y )

F (p2)

F (p1) F (u)

F (u)

and now again by Lemma 1.2.1, F (p1) is an isomorphism if and only if F (u)
is a monomorphism.

Lemma 1.2.3. Let C a category admitting finite fibre products and let u ∈
HomC(X, Y ). If u is a monomorphism and a strict epimorphism then it is
an isomorphism.

Proof. Since u is a strict epimorphism, the map

· ◦ u : HomC(Y,X)→ HomC(X,X)

is injective with image the set of the morphism f ∈ HomC(X,X) such that
f◦p1 = f◦p2 where pi : X×YX → X is the projection on the i-th component.
Since u is mono, one gets p2 = p1 by Lemma 1.2.1 and thus the image of
the map · ◦ u is in fact HomC(X,X); so we find h ∈ HomC(Y,X) such that
h ◦ u = idX . Finally, we have:

u ◦ h ◦ u = u ◦ idX = idY ◦ u

and since u is an epimorphism we have u ◦ h = idY .



10 CHAPTER 1. GALOIS CATEGORIES

Lemma 1.2.4. Let C be a Galois category and F a fibre functor; consider
u ∈ HomC(X, Y ) a morphism. Then F (u) is an epimorphism if and only if
u is a strict epimorphism.

Proof. (⇐=) If u is a strict epimorphism, then F (u) is a strict epimorphism
by axiom (v), hence in particular F (u) is an epimorphism.

(=⇒) From axiom (iii), the morphism u factors as

X
u′−→ Y ′

u′′−→ Y = Y ′ t Y ′′

with u′ a strict epimorphism and u′′ a monomorphism. If F (u) is an epi-
morphism, also F (u′′) is an epimorphism and from Lemma 1.2.2 F (u′′) is
also a monomorphism since u′′ is a monomorphism. But then F (u′′) is an
isomorphism (remember that we are in the category FSets) and by axiom
(vi) we have that u′′ is an isomorphism. Then u is a strict epimorphism.

To finish this section, we show how a fibre functor behaves with respect
to initial and final objects and we prove that a Galois category is artinian.

Lemma 1.2.5. Let C be a Galois category and F a fibre functor. For any
X0 ∈ C, we have that F (X0) = ∅ if and only if X0 = ∅C and F (X0) = ∗ (i.e.
final in FSets) if and only if X0 = eC.

Proof. For the first part:
(=⇒) By definition of initial object, we have a unique morphism:

u : ∅C → X0

and so we have a morphism F (u) : F (∅C) → F (X0) = ∅. But this implies
that F (∅C) = ∅ and then F (u) = id∅, so F (u) is an isomorphism. From
axiom vi we conclude that u is an isomorphism and X0 ' ∅C.

(⇐=) We want to prove that F (∅C) = ∅. For any X ∈ C, there is the
isomorphism:

(uX , idX) : ∅C tX → X

thus F ((uX , idX)) : F (∅C t X) → F (X) is an isomorphism by axiom (vi).
Now from axiom (v) we have F (∅C t X) = F (∅C) t F (X) and so F (X) '
F (∅C) t F (X), which implies F (∅C) = ∅.

For the second part:
(⇐=) It follows from axiom (iv).
(=⇒) Consider the unique morphism

v : X0 → eC;

then F (v) : ∗ → ∗ is the identity and by axiom (vi) we get that v is an
isomorphism, hence X0 ' eC.
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Lemma 1.2.6. A Galois category C is artinian.

Proof. Let F be a fibre functor. Consider a decreasing sequence of monomor-
phisms:

. . .
tn+1−→ Tn

tn−→ Tn−1
tn−1−→ . . .

We show that for n big enough the sequence stabilizes, i.e. there exists N ∈ N
such that Tn is an isomorphism for every n ≥ N. Using Lemma 1.2.2, we get
the decreasing sequence of monomorphism in FSets:

. . .
F (tn+1)−→ F (Tn)

F (tn)−→ F (Tn−1)
F (tn−1)−→ . . .

which stabilizes since F (Ti) is a finite set for every i. Hence there exists
N ∈ N such that for every n ≥ N , F (tn) is an isomorphism and then tn is
an isomorphism by axiom (vi).

1.3 Main Theorem of Galois categories

In this section we present the fundamental result about Galois category,
which we will call Main Theorem; we give immediately the statement in
order to help the reader to understand the importance of this theorem, but
before seeing the proof we need to introduce some notions, as connected
objects and Galois objects, and to analize the properties they have.

In analogy with the topological case, we start by defining what is going
to play the role of the fundamental group and what the set of paths is going
to be.

Definition. If C is a Galois category and F1, F2 : C → FSets two fibre
functor; we define:

• π1(C;Fi), the fundamental group of C with base point Fi to be the group
of automorphism AutFct(Fi).

• π1(C;F1, F2), the set of paths from F1 to F2 in C to be the group of
isomorphism IsomFct(F1, F2).

Theorem 1.3.1. (Main Theorem) Let C be a Galois category. Then:

1. Any fibre functor F : C → FSets induces an equivalence of categories
C → C(π1(C;F ));
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2. For any two fibre functors F1, F2 : C → FSets, the set of paths
π1(C;F1, F2) is non-empty. The profinite group π1(C;F1) is non-canonically
isomorphic to π1(C;F2) with an isomorphism that is canonical up to in-
ner automorphism. In particular, the abelianization π1(C;F )ab does not
depend on F up to canonical isomorphism.

In the rest of this section, C will be a Galois category and F : C → FSets
a fibre functor.

Definition. We define the pointed category associated with C and F to be
the category Cpt:

• the objects are the pairs (X, ζ) where X ∈ C and ζ ∈ F (X);

• a morphism (X1, ζ1)→ (X2, ζ2) in Cpt is a morphism u ∈ HomC(X1, X2)
such that F (u)(ζ1) = ζ2.

We have a forgetful functor:

For : Cpt −→ C
(X, ζ) 7−→ X;

notice that its sections are in 1-to-1 correspondence with:

ζ = (ζX)X∈C ∈
∏
X∈C

F (X).

Connected objects and their properties

We define now the connected objects in a category: this is the natural exten-
sion of connectedness in the topological case and it will play an important
role in the Main Theorem, exactly as the connected components of a topo-
logical space are central in the construction of the topological fundamental
group.

Definition. An object X ∈ C is connected if whenever we write it as a
coproduct

X = X1 tX2,

either X1 = ∅C or X2 = ∅C.

Proposition 1.3.2. X0 ∈ C is connected if and only if for any non-initial
object X ∈ C, a monomorphism X → X0 is automatically an isomorphism.
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Furthermore, any non-initial object X ∈ C can be written as finite coproduct
of connected object:

X =
n⊔
i=1

Xi

with Xi non-initial and connected; this decomposition is unique up to permu-
tation.

Proof. For the first part of the statement:
(⇐=) Suppose X0 = X1 t X2 with X1 non-initial; the morphism iX1 :

X1 → X0 is a monomorphism since we can use Lemma 1.2.2 on F (iX1) :
F (X1)→ F (X0) = F (X1) t F (X2), where the last equality holds as F com-
mutes with finite coproducts by axiom (v). But then iX1 is an isomorphism,
so X0 ' X1 and X2 = ∅C.

(=⇒) We take a monomorphism i : X → X0 where X is a non-initial
object. Using axiom (iii), we find a decomposition for i:

X
u−→ X ′0

ε−→ X0 = X ′0 tX ′′0

where u is a strict epimorphism and ε is a monomorphism. Since X0 is
connected, either X ′0 = ∅C or X ′′0 = ∅C; but if X ′0 = ∅C, we have F (X) = ∅
hence X = ∅C by Lemma 1.2.5, against X non initial. Hence must be X ′′0 =
∅C, but then ε is an isomorphism and so i is a strict epimorphism, which
implies i isomorphism by Lemma 1.2.3.

For the second part: take X ∈ C: if it is connected, we are done. Other-
wise, we have

X = X1 tX ′1
and we have a monomorphism X1 → X. Now if X1 and X ′1 are connected,
we are done. If, without loss of generality, X1 is not connected, we have:

X1 = X2 tX ′2

and a monomorphism X2 → X1. We obtain a chain:

· · · ↪→ X2 ↪→ X1 ↪→ X

and since C is artinian by Lemma 1.2.6 the chain stabilizes, so we arrive to
a finite decomposition

X =
n⊔
i=1

Xi

into connected objects.
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Now, for the uniqueness of the decomposition: let exist another decom-
position

X =
m⊔
j=1

Yj

and consider for every i an index σ(i) ≤ m such that F (Xi) ∩ F (Yσ(i)) 6= ∅.
We look at the following diagram:

Xi ×X Yσ(i) Yσ(i)

Xi X

p

q

ιYσ(i)

ιXi

Since ιXi is a monomorphism, also q is a monomorphism. Furthermore, since
F commutes with fibre product by axiom (iv), we have

F (Xi ×X Yσ(i)) = F (Xi) ∩ F (Yσ(i)) 6= ∅

and by Lemma 1.2.5 we obtain Xi ×X Yσ(i) 6= ∅C, so the morphism

q : Xi ×X Yσ(i) −→ Yσ(i)

is a monomorphism from a non-initial object to a connected object: by the
previous part q is an isomorphism. In the same way we prove that also p is
an isomorphism and we get

Xi ' Yσ(i).

The objects Xi of this decomposition are said connected components of
X.

Lemma 1.3.3. The following are true:

1. For any non-initial connected X0 ∈ C, for any non-initial X ∈ C and
any ζ0 ∈ F (X0), ζ ∈ F (X), there is at most one morphism from
(X0, ζ0) to (X, ζ) in Cpt.

2. For any (Xi, ζi) ∈ Cpt where i = 1, 2, . . . , n there exists (X0, ζ0) ∈ Cpt

with X0 connected such that (X0, ζ0) dominates (Xi, ζi) for every i.
Furthermore, given X ∈ C, there exists X0 ∈ C connected such that the
evaluation map

evζ0 : HomC(X0, X) −→F (X)

u 7−→F (u)(ζ0)

is a bijection.
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Proof. 1. Suppose that there exist two morphisms u1, u2 : X0 → X such
that F (u1)(ζ0) = F (u2)(ζ0) = ζ. We consider the equalizer K =
ker(u1, u2), which exists in C by axiom (i). We want to use the Propo-
sition 1.3.2 on the monomorphism

i : K → X0

to show that it is an isomorphism and then u1 = u2. The only thing we
have to check before conclude is that K 6= ∅C. To do this, we use the
fibre functor F : since by axiom (iv) F commutes with fibre product
(and with kernels in particular), we have that F (K) is the equalizer of
F (ui). But ζ0 ∈ F (K) 6= ∅ and by Lemma 1.2.5 this implies K 6= ∅C.

2. We take X := X1 ×X2 × · · · ×Xn and

ζ = (ζ1, ζ2, . . . , ζn) ∈ F (X1)×F (X2)×· · ·×F (Xn) = F (X1×X2×· · ·×Xn)

where the last equality holds by axiom (iv); notice that we have the
canonical projections

πi : X → Xi F (πi(ζ)) = ζi.

Hence to conclude it is enough to find a connected object X0 and an
element ζ0 ∈ F (X0) such that (X0, ζ0) ≥ (X, ζ).

Now, if X is connected, we have nothing to prove. Otherwise, take the
decomposition of X into connected components:

X =
s⊔
i=1

Ci;

since by axiom (ii) F commutes with coproducts, F (X) =
⊔
F (Ci)

and if ζ ∈ F (X) there exists i such that ζ ∈ F (Ci). But then (Ci, ζ)
dominates (X, ζ) as we wanted.

To prove that evζ0 is a bijection, it is enough to consider (Xi, ζi)i≤n
where Xi = X and

⋃
{ ζi } = F (X) (they are finitely many since F (X)

is finite). Now we use the previous part and we find X0 connected
and ζ0 ∈ F (X0) such that (X0, ζ0) ≥ (X, ζi) for every i; but now the
evaluation map evζ0 is surjective and it is injective by the point 1.

Lemma 1.3.4. Let X0 ∈ C be connected and X ∈ C. Then:

1. if X is non initial, any morphism u ∈ HomC(X,X0) is a strict epimor-
phism;
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2. if u ∈ HomC(X0, X) is a strict epimorphism, X is connected;

3. any endomorphism u ∈ HomC(X0, X0) is automatically an automor-
phism.

Proof. 1. From axiom (iii), the morphism u has a factorization:

X
u′−→ X ′0

u′′−→ X0 ' X ′0 tX ′′0

with u′ a strict epimorphism and u′′ a monomorphism. From Propo-
sition 1.3.2 u′′ is automatically an isomorphism, hence u is a strict
epimorphism.

2. If X0 = ∅C, there is nothing to prove. Otherwise, X 6= ∅C and we
suppose X = X ′tX ′′; without loss of generality we may take X ′ 6= ∅C;
we want to show that X ′′ = ∅C. Now we fix ζ ′ ∈ F (X ′) and ζ0 ∈ F (X0)
such that F (u)(ζ0) = ζ ′; from Lemma 1.3.3 we have that there exists
a connected object X ′0 and ζ ′0 ∈ F (X ′0) such that in Cpt there are
morphisms p : (X ′0, ζ

′
0) → (X0, ζ0) and q : (X ′0, ζ

′
0) → (X ′, ζ ′). Notice

that by point 1. the morphism p : X ′0 → X0 is a strict epimorphism, so
u ◦ p : X ′0 → X is a strict epimorphism. Now if iX′ : X ′ → X is the
canonical monomorphism, we have the following diagram

X ′0 X0

X ′ X = X ′ tX ′′
q

p

u

iX′

where we have

F (iX′ ◦ q)(ζ ′0) = ζ ′ = F (u ◦ p)(ζ ′0);

thus, asX ′0 is connected, from Lemma 1.3.3 the two morphism coincide:
iX′ ◦ q = u◦p, i.e. the latter diagram is commutative. Hence iX′ ◦ q is a
strict epimorphism and then iX′ is both a monomorphism and a strict
epimorphism. From Lemma 1.2.3 we have that iX′ is an isomorphism
and we conclude X ′′ = ∅C.

3. Using axiom (vi), it is enough to prove that F (u) is an isomorphism.
Since F (X0) is a finite set, in fact it suffices to prove that F (u) is
surjective. But by point 1., u is automatically a strict epimorphism
hence F (u) is surjective by Lemma 1.2.4.
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Galois objects and their properties

Given a connected object X0 ∈ C and ζ0 ∈ F (X0), the Lemma 1.3.3 says
that the evaluation map evζ0 : AutC(X0) → F (X0) is injective. For Galois
object, we ask this map be also surjective for every ζ0 ∈ F (X0):

Definition. A connected object X0 ∈ C is Galois if for any ζ0 ∈ F (X0) the
evaluation map

evζ0 : AutC(X0) −→F (X0)

u 7−→F (u)(ζ0)

is bijective.

We have the following equivalent properties for a connected object to be
Galois:

Lemma 1.3.5. Let X0 ∈ C be a connected object; the following are equivalent:

(i) X0 is a Galois object;

(ii) AutC(X0) acts transitively on F (X0);

(iii) AutC(X0) acts simply transitively on F (X0);

(iv) |AutC(X0)| = |F (X0)|;

(v) X0/AutC(X0) = eC.

Observation. Notice that from (ii) in particular it is explicit the analogy with
Galois covers in the topological situation (see Proposition 1.1.3). Further-
more, (v) shows that the notion of Galois object does not depend on the fibre
functor F.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) are quite immediate
using the definition of Galois objects and the Lemma 1.3.3. (v) is equivalent
to F (X0/AutC(X0)) = ∗ by Lemma 1.2.5 and by axiom (v) the latter is
equivalent to F (X0)/AutC(X0) = ∗, which is in fact equivalent to (i).

Consider now a connected object X ∈ C; we know from Lemma 1.3.3
that for any ζ ∈ F (ζ) the evaluation map evζ is injective. The idea now is
to "enlarge" a little bit the objectX in order to make the evaluation map a
bijection, i.e. we want to find a Galois object which, in a certain way, covers
the connected object X. Furthermore, we would like to do this in a minimal
way, so we would like to enlarge sharply our connected X in order to reach a
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Galois object; the following lemma assures us that we can do it in a unique
way, up to isomorphism. We will call this Galois object the Galois closure
of X; the usefulness of the Galois objects and hence the importance of the
existence of the Galois closure for connected objects will be clear within the
following results.

Lemma 1.3.6. For any connected object X ∈ C there exists a Galois object
X̂ ∈ C which dominates X and which is minimal with respect to this property,
i.e. if Y is another Galois object dominating X, we find a map Y → X̂ such
that the following diagram is commutative:

Y X

X̂

Proof. First we prove the existence of this object. From the Lemma 1.3.3
we know that there exists (X0, ζ0) ∈ Cpt with X0 connected such that the
evaluation map evζ0 : HomC(X0, X) → F (X) is bijective. In particular
HomC(X0, X) is a finite set so we enumerate all its elements:

HomC(X0, X) = {u1, . . . , un } ;

we denote by ζi := F (ui)(ζ0). Now we consider Xn =
∏n

i=1X and we call
pi : Xn → X the i-th projection. By the universal property of the product,
we find a map π : X0 → Xn such that ui = pi ◦ π for every i; now we
decompose π using the axiom (iii) and we find the following commutative
diagram :

X0 X

X̂ Xn

ui

π′

π′′

pi

with π′ a strict epimorphism and π′′ a monomorphism. We want now to
prove that X̂ is the Galois object we are looking for.

From the Lemma 1.3.4 it is a connected object since X0 is connected and
π′ is a strict epimorphism. We have to prove that for every ζ̂ ∈ F (X̂) we
have that evζ̂ : AutC(X̂)→ F (X̂) is bijective; notice that in fact it is enough
to check this on ζ̂ = ζ̂0 := F (π′)(ζ0) = (ζ1, . . . , ζn). As X̂ is connected, we
already know that evζ̂0 is injective, so it remains to prove that it is surjective,
i.e. for every ζ ∈ F (X̂) there exists ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ.
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Let us fix an element ζ ∈ F (X̂); firstly we can suppose that there exists a
morphism

ρζ : (X0, ζ0) −→ (X̂, ζ).

Indeed by Lemma 1.3.3 there exists (X̃0, ζ̃0) ∈ Cpt with X̃0 connected such
that (X̃0, ζ̃0) ≥ (X0, ζ0) and (X̃0, ζ̃0) ≥ (X̂, ζ) for every ζ ∈ F (X̂); so up to
replace (X0, ζ0) with (X̃0, ζ̃0), we can suppose the existence of ρζ . Now, since
from Lemma 1.3.3 there is at most one morphism (X0, ζ0)→ (X̂, ζ), we have
that there exists ω ∈ AutC(X̂) such that F (ω)(ζ̂0) = ζ if and only if there
exists ω ∈ Aut(X̂) such that ω ◦ π′ = ρζ . Hence to conclude we can prove
the latter.

To prove the existence of such ω, observe that the following equality holds:

{ p1 ◦ π′′ ◦ ρζ , . . . , pn ◦ π′′ ◦ ρζ } = {u1, . . . , un } .

Indeed the inclusion (⊂) is immediate since pi ◦ π′′ ◦ ρζ ∈ HomC(X0, X) =
{u1, . . . , un }; for the inclusion (⊃), it is enough to prove that pi ◦ π′′ ◦ ρζ are
all distinct. But from Lemma 1.3.4 the morphism ρζ is a strict epimorphism
as X̂ is connected, hence pi ◦ π′′ ◦ ρζ = pj ◦ π′′ ◦ ρζ implies pi ◦ π′′ = pj ◦ π′′,
whence

pi ◦ π′′ ◦ π′ = ui 6= uj = pj ◦ π′′ ◦ π′.

Thus we have the equality { p1 ◦ π′′ ◦ ρζ , . . . , pn ◦ π′′ ◦ ρζ } = {u1, . . . , un } .
Hence there exists a permutation σ ∈ Sn such that:

pσ(i) ◦ π′′ ◦ ρζ = ui = pi ◦ π′′ ◦ π′

for every i and by the universal property of the product Xn we find an
automorphism σ ∈ AutC(Xn) such that pσ(i) = pi ◦ σ for every i. Now if we
rewrite the previous equality, we get:

pi ◦ σ ◦ π′′ ◦ ρζ = pi ◦ π′′ ◦ π′

and using that pi is an epimorphism we get:

σ ◦ π′′ ◦ ρζ = π′′ ◦ π′.

But remember that π′′◦π′ is the unique factorization of π given by the axiom
(iii), so there exists an automorphism ω ∈ AutC(X̂) such that σ◦π′′ = π′′◦ω.
Thus the previous equality becomes

π′′ ◦ ω ◦ ρζ = π′′ ◦ π′

and since π′′ is a strict epimorphism we have ω ◦ ρζ = π′ as wanted.
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For the minimality of X̂. Let Y ∈ C another Galois object dominating X
via q : Y → X. Let ηi ∈ F (Y ) such that F (q)(ηi) = ζi for i = 1, . . . , n. As Y
is Galois, for every i there exists ωi ∈ AutC(Y ) such that F (ωi)(η1) = ηi; we
obtain a morphism

κ := (q ◦ ω1, . . . , q ◦ ωn) : Y → Xn

i.e. a morphism Y → Xn such that pi ◦κ = q ◦ωi. Using axiom (iii), we find
for κ the factorization

Y
κ′−→ Z ′

κ′′−→ Z ′ t Z ′′ ' Xn

with κ′ strict epimorphism and κ′′ monomorphism; by Lemma 1.3.4 Z ′ is
connected and F (κ)(η1) = (ζ1, . . . , ζn) = ζ̂0, so Z ′ is the connected component
of Xn that contains ζ̂0 and by uniqueness of decomposition into connected
components (Lemma 1.3.2) we get Z ′ = X̂. Hence we found a morphism

κ′ : Y → X̂

so X̂ is minimal.

Galois correspondence

We arrive here to the core of the proof of the main theorem: the following
proposition is indeed the proof of the main theorem in a "finite" version.
But before continuing we would like to restrict our discussion from generic
objects in C to connected objects, which have the rich variety of properties
we illustrated previously. This is possible if we are studying the behaviour
of morphisms from connected objects to generic objects: in this case we
can restrict to morphisms between connected objects. Indeed the following
lemma holds:

Lemma 1.3.7. Let X be an object in C and consider its decomposition into
connected components:

X =
n⊔
i=1

Xi;

given X0 ∈ C connected, the map⊔
HomC(X0, Xi) −→HomC(X0, X)

(f : X0 → Xi) 7−→ei ◦ f

is bijective.
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Proof. For injectivity: if X0 is initial, the conclusion is trivial. Assume now
X0 non-initial, pick ui : X0 → Xi and uj : X0 → Xj two morphism and
suppose that ei ◦ ui = ej ◦ uj; we prove that ui = uj. Notice that since ek is
a monomorphism, to conclude it is enough to show that i = j. Suppose by
contradiction that i 6= j. From axiom (vi) one has F (ei ◦ ui) = F (ej ◦ uj);
furthermore, since F commutes with finite coproducts by axiom (v), we have
F (X) =

⊔
F (Xi) and so:

im(F (ei)) ∩ im(F (ej)) ⊂ F (Xi) ∩ F (Xj) = ∅.

But this implies im(F (ei ◦ ui)) = im(F (ej ◦ uj)) = ∅ and F (X0) 6= ∅ since
X0 6= ∅C by Lemma 1.2.5; thus we find a contradiction and must be i = j.

For surjectivity: any morphism u ∈ HomC(X0, X) factors in the usual
way, so:

X0
u′−→ X ′

u′′−→ X ' X ′ tX ′′

with u′ strict epimorphism and u′′ monomorphism. Since X0 is connected,
from Lemma 1.3.4 also X ′ is connected, hence it is one connected component
Xi of X. Then u = ei ◦ u′ is the image of u′ ∈ Hom(X0, Xi) under the map
above.

Definition. Given a Galois object X0 ∈ C, we define CX0 ⊂ C as the full sub-
category whose objects are X ∈ C such that X0 dominates every connected
component of X. We will write FX0 the restriction of the fibre functor F to
the subcategory CX0 .

From now on, we fix a Galois object X0 ∈ C. The following lemma shows
that the functor FX0 is representable by HomC(X0, ·)|CX0 and the natural
trasformation between them is precisely the evaluation evζ0 for any ζ0 ∈
F (X0).

Lemma 1.3.8. Any ζ0 ∈ F (X0) induces a natural isomorphism:

evζ0 : HomC(X0, ·)|CX0 −→ FX0 .

In particular, this induces an isomorphism of groups:

uζ0 : AutFct(F
X0)→ AutFct(HomC(X0, ·)|CX0 ) = AutC(X0)op.

Proof. Take u ∈ HomC(X, Y ); we have the following diagram:

HomC(X0, X) HomC(X0, Y )

F (X) F (Y )

evζ0 (X)

(u◦·)

evζ0 (Y )

F (u)
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If f ∈ HomC(X0, Y ), we have

(F (u) ◦ evζ0(Y ))(f) = (F (u) ◦ F (f))(ζ0) = F (u ◦ f)(ζ0)

where the last equality holds since F is a functor, while on the other side we
have

evζ0(X)(u ◦ f) = F (u ◦ f)(ζ0).

Hence the diagram above is commutative and evζ0 is a natural trasforma-
tion. It remains to prove that for every X ∈ C, evζ0(X) is bijective; it is
injective since X0 is connected. For surjectivity, we can reduce to consider
X connected: indeed we can take the decomposition

X =
⊔

Xi

in connected component as in Lemma 1.3.2; we can study the surjectivity of
evζ0(Xi) and using Lemma 1.3.7 and the fact that F commutes with coprod-
ucts (axiom (v)) we can conclude the surjectivity of evζ0(X). Thus we can
suppose X connected. Now let ζ be an element in F (X); we want to prove
that there exists u ∈ HomC(X0, X) such that evζ0(u) = F (u)(ζ0) = ζ. Since
we are supposing X connected and X ∈ CX0 , X0 dominates X i.e. we find
a morphism u : X0 → X and an element ζ̂ ∈ F (X0) such that F (u)(ζ̂) = ζ.
Since X0 is Galois, we have the bijection:

evζ0(X0)|AutC(X0) : AutC(X0) −→ F (X0)

so we are able to find ω ∈ AutC(X0) such that F (ω)(ζ0) = ζ̂ . But now
u′ = u ◦ω ∈ HomC(X0, X) is such that F (u′)(ζ0) = ζ, as wanted. Hence evζ0
is bijective and a natural isomorphism.

We have now all the requirements to proceed in the proof of the following
proposition

Proposition 1.3.9. The functor FX0 : CX0 → FSets factors as in the
commutative diagram:

CX0 FSets

C(AutC(X0)op)

FX0

FX0
For

where FX0 : CX0 → C(AutC(X0)op) is an equivalence of categories.



1.3. MAIN THEOREM OF GALOIS CATEGORIES 23

Proof. For brevity we set G := AutC(X0); from Lemma 1.3.8 we know that
the functor FX0 is representable by HomC(X0, ·). Consider X ∈ CX0 and
notice that we have a right action of G on FX0(X) ' HomC(X0, X): if g ∈ G
and u ∈ HomC(X0, X), we have:

u ∗ g := u ◦ g;

it is easy to verify that it is actually a right action. Hence the functor FX0

factors as:
CX0 FSets

C(Gop)

FX0

FX0
For

It remains to verify that FX0 : CX0 → C(Gop) is an equivalence of categories.
We prove that it is fully faithful and essentially surjective.

• (essentially surjective) Let us consider E ∈ C(Gop); similarly to what
we did in the proof of Lemma 1.3.8, we can restrict to the case of E con-
nected in C(Gop), i.e. E transitive Gop-set: indeed in C(Gop) we have a
decomposition into connected objects just like we did in Lemma 1.3.2
and if we prove the essentially surjectivity for the connected compo-
nents we will have automatically the essentially surjectivity on generic
objects, using that FX0 commutes with coproducts by axiom (v). Hence
we can assume that Gop acts transitively on E; so fixed e ∈ E we have
an epimorphism:

pe : Gop −→E
g 7−→g · e

We set fe := pe ◦ ev−1
ζ0

: F (X0)→ E; for any s ∈ Se := StabGop(e) and
any g ∈ Gop, the following equalities hold:

fe ◦ F (s)(evζ0(g)) =pe ◦ ev−1
ζ0
◦ F (s) ◦ F (g)(ζ0)

=pe ◦ ev−1
ζ0
◦ evζ0(s ◦ g)

=pe(s ◦ g)

=(s ◦ g) · e
(∗)
=g · (s · e)
=g · e
=fe(evζ0(g)).
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where the equality (∗) holds since we are considering the action of Gop,
thus the action of s◦g is given by the action of s and then the action of g.
Hence fe is Se-invariant and it factors through the quotient F (X0)/Se:

F (X0) E

F (X0)/Se

fe

f̄e

We call againg Se the subgroup considered in G instead of Gop; we
remain sloppy on this in order to avoid further notation as it should
not be too confusing for the reader. By axiom (ii) the quotient X0/Se
exists in C (of course it is automatically in CX0) and by axiom (v) F
commutes with quotients hence F (X0/Se) ' F (X0)/Se. Furthermore,
since X0 is a Galois object, by Lemma 1.3.5 G acts simply on X0, so:

|F (X0/Se)| = |F (X0)|/|Se| = [G : Se] = |E|.

This proves that the map fe : F (X0)/Se → E is bijective and an
isomorphism in Gop-sets.

• (fully faithfull) Let us consider X, Y ∈ CX0 . With the same argument
used in Lemma 1.3.8, we can suppose that X and Y are connected. We
show that FX0 is faithful. Consider f, g ∈ HomC(X, Y ) two morphisms
such that F (f) = F (g); now let u : (X0, ζ0) → (X, ζ) be the unique
map given by Lemma 1.3.3, where as usual ζ0 ∈ X0 and ζ ∈ X. Now
f ◦ u and g ◦ u are morphisms from X0 to Y and

F (f ◦ u)(ζ0) = F (f)(ζ) = F (g)(ζ) = F (g ◦ u)(ζ0),

so f ◦ u = g ◦ u by uniqueness in Lemma 1.3.3. Now, since X is
connected, u is a strict epimorphism by Lemma 1.3.4 and then we
obtain f = g.

We show that FX0 is full. Let us consider a morphism

u ∈ HomC(Gop)(X, Y )

and fix an element e ∈ F (X). Since u is Gop-invariant, we have Se ⊂
Su(e) and thus the quotient morphism pu(e) : X0 → X0/Su(e) factors:

X0 X0/Se

X0/Su(e)

pe

pu(e)
p
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Now if we consider fe : F (X0) → F (X) and fu(e) : F (X0) → F (Y )
as in the previous part and we remember that both factors in the iso-
morphisms f̄e : F (X0)/Se → F (X) and f̄u(e) : F (X0)/Se → F (Y ), the
following diagram is commutative:

F (X0)/Se F (X0)/Su(e)

F (X0)

F (X) F (Y )

F (p)

f̄e f̄u(e)

F (pu(e))F (pe)

fu(e)fe
u

Now, since f̄e and f̄u(e) are isomorphisms, we may conclude that u = F (p)
thus FX0 is full.

Conclusion of the proof

Pro-representability of the fibre functor. We briefly recall the defi-
nitions of pro-representability: given a category C, one defines the category
Pro(C) to be the category whose objects are the projective systems

X = (φij : Xi → Xj)i,j∈I,i≥j

where (I,≥) is a partially ordered filtrant set and the morphisms are:

HomPro(C)(X,X
′) := lim←−

i∈I
lim−→
j∈J

HomC(Xj, Xi).

The category C can be seen as a full subcategory of Pro(C). In the case of
our interest, with C a Galois category and F a fibre functor for it, F can be
extended canonically to a functor Pro(F ) : Pro(C)→ Pro(Sets).

Definition. The functor F is said pro-representable in C if there exists X ∈
Pro(C) such that the is a natural isomorphism:

HomPro(C)(X, ·)
∼−→ F ;

F is said stricly pro-representable if it is pro-representable by an object X ∈
Pro(C) whose transition maps φij : Xi → Xj are epimorphism.

Now, we denote by G the set of Galois objects in C (considered up to
isomorphism). Using Lemmas 1.3.3 and 1.3.6, we have that G is a directed;
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now let us fix ζ = (ζX)X∈G ∈
∏

X∈G F (X). Again from Lemma 1.3.3, for any
X, Y ∈ G such that Y ≥ X there exists a unique morphism φ

ζ

X,Y : Y → X

such that F (φ
ζ

X,Y )(ζY ) = ζX . Hence using this unicity we have that for all
X, Y, Z ∈ G with X ≤ Y ≤ Z:

φ
ζ

X,Y ◦ φ
ζ

Y,Z = φ
ζ

X,Z .

Thus on G we have a structure of projective system whose transition maps
are strict epimorphisms: indeed φζX,Y is an epimorphism as X is Galois hence
connected and Lemma 1.3.4 holds. We denote by Gζ the partially ordered
filtrant set

{φζX,Y | X, Y ∈ G, X ≤ Y } .

One has the following lemma:

Proposition 1.3.10. The fibre functor F : C → FSets is stricly pro-
representable in C by Gζ.

Proof. We have to prove that for any Z ∈ C, there is an isomorphism

lim−→
X∈G

HomC(X,Z)
∼−→ F (Z);

as done before, we can restrict to the case when Z is connected. By Lemma
1.3.6 we know that there exists at least one X ∈ G dominating Z; now if we
develop the right hand side we find:

lim−→
X∈G

HomC(X,Z) = lim−→
X∈G,X≥Z

HomC(X,Z)
(∗)
= lim−→

X∈G,X≥Z
F (Z) = F (Z)

where the equality (∗) comes from Lemma 1.3.8; this lemma assures that this
isomorphism is natural as well and we are done.

The fundamental group. Now that we have a clearer idea on how the
functor F works, as we have the pro-representability via the object Gζ , we
would like to improve our description of π1(C, F ) = AutFct(F ) as it is essential
to conclude the proof of the main theorem. In order to achieve a better
comprehension of this group, we have the next results. The first is a tecnical
lemma:

Lemma 1.3.11. For any X, Y ∈ G with X ≤ Y , for any morphism φ, ψ :
Y → X in C and for any ωY ∈ AutC(Y ) there is a unique automorphism
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ωX := rφ,ψ(ωY ) : X → X such that the following diagram commutes:

Y Y

X X

ωY

ψ φ

ωX

Proof. Since X is connected, ψ is automatically a strict epimorphism and so
the map · ◦ψ : AutC(Y )→ HomC(Y,X) is injective. On the other hand from
Lemma 1.3.8, |HomC(Y,X)| = |F (X)| and since X is Galois also |F (X)| =
|AutC(X)|, hence:

ψ : AutC(Y )→ HomC(Y,X)

is bijective. In particular, there exists a unique morphism ωX ∈ AutC(X)
such that φ ◦ ωY = ωX ◦ ψ.

From the previous lemma one gets that there exists a well defined map

rφ,ψ : AutC(Y ) −→ AutC(X)

and in fact the following lemma holds:

Lemma 1.3.12. The map rφ,ψ is surjective and if φ = ψ it is a group
morphism.

Proof. We show that the map is surjective: fix ωX ∈ AutC(X); we want to
prove that there exists ωY ∈ AutC(Y ) such that φ◦ωY = ωX ◦ψ. Firstly, pick
y ∈ F (Y ) and denote by x = evy(ωX ◦ ψ) = F (ωX ◦ ψ)(y) ∈ F (X); since X
is connected, φ is automatically a strict epimorphism by Lemma 1.3.4 and
then F (φ) is surjective by Lemma 1.2.4. Hence we pick y′ ∈ F (φ)−1(x) and
we take ωY = ev−1

y (y′) where we remind that

evy : AutC(Y )
∼−→ F (Y )

is a bijection by Lemma 1.3.8. But now also the evaluation

evy : HomC(Y,X)
∼−→ F (X)

is a bijection and we have evy(φ◦ωY ) = x = evy(ωX◦ψ) hence φ◦ωY = ωX◦ψ.
Assume now ψ = φ and denote r := rφ,φ; we take ωY , ω′Y ∈ AutC(Y ) and

we show that
r(ω′Y ◦ ωY ) := r(ω′Y ) ◦ r(ωY ).
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We have the following commutative diagram:

Y Y Y

X X X

ωY

φ

ω′Y

φ φ

r(ωY )

r(ω′Y ◦ωY )

r(ω′Y )

where both r(ω′Y ) ◦ r(ωY ) and r(ω′Y ◦ ωY ) close the big square, hence by
Lemma 1.3.11 they coincide.

From what said above, we get a projective system of finite groups:

(r
ζ

X,Y := r
φ
ζ

X,Y ,φ
ζ

X,Y

: AutC(Y )→ Aut(X))X,Y ∈G,X≤Y .

Set now
Π := lim←−

X∈G
AutC(X);

we want to show that in fact Πop = π1(C, F ). From the defition, Πop acts on
the right on

lim←−
X∈G

HomC(X, ·)|C

by precomposition; hence we have a group monomorphism:

Πop −→ AutFct(lim←−HomC(X, ·)|C).

Furthermore, the natural isomorphism of Proposition 1.3.10

evζ : lim←−HomC(X, ·)|C −→ F

gives us the group monomorphism:

uζ : π1(C;F ) −→Πop

θ 7−→(ev−1
ζX

(θ(X)(ζX)))X∈G

which is in fact an isomorphism. Indeed:

Proposition 1.3.13. uζ is an isomorphism of profinite groups.

Proof. We construct an inverse for uζ as a group morphism: consider (ωX)X∈G ∈
Π; we want to construct an elementθω in π1(C;F ) = AutFct(F ) starting from
(ωX). As done before, it is enough to define θ on connected object, since
we have Lemmas 1.3.2 and 1.3.7; if Z ∈ C is a connected object, we take
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its Galois closure Ẑ as in Lemma 1.3.6 and construct the map θω by the
composition:

F (Z) HomC(Ẑ, Z) HomC(Ẑ, Z) F (Z).
ev−1
ζ
Ẑ ·◦ωẐ evζ

Ẑ

We have to check that θω is in fact a natural isomorphism and that uζ(θω) =
ω. To show that it is a natural isomorphism, it suffices to show that · ◦ωẐ is
a natural isomorphism, since we already have this result for the evaluation
from Lemma 1.3.8. But bijectivity of · ◦ωẐ comes easily from ωẐ ∈ AutC(Ẑ),
while naturality holds since for every f ∈ HomC(Z1, Z2) with Ẑ ≥ Z1, Z2 the
following diagram is commutative:

HomC(Ẑ, Z1) HomC(Ẑ, Z2)

HomC(Ẑ, Z1) HomC(Ẑ, Z2)

f◦·

·◦ωẐ ·◦ωẐ

f◦·

We check that it is the inverse of uζ :

uζ(θω) = (ev−1
ζX
◦ evζX ◦ (· ◦ ωX) ◦ ev−1

ζX
(ζX))X∈G

Now ev−1
(ζX)(ζX) = idX so we get:

uζ(θω) = (idX ◦ ωX)X∈G = ω.

End of the proof. Lastly, we have all the tools to conclude the proof of
the main theorem, which will be just a matter of putting together the results
we collected until now.

Proof of the Main Theorem.

1. From the previous proposition we have

π1(C;F ) = Πop = lim←−
X∈G

AutC(X)op

and from Proposition 1.3.10 we know that

F ' HomPro(C)(Gζ , ·)|C.
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So we have to show that the functor HomPro(C)(Gζ , ·)|C : C → FSets
factors through an equivalence of categories C → C(Πop). Since for
every X ∈ C the profinite group Π acts on HomPro(C)(Gζ , X), we have
the factorization

C FSets

C(Πop)

It remains to show that the induced functor

HomPro(C)(Gζ , ·)|C : C −→ C(Πop)

is an equivalence.

• (essentially surjective) If E ∈ C(Πop), since E has the discrete
topology, the action of Πop on it factors through a finite quotient
AutC(X) for a suitable X ∈ G, hence we reconduct to the case of
Proposition 1.3.9 and so there exists Z ∈ C which is dominated
by X and such that F (Z) ' E.

• (fully faithful) If Z1, Z2 ∈ C, we are able to find X ∈ G such that
X ≥ Z1, Z2 and again we can use Proposition 1.3.9 with CX to
conclude the fully faithfulness.

2. Let us consider F1, F2 : C → FSets two fibre functors; for i = 1, 2 fix
ζ i ∈

∏
X∈G Fi(X). Then we have the natural isomorphism of Proposi-

tion 1.3.10:
evζi : HomPro(C)(Gζ

i

, ·) −→ Fi

hence to conclude it is enough to show that Gζ1

and Gζ2

are isomorphic
in Pro(C). Remembering that

Gζi = (φ
ζi

X,Y )X,Y ∈G,X≤Y ,

it is enough to find for every X, Y ∈ G with X ≤ Y an isomorphism
(compatible with the projective system)

φ
ζ1

X,Y

∼−→ φ
ζ2

X,Y .

The compatibility is assured by Lemma 1.3.11, since if we find ωY ∈
AutC(Y ) such that F (ωY )(ζ1

Y ) = ζ2
Y , then there exists automatically
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a unique ωX ∈ AutC(X) such that F (ωX)(ζ1
X) = ζ2

X , i.e. making the
following diagram commutative:

Y Y

X X

φ
ζ1

X,Y

ωY

φ
ζ2

X,Y

ωX

So it remains just to show that for every Y ∈ G and ζ1
Y , ζ

2
Y ∈ F (Y ) we

actually find an automorphism ωY ∈ AutC(Y ) such that F (ωY )(ζ1
Y ) =

ζ2
Y . But we are able to find such a morphism by Lemma 1.3.8 which is
automatically an isomorphism by Lemma 1.3.4.
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Chapter 2

Étale covers

In this chapter we construct the category of the étale covers of a connected
scheme. Given a connected scheme, one may want to consider an object
analogous to a topological cover and possibly one would like to have a to-
tally algebraic construction of it; furthermore, if these objects form a Galois
category, it would be meaningful to consider the Galois fundamental group,
in analogy to the topological fundamental group. The concept of étale mor-
phism and in particular étale cover turns out to be the right one.

In the first section we give definitions and some basic properties that we
are going to need further on; in the second section, we prove that étale covers
form in fact a Galois category.

We briefly recall here some terminology for morphisms of schemes:

Definition. Consider X,S ∈ Sch and φ ∈ Hom(X,S); we that φ is:

• locally of finite type if for every affine open subset V ⊂ S and for every
affine open subset U ⊂ X with U ⊂ φ−1(V ), the morphism induced by
φ:

OS(V )→ OX(U)

makes OX(U) a finitely generated OS(V )-algebra.

• unramified at x ∈ X if mφ(x)OX,x = mx and k(x) is a finite separable
extension of k(φ(x)).

• unramified if it is unramified at every x ∈ X.

• finite if for every affine open subset V ⊂ S, φ−1(V ) is affine and
OS(V )→ OX(φ−1(V )) makes OX(φ−1(V )) a finitely generated OS(V )-
module.

33
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• flat if for every x ∈ X the map induced on the stalk

φ]x : OS,φ(x) → OX,x

is flat.

2.1 Definitions and first properties
In this section we give the definitions of étale morphism and étale covers.
From now on, every scheme will be assumed to be locally noetherian; how-
ever, we will point out in the proofs where we use this assumption.

Definition. Let A be a finite-dimensional algebra over a field k.We say that
A is an étale algebra over k is A is isomorphic to a finite product of finite
separable field extension of k. It is possible to verify that finite étale algebras
over k form a category, which we denote by FEAlg/k.

Lemma 2.1.1. Let A a finite-dimensional algebra over a field k. Then the
following are equivalent:

(i) A is an étale algebra over k;

(ii) A⊗k k̄ is isomorphic to a finite product of copies of k̄;

(iii) A⊗k k̄ is reduced;

(iv) ΩA|k = 0.

Proof. We prove a preliminary result: a finite-dimensional algebra A over a
field k is reduced if and only if it is isomorphic to a finite product of finite
field extensions of k.

(⇐=) is immediate: a finite product of finite field extensions of k is a
reduced algebra.

(=⇒) If we take the decomposition of A in connected components:

A =
n∏
i=1

Ai

where Ai is a connected finite-dimensional k-algebra, we notice that it is
enough to prove the statement for Ai to conclude. Hence we reduce to the
case when A is connected; we have now just to show that it is a field: being a
finite-dimensional k-algebra would imply then that it is a finite field extension
of k. To do so, we consider a ∈ A\{ 0 } = A× and we find an inverse for a in
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A×. Since A is finite dimensional over k, it is artinian so there exists n ∈ N
such that Aan = Aan+1. We are able to find b ∈ A such that

an = ban+1 = b2an+2 = · · · = bna2n;

so (anbn)2 = a2nb2n = anbn and since A has no non-trivial idempotents we
get either anbn = 0 or anbn = 1. The case anbn = 0 forces an = an(anbn) = 0
which implies a = 0 since A is reduced, and we find a contradiction with
a ∈ A×. Hence must be a(an−1bn) = anbn = 1 and we find an inverse for a.

Now we are ready to proceed in proving the equivalent properties:
(ii)⇐⇒ (iii) it is immediate from the previous part.
(ii) =⇒ (i) Set Ā = A/

√
0; it is reduced so it is isomorphic to the product

Ā =
n∏
i=1

Ki

with Ki a finite field extension of k, thanks to the previous part. Since every
morphism A→ k̄ factors through one of the Ki, we have:

N := |HomAlg/k(A, k̄)| =
n∑
i=1

|HomAlg/k(Ki, k̄)|.

Notice that |HomAlg/k(Ki, k̄)| ≤ [Ki : k] and the equality holds if and only if
Ki is a finite separable field extension of k. On the other hand, we have:

dimk(Ā) =
n∑
i=1

[Ki : k] ≤ dimk(A)

so we obtain N ≤ dimk(A) and the equality holds if and only if A = Ā and
Ki is a finite separable field extension of k for every i. Now we have:

HomAlg/k(A, k̄) = HomAlg/k̄(A×k k̄, k̄)

hence N = |HomAlg/k̄(A ×k k̄, k̄)| = dimk̄(A ×k k̄) = dimk(A). So we obtain
A = Ā and it is a finite product of finite separable field extension of k, as
wanted.

(i) =⇒ (iv) We have A =
∏n

i=1Ki with Ki finite separable field extension
of k for every i. The maximal ideals of A are of the type mi = ker(A→ Ki)
where A→ Ki is the usual projection on the i-th component. Since Ω1

A|k = 0

if and only if (Ω1
A|k)mi = Ω1

Ki|k = 0 and the latter holds since Ki is a separable
extension of k (for details, see [Liu] Chapter 6 Lemma 1.13).
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(iv) =⇒ (iii) We want to prove that A ⊗k k̄ is reduced; since Ω1
A|k = 0

implies that Ω1
A⊗kk̄|k̄

= Ω1
A|k ⊗k k̄ = 0, we can take A as A ⊗k k̄ before and

prove that it is reduced in the case k = k̄ algebraically closed. Now, since
A is a finite-dimensional k-algebra, it is artinian so every prime ideal of A is
maximal; furthermore, there are just finitely many of them. So let m1, . . . ,mn

all the maximal ideals of A: as
√

0 =
⋂
mi, by Chinese remainder theorem

we have the exact sequence:

0 −→
√

0 −→ A
φ−→

n∏
i=1

A/mi → 1.

Now for every i one has [A/mi : k] < +∞ and since k is supposed alge-
braically closed we get A/mi = k.
Claim. It is possible to find ei ∈ A for i = 1, . . . , n satisfying the following
properties:

(i) φ(ei) = (δij)1≤j≤n;

(ii) eiej ∈
√

0
2
for every i 6= j;

(iii) ei − e2
i ∈
√

0
2
for every i.

Proof of the claim. It is clear that we are able to find { ei } satisfying the
property (i) by the surjectivity of the map φ; it is clear as well that e2

i satisfy
both (i) and (ii). Furthermore, since A is artinian, the descending chain of
ideals

(ei) ⊃ (e2
i ) ⊃ (e3

i ) ⊃ . . .

stabilizes, so we can find an index Ni such that (eNii ) = (e2Ni
i ); taking N =

maxNi, we find for every i an element ai ∈ A such that:

aie
2N
i = eNi .

Set εi := aie
N
i ; then { εi } still satisfy (i) and (ii) and one has:

ε2
i = (aie

N
i )2 = ai(aie

2N
i ) = aie

N
i = εi

hence they satisfy also (iii).

Set λi = pi ◦ φ : A→ A/mi and define λ : A→ A in the following way:

λ(a) =
n∑
i=1

λi(a)ei.
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For every a ∈ A, one has a− λ(a) ∈
√

0 and it is possible to verify that the
map:

d : A −→
√

0/
√

0
2

a 7−→a− λ(a) mod
√

0
2

is a k-derivation, hence it is 0 by assumption. Thus we have
√

0 =
√

0
2

and since A is artinian
√

0 is nilpotent, so
√

0 = 0: we obtain A reduced as
wanted.

Étale covers. We introduce now the notion of étale cover:

Definition. We say that the morphism φ : X → S is

• étale at x ∈ X if it is both flat and unramified at x;

• étale if it is étale at every point of X;

• étal cover of S if it is finite, surjective and étale.

About the stability of properties of scheme morphisms, we remind the
validity of the following lemma:

Lemma 2.1.2. 1. If P is a property of morphism of schemes which is stable
under composition and arbitrary base-change, it is stable by fibre products.

2. Furthermore, if closed immersions have P, then for any

X
f−→ Y

g−→ Z

where g is separated and g ◦ f has P, then f has P.

It is possible to verify that being surjective, flat, unramified, étale satisfy
1. and being separated, proper, finite satisfy 2. The reader may keep in mind
these facts, since we are going to use them quite often.

With the following two lemmas, we present useful characterizations for a
finite morphism to be flat and unramified.

Lemma 2.1.3. If φ : X → S is a finite morphism, then φ is flat if and only
if φ∗OX is a locally free OS-module.

Proof. Since flatness is a local property, we can reduce to consider the case
when X = Spec(B) and S = Spec(A) are affine schemes and the map φ is
induced by a finite ring morphism φ] : A → B. Furthermore, since we are
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supposing every scheme to be locally noetherian, we may consider A to be
noetherian (and so it is B then).

(⇐=) Suppose φ∗OX is a locally free OS-module, then for every point
p ∈ S there is a neighbourhood U 3 p such that OX(φ−1(U)) is a free
OS(U)-module, thus it is flat. But then the localization OX,φ−1(p) is a flat
OS,p-module, hence φ is flat.

(=⇒) Suppose φ flat. For every p ∈ S, Bφ−1(p) is a flat Ap-module; now
since Ap is noetherian and Bφ−1(p) is a finitely generated Ap-module, Bφ−1(p)

flat implies Bφ−1(p) free (see [Liu], Chapter 1, Theorem 2.16). Hence we have:

Bφ−1(p) =
n⊕
i=1

Ap
bi
d

where d, bi ∈ B and s = φ](d) ∈ A \ p. Thus we have an exact sequence of
As-modules:

0→ Ans → Bd → Q→ 0.

Now as As is noetherian, K is a finitely generated As-module hence its sup-
port supp(K) is the closed subset V (Ann(K)) ⊂ Spec(As). Using that Bd

is a finitely generated As-module, similarly we get supp(Q) = V (Ann(Q)) ⊂
Spec(As). But supp(Q) ∩ supp(K) =: Up is an open neighborhood of p in S
such that φ∗OX|Up ' OUp and we obtain what we wanted.

Lemma 2.1.4. If φ : X → S is a finite morphism, the following are equiva-
lent:

(a) φ is unramified;

(b) Ω1
X|S = 0;

(c) ∆X|S : X → X ×S X is an open immersion;

(d) (φ∗OX)s ⊗OS,s κ(s) = OXs(Xs) is a finite étale algebra over κ(s) for
every s ∈ S.

Proof. (a) ⇒ (b) To show that Ω1
X|S = 0 it suffices to prove that the lo-

calization Ω1
X|S,x is 0 for every x ∈ X. As it is a local property, as in the

previous lemma we may assume that X = SpecB, S = SpecA are affine and
φ is induced by φ] : A → B making B a finitely generated A-module. In
this situation, we know that ΩX|S is a finitely generated B-module and to
conclude we have to show that the Bq-module Ω1

Bq|Ap
=: M is zero for every

q ∈ SpecB.
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In fact, it is enough to show that M ⊗Bq κ(q) = 0: indeed Bq is a local
ring with unique maximal ideal qBq and by Nakayama’s lemma we have the
implication:

M ⊗Bq κ(q) = M/qM = 0 =⇒ M = 0.

Thus we reduced to prove Ω1
Bq|Ap

⊗Bq κ(q) = 0.
Now we use that φ is ramified: we have pBq = q for any q ∈ X above

p ∈ S, so:
Bq ⊗Ap κ(p) = κ(q).

But then we compute:

Ω1
Bq|Ap

⊗Bq κ(q) = Ω1
Bq|Ap

⊗Bq (Bq ⊗Ap κ(p))
(†)
= Ω1

Bq⊗Apκ(p)|κ(p) = Ω1
κ(q)|κ(p) = 0,

where the equality (†) is proved in ([Liu], Chapter 6, Proposition 1.8) and
the last equality comes from the fact that κ(q) is a finite separable extension
of κ(p) since φ is unramified.

(b) ⇒ (c) We suppose that Ω1
X|S = 0 and we want to prove that ∆X|S is

an open immersion. As φ is finite, so affine and hence separated, the diagonal
morphism ∆X|S is a closed immersion; in particular we have:

∆X|S(X) = supp(∆X|S∗OX).

Now remind that we have the map ∆]
X|S : OX×SX → ∆X|S∗OX and consider

I = Ker(∆]
X|S),

the sheaf of ideals. As in ([Liu], Chapter 6, Remark 1.18), we have:

∆∗X|S(I/I2) = Ω1
X|S = 0;

hence for every x ∈ X:

(∆∗X|S(I/I2))x = I∆X|S(x)/I2
∆X|S(x) = 0,

i.e. I∆X|S(x) = I2
∆X|S(x) for every x ∈ X. But now, since we are in a local

setting, we can suppose S noetherian and from φ finite we get X noetherian,
thus I is coherent. Then we can apply the Nakayama’s lemma and I∆X|S(x) =

I2
∆X|S(x) implies:

I∆X|S(x) = 0 ∀x ∈ X.

From this, we have that I(∆X|S(X)) = 0 so ∆X|S(X) is contained in the
open subset U := X ×S X \ supp(I). We want to show that we have also
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the inclusion U ⊂ ∆X|S(X). As I∆X|S(x) = 0 for all x ∈ X, the induced
morphism on the stalks:

∆]
X|S,u : OX×SX,u → (∆X|S∗OX)x

is an isomorphism, hence U is contained in ∆X|S(X) = supp(∆X|S∗OX) and
we have ∆X|S(X) = U is open in X ×S X.

(c)⇒ (d) If s ∈ S, we have to prove that OXs(Xs) is a finite étale algebra
over κ(s) := k. To do so, let us consider Ω an algebraic closure of κ; given
s ∈ S, we may consider the geometric point s̄ : Spec(Ω) → S, s̄(∗) = s.
Now we have the fibre product Xs̄ = X ×S Spec(Ω), given by the following
diagram:

Xs̄ Spec(Ω)

X S

s̄

φ

Notice that, if Xs = X ×S κ is the usual fibre of s, we have Xs̄ = Xs ×κ
Spec(Ω): indeed

Xs ×κ Spec(Ω) =(X ×S κ)×κ Spec(Ω)

=X × (κ×κ Spec(Ω))

=X × Spec(Ω) = Xs̄.

and OXs(Xs) ⊗k Ω = OXs̄(Xs̄). Thus, using the equivalent property (ii) in
Lemma 2.1.1, it is enough to show that OXs̄(Xs̄) is a finite étale algebra over
Ω. To do so, we call x̄ : Spec(Ω)→ Xs̄ the geometric point corresponding to
s̄ and we look at the following commutative diagram:

Spec(Ω) Xs̄ X

Spec(Ω)×Ω Xs̄ Xs̄ ×Ω Xs̄ X ×S X

x̄

(id×x̄)

p1

∆Xs̄|Ω ∆X|S

(x̄×id) (p1×p1)

Since open immersion are stable under base changes and we are supposing
that ∆X|S is an open immersion, we get ∆Xs̄|Ω open immersion and then x̄
is open immersion. But hence x̄ induces an isomorphism on a closed and
open subscheme of Xs̄, that is a connected component of Xs̄ since Spec(Ω)
is connected and Xs̄ is finite. Since we hit every point of Xs̄ with a suitable
geometric point x̄, we obtain thus the following decomposition in connected
components for Xs̄:

Xs̄ =
⊔
x̄

Spec(Ω).
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But then OXs̄(Xs̄) is a finite product of copies of Ω, hence it is a finite étale
algebra over Ω as wanted.

(d)⇒ (a) We want to prove that φ is unramified, so that it is unramified
at every x ∈ X. Since the question is local, we may assume that φ is induced
by a finite A-algebra φ] : A→ B with A noetherian; hence an element s ∈ S
correspond to a prime ideal p ⊂ A. By assumption, we have:

B ⊗A k(p) =
n∏
i=1

ki

as a k(p)-algebra, where ki is a finite separable field extension of k(p) for
every i. Hence, any prime ideal of B⊗A k(p) is maximal and it is of the type

mj = ker(B ⊗A k(p)→ kj) j = 1, . . . , n.

Now, if q ∈ X is a prime ideal above p ∈ S and mj is its image under the
map Spec(B)→ Spec(B ⊗A k(p)), using the commutation of tensor product
and localization we get:

Bq ⊗Ap k(p) = (B ⊗A k(p))mj = kj

which is a separable field extension of k(p); thus φ is unramified.

Definition. If φ : X → S is an étale cover, we define the rank function:

r(φ) : S −→ Z≥0

s 7−→ rs(φ) :=rankκ(s)(OXs(Xs))

=dim ¯κ(s)(Os(Xs)⊗κ(s)
¯κ(s)) = |Xs̄|

It is locally constant and hence it is constant if S is connected.

We have a usefull lemma which uses the rank notion:

Lemma 2.1.5. Let S be a connected scheme. Then any finite étale morphism
φ : X → S si automatically an étale cover. Furthermore, φ is an isomorphism
if and only if r(φ) = 1.

Proof. φ is finite flat morphism, hence it is both open and closed. But
then φ(X) is both open and closed in S, which is connected. This implies
φ(X) = S so φ is an étale cover. For the second part:

(=⇒) If φ is an isomorphism, it is clear that r(φ) = 1.
(⇐=) If φ has rank 1, we have |Xs̄| = 1 hence φ is a bijection. Further-

more, φ is open and continuous so it is an homeomorphism. It remains to
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check that the induced map on the sheaves φ] : OS → φ∗OX is an isomor-
phism; we prove equivalently that for every s ∈ S the map induced on the
stalk

(φ])s : OS,s → (φ∗OX)s

is an isomorphism. As the question is local, we can reduce to the affine
case S = Spec(A), X = Spec(B) and φ induced by a finite faithfully flat
A-algebra A → B; the hypothesis r(φ) = 1 implies B = Ab for a suitable
b ∈ B. To conclude, it is enough to prove that A → B is surjective, i.e.
that b ∈ A. By assumption, there exists a ∈ A such that ab = 1 and on
the other hand, since B is finite over A, there exists a monic polynomial
Pb = T d +

∑d−1
i=0 riT

i ∈ A[T ] such that Pb(b) = 0. Now, multiplying this
equality by ad−1, we get b = −

∑d−1
i=0 ria

d−1−i ∈ A.

2.2 Main theorem for étale covers
In this section we present the main theorem for étale covers: given a con-
nected scheme S, the category of étale covers of S is a Galois category. As
the reader will notice, the proof is quite linear and the unique aspect more
tricky to treat is the one concerning the quotient. Before getting started with
the proof, we provide some useful tools in the following results.

Lemma 2.2.1. An affine surjective morphism φ : X → S is an étale cover
if and only if there exist a finite faithfully flat morphism f : S ′ → S such
that the first projection φ′ : X ′ → S ′ in the following fibre product:

X ′ S ′

X S

φ′

f ′ f

φ

is a totally split étale cover of S ′.

Proof. (⇐=) We want to prove that φ is an étale cover. For every s ∈ S
we consider an affine open subset U = Spec(A) ⊂ S containing s; since f
is finite, f−1(U) = Spec(A′) is an affine open subset of X. Furthermore, by
Lemma 2.1.3 f∗OS′ is a locally free OS-module. Hence

f|f−1(U) : f−1(U) −→ U

is induced by a finite A-algebra f ] : A → A′ and A′ = Ar. As φ is finite,
also φ−1(U) = Spec(B) is affine and φ|φ−1(U) is induced by an A-algebra
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φ] : A → B. Now the fibre product X ′ coincides with Spec(B ⊗A A′); since
φ′ is supposed totally split, B⊗AA′ = A′s as A′-algebra so B⊗AA′ = Ars as
A-module, while we have B⊗AA′ = B⊗AAr = Br as A-module. We obtain
the equality

Br = Ars

as A-module, so B is a direct factor of Ars and it is flat over A. Hence φ
is a flat morphism. Furthermore, B is a submodule of the finitely generated
module Ars where we remember that A is noetherian: thus we get that
B is finitely generated itself as A-module, so the morphism φ is finite. It
remains to show that φ is unramified. To do this, we look at the commutative
diagram:

X ′ S ′

X S

φ′

f ′ f

φ

Since φ′ is an étale cover, from Lemma 2.1.4 we have Ω1
X′|S′ = 0 and as the

previous is a fibre product diagram, we obtain

f ′∗(ΩX|S) = Ω1
X′|S′ = 0.

In particular, for every x′ ∈ X ′:

(f ′∗(Ω1
X|S))x′ = Ω1

X|S,f ′(x′) = 0.

Now, since f ′ is the base change of f and f is surjective, f ′ is surjective so
the previous equation is equivalent to:

Ω1
X|S,x = 0 ∀x ∈ X;

henceforth ΩX|S = 0 and φ is unramified again by Lemma 2.1.4.
(=⇒) We proceed by induction on r(φ):

• if r(φ) = 1, from Lemma 2.1.5 φ is an isomorphism; but then we can
take f = idS and the statement is trivially true.

• if r(φ) > 1: as φ is a finite étale morphism, by Lemma 2.1.4 the
morphism ∆ : X → X ×S X is an open and closed immersion. So we
have the decomposition:

X ×S X = X tX ′

with iX′ : X ′ → X ×S X an open and closed immersion. In particular,
since iX′ is open immersion it is étale (see [Bos] Chapter 8 Lemma 7)
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and since it is closed immersion it is finite, hence iX′ is finite étale
morphism. Also, the projection on the first component p1 : X ×S X →
X is finite étale itself, since these properties are stable under base
change. Now we define φ′ : X ′ → X to be the composition:

X ′
iX′−→ X ×S X

p1−→ X;

φ′ is a finite étale morphism as it is composition of finite étale mor-
phisms. ∆ is a section of p1 so for every x ∈ X we have p−1(x)∩∆(X) =
∆(x), thus the rank of φ′ is :

r(φ′) = r(p1)− 1 = r(φ)− 1.

Then φ′ is finite étale and it has rank stricly smaller than φ, hence by
inductive hypothesis we are able to find f : S ′ → X which is a finite
faithfully flat morphism such that the projection π1

S ′ ×S X ′ X ′

S ′ X

π1

π2 φ′

f

is a totally split étale cover of S ′. But now the morphism f̃ = φ ◦ f : S ′ → S
is again a finite faithfully flat morphism and using the properties of fibre
product we have:

S ′×f̃ ,φ =S ′ ×f,p1 (X ×S X) = S ′ ×f,p1 (X tX ′)
=(S ′ ×f,p1 X) t (S ′ ×f,p1 X

′)

so the fibre product is totally split.

Lemma 2.2.2. Consider the following commutative diagram of schemes:

Y X

S

ψ

u

φ

if φ : X → S and ψ : Y → S are finite étale morphism then u : Y → X is a
finite étale morphism.



2.2. MAIN THEOREM FOR ÉTALE COVERS 45

Proof. Let us write u = p2 ◦ Γu where Γu : Y → Y ×S X is the graph of u
and p2 : Y ×S X → X is the projection on the second component. Consider
the following fibre product diagrams:

Y X Y ×S X Y

Y ×S X X ×S X X S

Γu

ψ

∆X|S p2 ψ

u×idX

φ

From Lemma 2.1.4 ∆X|S is finite étale hence its base change Γu is finite and
étale as well. In a similar way, p2 is finite étale since it is the base change of
ψ in the left hand side diagram, hence the composition u = p2 ◦ Γ is finite
and étale.

Another result we will need is that in the category of S-schemes, a faith-
fully flat morphism of finite type is a strict epimorphism. The following
technical lemma is necessary, but we omit the proof here; the interested
reader might find it in [Mil] (Chapter 1 Proposition 2.18).

Lemma 2.2.3. If a ring homomorphism f : A → B is faithfully flat, then
we have the exact sequence:

0 −→ A
f−→ B

d0

−→ B ⊗A B
d1

−→ . . .

where dn−1 =
∑r−1

i=0 (−1)iei and

ei(b0 ⊗ · · · ⊗ bn−1) = b0 ⊗ · · · ⊗ bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ bn−1.

Proposition 2.2.4. In the category Sch/S, faithfully flat morphisms of fi-
nite type are strict epimorphisms.

Proof. We consider a faithfully flat morphism of finite type f : Y → X in
the category of Sch/S; we want to prove that it is a strict epimorphism. To
do so, consider h : Y → Z a morphism of S-schemes such that h◦p1 = h◦p2,
where pi : Y ×X Y → Y is the projection on the i-th component. We want
to prove that there exists a morphism g : X → Z such that g ◦ f = h. We
divide the proof in three steps:

step 1. Suppose firstly that X = Spec(A), Y = Spec(B), Z = Spec(C) are
all affine schemes and f, h are induced respectively by f ] : A → B
faithfully flat and h] : C → B . In this situation, the projections pi
are induced by the morphisms ei−1 : B → B ⊗A B. The condition
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h ◦ p1 = h ◦ p2 becomes e0 ◦ h] = e1 ◦ h] i.e. (e0 − e1) ◦ h] = 0. We use
the Lemma 2.2.3 on f ] and obtain the exact sequence:

0 −→ A
f]−→ B

e0−e1−→ B ⊗A B;

then im(h) ⊂ ker(e0 − e1) = im(f), hence find g] : C → A such that
f ] ◦ g] = h] and we are done.

step 2. Suppose now X = Spec(A), Y = Spec(B) and Z arbitrary. First we
prove the uniqueness of g. Indeed suppose there are g1, g2 such that
g1◦f = g2◦f . If we denote |gi| : Xset → Y set the topological component
of gi, we have that |g1|, |g2| agree on |X| since f is surjective. Now pick
x ∈ X, let U be an open affine neighbourhood of g1(x) = g(2x) in Z and
consider Xa = Spec(Aa) an open neighbourhood of x in Spec(X) for a
suitable a ∈ A such that g1(Xa) = g2(Xa) ⊂ U. If b ∈ B is the image of
a under the morphism A→ B, we have that Bb is again faithfully flat
over Aa and we reduced to the previous case with Z = U affine; hence
we can conclude that g1|Xa = g2|Xa . But know this is true on an open
affine covering of Z and thus g1 and g2 agree on X.

Using the uniqueness we just proved, we can reduce to define g locally.
Then fix x ∈ X, y = f−1(x) and consider U an open affine neighbour-
hood of h(y) in Z. We have that f(h−1(U)) is open in X, as any flat
morphism locally of finite type is open. Clearly x ∈ f(h−1(U)) and we
find a ∈ A such that Xa = Spec(Aa) is an open neighbourhood of x
contained in f(h−1(U)).

Now, notice that f−1(Xa) ⊂ h−1(U): indeed if y1 ∈ f−1(Xa), f(y1) ∈
f(h−1(U)) and then f(y) = f(y′) with y′ ∈ h−1(U). If y′ ∈ Y ×X Y is
such that p1(y′) = y1 and p2(y′) = y2, we have:

h(y1) = h(p1(y′)) = h(p2(y′)) = h(y2) ∈ U

hence y1 ∈ h−1(U).

But now, if b ∈ B is the image of a ∈ A and Yb = Spec(Bb), we have
h(Yb) = h(f−1(Xa)) ⊂ h(h−1(U)) = U and Bb is faithfully flat over Aa.
Then we reduced the problem to h|Yb : Y → U and f|Yb : Yb → Xa with
U affine, hence we can conclude with the step 1.

step 3. Let X, Y, Z arbitrary. We can firstly reduce to the case X affine by
taking an affine covering of X. Since f is faithfully flat and open, it is
quasi-compact, hence we find a finite affine cover of Y = Y1 ∪ · · · ∪ Yn.
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Denote Y ′ = Y1 t . . . Yn; Y ′ is affine and the morphism f ′ : Y ′ → X is
faithfully flat. Now we look at the following commutative diagram:

Hom(X,Z) Hom(Y, Z) Hom(Y ×X Y, Z)

Hom(X,Z) Hom(Y ′, Z) Hom(Y ′ ×X Y ′, Z)

f∗

id

p∗1

p∗2
α

f ′∗

p′∗1

p′∗2

where p∗i = Hom(pi, Z), the map α is injective and the second raw is
exact using step 2. Now h ∈ ker(p∗1, p

∗
2) hence α(h) ∈ ker(p′∗1 , p

′∗
2 ) =

im(f ′∗), then there exists g ∈ Hom(X,Z) such that f ′∗(g) = α(h); but
now, using the commutativity of the right hand side square, we obtain
f ∗(g) = g ◦ f = h as wanted.

Theorem 2.2.5. Let S be a connected scheme and let CS the full subcategory
of Sch/S whose objects are étale covers of S. Then the category CS is a
Galois category and given a geometric point s̄ : Spec(Ω)→ S and denoted by
Xset
s̄ the underline set of Xs̄, the functor:

Fs̄ : CS −→FSets
(φ : X → S) 7−→Xset

s̄

is a fibre functor. In analogy with the topological case, the profinite group:

π1(S; s̄) := π1(CS;Fs̄)

is the étale fundamental group of S with base point s̄ and given s̄1, s̄2 two
geometric point, the set

π1(S; s̄1, s̄2) := π1(CS;F1̄, Fs̄2)

is the set of étale paths from s̄1 to s̄2.

Proof. We verify the axioms of the definition of a Galois category.

(i) A final object is given by idS : S → S; furthermore, the fibre product
of two étale covers φ : X → S and ψ : Y → S in the category Sch/S
gives again an étale cover: from the cartesian diagram

X ×S Y X

Y S

p1

p2 φ

ψ
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we have that p1 is finite, étale and surjective since it is a base-change
of ψ and then the composition φ ◦ p1 is an étale cover of S.

(ii) CS has an initial object ∅; if we consider the coproduct of two étale
covers in the category Sch/S, it is again an étale cover of S.

About the quotient, the matter is less immediate and we have to split
the proof in several steps. Let us consider φ : X → S an étale cover
and G ⊂ AutSch/S(φ) a finite subgroup.

step 1. We assume firstly that S = Spec(A) is affine. Since φ is finite
hence affine, we obtain that φ−1(A) = X = Spec(B) is affine
and φ is induced by a finite A-algebra φ] : A → B. We remind
the equivalence of category between the affine S-schemes Aff/S
and (Alg/A)op; thus G corresponds to the finite group Gop ⊂
Aut(Alg/A)op(B). Consider the subring

BGop
= { b ∈ B | g(b) = b ∀g ∈ Gop } ⊂ B;

we show that X π→ Spec(BGop
) is the quotient of X in Aff/S.

It is clear by the construction that for every g ∈ G, π ◦ g = π;
furthermore, if f : X → Y = Spec(C) is a morphism in CS such
that f ◦ g = f for every g ∈ G, using the equivalence of categories
we have the correspondence of commutative diagrams:

X X B B

Y C

g

f
f

gop

f]

f]

But then f ] factors through BGop and hence f factors through
Spec(BGop

). Hence Spec(BGop
) = X/G.

step 2. We prove that φG : X/G → S is an étale cover. We start from
the étale cover φ: using Lemma 2.2.1 we find f : S ′ = Spec(A′)→
S induced by a faithfully flat algebra A → A′ such that B ⊗A
A′ = A′n as A′-algebra. We consider now the morphism λ : B →⊕

g∈Gop B defined by:

λ(b) = (b− g · b)g∈Gop ;

by the definition of BGop , we have an exact sequence of A-algebras:

0 −→ Bop −→ B
λ−→

⊕
g∈Gop

B
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and if we tensor it by the flat A-algebra A′ we get:

0 −→ BGop ⊗A A′ −→ B ⊗A A′
λ⊗id′A−→

⊕
g∈Gop

B ⊗A A′.

Now notice that

BGop ⊗A A′ = (B ⊗A A′)G
op

= (A′n)G
op

and Gop acts on A′n just like a permutation of the indices 1, . . . , n,
hence one has:

(A′n)G
op

=
⊕

F⊂{ 1,...,n }

A′.

If we translate now this conclusion in terms of scheme and consider
the following fibre product diagram:

X ′ S ′ = Spec(A′)

Spec(BGop
) = X/G S = Spec(A)

φ′

f

φG

we have that X ′ = Spec((A′n)G
op

) =
⊔
i∈F S

′ is a totally split étale
cover, hence again by Lemma 2.2.1 we can conclude that φG is an
étale cover.

step 3. We can reduce to the previous case in the following way: we cover
S with affine open subsets Si and we obtain the result using steps
1. and 2. Then, we can glue together the quotient objects to
obtain an étale cover of S and using the uniqueness of quotient
object we conclude that it is in fact the quotient.

(iii) Consider two étale covers φ : X → S and ψ : Y → S and let u : Y → X
be a morphism in CS. We want to prove that it factors as a composition
of a monomorphism and a strict epimorphism. By Lemma 2.2.1 u is
finite and étale, hence it is both closed and open. Hence u(Y ) = X ′

is both open and closed, so X ′′X \ X ′ is open and closed as well and
we have X = X ′ tX ′′. Then u′ = u|X′ : Y → X ′ is faithfully flat so a
strict epimorphism by Proposition 2.2.4, the inclusion iX′ : X ′ → X is
an open immersion hence a monomorphism and u = u′′ ◦ u′.

(iv) A final object in CS is isomorphic to ids : S → S and Fs̄(idS) is a single
point, i.e. a final object in FSets. We show that Fs̄ commutes with
fibre product: if φ : X → S and ψ : Y → S are étale covers and

Fs̄(X ×S Y ) = (X ×S Y )×S Spec(Ω);
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we want to show that it coincides with

Fs̄(X)×S Fs̄(Y ) = (X ×S Spec(Ω))×S (Y ×S Spec(Ω)).

But this comes directly using the basic properties of fibre product:

(X ×S Spec(Ω))×S (Y ×S Spec(Ω)) = X ×S (Spec(Ω)×S (Y ×S Spec(Ω)))

= X ×S (Spec(Ω)×S Y )×S Spec(Ω)

= X ×S (Y ×S Spec(Ω))×S Spec(Ω)

= X ×S (Y ×S (Spec(Ω)×S Spec(Ω))

= (X ×S Y )×S Spec(Ω).

(v) It is straightforward that Fs̄ commutes with finite coproducts and sends
strict epimorphisms to strict epimorphisms. We have to prove that Fs̄
commutes with categorical quotients by finite groups of automorphisms.
Fix φ : X → S an étale cover and G ⊂ AutCS((X,φ)) a finite subgroup.
Since the assertion is local on S, using Lemma 2.2.2 we can assume
that φ is totally split and that G acts on X as a permutation of copies
of S (as in the proof of axiom (ii)). But then, the quotient X/G is
isomorphic to a finite coproduct of copies of S and Fs̄ commutes with
finite coproducts.

(vi) Consider two étale covers φ : X → S and ψ : Y → S and a morphism
u : X → Y in CS such that Fs̄(u) : Fs̄(X) → Fs̄(Y ) is a bijection. By
Lemma 2.2.2 u is a finite étale morphism; furthermore, since Fs̄(X) '
Fs̄(Y ), we have that u is surjective and it has rank 1. Then it is an
isomorphism by Lemma 2.1.5.



Chapter 3

Some applications

In this chapter we use the results we showed in the previous chapters to give
some examples of Galois fundamental groups and present some interesting
constructions. The first section is dedicated to varied extra tools we are going
to need, about profinite groups and fundamental functors in particular; in
the second section there are two initial examples of computation of the Galois
fundamental group; in the third section we present some results on the first
homotopy sequence, while in the last section we give the example of the
fundamental group of an elliptic curve.

3.1 Some facts and observations

In this section we present a bunch of results in different topics that we did
not need so far but that become useful from now on. Most of them will be
presented without proof, as they are maybe well known facts; however, we
will furnish a reference for each one in case the interested reader would like
to look into further.

On schemes

Definition. Let X be a scheme over the field k and if K field extension of
k denote XK = X ×k Spec(K).

• X is geometrically connected over k if the scheme XK is connected for
every field extension K of k.

• X is geometrically reduced over k if the scheme XK is reduced for every
field extension K of k.

51
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It is possible to prove that X being geometrically connected (resp. geometri-
cally reduced) is equivalent to Xk̄ connected (resp. reduced) and also that if
k is perfect, X geometrically reduced over k is equivalent to X reduced (see
[Liu] Section 3.2.2). We consider a morphism f : X → S; we say that f has
geometrically reduced fibres if for every s ∈ S, Xs is geometrically reduced
over k(s). It is possible to show that if f : X → S is also flat, then also its
base change has geometrically reduced fibres and if X ′ → X is étale then the
composition with f , X ′ → S has finite fibres.

The following theorem is the so-called Stein factorization of a proper
morphism; the interested reader can find the proof at Section 03GX.

Theorem 3.1.1. Let f : X → S be a morphism such that f∗OX is a quasico-
herent OS-algebra. Then f∗OX defines an S-scheme p : S ′ := Spec(f∗OX)→
S and f factors as:

X S

S ′

f ′

f

p

Furthermore:

1. if f is proper, then p is finite and f ′ is proper with geometrically con-
nected fibres; furthermore, if f∗OX = OS then f has geometrically
connected fibres;

2. if f is proper, flat and with geometrically reduced fibres, then p is an
étale cover; in particular, f∗OX = OS if and only if f : X → S has
geometrically connected fibres.

The Stein factorization theorem has one useful corollary:

Corollary 3.1.2. Let f : X → S be a proper morphism such that f∗OX =
OS; if S is connected, then X is connected.

On profinite groups

Until now we used just the definition of a profinite group as a projective limit
of finite groups with the discrete topology; we present now some basic results
on profinite groups. Their proofs can be found in [Wil] Chapter 1.

Finite groups endowed with the discrete topology are clearly compact
and Hausdorff. It is possible to prove that these properties are preserved by
projective limit and to show that a profinite group is compact, Hausdorff and
totally disconnected. In fact, also the converse is true: if G is a compact,

https://stacks.math.columbia.edu/tag/03GX
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Hausdorff and totally disconnected topological group, it is a projective limit
of finite groups, in particular:

G = lim←−
NCOG

G/N

where we write N CO G for open normal subgroups of G. More completely,
one has the following proposition:

Proposition 3.1.3. Let G a topological group. The following are equivalent:

(i) G is profinite;

(ii) G is isomorphic to a closed subgroup of a cartesian product of finite
groups;

(iii) G is compact and
⋂

(N |N CO G) = 1;

(iv) G is compact, Hausdorff and totally disconnected.

Lemma 3.1.4. Let G be a profinite group and H a finite index subgroup.
Then H contains a normal subgroup of G of finite index.

Lemma 3.1.5. Given G = lim←−Gi a profinite group and denoted by φi : G→
Gi the canonical morphism, a basis for the topology of G is given by φ−1

i (U)
with U ⊂ Gi open.

Lemma 3.1.6. Let G be a profinite group and H a subgroup. It is open if
and only if it is closed and it has finite index in G.

Lemma 3.1.7. Let f : G → A a map from a profinite group to a discrete
space. f is continuous if and only if there is an open normal subgroup NCOG
such that f factors through G/N.

Given an arbitrary group , we find a profinite group associated to it, its
profinite completion:

Definition. Given an arbitrary group G, its profinite completion Ĝ is the
profinite group

Ĝ := lim←−G/N

where N runs through the normal subgroups of G of finite index.

The profinite groups form a subcategory of the category of topological
groups, where morphisms are continuous group homomorphisms. We have
the following lemmas:
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Lemma 3.1.8. A morphism u : H → G between profinite groups is an
epimorphism if and only if it is surjective.

Proof. (⇐=) is immediate.
(=⇒) We call L = im(u) ⊂ G; we want to prove that L = G. We know

that G = lim←−G/Ni where Ni CO G; by brevity, we write Gi = G/Ni and
we denote qi : G→ Gi the natural projections; they are epimorphisms since
they are surjective. Now, ui := qi◦u : H → Gi is an epimorphism for every i,
as it is a composition of epimorphisms; but since Gi is finite, ui is surjective.
We have a claim:
Claim. If Y ⊂ G and qi(Y ) = Gi for every i, then Y is dense in G.
Proof of the claim. Since qi(Y ) = Gi, then for every open U ⊂ Gi one has
q−1
i (U) ∩ Y 6= ∅. Using the fact that

{ q−1
i (U) | i ∈ I, U ⊂ Gi open }

is a basis of the topology on G from Lemma 3.1.5, we find immediately that
Y is dense in G.

We use the claim with Y = L = im(u): qi(Y ) = qi ◦ u(H) = Gi since
qi ◦ u is surjective: we get L dense in G. But now since H is compact and u
is continuous, L is also compact and L is closed as it is compact in G which
is Hausdorff: thus it is dense and closed in G and G = L.

Lemma 3.1.9. A morphism u : H → G is a monomorphism if and only if
ker(u) = { 1 } .

Proof. (=⇒) Suppose u monomorphism; if ker(u) 6= { 1 }, pick a non trivial
x ∈ ker(u) and set L the subgroup of H generated by x. Now we consider the
morphisms: id = L → H and f : L → H defined by f(x) = 1; then f 6= id
but u ◦ f = u ◦ id.

(⇐=) Suppose ker(u) trivial, and f, g : H ′ → H two morphisms from a
profinite group H ′ such that u ◦ f = u ◦ g. If there exists x ∈ H ′ such that
f(x) 6= g(x), we have u(f(x)) = u(g(x)) and since u is a group morphism we
get u(f(x)g(x)−1) = 1 thus f(x)g(x)−1 ∈ ker(u) = { 1 } and f(x) = g(x).

Using the previous lemmas, it is easy to prove the following corollary:

Corollary 3.1.10. A morphism u : G → H of profinite groups is an iso-
morphism if and only if it is both surjective and injective.

Definition. Given a profinite group G and a prime p, its pro-p completion
is

G(p) := lim←−G/N
where N runs through the open normal subgroups of index a power of p.
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Notice that G(p) is a maximal p-subgroup of G, i.e. a p-Sylow subgroup
of G. If G is pronilpotent (in fact we will be interested in the case when G is
abelian), we have the following useful structure result; the interested reader
might find the proof in [Wil] Proposition 2.4.3.

Proposition 3.1.11. Let G be a profinite group. If it is pronilpotent, then
it is isomorphic to the cartesian product of its Sylow subgroups.

Fundamental functors and their properties

Now that we have some tools on profinite groups, we can look more specifi-
cally on the Galois fundamental group we introduced in Chapter 1.
Let C a Galois category; from the Main Theorem of Chapter 1, we know that
in fact C ' C(Π) with Π the Galois fundamental group of C. Consider now
X ∈ C a connected object: it is a connected object in the category C(Π),
i.e. a finite set with a transitive continuous Π-action. Now if x ∈ X and
U = StabΠ(x), U is an open subgroup of Π since the action is continuous;
furthermore, Π/U is isomorphic to the orbit of x under the action of Π,
which is precisely X since X is connected. Thus we have a very useful
characterization of connected objects in a Galois category C(Π): they are of
the kind Π/U with U an open subgroup of Π.

Definition. Let C, C ′ be Galois categories; a functor H : C → C ′ is a fun-
damental functor from C to C ′ if for any fibre functor F ′ : C ′ → FSets such
that F ′ ◦H : C → FSets is a fibre functor for C.

Notice that for the second part of the Main Theorem of Galois categories,
it is enough that the latter condition is true for one fibre functor F ′, as all
fibre functors are isomorphic.

In the category of our interest, the étale covers CS of a connected scheme
S, a fundamental functor may be obtain in the following way: consider a
morphism f : S ′ → S of connected schemes and a geometric point s̄′ :
Spec(Ω) → S ′ whose image in S through f gives a geometric point s̄ :
Spec(Ω)→ S. Then we can consider the functor:

f ∗ : CS −→CS′
(φ : X → S) 7−→(φ′ : X ′ → S ′)

where X ′ is the fibre product:

X ′ = X ×S S ′ S ′

X S

φ′

f

φ
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f∗ is a fundamental functor, as Fs̄′ ◦ f ∗ = Fs̄: indeed

X ′s̄′ = X ′ ×S′ Spec(Ω) = (X ×S S ′)×S′ Spec(Ω) = X ×S Spec(Ω) = Xs̄.

The result is clear as well looking at the commutative diagram:

X ′ ×S′ Spec(Ω) Spec(Ω)

X ′ S ′

X S

s̄′

φ′

f

φ

noticing that by definition f ◦ s̄′ = s̄.
If we have a fundamental functor H : C → C ′ between two Galois cat-

egories and F ′ : C ′ → FSets is a fibre functor, take F = F ′ ◦ H as fibre
functor on C. Then for every θ′ ∈ Π′ = π1(C ′, F ′), we can think the action of
θ′ as a natural trasformation θ′ : F ′ → F ′: for every X ′ ∈ C ′, we have

θ′X′ : F ′(X) −→F ′(X)

x′ 7−→ θ′ · x′.

In this fashion, for every X ∈ C it defines:

θ′H(X) : F ′(H(X)) = F (X) −→ F ′(H(X)) = F (X);

thus θ′H(X) ∈ Π and this gives rise to a morphism of profinite groups:

uH : Π′ −→Π = π1(C, F )

θ′ 7−→θ′H(·)

We have also the converse construction: given a profinite groups mor-
phism u : Π′ → Π, for every X ∈ C(Π) one can consider on it an induced
action of Π′ via u; if θ′ ∈ Π′, one defines:

θ′ ·X := u(θ′) ·X.

This gives rise to a fundamental functor Hu : C(Π) → C(Π′). It is clear by
this construction that uHu = u and that the diagram

C C ′

C(Π) C(Π′)

F

H

F ′

HuH

commutes, so H and HuH are isomorphic functors.
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Proposition 3.1.12. Consider C, C ′ Galois categories, H : C → C ′ a fun-
damental functor, F ′ fibre functor on C ′ and F = F ′ ◦ H fibre functor on
C giving fundamental groups Π′ = π1(C ′;F ′) and Π = π1(C;F ) respectively.
Denote u : Π′ → Π the morphism associated to H. Then:

(i) The following are equivalent:

a. u is an epimorphism;

b. H sends connected objects to connected objects;

c. H is fully faithful.

(ii) u is a monomorphism if and only if for any object X ′ ∈ C ′ there exists
X ∈ C such that a connected component of H(X) dominates X ′.

(iii) u is an isomorphism if and only if H is an equivalence of categories.

(iv) Given
C H−→ C ′ H′−→ C ′′

a sequence of fundamental functors between Galois categories, consider
the induced sequence of fundamental groups:

Π′′
u′−→ Π′

u−→ Π.

Then ker(u) ⊃ im(u′) if and only if for every X ∈ C, H ′(H(X)) is
totally split in C ′′; ker(u) ⊂ im(u′) if and only if for any connected
object X ′ ∈ C ′ such that H ′(X ′) has a section in C ′′, there exists X ∈ C
and a connected component of H(X) dominating X ′ in C.

Proof. Firstly notice that since C ' C(Π), C ′ ' C(Π′) andH is a fundamental
functor, we can suppose that H : C(Π) → C(Π′) is given by the identity on
objects and the action of Π′ on the image of H is given by u(Π′). More in
details, for every x ∈ H(X) ' X and every g′ ∈ Π′, one has

g′ · x = u(g′) · x.

Hence we will often write X instead of H(X) if it is clear the action of which
group we are considering; otherwise, we will stress the difference.

(i) (b.⇒ a.)
Suppose that H sends connected objects in connected objects; in par-
ticular for every open normal subgroup N of Π, H(Π/N) ' Π/N is
connected in C ′.
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Take N ′ = u−1(N); then N ′ is an open normal subgroup of Π′. We
have a morphism induced by u:

ū : Π′/N ′ −→ Π/N

and, if considered as a morphism in the category Π′, it is automatically
a strict epimorphism as Π/N is connected. Thus we have a surjective
group morphism

Π′ −→ Π/N

for every N CO Π and we conclude that u is an epimorphism using the
claim of Lemma 3.1.8.

(a.⇒ c.)
Suppose that u is surjective (again using Lemma 3.1.8), we prove that
H is fully faithful: from what we said above, it amounts to prove that
given X, Y ∈ C(Π) and f : X ' H(X) → Y ' H(Y ) a Π′-invariant
map, f is Π-invariant. But since u is surjective, for every g ∈ Π we
find g′ ∈ Π′ such that u(g′) = g, and for every x ∈ X one has:

f(g · x) = f(u(g′) · x) = f(g′ · x) = g′ · f(x) = u(g′) · f(x) = g · f(x).

In this way we proved that H is full; but faithfulness is for free, since
H acts as the identity on morphism and two Π′-invariant coinciding
maps coincide also as Π-invariant maps.

(c.⇒ b.)
We take a connected object Π/U ∈ C, we want to prove that H(X)
is connected in C ′, i.e. Π′ acts transitively on Π/U via the morphism
u. Now consider a connected component Y ⊂ Π/U of H(Π/U) ∈ C ′
; we have the canonical immersion i′ : Y → Π/U (as a morphism in
C ′, so a Π′ invariant map). Since H is fully faithful one has i′ = H(i)
with a suitable morphism i : Y → Π/U in C; but now since Π/U is
connected, i is automatically a strict epimorphism by Lemma 1.3.4 and
as Y ⊂ Π/U we obtain Y = Π/U , hence Π/U is connected in C ′.

(ii) (=⇒) Suppose that u is a monomorphism, i.e. ker(u) = { 1 } by Lemma
3.1.9 and take X ′ ∈ C ′. Notice that we can suppose that X ′ is con-
nected: if we prove the statement with X ′ connected, we are done
also in general just using the connected decomposition (see Proposi-
tion 1.3.2).

Now as X ′ is connected, it is isomorphic to Π′/U ′ for a suitable open
subgroup U ′ of Π′; U ′ is closed so it is compact since Π′ is compact.
Then u(U ′) is compact as u is continuous, hence closed since Π is
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Hausdorff. Then u(U ′) is closed and has finite index in im(u), so it is
open in it; hence we are able to find an open subgroup U ⊂ Π such
that U ∩ im(u) ⊂ u(U ′). We take then X := Π/U and we consider the
connected component of H(X):

im(u)U/U ' im(u)/(U ∩ im(u));

it is connected since if we denoteW := U∩im(u) and we pick xW, yW ∈
im(U)/(U ∩ im(U)), as now since u−1(U) ⊂ U ′ and u is injective, we
have the well defined morphism

im(u)U/U −→ Π′/U ′

given by the section of u.

(⇐=) Let g′ ∈ ker(u) and suppose g′ 6= 1; consider now an object
X ′ ∈ C ′ such that g′ acts non trivially on X ′. By assumption, we are
able to find an object (that we can suppose connected, as above) X
such that there is a connected component Y ⊂ H(X) ' X dominating
X ′. But then the action of g′ on Y is given by the action of u(g′) = 1,
which is trivial, while the action of g′ on X ′ is non trivial. Hence we
contradict the Π′-invariance of the map Y → X ′.

(iii) From results on profinite groups, we have that u being an isomorphism
is equivalent to being a morphism of profinite groups both injective and
surjective.

(=⇒) We already know from point (i) that u surjective implies H fully
faithful. Hence it is enough to prove that H is essentially surjective:
but this is immediate by looking at the proof of point (ii). Indeed given
a connected object Π′/U ′ ∈ C ′ with U ′ open subgroup of Π′, we take
U = u(U ′); since u is an isomorphism, we have the isomorphism:

Π/U
∼−→ Π′/U ′

given by the inverse of u. So H(Π/U) ' Π′/U ′ and H is essentially
surjective.

(⇐=) As we are assuming H essentially surjective, we have that for
every connected object Π′/U ′ ∈ C ′ there exists an open subgroup U
of Π such that Π/U ' H(Π/U) ' Π′/U ′. This defines a morphism
Π→ Π′ which is the inverse of u, hence u is an isomorphism.

(iv) For the first part:
(=⇒) Suppose im(u′) ⊂ ker(u); this implies that u ◦ u′ is trivial, i.e.
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for every g′′ ∈ Π′′ one has u ◦ u′(g′′) = 1. Now consider an object
X ∈ C ′. We want to show that H ′(H(X)) is totally split in C ′′; for
every g′′ ∈ Π′′, the action of g′′ on an element x ∈ H ′(H(X)) ' X is
given by:

g′′ · x = u ◦ u′(g′′) · x = 1 · x.

Thus the action of Π′′ is trivial on H ′(H(X)) and then that H ′(H(X))
is totally split in C ′′.
(⇐=) Suppose now that for every X ∈ C we have that H ′(H(X)) is
totally split in C ′′; we want to prove that im(u′) ⊂ ker(u), i.e. that
u ◦ u′ is trivial. Take g′′ ∈ C ′′; for every X ∈ C, H ′(H(X)) is totally
split in C ′′, so the action of g′′ on it is trivial. But this means that for
every X ∈ C, u ◦ u′(g′′) acts trivially on X, thus u ◦ u′(g′′) = 1.

For the second part, we use the following fact:

Remark. ker(u) ⊂ U ′ if and only if there exists an open subgroup
U ⊂ Π such that the connected component of 1 of H(Π/U) dominates
(Π′/U ′, 1) in C ′pt. The proof is exactly the same we gave in the point
(ii).

(=⇒) Suppose ker(u) ⊂ im(u′) and pick X ′ ∈ C ′ connected such that
H ′(X ′) has a section. This means that X ′ considered in C ′′, so with
the action of Π′′, is :

X ′ = {x } t X̃ ′

for a suitable element x ∈ X ′, i.e. the point x is fixed by the action of
Π′′ on H ′(X ′) ' X ′. Now if U ′ = StabΠ′(x), we have X ′ ' Π′/U ′ as
X ′ is connected and im(u′) ⊂ U ′ by construction, since every point in
im(u′) keeps fixed x thus it is in U ′. But then ker(u) ⊂ im(u′) ⊂ U ′,
and by the remark above we have that there exists an open subgroup
U ⊂ Π such that (H(Π/U), 1)0 ≥ (Π′/U ′, 1) in C ′pt.
(⇐=) Since im(u′) is closed, we know from [Rib] Proposition 2.4.1 that

im(u′) =
⋂

U ′≤OΠ′, im(u′)⊂U ′
U

Thus to prove that ker(u) ⊂ im(u′) it is enough to show that ker(u) ⊂
U ′ for every open subgroup U ′ of Π′ containing im(u′). But from the
remark above ker(u) ⊂ U ′ if and only if there exists an open subgroup U
of Π such that (H(Π/U), 1)0 ≥ (Π′/U ′), and this is true since im(u′) ⊂
U ′ implies that H ′(Π′/U ′) has a section in C ′′, and then by assumpition
there is an object X ∈ C such that (H(X), 1)0 dominates (Π′/U ′, 1).
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The previous proposition gives a very interesting and useful dictionary be-
tween the properties of the morphism of fundamental groups and the ones of
fundamental functors. This dictionary will be intensely used in the following
sections to understand some kinds of fundamental groups.

With the next result, the last we present in this section, we return on the
category of étale covers and in particular on the étale fundamental group;
it says that in fact the fundamental group of a scheme is the same as the
fundamental group of the associated reduced scheme. We omit the proof; the
interested reader might find it in [Gro] Chapter IX.

Lemma 3.1.13. Let X be a connected scheme and i : Xred → X be the
underlying reduced closed subscheme and fix a generic point xΩ : Spec(Ω)→
X; as Spec(Ω) is reduced, xΩ factors through a generic point xΩ : Spec(Ω)→
Xred. Then i induces an isomorphism of profinite groups:

π1(Xred;xΩ)
∼−→ π1(X;xΩ).

3.2 Examples of Galois groups
In this section we present two examples of Galois fundamental groups: the
first one is intended to help the reader to connect the "new" fundamental
group with the topological fundamental group, in a setting where both of
them have significance; the second one instead is in an algebraic setting: we
prove that the étale fundamental group of a point coincides with the absolute
Galois group of the base field.

The relationship with the fundamental topological group

We started the first chapter with a quick review of the construction of the
topological fundamental group; throughout the rest of the chapter, we pre-
sented the construction of the Galois fundamental group for a Galois category,
abandoning the topological point of view for a totally algebraic construction.
The reader might now be interested in the connection between these two
concepts: given an arc-wise connected topological space X, is the category
Cov(X) a Galois category? If yes, which is the relation between its Galois
fundamental group and the topological fundamental group of X?

The answer to the first question is "partially yes": to obtain a Galois
category, we must restrict to the subcategory of finite covers. More precisely,
given a connected and locally arc-wise connected topological space X, the
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category FCov(X) of finite topological covers of X is a Galois category and
if x ∈ X a fibre functor is given by:

Fx : FCov(X) −→FSets
(p : Y → X) 7−→Fx(p) := p−1(x).

It is clear here that we need to consider only finite covers, as we want the fibre
of every point to be a finite set. Hence to every point x ∈ X is associated
the Galois fundamental group π1(FCov(X), Fx) which we will denote by
π1(X, x) to remark the analogy with the topological fundamental group; to
avoid confusion, we will denote by πtop1 (X, x) the topological fundamental
group of X at the point x.

On the other hand, Theorem 1.1.5 induces another category equivalence
on FCov(X):

Proposition 3.2.1. The functor

Fibx : Cov(X) −→ πtop
1 (X, x)-Sets

of Theorem 1.1.5 induces an equivalence of the categories

FCov(X)
∼−→ ̂πtop

1 (X, x)-FSets.

Proof. We already know that the functor Fibx is an equivalence of categories.
If p : Y → X is a finite connected cover of X, the set Fibx(p) = p−1(x) is
finite so the action of πtop1 (X, x) on p−1(x) factors through a finite quotient
πtop1 (X, x)/N with N normal subgroup of πtop1 (X, x) of finite index: indeed
we have a morphism

πtop1 (X, x)→ G := AutFSets(p
−1(x))

where G is finite as p−1(x) is finite; then the kernel N of the morphism above
has finite index, as πtop1 (X, x)/N ↪→ G . Thus it is defined on p−1(x) a
continuous action of ̂πtop1 (X, x).

Conversely, a continuous action of ̂πtop1 (X, x) on a finite set factors through
a finite quotient, which is also a quotient of πtop1 (X, x) by definition of profi-
nite completion; hence it gives rise to a finite cover Y → X.

Thus we find an equivalence of categories

̂πtop1 (X, x)-FSets ∼−→ π1(X, x)-FSets
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and by Proposition 3.1.12 we get the isomorphism of profinite groups:

π1(X, x) ' ̂πtop1 (X, x).

In conclusion, the Galois fundamental group of the category of finite
covers of a topological space X is isomorphic to the profinite completion of
the topological fundamental group of X.

Spectrum of a field

We present now an example in the context of étale covers: the fundamental
group of a point. Even if it is a trivial example in a certain way, as we
consider the simplest algebraic variety, the result is nevertheless interesting;
indeed one finds out that the fundamental group of Spec(k) is the absolute
Galois group of k.

But we proceed by order: fix k a field and let us consider S = Spec(k)
and a geometric point s̄ : Spec(Ω)→ S; we initially describe what is a Galois
object in CS. To do so, consider a connected étale cover

φ : X −→ S = Spec(k);

the finiteness of φ forces X to be equal to an affine scheme Spec(K) with K
a finite field extension of k. Indeed φ is finite hence affine, so X = Spec(R)
and φ is induced by a finite morphism k → R. This forces R = K to be a
finite separable field extension of k.

Now, by Lemma 1.3.5, φ : X → S is a Galois object in CS if and only if
|Aut(X)| = |Fs̄(X)|; from the definition of the rank r(φ), we have:

|Fs̄| = |Xs̄| = rankk(K) = [K : k].

Thus we can conclude that φ : Spec(K) = X → S = Spec(k) is a Galois
object in CS if and only if K is a finite Galois field extension of k. We denote
by Aut(K|k) the Galois group of K.

Proposition 3.2.2. Let k be a field, ks its separable closure and k̄ an al-
gebraic closure of k containing ks. Denote by Γk := Aut(ks|k) the absolute
Galois group of k. Set S = Spec(k) and the geometric point s̄ : Spec(k̄)→ S.
Then there is an isomorphism of profinite groups:

π1(S; s̄)
∼−→ Γk.

Proof. From what said above, φ : X → S is a Galois object in CS if and only
if X = Spec(K) with K a finite Galois field extension of k; notice that we
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can consider K ⊂ k̄, up to taking a field in k̄ isomorphic (as a k-algebra) to
K.

For every such K, we have the isomorphism:

(Γk)|K = Aut(K|k) ' Autk-alg(K);

furthermore, remember that there is the equivalence of categories induced by
the usual equivalence of affine schemes:

CS
∼−→(FEAlg/k)op

(φ : X → S) 7−→(φ](X) : k → OX(X))

Hence, if X = Spec(K) is Galois, we have the isomorphism:

AutCS(X)op ' Autk-alg(K);

finally, one has:

π1(S, s̄) ' lim←−
X Galois

AutCS(X)op = lim←−
K Galois

Autk-alg(K) ' Γk

where the first equality comes from the proof of the Main Theorem(see Sec-
tion 1.3).

3.3 The first homotopy sequence
We present here some results related to the first homotopy sequence. We give
immediately the proof of the theorem and then we provide some examples
showing its usefulness.

Theorem 3.3.1. Let S be a connected scheme, f : X → S a proper mor-
phism such that f∗OX = OS and s ∈ S. Fix Ω an algebraically closed field,
xΩ : Spec(Ω) → Xs̄ a geometric point with image xΩ ∈ X and sΩ ∈ S.
Consider the sequence:

(Xs̄, xΩ) −→ (X, xΩ) −→ (S, sΩ)

and the induced sequence of profinite groups

π1(Xs̄;xΩ)
i−→ π1(X;xΩ)

p−→ π1(S; sΩ).

Then p is an epimorphims and im(i) ⊂ ker(p). If f is flat and has geomet-
rically reduced fibres, then im(i) = ker(p).
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Proof. We firstly prove that p is an epimorphism; by Proposition 3.1.12 point
(i), it is enough to show that every connected étale cover φ : S ′ → S is sent by
the fundamental functor associated to p in a connected étale cover X ′ → X.
We remember that this cover is obtained by the base change:

X ′ X

S ′ S

φ′

f ′ f

φ

One has:
f ′∗(OX′) = f ′∗(φ

∗OX)
(†)
= φ∗f∗OX

(‡)
= φ∗OS = OS′

where (†) comes from [Har] Chapter III Proposition 9.3 and (‡) comes from
f∗OX = OS by assumption. Now since f ′ is proper as it is the base change
of f , from Theorem 3.1.1 we have X ′ connected.

We show im(i) ⊂ ker(p). We use Proposition 3.1.12 point (iv), thus to
conclude it is enough to prove that if φ : S ′ → S is an étale cover of S, its
image in CXs̄ is totally split, i.e. it is a finite coproduct of copies of Xs̄. This
étale cover of Xs̄ is given by X ′s̄ → Xs̄ in the following commutative diagram,
where the two columns on the left are constructed just by base changes:

X ′s̄ Xs̄ = X ×S k(s̄)

X ′ X Spec(k(s̄))

S ′ S

f
s̄

φ

But now :

X ′s̄ = Xs̄ ×S S ′ =(X ×S k(s̄))×S S ′

=X ×S (k(s̄)×S S ′)

=X ×S
⊔
S′s̄

Spec(k(s̄))

=
⊔
S′s̄

Xs̄.

Suppose now f flat with geometrically reduced fibres; we prove now
ker(p) ⊂ im(i). We use again the characterization of Proposition 3.1.12:
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we pick a connected étale cover φ : X ′ → X; suppose that the base change
of φ,

φ̄ : X ′s̄ → Xs̄

admits a section σ : Xs̄ → X ′s̄. We have to prove that φ comes by base
change from a connected étale cover S ′ → S. Since φ is finite (so proper)
and étale and f is proper, flat with geometrically connected fibres, g = f ◦ φ
is also proper, flat with geometrically connected fibres. By Theorem 3.1.1, g
factors as:

X ′ S

S ′

g

g′
p

with p étale cover. Furthermore, we have that g′ is surjective: indeed pick
s′ ∈ §′ and consider S ′p(s′): by 3.1.1, there is a bijection between the set of
the connected components of S ′p(s′) and the connected components of X ′p(s′),
so there is a connected component of the latter that corresponds to the point
s′. In particular then there is a point x′ ∈ X ′ that g′ sends in s′ and g′ is
surjective; as X ′ is connected, we obtain hence S ′ connected. Now consider
the following diagram:

X ′ X ′′ S ′

X S

g

α

φ

f ′

p′ p

f

where the square is given by a base change and the map α comes from the
universal property of fibre product. Since S ′ is connected and we already
proved the exactness on the right of the sequence, we have that X ′′ is con-
nected. Notice that if we prove that α is an isomorphism, we are done: in
this case, φ is given by the base change of the étale cover p. So to conclude
we have to show that α is an isomorphism.

Since p is an étale cover, its base change p′ is an étale cover; thus from
φ = p′ ◦ α by Lemma 2.2.2 we have that α is finite étale. But then from
Lemma 2.1.5 α is automatically an étale cover and it remains to show that
it has rank 1. To do this, consider the base change of the previous diagram
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via s̄ : Spec(k(s̄))→ S, i.e.:

X ′s̄ X ′′s̄ S ′s̄

Xs̄ Spec(k(s̄))

gs̄

αs̄

φs̄

f ′s̄

p′s̄ ps̄

fs̄

We have that αs̄ is an étale cover (it is the base change of an étale cover),
thus it induces a surjective map

π0(X ′s̄) −→ π0(X ′′s̄ )

where π0(·) denotes the set of connected components. Furthermore, since
both g′ and f ′ are geometrically connected by 3.1.1, the latter map is in
fact bijective. Thus to conclude it is enough to prove that αs̄ induces an
isomorphism from a connected component X ′s̄0 ∈ π0(X ′s̄) to X ′′s̄0 := αs̄(X

′
s̄0).

Consider then
X ′s̄0 := σ(Xs̄);

we have that σ induces an isomorphism from Xs̄ to X ′s̄. Furthermore,
ps̄ is totally split: indeed it is an étale cover hence it is finite, thus if
{ ∗ } = Spec(k(s̄)) we have that p−1

s̄ (∗) are finitely many points, hence a
finite product of copies of Spec(k(s̄)). Then the base change p′s̄ is totally
split as well and so it induces an isomorphism from X ′′s̄0 to Xs̄. But now one
has:

σ|X′s̄ ◦ ps̄′|X′′s̄0 ◦ αs̄|
X′′s̄0
X′s̄0

= idX′′s̄0 .

The previous theorem allows us to prove the following corollary, which
tells us that under certain condition the fundamental group of the fibre prod-
uct of two schemes is precisely the product of the respective fundamental
groups, as one could hope. Notice that this result is not automatic: using
the Artin-Schreier method, it is possible to produce a counterexample and
find X not proper and k of positive characteristic such that π1(X×kX, (x, x))
is not isomorphic to π1(X, x)× π1(X, x).

Corollary 3.3.2. Let k be an algebraically closed field, X a connected, proper
scheme over k and Y a connected scheme over k. For any x : Spec(k) →
X and y : Spec(k) → Y , the morphism of profinite groups induced by the
projections pX : X ×k Y → X and pY : X ×k Y → Y :

π1(X ×k Y ; (x, y)) −→ π1(X;x)× π1(Y, y)

is an isomorphism.
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Proof. From Lemma 3.1.13 we may suppose that X is reduced, so X geomet-
rically reduced over k as k is algebraically closed. Hence X is geometrically
connected, proper, geometrically reduced and surjective over k; all these
properties are stable under base change, hence

pY : X ×k Y −→ Y

has all of them as well. In particular, pY has geometrically connected fibres
and from Theorem 3.1.1 one has that pY ∗OX×kY = OY so pY satisfies the
extra hypothesis of Theorem 3.3.1. Now consider the composition

(X ×k Y )y
p1→ X ×k Y

pX→ X

where p1 is the projection on the first component. Using the properties of
fibre product we have:

(X ×k Y )y = (X ×k Y )×Y Spec(k) = X ×k Spec(k) = X;

by construction pX ◦ p1 = idX thus pX gives a left inverse of p1. Now if we
consider the sequence

(X, x) = ((X ×k Y )y, x)
p1−→ (X ×k Y, (x, y))

pY−→ (Y, y)

by Theorem 3.3.1 we obtain the exact sequence:

π1(X;x)
π1(p1)−→ π1(X ×k Y ; (x, y))

π1(pY )−→ π1(Y ; y) −→ 1

and π1(pX) gives a left inverse of π1(p1); hence the sequence is split, thus:

π1(X ×k Y ; (x, y)) ' π1(X;x)× π1(Y, y).

We present now another interesting result regarding a proper scheme
over an algebraically closed field: its fundamental group is invariant under
algebraically closed field extensions.

Before we can proceed with the proof of this proposition, we need a
technical lemma:

Lemma 3.3.3. Let X be a connected scheme of finite type over a field k and
let Ω a field extension of k. For any étale cover φ : Y → XΩ, there exists
a finitely generated k-algebra R ⊂ Ω and an affine morphism of finite type
φ̃ : Ỹ → XR such that φ : Y → XΩ is a base change of φ̃. Furthermore, if η
is the generic point of Spec(R), then φ̃k(η) : Ỹk(η) → Xk(η) is an étale cover.
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Proof. As X is quasi-compact, we have a finite covering of open affine subsets
Xi = Spec(Ai) with i = 1, . . . , n where Ai is a finitely generated k-algebra
for every i. Then XiΩ = Spec(Ai ⊗k Ω) and since φ is finite hence affine, we
have Ui = φ−1(XiΩ) = Spec(Bi) where

Bi = (Ai ⊗k Ω)[T1, . . . , Tri ]/(Pi,1, . . . , Pi,si)

where Pi,j are polynomials in the variables T1, . . . , Tri . Now, these polyno-
mials have coefficients in Ai ⊗k Ω and then each coefficient is a finite sum
of pure tensors a ⊗ λ with a ∈ Ai and λ ∈ Ω. Now, if we denote by Ri the
subalgebra of Ω generated by these λ (they are finitely many), we get:

Bi = (Ai ⊗k Ri)[T1, . . . , Tri ]/(Pi,1, . . . , Pi,si)⊗Ri Ω;

we denote by R the subalgebra of Ω generated by all Ri for i = 1, . . . , n; it
is again finitely generated over k. Now, we can glue the affine schemes

Spec((Ai ⊗k R)[T1, . . . , Tn]/(Pi,1, . . . , Pi,si))

to get our Ỹ ; it is possible up to enlarging the algebra R, if needed, in order
to make the gluing open subsets Ui ∩ Uj descend again to R. Furthermore,
by construction the morphism φ̃ : Ỹ → XR is affine.

Now, if η is the generic point of Spec(R), we have the following commu-
tative diagram:

Y Ỹ Ỹk(η)

XΩ XR Xk(η)

φ φ̃ φ̃k(η)

and since k(η) → Ω is faithfully flat and φ is an étale cover, then also φ̃k(η)

is an étale cover.

Proposition 3.3.4. Let k an algebraically closed field, X a connected and
proper scheme over k and Ω an algebraically closed field extension of k. Fix a
geometric point xΩ : Spec(Ω)→ XΩ and denote by xΩ its image in X. Then
(XΩ;xΩ)→ (X;xΩ) induces an isomorphism of profinite groups:

π1(XΩ;xΩ)
∼−→ π1(X;xΩ).

Proof. Remind that in our case the functor H : CX → CXΩ
associated to the

morphism of groups above is given by the base change under the morphism
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XΩ → X. More precisely, if φ : Y → X is an étale cover of X, we have that
H(φ) : Y ′ → XΩ is the map given by the fibre product:

Y ′ = Y ×X XΩ XΩ

Y X

H(φ)

φ

Using the characterizations (i) and (ii) of Proposition 3.1.12, to conclude
it suffices to prove that H sends connected étale covers to connected étale
covers and that for any φ′ : Y ′ → XΩ connected étale cover, there exists a
connected étale cover φ : Y → X such that H(φ) dominates φ′.

For the first part: if φ : Y → X is connected étale cover, since k is
supposed algebraically closed, Y connected implies Y algebraically connected
and then YΩ is connected. But then YΩ → XΩ is connected étale covering
and we are done.

For the second part: fix φ : Y → XΩ a connected étale cover. We apply
Lemma 3.3.3 and we find a finitely generated k-algebra such that there exists
an affine morphism of finite type φ0 : Y 0 → XR such that φ is a base change
of φ0. Moreover, up to replacing R by Rr for some r ∈ R \ { 0 } and using
the second part of the same lemma, we may assume that φ0 is an étale cover.
Notice that since Y 0

Ω = Y (see the proof of Lemma 3.3.3) and Y is supposed
connected, we have Y 0 connected. We may call φ this morphism φ0, i.e. we
may suppose that the étale cover φ : Y → XΩ is

Now, denote S = Spec(R) and fix s : Spec(k) → S, x : Spec(k) → X.
The étale cover φ0 : Y 0 → X ×k S correspond to the open subgroup

U := Stabπ1(X×kS;(x,s))(φ) ⊂ π1(X ×k S; (x, s))

and from Corollary 3.3.2 we have the isomorphism:

π1(X ×k S; (x, s)) ' π1(X;x)× π1(S; s).

Thus we are able to find open subgroups US ⊂ π1(S; s) and UX ⊂ π1(X;x)
such that UX × US ⊂ U . US and UX correspond to certain connected étale
covers ψS : S̃ → S and ψX : X̃ → X respectively, such that φ0 is given by
the quotient (ψX × ψS)/U .

We denote Ỹ 0 = Y 0 ×X×kS (X ×k s̃) and in proceeding we keep in mind
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the the following diagram:

X̃ ×k S̃

Ỹ 0 Y 0

X ×k S̃ X ×k S

where the square is a fibre product; we took (ψX × id) : X̃ ×k S̃ → X ×k S̃
and X̃ ×k S̃ → Y 0 the quotient. By the universal property of fibre product,
we find the dashed morphism.

If η is the generic point of R, k(η) ⊂ Ω and Ω is algebraically closed; so we
may assume that every point s̃ ∈ S̃ above s ∈ S has residue field contained
in Ω and we can consider the geometric point s̃Ω : Spec(Ω)→ S̃.

Now, since the following fibre product diagram holds:

YΩ Ỹ 0

XΩ X ×k S̃id×s̃Ω

we have Ỹ 0 connected as YΩ is connected by hypothesis, hence the étale cover

Ỹ 0 → X ×k S̃

corresponds to an open subgroup

V ⊂ π1(X ×k S̃) ' π1(X)× US

where the last equivalence is again provided by Corollary 3.3.2 . Furthermore,
V ⊃ π1(X̃ ×k S̃) = UX × US, hence V = V ′ × US with UX ⊂ V ⊂ π1(X).
Finally, if φ̃ : Ỹ → X is the connected étale cover of X corresponding to V ′,
we have that the étale cover Ỹ 0 → X ×k S̃ is given precisely by the fibre
product by S̃ of φ̃, as we wanted.

We present one last result; it provides an interesting decomposition for
the fundamental group of a geometrically connected scheme of finite type
over a field k.
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Proposition 3.3.5. Let k be a field, S a geometrically connected scheme of
finite type over k; denote by ks the separable closure of k. Fix a geometric
point s̄ : Spec(k(s̄)) → Sks with image denoted by s̄ in S and in Spec(k).
Then the sequence

(Sks , s̄) −→ (S, s̄) −→ (Spec(k), s̄)

induces the short exact sequence of profinite groups:

1 −→ π1(Sks , s̄)
i−→ π1(S, s̄)

p−→ π1(Spec(k), s̄) −→ 1.

Proof. We will use the characterizations of Proposition 3.1.12.

• i is a monomorphism: we prove that if φ : X → Sks is an étale cover,
then there exists an étale cover φ̃ : X̃ → S such that its base change
via Sks → S dominates φ. So pick φ : X → Sks an étale cover; by
Lemma 3.3.3, we know that there exists a finite separable extension K
of k and an étale cover f : X̃ → SK such that φ is a base change of f .
Now consider the composition φ̃ given by:

X̃
f−→ SK

eK−→ S;

we show that φ̃ is the wanted étale cover. Consider the following com-
mutative diagram:

X̃ ×φ̃,k,e Sks

X Sks

X̃ SK S

α

φ

h e
eks

φ̃

f eK

We have eks = eK ◦ e; hence eks ◦ φ = φ̃ ◦ h and by universal property
of fibre product we find a morphism of Sks-schemes α : X̃ ×k Sks → X,
so the base change of φ̃ dominates φ.

• ker(p) = im(i): the fact that im(i) ⊂ ker(p) can be proved in the same
way we did in Theorem 3.3.1. It remains to show ker(p) ⊂ im(i); we
prove that if φ : X → S is an étale cover such that its base change
φks : Xks → Sks admits a section σ : Sks → Xks , then there exists an
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étale cover Y → Spec(k) such that its base change via S → Spec(k)
dominates φ.

Now, let K be a finite separable field extension of k such that σ is a
base change of σK : SK → XK . Now if we consider the composition

SK
σK−→ XK −→ X

we find a morphism of S-schemes SK → X. Thus the base change via
S → Spec(k) of the étale cover Spec(K) → Spec(k) dominates X, as
we wanted.

• p is an epimorphism: we show that if φ : Y → Spec(k) is a connected
étale cover, then its base change Y ×k S → S is again connected. But
φ being étale implies that Y = Spec(K) with K a finite separable
field extension of k and then Y ×k S = SK is connected since S is
geometrically connected.

Thus with the previous proposition we proved that the fundamental group
π1(S) of a geometrically connected scheme of finite type over k can be decom-
posed in π1(Sks) and π1(Spec(k)), where the latter coincide with the absolute
Galois group of k as we proved in section 3.2.

3.4 Elliptic curves

We present in this section an interesting result on elliptic curves: the funda-
mental group of an elliptic curve over C at the identity point is isomorphic
to the product of its Tate module. However, this results remains true for
a generic abelian variety over an algebraic closed field and the proof in this
more general case is quite similar to the one we present here. We briefly re-
call here the basic definitions for elliptic curves; the interested reader might
deepen in [Sil].

Definition. An elliptic curve (E,OE) over C is a couple where E is a smooth
algebraic curve of genus one over C and OE ∈ E is a fixed point. The point
OE is intended to be the identity of a suitable commutative group law on E.

If there is no possible confusion, we will denote an elliptic curve just by
E and its identity point just by O. We write ” + ” for the group law on E.



74 CHAPTER 3. SOME APPLICATIONS

Definition. Given two elliptic curves (E1, O1), (E2, O2), an isogeny is a mor-
phism of algebraic curves

φ : E1 −→ E2

such that φ(O1) = φ(O2).

The isogeny φ is said separable if it is an étale morphism, purely inseparable
if it is purely inseparable as a scheme morphism. Furthermore, since E1, E2

have the same dimension, φ is automatically surjective with finite fibres, and
we say that φ has degree n if it has degree n as algebraic variety morphism.

For every n ∈ N, it is defined the multiplication morphism

[nE] : E −→ E

that takes a point P ∈ E and sends it to the point P +P + · · ·+P (n-times).
We denote by E[n] the kernel of this morphism and by E[n](C) the set of
its points, which are said n-torsion points of E. It is clear that [nE] is an
isogeny and it is possible to prove that if the base field has characteristic 0
(as C in our case), [pE] is a also separable for every prime p. Furthermore,
the multiplication morphism [pE] induces a projective system structure on
E[pn](C) for n ≥ 0 and one defines the Tate module to be its projective limit:

Tp(E) := lim←−E[pn](C).

One finds out that E[pn](C) = (Z/pZ)2 and thus

Tp(E) ' Z2
p.

Theorem 3.4.1. Consider (E,O) an elliptic curve over C. Then there is a
canonical isomorphism of profinite groups

π1(E,O)
∼−→

∏
p prime

Tp(E)

Proof. By brevity we write π instead of π1(E,O). We give here a sketch
of the proof; the reader interested in filling in the details might read [Cad]
Theorem 6.11.
We divide the proof in several steps:

step 1. We prove that π is abelian and

π =
∏

p prime

π(p).
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Indeed the map µ : E×CE → E defining the sum induces a morphism
of profinite groups by Corollary 3.3.2:

π1(µ) : π × π −→ π.

Also, the section σ1 : E → E×CE of the first projection p1 : E×CE →
E gives the morphism:

π1(σ1) : π −→π × π
g 7−→(g, 1)

and one has π1(µ) ◦ π1(σ1) = id. One can do the same for the second
projection p2 and since σ1 and σ2 commutes, for every g1, g2 ∈ E we
obtain the following chain of equalities:

π1(µ)(g1, g2) =π1(µ)(π1(σ1)(g1)π1(σ2)(g2))

=π1(µ)(π1(σ1)(g1))π1(µ)(π1(σ2)(g2)) = g1g2

=π1(µ)(π1(σ2)(g2)π1(σ1)(g1))

=π1(µ)(π1(σ2)(g2))π1(µ)(π1(σ1)(g1)) = g2g1.

Thus the group is commutative and we find the decomposition as above
using Proposition 3.1.11 .

step 2. We show that if φ : X → E is an étale cover, then X carries a unique
structure of elliptic curve such that φ becomes a separable isogeny.

We construct the group structure on one fibre; then we can extend it
thanks to the formalism of Galois categories. Thus we pick a geometric
point x : Spec(C)→ X with image in X again denoted by x, such that
φ(x) = OE. This x is going to play the role of the identity point of the
group structure on X. The pointed connected étale cover

φ : (X;x) −→ (E;OE)

corresponds to a set M with a transitive π action together with a
distinguished point m ∈ M . As π is abelian, for every g1, g2 ∈ π the
map

µM : M ×M −→M
(g1 ·m, g2 ·m) 7−→g1g2 ·m = g2g1 ·m
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is well defined and maps (m,m) to m. Furthermore, if we endow M
with the structure of (π × π)-set given by π1(µ) : π × π → π the
map µM is (π × π)-equivariant. Thus the map µM as a morphism in
(π × π)-FSets corresponds to the morphism µX :

X ×C X X

E ×C E E

µX

φ

µ

By the universal property of fibre product, the morphism µX factors
as in the following following commutative diagram:

X ×C X X ×φ,E,µ (E ×C E) X

E ×C E E ×C E E

µX

µ0
X

φ×Cφ p2

p1

φ

id µ

The morphism µX defines the multiplication on X, mapping (x, x) to
x. In a similar way, we can construct the morphism iX : X → X
(the inverse morphism) above [−1E] : E → E again mapping x to x.
Finally, it is possible to check that this endows X with an algebraic
group structure making it an elliptic curve such that φ : X → E
becomes a morphism of algebraic groups, thus a separable isogeny as
φ is already assumed étale.

step 3. Let φ : X → E an étale cover; by the previous step we can endow X
with a group structure such that φ is a separable isogeny; let n be its
degree. Then ker(φ) ⊂ ker([nX ]) (see [Sil] Theorem 4.3) hence we have
the commutative diagram:

X X/ ker(φ) E

X

[nX ]

φ

ψ

∼

φ

Since φ is surjective, we have φ ◦ ψ = [nE]. Thus we proved that if
φ : X → S is an étale cover of degree n, it is a factor of the morphism
[nE] : E → E.
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In particular, take p a prime: [pnE] is a separable isogeny, so an étale
cover of E; it is sent by the fibre functor F0E in [pnE]−1(0E) = E[pn](C) in
the category of π-Sets and since E[pn](C) has also group structure, we
have that the subgroup of π corresponding to [pnE] is precisely E[pn](C).

Now the factorization we found above tells us that ([pnE] : E → E)n≥0

is cofinal among the étale covers of E having degree a power of p, which
in fact correspond precisely to the group π1(E;OE)(p). Henceforth we
find the equality:

π1(E,OE)(p) = lim←−E[pn](C) = Tp(E).
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Chapter 4

G.A.G.A theorems

In this last chapter we show how the results so called G.A.G.A. ("Géométrie
Algégrique et Géométrie Analytique") connecting algebraic geometry and an-
alytic geometry give us further informations on the étale fundamental group.
In the first section we present the construction of the analytification of an
algebraic variety over C and we recall some G.A.G.A theorems; in the sec-
ond section, we present a bunch of examples of interesting étale fundamental
group whose computation uses these theorems. We will not present proofs
here: the interested reader my find them in [Gro] Chapter XII.

4.1 Analytification

We construct the category An(C) of complex analytic spaces over C. A com-
plex analytic space is obtained by gluing together objects that corresponds
to the affine schemes, as one constructs the category Sch; thus we firstly
define what an affine complex analytic space is.

Definition. Let U ⊂ Cn denote the polydisc of all z = (z1, . . . , zn) ∈ Cn

such that |zi| < 1 for every 1 ≤ i ≤ n and consider the usual metric topology
on it, induced by Cn. Given analytic functions

f1, . . . , fr : U −→ C

let U(f1, . . . , fr) denote the locally ringed space in C-algebra whose underly-
ing topological space is the closed subset

r⋂
i=1

f−1
i (0) ⊂ U

79
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endowed with the topology induced by U and whose structural sheaf is given
by OU/(f1, . . . , fr) where OU is the sheaf of germs of analytic functions on
U . We call such U(f1, . . . , fr) an affine complex analytic space.

Now we define an analytic space as the gluing of such affine spaces:

Definition. The category An(C) is the full subcategory of the category
LocRing(C) of locally ringed spaces in C-algebras whose objects (X,OX)
are locally isomorphic to affine complex analytic spaces.

Proposition 4.1.1. Let X be a scheme locally of finite type over C; the
functor

HomLocRing(C)(·, X) : An(C)op −→ Sets

is representable: there exists Xan ∈ An(C) and a morphism

φX ∈ HomLocRing(C)(X
an, X)

such that there is a natural isomorphism

ΦX : HomAn(C)(·, Xan)
∼−→ HomLocRing(C)(·, X)|An(C)op .

Furthermore, for any x ∈ Xan, the morphism induced on the completions of
local rings

ÔX,φX(x)
∼−→ ÔXan,x

is an isomorphism.

The morphism φX is in fact unique up to a unique X-isomorphism and
we call Xan the analytification of X. Furthermore, if we have a morphism
f : X → Y of schemes locally of finite type over C, then there exists a unique
morphism

f an : Xan → Y an

such that φY ◦ f an = f ◦ φX . Thus it is possible to verify that we have a
functor

(·)an : SchLFT (C) −→ An(C)

where SchLFT (C) is the category of schemes locally of finite type over C.
In addition, one finds out that many properties of X are reflected on Xan

via this functor (and viceversa). For example, X is connected (resp. ir-
reducible, regular, normal, reduced, of dimension d) if and only if Xan is;
similarly for morphisms: a morphism f ∈ HomSchLFT (C)(X, Y ) is surjective
(resp. dominant, closed immersion, finite, isomorphism, monomorphism,
open immersion, flat, unramified, étale, smooth) if and only if f an is.

One arrives to prove the following theorem:
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Theorem 4.1.2. Let X be a scheme locally of finite type over C; then the
functor (·)an induces an equivalence from the category of étale covers of X to
the category of étale covers of Xan.

But it is possible to make one step further: take a scheme X locally of
finite type over C, let Xan be its analytification and Xtop the underlying
topological space. Consider a finite topological cover p : Y → Xtop; if V ⊂
Xtop, we have

p−1(V ) = tni=1Ui

such that Ui ' V for every i. It is possible to show that one can endow
Ui with a unique analytic structure making p|Ui : Ui → V an étale analytic
cover. This induces an analytic structure on Y making p : Y → Xan an étale
analytic cover. Conversely, we can see an étale analytic cover of Xan as a
topological cover of Xtop using local inversion theorem. In this way, one finds
an equivalence between the category of finite topological covers of Xtop and
the category of the étale covers of Xan.

But now we have proved in Section 3.2 that the Galois fundamental group
of the finite topological covers is isomorphic to the profinite completion of
the topological fundamental group. Hence for any algebraic variety X over
C and any point x ∈ X, we find the following isomorphism:

πétale1 (X, x)
(1)
' πétale1 (Xan, x)

(2)
' πfin.cov.1 (Xan, x)

(3)
' ̂πtop1 (Xtop, x)

where (1) comes from Theorem 4.1.2, (2) comes from what we said above and
(3) comes from the result of Section 3.2. Henceforth we managed to show that
the étale fundamental group of an algebraic variety over C is nothing but the
profinite completion of the topological fundamental group of its underlying
topological space. Thanks to Proposition 3.3.4, we can apply this result to
connected proper scheme over Q, the algebraic closure of Q. More in general,
it is possible to extend this group equality to algebraically closed field of
characteristic 0, as Qp (the algebraic closure of Qp) and its completion Cp.

4.2 Further examples
Example. From the isomorphism of profinite groups of the previous section,
we obtain that ifX is an algebraic variety on C such that the underlying topo-
logical space is simply connected, then for every x ∈ X the étale fundamental
group is trivial. Indeed if Xtop is simply connected, then πtop1 (Xtop, x) = { 1 }
for every x ∈ X; but then its profinite completion is again the trivial group.
In this way, we obtain for example

π1(P1
C) = π1(A1

C) = { 1 }
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and more in general π1(An
C) = { 1 } for any n.

Example. Take k a field of positive characteristic, consider P1
k and fix a geo-

metric point x̄ : Spec(k̄) → P1
k̄
with image x in P1

k̄
and in P1

k. By Theorem
3.3.1, the sequence

P1
k̄ −→ P1

k −→ Spec(k)

induces the exact sequence of profinite groups:

π1(P1
k̄, x) −→ π1(P1

k, x) −→ π1(Spec(k), ∗) −→ 1

It is possible to prove that π1(P1
k̄
, x) = 1, by showing that any étale cover of

it has rank 1 and thus is the trivial cover (for details see [Mil] p. 42). But
this implies π1(P1

k̄
, x) = 1 hence from the previous exact sequence we obtain

an isomorphism
π1(P1

k, x) ' π1(Spec(k), ∗)

and we proved in Section 3.2 that the latter is the absolute Galois group of
k. For example, in the case k = Fp we obtain Ẑ, the profinite completion of
Z.
Example. Let X a smooth compact connected curve over C, fix x ∈ X and
let g be its genus. In particular X with the complex topology is a compact
orientable surface, hence it is homeomorphic to the connected sum of g tori
by the classification theorem for compact surfaces (see [Mas] Chapter 5).
Thus its topological fundamental group of X in x is Γg, the group generated
by

a1, a2, . . . , ag, b1, b2, . . . , bg

with the relation
[a1, b1] · · · [ag, bg] = 1

where [ai, bi] = a−1
i b−1

i ab is the commutator. Applying the result of the
previous section, we obtain

Γ̂g
∼−→ π1(X, x).

Notice that for P1
C we find again that the étale fundamental group is trivial.
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