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Abstract

The electric field is a parameter of special relevance in plasma physics. Its
fluctuations are responsible for various macroscopic phenomena, such as
anomalous transport in fusion plasmas or plasma-wall interactions, and its
measure is therefore required.

At present, most diagnostic tools perturb the field (like Langmuir probes)
or require multiple simultaneous measures to achieve a good spatial resolution
(like spectroscopy and tomography).

The EFILE diagnostic (Electric Field Induced Lyman-α Emission) is cur-
rently under development at PIIM laboratory at Aix-Marseille Université
(France) and aims to provide a non intrusive and precise measurement of
the electric field in the plasma edge region, using a beam of hydrogen atoms
prepared in the metastable 2s state. The metastable particles are obtained
by means of a proton beam extracted from a hydrogen plasma source, and
neutralised by interaction with vaporised caesium. When a 2s atom enters
a region where an electric field is present, it undergoes a transition to the
2p state (Stark mixing). It then quickly decays to the ground level, emitting
Lyman-α radiation, which is collected by a photomultiplier. The 2s → 2p
transition rate is proportional to the square of the magnitude of the elec-
tric field, and depends on the field oscillation frequency (with peaks around
1 GHz). By measuring the intensity of the Lyman-α radiation emitted by
the beam it is possible to determine the magnitude of the field in a defined
region.

In this work, an analysis of the behaviour of the diagnostic under static or
radiofrequency electric field is presented. Electric field simulations obtained
with a finite element solver of Maxwell equations, combined with theoretical
calculations of the Stark mixing transition rate, are used to develop a model
for the interpretation of photomultiplier data. This method shows good
agreement with experimental results for the static field case, and allows to
measure the field magnitude for the oscillating case. Issues linked to the
experimental set-up and limits of the diagnostic itself are shown and possible
design implementations are given.
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Chapter 1

Introduction

1.1 The energetic problem

Figure 1.1: The ITER reactor.

During last years the per capita energy con-
sumption has grown considerably, as a con-
sequence of globalisation and the fast tech-
nological development, which acted as a cat-
alyst for the industrial development. The
exploitation of the energetic resources has
increased as well, dramatically reducing the
amount of non-renewable energy reserves.
The research for alternative energy resources
seems therefore mandatory for a society will-
ing to further progress.

The ITER project (International Ther-
monuclear Experimental Reactor) moves in
this direction: the aim is to realise a ther-
monuclear reactor, with a Tokamak configuration, using fusion reactions be-
tween the hydrogen isotopes deuterium and tritium to produce more energy
than that needed to run the machine. This will be achieved by magnetically
confining a plasma, heated at a temperature of about 20 keV [16]. ITER is
currently under construction in Cadarache (France).

1.2 Measuring the electric field in plasmas

A plasma consists of negatively and positively charged particles, showing a
collective behaviour [3]. Its evolution is described by the laws of magneto-
hydrodynamics: the dynamics of charged particles is intimately connected

1



2 CHAPTER 1. INTRODUCTION

to the electromagnetic field, and perturbations of charge and current den-
sities give rise to variations of ~E and ~B. Therefore, a measurement of the
electric field can provide information on plasma properties like density and
temperature.

One of the main issues not yet solved for the ITER development regards
the rise of instabilities which can cause the shut down of the plasma discharge.
These conditions generally arise from current density fluctuations (current
driven instabilities) or from the effect of pressure gradients, combined with
the action of the magnetic field curvature (pressure driven instability) [21].
Plasma instabilities are linked to the formation of electric fields, which are
originated from charge unbalancing, and lead to energy confinement degra-
dation or to the damaging of plasma facing components [4].

Measuring the electric field in a plasma can be a challenging task: probes
usually perturb the system, and non-intrusive methods like spectroscopy can
not be used for local measurements, as their measure is an average along
the line of sight. The EFILE diagnostic (Electric Field Induced Lyman-
alpha Emission) is currently under development at PIIM laboratory of Aix-
Marseille Université (France), and is a new non-intrusive method for electric
field measurements in vacuum or in the edge region of hydrogen plasmas.
Using a beam of hydrogen atoms prepared in the metastable 2s level, it allows
the measurement of electric fields as low as a few V/cm. The principle of
this method is the quenching of metastability of the 2s state via the Stark
mixing effect. Since the beam consists of neutral atoms, it does not affect
the electromagnetic configuration, and the radiation detected depends in
principle only on the effective electric field inside the measurement region.

1.3 Stark mixing induced transitions

The 2s1/2 state of the hydrogen atom is metastable, as it has a lifetime of
0.14 s [19], longer than that of other excited levels. This is due to the fact
that the transition to the 1s1/2 level is forbidden in the dipole approximation
and the spontaneous transition to the 2p1/2 level, which has a lower energy, is
unlikely because the energy difference is small. The latter transition becomes
more likely when the hydrogen atom interacts with an external electric field
(eventually oscillating).

The Stark effect describes this interaction, and the transition rate is given
by the Lorentzian function (see [18], [27] and appendix B)

γStark(E0, ω) = 3

(
a0eE0

}

)2
Γ(

Γ
2

)2
+ (ω − ω12)2

(1.1)
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Figure 1.2: Scheme of the EFILE diagnostic: (1) Hydrogen plasma source
with ion beam extraction Einzel lens; (2) Cs vapour charge-exchange chamber
(3) test chamber; (4) Lyman-α detection chamber. Picture taken from [8].

where a0 = 0.53 Å is the Bohr radius, e is the elementary charge, } is the
reduced Plank constant, E0 and ω are respectively the amplitude and the
oscillation angular frequency of the electric field. The curve is peaked at
ω12/2π = (E2s − E2p)/h = 1058 MHz, which is the resonance frequency
corresponding to the energy difference of the two levels, called Lamb shift
[2]. Γ/2π = 100 MHz is the transition rate of the 2p1/2 state and corresponds
to the full width at half maximum of the curve.

After passing in the 2p state, the atom decays to the 1s1/2 level emitting
Lyman-α radiation (2.47× 1015 Hz or 121.6 nm which is in the UV range),
and the intensity of the radiation depends on the number of atoms that are
in the 2p state. Therefore, assuming the only way to populate this level is
the Stark mixing, by measuring the light intensity it is possible to infer the
magnitude of the electric field.

1.4 Experimental set-up

The EFILE diagnostic is designed to verify the theoretical behaviour pre-
dicted by equation 1.1. Its set-up consists of four different parts, as shown
in figure 1.2. In the first part a proton beam is extracted from a hydrogen
plasma, and collimated using Einzel lens. The optimal conditions for the
plasma production were defined in [18] and are reported in the following sec-
tions. The beam is then neutralized and excited to the 2s state, exploiting a
resonant charge-exchange process between hydrogen and caesium. The me-
tastable beam is then injected into a test chamber, where a known electric
field is produced, and finally the induced Lyman-α signal is collected using a
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Figure 1.4: Scheme of the ion source, taken from [4].

photomultiplier connected to a lock-in amplifier. When the apparatus is not
in use, a background pressure of about 10−7 mbar is maintained in the entire
system.

1.4.1 The source chamber and the caesium oven

Figure 1.3: The source
and the Einzel lens.

A cylindrical vessel of 166 mm length and 100 mm
inner diameter, with the axis parallel to the floor, is
filled with molecular hydrogen at a pressure around
10−5 mbar. A hydrogen plasma is produced inside
using a hot cathode discharge: a voltage Uf = 10 V
is applied to a tungsten filament, resulting in a 15 A
current which heats it. The entire filament is po-
larised at Ud = −80 V with respect to the chamber,
accelerating the emitted thermionic electrons and
igniting the plasma. The discharge current is be-
tween 1 and 1.3 A. To better confine the plasma
and to increase the electron density, a set of eight
magnets of alternate polarity is placed around the
vessel. The source scheme is presented in figure 1.4.

The entire source chamber can be polarised at 500 V with respect to
the ground, allowing the extraction of a positively charged beam, which
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Figure 1.5: Cross section for the production of H0(2s) (σ+m) and H0(2p)
(σ+r) from reaction 1.2. Picture taken from [24].

is focused by three subsequent circular electrodes (Einzel lens) at different
voltages: 200 V, −1300 V and ground from upstream to downstream. The
resulting beam is about 2 cm wide and carries a current between 0.1µA and
1µA. It mainly consists of three different species: H+, H+

2 and H+
3 [4]. The

energy of the beam is peaked at 500 eV, with a dispersion of about 10 eV
[18]. This value is far less than the mass of the species (which are of the
order of 1 GeV) and therefore relativistic effects can be neglected.

After the extraction, the beam enters in a tube where 5 g of caesium
are heated and vaporised by means of a set of resistors. The tube can be
completely isolated from the rest of the apparatus by valves, allowing to open
the source and test chambers without compromising caesium integrity. The
interaction between H+ and Cs atoms produces neutral hydrogen in the 2s
and 2p levels, following the reaction

H+ + Cs→ H(2s); H(2p) + Cs+ + 0.49 eV (1.2)

The collision is almost elastic and, as the caesium mass is larger than that
of the proton (the ratio is 132 : 1) the energy of the just neutralised beam
can be considered unchanged.

The cross section of reaction 1.2 depends on the beam energy and the
production of H(2s) has a peak at 500 eV (see figure 1.5): this is why the
source has been polarised at 500 V; it also depends on the temperature of
the caesium oven [27].
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(a) The test chamber. (b) The plates.

Figure 1.6: The test chamber and the plates.

1.4.2 The test chamber and the acquisition system

After the neutralisation, the beam reaches another cylindrical vessel of length
250 mm and diameter 200 mm, with axis perpendicular to the floor. Here an
electric field can be generated by means of two metallic plates, placed at
a fixed distance of 50 mm: the lower one can be polarised up to ±600 V
with a static voltage or it can be connected to a radio frequency generator
APSIN2010HC which can deliver, combined with an amplifier R&K-AA-
200OS, up to 2 W of power. Photos of the test chamber and of the Lyman-α
detection chamber and of the plates are shown in figure 1.6. As the distance
between the caesium oven and the test chamber is around 30 cm and the
energy of the beam is 500 eV, the neutralised particles travel for about 10−6 s
before reaching the plates. Therefore, since the 2p lifetime is of the order of
10−9 s, the hydrogen atoms produced in the 2p level all decay to the ground
state before entering the measurement region.

The Lyman-α signal, which therefore is due to the atoms in the 2s state,
is detected by a photomultiplier Hamamatsu R1259, placed inside a cylin-
drical vessel. The PM is isolated from the test chamber by a MgF2 window,
transparent to UV light. The electrical signal produced is sent to a lock-in
amplifier AMETEK 5210: this way it is possible to identify the radiation
emitted by the atoms from the background by modulating the intensity of
the beam with a reference frequency of 1 Hz. Both plate polarisation and
lock-in data acquisition can be remotely controlled [12]. The use of the lock-
in amplifier implies that the diagnostic can only measure stable state electric
fields, because the detected signal is an average over a few beam modulations
(an integration time of 3 s was used).



Chapter 2

Mathematical model

In this chapter, a mathematical description of the measurements is presented.
The transition rate 1.1 is applied to the EFILE facility, and geometrical issues
linked to the experimental set-up are treated.

The EFILE test chamber was originally designed to work with static
fields. The plates shown in figure 1.6 (b) act like a capacitor, generating
a field mostly localized and constant between them. The idea is that the
hydrogen beam in the metastable 2s state undergoes the Stark mixing tran-
sition only in the region between the plates, allowing a direct measure of the
field in that region. However, edge effects are relevant with the set-up used,
and will therefore be taken into account.

2.1 Refinement of the transition rate

Expression 1.1 has been obtained by considering only 2s and 2p fine struc-
ture, given by the Lamb shift, and it is valid in a small field approximation1.
The transition probability can be refined by considering the hyperfine struc-
ture of the n = 2 energy levels. As reported in appendix A, there are four
possible hyperfine states for the 2s1/2 and 2p1/2 levels, corresponding to the
four possible combinations of quantum numbers F and mF , associated re-
spectively to the total angular momentum of the atom and to its projection
onto a given axis. The selection rules for the allowed transitions between
2s1/2 and 2p1/2 are ([6], [20], [23] and [29])

∆F = 0,±1 with F = 0→ F = 0 forbidden ; ∆mF = 0

1E0 � 26 000 V m−1 for a static field or E0 � 1800 V m−1 for a resonant field. These
values were calculated in [27].

7



8 CHAPTER 2. MATHEMATICAL MODEL

Figure 2.1: Allowed transitions from 2s1/2 to 2p1/2 (picture taken from [27]
page 6).

Table 2.1: Allowed transitions from 2s1/2 to 2p1/2. Energy calculations are
reported in appendix A.

2s1/2 2p1/2 ∆E (eV) ν = ∆E/h (MHz)

F = 1 ;mF = 0 F = 0 ;mF = 0 4.7421× 10−6 1146.6
F = 0 ;mF = 0 F = 1 ;mF = 0 3.7621× 10−6 909.67
F = 1 ;mF = +1 F = 1 ;mF = +1 4.4971× 10−6 1087.4
F = 1 ;mF = −1 F = 1 ;mF = −1 4.4971× 10−6 1087.4

and
F = 1→ F = 1 forbidden if mF = 0

In figure 2.1 and table 2.1 the four possible transitions are shown. It is to be
noted that the last two have the same energy.

Each of the four states before mentioned has its own transition probabil-
ity, given by equation 1.1

γiStark(E0, ω) = 3

(
a0eE0

}

)2
Γ(

Γ
2

)2
+ (ω − ωi12)2

with the index i corresponding to one of the four transitions of frequency
ωi12 = 2πνi, where the νi are the ones reported in table 2.1.

Let n2s be the number of atoms in the 2s state. Each of these atoms is in
one of the four hyperfine states of the 2s level, and it is therefore possible to
write n2s =

∑4
i=0 n

i
2s, where ni2s is the number of atoms in the i-th hyperfine

state. The variation of ni2s in time dt, due to an electric field of intensity E0

and frequency ω, is given by

dni2s = −γiStark(E0, ω)n2sdt (2.1)
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and the total variation of n2s is

dn2s =
4∑
i=0

dni2s =

(
4∑
i=0

γiStarkn
i
2s

)
dt (2.2)

As reported in [14], the probability of finding a hydrogen atom in one of
the 2s1/2 hyperfine states is the same. The variation of n2s is therefore

dn2s = −1

4

(
4∑
i=0

γiStark

)
n2sdt = −γ(E0, ω)n2sdt (2.3)

where γ(E0, ω) is the total transition rate for the Stark mixing of the 2s and
2p levels, given by

γ(E0, ω) =
3

4
Γ
(a0e

}

)2
4∑
i=0

E2
0(

Γ
2

)2
+ (ω − ωi12)2

= f(ω)E2
0 (2.4)

with f(ω) = γ(E0, ω)/E2
0 . Values of f(ω) for various frequencies are reported

in the table below and a plot is presented in figure 2.2.

ω/2π [MHz] f(ω) [m2s−1V−2]

0 0.281
1000 25.6

1146.6 57.9
909.67 36.7
1087.4 76.9

2.2 Estimation of the Lyman-α signal

In this section the relation between the electric field and the emitted radiation
induced by the electric field itself will be estimated. Let n2s(~r) be a flux
(particle per unit time per unit surface) carried by a beam of hydrogen atoms
in the metastable state 2s, with ~r = (x, y, z). The particles are moving along
the z axis with a non relativistic speed v, starting at z = zS. The variation
of n2s(~r) due to the Stark mixing along a flux line is given by the exponential
decay law

dn2s(~r) = −γ(~r, ω)n2s(~r)dt = −γ(~r, ω)n2s(~r)
dz

v
(2.5)



10 CHAPTER 2. MATHEMATICAL MODEL

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  500  1000  1500  2000

Lo
re

nt
zi

an
 [

a.
u.

]

Frequency [MHz]

f(ω)
1146.6 MHz
1087.4 MHz
909.67 MHz

Figure 2.2: Plot of f(ω) and of the four Lorentzians.

where γ(~r, ω) is given by 2.4 and can vary along the trajectory due to the
varying amplitude of the electric field. The integration gives

n2s(~r) = n2s,zS(x, y) exp

(
−
∫ z

zS

γ
dz′

v

)
(2.6)

where n2s,zS(x, y) is the flux of particles at z = zS. The flow rate is then
obtained by integrating over the beam section Σ

N2s(z) =

∫
Σ

n2s(~r)dxdy =

∫
Σ

n2s,zS(x, y) exp

(
−
∫ z

zS

γ
dz′

v

)
dxdy (2.7)

Assuming that the photomultiplier can view the region of the beam from
z0 to z1 = z0 + ∆z, the intensity I of the radiation emitted by the beam
and detected is proportional to the opposite of the variation of N2s(z) in this
interval:

I = −β∆N2s = β

∫
Σ

n2s,zS(x, y)e
−

∫ z0
zS

γ dz
v

(
1− e−

∫ z0+∆z
z0

γ dz
v

)
dxdy (2.8)

and the proportionality coefficient β is related to the photomultiplier prop-
erties (mainly efficiency and solid angle). This equation holds for a com-
pletely general electric field configuration, and shows that a measure in the
z0 < z < z1 region is not independent from the field at z < z0.

Assuming the coefficient β and the density distribution n2s(x, y, zS) are
known, a relation between the electric field in the measurement region and
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(b) Inclusion of edge effects.

Figure 2.3: Electric field configurations.

the Lyman-α signal can be established only if the region before is field-free,
or, which is the same, if the spatial field distribution is known.

Equation 2.8 will now be used to describe the emission due to the beam
passing between two metallic plates of width ∆z, one of which is polarised
with a static voltage (ω = 0), while the other is grounded. The plates act
therefore as a capacitor, and an electric field between them is generated.

Confined and static electric field

Let the electric field be perfectly confined in the region between the plates,
as in a perfect capacitor, and let E0 be its absolute value. A graphic repre-
sentation is shown in figure 2.3 (a).

If the beam density is constant along the x and y directions and ∆z is
supposed to be small compared to the typical variation size of the electric
field, equation 2.8 can be simplified as

I ≈ βN2s(0)
(

1− e−f(0) ∆z
v
E2

0

)
≈ βN2s(0)f(0)

∆z

v
E2

0 (2.9)

where f(0)E2
0 = γ(E0, 0) from 2.4, and the last equality holds for E0 �√

v/(∆zf(0)). There is therefore a one to one relation between the electric
field and the detected radiation, allowing a direct measure of the electric field
in the ∆z region.

This configuration is represented by an ideal capacitor, without edge ef-
fects. For a static polarisation, the plates inside the test chamber act like
this for small values of the voltage applied to the lower plate. As the voltage
increases, the intensity of the edge field increases as well, and the hydrogen
beam experiences an intense electric field before entering in the measurement
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region. Therefore to have an estimation of the Lyman-α signal it is necessary
to consider the variation due to

∫ z0
zS
f(ω)E2

0
dz
v

.

Inclusion of edge effects

Let the intensity of the electric field before z0 behave as

E(z < z0) = E0

(
z − zS
z0 − zS

)δ
(2.10)

where E0 is the value at z = z0 and δ > 0 (a representation is given in figure
2.3 (b)). Upon setting zS = 0, the integration gives:∫ z0

0

f(0)E2(z)
dz

v
=
f(0)

v
E2

0

z0

2δ + 1

and the intensity of the signal at a fixed frequency becomes:

I ≈ βN2s(0)e−
f(0)
v

z0
2δ+1

E2
0
f(0)

v
∆zE2

0 = Ae−BE
2
0E2

0 (2.11)

where A = βN2s(0)f(0)
v

∆z and B = f(0)
v

z0
2δ+1

and the same assumptions as
before are used.

Like in the confined case, the new function behaves as I ≈ AE2
0 for small

values of E0, but it also tends to zero for E0 → +∞, and it has a maximum
at E0 =

√
1/B of value Imax = A

B
e−1. It is therefore not possible to invert
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the function and to infer the intensity of the electric field from the signal, as
this is not a bijection.

To remove the dependence on parameter A, and therefore on beam and
detector properties, it is useful to normalize I with respect to Imax:

Inorm = Be1−BE2
0E2

0 (2.12)

In figure 2.4 a plot of Inorm for different values of B is presented.
For a static field (f(0) = 0.281 s−1 m2 V−2), assuming δ = 2, z0 = 0.1 m

and protons of 500 eV (v = 3.09× 105 m/s) the maximum is reached at
E0,max = 7.4× 103 V/m, and the voltage difference needed by a capacitor
with distance between the plates of 5 cm to generate this field is Vmax =
3.7× 102 V. This value will be later compared to the experimental results.
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Chapter 3

Simulations

To test and calibrate the EFILE diagnostic, an accurate estimation of the
electric field encountered by the beam inside the test chamber is needed.
This is done by solving Maxwell’s equations with the appropriate boundary
conditions. As the geometry of the chamber is not simple, it is necessary
to numerically solve the equations. For these calculations, the software CST
Studio Suite [7] was used: Maxwell’s equations were solved using a finite
element method on a 3D model of the test chamber properly after proper
meshing of the volume. A cartesian reference system is used: the beam
moves along the z axis, the vertical direction is the y axis and the x indicates
the horizontal direction perpendicular to the beam. The center of the plates
is located at point P = (0,−45 mm, 0).

3.1 Model of the test chamber

A CAD model of the test chamber was developed to reproduce the correct
geometry of all the elements inside: the vessel, the plates and a probe used
for electric field measurements. All the elements are shown in figure 3.1.

The vessel is made of steel and consists of a cylinder of 250 mm inner
height and a diameter of 200 mm. Four cylinders of 35 mm inner diameter
are placed on the side face. Their axes are perpendicular to each other and lie
on a plane orthogonal to the main cylinder axis, at 80 mm from the bottom
of the cylinder. The beam enters the chamber through one of them, and the
photomultiplier line of sight passes through a perpendicular one. Five more
cylinders of different diameters are placed on the upper face of the vessel.
Through the one placed at the center, the polarised plates are inserted inside
the chamber, while the others are used for measuring the inner pressure or to
inject argon gas. In the lower part there is another cylinder of 225 mm inner

15



16 CHAPTER 3. SIMULATIONS

(a) The vessel. (b) The plates.

(c) The probe. (d) The interior of the vessel. The red
arrow represents the H0(2s) beam.

Figure 3.1: CAD model of the test chamber.
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length and 100 mm of diameter; it connects the chamber to the pumping
system. The interior of the vessel is considered vacuum.

The system used to generate the electric field inside the test chamber
consists of two metallic plates of 160 mm length along the x axis, 30 mm
width along the z axis and 4 mm thickness along the y axis, through which
the H0(2s) beam passes. The distance between them is 50 mm, and they are
supported by an alumina cylinder, of 12 mm diameter. The plates are fixed
to a steel tube, which is used to set their position with respect to the beam.
A coaxial cable RG58 passes through this tube and the alumina cylinder,
allowing a polarisation of the lower plate with respect to the other, which is
grounded. The upper termination of the coaxial cable can be connected to
an external generator, and for the simulation a signal entry port is defined
there.

To have a rough estimation of the electric field inside the vessel, a probe
was built from a coaxial cable, whose end has been bared and bent in the
orthogonal direction. The probe is placed on the same axis as the beam.

3.2 Static field

The first simulated configuration was a static field. The equation solved is
the Poisson equation [15]:

∇ · (εr∇Φ) = ρ/ε0 (3.1)

where Φ is the electrostatic potential, ρ is the charge density, ε0 is the vacuum
permittivity (8.85× 10−12 F m−1) and εr is the relative permittivity of the
various materials simulated. As in the experimental case, the electrostatic
voltage of the coaxial cable used for the polarisation of the lower plate was
set to a fixed value Φ = V0, while the voltage of the vessel walls was set to
zero (Dirichlet condition); furthermore the charge density ρ was set to zero,
because it is assumed that there were no free charges. The results of the
simulation for V0 = 50 V are shown in figure 3.2 and 3.3. As can be seen
from the plots, the field is almost constant on the horizontal plane between
the plates (x− z plane), but varies in the vertical direction (y axis): this is
due to the fact that the distance between the plates (50 mm) is larger than
their width (30 mm). Moreover, the behaviour along the z axis is comparable
with the one described in section 2.2, and therefore equation 2.11 can be used
for fitting experimental data.
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(a) Field amplitude on the y − z plane. (b) Field amplitude on the x− y plane.

Figure 3.2: Field maps for the simulation with V0 = 50 V.
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Figure 3.3: Plot of field amplitude along the axis. The black vertical dashed
lines in each graph show the dimension of the plates. For the x and y axis
plots, the estimated beam profile is also presented (with arbitrary height),
to show the variation of the field along the beam dimension.
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Figure 3.4: Numerical simulation of the Lyman-α signal for a static field and
fit.

3.2.1 Simulation of the Lyman-α signal

The simulated electric field was then used to estimate the expected Lyman-α
signal for different voltages applied to the lower plate. As Maxwell’s equa-
tions are linear, changing the value of V0 does not modify the shape of the
simulated electric field: it just linearly modifies its magnitude. Given the
electric field for a defined V0, ~EV0 , the electric field for V ′0 = αV0 is given by

~EαV0 = α~EV0

and therefore it was not necessary to repeat the simulation for different values
of V0.

Numerical calculations of equation 2.8 for different values of V0 were per-
formed with a code written in the IDL language, upon setting β = 1, defining
the detection region by the photomultiplier characteristics (his active surface
is a rectangle of 12 mm length in beam direction and 8 mm height), assuming
the beam density to be constant in the x and y directions and the beam
section to be a circle of 20 mm diameter. The results are shown in figure 3.4,
assuming every point is affected by a 1% error.

The picture also shows the best fit of equation I = A′e−B
′V 2

0 V 2
0 , which

is a modification of equation 2.11, assuming the relation E0 = V0/d for a
perfect capacitor (d is the distance between the plates) and with the obvious
correspondences

A′ = A/d2 ; B′ = B/d2
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The fitting curve follows quite well the simulated data, and the results are

A′ = (2.894± 0.010) · 10−6 V −2

B′ = (8.550± 0.017) · 10−6 V −2

which predicts a maximum of the signal at Vmax = 1/
√
B′ = (342.0± 0.2)V ,

not far from the 370 V calculated in section 2.2. The ratio (z0− zS)/(2δ+ 1)
can be derived too (the notation is the same used in the previous chapter
and z0 − zS stands for the length travelled by the beam where the electric
field is non zero before passing between the plates):

z0 − zS
2δ + 1

= B′d2 v

f(0)
= (2.350± 0.005) cm (3.2)

where f(0) = 0.281 s−1 m2 V−2, v = 3.09× 105 m/s, d = 5 cm and only B′ is
assumed to have an error. Assuming the length z0 − zS to be comparable to
the radius of the vessel (10 cm), it gives δ ≈ 1.6.

3.3 Radio frequency field

The transition rate 2.4 depends on the frequency of the field, and resonates
around 1 GHz, in the radio frequency (RF) domain. The ideal case is that
the model derived in section 2.2 for a static electric field mostly confined be-
tween the plates can also be used to describe a radio frequency perturbation.
Equation 2.9 shows that if the magnitude of the field is the same for every
frequency, the signal should behave as the f(ω) function of figure 2.2.

To test the radio frequency behaviour, the lower plate was polarised with
an oscillating voltage (as done in [28] and [13]), with frequencies up to 2 GHz,
and spectra of the Lyman-α signal were acquired for a fixed power emitted
by the generator. An example is presented in picture 3.5. Instead of showing
the expected behaviour, the spectrum presents well defined peaks of different
height and width of only few MHz, which could be reproduced in repeated
measurements at different times, but would change if the positions of the
objects inside the vessel were modified.

This is due to the fact that the dimensions of the test chamber is compa-
rable with the wavelength of the oscillating electric field (around 30 cm for
a 1 GHz electromagnetic wave), and the vessel, which is made of metal, acts
as a resonant cavity [10]. The field shape and its intensity depend on fre-
quency, geometrical design and material details of the chamber, and on the
transmission line characteristics. The CST Microwave Studio tool of CST
Studio Suite was used to verify and investigate the effect on RF voltages of
the experimental set-up.
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Figure 3.5: Example of Lyman-α spectrum, showing 6 different peaks. Pic-
ture taken from [28], page 16.

(a) Simple cylinder. (b) With low cylinder. (c) With small cylinders.

Figure 3.6: Different vessels simulated.

3.3.1 Eigenvalues

Firstly, an evaluation of the resonant frequencies of the cavity was performed.
The equation solved is [15]:

∇×
[
µ−1
r ∇× ~E(~x)

]
= εr

ω2

c2
~E(~x) (3.3)

where µr is the magnetic relative permeability, εr is the electric relative per-
mittivity, c is the speed of light and ω is the resonant frequency. All the metal
objects were considered as perfect electric conductors (PEC), and tests with
different configurations were performed.
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(a) TE mode. (b) TM mode.

Figure 3.7: Example of TE and TM mode in a cylinder. The amplitude of
the field is such that the entire energy stored in the electromagnetic field
inside the vessel is 1 J.

Empty vessel

The easiest approximation is to consider the vessel as a cylinder. In this
configuration the resonant frequencies have two analytical expressions, given
by [30]

νTEnml =
c

2π

√(
p′nm
D/2

)2

+

(
lπ

L

)2

(3.4)

and

νTMnml =
c

2π

√(
pnm
D/2

)2

+

(
lπ

L

)2

(3.5)

where c is the speed of light, D and L are the diameter and the height of the
cylinder respectively, n, m and l are natural numbers, pnm is the mth zero of
the nth order Bessel function and p′nm is the mth zero of the derivative of the
nth order Bessel function. Equation 3.4 describes resonant modes with the
electric field perpendicular to the cylinder axis (Transverse Electric or TE
modes, see figure 3.7 (a)), while equation 3.5 describes resonant modes with
the magnetic field perpendicular to the cylinder axis (Transverse Magnetic
or TM modes, see figure 3.7 (b)). The resonant frequencies below 2 GHz are
shown in table 3.1 and in figure 3.8 (a), compared with the results of CST
calculations. It can be noted that simulations and analytical results are in
good agreement, except for three modes: TE110, TE210 and TE010. This is
due to the fact that these modes have non zero tangential electric field on
the walls of the cylinder, and therefore are not allowed for a cylinder with
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Table 3.1: Comparison between analytical and numerical calculations of the
eigenfrequencies for the simple cylinder.

Mode νTh (GHz) νSim (GHz) νSim − νTh (GHz)

TE110 0.878 492 3 NOT PRESENT
TE111 1.063 603 1.063 608 5× 10−6

TM010 1.147 425 1.147 430 5× 10−6

TM011 1.294 638 1.294 642 4× 10−6

TE210 1.457 282 NOT PRESENT
TE112 1.486 525 1.486 552 27× 10−6

TE211 1.575 809 1.575 832 23× 10−6

TM012 1.659 697 1.659 731 34× 10−6

TE010 1.828 239 NOT PRESENT
TM110 1.828 239 1.828 285 46× 10−6

TE212 1.887 241 1.887 328 87× 10−6

TE011 1.924 048 1.924 103 55× 10−6

TM111 1.924 048 1.924 117 69× 10−6

metallic walls (however the TE010 mode has the same eigenfrequency as the
TM110 mode).

Next, the configuration (b) and (c) of figure 3.6 were simulated, to quan-
tify the contribution of the other elements of the test chamber to the distri-
bution of the resonant frequencies. Results are shown in figure 3.8 (b) and
(c). As can be seen, the configuration with a cylinder added below clearly
modifies the eigen frequencies, while for the last configuration the differences
are small. This is due to the small diameter of the additional cylinders
placed on the main cavity, as can be seen from equations 3.4 and 3.51. It
is worth noting that the presence of these cylinders breaks the symmetry of
the vessel, increasing the number of modes by separating two modes which
are degenerate in a cylindrical configuration.

Adding plates and probe

The same calculations were performed for the complete vessel with plates
and probe inside. The 0.8 − 1.6 GHz range was studied, to investigate the
behaviour of the system for frequencies near the peaks of the transition prob-
ability. Results are presented in figure 3.9. While adding the probe does not

1For the considered cylinder, the smallest mode is at about 1 GHz. As the smaller
cylinders have an inner diameter of 3.5 cm, their lowest resonant frequency is 1 GHz ×
20 cm
3.5 cm ≈ 6 GHz
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Analytical TE Analytical TM Simulation

(a) Comparison between the simulation and the analytical calculation for the sim-
ple cylinder of figure 3.6 (a).

 1  1.2  1.4  1.6  1.8  2

Frequency (GHz)

vessel (a) vessel (b)

(b) Comparison between the simulations for the simple cylinder of figure 3.6 (a)
and the vessel of figure 3.6 (b).

 1  1.2  1.4  1.6  1.8  2

Frequency (GHz)

vessel (a) vessel (c)

(c) Comparison between the simulations for the simple cylinder of figure 3.6 (a)
and the vessel of figure 3.6 (c).

 1  1.2  1.4  1.6  1.8  2

Frequency (GHz)

vessel (b) complete vessel

(d) Comparison between the simulations for the vessel of figure 3.6 (b) and the
complete vessel shown in 3.1 (a).

Figure 3.8: Resonant frequencies of the empty vessel.
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Table 3.2: Resonant frequencies of the complete system.

Frequency (GHz)

1.006
1.026
1.102
1.174
1.252
1.399
1.404
1.413
1.497
1.545
1.550

considerably change the resonant frequencies, adding just one resonant mode
around 1.1 GHz, the presence of the plates completely changes the distribu-
tion, and therefore it is no more possible to recognize standard TM or TE
modes. The calculated values are presented in table 3.2. In figure 3.10 some
projections of the amplitude of the electric field onto the plane perpendicular
to the beam are presented. These pictures show that the shape of the field
depends on the excited eigenmode.

3.3.2 The S-parameters

The device was tested with a radiofrequency signal injected through the
coaxial cable connected to the lower plate. To study the behaviour of this
configuration, calculations simulating the presence of a time varying voltage
applied to the entry port were performed. The equations to be solved are
equivalent to 3.3 with a source term. The first step was to simulate the
S-parameters of the system [22] in the frequency range considered (0.8 −
1.6 GHz). Assume a n port network and an electromagnetic wave injected
through the i-th port. On the j-th port there will be an electromagnetic
wave exiting. This configuration can be represented by

ai =
V +
i√
Zc,i

= I+
i

√
Zc,i (3.6)

bj =
V −j√
Zc,j

= I−j
√
Zc,j (3.7)



26 CHAPTER 3. SIMULATIONS

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

Frequency (GHz)

empty vessel vessel with plates

(a) Comparison between the resonant frequencies of the empty vessel and of the
vessel with the plates.

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

Frequency (GHz)

empty vessel vessel with probe

(b) Comparison between the resonant frequencies of the empty vessel and of the
vessel with the probe.

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

Frequency (GHz)

empty vessel complete vessel

(c) Comparison between the resonant frequencies of the empty vessel and of the
vessel with the plates and the probe.

Figure 3.9: Resonant frequencies.
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(a) 1.026 GHz (b) 1.252 GHz

(c) 1.404 GHz (d) 1.550 GHz

Figure 3.10: Projections of the amplitude (in logarithmic scale) of the electric
field on the plane perpendicular to the beam for various eigenvalues. The am-
plitude of the field is such that the entire energy stored in the electromagnetic
field inside the vessel is 1 J.
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Figure 3.11: S11 and simulated transmitted power, with P0 = 5 mW.

where V +
i and I+

i are the voltage and the current at the i-th port carried by
the incoming wave, V −j and I−j are associated to the wave exiting from the
j-th port; Zc,k is the impedance of the line connected to the k-th port. The
S-parameters is defined as the n× n matrix with elements

Sji =
bj
ai

(3.8)

and it describes the response of the system to an electric stimulation of given
frequency and power P0 = 1

2
|ai|2.

The EFILE set-up can be seen as one port connected to a cavity. A
generator is connected to the port and an electric field is produced inside the
vessel. The shape of the field depends on the excited eigenmode, while its
amplitude is linked to the power transmitted by the generator. This quantity
can be obtained from the S11 term of the S-matrix

PT =
1

2
(|a1|2 − |b1|2) =

1

2
|ai|2(1− |S11|2) (3.9)

and it is therefore a measure of the adaptation of the system in response
to a stimulation of given frequency. The simulated S11 parameter and the
corresponding injected power are reported in figure 3.11. The picture shows
few sharp well defined peaks of a few MHz width, at the frequency of some
of the eigenvalues reported in table 3.2 (1.006 GHz, 1.026 GHz, 1.399 GHz,
1.413 GHz and 1.545 GHz), and other small peaks (1.252 GHz). This explains
the behaviour of the spectrum of figure 3.5: the peaks are not linked to the
hyperfine structure of the hydrogen atom, but depend on which electromag-
netic eigenmodes are excited inside the cavity by the polarised plates. The
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Figure 3.12: Lyman-α spectrum simulation.

vessel acts therefore as a selective filter. However, this is just a qualitative
explanation: position and amplitude of the real peaks are hard to repro-
duce, as they strongly depend on the geometry (as shown in the previous
section) and also on the power losses, which are not taken into account in
these simulations because all metals are approximated as PEC.

3.3.3 Frequency spectrum

The frequency results were used to simulate the Lyman-α frequency spec-
trum: the electric field generated inside the vessel was recorded and used
to evaluate equation 2.8, with the same assumptions as for the static case
(β = 1, the beam is approximated as a homogeneous cylinder of 20 mm di-
ameter and the detection region is a 12 mm × 8 mm rectangle between the
plates). Every point in the curve reported in figure 3.12 (a) corresponds to
a sinusoidal injected signal of power P0 = 5 mW.

As for the static case, saturation can be observed in the frequency spec-
trum too. Its evidence is the presence of an indentation of the top of the
peaks, as shown for instance in figure 3.12 (b), where the Lyman-α peak at
1.252 GHz is calculated for different injected powers simulations. It is to be
noted that all the peaks in the Lyman-α spectrum correspond to those of
the S11 graph but the highest one is at 1.252 GHz, which is not the most
adapted frequency. This is due to the shape of the corresponding eigenfre-
quency: as shown in figure 3.10, at this frequency the electric field is mostly
concentrated between the plates, and therefore the field there is more intense,
although at other frequencies the transmitted power is higher. This is made
clear by looking at figure 3.13, which shows how the electric field varies with
frequency along the beam axis.
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(a) Variation of the electric field intensity along the beam for the entire frequency
range.
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Figure 3.13: Behaviour of the electric field’s magnitude along the beam line
(z axis). The dashed lines identify the borders of the plates.



Chapter 4

Experimental data

In this chapter the acquired experimental data will be presented. As dis-
cussed in chapter 2, the behaviour of the Lyman-α signal not only depends
on the field in the measurement region, but it is also strictly related to the
field in the region previously travelled by the beam. Therefore, as it is not
possible to affirm that one measurement correspond to one precise field value
(or to an averaged value in the detection region), the best result is to find a
correspondence between the measured data and an expected field map.

The signal emitted by the hydrogen beam and detected with the photo-
multiplier has been processed using a lock-in amplifier AMETEK 5210. All
the measurements reported herein were made by pulsing the beam, at a refer-
ence frequency of 1 Hz, and recording the results in a computer. The lock-in
integration time used was 3 s. This technique allows to discriminate between
the noise and the electric signal due to UV light emitted by the beam. The
lock-in output can be divided into two parts: the induced emission, due to
the electric field present in the test chamber, and the spontaneous emission,
due to photons emitted by collisions or by natural lifetime decay, which de-
termines the background. In the following the two contributions are assumed
to be independent. The lock-in output is a voltage, and it is proportional
to the number of photons per unit time ITOT emitted in the measurement
volume, following the relation

ITOT = αS (4.1)

where S is the output voltage and α = 4.45× 107 s−1V−1 [18] takes into
account all the characteristics of the detection apparatus.

For every measure, the the lock-in signal oscillated around a mean value.
The σ of these oscillations was interpreted as the σ of the measurements
and was observed to be 5µV for a signal of 100µV, and 10µV for a signal

31
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of 1000µV. A linear interpolation has been performed for the intermediate
values.

All the measurements reported herein were effectuated with a hydrogen
pressure of the order of 10−5 mbar inside the source chamber, where a plasma
was generated by heating the tungsten filament with a current of about
15 A and accelerating the emitted electrons with a voltage drop of 80 V with
respect to the source vessel; the hydrogen ions were extracted by the Einzel
lenses, set at a voltage of 1.3 kV with respect to the ground, and accelerated
by a 500 V voltage drop; the temperature of the caesium was the same for
all the measurements; the pressure inside the test chamber was of the order
of 10−6 mbar.

The hardest parameter to control is the source chamber pressure, because
it depends on the hydrogen temperature which is linked to the heating of
the filament. This implies that the ion current extracted from the source
is hard to reproduce from one measurement session to another. Therefore,
measurements made on different days can present different amplitudes and
offsets, although the starting parameters are the same.

4.1 Static field

The first measure was performed with a static voltage applied to the lower
plate. To test the goodness of the model for experimental data, the validity
limits of the theoretical prediction have to be considered. As reported in
section 2.1, the transition rate of equation 1.1 is a good approximation if
Emax � 26 000 V m−1. According to the simulation, the highest value of
the field in the region travelled by the beam is 1300 V m−1 for a voltage of
50 V applied to the lower plate. Letting the maximum electric field to be
13 000 V m−1, the maximum accepted voltage is 500 V.

The data for two different measurements are reported in figure 4.1, to-
gether with the fit made using equation

I = AiV
2e−BiV

2

+ Ci (4.2)

as done for the simulated data. Both measurements starting parameters are
the same, but their amplitudes and offsets are different, showing the difficult
control of the beam properties. These datasets provide a direct estimation
of the sensitivity of the device: the electric field induced signal starts to be
distinguishable from the background for V = 20 V, which correspond to an
electric field of 4 V/cm between the plates (in the approximation of perfect
capacitor). This can be considered the minimum electric field that can be
detected with the EFILE diagnostic.
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Figure 4.1: Lock-in output for different voltages applied to the lower plate
with respect to the vessel.

Fit results are

A1 = (1.57± 0.01)× 10−5 mV/V2

B1 = (7.62± 0.04)× 10−6 V−2

C1 = (0.100± 0.003)×mV

for the first dataset and

A2 = (2.13± 0.02)× 10−5 mV/V2

B2 = (7.66± 0.06)× 10−6 V−2

C2 = (0.126± 0.005)×mV

for the second, and both datasets are well reproduced by the fits. The posi-
tions of the maxima are given by

V1,max =
√

1/B1 = (362± 1)V

V2,max =
√

1/B2 = (361± 1)V

Although the two amplitudes (parameters A1 and A2) and offsets (parame-
ters C1 and C2) are not compatible, the positions of the maxima (given by
parameters B1 and B2) are comparable, showing that the shape of the curve
only depends on the the electric field spatial distribution and is indepen-
dent of the beam characteristics. Moreover, both fitting curves reproduce
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the experimental data quite well, showing that the simple model described
in section 2.2 (which takes into account the edge effect of a real capacitor)
works well for the static configuration used.

From fit results it is also possible to obtain the ratio (z0 − zS)/(2δ + 1),
linked to the distance swept by the beam under the influence of the electric
field:(

z0 − zS
2δ + 1

)
1

= (2.09± 0.01)cm ;

(
z0 − zS
2δ + 1

)
2

= (2.10± 0.02)cm

and the values are similar to the simulated one reported in 3.2. Assuming
z0 − zS ≈ 10 cm it gives δ ≈ 1.8.

4.1.1 Comparison with simulated results

The experimental data show the same behaviour as the simulated values
reported in section 3.2. However, the values of B1 and B2 are not compatible
with the simulated B′ calculated in section 3.2. This is due to the parameters
used for the simulation. To find the best parameters, both datasets were
fitted with an adapted version of equation 2.8:

I = β

∫
Σ

n2s(x, y, zS)e
−

∫ z0
zS

γ( ~E) dz
v

(
1− e−

∫ z0+∆z
z0

γ( ~E) dz
v

)
dxdy + C (4.3)

which was integrated using the electric field described in section 3.2.
The fitting parameters are β, C, z0 and ∆z, while zS is fixed (it has

been chosen such that E(x, y, zS) ≈ 0). The beam profile n2s(x, y, zS) is a
circle of r = 10 mm radius [18], and its value is set at 1/(πr2) inside the
circle and 0 outside. The integration area Σ is defined by the active surface
of the photomultiplier: it is a rectangle of 8 mm height and 12 mm width.
The integration along the vertical axis has been fixed to a 8 mm gap (from
−4 mm to 4 mm), while the horizontal direction is linked to z0 and ∆z. The
fit results are

z0,1 = (−9.0± 0.1) mm

(∆z)1 = (10.78± 0.07) mm

β1 = (9.99± 0.06) mV

C1 = (0.097± 0.002) mV

for the first set and

z0,2 = (−9.95± 0.09) mm

(∆z)2 = (13.53± 0.09) mm

β2 = (10.96± 0.06) mV

C2 = (0.118± 0.002) mV
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Figure 4.2: Comparison with the simulated output.

for the second one. Both fits are shown in figure 4.2.

As it can be seen, the newly simulated curves are adherent to the re-
spective datasets, and both ∆z are comparable with the expected width of
the photomultiplier (12 mm), while the integration range along the z axis is
shifted and it is not symmetric with respect to 0. The reason might be a
misalignment of the photomultiplier with respect to the plates center (prob-
ably it is tilted of a few degrees), or it might be due to the different radial
profile of the beam, that for fitting necessities was simply considered as a
homogeneous circle of fixed diameter. However the measurements are well
reproduced by the fitted simulations, which can therefore be used to represent
the experimental data.

4.2 RF field

The static field measurements were used to calibrate the beam, and RF
tests were performed after them. The lower plate was polarised with a ra-
diofrequency signal with a frequency between 0.8 − 1.6 GHz, and the RF
generator connected to the amplifier could deliver a maximum power of
Pmax = 33 dBm = 2 W. In figure 4.3 the Lyman-α spectrum corresponding
to the static dataset 2 described before is reported. The simulation described
in section 3.3, calculated using the parameters determined with the fit pro-
cedure, is superposed. The shape of the peaks is not exactly reproduced:
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Figure 4.3: Comparison between the experimental and the simulated Lyman-
α spectra.

the simulated peaks are higher and thinner than the experimental data. As
said in section 3.3.2, this is due to the presence of losses in the transmission
line, which broaden and lower the resonances and are not considered in the
simulation.

Moreover, the experimental peaks are not placed at the same frequencies
as the simulated ones, except for the peaks at 1.026 GHz, 1.252 GHz and at
1.400 GHz. This is probably due to the sensitivity of the resonant frequencies
to geometrical details: figure 4.4 (a) shows the variations for vertical displace-
ments of the plates, keeping the distance between them constant (5 cm), 4.4
(b) shows the variations for different distances between the plates. As it
can be seen, the three peaks before mentioned are almost constant for the
variations tested, explaining why they are found in both spectra.

Although the dynamical simulation can not reproduce the amplitude of
the peaks, the eigenvalue simulation provides the shape of the electric field
for the three frequencies for which a correspondence was found.

4.2.1 Estimation of the electric field

Several measurements for different injected powers were performed to study
the behaviour of the emitted radiation at the frequencies of the three peaks.
The measurements for the 1.026 GHz resonance could hardly be distinguished
from the background, and therefore are not considered. The other two
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Figure 4.4: Variation of resonant frequencies for different positions of the
plates. The peaks that are found in both the simulated and experimental
RF spectra are highlighted.
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Figure 4.5: Lyman-α measurements for different injected powers at fixed
frequencies and comparison with the simulations.

datasets are presented in figure 4.5 (a) and (b), with the power emitted
from the generator reported in dBm.

To compare the experimental data with the simulations, the field maps
obtained with the eigenvalues simulation were used: as for the simulation
of the Lyman-α signal with the static field described in section 3.2, the
simulated electric field Eeigen was multiplied by different factors m and then
equation 4.3 was integrated for every m, using the parameters determined in
3.2 for the static case fit. This way the expected behaviour of the signal was
reproduced. Then the relation

P = αE2 (4.4)

between power and electric field was used to superpose data and simulations,
exploiting the property of logarithmic units such as dBm:

P [dBm] = 10 log10

(
αm2E2

eigen

1 mW

)
= 20 log10(m) +10 log10

(
αE2

eigen

1 mW

)
= 20 log10(m) +K

where K is a constant. Therefore the abscissa of the experimental and simu-
lated data only differ by a constant, which was determined by imposing the
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coincidence of one simulated and one experimental value.

As it can be seen, the data are well described by the simulation in the
region before the saturation. Only the 1.252 GHz peak approaches the satura-
tion, but at those values it moves away from the simulation. This is probably
due to a variation of the beam properties with time, as these measurements
were performed later than the one with static field. The values have then be
normalized by subtracting the spontaneous emission constant and dividing
by the highest value recorded for the 1.252 GHz case, and the results, re-
ported in figure 4.5 (c) and (d), show a good agreement between simulation
and experiment. Therefore, a correspondence between the simulated electric
field and the Lyman-α radiation detected was found.

4.3 Rotated plates

Figure 4.6: Model with
the plates rotated by
90 degrees.

To test the model with a different electric field
configuration the plates were rotated by 90 degrees
around the vertical axis (see figure 4.6), and the
same measurements and analysis for static and os-
cillating voltage applied to the lower plate were per-
formed for this set-up too.

4.3.1 Static field

With this disposition the electric field is more in-
tense and homogeneous along the beam path than
before (for the almost cylindrical symmetry of the
test chamber, the static field map is the same as re-
ported in figure 3.3, with the z and x axis swapped).
Therefore the saturation occurs at lower voltages, as
shown in figure 4.7, together with the fitting curve of equation 4.2 and the
simulation results. The results of the fits are

A = (1.43± 0.03)× 10−5 mV/V2

B = (2.48± 0.04)× 10−6 V−2

C = (0.092± 0.002)×mV
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(b) Comparison with the simulation.

Figure 4.7: measurements with static voltages, for the rotated plates config-
uration.

for the simple model and

z0 = (−1.5± 0.5) mm

∆z = (11.4± 0.2) mm

β = (8.0± 0.1) mV

C = (0.090± 0.001) mV

for the simulation. From B, the curve maxima are at

Vmax = (201± 2)V

and (
z0 − zS
2δ + 1

)
= (6.82± 0.01)cm

that, considering as before z0 − zS ≈ 10 cm, gives δ ≈ 0.2. This result is
smaller than the values found for the other configuration (around 1.6) and
confirms that the field is more homogeneous along the beam line.

4.3.2 RF field

The resonant frequencies for the new configuration were determined with the
resonant frequencies solver. The resulting eigenfrequencies are the same as
the resonances of the previous configuration, as expected for the approximate
cylindrical symmetry. The electric field maps of a few resonant frequencies
are shown in figure 4.8, while the result of the frequency sweep for a fixed
injected power in the range 0.8− 1.5 GHz is presented in figure 4.9.
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(a) 1.026 GHz (b) 1.252 GHz

(c) 1.404 GHz (d) 1.550 GHz

Figure 4.8: Projections of the amplitude (in logarithmic scale) of the electric
field on the plane perpendicular to the beam for various eigenvalues. The am-
plitude of the field is such that the entire energy stored in the electromagnetic
field inside the vessel is 1 J.
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Figure 4.9: Lyman-α spectrum for the rotated plates model.

The peaks at 1.026 GHz, 1.252 GHz and 1.404 GHz are still present, but
in this case it is the 1.404 GHz resonance that is hardly discernible from
the background. Therefore only the power scans of the other two peaks
are shown in figure 4.10, together with the respective simulated behaviour,
superposed with the same method used for the previous configuration. After
the normalisation the signal is well reproduced by the simulation.

Finally, the results presented in this chapter show that the model defined
in chapter 2 reproduces the experimental data, confirming the dependence of
the transition rate on the square of the magnitude of the electric field. How-
ever, it is not possible to state whether the transition rate given by expression
2.4 (which takes into account the hyperfine structure of the hydrogen atom)
is correct or if it is possible to use equation 1.1 (which only considers the
Lamb shift), since the frequencies analysed were too far from the resonances
of the process for the two transition rates to be different enough. To investi-
gate those resonances, the geometry of the test chamber needs to be changed,
and a possible design implementation is presented in appendix C.
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Figure 4.10: Measurements as a function of the injected power at fixed fre-
quencies and comparison with the simulation.
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Chapter 5

Conclusions

This thesis focuses on the application of the EFILE diagnostic, currently
installed at PIIM laboratory of Aix-Marseille Université. The aim of the
device is to provide a tool for a non-intrusive measurement of the electric
field in vacuum and in a plasma, such as in the edge region of a tokamak,
using the Stark mixing between the 2s and 2p levels of a beam of neutral
hydrogen prepared in the metastable 2s state. The rate of the process is
proportional to the square of the magnitude of the electric field. Once in
the 2p state, a hydrogen atom decays to the ground level, emitting Lyman-α
radiation. The intensity detected with a photomultiplier therefore depends
on the 2s→ 2p transition rate and consequently on the electric field.

Vacuum measurements were investigated by studying the response of the
beam to a static or radio frequency electric field. From the expression of the
transition rate, taking into account the hyperfine structure of the hydrogen
atom, a model to interpret the experimental data was derived, showing that
the light intensity emitted by the beam at a certain position strongly depends
on the electric field encountered by the atoms during their flight. Finite
element simulations of the electric field inside the test chamber were used to
compare the model to the experimental data.

The static field simulations provided realistic field distributions and inten-
sities, used to estimate the photomultiplier signal. Results were compatible
with the experiments, and fits of the measurements were performed and used
to get information on beam and measurement properties. The RF case in-
stead could not be fitted: the real field magnitude, at a given frequency, for a
given power delivered by the generator, was unknown because the apparatus
was not properly adapted and the S-parameters were unknown too. How-
ever, the field maps of a few experimental resonant modes were calculated
with the RF simulations, and estimations of the Lyman-α signal for the cor-
responding frequencies were obtained using the parameters of the static field
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fit. These results were superposed to the experimental data and presented
the same behaviour.

This work confirms the dependence of the transition rate on the square
of the magnitude of the electric field. It also gives a qualitative explana-
tion in terms of resonant modes for the behaviour of the signal under radio
frequency fields detected during previous experimental campaigns. Further-
more, it illustrates a direct association between experimental measurements
and simulated electric fields.

5.1 Further developments

This thesis demonstrates that to get more than a qualitative result it is
necessary to know the spatial distribution of the electric field in the region
travelled by the beam. This can be obtained from electromagnetic simula-
tions or by measuring at multiple positions along the beam line. The latter is
preferable, because it allows to effectively measure an unknown electric field
and because electromagnetic simulations strongly depend on the accuracy of
the geometrical model. The frequency of the field is also needed, since the
transition rate is not constant, and therefore the same signal intensity can be
obtained by two fields of different magnitude and different frequency. There-
fore, next step will be a better investigation of the transition rate behaviour
near the resonant frequencies of the Stark mixing process, and a suggestion
is reported in appendix C.

EFILE is planned to be used on two devices: the first one is MISTRAL, a
magnetized plasma column installed at PIIM laboratory, aiming to measure
the electric field of the plasma edge region. This will require the study of a
new geometry for the machine, and further studies on the influence of the
magnetic field. In MISTRAL, an argon magnetized plasma column is cre-
ated with primary energetic electrons. Low frequency instabilities regularly
rotating around this column are observed, and are well-described by the as-
sumption that the electrons injected from the source exit radially from the
central column and are subjected to the Lorentz force. This phenomenon
could be addressed by directly measuring the electric field with EFILE [9].

The second test bench is ISHTAR, a RF antenna currently under devel-
opment at IPP in Garching (Germany) for plasma heating. Here the shape
of the electric field is given by accurate simulations, and the aim is to provide
an absolute measurement of the electric field magnitude at one point. This
configuration is similar to the one tested in this work.

Another open issue regards the calculation of the transition rate when
two electric fields are present. In the plasma edge region there can be a
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superposition of electric fields of different frequency (for instance a static
field and a travelling wave injected into the plasma). The transition rate for
this configuration has not been calculated yet, and requires the study of a
system like the one presented in equation B.30. One possible approach is the
use of the density matrix technique [11].



48 CHAPTER 5. CONCLUSIONS



Appendix A

Structure of the hydrogen atom

A.1 Fine structure

A one-electron atom can be described by the simple, non-relativistic Hamil-
tonian [2]

H0 =
p2

2m
+ V (r) =

p2

2m
− e2

(4πε0)r
(A.1)

which describes a particle (the electron) of mass m, elementary charge −e
and momentum operator p placed at a distance r from an infinite mass of
charge e (the proton) located in the origin of the reference frame (ε0 is the
vacuum permittivity). The eigenvalues equation to be solved is

H |ψnlm〉 = En |ψnlm〉 (A.2)

with H = H0. The energy levels obtained from this Hamiltonian (the so
called Bohr states) are

En = − 1

2n2

(
e2

4πε0

)2
m

}2
= − 1

2n2
(a.u.) (A.3)

with n the principal quantum number (h = 2π} is the Planck constant).
Every energy level is 2n2 degenerate, and is in good agreement with exper-
imental results, but the very precise measurements carried out in atomic
physics require the addition of correction terms to H0.

Instead of solving Dirac equation for a particle in a central potential, it
is easier to use perturbation theory to write the new Hamiltonian as H =
H0 + H ′, where H ′ contains the perturbative terms up to order v2/c2. The
new energy levels are

Enj = En

[
1 +

α2

n2

(
n

j + 1/2
− 3

4

)]
(A.4)
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Table A.1: Comparison between Bohr levels and Dirac corrections.

State En (eV) ∆EDirac (eV)

1s1/2 −13.6 −18.1× 10−5

2s1/2 −3.40 −5.68× 10−5

2p1/2 −3.40 −5.68× 10−5

2p3/2 −3.40 −1.12× 10−5

where α ≈ 1/137 is the fine structure constant and a dependence on the total
angular momentum quantum number j = 1/2, ..., n− 1/2 is introduced.

In table A.1 a comparison between the Bohr levels and the corresponding
Dirac corrections for the hydrogen atom is reported. It is to be noted that
the 2s1/2 and the 2p1/2 levels have the same energy.

In 1950 W. E. Lamb and R. C. Retherford [17] showed that the 2s1/2

actually lies higher than the 2p1/2 state, using microwave techniques to stim-
ulate a direct radio-frequency transition between them. This discrepancy is
due to QED radiative corrections related to interactions between the electron
and electromagnetic fluctuations in vacuum, and its value is

ε = 4.375× 10−6 eV = 1058 MHz · h

More precisely, the 2s1/2 state lies 4.301× 10−6 eV = 1040 MHz ·h above the
Dirac correction while the 2p1/2 lies 7.4× 10−8 eV = 18 MHz · h below.

A.2 Hyperfine structure

The next correction to the Hamiltonian A.1 arises from the magnetic inter-
action between the nucleus and the moving electron. Naming I the nuclear
total angular momentum (I = 1/2 for the proton) and F = I + J the total
angular momentum of the system, the correction for a state nlj is

∆E =
1

2

m

Mp

gI
α2

n3

F (F + 1)− I(I + 1)− j(j + 1)

j(j + 1)(2l + 1)
(a.u.) (A.5)

where Mp is the mass and gI = 5.5883 is the Landé factor of the proton.
The hyperfine splitting for the n = 2 is reported in table A.2 and a graphical
resume of fine and hyperfine splitting is shown in figure A.1.
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Table A.2: Energy differences from the Dirac and Lamb effects due to hy-
perfine splitting.

State F ∆Ehyper (eV)

2s1/2
F = 0 −5.52× 10−7

F = 1 1.84× 10−7

2p1/2
F = 0 −1.84× 10−7

F = 1 6.13× 10−8

2p3/2
F = 1 −6.13× 10−8

F = 2 3.68× 10−8

Figure A.1: Splitting of the n = 1 and n = 2 levels of hydrogen. The splitting
is not to scale (picture taken from [2] page 264).
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Appendix B

Derivation of the transition
rate

The calculations presented in section B.1 are a resume of those presented
in [27], [1] and [18], while those reported in section B.2 constitute a novel
approach.

B.1 External perturbations

The time evolution of an isolated hydrogen atom is given, via the Schrödinger
equation, by

|a, t〉 =
∑
ϕ

cϕ(t)e−iEϕt/} |ϕ〉 (B.1)

where {Eϕ} is the complete set of energy levels associated to the {|ϕ〉} eigen-
states.

To describe the interaction of a |a, t〉 state with an external perturbation,
a time dependent potential is added to the full Hamiltonian of the previous
section:

H = H0 +H ′ + V (t) (B.2)

With this Hamiltonian, the time evolution of the coefficients cm(t) is given
by [27]

i}
dcϕ
dt

=
∑
ψ

cψ(t)e−iωϕψt 〈ϕ|V (t) |ψ〉 (B.3)

where ωϕψ = (Eϕ − Eψ)/} is the resonant frequency.
The simplest kind of external perturbation is the interaction with the

vacuum, which gives the probability of spontaneous emission. Let |ϕ〉 and
|ψ〉 be two different eigenstates of the atomic hydrogen with Eϕ > Eψ. The
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probability of spontaneous emission from |ϕ〉 to |ψ〉 due to the interaction
with the electromagnetic field is given, in the dipole approximation, by [26]

Γspontϕψ =
ω3
ϕψe

2

3πε0}c3
| 〈ϕ| r |ψ〉 |2 (B.4)

where r is the position of the electron.
Assume the hydrogen atom can be in only two states: the metastable

2s1/2, as its lifetime is 0.14 s [18], and the 2p1/2, which has a lifetime 1/Γ =
1.59 ns [2] for the transition 2p1/2 → 1s1/2. A time dependent perturbation
applied to a two-states system can be described as [25]

V (t) = K12(eiωt |1〉 〈2|+ e−iωt |2〉 〈1|) (B.5)

where K12 is a constant and ω is the oscillation frequency. Considering
a perturbation in the form of a sinusoidally varying electric field in the z
direction, the classical potential is

V (t) = −eE(t) · r = −eE(t)z (B.6)

and the time evolution of the system depends therefore on the value of
〈ϕ| z |ψ〉.

The expectation value of z between the aforementioned states depends on
the magnetic quantum number l and m and is non-zero only when ∆l = ±1
and ∆m = 0. Let therefore be |1〉 = |2s1/2〉 and |2〉 = |2p1/2,m = 0〉. The
calculation gives

〈1| z |2〉 = −3a0 = −1.59 Å (B.7)

where a0 = 0.53 Å is the Bohr radius. The z operator can then be written
as [27]

z = −3a0(|1〉 〈2|+ |2〉 〈1|) (B.8)

and the electric field E(t) as

E(t) = E0(e−iωt |1〉 〈1|+ eiωt |2〉 〈2|)

The set of equations B.3 for the two-state system is therefore given by
(c1 is associated to the 2s1/2 system and c2 to the 2p1/2){

dc1
dt

= −3i
(
a0eE0

}

)
e−i(ω−ω12)tc2

dc2
dt

= −3i
(
a0eE0

}

)
ei(ω−ω12)tc1 − Γ

2
c2

(B.9)

with the ansatz {
c1(t) = e−γt

c2(t) = ĉ2(t)e−(Γ/2)t
(B.10)
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and the initial condition c1 = 1, c2 = 0 (pure 2s1/2 state). The e−(Γ/2)t takes
into account the 2p1/2 → 1s1/2 transition, and the use of Γ/2 instead of Γ
stems from the fact that the transition rate is given for |c2|2. The solution is
(see [18] and [27])

γ =

(
3a0eE0

}

)2
1− e−i(ω−ω12)te(γ−(γ/2))t

Γ/2− γ + i(ω − ω12)
≈
(

3a0eE0

}

)2
Γ/2− i(ω − ω12)

(Γ/2)2 + (ω − ω12)2

The last approximate equality is true in the weak field approximation, for
which γ � Γ/2.

To get the overall exponential decay, the real part of γ has to be consid-
ered. Also, a factor of 2 comes in again because the relevant quantity is |c1|2.
The transition rate is therefore given by:

γ = 9

(
a0eE0

}

)2
Γ

(Γ/2)2 + (ω − ω12)2
(B.11)

However, experimentally it was found that the real transition rate is 1/3
of the expected γ. This is due to the fact that the entire |2p〉 state has to be
considered, since it is given by a linear combination of the three states with
m = 0,±1, of which only the state with m = 0 has a non zero contribution
to the calculation in B.7.

B.2 A different approach

A different calculation of the transition probability between the |2p〉 state
(Γ = 1/τ2p = 2π ·100 MHz) and the |2s〉 metastable state (1/τ2s ≈ 7 s−1 ≈ 0)
of the hydrogen atom when a static electric field ~ε = εẑ is present is derived
here. In the following, the index 1 is referred to the |2p〉 state, while index 2
is used for the |2s〉. The formalism used is the same as in chapter 4 of [5].

Let the system be made of only the two states |1〉 and |2〉. In this basis,
the Hamiltonian in the absence of the electric perturbation is

H0 =

(
E1 − i~Γ 0

0 E2

)
(B.12)

and the imaginary part of the eigenvalue associated to |1〉 takes into account
the finite lifetime of the state.

The electrical perturbation can be written classically as W = −e~r · ~ε =
−ezε, where e is the electron charge, ~r is its distance from the nucleus and
therefore −e~r is the electric dipole of the electron. As

〈i| z |j〉 = −3a0(1− δij)
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where a0 is the Bohr radius, the quantum mechanic representation of the
perturbation H1 is the anti-diagonal matrix

H1 =

(
0 W
W 0

)
(B.13)

where W = 3a0eE.

B.2.1 Diagonalisation of the Hamiltonian

The perturbed Hamiltonian H = H0 +H1 has new eigenvalues:

ε′1,2 =
ε1 + ε2

2
− i~Γ

4
∓ 1

2

√
C2 + 4W 2 (B.14)

where C = (ε2 − ε1) + i~Γ
2
. Assuming |W | �

√
(ε2 − ε1)2 + ~2 Γ2

4
≈ ε2 − ε1,

which means E � 2.6× 104 V/m, equation B.14 gives

ε′1 ≈ ε1 − i~
Γ

2
− W 2

ε2 − ε1 + i~Γ
2

(B.15)

ε′2 ≈ ε2 +
W 2

ε2 − ε1 + i~Γ
2

(B.16)

The eigenvectors are given by (H− ε′j1)(x |1〉+y |2〉) = 0. With the same
approximation, they are:

|ψ1〉 = |1〉 − W

C
|2〉 (B.17)

and

|ψ2〉 =
W

C
|1〉+ |2〉 (B.18)

{|ψ1〉 , |ψ2〉} is the new basis in which the H matrix is diagonal. The change
of basis matrix is

M =

(
1 W

C

−W
C

1

)
(B.19)

with inverse

M−1 =

(
1 −W

C
W
C

1

)
(B.20)

where C2 ≈ |C|2 � W 2 was assumed.
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B.2.2 Time evolution and transition probability

Let {|ψj〉} be the basis of a system with a time independent Hamiltonian H.
The system at time t = 0 is in the state |ψ(0)〉 =

∑
j aj |ψj〉, where the aj

are complex constants. The evolution of the system is then given by

|ψ(t)〉 =
∑
j

aj exp(−iεj
~
t) |ψj〉 (B.21)

where the εj are the eigenvalues of H.
The electron is assumed to be in state |2〉 = |ψ2〉 − W

C
|ψ1〉 at time t = 0.

Then the time evolution is given by

|ψ(t)〉 = e−i
ε′2
~ t |ψ2〉 −

W

C
e−i

ε′1
~ t |ψ1〉 (B.22)

where C = ε2 − ε1 + i~Γ
2
.

The probability to find the electron in state |2〉 at time t is then given by

P2→2(t) = | 〈2|ψ(t)〉 |2 = |e−i
ε′2
~ t + e−i

ε′1
~ t
W 2

C2
|2 (B.23)

≈ |e−i
ε′2
~ t|2 = exp(−W

2

|C|2
Γt) = e−γt (B.24)

with γ = (3a0E)2 Γ

(ε2−ε1)2+~2 Γ2

4

(same result obtained with the time dependent

approach for the static case).
Similarly it is possible to calculate the probability to find the electron in

state |1〉 at time t:

P2→1(t) =
W 2

|C|2
[e
− W2

|C|2
Γt

+ e
−Γt(1− W2

|C|2
) − 2e−

Γ
2
t cos(

ε2 − ε1
~

t)] (B.25)

≈ W 2

|C|2
[1 + e−Γt − 2e−

Γ
2
t cos(

ε2 − ε1
~

t)] (B.26)

As it is proportional to W 2

|C|2 , it is negligible. This means that if the electron
passes from state 2 to state 1, then it almost instantly decays to the ground
state.

B.2.3 Adding a time dependent perturbation

A time dependent electric field along the z axis can be classically written as

E(t) = E0e
−iωt (B.27)
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and the corresponding Hamiltonian for the original system can be written as

H(t) =

(
0 V (t)

V ∗(t) 0

)
=

(
0 3a0eE0e

−i(ω−ω12)t

3a0eE0e
i(ω−ω12)t 0

)
(B.28)

where ω12 = ε2−ε1
~ . This matrix has to be transformed in the new system

with basis {|ψ1〉 , |ψ2〉}. The new matrix is

H ′(t) = M−1H(t)M ≈
(
−W

C
(V (t) + V ∗(t)) V (t)
V ∗(t) W

C
(V (t) + V ∗(t))

)
(B.29)

This matrix leads to a system of differential equation to describe the time
evolution of the state |ψ(t)〉 = b1(t) |ψ1〉+ b2(t) |ψ2〉:{

i~db1
dt

= −W
C

(V (t) + V ∗(t))b1 + V (t)b2

i~db2
dt

= +W
C

(V (t) + V ∗(t))b2 + V ∗(t)b2

(B.30)



Appendix C

Geometry improvement

Figure C.1: The new
geometry proposed.

Chapter 4 shows that the measurements performed
with the EFILE diagnostic can be related to field
maps obtained from finite element simulations, al-
lowing a calibration of the diagnostic for the static
field case and for a few frequencies. However, the
resonant behaviour around the resonant frequencies
of the 2s→ 2p transition could not be tested: a sig-
nal differing from the background could indeed be
detected between 1.05 GHz and 1.15 GHz (see both
figures 4.3 and 4.9), but a correspondence with the
simulated Lyman-α spectrum could not be found.
This is probably due to the complex geometry of
the interior of the vessel, which is hard to simulate and produces a lot of
different resonant electric fields. Moreover, the intensity of the peaks could
not be properly reproduced, since the simulation did not take into account
signal losses along the transmission line. Resonances are nevertheless needed,
because otherwise no signal would be detected.

The design of the test chamber was therefore simplified, allowing an eas-
ier control of the cavity eigenfrequencies. The idea is to excite eigenmodes
similar to the cylindrical TM and TE modes described in section 3.3.1. To
do so, the plates were substituted with a disc (called piston, see figure C.1)
having a slightly smaller diameter than the vessel (195 mm). It can be placed
at different heights (h) from the bottom of the main cylinder. By modifying
the distance h between the bottom of the main cylinder and the piston, the
eigenfrequencies can be varied, allowing a scan of the resonance behaviour
of the Stark mixing. The stimulation of the RF field is made by polarising
the probe shown in figure 3.1 (c). The Lyman-α spectra acquired for three
different h (for an injected power of 33 dBm) and the measurements of the

59
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(a) Lyman-α spectra for different h, with
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Figure C.2: Measurements as a function of the injected power at fixed fre-
quencies and comparison with the simulation.

Table C.1: Eigenfrequencies for different h.

h Experimental (GHz) Simulation (GHz) Mode

179 mm 1.179 1.182 TM

208 mm
1.180 1.177 TM
1.116 1.121 TE

245 mm 1.058 1.058 TE

peaks for different injected powers are shown in figure C.2. The positions
of the peaks, together with the simulated correspondent eigenvalues and the
mode type are reported in table C.1

As it can be seen, all the peak frequencies present in the experimental
spectra are reproduced by the simulation within a few MHz (the spectra for
h = 245 mm does not present two peaks, but only one, which is saturated).
Furthermore, the spectra show that the position of the peaks can be con-
trolled by changing the height h, obtaining cavity eigenmodes near the reso-
nant frequencies of the Stark mixing process. However, the results presented
in figure C.2 (b) can not be interpreted as done for the other configuration,
because at present it is not possible to perform static field measurements
which would allow the determination of the simulation parameters z0, ∆z, β
and C.



Bibliography

[1] J. F. Benage. ‘Plasma effects on the metastable H0(2s) atom’. PhD
thesis. University of Colorado, Boulder, CO, 1986.

[2] B. H. Bransden and C. J. Joachain. Physics of Atoms and Molecules,
2nd edition. Ed. by Prentice Hall. 2003.

[3] F. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Ed.
by Springer. 1984.
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