

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

“IMAGE AUGMENTATION TECHNIQUES
FOR CONVOLUTIONAL NEURAL NETWORKS”

 Relatore: Prof. Nanni Loris

Laureando: Bravin Riccardo

ANNO ACCADEMICO 2021 – 2022

Data di laurea 21/07/2022

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

Abstract

ENG

One of the biggest challenges for Convolutional Neural Networks (CNNs), now that they are vastly

used in many contexts, is the lack of adequate training sets for robust training sessions and no

overfitting. In some cases, it can be difficult to gather enough data for hard classification tasks in

the medical field and similar, due to the lack of cases to document or the vast knowledge needed in

order to correctly classify the images in a dataset. In the last few years for these reasons data

augmentation, rather than other methods, has been under the spotlight mostly thanks to the

simplicity and effectiveness that simple methods, such as rotation and flipping for images or

random noise added to other sources, have. Here we want to propose various classic and newer

methods compared using ResNet50 and MobileNetV2 on thirteen different datasets. Results show

that ensembles built combining a variety of the analyzed methods can achieve state of the art

performance or even surpass the best-known approaches on various tasks.

IT

Una delle più grandi sfide per le Reti Neurali Convoluzionali, soprattuto ora che vengono utilizzate

ampiamente in svariati contesti, è la mancanza di training set adeguati per sessioni di training

robuste e meno prone ad overfitting. In certi casi può risultare difficile raccogliere dati a sufficienza

per complessi compiti di classificazione in campi quali quello medico e simili a causa dell’assenza

di casi di cui sia possibile effettuare un campionamento o delle vaste conoscenze necessarie per la

corretta classificazione dei dati ottenuti. Negli ultimi anni proprio per queste ragioni il data

augmentation, differentemente da altri metodi, ha avuto particolare successo, principalmente grazie

alla semplicità ed efficacia che metodi semplici quali rotazione o specchiamento per le immagini o

rumore gaussiano aggiunto ad altre sorgenti riescono ad ottenere. Vogliamo qui proporre vari

metodi, classici e di nuova ideazione, comparati utilizzando ResNet50 e MobileNetV2 su tredici

diversi dataset. I risultati mostrano che ensemble costruiti combinando i vari metodi analizzati

riescono ad ottenere risultati che possono superare perfino i migliori approcci specifici nei diversi

dataset.

1. Introduction

Convolutional neural networks are neural network that leverage the mathematical concept of

convolution. Before this discovery, forward neural networks were the main method used for image

classification, but their inability to perceive relations in bigger pixel clusters or the dependency of

information to a specific position in the input array greatly reduced their effectiveness.

Instead, the convolutional capabilities of CNNs allow, inside it, to progressively reduce the size of

the input image expanding its depth and doing so extracting different features independently of their

position thanks to the learnable parameters of the convolutional kernels. Therefore, their flexibility

and robustness has made it so that they have become the new classification paradigm for image

classification. Apart from image classification, these neural networks have been used also for

natural language processing and speech recognition.

In general, CNNs need vast, labeled datasets to achieve acceptable results in classification problems

and for that the human intervention is needed. Therefore, the benefits of not having to manually

determine and use the best feature extraction methods from the images have been opposed by the

ever-growing need of human labor to label an extensive number of data that the CNN can learn

from.

A partial solution to this problem has been the usage of data augmentation, with which it is possible

to generate new datapoints from existing ones, reducing the probability of overfitting for small

datasets or more complex networks and generally improving the real accuracy. This technique, in

conjunction with others like transfer learning, batch normalization and dropout layers, has allowed

previously impossible automatizations in medical and neurobiological fields to be performed even

with limited resources and time.

Here we want to set the focus on a specific type of data augmentation: image augmentation for

CNNs. There are several types of techniques already proven to provide significant benefits to the

training of CNNs varying in three macro groups defined in [1]: Model-free, which uses single or

multiple images without any conditional treatment; Model-based, which uses information about the

image and his label to apply transformations; and Optimizing policy-based, which are methods like

reinforcement learning and adversarial learning. Model-free and model-based approaches are the

least computationally expensive and the ones we are going to focus on here, in combination with

the construction of ensembles that can outperform more classical methods of image augmentation.

The remainder of this paper is organized as follows: Section 2. reviews different related image

processing approaches from literature. Section 3. Makes a rundown of thirteen classic augmentation

methods and eleven newly proposed ones with the addition of five combinations of them. In section

4. and 5. the datasets used, and the results of the methods trained on them with two different

topologies are reported accompanied by the presentation of four different ensembles and their

relative performances. The best reported methods in this paper manage to reach and surpass state of

the art literature results in all tested datasets. In section 6. conclusions are simply drawn from the

reported data and discussed.

The MATLAB source code used for every test reported here is published and available free of

charge at github.com/RiccardoBravin/NN_image_augmentation

2. Related work

The scope of this paper, as presented before, is to focus on the construction of ensembles with

CNNs trained on different types of datasets where image augmentation methods have been applied.

In [1], the different augmentation methods are divided into three categories: 1) Model-free, 2)

Model-based and 3) Optimizing policy-based. The majority of the algorithms for augmentation are

simple to implement but by applying the wrong one to an image, data that no longer belongs to the

original class can be produced.

Geometrical transformations, like flipping, rotation and translations are the easiest ones to perform

and generally the most effective as reported in [2]. Alongside these three augmentations, it usually

also appears random cropping, which reduces the size of the image partially cutting out the outer

section of it, and distortion, which, utilizing a mask, shifts the pixels to new positions interpolating

their color to get uniform distortion. As tested by [3] on AlexNet, trained on ImageNet and

CIFRAR10, generally rotation tends to work better than translation and random cropping.

Another method through which image transformation is achieved is color variation. One way of

performing it is by changing the color space of the image and doing so removing the illumination

bias that can come through in a dataset as proposed in [2]. Other methods involve adding noise to

the color of the image through transformations or by jittering the various values like hue, saturation

and brightness like in [3]. Furthermore, convolutions with various filters for blurring, sharpening or

swapping can be applied to the images to produce new ones with different characteristics or, as

usually happens in the real world, with random erasing and cutting to occlude portions of the

images presenting only partially the subject.

https://github.com/RiccardoBravin/NN_image_augmentation

However, some of these augmentations can run the risk of removing valuable information from the

image or introduce not needed additional complexity to the image drastically reducing the

performance of the trained CNN.

Model based augmentations focus on the label knowledge to generate new data through, for

example, the combination of same label images utilizing an alpha mask as tested in [4] or

alternatively through an intermediate transform and inverse as shown in [5].

Optimizing policy-based make use of GANs to perform style mix, style transfer or generation of

completely new images like in [6].

3. Materials and methods

In this work we are going to use pretrained instances of ResNet50 and MobileNetV2 with a batch

size of 20 and learning rate of 0.001 and thus applying the concept of transfer learning to improve

the training stability and overall accuracy. In the testing phase, each unknown sample is classified

by the CNNs, and the resulting scores are fused by sum rule.

In the next section we are going to explore and explain all the different implementations of data

augmentation tested. AUG1 through 12 are literature found methods with tested efficacy, the last

ten methods are instead, to our knowledge, proposed here for the first time and more deeply

explained through images (see Figure 1. and Figure 2.) and pseudocode due to the lack of previous

documentation.

Figure 1. Visual representation of the four directly applied methods

AUG1 (3x):

 Applies to each image three transforms: a mirroring on the x axis, a mirroring on the y axis

and a linear scale on both axis using a random value derived from the interval [1,2].

AUG2 (6x):

 Applies the same transformations of the AUG1 and additionally performs: random image

rotation in the range [-10°,10°], translation with a random vector of maximum magnitude 5 pixels

and shear on both vertical and horizontal axis with values randomly taken from the interval [0,30]

degrees.

AUG3 (5x):

 Performs the same augmentations as AUG2 but it removes the shearing.

AUG4 (3x):

 The method is the one proposed in [7] where a transformation based on PCA is applied and

the values obtained are treated with three different methods before the inverse is used to produce the

new images. The first one zeroes out the elements of the feature vector with a probability of 50%,

the second adds gaussian noise to every value utilizing the standard deviation of the transformed

image, and the third one swaps with a probability of 5% values from the original feature vector with

the ones of 5 random transformed images of the same class.

AUG5 (3x):

 The same methods utilized in AUG4 are instead applied to images who have been

transformed through DCT.

AUG6 (3x):

 The chosen image goes through three methods which alter color, contrast or sharpness.

Color is altered by adding to each channel a random value clipping the results between 0 and 255;

contrast is modified scaling it from [0.3,0.7] back to [0,1] effectively saturating the 30% highest and

lowest intensities of the image; sharpness is increased by subtracting from the original image a

blurred (with a gaussian filter) version of itself.

AUG7 (7x):

 Utilizing the MATLAB function jitterColorHSV four images are generated by randomly

altering: the hue in the range [0.05,0.15], the contrast in the range [1.2,1.4], the saturation in the

range [-0.4, -0.1] and the brightness in the range [-0.3, -0.1]. Two other images are created through

the usage of the MATLAB functions imgaussfilt, with a standard deviation of the gaussian filter

ranging from 1 to 6, and imsharpen, with a strength of 2. The seventh image is obtained utilizing the

color altering method of AUG6.

AUG8 (2x):

 This method selects a random image of the same class as the current one and applies two

nonlinear mappings: RGB Histogram Specification and Stain Normalization through the Reinhard

Method [7], in order to generate the new images.

AUG9 (6x):

 Two types of elastic transform, more extensively explained in [8], are applied. One is based

upon a preexisting MATLAB method that introduces distortion in the original images and the other

is an adaptation of the grayscale ElasticTransform from the python implementation in the computer

vision tool Albumentations. Both methods deform the images through a random displacement map

generated with values in the uniform distribution [-1,1]. To the resulting matrix is then applied one

of three different low pass filters (a circular averaging one, a rotationally symmetric Gaussian one

and an approximation of a two-dimensional Laplacian operator) before using it for the distortion of

the original image.

AUG10 (3x):

 Similarly to AUG4, the method proposed in [8] performs a DWT [9] with Daubechies

wavelet which produces 4 matrices: the approximation coefficients (cA) and then the horizontal,

vertical, and diagonal (cH, cV, cD). The obtained matrices are then modified with three methods

before being transformed back with the inverse DWT. The first method zeroes out random values

with a probability of 50%, the second one sums to each value the standard deviation of the original

image plus a random value in the range [-0.5, 0.5], and the third one selects 5 random images from

the same class as the current one and performs the DWT on them, then each value of the original

matrices is swapped with a probability of 5% with values from one of the transformed five images.

AUG11 (3x):

 Based upon the Constant-Q Transform (CQT), this method, first proposed in [8], performs

the CQT on the image to then apply the same alterations as AUG10 to the resulting arrays before

doing the inverse CQT in order to get back 3 new augmented images.

AUG12 (9x):

 This method combines parts of AUG3 with AUG7. More specifically it performs: vertical

and horizontal flips, random rotations in the range [1°, 180°], gaussian noise addition based on the

standard deviation of the image, cropping of a random number of pixel in the range [0, 20] from

https://albumentations.ai/

every side and hue, saturation, brightness and contrast jittering with random values in the ranges,

respectively, [0.05, 0.15], [-0.4, -0.1], [-0.3, -0.1], [1.2, 1.4].

Figure 2. Depiction of the more complex methods processing

Superpixel (1x):

 This method, first presented in [10], utilizes a SuperPixel segmentation mask generation

through the MATLAB superpixels function which returns a matrix with random number of

segmentations between 300 and 2000. The obtained mask is then used to calculate the mean of each

chunk and that value is used to replace each pixel of it. An example of pseudocode is here reported:

[labels,segments] = superpixel(OriginalImage, randomInt(300,2000));
indices = label2idx(labels);

for position = 1:segments
 index = indices{position);
 SuperpixelImage(index) = mean(OriginalImage(index);
end

Color reduction (2x):

 Making use of a color space transformation called color indexing, a reduction of the number

of colors available to represent the image is performed. In MATLAB the function rgb2ind can

receive a parameter for how many colors the final image can retain. In this way, the number of

colors the image keeps is randomly chosen in the range [8,16]. A second image is obtained

specifying the use of dithering: a technique that leverages the way the human eye perceives colors

to generate depth, while having a limited color palette, utilizing a rapid change of the values of

neighboring pixels. An example of pseudocode is here reported:

[IND,map] = rgb2ind(OriginalImage, randomInt(4,8),'nodither');
ColorReducedImage = ind2rgb(IND,map);

[IND,map] = rgb2ind(OriginalImage, randomInt(4,8));
DitheredImage = ind2rgb(IND,map);

DCT (1x):

 The discrete cosine transform (DCT) is applied to the image and to the resulting matrices,

instead of applying the inverse, the normal DCT is once again used to obtaining a new distorted

image that goes through some post processing for better readability. An example of pseudocode is

here reported:

DCTImg = DCT(OriginalImage);
DCT2Img = DCT(DCTImg);
NewImage = histogramEqualization(hazeReduction(DCT2Img));

FFT (1x):

 The FFT is applied to the current image and all matrices’ values in the interval between the

average standard deviation of the matrix’s rows and its respective inverse are set to zero. To the

result is then applied the FFT again, instead of the inverse, and only the modulo is kept, obtaining a

flipped image with color changes. An example of pseudocode is here reported:

FFTImage = FFT(OriginalImage);
rndMask = STDrandomMask(FFTImage);
FFTImage(rndMask) = 0;
NewImage= modulo(FFT(FFTImage));

Where STDrandomMask(matrix) returns a mask of where the value is inside the average standard deviation of each
row.

FFTCombine (1x):

 Based on the concept of image mixing, the FFT transform is applied to the current image

and to another random one from the dataset. The phases obtained from the two matrices are then

combined keeping the negative values from one and the positive from the other. The complex

matrix is then recomposed using the newly obtained phase and the modulo from the original image

before the inverse FFT is applied. An example of pseudocode is here reported:

FFTImage = FFT(OriginalImage);
FFTrndImage = FFT(RandomImage);
phaseImage1 = angle(FFTImage);
phaseImage2 = angle(FFTrndImage);

phaseImage1(phaseImage1 > 0) = phaseImage2(phaseImage1 > 0);
RecomposedMatrix = modulo(FFTImage) * exp(i*phaseImage1);
NewImage= modulo(IFFT(FFTImage));

Hampel (1x):

This method uses the Hampel outlier remover filter, generally used for signals, to process a

vectorized version of the image. The MATLAB function Hampel() is used with a measurement

window of 20 and a standard deviation of 1.5 for which a sample must differ from the local median

to be replaced with. After the process the image is converted back into is matrix form. An example

of pseudocode is here reported:

LinImg = liearize(OriginalImage);
HampelImg = hampel(LinImg,20,1.5);

 NewImg = delinearize(HampelImg, size(OriginalImage));

Where linearize(image) returns the transform of each color plane of the image into an array and delinearize(vector, dim)
returns the inverse transformation of the linearized image following the dim value.

Hilbert (1x):

 The Hilbert transform extracts a discrete time analytic signal from every column of the

image in its phase and modulo form. From this data, only the phase is kept to define the new image,

after a rescale to fit the data in the 8 bits for color. An example of pseudocode is here reported:

 HilbertImage = hilbert(OriginalImage);

 NewImage = rescale(phase(HilbertImage));

Laplacian (1x):

 Utilizing the local Laplacian filter MATLAB function (contrast enhancement with edge

awareness) three different images are generated: one with a high increase of small details contrast,

one with a smoothing of small details and one with an overall increase of dynamic range and

contrast.

Deconvolution (1x):

 Through the use of a blind deconvolution algorithm, usually used for its capability of

deblurring images when the point spread function is known, we perform the opposite operation of

what the convolutional layer of a CNN would do. The MATLAB function deconvblind()

requires a starting estimate of the point-spread function which is generated using random gaussian

values in a matrix of randomly chosen size in the range [4,8].

SVD (1x):

 Making use of the Singular Value Decomposition (SVD) each color plane of the original

image is decomposed into three matrices: U and V, complex and unitary and S, diagonal and with

non-negative real numbers. Of the three, just the diagonal one undergoes a transformation which

sets to zero every value lower than the highest divided by a random integer in the range [50,100].

The three matrices are then multiplied to obtain back the original image with an interwoven fiber

like noise pattern and partial degradation. An example of pseudocode is here reported:

[U,S,V] = svd(OriginalImage);
S_mask = S < (max(S)/rand(50,100));
S(S_mask) = 0;
NewImage = U*S*VT;

We also adopted a technique that combines different, and as independent as possible, augmentation

methods to train one single CNN. Therefore, we were able to increase singular network

performance without lengthening the inference time like for ensembles. Here are thus presented the

mentioned methods.

MixDA_1: This method makes use of the augmentations DCT, FFT, FFTCombine, SVD,

Laplacian, Superpixel, ColorReduction, Hilbert and a reduction of AUG9 with just the MATLAB

technique to generate a total of 9 images for each one in the datasets.

MixDA_2: This method makes use of the augmentations DCT and a reduction of AUG9 with just

the MATLAB technique to generate a total of 2 images for each one in the datasets.

MixDA_3: This method makes use of the augmentations DCT, Superpixel, Hilbert e Hampel to

generate a total of 4 images for each one in the datasets.

MixDA_4: This method makes use of the augmentations Hampel, Hilbert, DCT and Laplacian to

generate a total of 6 images for each one in the datasets.

MixDA_5: This method makes use of the augmentations AUG12, FFT, Hilbert and Hampel to

generate a total of 13 images for each one in the datasets.

4. Dataset

Every test of the described augmentations methods is performed on thirteen benchmark datasets in

order to better represent the performance in real world scenarios and be better compared to previous

literature results.

Table 1. Description of the datasets

Abbreviation Full Name #Classes #Samples Image Size Protocol* Ref
VIR Virus 15 1500 41×41 10-FCV [11]

BARK Bark 23 23000 ~1600×3800 5-FCV [12]

POR Portraits 6 927
From 80×80 to

2700×2700
10-FCV [13]

PBC Peripheral blood cell classification 8 17092 360x363 Tr-Te [14]
HE 2D HELA 10 862 512×382 5-FCV [15]
MA Muscle aging 4 237 1600×1200 5-FCV [16]
BG Breast grading carcinoma 3 300 1280×960 5-FCV [17]

LAR Laryngeal dataset 4 1320 1280×960 3-FCV [18]
Triz Gastric lesion types 4 574 352×240 10-FCV [19]

END
Histopathological endometrium

images
4 3502 640×480 Tr-Te [20]

RSMAS Coral textures 14 766 256x256 5-FCV [21]
PEST Pest identification dataset 10 563 640x480 5-FCV [22]
InfL Squamous cell carcinoma 4 720 1920x1072 5-FCV [23]

*<k>-FCV stands for a k-fold cross validation method, “Tr-Te” instead means that the Training and Test sets were
provided by the authors.

In Table 1. For each dataset used different labels are reported: an acronym, from now on used to

refer to it; the original name, if reported in the reference literature; the number of classes and total

samples it contains; the resolution of the given images; the protocol used for testing; and the

original reference paper.

5. Experimental results

Firstly, we are going to analyze the various single methods and the literature presented ones against

the various ResNet50 instances (Baseline) trained with the default datasets (see Table.2). The ten

single newly presented methods are not reported in Table .2 due to their poor performances when

not combined. Then a series of ensembles, made with ResNet50 and MobileNetV2, that make use

of the different presented augmentations is reviewed. The results of three state of the art

augmentation methods, from the paper [24], are applied to the same datasets and reported with the

acronym Ext_<i>.

Table 2. Performance accuracy (in %) of the literature augmentations and the newly proposed ones

DataAUG VIR HE MA BG LAR POR Bark TriZ END PBC RSMAS PEST InfL
Baseline 86.60 95.81 95.83 94.00 94.55 87.16 89.91 98.78 50.00 99.03 99.22 93.70 95.56

Aug1 87.00 95.12 95.00 93.00 92.95 87.05 89.60 99.13 56.00 98.93 98.69 92.76 95.56
Aug2 86.87 96.63 95.83 94.00 95.08 85.97 90.17 99.13 51.50 99.08 99.35 93.26 94.58
Aug3 87.80 95.12 95.00 94.00 94.55 87.05 89.45 98.96 56.50 98.88 99.09 93.65 95.42
Aug4 86.33 95.23 93.33 92.33 94.62 84.90 87.91 98.08 75.00 98.74 98.30 91.11 95.56
Aug5 86.00 95.35 91.25 91.33 95.45 86.41 87.61 98.43 77.50 98.74 98.17 89.94 96.25
Aug6 ** ** ** 92.33 94.39 87.37 88.63 98.43 75.00 98.78 98.82 93.15 94.31
Aug7 ** ** ** 93.33 95.08 88.13 89.28 98.61 81.00 98.98 99.09 92.93 94.44
Aug8 ** ** ** 90.67 94.70 86.06 87.29 98.26 80.50 98.35 97.91 90.88 93.61
Aug9 85.67 95.58 94.17 91.67 95.15 86.19 88.86 98.95 69.50 98.93 98.30 92.82 95.00
Aug10 84.20 95.81 91.25 88.67 93.64 85.10 86.39 99.31 62.00 98.64 98.04 90.22 94.86
Aug11 85.47 95.35 91.25 92.67 95.98 86.71 89.20 99.48 80.00 98.69 98.82 92.32 95.69
Aug12 88.93 95.81 97.92 94.67 96.36 89.00 89.45 98.42 74.5 99.08 *** *** ***
Ext_1 86.73 95.23 91.67 90.33 95.45 85.63 86.81 97.90 71.00 98.78 97.91 89.83 95.00
Ext_2 86.20 94.77 92.92 91.67 95.15 85.76 88.40 98.08 75.00 98.69 99.09 91.77 94.44
Ext_3 85.27 95.47 91.25 93.33 93.71 87.26 87.84 98.43 84.00 98.83 97.65 90.99 95.14

MixDA_1 89.33 96.28 98.33 92.67 95.30 88.46 90.63 98.61 81.50 98.93 99.48 93.98 94.72
MixDA_2 86.33 94.88 94.17 91.67 95.23 86.39 89.15 98.95 67.00 98.88 97.91 93.26 95.28
MixDA_3 85.93 93.72 92.08 92.67 95.08 85.74 88.60 98.96 76.50 98.74 98.69 92.60 94.86
MixDA_4 84.73 94.88 92.08 92.00 95.23 87.59 89.12 98.61 69.50 98.88 98.56 93.65 94.72
MixDA_5 86.40 93.60 94.17 92.00 95.30 87.04 89.90 98.95 65.50 98.88 99.35 93.37 94.17

**Augmentations that work on color images were not run on gray-level images.
*** Computation time exceeded resources.

From (Table.2) different conclusions can be drawn:

From the literature augmentations no particular one seems to consistently outperform the baseline

network by a substantial amount. The p-values in fact fluctuate between 1 and 0.08 without a clear

relation on the type of transformation performed and the efficacy of it.

Among the newly proposed methods, MixDA_1 seems to be the only one with an average accuracy

higher than every other one proposed and could thus be considered the best performing single

augmentation proposed. This assertion can be further confirmed by the p-value of around 0.02, in

relation to the baseline accuracy, which is about half of the lowest literature method.

Now we present the different approaches taken for the creation of the ensembles. We specify that

since the AUG6 through AUG8 only work on color images, the ensembles for VIR, HE, MA simply

do not use those scores for the fusion and that each ensemble has the relative network scores

combined through fusion by sum rule.

EnsDA_1: Combines AUG1 through AUG11 scores for an ensemble of eleven classifiers.

EnsDA_2: Combines MixDA_1 through MixDA_5, AUG1, AUG2 and AUG5-11 scores for an

ensemble of fourteen classifiers.

EnsDA_3: Combines MixDA_1, MixDA_4, MixDA_5, AUG2, AUG4, AUG5-7 AUG9-11 scores

for an ensemble of eleven classifiers.

EnsDA_4: Combines MixDA_4, MixDA_5, AUG6, AUG8 and AUG9 scores for an ensemble of

five classifiers (due to the low number of classifiers AUG6 to AUG8 were not removed for the

three black and white datasets).

Ext_Ens: This value corresponds to the maximum values obtained in [24] utilizing the different

ensembles tested in the mentioned paper.

Three ensembles, Ens_Base(x), obtained through the use of x ResNet50 instances trained on the

Baseline method and combined with the average sum rule are also reported as a point of reference

for the new methods.

Table 3. Performance accuracy (in %) of literature and new ensembles trained on ResNet50
DataAUG VIR HE MA BG LAR POR Bark TriZ END PBC RSMAS PEST InfL
Baseline 85.53 95.93 95.83 92.67 94.77 86.29 87.48 98.97 55.50 98.98 99.22 93.7 95.56
Ext_Ens 90.20 96.63 97.08 94.00 96.74 90.07 91.38 99.13 77.50 99.12 99.22 94.14 96.81

EnsDA_1 90.00 96.51 97.08 94.00 96.29 89.21 91.27 99.13 76.00 98.98 99.22 93.98 96.53
EnsDA_2 89.87 97.44 98.33 94.00 96.59 90.06 91.60 99.30 77.50 99.12 99.48 94.42 96.11
EnsDA_3 89.60 97.44 97.08 93.67 96.36 89.95 91.46 99.13 77.50 99.08 99.61 94.59 95.97
EnsDA_4 88.47 96.40 97.50 93.67 96.06 89.20 91.25 99.30 83.00 98.98 99.48 94.20 96.25

Ens_Base(14) 89.73 96.40 97.50 93.67 96.14 88.02 90.66 98.78 50.50 98.88 93.76 96.25 93.76
Ens_Base(11) 89.73 96.28 97.50 93.67 95.91 87.58 90.67 98.78 50.00 98.74 93.7 96.11 93.7

P-values can be calculated as an effective metric to show how different the distribution of accuracy

is in regard to the most affine Ens_Base(x). The ensembles of [24], here condensed in Ext_Ens,

reach average accuracies comparable to the ones obtained by our methods but with p-values as low

as 0.03, the here proposed new ensembles instead reach, with EnsDA_2, a p-value of 0.001 when

compared to Ens_Base(14) (see Table 3.). Also, when comparing EnsDA_1 with EnsDA_2, even if

the average accuracies differ just by 0.4, the p-value between the two is about 0.01 which signifies a

notable independence.

Even though accuracy is the most generally used performance indicator due to its simplicity, it is

not the most accurate metric for the comparison of ensembles due to its inherit dependency on the

chosen classification threshold. The ROC (Receiver Operating Characteristic curve) is the curve

defined by the relation between true positive rate and false positive rate and thus can better

represent the differences between classifiers. The AUC is a way to condense the ROC results into

one single and manageable value. Here we are going to use the One’s complement of the AUC in

percentage form. Since the AUC is a metric for specifically binary classifiers, in multiclass

problems, we decided to use the One-vs-All approach with the MATLAB rocmetrics functions.

Table 4. EOC values (in %) of the ensembles trained on ResNet50
DataAUG VIR HE MA BG LAR POR Bark TriZ END PBC RSMAS PEST InfL
Baseline 2.13 0.40 0.79 2.74 0.41 2.69 1.87 0.10 23.67 0.03 0.01 0.75 0.54
Ext_Ens 1.33 0.20 0.11 2.50 0.11 1.68 1.37 0.05 9.24 0.01 0.00 0.54 0.48

EnsDA_1 1.37 0.24 0.27 2.39 0.12 1.75 1.38 0.04 10.73 0.01 0.01 0.75 0.54
EnsDA_2 0.68 0.13 0.21 1.91 0.15 1.10 0.43 0.03 5.18 0.01 0.00 0.30 0.38
EnsDA_3 0.72 0.13 0.25 2.26 0.17 1.12 0.45 0.04 5.07 0.02 0.00 0.31 0.35
EnsDA_4 0.84 0.16 0.16 1.59 0.29 1.17 0.48 0.03 3.29 0.01 0.00 0.32 0.35

Ens_Base(14) 1.36 0.23 0.21 2.42 0.12 2.45 1.56 0.13 20.48 0.03 0.00 0.71 0.48
Ens_Base(11) 1.37 0.27 0.23 2.38 0.15 2.48 1.55 0.12 20.94 0.03 0.01 0.71 0.50

As a confirmation of the previously reported results, we can see (see Table 4.) that the lowest EOC

values are mostly obtained by the ensembles of our newly proposed augmentations and the average

values for all the three new ensembles are noticeably lower than the literature ones. Also, the p-

values, when comparing the different classifiers to Ens_Base(14), reaches values as low as 0.005

with EnsDA_2.

For comparison and further confirmation of the previously presented data, in Table .5 are reported

the same tables but with each training done with MobileNet: a lightweight convolutional neural

network created for mobile devices usage that reaches comparable results to bigger networks.

Table 5. Performance accuracy (in %) of literature and new ensembles trained on MobileNetV2
DataAUG VIR HE MA BG LAR POR Bark TriZ END PBC RSMAS PEST InfL
Baseline 42.93 94.58 94.58 91.33 92.80 84.45 89.79 97.91 74.00 98.88 97.78 91.77 94.72
Ext_Ens 84.47 96.63 96.25 93.33 95.98 88.55 91.56 98.26 87.00 99.22 98.69 93.31 95.69

EnsDA_1 85.27 96.16 95.83 93.00 96.21 88.56 91.20 98.25 86.00 99.17 98.69 92.98 95.83
EnsDA_2 88.53 96.86 97.08 92.33 96.21 89.31 91.63 98.43 86.50 99.22 98.69 93.70 95.69
EnsDA_3 88.73 97.09 97.08 93.33 96.36 89.64 91.55 98.78 87.50 99.37 99.22 94.09 95.69
EnsDA_4 86.60 96.86 97.50 93.00 95.83 88.55 91.26 98.43 85.50 99.17 98.82 94.36 94.31

Ens_Base(14) 47.60 95.00 97.50 92.67 95.30 85.96 91.04 98.26 83.00 99.37 98.69 92.82 95.83
Ens_Base(11) 47.60 95.00 97.08 92.67 94.85 85.86 91.10 98.26 82.50 99.27 98.69 92.71 95.97

As can be seen from Table .5 the data reported indicates that the proposed methods are capable of

surpassing both the baseline accuracy and Ens_Base(14) this time with even lower p-values and

higher average accuracies. While the methods from [24] reach p-values as low as 0.08, when

compared to Ens_Base(14), ours range from 0.04 to even 0.003 with a performance increase of

almost four percentage points in average accuracy.

Table 6. EOC values (in %) of the ensembles trained on MobileNetV2
DataAUG VIR HE MA BG LAR POR Bark TriZ END PBC RSMAS PEST InfL
Baseline 23.59 0.45 0.82 2.61 0.56 3.33 1.74 0.14 13.38 0.04 0.17 0.98 0.67
Ext_Ens 2.24 0.17 0.14 2.77 0.20 1.96 1.24 0.06 4.63 0.01 0.02 0.69 0.55

EnsDA_1 2.35 0.17 0.20 3.06 0.24 2.04 1.26 0.06 4.79 0.02 0.02 0.69 0.61
EnsDA_2 0.94 0.15 0.13 2.56 0.30 1.23 0.45 0.05 3.29 0.01 0.01 0.41 0.46
EnsDA_3 0.85 0.17 0.16 2.27 0.29 1.20 0.46 0.04 2.83 0.01 0.01 0.44 0.41
EnsDA_4 1.25 0.23 0.15 2.43 0.46 1.38 0.52 0.07 3.23 0.01 0.01 0.40 0.49

Ens_Base(14) 17.46 0.24 0.19 2.32 0.28 2.74 1.34 0.17 6.72 0.01 0.03 0.84 0.65
Ens_Base(11) 17.56 0.24 0.22 2.36 0.32 2.75 1.36 0.17 6.96 0.01 0.03 0.84 0.65

The values obtained in Table .6 show not that big of a gap as for ResNet50 between the results

reported in [24] and ours. With similar average p-values for both ours and [24] methods, when

compared to Ens_base(14), but lower EOC averages for EnsDA_2, EnsDa_3 and EnsDA_4 we can

say that our methods still outperform literature ones even in smaller CNN topologies. A special

focus should be given to EnsDA_3 which manages to outperform even EnsDA_4 by 0.6 with also a

p-value of 0.0007 when compared to Ens_Base(14).

In the last table (see Table.7), we decided to report a one-by-one comparison between the best

performing methods found in literature and our best average performing method (EnsDA_4) for

each dataset.

Table 7. Comparison of accuracy (in %) with best known literature results
DATASET ResNet50 MobileNetV2

VIR EnsDA_2 EnsDA_2 [25] [26] [27] [28] [29] [11] [28] [30]
89.87 88.53 89.60 89.47 89.00 88.00 87.27 87.00*** 86.20 85.70

LAR** EnsDA_2 EnsDA_2 [31] [18]
96.59 96.21 95.2 92.0

POR EnsDA_2 EnsDA_2 [13]
90.06 89.31 90.08

BARK EnsDA_2 EnsDA_2 [32] [33] [34] [12]
91.60 91.63 48.90 85.00 90.40 85.00

PBC EnsDA_2 EnsDA_2 [35] [36]
99.12 99.22 99.30 97.94

Triz EnsDA_2 EnsDA_2 [19]
99.30 98.43 87.00

END EnsDA_2 EnsDA_2 [20]
77.50 86.50 76.91

HE EnsDA_2 EnsDA_2 [37] [38] [17] [39]
97.44 96.86 98.30 94.40 84.00 68.30

MA EnsDA_2 EnsDA_2 [37] [40] [39]
98.33 97.08 97.90 53.00 89.60

BG EnsDA_2 EnsDA_2 [17] [12]
94.00 92.33 96.30 95.00

RSMAS EnsDA_2 EnsDA_2 [21]
99.48 98.69 97.75

PEST EnsDA_2 EnsDA_2 [22]
94.42 93.70 94.86

InfL EnsDA_2 EnsDA_2 [23]
96.11 95.69 95.30

6. Conclusions

This paper aimed to find new image manipulation methods that could outperform more traditional

ones. Through the training of different CNN topologies, finetuned with the various augmentations,

we compared the performances of single and combined networks on thirteen different benchmark

datasets to better represent the diverse classification tasks that could be encountered in real world

scenarios.

This study shows that combining different augmentation methods in one single training can

drastically increase performance of single instance CNNs as could be seen from MixDA_1 and

EnsDA_4 that outperforms even Ens_Base(14) thus giving the possibility of having low inference

time networks with high accuracy. Furthermore, the construction of ensembles with different

networks diversified on the data level can achieve even greater results and robustness thanks to the

independence of the proposed methods from one another. The augmentations here proposed, since

they were tested on a plethora of different datasets and networks, should work on most image

problems.

References

[1] M. Xu, S. Yoon, A. Fuentes and D. S. Park, "A Comprehensive Survey of Image
Augmentation Techniques for Deep Learning," April 2022.

[2] C. Shorten and T. M. Khoshgoftaar, "A survey on Image Data Augmentation," Journal of Big
Data, pp. 1-48, 6 july 2019.

[3] J. Shijie, W. Ping, J. Peiyi and H. Siping, "Research on data augmentation for image
classification based on convolution neural networks," 2017 Chinese Automation Congress
(CAC), pp. 4165-4170, October 2017.

[4] H. Inoue, "Data Augmentation by Pairing Samples for Images Classification," arXiv, 11 April
2018.

[5] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer and B. Lakshminarayanan, "AugMix:
A Simple Data Processing Method to Improve Robustness and Uncertainty," ICLR 2020, pp.
1-15, 17 February 2020.

[6] D. Liang, F. Yang, T. Zhang and P. Yang, "Understanding Mixup Training Methods," IEEE
Access, pp. 1-10, 31 October 2018.

[7] L. Nanni, S. Brahnam, S. Ghidoni and G. Maguolo, "General Purpose (GenP) Bioimage
Ensemble of Handcrafted and Learned Features with Data Augmentation," ArXiv, pp. 1-20, 17
April 2019.

[8] L. Nanni, M. Paci, S. Brahnam and A. Lumini, "Comparison of Different Image Data
Augmentation Approaches," Journal of Imaging, pp. 1-13, 27 November 2021.

[9] D. Ingrid, Ten Lectures on Wavelets, BMS-NSF Regional Conference Series in Applied
Mathematics, 1992.

[10] K. Hammoudi, A. Cabani, B. Slika, H. Benhabiles, F. Dornaika and M. Melkemi,
"SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data Augmentation,"
arXiv, pp. 1-9, 11 April 2022.

[11] G. Kylberg, M. Uppström and I. M. Sintorn, "Virus Texture Analysis Using Local Binary
Patterns and Radial Density Profiles," 18th Iberoamerican Congress on Pattern Recognition
(CIARP), pp. 573-580, 2011.

[12] M. Carpentier, P. Giguère and J. Gaudreault, "Tree Species Identification from Bark Images
Using Convolutional Neural Networks," IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1075-1081, 2018.

[13] S. Liu, J. Yang, S. S. Agaian and C. Yuan, "Novel features for art movement classification of
portrait paintings," Image and Vision Computing, pp. 104-121, 01 04 2021.

[14] A. Acevedo, A. Merino, S. Alférez, Á. Molina, L. Boldú and J. Rodellar, "A dataset of
microscopic peripheral blood cell images for development of automatic recognition systems,"
Data in Brief, pp. 105-474, 01 06 2020.

[15] M. V. Boland and R. F. Murphy, "A neural network classifier capable of recognizing the
patterns of all major subcellular structures in fluorescence microscope images of HeLa cells,"
BioInformatics, pp. 1213-1223, 2001.

[16] L. Shamir, N. V. Orlov, D. M. Eckley and I. Goldberg, "IICBU 2008: a proposed benchmark
suite for biological image analysis," Medical & Biological Engineering & Computing, p. 943–
947, 2008.

[17] K. Dimitropoulos, P. Barmpoutis, C. Zioga, A. Kamas, K. Patsiaoura and N. Grammalidis,
"Grading of invasive breast carcinoma through Grassmannian VLAD encoding," PLoS ONE,
p. 1–18, 2017.

[18] S. Moccia, "Confident texture-based laryngeal tissue classification for early stage diagnosis
support," Journal of Medical Imaging, p. 2017.

[19] R. Zhao, "TriZ-a rotation-tolerant image feature and its application in endoscope-based
disease diagnosis," Computers in biology and medicine, pp. 182-190, 2018.

[20] H. Sun, X. Zeng, T. Xu, G. Peng and Y. Ma, "Computer-Aided Diagnosis in
Histopathological Images of the Endometrium Using a Convolutional Neural Network and
Attention Mechanisms," IEEE Journal of Biomedical and Health Informatics, pp. 1664-1676,
2020.

[21] A. Gòmez-Rìos, S. Tabik, J. Luengo, A. Shihavuddin, B. Krawczyk and F. Herrera, "Towards
Highly Accurate Coral Texture Images Classification Using Deep Convolutional Neural
Networks and Data Augmentation," Expert Systems With Applications, pp. 1-45, 2018.

[22] L. Nanni, A. Manfè, G. Maguolo, L. A. and S. Brahnam, "High performing ensemble of
convolutional neural networks for insect pest image detection," Elsevier, pp. 1-12, 2022.

[23] I. Patrini, M. Ruperti, S. Moccia, L. S. Mattos, E. Frontoni and E. DeMomi, "Transfer
learning for informative-frame selection in laryngoscopic videos through learned features,"
Medical & Biological Engineering & Computing, pp. 1-14, 2020.

[24] N. L., P. M., S. Brahnam and L. A., "Feature transforms for image data augmentation," arXiv,
24 January 2022.

[25] L. Nanni, S. Ghidoni and S. Brahnam, "Deep features for training support vector machines,"
Journal of Imaging, p. 177, 2021.

[26] L. Nanni, E. D. Luca and M. L. Facin, "Deep learning and hand-crafted features for virus
image classification," J. Imaging, p. 143, 2020.

[27] A. R. Geus, A. R. Backes and J. R. Souza, "Variability Evaluation of CNNs using Cross-
validation on Viruses Images," VISIGRAPP, vol. 2020, pp. 626-632.

[28] Z.-j. Wen, Z. Liu, Y. Zong and B. Li, "Latent Local Feature Extraction for Low-Resolution
Virus Image Classification," Journal of the Operations Research Society of China, pp. 117-
132, 2020.

[29] A. R. B. a. J. J. M. S. Junior, "Virus Classification by Using a Fusion of Texture Analysis
Methods," 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP), pp. 290-295, 2020.

[30] F. L. C. d. Santosa, M. Paci, L. Nanni, S. Brahnam and J. Hyttinen, "Computer vision for
virus image classification," Bi-osystems Engineering, pp. 11-22, 2015.

[31] L. Nanni, S. Ghidoni and S. Brahnam, "Ensemble of Convolutional Neural Networks for
Bioimage Classification," Applied Computing and Informatics, pp. 19-35, 2021.

[32] S. Boudra, I. Yahiaoui and A. Behloul, "A set of statistical radial binary patterns for tree
species identification based on bark images," Multimedia Tools and Applications, pp. 22373-
22404, 2021.

[33] V. Remeš and M. Haindl, "Bark recognition using novel rotationally invariant multispectral
textural features," Pattern Recognit Lett, p. 2019, 612-617.

[34] V. Remes and M. Haindl, "Rotationally Invariant Bark Recognition," Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition (SPR) and
Structural and Syntactic Pattern Recognition, pp. 22-31, 2018.

[35] F. Long, J.-J. Peng, W. Song, X. Xia and J. Sang, "BloodCaps: A capsule network based
model for the multiclassification of human peripheral blood cells," Computer methods and
programs in biomedicine, 2021.

[36] F. Ucar, "Deep Learning Approach to Cell Classificatio in Human Peripheral Blood," 2020
5th International Conference on Computer Science and Engineering, pp. 383-387, 2020.

[37] Y. Song, W. Cai, H. Huang, D. Feng, Y. Wang and M. Chen, "Bioimage classification with
subcategory discriminant transform of high dimensional visual descriptors," BMC
Bioinformatics, 2016.

[38] L. P. Coelho, "Determining the subcellular location of new proteins from microscope images
using local features," Bioinformatics, 2013.

[39] J. Zhou, S. Lamichhane, G. Sterne, B. Ye and H. Peng, "BIOCAT: a pattern recognition
platform for customizable biological image classification and annotation," BMC
Bioinformatics, 2013.

[40] L. Shamir, N. Orlov, E. D. M., T. J. Macura, J. Johnston and I. G. Goldberg, "Wndchrm - an
open source utility for biological image analysis," Source Code Biol Med, 2008.

[41] S. Bahaadini, "Machine learning for Gravity Spy: Glitch classification and dataset," Inf. Sci.,
pp. 172-186, May 2018.

[42] V. Remeš and M. Haindl, "Bark recognition using novel rotationally invariant multispectral
textural features," Pattern Recognit Lett, pp. 612-617, 2019.

	CORSO DI LAUREA IN INGEGNERIA INFORMATICA
	“IMAGE AUGMENTATION TECHNIQUES FOR CONVOLUTIONAL NEURAL NETWORKS”

	References

