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Abstract

This thesis investigates the environmental impact of solving lin-
ear systems with a parallel solver for sparse matrices. Possible
optimization strategies are first explored through a literature re-
view, with particular emphasis on software libraries. Then, the in-
vestigation concentrates on the COUNTDOWN library developed
by Cineca, which promises a significant reduction in energy con-
sumption (up to 25 %) in MPI applications.

The thesis includes a review of basic mathematical concepts, such
as linear solvers and preconditioners, before delving into the op-
eration of parallel communication in MPI, which is essential for
the chosen solver, named Chronos. An overview of available li-
braries is given, highlighting their strengths and limitations. Then,
the COUNTDOWN library is analyzed in detail, its features are ex-
amined, and its impact on energy consumption is experimentally
evaluated. The thesis concludes with a reflection on the limitations
imposed by the operating system on the optimal management of
CPU frequency, highlighting the challenges and opportunities for
energy optimization in high-performance computing systems.

The work in this thesis has been partially supported by the Spoke
1 “Future HPC & Big Data” of the Italian Research Center on
High-Performance Computing, Big Data and Quantum Comput-

ing (ICSC) funded by MUR Mission 4 - Next Generation EU (NGEU).
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Thesis Outline

In the current context of growing environmental awareness and concern about climate
change, the technology sector is at the center of a debate about its environmental impact.
This debate is particularly relevant in the context of computing and cloud, where the rapid
expansion of digital infrastructure has raised questions about the sustainability of current
practices. To answer this question, data centers increasingly boast about their environ-
mental choices, such as buying only green energy. Within this discussion, the present work
aims to explore in detail the various dimensions of the environmental impact of computing
and cloud, focusing on issues such as data center energy consumption, although there are
many other challenges such as water consumption, e-waste management, and the impact
of noise generated by technological infrastructures [1]. In this paper we aim to encour-
age critical reflection on current practices and promote initiatives aimed at reducing the
environmental impact of High Performance Computing (HPC).

Until a decade ago, HPC was primarily used for scientific and engineering compu-
tations, but now HPC is used by computer engineers as well as scientists and engineers,
and its use has increased dramatically as we have entered the age of artificial intelligence,
machine learning, cryptocurrency mining, and the seemingly infinite data storage capacity
made possible by cloud computing. This increase in HPC use requires greater attention to
the efficiency of these processes.

Specifically, in this thesis we want to evaluate the energy impact, energy consumption
and potential savings obtained by using a library developed by the CINECA consortium
when applied to a sparse matrix linear equation solver developed by a spin-off of the Uni-
versity of Padua. The aim is to study the performance of the library, both in terms of per-
formance and profiling, and to identify possible improvements or novel strategies. Using a
combination of experimental simulations and analytical studies, this work aims to provide
a comprehensive analysis of energy consumption patterns and computational efficiency.

The paper is organized as follows: chapter 1 gives a general introduction to the topic,
listing the main topics covered; after this chapter, we begin with the mathematical premises,
described in chapter 2. Chapter 3 discusses Chronos, a linear solver designed to run on clus-
ters of computers and communicate via MPI, described in chapter 4. After that, the next
chapters, 5 and 6, cover the state of the art relative to power management within computers
and MPI, in particular Linux power management, and the current literature on algorithms
for optimizing runs in MPI are described. Finally, chapter 7 provides an overview of the
library we have chosen to see if it really brings about any energy savings through the
experiments in chapter 8. In this chapter, an exploration is made between computational
efficiency and energy consumption, where we try to find a delicate balance between the
two to achieve optimal performance with the highest possible efficiency.

The analysis also assesses the practical implications of the results obtained, consid-
ering possible applications in various fields such as scientific research, engineering sim-
ulations, and high performance computing. Closing the analysis is chapter 9, which sum-
marizes everything seen in the current work and presents ideas on how to pursue the path
of energy efficiency in clusters, with some ideas for optimizing power consumption in
big.LITTLE architectures, which are becoming increasingly popular.






Introduction

In this chapter we would see the main reasons why I decided to analyze this topic, namely
the analysis of energy consumption and the potential that the use of energy saving algo-
rithms and systems can bring. This chapter begins with an introduction to current parallel
architectures, section 1.1, continues with sections from 1.2 to 1.4, which discusses the
current environmental and ecological challenges that plague the world of supercomputers.

1.1 Parallelism in Computing Software and Architectures

Parallelism is a fundamental concept in computational science and engineering, offering a
way to exploit the computational power of modern hardware architectures effectively. The
method of sequential execution was great as long as the frequency of computers increased
every year, but this stopped as the physical limits of silicon and manufacturing processes
were reached in the early years of the new millennium, then the engineers involved in CPU
development said that the best way to solve this problem was to create parallel systems,
so that there were more processors running things in parallel. This marked a change from
depending on faster clock speeds, which necessitated greater power usage, to a parallel ap-
proach that focused always on increasing performance but also on energy efficiency, since
a system with two CPUs clocked at 2.0 GHz consumes less than a system with one CPU
clocked at 4.0 GHz, as described in section 5.1.2. This approach led to the incorporation
of various levels of parallelism in the hardware.

Insufficient use of parallel programming techniques is, again, a major limitation in most
software frameworks. This problem is exacerbated by the common tendency not to exploit
parallelism even in the slightest; especially on the part of programmers who are often so
preoccupied with the main problems of parallelism, problems studied and solved, through
excellent techniques for years, such as deadlocks, that is, that there are two processes that
wait for each other, and starvation, that is, there are processes that never execute since
others are stealing their resources, they have consistently overlooked the potential advan-
tages of parallelism in their program, relegating it to specialized applications. However,
awareness of the importance of parallel programming is growing, albeit belatedly. This
change is partly attributed to the increasing adoption of asynchronous call abstractions
along with event-oriented programming, as seen in languages such as JavaScript, C# and
on the Android platform. The abstraction of asynchronous calls, offers a quick and easy

3



CHAPTER 1. INTRODUCTION

method of moving code from the main thread to background workers that do the compu-
tation, however, is advantageous especially in applications involving user interaction and
web servers, but fails to even remotely exploit the capabilities of parallel execution.

In fact the concept of parallelism within processors is not new, within a CPU there is
the arithmetic unit, ALU, which is already highly parallel in itself, if you think about it
the various bit-to-bit addition and subtraction operations are already performed in parallel,
there are dozens of transistors that do a bit-to-bit sum and carry the rest back to the next bit
which is then summed. Same thing is done with the various sequential arithmetic instruc-
tions or for those more difficult than a simple sum. The level of thinking about this aspect
is seldom considered by developers, and it is not particularly meaningful to do so. The task
of organizing instructions in the most optimal sequence for the processor is handled by the
compiler. Instead developers worry about higher-level parallel execution problems, such
as deadlocks and starvation.

In addition to asynchronous programming, numerous alternative forms of parallel pro-
gramming have been devised in recent years, such as massively parallel programming,
introduced by GPUs, TPUs, and FPGAs. These methods of execution on dedicated accel-
erators competes with, but does not replace, classical multiprocessor execution. Based on
the design of parallel systems and their execution environments, the following classifica-
tions of parallel applications are recognized, with certain cases of overlap [2]:

Data-parallelism This technique involves applying the same operation to multiple data
elements in parallel. It is ideal for tasks that can be broken down into smaller com-
ponents, allowing each component to be independently processed on separate data
elements. For instance, image-processing tasks like convolution or matrix multi-
plication exhibit data-parallel characteristics, where the same operation is indepen-
dently applied to each pixel or element of the matrix.

A data-parallel job that operates on an array of n elements can be evenly distributed
between all processors. Data parallelism is widely used in matrix calculations, of-
fering easy parallelization and delivering outstanding results. A prominent example
is the straightforward multiplication of matrices. An instance of data parallelism, as
demonstrated in fig. 1.1a, involves an image processing system designed to detect
cats. This system can be run either in parallel or sequentially, with the clear advan-
tage that parallel execution is faster and does not pose any issues. In this case, the
image processing system looking for cats the smallest entity that can be parallelized,
constituting an individual activity.

Task-parallelism This method entails the simultaneous execution of multiple indepen-
dent tasks. As the name suggests, this approach assigns distinct tasks to different
processors, recognizing each task as the smallest unit of parallel execution.

In task parallelism, each task operates autonomously and can be executed concur-
rently with other tasks. This method is particularly advantageous for scenarios where
tasks can not be subdivided into independent units, such as parallel web crawling or
parallel sorting.

Task parallelism is widely used in vector or matrix analysis, each task dealing with
a distinct calculation, such as one the sum and the mean, one the variance, one the
median, offering trivial parallelization of functions. An example of task parallelism
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is the classic analysis of an image, illustrated in fig. 1.1b, one task is concerned
with seeing if there are cats, one with seeing if there are dogs, one with possibly
extracting text, and so on. In this case, the processing system looking for cats, or
dogs or text is the smallest entity that can be parallelized, constituting an individual
activity.

Massive parallelism or Vectorization This method is the ability to perform numerous
calculations or operations simultaneously by leveraging a very high number of pro-
cessing units with a reduced time for synchronization. It is a programming paradigm
that involves breaking down a large computational problem into smaller parts that
can be executed in parallel on multiple processing units without having to wait for
other resources to provide faster execution and better performance.

This type of programming typically involves data parallelism at a low level and
with a high degree of parallelism. Massive parallelism finds widespread application
in scientific simulations, machine learning, and the realm of big data analytics. This
capability can be harnessed through diverse architectures such as GPUs, TPUs, and
FPGAs. The potency of massive parallelism enables the handling of vast datasets
and the execution of intricate computations that would be unfeasible or beyond the
scope of possibility with sequential processing.

Vectorization is a specific form of massive parallelism, in which a computer pro-
gram that operates on CPUs is transformed from a scalar implementation, which
handles only one pair of operands at a time, to a vector implementation, which han-
dles multiple pairs of operands simultaneously.

A practical example of massive parallelism is the classic multiplication of matrices,
a task that demands access to numerous cells and can be highly parallelized, thereby
avoiding synchronization delays through simultaneous execution by various threads.

Asynchronous event-based programming Asynchronous programming is a method that
allows your program to initiate a task that may take a long time to complete and still
remain responsive to other events while the task is ongoing, instead of being required
to wait for the task to be completed. This form of programming typically involves
task-oriented programming, where a user interface needs to react to user actions
immediately. The event handler typically manages the user interface, initiating and
stopping background tasks when there is any user interaction with the application
or by running them on other threads.

Typically, Data-parallelism and Task-parallelism are purely paradigms used at CPU
level, while Massive parallelism is generally used in GPUs and hardware accelerators,
while Vectorization is also used in CPUs through the Advanced Vector Extensions (AVX)
and Streaming SIMD Extensions (SSE) instructions. It must be emphasized that an ap-
plication may correspond to several types, for example it is generally easier to find task-
parallelism applications that are also data-parallelism. Or Data-parallelism applications
that make use of asynchronous event management.

Furthermore, according to the different hardware architectures. Four classes are iden-
tified, and the following classes are referred to as Flynn’s taxonomy, illustrated in fig. 1.2

[S].
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Figure 1.1: Example of date and task parallelism.

Single Instruction Single Data or SISD The SISD process executes instructions and han-
dles data one at a time. It sequentially processes one instruction after another, with-
out any parallelization.

Multiple Instruction Single Data or MISD In this method, we continue to manipulate
a single data block while simultaneously executing multiple instructions.

Single Instruction Multiple Data or SIMD The processing resources in question have
control units that are shared among multiple cores. This particular design determines
the features of these computing resources. One notable feature is the capability to
execute a single instruction simultaneously on all available processing resources. As
a result, the same instruction can be applied to a large set of data elements simul-
taneously, utilizing all available processing resources. However, it is important to
note that not all processing resources in SIMD machines are universal. These ma-
chines typically have a limited set of instructions, which means that SIMD systems
are often used for solving specific problems.

Multiple Instruction Multiple Data or MIMD In this case, every processing resource
possesses its own control unit, allowing it to execute various instructions indepen-
dently on a distinct set of data. As a result, this architecture can encompass multiple
cores, CPUs, or even machines, enabling the simultaneous execution of different
tasks on multiple devices.

The MISD architecture may appear unconventional, but it is employed in scenarios
where ensuring fault tolerance is crucial, such as the flight control computer of the Space
Shuttle program.

1.2 Challenges of High Performance Computing

High performance computing (HPC) involves combining computing resources to achieve
higher performance levels compared to a single workstation, server, or computer. An HPC

6
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Figure 1.3: Architecture of a distributed computer.

Source: Kha [7].

system is a system consisting of many CPUs, GPUs, hard disks placed in parallel and
interconnected at very high speed through a local area network. HPC systems can range
from specialized supercomputers to clusters composed of multiple individual computers.

Typically in an HPC system a small group of two or four CPUs are part of a single
node, each with several cores, thus forming a distributed architecture. Some of these nodes
are intended for computation, others for storage, and they are all interconnected by high
or very high-speed networks. A graphic illustration of a data-parralelism performed on a
distributed system can be found in fig. 1.3.

High Performance Computing (HPC) presents a multitude of challenges, often stem-
ming from the nature of executing complex computations on vast datasets. One prevalent
issue is that of execution problems, that encompass a range of obstacles hindering the rapid
execution of HPC applications. These problems may include bottlenecks in data transfer,
resource contention, load balancing issues, and synchronization overheads, among others.
Additionally, factors such as hardware limitations, software inefficiencies, and algorithmic
complexities can exacerbate these challenges.

Despite this, a distributed system is only the basis of today’s HPC, as there other prob-
lems. The main challenges are listed below.

Execution time and scalabilty In order to obtain results quickly and minimize execution
queues, it is necessary for supercomputers to have a large number of nodes. This is
since there is a growing demand for high performance and fast systems. In order to
handle workload fluctuations, machines must possess scalability capabilities, i.e. to
respond well to an increase or decrease in load, and optimisation capabilities, i.e. to
manage nodes wisely by trying to assign to a load of 8 nodes, 8 nodes with a more
optimised network path, furthermore, the load must be equidistributed among all
the machines available and avoid that the machines with a lower name are subject
to greater use than the others. This ensures that each machine is given appropriate
periods of rest, enabling a balanced distribution of machine usage rather than some
machines being more heavily utilized than others.

Fault Tolerance In HPC systems, the probability of hardware failures rises due to the
presence of numerous components. It is essential to guarantee fault tolerance in
order to uphold the reliability and availability of the system. To mitigate the conse-
quences of failures and ensure uninterrupted operation, techniques like redundancy,
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checkpointing, and error detection and correction mechanisms are utilized.

Power consumption and Energy Efficiency The power consumption of HPC systems
is a significant concern, both from an environmental and economic perspective.
Energy-efficient design and operation strategies are essential to reduce the envi-
ronmental impact and operating costs of HPC facilities. This includes optimizing
hardware components, implementing power management techniques, and explor-
ing alternative cooling solutions. Optimizing energy consumption more can also be
done with smart grid strategies, such as turning off some nodes when there is any
sunshine and related photovoltaic production, or when energy is cheaper with hourly
billing. Selecting efficient air conditioning systems that can effectively remove heat
is crucial. In many cases, the amount of heat that needs to be dissipated makes it
impractical to use traditional HVAC evaporators to release it into the external air.
Instead, more advanced cooling systems like geothermal or other alternatives are
required. By utilizing these more efficient systems, energy consumption can be sig-
nificantly reduced. For instance, a geothermal system has the potential to decrease
energy consumption by up to 40 percent.

Storage and Data Management The storage, retrieval, and analysis of large volumes of
data produced and handled by HPC applications present substantial difficulties. To
guarantee prompt data access and reduce storage expenses, it is essential to employ
effective data management techniques such as data compression, caching, and dis-
tributed file systems.

1.3 Prioritize Power and Energy Efficiency

The emphasis on energy efficiency, even when faced with time constraints, is a novel
concept in the current computing environment. While computational speed is typically
prioritized, as we have seen an HPC system has many challenges, but the one we would
analyze here is primarily a focus on Power consumption and Energy Efficiency, this topic
perhaps being a recent concept, as computational speed is typically prioritized over en-
ergy efficiency. However, it is crucial to redirect our attention toward sustainable and
environmentally-friendly computing solutions. This shift not only supports global initia-
tives to reduce carbon emissions, but also tackles the rising energy expenses linked to high
performance computing.

For example, in 2007, Seager of Lawrence Livermore National Laboratory (LLNL)
noted that the large consumption of electricity to power and cool his supercomputers leads
to exorbitant energy bills, e.g., $14 M /year ($8 M /year to power and $6 M /year to cool)
and in total spent a good $150 M of electricity for a system that cost $180 M. At Los
Alamos National Laboratory (LANL), the building for the ASC Q supercomputer cost
nearly $100 M to construct [8]. The italian CINECA consortium in 2021 absorbed as much
as 38 GW h, or about €2.2 M. Therefore, it is essential to try to minimize the costs of
powering and conditioning the data centers.
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1.4 Top500 and Green500

The Top500 list is a comprehensive ranking of the 500 most powerful computer systems
currently in use worldwide. First published in 1993, this list is updated twice a year to offer
a detailed overview of the highest-performing systems. The ranking methodology is based
on the Linpack benchmark, with the best performance achieved in floating point opera-
tions per second (FLOPs) serving as the primary yardstick. Unfortunately, the historical
focus on speed has resulted in supercomputers known for their high power consumption
and the requirement for advanced cooling systems. Currently, we have reached a level of
computing performance that amounts to 10'® operations per second, utilizing the IEEE
754 Double Precision standard. This significant achievement has given rise to the popular
term “Exascale computing”.

Given the increasing environmental footprint and the increased energy consumption
of high performance computing (HPC) facilities, researchers at Virginia Tech introduced
the Green500 list. This list, initiated by Sharma et al. [8], Feng and Cameron [9], aims to
reassess the Top500 list of supercomputers by placing greater importance on performance
per Watt rather than focusing solely on processing power.

Although the Top500 persists in its role as a benchmark for computational prowess, the
Green500 emerges as a crucial counterpart, directing attention to the ecological impact of
HPC operations. The Green500 leverages the “FLOPs-per-Watt” metric. This metric un-
derscores the efficiency of computational power utilization, providing a green perspective
beyond raw processing capabilities.

Over time, the Green500 has been incorporated into the TopS00 ranking in order to en-
courage the energy efficiency of supercomputers. This integration allows for community
input of new and diverse perspectives on energy-efficient supercomputers. The Green500
endeavors to reshape the discourse around supercomputer evaluations, encouraging a bal-
anced consideration of factors such as reliability, availability, and usability, ultimately
contributing to a more environmentally responsible and economically feasible landscape
in supercomputers.

Tables A.1 and A.2, in appendix, showcase the top 10 computers from the Top100 and
Green500 lists. It is intriguing to note that among these, 3 supercomputers secure posi-
tions in both rankings, indicating a convergence between high performance and energy
efficiency. At the same time, the remaining positions are filled by other systems, under-
scoring diversity in the landscape of supercomputer architectures and emphasizing the
significance of considerations spanning both performance and energy efficiency in evalu-
ating excellence in high performance computing.

The observation of a predominance of European supercomputers among the most
energy-efficient is noteworthy and likely attributable to higher energy costs in the region
[10]. The focus on energy efficiency in the Green500 list is in line with the wider global
movement towards sustainable computing practices. European countries, often character-
ized by higher energy prices and a strong commitment to environmental sustainability,
may be incentives to invest in supercomputer systems that prioritize efficiency to mitigate
operational costs and minimize environmental impact. This regional trend underscores
the influence of economic and environmental factors in shaping the landscape of energy-
efficient supercomputers.
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This chapter is dedicated to an overview of linear systems and their solving methods, fo-
cusing on large linear systems with a very large number of unknowns, solving a linear
system is a very energy-intensive activity and widely used in simulations of physical and
engineering processes. This necessity introduces the general problem of solving linear
systems of equations, which can be found in both engineering and science. Solving linear
systems of equations, as expressed in the form described in eq. (2.2), emerges as a critical
computational task, typically accounting for a substantial portion, ranging between 70 %
and 80 %, of the total computational time in various domains of computational science and
engineering. This prominence is particularly evident when problems in continuous solid
mechanics are addressed by the implicit finite element method. In large-scale simulations,
solving linear systems can be the most expensive task, accounting for up to 99 % of the
total cost of the simulation. A linear system is represented as a set of equations, as shown
ineq. (2.1):

1171 + a1 92 + - 4+ a1 T, = by

2171 + 29T + -+ + A2, Ty, = by 2.1)

am 121 + Am, 202 + 1+ AmnTn = bm

However, this representation does not fit well with the large linear equations found in
physical and engineering models; so one prefers to express it in matrix form, where each
individual coefficient a;;,7 € [1,n],j € [1,n] can be seen as an element of the matrix
A € R™" that represents the system, every single known term b; is part of the vector
b € R” and every single unknown term z; is part of the vector x € R". The number of
equations is denoted by n. This results in the following matrix form, described in eq. (2.2).

Ax =b (2.2)

Generally in linear systems found in engineering and science, one works with symmet-
ric and positive definite matrices (SPD). An example of a symmetric and positive definite
matrix (SPD) is shown in eq. (2.3), where the letters a, b, ..., h represent the values of the
diagonal and the colored dots represent the symmetric and positive values in the matrix.

11
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(2.3)

In contemporary industrial applications, the number of unknowns, expressed as n, can
quickly escalate to several hundred million. In contrast, research experiments have suc-
cessfully tackled systems with billions of unknowns. The crucial difference lies in the
problems: Industrial challenges are characterized by complex geometries, irregular dis-
cretization, and matrix coefficients that exhibit heterogeneity. In contrast, large-scale re-
search experiments often involve incremental refinement of regular or relatively regular
grids. Despite their smaller scale in terms of unknowns, real-world industrial problems
present formidable challenges due to their inherent complexity arising from complex ge-
ometries, irregular discretization, and matrix coefficient heterogeneities.

The nature of the matrices involved in these linear systems varies considerably. Sparse
matrices, where the majority of elements are zero, are prevalent in simulations with irreg-
ular geometries or irregular discretizations. These matrices require special techniques for
efficient solution methods. On the other hand, dense matrices, where most elements are
nonzero, are common in simulations with regular or structured discretization. A graphi-
cal representation of dense and sparse matrices is given in fig. 2.1. Triangular matrices,
whether upper or lower, also appear in certain computational scenarios and may require
customized solution approaches. The size of these matrices ranges from the small scale
encountered in research experiments to the large scale characteristic of industrial appli-
cations. The sections from 2.1 to 2.4 describe the functionality of a linear system solver
through the approximation methods.

For nonlinear problems, a more complex approach is required. Within each static time
step, the system of nonlinear equations is linearized and a solution is sought using the
Newton-Raphson (NR) method [11, 12].

2.1 Algebraic Solver

In the context of finite element simulations, the matrix A associated with eq. (2.2) is char-
acterized by sparsity, symmetry, and often positive definiteness. This is especially true
for problems in solid mechanics. For linear problems, a singular solution to eq. (2.2) is
adequate. Several methods exist to solve eq. (2.2), encompassing both direct and iterative
methods that demonstrate excellent performance on parallel computers.

The most straightforward method to solve eq. (2.2) is by calculating the inverse of ma-
trix A. This process can be accomplished through various techniques, including Crout’s

12
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(a) Dense Matrix. (b) Sparse Matrix.

Figure 2.1: Graphical representation of a dense matrix, where there are no zero values
(white) and many non-zero values (green), and a sparse one where there are many zero
values and few non-zero values.

Source: Pool et al. [13].

factorization (LU) and Cholesky factorization. Crout’s factorization (LU) decomposes
matrix A into two components: a lower triangular matrix (L) and an upper triangular ma-
trix (U). Once matrices L and U are obtained, the system of equations can be more readily
solved. Cholesky factorization, specifically applicable to symmetric and positive definite
matrices, further simplifies the resolution process.

Methods involving the calculation of the inverse, such as Crout’s factorization (LU)
or Cholesky factorization, are generally excellent for small and dense matrices. A matrix
L obtained by Crout or Cholesky factorization from the matrix in eq. (2.3) is seen as that
represented in eq. (2.4). Where the coloured dots assume the same position and the white
dots with a black border are new. However, for large-sized matrices or sparse matrices,
there are additional considerations to take into account.

w -
o b
C
L= o d . (2.4)
o e €
° f
° g
o o @ h

Large-sized matrices may demand significant computational resources for inverse cal-
culation, and in certain cases, the outcome might be influenced by numerical issues. More-
over, in the case of sparse matrices, where the majority of elements are zero, calculating
the inverse becomes even more computationally expensive, and the sparse characteristics
may not be fully exploited.
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To address these challenges, alternative approaches are often preferred, such as itera-
tive methods (e.g., the conjugate gradient method) or direct solution algorithms specifi-
cally designed for sparse matrices (e.g., METIS or SuperLLU). These methods are designed
to maximize computational efficiency and minimize resource usage when dealing with
large or sparse matrices.

2.2 Preconditioner

A preconditioner [12] is an entity that is used in the context of solving linear systems,
particularly in iterative methods, to improve the convergence of the algorithm. Simply put,
a preconditioner is used to render the linear system so that it becomes more amenable to
resolve with iterative solvers. In iterative methods, the preconditioner allows the iterative
algorithm to converge more rapidly to the desired solution.

The concept of preconditioning arises from the need to solve large and sparse linear
systems, which can be computationally expensive and difficult to solve with direct methods
such as LU factorization. Preconditioning is a highly active research field that plays a
critical role in solving linear systems of equations containing millions or even billions of
unknowns.

There are various types of preconditioner, each suitable for the specific characteristics
of the problems to be solved. Some common examples include Jacobi preconditioners,
Gauss-Seidel preconditioners, incomplete LU factorization (ILU) preconditioners, incom-
plete Cholesky factorization (IC) preconditioners, and QR factorization preconditioners,
among others.

Consider the linear system of equations described in eq. (2.2), for solving we need to
inverse the matrix A and calculate x = A~'b. The fundamental concept of preconditioning
involves the multiplication of the system by a matrix P—!, which serves as an approximation
to A~%, so that P! &~ A~! in a specific manner, although determining the precise criteria
for this approximation can be challenging.

We can obtain the left-preconditioned system, as shown in eq. (2.5a), or the right-
preconditioned system, as shown in eq. (2.5b). In the second scenario, we must solve the
equation Px =y as an additional step [12].

P 'Ax = (P'b) (2.52)
AP 'y = b. (2.5b)

Among the many preconditioners to be mentioned, we focus on the Preconditioned
Conjugate Gradient (PCG), in particular the accelerated Newton-Chebyshev polynomial
preconditioner [14].

This preconditioner leverages Chebyshev polynomials, which are a type of orthogonal
polynomial, to approximate the inverse of the matrix. By using Chebyshev polynomials in
combination with Newton’s method, the preconditioner aims to accelerate the convergence
of iterative solvers by improving the spectral properties of the system.

The Newton-Chebyshev polynomial preconditioner is particularly effective for sym-
metric positive definite (SPD) matrices, where it can efficiently reduce the condition num-
ber of the system, leading to faster convergence of iterative solvers such as the conjugate
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gradient method. A comprehensive explanation of the PCG method can be found in Berga-
maschi et al. [14], the final expression of the discrete function that needs be minimized:

h —

The algebraic problem can be obtained by applying the first order optimality condi-
tions:

G"h — aBu + Ap = 0,
—aB"h + G'u - C'p =0, 2.7)
Ah —Cu=q

where « is typically around 1, h € R represents the hydraulic head on fractures, u €
R™ represents the flux on the traces, and p € R™ represents the Lagrange multipliers. The
vector q € R™" includes the boundary conditions and forcing terms. Generally, n? = n”,
although in this problem, n* may be either larger or smaller than n". The matrices in

eq. (2.7) are defined as follows:

» The matrices G" and G" are symmetric positive semi-definite (SPSD) matrices,
but they are often rank-deficient. The matrix G” has a fracture-local structure, with
block-diagonal elements that vary in size depending on the dimensions of each frac-
ture. On the other hand, G* has a global nature and operates on degrees of freedom
associated with different fractures.

* The rectangular coupling blocks B and C are both in the set of real numbers R X"
These blocks are defined by the inner products between the basis functions of H"
and U". The matrix C is fracture-local, meaning it has rectangular blocks whose size
depends on the dimension of each fracture and the related traces. On the other hand,
matrix B = C + E is a combination of matrix C and matrix E, where E contributes
globally and has zero entries in the positions corresponding to the nonzero entries
of the rectangular blocks of matrix C.

* The matrix A € R""*"" is both symmetric positive definite (SPD) and fracture-
local, meaning it has a block diagonal structure. Each diagonal block is obtained
by discretizing the V - (KV) operator over a fracture, and therefore has the typical
structure of a 2-D discrete Laplacian.

Equation (2.7) can be written in a compact form as:

G" —-aB A h 0
-aBT G -CT ul|=1,0 = Kox = fy, (2.8)
A —C 0 p q

where K is a symmetric matrix with a leading block that has a deficient rank.
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2.3 Algebraic Multigrid (AMG)

This is where Algebraic Multigrid (AMG) comes into play. AMG is an advanced technique
focused on improving the efficiency of solving linear systems, especially those involving
large sparse matrices. AMG employs multigrid methods, an algebraic approach, and tech-
niques like aggregation, smoothing, and interpolation. The use of AMG preconditioning
ensures that convergence is achieved in a few iterations, regardless of the mesh size or with
only a minor dependence on it.

One major limitation of AMG preconditioning is that it is not yet a fully automated
method, and instead relies on the expertise of the user to properly set up and fine-tune
the parameters. Incorrect configuration of AMG solvers can result in slow convergence,
excessively costly preconditioners, and in extreme cases, failure to obtain a solution [11].

Typically, an AMG method relies on some primary components, the interaction of
which determines the overall effectiveness of the method:

Multigrid Methods These are iterative approaches to solving systems of linear equations.
They use approximate solutions at different scales (or grids) of the computational
grid, gradually reducing the size of the system for efficient problem solving.

Algebraic Approach Unlike multigrid geometric methods that operate directly on the
geometric grid, AMG is based on an algebraic representation of the matrix of the
linear system. This means that AMG can be applied even to matrices for which a
natural geometric grid is not available.

Aggregation A key phase in AMG, where grid points are grouped together to form “ag-
gregates”. These aggregates are then used to build a more efficient representation
of the system, accelerating convergence.

Smoothing This involves applying an inner preconditioner to dampen high-frequency er-
ror components.

Smooting also derives from the preconditioner. Similarly as before, the operator of
A~ is typically approximated as M, and is defined by the following equation:

S=I1-wM'A
where I is the identity matrix and w is relaxation factor to ensure wp(M'A) < 2.
M =G"G

with G lower triangular. The second element of AMG is known as the coarse grid
correction (CGC), which refers to the operation of A-orthogonal projection. This op-
eration is designed to handle the low-frequency components of the error. In classical
AMG, the unknowns of a given level are partitioned into fine and coarse variables
(F/C), with coarse variables becoming the unknowns of the next level. The system
matrix is reordered according to this partitioning:

Ay A
A:[ 7 fC} (2.9)
Al A,
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with Ay, and A, are square matrices of size, respectively, ny X ny and n. x n.. The
prolongation operator P is expressed using the F / C ordering eq. (2.9) as follows:

(7

where W is an ny X n. matrix that stores the weights to interpolate variables from the
coarse level to the fine level. Since the system matrix is semi-positive definite (SPD),
the restriction operator R is defined using a Galerkin approach, which involves tak-
ing the transpose of P. The coarse-level matrix A. is obtained by performing a triple
matrix product:

A, =P"AP

In real applications, it is always desirable to have fast convergence and rapid coars-
ening, which means having high F/ C ratios. To achieve this, it is crucial to construct
effective prolongation operators that can reconcile these conflicting requirements.
Once all the components mentioned above have been defined, the setup phase of the
two-level multigrid method is finished, and the iteration matrix is provided:

(S)* (1 PA;'PTA) ()"

where 11 and 15 denote the number of smoothing iterations executed prior to and
following the coarse-grid correction, respectively. AMG employs smoothing tech-
niques to improve iterative convergence, efficiently reducing approximate errors in
solutions.

Coarsening The selection of coarse-level variables for the construction of the next level.
Interpolation defining the transfer operator between coarse and fine variables.

AMG preconditioning has a significant limitation in that it is not yet a fully automated
method. It relies on the expertise of the user and often requires careful adjustment of the
setup parameters. If the setup is incorrect, it can result in slow convergence or excessively
costly preconditioners. In the worst scenario, it may even cause the solution to fail [11].

2.4 Factorized Sparse Approximate Inverse (FSAI)

Factorized Sparse Approximate Inverse is an alternative technique to calculate the precon-
ditioning and Smoothing. The FSAI preconditioner M~ for an SPD matrix A is defined
in the classical manner:

M'=G'G=A" (2.10)

where G) is computed by minimizing the Frobenius norm of eq. (2.11).
IT— GL| @.11)

over the collection Ws of matrices that have a specified non-zero pattern S in the lower
triangular part. The matrix L in eq. (2.11) is the lower triangular factor of A and is not
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necessarily needed to obtain G. In fact, by differentiating eq. (2.11) with respect to the
entries g;; of G and setting it to zero, we get:

[GA);; = [L"].. V(i,j) €S (2.12)

]
Given that the transpose of matrix L, denoted as L’ is upper triangular and the pattern S
is lower triangular, the expression for matrix eq. (2.12) can be restated as follows:

0 t#7 .
[GA];; :{ . 172 (i,j) €S (2.13)
where [-];; represents the element in the i-th row and j-th column of the matrix enclosed in
square brackets, and [; refers to the diagonal element at position 7 in matrix L. Since L is
not known, the value of /;; in equation 2.13 is substituted with 1. The matrix G is obtained
by solving the following equation:

when multiplied by the Kronecker delta ¢;;, it is proportionally adjusted.

ijs
G =DG, D = [diag(G)]""/? (2.15)

thus obtaining the matrix G used in the definition of FSAI (Equation (2.10)). The scaling
(Equation (2.15)) ensures that the diagonal entries of the preconditioned matrix GAG” are
normalized to unity. Additionally, the Kaporin condition number of this matrix is mini-
mized among all matrices G € Ws. The Kaporin number of a symmetric positive definite
(SPD) matrix is defined as the ratio between the arithmetic and geometric mean of its
eigenvalues, and it provides an indication of the number of iterations needed for the Pre-
conditioned Conjugate Gradient (PCG) method to converge. The FSAI preconditioner is
highly robust as it can be computed for any choice of the non-zero pattern S, and the
resulting preconditioned matrix is guaranteed to be SPD.

The primary computational expense in the FSAI configuration is solving a series of n
small dense linear systems, where n represents the size of A, as a result of the component-
wise eq. (2.13). The cost is particularly influenced by the non-zero pattern S, which can be
chosen either statically, meaning it is predetermined, or dynamically, meaning it is gener-
ated during the computation of G. In this study, we propose the utilization of supernodes
in the static FSAI calculation [15].
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Chronos

This chapter analyzes in detail Chronos [11], a library that solves large linear systems.
Chronos is a solver developed by the University of Padua spin-off M3E (Mathematical
Methods and Models for Engineering), this library is designed to run in parallel on HPC
clusters as well as with GPU acceleration. This library is already very efficient in itself,
and within this thesis the idea is to try to make it even more efficient by treating it as a
black box, i.e. without modifying a single line of code.

To solve the linear system, Chronos uses Algebraic Multigrid (AMG, section 2.3) pre-
conditioners or Adaptive Factorized Sparse Approximate Inverse (aFSAI) within high per-
formance computing (HPC) clusters, as described in sections 3.1 and 3.3. It uses a hybrid
approach that integrates Message Passing Interface (MPI) and OpenMP directives to en-
able multi-threaded communication and parallel execution. The MPI communication is
described in chapter 4. This hybrid MPI-OpenMP implementation provides greater flexi-
bility and efficiency compared to pure MPI by taking advantage of the fine-grained paral-
lelism of modern computing resources.

Chronos uses object-oriented programming (OOP) to create a distributed matrix ob-
ject that can be used for multiple purposes. These purposes include representing a linear
system, a smoother, an AMG hierarchy, or a preconditioner. Regardless of which precon-
ditioner is used, the same iterative methods can be used to solve linear systems or eigen-
problems. The modular design allows seamless integration of CPU kernels with graphics
processing unit (GPU) and field programmable gate array (FPGA) kernels, while main-
taining the overall integrity of the library structure. Sections 3.3 and 3.4 describes all this.

Chronos is a fairly standard linear solver with AMG, but with minor differences, we see
that in AMG, unlike most smoothers, Chronos implements the adaptive Factorized Sparse
Approximate Inverse (aFSAI, section 2.4) for approximating the matrix M~! within the
AMG, where the matrix M~! takes an explicit form. In addition, the cost of implement-
ing aFSAI applications is typically much lower compared to Gauss-Seidel and Chebyshev
methods. This is mainly because the number of non-zeros in the inverse matrix M~ is
generally only 20 % to 40 % of the number of non-zeros in the matrix A. Chronos is dis-
tinguished from other options by its superior flexibility and efficiency when used in AMG.

Chronos includes a fourth component inspired by the principles of bootstrap and adap-
tive AMG. This component reveals hidden elements of the near-kernel of the linear oper-
ator when they are not previously available, introducing a valuable method for revealing
latent structure within the computational process.
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In particular, Chronos employs a Distributed Sparse Matrix (DSMat) storage scheme
that optimizes memory usage and computational efficiency for large-scale simulations, as
described in section 3.2. [11]. Finally, section 3.5 describes the distribution of the compu-
tational usage of the various components of Chronos.

3.1 Algebraic Solver and Preconditioner

The preconditioner used by Chronos are described in Bergamaschi et al. [14], this frame-
work that takes advantage of the nice properties of matrix A, that is, semi-positive definite
(SPD), block diagonal, and such that its inverse can be applied exactly to a vector at rela-
tively low cost and with polynomial acceleration.

From eq. (2.8) an appropriate permutation of K is used:

A 0 —-C h q
K= G" A |—-aB |, x=|p|, f=]0],
—oBT —CT| G* u 0

to avoid a singular leading block. Although the permuted matrix is no longer symmetric,
the 2 x 2 principal submatrix has a block diagonal structure and, hence, is invertible. In a
more compact form, the permuted system /Cx = f can be written as

RardIME
3.2 Chronos DDMat and DSMat

The Distributed Dense Matrices (DDMat) and Distributed Sparse Matrices (DSMat) are
managed by the DDMat and DSMat classes, respectively. The implemented classes offer
a storage system for both mass and RAM memory. Both the DDMat and DSMat stor-
age schemes necessitate partitioning the matrix into n, horizontal stripes of consecutive
rows, where n,, denotes the total number of active MPI processes. DDMat utilizes a stor-
age scheme where each stripe is arranged in rows among the processes. This arrangement
enhances memory access during multiplication operations, thus improving the efficiency
of DDMat for linear systems with multiple right-hand sides and eigenproblems. Addition-
ally, distributed vectors are stored as a single column DDMat. In DSMat, each stripe is
subdivided into a matrix of Compact Sparse Row (CSR), as shown in fig. 3.1.

The CSR matrices use a local numbering system where the rows and columns of the
block 7.J are assigned numbers ranging from 0 to n;_; and 0 to n;_1, respectively. Here,
ny and n; represent the number of lines assigned to processes (/) and (.J), respectively.
This approach allows the use of 4-byte integers, resulting in memory savings and improved
efficiency [11, 14]. For a schematic representation of the DSMat matrix storage scheme
implemented in Chronos, see fig. 3.2b.

Chronos uses the compressed sparse matrix (CSR) format to handle shared sparse
matrices, with the CSRmat class responsible for their management. The DSMat storage
scheme used in Chronos is particularly efficient for both the preconditioner computation
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Figure 3.1: Graphical representation of the compression from a sparse matrix (left) to a
CSR (right), the representation used by DSMat to store each individual subsection of the
matrix.

Source: Pool et al. [13].

distributed
vector

. A,C.G" B,G"

rank 1 .l.
4

713

1)

(a) Suddivision of the matrix
using 8 MPI processes. The
blue pixel represents a non- (b) Suddivision of matrix using 4 MPI process with the matrix
zero value. The red blocks A, C,G" (left) and B, G* (center). The portions of the matrices and
are assigned to the process 3. vectors stored by processor 1 are colored different colors.

Rank 1 stores 3 CSR blocks Rank 1 stores 4 CSR blocks:

1 diagonal and 3 extra-diagonal

Source: Isotton et al. [11]. Source: Bergamaschi et al. [14].

Figure 3.2: Schematic representation of the DSMat matrix storage scheme implemented
in Chronos.

and the SpMV product. This efficiency is due to the significant overlap between com-
munication and computation, which is illustrated in fig. 3.2a and further discussed in the
following subsection.

3.3 Preconditioner and MatrixProd

The Preconditioner class operates at the highest level of abstraction, managing the ap-
proximation of the inverse of a Distributed Sparse Matrix (DSMat). It takes a DSMat-
type object as input, along with an optional test space represented by a DDMat-type ob-
ject. The derived classes from Preconditioner include Jac, aFSAI, and aAMG, each han-
dling Jacobian-type, adaptive-FSAI-type, and aAMG-type preconditioners, respectively.
Specifically, each of these classes has the capability to function as a smoother within the
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Figure 3.3: Chronos main classes and hierarchies.

Source: Isotton et al. [11].

AMG framework [11].

The DSMat and Preconditioner classes both derive from the MatrixProd class, which
is responsible for managing the Sparse-Matrix-by-Vector product (SpMV) at the highest
level of abstraction. The SpMV operation is known to be the most resource-intensive task
in any iterative solver that utilizes preconditioning., has significantly influenced the design
of the entire library. As depicted in fig. 3.3, the MatrixProd class plays a central role in
the Chronos structure, working in conjunction with iterative solvers. Additionally, the Ma-
trixProdList class facilitates the creation of more generalized MatrixProd elements. This
class handles an implicit MatrixProd object, which is defined as the product of a sequence
of MatrixProd objects arranged in a list [11].

3.4 LinSolver and EigSolver

At the highest level of the pyramid hierarchy, we encounter the solvers for linear systems
and eigenproblems, specifically referred to as LinSolver and EigSolver, respectively. Lin-
Solver is responsible for managing the Krylov methods used to solve linear systems. It
requires a preconditioner and a linear system, both represented as MatrixProd-type ob-
jects, a right-hand side represented as a DDMat-type object, and an optional initial solu-
tion represented as a DDMat-type object. The LinSolver class currently has two deriva-
tives: PCG and BiCGstab. PCG manages the Preconditioned Conjugate Gradient iterative
method, while BiCGstab manages the Preconditioned Biconjugate Gradient Stabilized it-
erative method.

In contrast, EigSolver is responsible for handling the Krylov methods used to solve
eigenproblems, requesting an optional preconditioner and a linear system as MatrixProd-
type objects, together with a DDMat-type object representing the initial eigenspace. Cur-
rently, PowMeth and SRQCG are the two classes that inherit from EigSolver. PowMeth
implements the Power Method, while SRQCG implements the Simultaneous Rayleigh
Quotient Minimization iterative method [11].

3.5 Chronos MPI Call Distribution

The Chronos MPI call distribution, encapsulated within its hierarchy of classes, exhibits
a balance with around 20 % of the computational workload allocated to setup and pre-
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conditioning phases, and the remaining 80 % dedicated to the actual solution process, in
particular in the Preconditioned Conjugate Gradient (PCG) class. This deliberate alloca-
tion strategy is deeply ingrained in the design of Chronos, where the lower-level classes,
including DDMat, DSMat, and MatrixProd, collaboratively contribute to the setup and
preconditioning stages. These foundational classes lay the groundwork, ensuring opti-
mal management of distributed dense and sparse matrices, as well as handling the sparse
matrix-by-vector product (SpMV) at the highest level of abstraction. As the hierarchy pro-
gresses, the computational responsibility is transferred, the Preconditioner class, with its
derived subclasses such as Jac, aFSAI, and aAMG, further refines the preconditioning pro-
cess, making it adaptive and efficient. Eventually, at the apex of the class hierarchy, the
LinSolver and EigSolver classes take center stage, orchestrating the Krylov methods for
linear system and eigenproblem solutions, respectively.
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MPI (Message Passing Interface)

This chapter introduces MPI, the main communication system between nodes within par-
allel and distributed programming. The first section (4.1) analyses the main primitives that
MPI offers and their various types of communication. The second section (4.2) analyses
how communication between MPI processes is organized. The third and fourth sections
(4.3 and 4.4) attempt to summarize the current literature on the efficiency of MPI commu-
nication and communication models.

MPI (Message Passing Interface) [16, 17] serves as a widely used standard for the
programming of parallel and distributed computing systems, especially within high per-
formance computing (HPC) environments. This framework provides a collection of func-
tions and protocols designed to facilitate communication and coordination among multiple
concurrently running processes.

MPI is one of the most popular programming models for developing parallel applica-
tions. MPI offers various point-to-point and collective communication primitives. Collec-
tive communication is an important subset of MPI operations that involve the coordination
and exchange of data between multiple processes.

The MPI standard only defines communication between various processes and the var-
ious processes may be on different nodes, which means that the execution times of the
processes on the various nodes may be different. This means that the waiting times for
MPI primitives, which are always executed simultaneously on all nodes, can be different.
MPI, in its default implementation, puts the process in a power state and performs a busy
waiting to wait for all nodes to reach the MPI primitive [16, 17].

4.1 MPI Primitives

MPI communication operations are typically used when a group of processes needs to
work together to perform a common task, such as distributing data, gathering results, or
synchronizing their execution. These operations are designed to be efficient and are often
optimized for specific hardware and network topologies. Primitives can be divided into
point-to-point Communication and Collective Communication and can be identified into
blocking and non-blocking.
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Figure 4.1: MPI Point-to-Point Communication.

MPI_SEND | (blocking standard send) MPIISEND | (nonblocking standard send)

data transfer

from source MPI_WAIT
g

Etaskwaits
S gt e o
R s o _opme sy _geoge Al % _______ »

' task continues w hen MPT_WAIT
transfer doesn't begin [ 1oy RECV data transfer to usar's  transfer doesn't begm MPL_IRECV

until word has arrived bufferis Cornplete until word has arriv
that corresponding that corr&cpondmg
MPI_RECYV has been posted MPI_IRECV has been posted

(a) Flow example of a blocking and synchronous(b) Flow example of a non-blocking and asyn-
operation. chronous operation.

Figure 4.2: Flow example of Point-to-Point Communication.

4.1.1 Point-to-Point Communication

The main point-to-point instructions are MPI_Send and MPI_Recv, which are blocking
and synchronous operations, and their non-blocking and asynchronous twins, MPI_ISend
and MPI_IRecv. These instructions deal with sending and receiving data between two
nodes; they are illustrated in fig. 4.1.

4.1.2 Blocking and non-Blocking Communication

MPI provides two primary communication modes: synchronous and blocking, and asyn-
chronous and non-blocking. In synchronous and blocking mode, both threads involved in
the communication must reach the same MPI call simultaneously to exchange data. The
blocking wait mechanism for this mode is depicted in fig. 4.2a.

On the other hand, the asynchronous mode allows data to be stored in a sender buffer
until the recipient process is ready to receive or send it. However, it is crucial to confirm that
communication has taken place using the MPI_Wait function before reusing the buffer.
This step is necessary and may result in a busy wait in one of the two threads, as illustrated
in fig. 4.2b. Despite the increased efficiency of the non-blocking mode, its applicability is
not universal, and there are situations where it may not be feasible or advisable to use it.
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4.1.3 Collective Communications

Collective instructions are instructions for exchanging data and dividing data between
all threads. MPI offers numerous intuitive techniques to divide and unite data, includ-
ing MPI_Bcast, MPI_Scatter, MPI_Gather and MPI_Reduce, they are illustrated in
fig. 4.3, also called one-to-many or many-to-one instructions [16].

MPI_Bcast This operation allows one process (the root) to send data to all other processes
in a communicator. It is useful when one process has data that need to be shared with
all the others. The collective communication mechanism is shown in fig. 4.3a.

MPI_Scatter This operation allows one process (the root) to distribute data from one
process (the root) to all processes in a communicator. Each process receives a dis-
tinct portion of the data. The collective communication mechanism is shown in
fig. 4.3b.

MPI_Gather Gather is the reverse of Scatter. Collect data from all processes in a commu-
nicator and send it to one process (the root). The collective communication mecha-
nism is shown in fig. 4.3c.

MPI_Reduce Reduction operations perform a specified operation (e.g., sum, maximum,
minimum) on data from all processes in a communicator and return the result to one
process (the root). The collective communication mechanism is shown in fig. 4.3d.

Finally, MPI also offers techniques for working on split data and exchanging portions of
split data in many-to-many and not one-to-many or many-to-one mode; these instructions
are: MPI_Alltoall, MPI_Allgather, MPI_Allreduce and MPI_Reduce_Scatter,
there are illustrated in fig. 4.4 [16].

MPI_Alltoall This operation enables every process to transmit data to all other pro-
cesses within a communicator and can be viewed as a collective transposition oper-
ation that operates on data chunks. It is useful when each process needs to share data
with all others. MPI_Alltoall works as combined MPI_Scatter and MPI_Gather.
The collective communication mechanism is shown in fig. 4.4b.

MPI_Allgather This operation allows all processes in a communicator to share their
data with all other processes in the communicator. Each process sends its data and
receives data from other processes. At the end of MPI_Allgather, each process
has a copy of all the data gathered from all the other processes in the group. The
collective communication mechanism is shown in fig. 4.4a.

MPI_Allreduce Similar to Reduce, but the result is returned to all processes in the com-
municator. This is often used for global reductions. The collective communication
mechanism is shown in fig. 4.4c.

MPI_Reduce_Scatter This operation is a collective communication operation that per-
forms both a reduction operation and a scatter operation in a single step. The col-
lective communication mechanism is shown in fig. 4.4d.
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(c) MPI_Gather. (d) MPI_Reduce.

Figure 4.3: Graphic Representation of One-to-Many and Many-to-One MPI Collective
Communication, illustrating the structured flow and interconnection of data exchange
among multiple MPI processes.

Once again, instructions can fall into two categories: synchronous, signifying they are
blocking, or asynchronous, indicating they are non-blocking. In the latter scenario, the
non-blocking nature is denoted by adding the prefix I to the method name.

It is crucial to note that the MPI_Barrier instruction manages the synchronization of
all threads, as exemplified in fig. 4.5. The implementation of the MPI_Barrier involves
utilizing MPI_Gather with a 0 B message to the processor, followed by the MPI_Bcast
with a 0 B message from the processor. This example makes us realize that considering a
collective one-to-all or all-to-one instruction is not considered as functions that guarantee
that all threads start up at the same time, as there are MPI implementations that work via
prefix communication [18].

The main challenge within the realm of energy consumption is the energy wastage
incurred by collective instructions that encompasses multiple processes. As is well known,
the more processes there are, the more nodes to be expected, the more energy can be
wasted. In figs. 4.3 and 4.4, the key collective barriers introduced by MPI are presented
in the context of energy consumption. Furthermore, in fig. 4.5, one can observe how the
execution of MPI on 4 nodes contributes to a significant delay in the context of energy
consumption, as elucidated by Walker [16].

4.2 MPI Nodes, Tasks and OpenMP Threads

Given the extensive versatility of MPI in conjunction with OpenMP, allowing for use in
both intra-node and inter-node communications, the following entities can be identified
during program execution:

Nodes the number of distinct computers on which to run the program.

Tasks within a node, the number of threads dedicated to a specific task.

OpenMP Thread within a task, the number of threads used for parallel execution.
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Figure 4.4: Graphic Representation of Many-to-Many MPI Collective Communication,
illustrating the structured flow and interconnection of data exchange among multiple MPI
processes.
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Figure 4.6: Graphic representation of a computational structure implemented with MPI
Nodes, Tasks, and OpenMP Threads, showcasing the hierarchical organization of MPI
processes within nodes, individual tasks distributed across processes, and the concurrent
execution facilitated by OpenMP threads within each task.

The product of the number of Tasks and OpenMP Threads must equal the number of cores
in the respective node. This alignment ensures optimal utilization of resources and efficient
parallelization, enhancing the overall performance of the program.

Figure 4.6 is a graphical representation of a computational structure implemented with
MPI nodes, tasks, and OpenMP threads, showing the hierarchical organization of MPI
processes within nodes, individual tasks distributed across processes, and concurrent ex-
ecution facilitated by OpenMP threads within each task.

In the combined world of MPI and OpenMP, communication unfolds in three stages.
Threads communicate through via an entity called sockets or aggregators. Tasks share
data using MPI and Inter-Process Communication (IPC), as shown in fig. 4.7. The nodes
exchange information via MPI through the encapsulated Ethernet network in the UDP
datagram. Each of the 3 systems has advantages and disadvantages, in particular, it is very
important to consider the overhead that each package carries, which is why two different
strategies are used.

In OpenMP, data is shared through a common pool among threads. In contrast, data
exchange between Task and Nodes is based on the duo of multicast, particularly for broad-
cast operations, and the sophisticated Twisted Reflected Tree (TRT) system, which takes
the lead in operations such as reduce, scatter and gather, as shown in fig. 4.8. This system
not only facilitates data exchange but also optimizes communication pathways, since is
used to obtain a logarithmic rather than exponential data exchange system, optimizing the
time and number of data exchanged [20].

These differences are very important for analyzing certain phenomena that might not be
easy to understand at first glance. It’s crucial to balance the number of OpenMP threads to
avoid issues. An imbalance can strain socket memory, leading to performance degradation
due to the underuse of the advanced twisted-reflected tree (TRT) system. Correct task and
thread management is essential to maximize the potential of the MPI-OpenMP hybrid
framework.
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Figure 4.7: Graphical representation of the communication via UDP, IPC, and Socket of
an MPI application.

4.3 Modelling the Execution Time and Energy of an MPI
Program

The LogP model [21] is the main and first model that sums up the execution time of a
classical parallel MPI process. It consists of 4 elements:

Latency An upper bound on the delay incurred in transmitting from the source task to
its target task, often measured in time units required for communication, with a
relatively small message.

Overhead The time that a processor is actively involved in the transmission or reception
of each message. During this period, the processor is dedicated to communication
tasks, restricting its ability to perform other operations.

Gap The minimum time interval between consecutive message transmissions or recep-
tions at a processor. The reciprocal of the Gap represents the available per-processor
communication bandwidth, influencing the efficiency of communication.

Processor The count of processor/memory modules. For analysis, we assume the unit
time for local operations, called a cycle.

These metrics, Latency (L), Overhead (0), and Gap (g), are measured as multiples of
the processor cycle and provide a comprehensive model for estimating the communication
time. Figure 4.9 provides a visual representation of LogP parameters, specifically when
transmitting a message from processor A to processor B. This visualization serves as a
reference point for understanding the intricacies of communication patterns within the
LogP framework.

The model introduced by Alexandrov et al. [22], which constitutes the second paradigm
of parallel computation, builds on LogP and extends its capabilities by incorporating sup-
port for long messages. In this augmentation, an additional metric, denoted as Gap per
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Figure 4.8: Illustrating the communication principles of Twisted Reflected Tree (TRT) and
showcasing specific examples of Forest and Tree communication, along with multicast
strategies, in a distributed MPI environment.

32



4.4. ANALYSIS OF THE EXECUTION TIME AND ENERGY OF AN MPI PROGRAM

HHHHHH Processor B

H Processor A

K T=2-(Os+L+0r)+C H time

@ L Latency C' Time spent in computation % Or Recive Overhead Os Sender Overhead

Figure 4.9: Sending a message from processor A to processor B with the MPI_Send and
MPI_Recv primitive, doing some computation in B, and sending back to A in the context
of LogP.

Source: Al-Tawil and Moritz [27].

Data Unit, is introduced. This metric is defined as the reciprocal of the available per-
processor communication bandwidth specifically tailored for long messages that consist
of more than one data unit. Similarly to LogP, the values for G are measured in multiples
of the processor cycle.

The LogGPO model, introduced by Chen et al. [23], represents a significant advance-
ment by extending the LogGP model. It incorporates the ability to capture the overhead
resulting from high-level communication libraries. Moreover, it characterizes the poten-
tial overlap between computation and communication in MPI programs, offering a more
comprehensive understanding of the dynamics involved.

The LoGPX model, as proposed by Lin et al. [24], stands out as a complete model.
It possesses the versatility to degenerate into several popular models, including LogP,
LogGP, LoGPC, and LogGPO. This flexibility makes LoGPX a powerful and adaptable
tool for analyzing various parallel computing scenarios.

The work by Frank et al. [25] presents an abstraction of the LogPC model, the LoPC
model that goes a step further by eliminating the need for the parameter g. This abstrac-
tion streamlines the LogPC model, potentially simplifying its application and analysis.
The removal parameter g assumes that the gap is negligible and does not influence the
communication pattern too much.

In a similar vein, the LoGPC model, introduced by Moritz and Frank [26] takes a
distinctive approach by incorporating application-specific parameters. These parameters
are introduced to account for network and resource contention effects.

4.4 Analysis of the Execution Time and Energy of an MPI
Program

According to the findings presented in fig. 4.5, Hackenberg et al. [28] reports that latency
times for MPI instructions exhibit a uniform distribution, ranging from a minimum of 21 us
to a maximum of 524 us on Intel Haswell processor platforms.

Similar results are corroborated in earlier research papers. For one-to-one communica-
tion scenarios, Abandah and Davidson [29] indicates that message latencies do not exceed
500 ps for messages up to 1 kB in size. In the context of one-to-many communications, la-
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Table 4.1: Timing Formulas for Collective Communications in MPI on the IBM SP2 Ar-
chitecture, where n represents the number of tasks and m represents the message size in
bytes to be exchanged.

Operation OpenMPI communi- IBM MPI communi- OpenMPI 1IBM MPI
cations time cations time latency latency

MPI_Send 46 4 0.035m 67 + 0.035m 56 67

and

MPI_Recv

MPI_Bcast (40logn) + (16logn) + 40logn + 16logn
(0.0371logn)m (0.0251logn)m 20

MPI_Gather (24n + 84) + (17logn + 15) + 24n+84 17logn +
(0.045n)m (0.025n — 0.02)m 15

MPI_Scatter (24n + 105) + (17logn + 15) + 24n+ 105 80logn
(0.026n + 0.03)m (0.025n — 0.02)m

MPI_Alltoall125n — 22) + (80logn) + 105n —22 60logn +
(0.06n'*)m (0.03n=12%)m 60

tencies remain consistently below 1000 s for the same message size. Meanwhile, many to
many communications exhibit slightly higher latencies, typically just over 1000 ps, again
for messages up to 1kB, as demonstrated by Abandah and Davidson [29]. In alignment
with these findings, Xu and Hwang [30] underscores that, for messages up to 1 kB, latency
times generally remain under 500 us, with certain exceptions in many to many communi-

cation scenarios.

Furthermore, Heinrich et al. [31] reaffirms that latency times for these communication
operations are consistently below 500 us. In addition, Xu and Hwang [30] performed a
regression analysis of communication times, considering the size of data m and the number
of nodes n as variables, as shown in table 4.1.
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Strategies for energy saving

Energy efficiency is a critical goal within data centers as these operations become increas-
ingly energy-intensive. It is clear that there is a growing demand for more efficient cooling
systems to address the increasing energy usage caused by frequent hardware upgrades.
The current hardware no longer adheres to Moore’s law, which was in effect until about a
decade ago, wherein the number of transistors would double (and clock speeds), and en-
ergy consumption would decrease every 18-24 months. Presently, neither the number of
transistors nor energy consumption experiences such doubling, but with each CPU gener-
ation, both consumption and performance see marginal increases.

In this scenario, the focus is shifting from optimizing hardware to streamlining soft-
ware to minimize energy consumption. The focus is on making software as environmen-
tally friendly as possible, even at the expense of slowing down code execution. This strate-
gic shift underscores the industry’s commitment to achieving greater ecological sustain-
ability in computing practices.

In response to these challenges, we analyze strategies for reducing power consumption
on the software side. Specifically, we investigated the use of a power-aware algorithm de-
signed to automatically and seamlessly adjust voltage and frequency settings. This adap-
tive approach aims to achieve significant reductions in power consumption and energy
savings, with minimal impact on system performance. Our exploration involves the incor-
poration of a well-established technology called “dynamic voltage and frequency scaling”
into the runtime system of standard HPC systems described in section 5.1 [17]. The next
section, 5.2, analyzes what are the granted options related to DVFS in Linux, and the last
two (sections 5.3 and 5.4) analyze how to save energy in the case of parallel and HPC
computations.

5.1 Power Management

Power management, within the realm of computing and HPC systems, involves a set of
methodologies and approaches that aim to regulate and optimize electrical energy con-
sumption. This objective is pursued while either maintaining or enhancing system per-
formance and functionality. This critical discipline addresses the increasing demand for
energy-efficient solutions that span various domains such as information technology, telecom-
munications, transportation, and consumer electronics.
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The importance of power management has experienced a notable upswing in recent
years, propelled by various compelling factors. The prevalence of portable devices such as
smartphones, laptops, and wearables has accentuated the need for prolonged battery life,
which requires innovative strategies to minimize power usage. Simultaneously, rising en-
ergy costs and environmental concerns have prompted organizations to embrace environ-
mentally friendly practices, urging a reduction in power consumption in data centers, su-
percomputers, and industrial facilities. Additionally, the persistent pursuit of higher com-
putational performance has driven the evolution of power-efficient processors and compo-
nents.

The significance of power management has increased in recent years due to several
compelling factors. First, the proliferation of portable devices, such as smartphones, lap-
tops, and wearables, has underscored the need for extended battery life, which requires
innovative approaches to minimize power usage. Second, increasing energy costs and en-
vironmental concerns have compelled organizations to adopt greener practices, requiring
the reduction of power consumption in data centers, supercomputers, and industrial facil-
ities. Finally, the relentless drive for improved computational performance has led to the
development of power-efficient processors and components.

Efficient power management covers a diverse range of techniques, ranging from hardware-
level mechanisms embedded within individual components such as processors and mem-
ory modules to software-driven strategies that govern the overall system behavior. Fun-
damental aspects of power management include Dynamic Voltage and Frequency Scaling
(DVES), Dynamic Voltage Scaling (DVS), P-States, C-States and T-States.

5.1.1 P-States, C-States, and T-States

In the realm of power management for computer systems and processors, the P-States, C-
States, and T-States, according to ACPI terminology, are fundamental concepts that have
crucial roles in maximizing energy efficiency and thermal effectiveness. Since most con-
temporary processors have the capability to function at different clock frequencies and
voltage settings these states are essential for balancing the trade-offs between power effi-
ciency and computational performance in modern computing devices. Generally, higher
clock frequencies and voltages allow the CPU to execute more instructions per unit of
time, but they also consume more energy or power in the given P-States. Thus, there is a
trade-off between CPU capacity (number of instructions executed over time) and power
consumption [32, 33].

P-States (also known as Performance States or Power States) are hardware-controlled
mechanism used in modern processors to manage power consumption and perfor-
mance levels dynamically. Processors can operate at different P-States, each with
varying clock frequencies and voltages. Higher P-States correspond to higher per-
formance but also higher power consumption [34, 35].

C-States (also known as Idle States) are power-saving states in processors where specific
components are turned off or slowed down to reduce power consumption during
periods of inactivity. The deeper the C-States, the more components are powered
down, resulting in greater energy savings but longer wake-up times [34, 35].
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Figure 5.1: Power state machine for the StrongARM SA-1100 processor.
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Source: Benini et al. [32].

T-States (also known as Throttling States) are related to thermal management in pro-
cessors. When a processor reaches a certain temperature threshold, it may enter a
T-States, which reduces its performance to lower temperatures and prevents over-
heating. This state helps protect the processor from damage [36].

In addition to P-States, C-States, and T-States, the “Sleep States” is a variant of the
C-States. The Sleep States involves placing specific hardware components or the entire
system in a very low power mode during long periods of inactivity, further enhancing
energy efficiency and extending device lifespan [32], this state is illustrated in fig. 5.1.

5.1.2 Dynamic Voltage Scaling (DVS)

Dynamic Voltage Scaling (DVS) or Dynamic Voltage and Frequency Scaling (DVES) rep-
resents a power management technique implemented in computer systems to optimize
energy consumption without compromising performance. DVS dynamically adjusts the
voltage and frequency of a processor or component to align with the workload’s specific
requirements. The primary objective of DVS is to decrease energy consumption during pe-
riods of low computational demand, while still allowing the system to operate at elevated
performance levels when necessary.

Within the realm of DVS, the voltage supplied to the processor or component under-
goes dynamic scaling, accompanied by adjustments to the clock frequency. During lighter
or idle workloads, DVS reduces both the voltage and frequency, resulting in diminished
power consumption and heat generation. On the contrary, when there is a heavy computa-
tional load, DVS can increase the voltage and frequency to ensure that tasks are completed
more quickly.

DVS is particularly valuable in mobile devices, laptops, and data centers, where energy
efficiency is a critical concern. By dynamically adjusting the power supply, DVS helps
extend the battery life in portable devices and reduces electricity costs in data centers,
while maintaining acceptable performance levels [37].

Dynamic Voltage and Frequency Scaling (DVES) evolved from the concept of Dy-
namic Voltage Scaling (DVS), which introduces the capability for a processor or micro-
controller to dynamically adjust its operating voltage (Vdd) and clock frequency (CPU
frequency) in real time. This advancement offers precise control over both voltage and

37



CHAPTER 5. STRATEGIES FOR ENERGY SAVING

frequency, allowing the processor to optimize power consumption and performance si-
multaneously.

Under DVES, the processor has the flexibility to operate at lower voltages and frequen-
cies during periods of light workload. This adaptive approach conserves energy and min-
imizes heat generation, contributing to overall efficiency. On the contrary, when facing
demanding tasks that require higher performance, DVFS allows the processor to seam-
lessly ramp up both voltage and frequency to meet those requirements effectively. The
relationship between CPU clock frequency, power, and energy is discussed in the Intel
Corporation [38] reference manual. The study investigates this relationship through the
use of the eqgs. from (5.1a) to (5.1c). The supply voltage is denoted as Vg4 and the CPU
clock frequency is denoted as f.

Power o< fVy (5.1a)
1 1

Delay = = o — (5.1b)
T Va

Energy =oc V3 (5.1¢c)

Increasing the frequency of a system will result in a linear decrease in delay, which, in
turn, will lead to a quadratic increase in both power and energy. The importante of DVFS
is found in the opposite of this statement: when there is a linear increase in delay, there will
be a quadratic decrease in power and energy consumption. We can express the practical
impact in a simpler way: increasing the CPU clock frequency requires progressively more
energy [39-41].

5.2 Power Management in Linux

The documentation in kernel.org [42, 43] is one of the main sources of information on
power management in the Linux environment. In certain situations, it may be desirable
or necessary to run a program as fast as possible, and using the highest P-states (highest-
performance frequency/voltage configuration) is justified. However, there are cases where
it might be unnecessary to execute instructions quickly, and maintaining the highest CPU
capacity for an extended period without utilizing it entirely could be considered wasteful.
Additionally, maintaining maximum CPU capacity for too long may not be feasible due to
thermal or power supply constraints. To address these scenarios, hardware interfaces allow
CPUs to switch between different frequency/voltage configurations or P-states.

These hardware interfaces are often used in conjunction with algorithms to estimate
the required CPU capacity, determining which P-states to put the CPUs into. However, in
specific situations, it may be necessary for the application to manage CPU usage indepen-
dently to avoid kernel penalties or for greater efficiency.

Linux abstracts these concepts within the CPUFreq (CPU Frequency scaling) subsys-
tem, comprising three layers of code: the core, scaling governors, and scaling drivers. The
CPUFreq core offers a shared code infrastructure and user space interfaces for all plat-
forms that enable CPU performance scaling. It establishes the fundamental framework for
the other components.

38


kernel.org

5.2. POWER MANAGEMENT IN LINUX

The first component is the governor, which can be automatic or user-governed. Scaling
governors implement algorithms to estimate the required CPU capacity, with each gover-
nor typically implementing a specific scaling algorithm.

Scaling drivers communicate with the hardware, providing scaling governors with in-
formation on available P-states and utilizing hardware interfaces specific to the platform
to modify CPU P-states as directed by governors.

Although it is theoretically possible to use any scaling governor with any scaling driver,
the CPUFreq provides a way for scaling drivers to bypass the governor layer and implement
their own algorithms for performance scaling. During kernel initialization, the CPUFreq
core creates a sysfs directory called cpufreq under /sys/devices/system/cpu/,
containing subdirectories for each policy object. These directories hold policy-specific
attributes to control CPUFreq behavior, with some being generic and others added by
scaling drivers for driver-specific aspects:

affected_cpus List of online CPU currently using the (policyX) policy (i.e. sharing
the hardware performance scaling interface represented by the policyX policy ob-
ject).

bios_limit Reports the upper limit on CPU frequencies if directed by the platform
firmware (BIOS), potentially influenced by BIOS settings, service processor restric-
tions, or other BIOS/Hardware-based mechanisms. Does not cover ACPI thermal
limitations.

cpuinfo_cur_freq Current frequency of CPUs in this policy is obtained from hard-
ware (in kHz), representing the actual running frequency. This attribute may not be
present if the frequency can not be determined.

cpuinfo_max_freq The highest achievable operational frequency for the CPUs associ-
ated with this policy (in kHz).

cpuinfo_min_freq The lowest achievable operating frequency for the CPUs associated
with this policy is expressed in kilohertz (kHz).

cpuinfo_transition_latency Time taken to switch CPUs in this policy from one
P-states to another, measured in nanoseconds. Returns -1 (CPUFREQ_ETERNAL) if
unknown or too high for the scaling driver to work with the on-demand governor.

related_cpus List of all CPUs (online and offline) associated with this policy.

scaling_available_governors List of CPUFreq scaling governors or scaling algo-
rithms (for intel_pstate driver) available in the kernel for attachment to this
policy.

scaling_cur_freq Current frequency of all CPUs in this policy (in kHz), usually re-
flecting the last P-states requested by the scaling driver, though not necessarily the
actual CPU frequency.

scaling_driver Currently used scaling driver.
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scaling_governor Currently attached scaling governor or scaling algorithm (for the
intel_pstate driver).

The attribute mentioned is both readable and writable. When writing to it, a new
scaling governor will be associated with this policy or a new scaling algorithm
will be applied to it, depending on the string written to this attribute. In the case of
intel_pstate, the string must be one of the names listed in the scaling_available
_governors attribute mentioned earlier.

scaling_max_freq The highest achievable frequency for the CPUs associated with this
policy (in kHz). Read-write attribute; writing an integer string sets a new limit (not
lower than scaling_min_freq attribute).

scaling_min_freq The lowest achievable operating frequency for the CPUs associ-
ated with this policy is expressed in kilohertz (kHz). Read-write attribute; writing a
non-negative integer string sets a new limit (not higher than scaling_max_freq
attribute).

scaling_setspeed This function is effective only when the userspace scaling gover-
nor is connected. It retrieves the most recent frequency requested by the governor,
measured in kilohertz. Alternatively, it can be used to set a new frequency for the
policy.

In this paper, our attention is directed towards the following registers: cpuinfo_max_freq,
cpuinfo_min_freq,scaling_cur_freq,scaling_max_freq,scaling_min_freq,
scaling_setspeed, and scaling_available_governors. The first three registers
are read-only, while the others are changed.

5.3 Energy Efficiency and MPI

The rise in energy consumption of contemporary supercomputing systems is a cause for
the global HPC community. In particular the Message Passing Interface (MPI) has long
been the predominant programming model for parallel applications, and MP1 libraries have
been crafted to deliver optimal communication performance on contemporary computing
architectures. However, the balance between performance and energy efficiency in these
designs has yet to be thoroughly explored. Consequently, it is imperative to gain insights
into the energy consumption characteristics of MPI routines and to discern the trade-offs
between performance and energy efficiency inherent in various protocols and library de-
signs utilized within MPL.

By default, when MPI processes find themselves in a state of synchronization, MPI
libraries employ a busy-waiting/polling mechanism to avoid entering C-states which can
induce performance penalties. Nevertheless, it is worth noting that during MPI primitives,
a significant portion of the workload consists of waiting times and IO/memory accesses.
Running an application in a low-power mode during these periods may result in reduced
CPU power consumption, often with little to no adverse impact on overall execution time
[34-36].
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While MPI libraries do incorporate idle-waiting mechanisms, they are seldom em-
ployed in practice due to concerns about the performance penalties associated with transi-
tioning in and out of low-power states, as documented in previous studies [34-36, 44, 45].

5.3.1 Slack and Communication Time

In MPI communications can be divided into slack time and copy time, this subdivision was
proposed by Rountree et al. [39]. The authors proposed a division of communication time,
as described in the LogP model, into two distinct components: the slack time (7slack)
and the copy time (7copy). The authors defined a “task™ as the section of code located
between two MPI communication calls and formulated an optimization problem aimed at
minimizing slack time.

Slack Time (7Tslack) This component represents the time spent waiting for a critical task
to enter an MPI primitive. Since in parallel computation, each process is indepen-
dent, each process has its own execution time, and therefore some of these tasks
may be ready to communicate before others, which results in a waiting period. This
waiting time can be regarded as the time during which the processor is not fully
engaged in active computation. The waiting time can be eliminated by adopting a
branchless programming style, which is in use in GPUs, for example.

Copy Time (Tcopy) The communication or copy time accounts for the duration required
for the actual data transfer during communication. When data is sent or received be-
tween processes, there’s an inherent cost associated with copying this data between
memory locations, and this is the copy time. This time can not be reduced, but at
most accelerated [39—41].

Slack times are generally much higher in synchronous communications than in asyn-
chronous ones, as a portion of the time in MPI collective functions (e.g., MPI_Barrier
or MPI_Allreduce) is spent waiting for the last rank to reach the synchronous point, that
are illustred in fig. 4.5.

By reducing the P-States of the processor core only during slack time, this will lead
to a reduction in consumption without compromising performance, whereas reducing the
frequency in both slack time and copy time may compromise performance. A common
strategy widely used to identify and separate this slack time from the copy time involves
inserting a call to MPI_Barrier before each MPI collective, as illustrated in fig. 5.2. This
strategy is described are present in COUNTDOWN and MPInside libraries [35, 46]. This
division into slack time (7slack) and communication time (7Tcopy) represents a pivotal
concept in the optimization of MPI power consumption.

5.3.2 Optimising Parallel Execution to Reduce Slack Times

There are several strategies to optimize parallel execution and reduce slack time. One ap-
proach involves minimizing the number of conditional statements (ifs) within the code and
utilizing temporal patterns.

For instance, when programming in CUDA with massively parallel processing, it is
crucial to avoid branches as they can lead to warp divergence (in CUDA programming a
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Figure 5.2: MPI_Barrier insertion for collective wait time.

Source: Thomas et al. [46].

warp is a group of threads that executes the same instruction simultaneously). This form of
parallelism is adverse to branch conditions, such as ifs, as they result in inconsistent execu-
tions and increased synchronization times. Conditional statements in GPU programming,
like branch conditions, may pose challenges to parallelism since, in a parallel execution
model, all threads within a thread block must follow the same execution path. Deviations
caused by a conditional statement in one thread can lead to divergent execution, causing
significant performance penalties.

To mitigate this issue, it is advisable to minimize the use of conditional statements
within a thread block. Alternative techniques, such as employing data-dependent opera-
tions or utilizing lookup tables, can be explored to achieve desired outcomes while pre-
serving parallelism. If the use of conditional statements is unavoidable, structuring the
code in a manner that minimizes divergence between threads becomes crucial.

A simple branch conditions, like:

if(dis[i][j] < dis[il[h] + dis[h][]j])
dis[i][j] = dis[i][h] + dis[h][j];

Can be removed using a simple boolean logic:

t = dis[i][h] + dis[h][j];
dis[i][j] = t x (t < dis[i][j]) + dis[i][j] * (t >= dis[i][j]);

This works since C++ treats logical true as 1 and logical false as 0. What happens if
different threads in a warp need to do different things?

if (x < 0.0)

zZ =X - 2.0
else

z = sqrt(x);

This is called warp divergence. CUDA will generate the correct code to handle this, but
to understand the performance you need to understand what CUDA does with it. To avoid
loss of synchronization all threads execute both conditional branches:

(x < 0.0);

X — 2.0;
sqrt(abs(x));
p*xa+ Ipx*xb;

N T O T
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The execution cost becomes the sum of both branches, potentially resulting in a significant
loss of performance, nevertheless, care must be taken, as the root of negative numbers does
not exist and roots of different numbers may have uneven lengths. This issue extends to
memory access, such as when accessing out-of-bounds elements.

When dealing with substantial branches, the nvcc compiler incorporates code to check
if all threads in a warp take the same branch (warp voting) and subsequently branch ac-
cordingly. If each warp follows a uniform path, the process is highly efficient. While warp
voting incurs a few additional instructions, the compiler opts for predication without voting
for very simple branches.

It is important to note that each warp is treated independently, it does not matter what
is happening with other warps. Warp divergence can consequently lead to a substantial loss
of parallel efficiency. In the worst-case scenario, there is an effective performance loss of
a factor of 32x if one thread requires an expensive branch while the rest remain inactive
[47].

In non-massive parallel programming, it is generally impossible to avoid divergences in
thread execution flows, furthermore, threads are managed within an operating system that
takes precedence over memory management, so having an implicit synchronism, which
is realized thanks to the absence of branch conditions, is impossible, despite this, it is
possible to reduce waiting times through patterns as well and for example by reducing the
processor speed in shorter threads [48]. The management of different threads by the Linux
kernel is explained in section 5.2, while the strategies for analyzing and conserving energy
in MPI are discussed in chapter 6.

5.4 Clusters

The power-scalable cluster [49, 50] are clusters where an attempt is made to save energy by
dynamically adjusting processor performance to lower energy levels. The pivotal aspect of
interest revolves around the dynamic adjustment of processor performance and its direct
impact on energy consumption. The studies conducted by Freeh et al. [49] and Springer
et al. [50] show the relationship between energy efficiency and execution time within the
context of MPI programs.

Freeh et al. [49] specifically delve into the balance between energy consumption and
the time required for execution in MPI programs. The concept of a power-scalable cluster
allows for the exploration of trade-offs, presenting a unique opportunity to optimize both
performance and energy efficiency concurrently. By dynamically adjusting the energy lev-
els of individual nodes, the authors demonstrate the potential for achieving dual benefits:
a reduction in energy consumption and faster execution times.

Springer et al. [50] extends this exploration by placing a particular emphasis on mini-
mizing execution time while adhering to energy constraints. The study recognizes the chal-
lenges inherent in maintaining efficiency within the limitations of energy consumption.
The authors focus on strategies for optimizing execution time within the defined power-
scalable cluster, highlighting the delicate balance required to achieve optimal performance
with the least amount of energy consumed.

In essence, both studies contribute significantly to our understanding of the energy-
time tradeoff in power-scalable clusters. These studies demonstrate that for certain types
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of programs, there exists a compelling opportunity to achieve a dual benefit: reduced en-
ergy consumption and faster execution times. This is accomplished by employing a larger
number of nodes, with each node operating at a reduced energy level, thereby enhancing
overall efficiency in terms of both energy usage and execution speed.
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Performance Analysis and Energy Saving in MPI

This chapter is dedicated to an in-depth examination of tools devised for the analysis of
both performance and energy-saving aspects within the context of MPI applications. The
tools under scrutiny include Jitter, MPInside, COUNTDOWN, ATFaVSCP, and other mi-
nor ones in conjunction with energy efficiency implementations within Intel MPI and
MVAPICH2. The focal point of our exploration revolves around unraveling the common
and unique strategies employed by these tools to optimize energy consumption, particularly
during the most energy-intensive phases, namely, the busy wait periods during MPI syn-
chronization primitives. These tools, with the exception of MPInside perform a dynamic
voltage scaling for the dynamic adjustment of CPU frequency (and voltage), to minimize
these wait times and consequently reduce energy consumption, we refer to this process as
frequency variation.

Throughout this chapter, we will meticulously dissect each tool and implementation,
elucidating its methodologies and functionalities. Within this chapter, the attention is specif-
ically directed towards the COUNTDOWN tool, distinguished not only as the sole open-
source solution but also for its compatibility with OpenMPI, rendering it the most com-
prehensive tool among those outlined. COUNTDOWN emerges as a pivotal subject of
exploration, presenting a unique and valuable perspective in the landscape of performance
and energy-saving tools for MPI environments.

The organization of this chapter is as follows: sections from 6.1 to 6.10 talk about
the most important energy saving techniques, libraries and algorithms, all of which are
summarized in a final comparison in section 6.11.

6.1 Jitter Library

Jitter [37] is a library that uses a scheduled iteration methodology for energy-awareness.
Jitter seamlessly inserts itself between an application and the MPI library, operating in a
way that is typically transparent to both the application itself and the MPI library. Its pri-
mary function is to actively monitor the periods during which a program waits for external
events.

The core idea of Jitter is to reduce speed on the computation region (7comp) in order to
minimize the slack time (7slack), for doing this the Jitter algorithm identifies non-critical
nodes. A node that does not belong on the critical path has slack time, that can be optimized
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1: constant N, F > Number of nodes and frequencies
2: constant B = 1.5 > Bias to stabilize Jitter, see Section 4.3.2
3: constant o = (.25 > Upshift factor, see Section 3.4
4: global > Current frequency of the microprocessor
5: global § > Slack Threshold, see Section 3.7
6: global downShift[F], upShift[F] > Down and up shift factors
7: procedure INITIALIZE

8: F « fastest > I is current frequency; initially set to fastest

9: upShift[i] — 1,Vi=1to F

10: downShift[i] «— 1,Vi=1toF

11: S« default_S > Default is 0.05, see Section 4.3.2
12: end procedure

13: procedure JITTER(], slack[N], iterationTime)

> Called every iteration for each node i
14: local netSlack « slack[i] — min, slack[i]

15; if netSlack > S xdownShift[ /'] and F' # slowest then
> Reduce clause, see Section 3.3
16: downShift[ F'] «— downShift[F'] x B
17: F « decr(F) & reduce frequency

18: else if netSlack < o x S /upShift[F'] and F # fastest then
> Increase clause, see Section 3.4

19: upShift{ F] — upShift{ F] x B
20: F « incr(F) &> increase frequency
21 end if

22: end procedure

Figure 6.1: Jitter algorithm.

Source: Kappiah et al. [37].

through slower execution by lowering the less energetic frequency. Since this node at full
speed finishes its tasks and remains idle until it receives a message from another node. The
Jitter algoritmh sets the non-critical node to operate with decreased CPU speed to reduce
energy consumption, aiming to finish its tasks right before receiving the message from the
remote node, the pseudocode of the algorithm is shown in fig. 6.1. Energy savings can
be achieved without extending the application completion time, as long as a node with
reduced performance completes its computation before the bottleneck node. Figure 6.2
shows an example of DVFS management performed by Jitter.

The optimizations performed by Jitter are based on the assumption that two instances
of the same task have the same Tcomp, Tslack, and number of instructions: programs follow
an iterative structure and that the duration of each iteration remains relatively consistent. In
other words, the variability in the time taken for each iteration is minimal, allowing for the
use of past iterations to predict future ones. If this happens, Jitter can drastically improve
energy efficiency each iteration, also called a step or timestep. It is important to note that
the aforementioned conditions hold true for the vast majority of scientific programs.

Jitter executes critical nodes at maximum clock speed and non-critical nodes at a re-
duced speed to avoid affecting the execution time. When a node is operating at a lower
frequency and lacks sufficient slack, Jitter is employed to enhance CPU speed. This situa-
tion can arise due to the uncertainty surrounding the impact of frequency reduction, which
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Figure 6.2: Example of DVFS performed by Jitter in Aztec. The graph shows that critical
threads have a higher frequency compared to less critical threads, which have a lower
frequency.

Source: Kappiah et al. [37].

varies depending on the program’s CPU, memory, and I/O usage.

Initially, an optimistic approach is employed, reducing the frequency, and subsequently
reverting back if needed. One more factor to consider is the potential variation in load
distribution among nodes over time. Therefore, a lower frequency may be suitable at a
certain moment but not ideal later on. Consequently, Jitter constantly observes the available
time on each node and modifies the frequency accordingly.

The current implementation of Jitter requires that the code be recompiled to add the
MPI_J1itter instruction at the beginning of the iteration loop and to change the function
references when linking, since changing the power management of a thread is an onerous
operation, Jitter shortens multiple iterations to a maximum of 2.5 seconds if they are too
short. By doing this, Jitter determines various aspects such as the limits of iterations, the
net slack of each node, the appropriate times to decrease or increase performance, when
to reset algorithm parameters, and how to adjust the slack threshold.

When applied to unbalanced programs, the Jitter system achieves a notable 8 % re-
duction in energy consumption while incurring only a modest 2.6 % increase in execution
time. It’s important to note that these energy savings and performance improvements are
realized without needing any modifications to either the application source code or the
underlying communication library. Additionally, it’s noteworthy that the system’s perfor-
mance is within a 5 % margin of what could be achieved through manual, hand-tuned op-
timization, often referred to as the “optimal” solution. Furthermore, Jitter demonstrates its
adaptability by effectively responding to changes in workload, a feature that conventional
hand-tuned solutions are typically unable to match [37].
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6.2 MPInside Library

MPInside [46] is a tool for profiling MPI applications. It allows us to analyze the perfor-
mance of an MPI application and provides valuable insights into MPI communications.
MPInside examines the actions sent and received by a process, and produces data that in-
dicates the level of synchronization between the two. By analyzing the data, you have the
ability to identify specific areas within the application that you would like to concentrate
your optimization efforts on [46].

MPInside is also a transparent wrapper, but unlike Jitter, which requires recompilation,
it acts as a wrapper to the executed program, a bit like other various program analysis
tools, for example valgrind. To execute MPInside, simply insert the command MPInside
between mpirun and the executable, as described in listing 6.1.

mpirun -np 128 MPInside ./a.out args...

Listing 6.1: Shell execution of an application with the MPInside profiler.

The default behavior of MPInside is to provide a simple and efficient implementation
of the MPI functions. The generated information includes the size of each data request, the
number of data requests, the size of the communicator used for MPI collective functions,
and the number of times each rank acted as the root of a collective function. MPInside
reports the total sum of these statistics for the entire run. After the MPI application com-
pletes successfully, the measurement and the statistics data are reported in a text file called
mpinside_stats [46, 51].

6.3 Offline Scheduling

The Offline DVFS Scheduling [39-41] is an algorithm computed over one or more train-
ing runs. This can be especially beneficial in embedded and real-time computing. In this
context, rather than having program execution as a singular event, programs are designed
to loop continuously and be replicated across all instances of a specific device (e.g., tem-
perature sensors). The scheduling cost can be spread out over all executions on all devices,
which justifies even minor energy savings. In the field of HPC, the traditional assumptions
mentioned above are no longer applicable. Supercomputers are hardly ever idle, and the
key measure of success is the time it takes to complete a task. To make use of dynamic volt-
age and frequency scaling (DVFS) in this scenarios, we leverage load imbalance, where
certain processors have less workload compared to others, resulting in periods of idle time.
In this context, DVFS can be employed to schedule the execution of tasks at a lower CPU
clock frequency without impacting the overall time it takes to complete the computation.

6.4 Fermata Algorithm

The Fermata algorithm [39—41] implements a straightforward algorithm aimed at reducing
the P-States of cores during communication regions (7comm). This scheduling is called
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Scheduled Communication. Using a prediction algorithm, Fermata makes decisions on
scaling down the P-States based on the time spent in communication during the preced-
ing call. If this duration exceeds or equals twice the switching threshold, Fermata sets a
timeout scheduled to expire at the threshold time. If the MPI call is completed before the
timer runs out, the callback is canceled. The default threshold time for Fermata is 100 s,
although the literature in section 4.4 suggests other values. Identification of specific MPI
primitives in the application code is done by hashing the pointer (Task ID) that forms the
stack trace. Task ID is generated when an MPI primitive is encountered, ensuring a unique
identification for each MPI primitive in the code. The details of the last call are stored in
a lookup table, which helps to determine whether to set the timer in the next call [39-41].

6.5 Adagio-Computation Algorithm

Adagio-Computation [39-41], also called Andante in Cesarini et al. [36], takes care of
reducing power consumption when the program is not within the MPI communication
blocks. Unlike Jitter, Adagio-Computation is a scheduled timeslice (a fraction of a timestep)
algorithm based on the same assumption of Jitter. The difference between Jitter and Adagio-
Computation is that the former requires the program to be iterative, and so the first few
runs are used to train the algorithm and find for each node the ideal frequency. The latter
searches previous instances of a task, and uses the most similar one if it does not find it,
and uses this instance as an estimate for the current one, thus allowing optimisation of
execution time and Tcomp energy.

The first step for each task, after finding the previous instance, is to calculate the
TComp, Tcomm, TSlack and Tcopy, the first and second are calculated by summing the
time intervals inside and outside the MPI calls, Tcopy is calculated using the models de-
scribed in section 4.3 and Tslack is calculated as Tcomm minus Tcopy. After determining
the execution time of TSlack and TComp, Adagio-Computation makes an estimate of the
ideal working frequency by means of Instructions Per Second (IPS), keeping in mind that
the sum of T'Slack and TComp must remain unchanged.

Like Fermata, Adagio-Computation differentiates tasks by utilizing the stack trace lo-
cated at the conclusion of each collective MPI primitive. A lookup table is employed to
store details regarding the most recently executed task, including the IPS for each distinct
P-States of the system, as well as the subsequent P-States to be assigned [39—41].

6.6 Adagio Algorithm

Adagio [39-41] is designed to integrate the capabilities of both Fermata and Adagio-
Computation into a unified, energy-aware runtime. While Adagio-Computation focuses
on slowing down computation regions, Fermata handles communication phases. This in-
tegrated approach aims to strike a balance between optimizing computation and communi-
cation aspects to achieve energy efficiency in the overall system runtime. Adagio utilizes a
simple and robust algorithm that does not require any specific knowledge about the appli-
cation. Adagio schedules tasks based on predicted computation time and makes slowdown
decisions at runtime.
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Adagio is task based and to identify the task from the individual MPI calls, Adagio uses
a hashing technique on the stack trace, which is stored in a hash table. Adagio must not
only accurately predict the computation, communication and slowdown associated with
the upcoming call, but also predict the upcoming call itself. Initially, scheduling is based
on worst-case slowdown, and then more aggressive scheduling is performed based on ob-
served performance. After finding a task with the same hash in the hash table, Adagio uses
this purely local data to determine the critical paths. Adagio’s scheduler then tries to re-
duce the frequency in the Tcomp so that all the different threads reach the MPI call at the
same time. It’s important to note that this may introduce some overhead and delay.

In Adagio, the prediction of the properties of the next task relies on the identification
of the task that will occur next. This identification is achieved by creating a signature for
each task using a hash of the pointers in the stack trace. The hash is generated when the
MPI call associated with the task is intercepted by the library. The completed task record
includes the hash of the task that immediately follows it. Prior to the computation of a task,
Adagio retrieves the frequency schedule for that task and sets the operating frequency to
the first one in the schedule. It also initializes hardware performance monitors (HPMs) to
monitor the code. Following the completion of a task, Adagio collects data and determines
the frequency schedule for the next execution of that task.

The pseudocode for Adagio in the case of using a single frequency per task is presented
in fig. 6.3. Since runtime algorithms do not have any prior information about program
execution characteristics, Adagio initially schedules task execution at the fastest frequency
denoted by f If a task recurs, Adagio assumes a worst-case slowdown, where the execution
slowdown is proportional to the change in frequency. However, the computation will not
slow down by more than the ratio of the change in frequencies.

6.7 COUNTDOWN Library

COUNTDOWN [34-36] is an algorithm for energy saving, a runtime analysis library, and a
runtime library designed to be performance-neutral. It conserves energy exclusively during
MPI synchronization without introducing any increase in time-to-solution for applications.

This library enhances the application’s functionality by capturing blocking MPI primi-
tives. It utilizes a timeout strategy to prevent altering the power state of the cores when there
are rapid applications and MPI context switches, preventing performance overhead without
significant reductions in energy and power. If the MPI blocking phase terminates within
this time frame, COUNTDOWN does not enter low-power states, filtering out short MPI
phases that incur costly overheads with negligible energy savings. This strategy is purely
reactive and is triggered by the MPI primitives invoked by the application. COUNTDOWN
implements the timeout strategy using standard Linux timer APIs.

When COUNTDOWN comes across an MPI phase where it can potentially conserve
energy by transitioning to a low-power state, it enrolls a timer callback in the initial routine
known as event start. Afterwards, the execution continues following the regular workflow
of the MPI phase. Once the timer reaches its limit, a system signal is triggered, causing an
interruption in the “normal‘ execution of the MPI code and the reduction of CPU speed.
After the signal handler is triggered, it calls the COUNTDOWN callback, and once the
callback finishes executing, execution of the MPI code resumes from the point where it
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1 PreTask ()
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taskid = hash(stack pointer chain)
if isnew(taskid) then

else
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end

/*

Find slowest frequency that respects the
critical path. Default is fastest frequency.

*/

. Schedltaskid] = f
for f from slowest (f) to fastest ( f ) do
if I/Rates[taskid][f] < tirger then

end

Sched[taskid] = f
return;

Figure 6.3: Adagio algorithm.

Source: Rountree et al. [40], Rountree [41].

*/

*/

*/

*/
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Figure 6.4: Approach used by COUNTDOWN library to save energy during communica-
tion times.

Source: Cesarini et al. [34, 36, 52].

was interrupted. If the execution of the “normal‘ phase returns to COUNTDOWN before
the timer expires, COUNTDOWN will disable the timer in the epilogue routine, and the
execution will proceed as if nothing had occurred.

COUNTDOWN adopts a fixed-time approach, whereby it expects the MPI instruction
to terminate within 500 ps, which according to literature is the ideal value section 4.4. If
it does not terminate within this time frame, COUNTDOWN idles the node and waits.
Regarding fig. 4.9, the operation of COUNTDOWN can be summarised as follows: if 7" >
500 ps, the program transitions the processor to P-states until the MPI primitive is invoked.
This approach proves to be highly efficient since as soon as the MPI primitive is invoked
and any data exchange occurs, the program exits the P-states.

COUNTDOWN develops a strategy, described in fig. 4.9, to prevent the processor
entering C-States even during MPI communications, but since MPI offers not only a com-
munication system but also a data exchange system, if an MPI program enters a C-states,
there is a high risk that without the possibility to communicate via hardware primitives, as
we will see later for Intel MPI, the program gets stuck in a C-states even during the com-
munication phase, which degrades the performance quite a bit. The division of time, com-
munication, and synchronization, is described by section 5.3.1 and illustrated in fig. 6.5a,
which in the case of big data can slow down performance: an MPI_Barrier is made be-
fore each collective instruction, this ensures that during copy time there is no performance
degradation. This workaround is described in fig. 6.5b.

COUNTDOWN is described in three main papers:

1. Cesarini etal. [36] introduces the COUNTDOWN library designed to save energy in
MPI applications without compromising performance. To prevent frequent switches
between the application and MPI context, COUNTDOWN utilizes a timeout strategy
instead of altering the power state of CPU cores. Moreover, COUNTDOWN can
distinguish short and overhead-intensive MPI phases with negligible energy-saving
impact. This reactive approach can be used with existing MPI applications without
requiring code modifications.

2. Cesarini et al. [35] focuses on reducing the energy footprint in large-scale MPI ap-
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Figure 6.5: COUNTDOWN: mechanism to prevent the processor from going into the P-
States while data is being copied.

Source: Cesarini et al. [35].

plications. It might address specific strategies for managing energy resource alloca-
tion in large MPI clusters, aiming to maximize energy savings without performance
trade-offs.

3. Cesarini et al. [34] emphasises an “application-agnostic” approach to energy-saving
management in MPI communication primitives. The COUNTDOWN library is de-
signed to apply to a wide range of MPI applications without requiring significant
customizations.

The Profiler is a crucial element of COUNTDOWN, which is used to examine the prop-
erties and actions of MPI primitives. Another notable module is the Event Module, which
plays an important role in responding to events and monitoring power states. All MPI func-
tions are wrapped by some transparent Wrapper Functions; this allows you to enclose MPI
calls and enable COUNTDOWN to intercept and handle them. COUNTDOWN instru-
ments an application by wrapping each MPI call in a wrapper function that contains pro-
logue and epilogue routines. These routines are used for profiling and power management,
respectively. The library interacts with the hardware power manager through an events
module and can be triggered by system signals for timing purposes. Finally, COUNT-
DOWN’s configuration options can be customized via environment variables, such as ad-
justing the logging verbosity and selecting hardware performance counters to monitor.
More detailed explanations of these options can be found in chapter 7 [36].

COUNTDOWN provides a familiar interface that replicates a standard MPI library. It
is written in C and intercepts all MPI calls from the application, and has separate wrappers
for C/C++ and Fortran MPI libraries due to differences in assembly symbols. These wrap-
pers provide a bridge between the different language libraries. COUNTDOWN supports
dynamic linking to instrument applications without requiring source code modifications
or toolchain changes [36].

Figure 6.6 illustrates the dynamic linking events that occur when COUNTDOWN is
injected into the application during the loading process, providing a logical view of all the
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components involved.

6.8 ATFaVSCP Tool

ATFaVSCP (Adaptive Transparent Frequency and Voltage Scaling for Communication
Phases) Lim et al. [53] is a seamless system designed to enhance energy efficiency in MPI
programs. It achieves this by intelligently reducing the processor’s P-States during commu-
nication phases, effectively decreasing CPU performance to optimize energy consumption.
ATFaVSCP identifies through patterns from CPU registers whether the processor is cur-
rently inside or outside an MPI call without creating a wrapper for MPI calls, thus with
granularity not at the MPI call level but through an analysis of the operations performed
by the CPU. Identification is done without the use of artificial intelligence systems, but
through the recognition of predefined patterns. Simply due to this, it autonomously selects
the appropriate CPU frequency to minimize the energy-delay product, contributing to both
energy savings and improved performance.

Crucially, all the analysis and subsequent frequency and voltage scaling operations take
place entirely within the MPI framework. This approach ensures complete transparency in
the application. As a result, the vast array of existing MPI programs, as well as those under
development, can seamlessly integrate and benefit from our system without requiring any
modifications, as outlined in Lim et al. [53].

Unlike MPInside and COUNTDOWN, this approach does not act as a wrapper to MPI
instructions, but merely transparently analyzes the execution flow and guesses where there
is a busy wait for communication, and takes care of lowering the power consumption of
the processor in this state. The detection mechanism is based on the number of instructions
per clock (IPC), the fewer they are, the more plausible it is that it is a busy wait, but it could
also be SIMD instructions such as AVXs or others, this creates false negatives, i.e., areas
of misidentified busy wait. It is therefore necessary to train the algorithm in relation to the
program to be optimized. This algorithm saves 10 % to 20 % energy in the NAS Parallel
Benchmark Suite [53].
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6.9 Intel MPI: Energy Efficient Approach

The Intel MPI library [35] follows a similar strategy to COUNTDOWN however instead of
working with the P-States it uses the C-States (idle states) of the CPU cores. This strategy
is not enabled by default since changing a state to a processor is a very onerous operation,
much more so than working on the various P-states. The strategy is illustrated in fig. 6.7. By
configuring environment variables like I_MPI_WAIT_MODE and I_MPI_SPIN_COUNT, it
is feasible to define the duration of spin count, i.e., the time from the start of an MPI call,
to the start of communication, a concept very similar to the COUNTDOWN timer. Once
the spin count reaches zero, the Intel MPI library allows the CPU core to be allocated to
its idle task, allowing it to enter a low-power state (C-States) to conserve power. Execution
is resumed when a system interrupt wakes up the MPI library, indicating the end of the
MPI call. This mode is referred to as MPI SPIN WAIT. It can be seen that the strategy
is virtually identical to that of COUNTDOWN: both COUNTDOWN and the Intel MPI
library aim to reduce power consumption during idle or waiting periods, enhancing energy
efficiency without compromising performance [34, 36].

The main problems with Intel MPI Library are first of all that it uses C-States instead
of frequency reduction, this causes more management overhead, and the second is that it
is closed-sourced and only works on Intel processors and uses APIs that are not available
on all x86 processors.

The use of a C-States instead of a low-power P-States means that there is an increase in
execution time close to 25.85 % compared to the polling strategy [35]. Although the energy
savings are negative (-12.72 %), there is a corresponding power reduction of 12.83 Y. This
discrepancy is attributed to the entry into C-states during wait periods, which contributes
to the overall power savings [35].

55



CHAPTER 6. PERFORMANCE ANALYSIS AND ENERGY SAVING IN MPI

Process Application MPI Barrierll_}vu;‘l Application MPI Barrier MPI Library I Application

ary

E

Start spin
Start spin

Return
Control

v A\ 4 A

Callback Delay

Callback Delay

Return Control

wait

P-States C-States

Max frequency Max frequency

Min frequency!

Figure 6.8: Approach used by MVAPICH?2 library to save energy during communication
times.

6.10 MVAPICH2: Energy Efficient Approach

The last approach is implemented in MVAPICH2 [54], an MPI implementation crafted
by Ohio State University for compatibility with InfiniBand and Cuda GPUs which adopts
a hardware-level strategy. This entails leveraging native hardware instructions, such as
mwait for Intel processors, to temporarily pause processors during slack times. This ap-
proach not only reduces energy consumption but also alleviates the busy-wait problem.

In this strategy, Core-idling is executed by suspending processes, through a low P-
States, during periods of inactivity in wait time. Processes are then resumed as needed,
eliminating the necessity of entering the waiting mode.

This implementation is still in its early stages and currently only facilitates forcing the
processor into a low or high state, always within a P-States. However, according to the
authors Kim et al. [54], it will be possible to employ other energy-saving policies, given
the numerous methods available for implementing process suspension and resumption.
Various approaches can be employed, including assembly instructions like mwa1t on Intel
processors, which sets a hardware busy wait, which follows the intel MPI liberia strategy
through spin time for entering an energy-saving mode and await an event.

The authors Kim et al. [54] also screened the use of other tools to avoid using architecture-
dependent instructions, such as timers, semaphores, and signals. However, timers are only
suitable for controlling larger units of time, and semaphores have the risk of causing dead-
locks. Therefore, in the initial implementation, the authors chose to use signaling. Con-
sequently, the implementation is CPU-independent and easily extensible to support the
inter-node communication channel.

The current implementation of this policy in MVAPICH2 v2.3.1 involves the frame-
work activating a user-defined energy-saving policy when the process is about to enter the
busy-waiting mode [54].

6.11 Comparison

This section provides a comprehensive look at various tools and libraries commonly used
in MPI implementations. Table 6.1 outlines the main features of the MPInside Library,
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Jitter, Offline Scheduler, Fermata, Adagio-Computation, Adagio COUNTDOWN Library,
ATFaVSCP tool, Intel MPI and MVAPICH?2. Specifically, the table details each tool’s.

MPI implementation: whether it works with all MPI implementations or requires
a specific implementation

Auvailability of a profiler: whether or not there is a low performance profiler profiling
the program.

Mode of operation: whether the run is online, whether it manages from previous
estimates or data what the ideal frequency is, or whether it is offline, whether it
uses data from a previous run to estimate the ideal frequency, or whether it requires
training.

Granularity: whether it works at per MPI call or at timestamp or timestep. Times-
tamp granularity indicates an analysis based on fixed time sampling, for example
every 100 microseconds, timestep granularity indicates a granularity of detail for
each iteration of a given scientific computing software; this dictates that there are a
small number of MPI calls within that step. Finally, timeslice granularity indicates
a granularity in which each individual step/iteration is divided into many slices.

Ideal frequency: which allows energy saving capabilities during computation and
busy waits.

Presence or absence of false negatives: for example, if the tool exchanges a simple
while that computes a sum with a busy wait.

Whether it works with blackbox code or requires recompilation.

Availability of the source code (Open Source).

The desired features are obviously an online scheduler that acts directly without train-
ing, with granularity at MPI call level or higher, the absence of false negatives, the achieve-
ment of the ideal frequency, and finally the ability to run with blackbox code and the pres-
ence of source code. Based on the information provided in table 6.1, it can be concluded
that of all the algorithms listed, only two meet our requirements. Of these two, our main
focus is on the Open Source one, COUNTDOWN.
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Table 6.1: Comparison of tools and libraries. Bold entries show desired characteristics.

Tool/Library MPI Im- Profiler  Online Granularity Energy Energy Ideal frequency False Work Source Approach
plemen- or Of- Saving Saving Nega- with code avail- figure
tation fline on Com- on Busy tives blackbox ability

putation Wait code

MPInside  Library Any Yes MPI call No No Yes No

[46]

Jitter [37] Any No Online Timestep Yes No Only on compu- No Yes No Figures 6.1

tation and 6.2

Offline  Scheduler Any Yes Online Timestamp Yes Yes Yes Yes No

[39-41]

Fermata [39-41] Any Yes Online MPI call No Yes No No Yes No

Adagio- Any No Online Timeslice  Yes No No No Yes No

Computation  [39—

41]
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time

MVAPICH2 [54] MVAPICH2No Online MPI call No Yes No Yes No Figure 6.8
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The COUNTDOWN Library

This section provides an in-depth exploration of the COUNTDOWN library to illustrate
its functionality, organisational structure, integration process with applications and the
various source code components. The insights presented here are derived, in part, from
the authors’ articles, in particular Cesarini et al. [34, 35, 36, 52], Cesarini [56], Bartolini
et al. [57]. Nevertheless, to ensure a complete and accurate representation of COUNT-
DOWN, some crucial details have been extracted directly from the source code accessible
on GitHub at [55]. This decision is motivated by the realisation that the documentation is
not exhaustive to the levels required for this study.

The organization of the chapter is as follows: section 7.1 introduces how to follow the
COUNTDOWN library, followed by section 7.2 which tells what the configuration options
of the said library are. After that, section 7.3 gives a detail about the general report that
provides COUNTDOWN, followed by section 7.4 whitch talks about the low-level library
architecture, and the next sections describe it at a high level (sections from 7.5 to 7.10).
Finally, sections 7.11 and 7.12 talks about the overhead and performance evaluation of
COUNTDOWN by the authors.

7.1 Shell Execution of an Application with the COUNT-
DOWN Library

COUNTDOWN employs a technique where the COUNTDOWN library is loaded prior to
any other system libraries. This is achieved by utilizing the environment variable LD_PRELOAD,
which specifies the paths that the shared library will load before any other library, including

the C runtime library libc. so. This method is commonly used to wrap system function
like the malloc, thanks to this to profile an application via COUNTDOWN you only need

to run add an environment variable as shown in listing 7.1.

export LD_PRELOAD=/path/to/libcntd.so
mpirun -np 128 ./a.out args...

Listing 7.1: Shell execution of an application with the COUNTDOWN profiler.
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Since COUNTDOWN is loaded as an environment library that overrides the MPI li-
brary by overwriting the environment variable LD_PRELOAD it can not access the Linux
model-specific registers (MSRs) including those pertaining to power management de-
scribed in section 5.2 since SELinux (Security-Enhanced Linux) policies prohibit access
to these registers from source code external to the running application and/or kernel mod-
ules, so for example all external libraries.

The strategy so far used to overcome this problem is the one used by MPInside de-
scribed in section 6.2, that is, to handle the execution of the code herself, but this could
be a problem if the code itself requires the use of MRS registers, but this was contrary to
the principles of COUNTDOWN, i.e. being a wrapper between the application and MPI
callable via an environment variable, in order to maintain this transparency and avoid the
need for recompilation the authors of COUNTDOWN decided to use MSR-SAFE (Model-
Specific Register - Software Access to Flags and Events) to modify the architectural reg-
ister independently for each core, allowing it to change the current P-States (processor
frequency and voltage) per core. MSR-SAFE is a driver for the Linux kernel, which must
be compiled for the specific platform, that acts as a wrapper between the system files that
govern the CPU and the rest, ensuring that all applications have the aforementioned per-
missions [58, 59]. This driver is a kernel module that implements access-control lists for
model-specific registers, allowing controlled userspace access to these registers. By using
MSR-SAFE, system administrators can grant trusted users read access to registers at the
register level and write access at the bit level. This is particularly useful in production en-
vironments where kernel drivers may not support new processor features or where batch
access to multiple registers is needed to meet performance requirements.

7.2 COUNTDOWN Options

As seen in section 7.1, using the COUNTDOWN profiler is a very simple operation, sim-
ilarly so is enabling the COUNTDOWN and COUNTDOWN Slack algorithms, as seen in
listing 7.2 and listing 7.3. An exhaustive list of all the options are collected in the next two
pragraphs, the first is devoted to compile-time settings, the second to run-time environment
settings.

export LD_PRELOAD=/path/to/libcntd.so
export CNTD_ENABLE=1
mpirun -np 128 ./a.out args...

Listing 7.2: Shell execution of an application with the COUNTDOWN algorithm.
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export LD_PRELOAD=/path/to/libcntd.so
export CNTD_ENABLE=1

export CNTD_SLACK_ENABLE=1

mpirun -np 128 ./a.out args...

Listing 7.3: Shell execution of an application with the COUNTDOWN algorithm and
COUNTDOWN Slack algorithm.

Build options COUNTDOWN offers five compilation options that modify what COUNT-
DOWN does. In the experiments carried out in chapter 8 we use all the default build op-
tions, as we do not want to make any changes that would externally affect the results. To
compile COUNTDOWN, we can use the commands shown in listing 7.4 to run in a Linux
environment containing build-essential, openmpin-bin, libopenmpi-dev.

e CNTD_ENABLE_CUDA Enable the NVIDIA GPU monitoring for energy and power
consumption

e CNTD_DISABLE_PROFILING_MPI Disable the instrumentation of MPI functions
e CNTD_DISABLE_P2P_MPI Disable the instrumentation of P2P MPI functions

* CNTD_DISABLE_ACCESSORY_MPI Disable the instrumentation of accessory MPI
functions focusing only on collective

* CNTD_ENABLE_DEBUG_MPI Enable the debug prints on MPI functions

mkdir build
cd build
cmake ..

cd ..

make

Listing 7.4: Compilation of COUNTDOWN.

Environment variables The experiments described in chapter 8 utilized various set-
table COUNTDOWN Environment variables. These variables included CNTD and CNTD
slack, max and min pstate, timeout, and enable timeseries report.

* CNTD_ENABLE Enable the COUNTDOWN algorithm (when the value is enab'le,
on, yes, true or 1) or enable only the analysis of energy-aware MPI (when value
is analysis). This parameter is required.

* CNTD_SLACK_ENABLE Enable the COUNTDOWN Slack algorithm (when the value
is enable, on, yes, true or 1) or enable only the analysis of energy-aware MPI
(when the value is analysis). This parameter is required.
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* CNTD_MAX_PSTATE Force an upper bound frequency to use E.x. 24 is 2.4 GHz fre-
quency.

* CNTD_MIN_PSTATE Force a lower bound frequency to use E.x. 12 is 1.2 GHz fre-
quency.

* CNTD_TIMEOUT Timeout of energy-aware MPI policies in microseconds, default
500 ps.

* CNTD_FORCE_MSR Force the use of MSR instead (when the value is enable, on,
yes, true or 1) of MSR-SAFE driver, the application must run as root.

e CNTD_SAMPLING_TIME Timeout of system sampling, default 1 s, max 600 s.
e CNTD_OUTPUT_DIR Output directory of report files.
* CNTD_TMP_DIR Temporary directory of report files.

* CNTD_PERF_ENABLE Enable Linux perf monitoring when the value is enable, on,
yes, trueor 1.

e CNTD_PERF_EVENT_X Configure the perf event X, where X is between 0 and the
maximum available PMUs of the CPU architecture, while the value must be in hex
format. COUNTDOWN support at most custom 8 performance events. By default,
it already analyzes 12 perf events.

* CNTD_DISABLE_POWER_MONITOR Disable the energy/power monitoring when the
value is enable, on, yes, true or 1.

* CNTD_ENABLE_REPORT Save the summary report as a file.

* CNTD_ENABLE_TIMESERIES_REPORT Enable time-series reports, default sampling
time 1s.

Performance event The perf events are implementation-defined; see The Intel CPU
manual Volume 3B documentation [60] or the AMD BIOS and Kernel Developer Guide
[61]. After this, we can use libpfm4 [62] library. This library is designed to facilitate
the translation process from the name used in architectural manuals to the corresponding
raw hex value required in the CNTD_PERF_EVENT_X field of COUNTDOWN. One possi-
ble use of this command is to be able to see what state the processor is in, from the Intel
manual you can see that the P-states information is contained in the TA32_MPERF and
TA32_APERF instructions. The TA32_MPERF instruction provides the actual performance
state of the processor, representing the count of elapsed core cycles in the maximum per-
formance state. On the other hand, the IA32_APERF instruction provides the accumulated
performance state, indicating the count of elapsed core cycles in any performance state.

The default 12 metrics for COUNTDOWN monitoring are:

* PERF_INST_RET: This metric represents the number of retired instructions, indi-
cating the total count of instructions that have been executed and completed.
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PERF_CYCLES: Measures the total number of CPU cycles executed for a given op-
eration or code segment, providing insight into the overall computational workload.

PERF_CYCLES_REF: This metric specifically counts the reference cycles, offering a
refined perspective on the cycles that directly contribute to the computation.

PERF_SCALAR_DOUBLE: This represents the count of scalar double-precision float-
ing point operations, offering insights into the performance of operations involving
double-precision floating point numbers.

PERF_SCALAR_SINGLE: Similarly to the previous metric, this one counts scalar
single-precision floating point operations, providing details on the performance of
operations involving single-precision floating point numbers.

PERF_128_PACKED_DOUBLE: Measure the count of 128-bit packed double-precision
floating point operations, giving visibility into the performance of operations involv-
ing vectors of double-precision numbers.

PERF_128_PACKED_SINGLE: This metric counts 128-bit packed single-precision
floating point operations, offering insights into the performance of operations in-
volving vectors of single-precision numbers.

PERF_256_PACKED_DOUBLE: Similarly to the 128-bit version, this metric counts
256-bit packed double-precision floating point operations.

PERF_256_PACKED_SINGLE: This metric counts 256-bit packed single-precision
floating point operations.

PERF_512_PACKED_DOUBLE: Similarly to the previous two, this metric counts 512-
bit packed double-precision floating point operations.

PERF_512_PACKED_SINGLE: This metric counts 512-bit packed single-precision
floating point operations.

PERF_CAS_COUNT_ALL: It represents the total count of Compare-And-Swap (CAS)

operations, providing information on the number of such atomic operations per-
formed.

Hardware power monitor The hardware monitor requires that can be read the ac-

cess of CPU (/sys/devices/system/cpu/*) in the Intel architecture via the MSR-
SAFE driver, the On-Chip Controller (/sys/firmware/opal/exports/occ_inband
_sensors) on the IBM Power 9 architecture, and the tx2mon driver on Marvell Thun-
derX2 on /systems/devices/platform/tx2mon/. In cases where the MSR-SAVE
driver is not accessible, performing these operations may necessitate root or other privi-
leged permissions. If obtaining such permissions is not feasible, an alternative option is to
deactivate hardware monitors.
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7.3 COUNTDOWN Report

The COUNTDOWN report contains the following information, an example of a report is
given in listing 7.5.

* EXE time: Time of execution of the program.

* GENERAL INFO: Contains general information on MPI Ranks, Nodes, Sockets,
CPUs, and GPUs.
— Number of Nodes: Number of nodes in the system.
— Number of MPI Ranks: Total number of MPI ranks (nodes x task).
— Number of CPUs: Total number of CPUs (nodes x tasks x threads).

— Number of Sockets: Number of sockets for OpenMPI communication.
A graphical representation is shown in fig. 4.6.

* PKG: Information about the package (a single CPU) with consumed Energy (Joule)
and AVG Power (Watt).

* DRAM: Information about RAM (across all nodes) with consumed Energy (Joule)
and AVG Power (Watt), available only on intel platform.

* GPU: Information about the GPU (across all nodes) with consumed Energy (Joule)
and AVG Power (Watt).

* MPI network (TOT, SENT, and RECV): Data shared between nodes and threads
(total, send, and receive data).

* MPI file (Read, Write): Data read and written by MPI_f1 le instructions.
* MAX Memory usage: Maximum memory (RAM) used.

* AVG IPC (Instructions per clock), AVG CPU frequency, Cycles, Instructions
retired: Information about CPU usage, given by the first 4 metrics of section 7.2.

* SIMD information (Single Instruction, Multiple Data): performance in handling
floating point operations at different vector sizes.

— DP UOPs (total, 64, 128, 256, 512): Total number of double-precision float-
ing point micro-operations, determined by the 6th, 8th, and 10th metrics in
section 7.2.

— DPFLOPs (total, 64, 128, 256, 512): Total number of floating point operations
equivalent to double precision, equivalent to the DP UOPs but considering the
appropriate factor for each vector size (x1, 2,4, 8).

— SP UOPs (total, 64, 128, 256, 512): Total number of single-precision floating
point micro-operations, given by the 7th, 9th, and 11th metrics in section 7.2.
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— SP FLOPs (total, 64, 128, 256, 512): Total number of floating point operations
equivalent to single precision, equivalent to the DP UOPs but considering the
appropriate factor for each vector size (x 1, 2,4, 8).

The dimensions (32, 128, 256, 512) denote the widths of SIMD (Single Instruction,
Multiple Data) registers employed to concurrently execute multiple operations. In
practice, floating point operations are performed on data organized in vectors (or
“packed” vectors) to harness parallelization.

« MEM UOPs and MEM GLOBAL DATA:

— MEM UOPs (Memory Micro-Operations): This metric provides insights into
the memory-related micro-operations, reflecting the efficiency and usage pat-
terns of memory operations within the system.

— MEM GLOBAL DATA: This metric focuses on global memory data with the
overall utilization of the system’s global memory.
* GPU reporting:
— GPU util: Indicates GPU utilization, representing the proportion of time the
GPU spends actively processing tasks.

— GPU mem util: Reflects GPU memory utilization, showcasing the percentage
of GPU memory actively in use.

— GPU temp: Providing information on the thermal conditions (temperature) of
the GPU.

— GPU freq: Indicates the GPU frequency, representing the clock speed at which
the GPU is operating.
e MPI timing: time for APP and MPI
— EXE time: process execution time measured from the first Rank started to the
last Rank to finish
— TOT time: sum of all execution times of the Ranks

— APP time: sum of all code execution times excluding the MPI calls of the
Ranks

— MPI time: sum of all MPI timing of the Ranks
A graphic representation is in fig. 7.1.

* MPI detail exchange data: This feature provides a detailed list of all MPI primitives
intercepted by COUNTDOWN, along with the corresponding count of calls made
to each of them. It offers a granular view of the MPI operations executed during the
program’s runtime.

* MPI slack report: The MPI slack report presents a list of MPI primitives for which
the artificial barrier has been enabled.

65



CHAPTER 7. THE COUNTDOWN LIBRARY

MPI Tasks {

I —
EXE Time

MPI Ranks (MPI Nodes x MPI Task)

APP Time ) HEE
MPI Time ) Em—

Total Time = APP Time + MPI Time = EXE Time x MPI Ranks — ) 1

Figure 7.1: Graphical representation of MPI timing.

## ## #HH#H
#HHHH R AR RS COUNTDOWN #### ## ##H# ###H#HHHHHH#H
#i #i HHHEHH

EXE time: 10.637 sec
HEHHHHHHH A A A HAHEE GENERAL INFO #HH#H#H#BHHHHAHAHHHAHAH

Number of MPI Ranks: 96

Number of Nodes:

Number of Sockets:

Number of CPUs:

16

32

768

HEHHHHRHRERH AR AR ENERGY #HHAHA#HHHHHAHRHHRHRHRHARA

PKG: 38417 J

DRAM: 9353 J

HEHHHHH R R H BRSO AVG POWER ########H###HHH#HHHHIH

PKG: 3611.54 W

DRAM: 879.28 W

H#H##HHHHH A #HHHHE PERFORMANCE INFO ############HH#H#HH

MPI network - SENT: 2.21 GByte

MPI network - RECV: 2.21 GByte

MPI network - TOT: 4.41 GByte

MPI file - WRITE: 0 Byte

MPI file - READ: 0 Byte

MPI file - TOT: 0 Byte

MAX Memory usage: 33.86 GByte

AVG IPC: 2.19

AVG CPU frequency: 3094 MHz

Cycles: 2956364089090

Instructions retired: 6498795275628

DP FLOPs: 184216886431
DP FLOPs 64: 180042585091
DP FLOPs 128: 4163398812
DP FLOPs 256: [}
DP FLOPs 512: 10902528
DP UOPs (TIME_EN/TIME_RUN): 182125647313 ( 3916346134636/ 3916346134636)
DP UOPs 64 (TIME_EN/TIME_RUN): 180042585091 ( 979085882214/ 979085882214)
DP UOPs 128 (TIME_EN/TIME_RUN): 2081699406 ( 979086322487/ 979086322487)
DP UOPs 256 (TIME_EN/TIME_RUN): 0 ( 979086745428/ 979086745428)
DP UOPs 512 (TIME_EN/TIME_RUN): 1362816 ( 979087184507/ 979087184507)
SP FLOPs: 5376
SP FLOPs 32: 5376
SP FLOPs 128: ]
SP FLOPs 256: ]
SP FLOPs 512: ]
SP UOPs (TIME_EN/TIME_RUN): 5376 ( 3916346989999/ 3916346989999)
SP UOPs 32 (TIME_EN/TIME_RUN): 5376 ( 979086099830/ 979086099830)
SP UOPs 128 (TIME_EN/TIME_RUN): 0 ( 979086533160/ 979086533160)
SP UOPs 256 (TIME_EN/TIME_RUN): 0 ( 979086961881/ 979086961881)
SP UOPs 512 (TIME_EN/TIME_RUN): 0 ( 979087395128/ 979087395128)
MEM UOPs (TIME_EN/TIME_RUN): 7055202636 ( 127652337360/ 127652337360)
MEM GLOBAL DATA: 451532968704

HEHHH R RS MPT TIMING #########H##H#HHHHHH#H

APP time: 746.249 sec (72.82%

MPI time: 278.545 sec (27.18%)

TOT time: 1024.794 sec (100.00%)

#HHHH R AR R #HE MPT REPORTING ##########H#HHH#H#H

MPI_INIT_THREAD: 96 - 0.000 Sec (0.00%)

MPI_ALLGATHER: 2688 - 1.092 Sec (0.39%) - SEND 2.43 MByte - RECV 2.43 MByte
MPI_ALLGATHERV: 96 - 0.046 Sec (0.02%) - SEND 47.11 MByte - RECV 47.11 MByte
MPI_ALLREDUCE: 481632 - 119.801 Sec (43.01%) - SEND 2.15 GByte - RECV 2.15 GByte
MPI_ALLTOALL: 1344 - 13.364 Sec (4.80%) - SEND 1.97 MByte - RECV 1.97 MByte
MPI_BARRIER: 5376 - 70.101 Sec (25.17%)

MPI_BCAST: 5184 - 45.254 Sec (16.25%) - SEND 5.80 MByte - RECV 5.74 MByte
MPI_COMM_SPLIT: 96 - 0.024 Sec (0.01%)

MPI_REDUCE: 1728 - 0.010 Sec (0.00%) - SEND 17.81 KByte - RECV 18.00 KByte
MPI_SCATTER: 64512 - 4.067 Sec (1.46%) - SEND 252.00 KByte - RECV 249.38 KByte
MPI_WAITALL: 68160 - 20.020 Sec (7.19%)

MPI_WAIT: 900516 - 4.763 Sec (1.71%)

MPI_FINALIZE: 96 - 0.001 Sec (0.00%)

HEEH R

Listing 7.5: Aggregate data report provided by COUNTDOWN.
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7.4 Components of COUNTDOWN

The following description outlines key source code files, each serving a specific role in the
COUNTDOWN application’s implementation.

init This section is responsible for initializing the COUNTDOWN library. It manages
the loading of COUNTDOWN settings from environment variables or default val-
ues and ensures that these settings are applied to the running program. The set of
environment variables is in section 7.2.

wrapper_pmpi_c_cpp This subsection intercepting MPI calls within C/C++ code. It ap-
plies COUNTDOWN and/or slack mechanisms and then calls the MPI primitive.
This code supports 344 MPI functions specified in the MPI 4.0 Specification.

wrapper_pmpi_fortran Similar to the C/C++ counterpart, this subsection focuses on in-
tercepting MPI calls, but specifically within Fortran code. It applies COUNTDOWN
and/or slack and calls the corresponding MPI primitive. This code supports 344 MPI
functions specified in the MPI 4.0 Specification.

timer This is responsible for managing time-related aspects. It generates an alarm in the
CPU after a 500 500 ps and ensures that the processor enters a low P-states if the MPI
instruction is not completed. Importantly, it employs an asynchronous, event-driven
alarm mechanism without resorting to busy waits or other CPU-intensive modes.
More details are in section 7.7.

eam Short for “event alarm manager”, this subsection handles the alarms generated by
the timer. More details are in section 7.6.

eam-slack This subsection handles the alarms generated by the timer if the slack is en-
abled. More details are in section 7.10.

sampling This section is dedicated to real-time sampling of various hardware parameters.
It collects data and saves it to reports, providing crucial insights into the system’s
performance. More details on this subsection are in section 7.5.

report Building on the data gathered through real-time sampling, the report section gen-
erates summary information. It provide a report with as a comprehensive overview
of the system’s status and performance. If enabled it also generates the report of cus-
tom performance events as well as all MPI calls, all data transfers, and the various
general counters. More details on this subsection are in section 7.3.

pm Abbreviated for “power management”, this subsection manages the DVFS of the pro-
cessor, specifically dealing with frequencies of P-states. It plays a role in optimizing
power consumption based on the system’s needs. More details on this subsection are
in section 7.8.

hwp Standing for “hardware performance”, this part of the codebase deals with data ob-
tained from the hardware performance monitor. It likely involves processing and
utilizing information related to the system’s hardware components.
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cpufreq This subsection is responsible for limiting the CPU frequency if requested via
the environment variables CNTD_MAX_PSTATE and CNTD_MIN_PSTATE.

7.5 COUNTDOWN Profiler

The COUNTDOWN Profiler is a tool comprising two essential components: the Event
Profiler/MPI Profiler and the Time-based Profiler, each serving distinct yet interconnected
purposes.

Event Profiler/MPI Profiler The Event Profiler/MPI Profiler takes a detailed approach to
monitor the hardware (HW) performance of Intel processors. Utilizing the RDPMC
instruction, it tracks micro-architectural events such as clock cycles, instructions re-
tired, and configurable HW performance counters. This profiler is adept at extracting
MPI information from parameters passed to MPI primitives. It creates a comprehen-
sive MPI profile, capturing crucial details like MPI communicators, MPI groups,
core ID, and meticulously profiling each MPI call. This includes recording the call
type, entrance and exit times, and the data exchange with other MPI processes.

Time-based Profiler The Time-based Profiler adopts a broader strategy, collecting a di-
verse set of HW performance counters at regular intervals. It works by sampling
every few seconds through timers, each dedicated to each MPI rank that collects all
the data from the various OpenMP threads, ensuring an equitable distribution of the
profiling overhead among the MPI ranks. Leveraging the MSR-SAFE kernel driver
and Intel RAPL registers, it monitors CPU and DRAM energy/power consumption.

* Fine-grain Micro-architectural Profiler At a more granular level, the Fine-
grain Micro-architectural Profiler captures micro-architectural insights with
precision. It accesses performance counters using the RDPMC instruction,
monitoring average frequency (in some architecture), time stamp counter (TSC),
and instructions retired during each MPI call.

* Coarse-grain Profiler The Coarse-grain Profiler extends its focus to a broader
set of HW performance counters available in Intel architectures. Overcoming
access limitations, it employs the MSR-SAFE driver and a scheduler plugin to
grant users access. At its fundamental level, it keeps track of TSC, the num-
ber of executed instructions, the average frequency, the durations of C-states,
and the temperature. Furthermore, it monitors the energy consumption of the
CPU package, the residency of C-states, and the temperature of the package by
utilizing RAPL. Due to the relatively higher overhead of accessing monitored
counters, it employs a time-based sample rate. Activation is triggered by the
fine-grain profiler based on periodic timestamp checks.

The profiler generates a summary report, described in section 7.3, which not only sum-
marizes events and time-based traces but also improves readability and simplifies long-
term compression, and then produces a CSV output containing a time-series, if activated
with CNTD_ENABLE_TIMESERIES_REPORT, and this output can be found in fig. 7.2. De-
spite the negligible overhead of the hierarchical report, the storage performance remains
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Figure 7.2: COUNTDOWN time-series report.

a key factor. The memory footprint is consistent per MPI process, typically within the
range of a few megabytes. The flexibility of configuring and deactivating different profiler
modalities adds versatility to its usage [35, 36].

7.6 COUNTDOWN Event Alarm Manager

COUNTDOWN interacts with the hardware power controller of each CPU core to ana-
lyze and reduce power consumption. Due to limitations in SELinux, the interactions occur
through the MSR-SAFE driver, and the Events module determines the appropriate perfor-
mance level to execute a specific phase [36].

COUNTDOWN employs a timeout strategy using standard Linux timer APIs, which
include system calls like setitimer () and getitimer () for manipulating user-space
timers and registering callback functions. The methodology is illustrated in fig. 6.4. When
COUNTDOWN reaches an MPI phase where it has the opportunity to conserve energy by
transitioning to a C-States, it sets up a timer callback in the prologue function named “event
start”. Afterwards, the execution continues with the usual workflow of the MPI phase.
When the timer runs out, a system signal is produced, causing the “normal” execution of
the MPI code to be interrupted. The signal handler then activates the COUNTDOWN call-
back, and once the callback finishes, the execution of the MPI code resumes from the point
where it was interrupted. If the execution of the MPI phase returns to COUNTDOWN (in-
dicating its termination) before the timer expires, COUNTDOWN will disable the timer
in the epilogue function, and the execution will continue as if nothing had happened. The
callback can be configured to enter a lower C-States (12.5 % of the load), referred to as
COUNTDOWN THROTTLING, or a lower P-States (1.2 GHz), referred to as COUNT-
DOWN DVEFS [36], the second is the default strategy and the THROTTLING strategy is
not recommended by the authors of the COUNTDOWN.

The eam_callback() function plays a crucial role in the Event Alarm Manager
(EAM) by responding to triggered events. It sets a flag (flag_eam) to indicate an EAM
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event and adjusts the system’s minimum processor state (P-states) through the invocation
of set_min_pstate() of pm.c. This function is essential for coordinating actions in
response to EAM events and optimizing processor states for improved efficiency.

In the case of eam_start_mpi (), it acts as the initiator for Message Passing Interface
(MPI) processes within COUNTDOWN. It ensures the reset of flag_eam to FALSE, de-
noting the absence of an EAM event. Depending on the EAM timeout setting, the function
either initiates a timer using start_timer () of timer. c ordirectly calls eam_callback().
This orchestration is crucial for efficiently managing MPI-related events within the COUNT-
DOWN application.

For eam_end_mpi (), its primary responsibility lies in concluding MPI-related pro-
cesses. The function checks the EAM timeout and resets the timer if applicable. If the
flag_eam is set (indicating timer expiration), it sets the maximum processor state (P-
states) through set_max_pstate() of pm.c and returns TRUE. Otherwise, it returns
FALSE. This function is pivotal for handling MPI events and adjusting processor states
accordingly.

During initialization, eam_init () sets up the Event Alarm Manager (EAM) by ini-
tializing the timer. If the EAM timeout is greater than zero, it calls init_timer () with
eam_callback as the callback function. This function is a crucial part of the EAM setup
during the COUNTDOWN application’s initialization.

Lastly, eam_finalize() is responsible for concluding the operations of the Event
Alarm Manager (EAM). If the EAM timeout is greater than zero, it calls finalize_timer ()
of timer.c to reset the timer and set the maximum system P-States. This function is ex-
ecuted during the COUNTDOWN application’s finalization process.

7.7 COUNTDOWN Timer

As per the title this section of code deals with time management within the COUNTDOWN
library. The start_timer () function is responsible for initializing and starting a timer.
It utilizes the interval structure to define the timer’s value, particularly setting the time
interval based on the EAM timeout. By invoking setitimer () with the ITIMER_REAL
parameter, the timer is initiated, triggering an alarm after the specified interval. This func-
tionality is crucial for managing time-sensitive operations within COUNTDOWN.

To ensure precise control over timers, the reset_timer () function is employed to
reset the timer, effectively canceling any ongoing alarm. This capability enhances the
adaptability of COUNTDOWN, allowing for dynamic adjustments to timing behavior dur-
ing runtime. The finalize_timer () function encapsulates the process of resetting the
timer, contributing to the orderly conclusion of timer-related operations.

The code also introduces advanced timer configuration functions, such as make_timer ()
and delete_timer (). The former enables the creation of timers with user-defined inter-
vals and expiration times, offering flexibility in adapting to varying time requirements.
Conversely, the latter function facilitates the deletion of a specified timer, providing a
mechanism to efficiently manage and release timer resources when they are no longer
needed. These advanced timer functionalities extend COUNTDOWN’s temporal control
capabilities, enabling sophisticated handling of time-sensitive events and operations within
the application.
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Figure 7.3: Graphical representation of power management logic of COUNTDOWN.
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7.8 COUNTDOWN Power Management and DVFS

COUNTDOWN interacts with the hardware power controller of each core to reduce power
consumption using the DVFS states (P-states). This integration is achieved through the
Power Management Strategies of the Linux kernel, described in section 5.2, specifically
the files /sys/devices/system/cpu/cpux/cpufreq/* exposed by the Linux kernel.
When COUNTDOWN needs to modify the CPU’s power management, it handles changes
in the values present in the scaling_max_freq, scaling_min_freq, and scaling
_setspeed registers, depending on the type of governor. The first two are modified for
some governors, while the third is modified for others [35, 43].

For a high-power state, both scaling_max_freqgand scaling_min_freq,orscaling
_setspeed if the governators are in userspace, are set to the value obtained either through
an environment variable or, if not present, from cpuinfo_max_freq.

For a low-power state, both scaling_max_freqand scaling_min_freq,orscaling
_setspeed if the governators are in userspace, are set to the value obtained either through
an environment variable or, if not present, from cpuinfo_min_freq.

Itis crucial to verify the successful writing of values to scaling_max_freq, scaling
_min_freq, and scaling_setspeed as these parameters may be subject to rejection by
the system. This verification ensures that the desired power management settings are ap-
plied effectively, allowing the CPU to operate at the specified clock frequency and bypass
any other energy-saving strategy present in the system.

The response time of the hardware (HW) power controller is estimated to be 500 ps
([28, 35]). This implies that any new setting for the core frequency applied within a time
frame faster than 500 us may be either successfully implemented or completely ignored.
The outcome depends on when the register was sampled the previous time.

The DVFS management in COUNTDOWN is encapsulated within pm. c, utilizes the
functions get_minimum_frequency() and get_maximum_turbo_frequency() in
pm. c. Upon examining these functions, it is observed that the former exclusively reads the
cpuinfo_min_freq register, converts it to an integer, and returns the result divided by
10~°. The second function, based on the presence or absence of the SCALING_SETSPEED
value (which can either be the user-defined value through environment variables or not),
reads the value of cpuinfo_max_freq or the user-defined value. Subsequently, it reads
the file and returns the integer result divided by 10~°. The algorithm follows the logic
illustrated in fig. 7.3.
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7.9 COUNTDOWN Slack

The COUNTDOWN Slack is a straightforward mechanism to distinguish between slack
time (7slack) and copy time (Tcopy) in collective primitives, as illustrated in the upper part
of fig. 6.5b. To maintain performance during the Tcopy phase, a barrier was introduced
using the MPI_Barriier function in the MPI collective operation, and a similar artificial
barrier was also created for P2P operations. This mechanism is called Collective COUNT-
DOWN Slack barrier. This barrier effectively prevents any decrease in performance and
can be used with different MPI implementations that are based on standard MPI primi-
tives. Its flexibility allows it to be easily integrated with various MPI libraries, making it
suitable for a wide range of situations. This mechanism was primarily used with blocking
MPI primitives while still maintaining the functionality of non-blocking, one-sided, file,
and support MPI primitives.

As already mentioned, the approach also considers both collective and Point-to-Point
(P2P) primitives since the time spent in other types of primitives is relatively negligible for
the specific benchmarks under consideration. Two distinct mechanisms were implemented
to isolate the slack time designed for collective primitives and the other for P2P primi-
tives. These mechanisms are instrumental in optimizing energy efficiency during the MPI
communication phases. The artificial barrier for collective communication is described in
section 5.3.1.

COUNTDOWN Slack enforces an artificial MPI_Barrier on the communicator when-
ever the application initiates a collective primitive. If the MPI_Barrier extends beyond
a specified time threshold, COUNTDOWN Slack can reduce the P-States to the minimum
level available in the system. As soon as all processes involved in the collective prim-
itive reach this synchronization point, the barrier concludes, and COUNTDOWN Slack
restores the highest frequency when profiling the duration of slack time. Following this,
the execution flow returns to the application, allowing it to invoke the actual collective
primitive. The mechanism for collective barriers functions as expected since it involves all
processes in the communicator, ensuring synchronization. However, when it comes to P2P
primitives, they are exclusively invoked by the processes engaged in P2P communication.

Inserting MPI_Barrier in P2P primitives is not possible since it would lead to a
deadlock for subsequent MPI_Wa1it. To address this challenge, COUNTDOWN has im-
plemented a waiting mechanism based on non-blocking primitives, as depicted in the
lower part of fig. 6.5b. Before an MPI_Send primitive, COUNTDOWN Slack appends
an artificial MPI_Isend with 0 B content, followed by an MPI_Wa1 t. Similarly, before an
MPI_Recv primitive, COUNTDOWN Slack includes an artificial MPI_Irecv with 0B
content, followed by an MPI_Wa-i t. However, in the case of MPI_Isend, COUNTDOWN
Slack only introduces an artificial MPI_Isend, and for MPI_Irecv, it adds solely an arti-
ficial MPI_Irecv.

The non-blocking P2P primitive returns a request object, which COUNTDOWN Slack
utilizes in the subsequent MPI_Wa1it primitive. MPI_Wait is a blocking operation used to
await completion of the request object. During artificially introduced MPI_Wait, COUNT-
DOWN Slack reduces the processor’s frequency if the MPI_Wa1it duration exceeds a cer-
tain threshold. This mechanism enables COUNTDOWN Slack to establish a P2P barrier
exclusively among the processes involved in P2P communication, effectively segregating
slack from copy time. We refer to this approach as the P2P COUNTDOWN Slack barrier.
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Figure 7.4: Approach used by COUNTDOWN Slack library to save energy during com-
munication times.

Source: Cesarini et al. [35].

When all processes participating in the P2P primitive reach this synchronization point,
the artificial barrier is completed and the execution flow reverts to the COUNTDOWN
Slack. Subsequently, the library restores the maximum frequency and invokes the appli-
cation’s original P2P primitive.

While COUNTDOWN Slack augments blocking P2P primitives with their non-blocking
counterparts, it accommodates applications that utilize a mix of blocking and non-blocking
P2P primitives. To maintain consistency and avoid discrepancies in P2P COUNTDOWN
Slack barriers, we have included non-blocking P2P primitives before every non-blocking
P2P primitive called by the application, ensuring a balanced number of non-blocking P2P
primitives.

To assess the overhead introduced by both the collective and P2P COUNTDOWN
Slack barriers, we conducted experiments by running our benchmarks both with and with-
out the artificial barrier mechanism, subsequently comparing their execution times. The
experimental results demonstrate (see chapter 8) that the overhead is negligible in all our
benchmarks [35].

Figure 7.4 describes the approach of COUNTDOWN Slack to split the time spent in
communication (7comm) into slack time (7slack) and copy time (Tcopy). COUNTDOWN
Slack uses the same logic regarding the management of the separation between Tslack and
Tcomm of Adagio (section 6.6), but only the part of Fermata (section 6.4) is implemented
in COUNTDOWN, with the empirical switching threshold set to 500 ps. This was only ap-
plied to the slack regions isolated by the collective and P2P COUNTDOWN Slack barrier
logic.

7.10 COUNTDOWN Slack Event Alarm Manager

This code segment introduces functionalities to manage slack time within the COUNT-
DOWN application, expanding on the time-related capabilities discussed above. The code
classifies MPI instructions into three main types: waiting operations, collective barriers,
and point-to-point communications.

73



CHAPTER 7. THE COUNTDOWN LIBRARY

The eam_slack_callback() callback function is associated with slack time events.
When triggered, it sets a flag (flag_eam_slack) and adjusts the minimum processor state
(set_min_pstate()). The code also includes functions to intelligently detect whether
a given MPI instruction is a wait operation (is_wait_mpi) or a P2P communication
(is_p2p). For the latter flag, the mapping function is_collective_barrier () iscapa-
ble of identifying collective barrier types within MPI instructions. Otherwise, this module
is similar to the event alarm manager described in section 7.6.

7.11 Overhead of COUNTDOWN

For COUNTDOWN overhead analysis, the COUNTDOWN authors used the profiler mod-
ule to evaluate the performance impact of running MPI applications without modifying the
CPU core frequency. To assess this, tests are performed on a single node using the QE-CP-
EU application, which presents a worst-case scenario for COUNTDOWN due to the high
number of MPI calls and high granularity to profile. In this setup, the overhead caused
by network-related factors in MPI calls is minimal, and communication and synchroniza-
tion within the chip are much faster compared to communication between chips or nodes.
Consequently, the waiting times in MPI calls that can be used for power management are
typically shorter [36].

In this run, each process in the diagonalization task utilizes over 1.1 million MPI prim-
itives, resulting in COUNTDOWN profiling an average MPI call every 200 ps for each pro-
cess. To evaluate the overhead, the authors of COUNTDOWN compare the execution time
with and without COUNTDOWN instrumentation. The test is repeated five times and the
median case is reported. The results show that, in most scenarios, the overhead introduced
by the profiler in the execution is less than 1 % [36].

The same test is repeated with a change in CPU core frequency to assess the overhead
of fine-grain Dynamic Voltage and Frequency Scaling (DVFES) control [36]. The experi-
mental results report an overhead of 1.04 % for accessing the DVFS control register and
the profiling routines, with COUNTDOWN configured to force the highest P-States in the
DVES to isolate the overhead caused by interaction with power management in Linux,
which causes an overhead [36].

7.12 Evaluation of COUNTDOWN

In the evaluation of the COUNTDOWN made by COUNTDOWNS authors begins with a
single compute node and then extends to a real HPC system, specifically an IBM NeXtScale
cluster, which is recognized in the Top500 supercomputer list. The HPC system is equipped
with two Intel Broadwell E5-2697 v4 CPUs, each having 18 cores at a 2.3 GHz nominal
clock speed and a 145 W TDP. Nodes are interconnected using an Intel QDR (40 Gbits~—)
InfiniBand high performance network [36].

Three sets of applications are used for benchmarking in the target HPC system:

NAS Parallel Benchmark Suite This suite comprises seven benchmarks with various
mathematical workloads, including FFT, differential equations, and ordering. It runs
on 29 compute nodes with a total of 1024 cores [45].

74



7.12. EVALUATION OF COUNTDOWN

OMEN OMEN is a computational tool that employs atomistic quantum transport sim-
ulation to calculate the ab initio I-V characteristics of nano-devices. It has been
specifically optimized for supercomputers and was awarded the ACM Gordon Bell
Prize in 2019.

QuantumESPRESSO (QE) QE is configured for complex large-scale simulations and
includes iterative steps involving linear algebra and FFT. This benchmark runs on
96 compute nodes with 3456 cores.

The COUNTDOWN authors compare the performance with and without the COUNT-
DOWN methodology on the same nodes. The results show that COUNTDOWN signif-
icantly reduces energy consumption while incurring only a small time-to-solution over-
head, typically below 5 %. Specifically, COUNTDOWN Slack reduce energy consumption
up to 20 % [36].

75



76



Experiments

This chapter presents a detailed exploration of ten different experiments carried out on
the Cineca supercomputers. Each experiment is designed to provide information on the
functionality, efficiency and impact of the COUNTDOWN tool in conjunction with the
Chronos algebraic solver described in chapter 3.

Before going into the detailed description of the experiments, it is essential to famil-
iarise with the Galileo100 architecture. Understanding the architecture of the Cineca su-
percomputer provides a fundamental background to the experiments that follow. After
exploring the Galileo100, we turn our attention to the matrices used in these experiments.
An in-depth study of these matrices is crucial as they form the basis of the computational
scenarios in which the COUNTDOWN tool will be evaluated. Finally, we will illustrate
the graphical representations used throughout this chapter. Particular emphasis will be
placed on the interpretation of box plots and event plots. These graphical tools serve as
indispensable aids in visually conveying the results and nuances of each experiment.

The organization of the chapter is as follows: section 8.1 introduces the architecture
of the machine I ran COUNTDOWN and Chronos on, followed by section 8.2 which tells
what matrices were used for these tests. After that, section 8.3 talks about the experiments
that will be performed, which are described in the next sections (sections from 8.4 to 8.13).
Finally, section 8.15 draws preliminary conclusions about the experiments.

8.1 Galileo100 Architecture

The experiments were carried out on Cineca’s Galileo100 supercomputer, a powerful com-
puting cluster equipped with 2nd Generation Intel® Xeon® Platinum 8260 Processors,
codenamed Cascade Lake. Each node has 2 CPUs with 24 cores and 48 threads, for a total
of 48 cores and 192 threads, and a maximum turbo frequency of 3.90 GHz, with 768 GB
of RAM. The architecture is based on Linux Infiniband cluster technology and has 636
nodes, including 10 login nodes. Each CPU has a TDP of 165 W and each node has a TDP
of 330 W.

These servers are interconnected through a high-speed 100 Gbit s~ Ethernet network.
The storage infrastructure is extensive, with 20 PB accessible from both the cloud and
the nodes. In particular, dedicated 1 PB fast storage with full NVMe/SSD support meets
cloud storage requirements, while 720 PB fast storage using the IME DDN solution ensures
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Figure 8.1: System Architecture of Galileo100 supercomputer.

Source: Besker and Bari [64].

fast data access. This network architecture enables a maximum bandwidth of 100 Gbits—!

between each pair of nodes, ensuring seamless communication.

Some Galileo100 nodes are equipped with NVIDIA V100 PCle3 GPUs, with 32 GB
RAM, integrated into 36 visualization nodes (viz). This GPU configuration enhances the
computing capabilities and IT complements the significant memory resources. Standard
nodes, known as “thin nodes”, are equipped with 480 GB SSD storage, while data process-
ing nodes, known as “fat nodes”, have a significant 2 TB SSD, augmented by 3 TB Intel
Optane memory. This versatile memory architecture enables efficient handling of a wide
range of computing tasks, such as CPU-intensive and mixed calculations, to be handled ef-
ficiently. The Galileo100 architecture is also described in fig. 8.1, and this supercomputer
provides peak performance of around 2 PFlops~! [63, 64].

8.2 Test Matrices

We use a collection of sparse matrices [65, 66] to run Chronos and analyze the performance
evaluation.

The first matrix, aggl/4m.bin, is derived from the 3D mechanical equilibrium of a
loosely constrained symmetrical machine cutter. The domain has dimensions of 50 x 50 x
50mm? and contains 2644 spherical polystyrene inclusions. The cement matrix has prop-
erties (E'1,11) = (25000 MPa, 0.30), while the polystyrene inclusions have properties
(E2,15) = (5MPa, 0.30). As a result, there is a significant contrast in Young’s modulus
between these two linear elastic materials. The discretization is performed using tetrahe-
dral elements in the finite element method.

The matrix Cubo_1772481.Ext_bin represents a regular discretization of an elastic
cube with tetrahedral finite elements and is used for linear elasticity testing. It is com-
monly used to perform linear elasticity tests and it provides researchers and engineers
with a versatile platform for analyzing structural behavior under mechanical loading and
deformation [67].

The matrices Wing_4538k.csr.Ext_bin and Wing_BIG_BC.csr.Ext_bin are derived from
an airplane wing problem, modeling the structural properties of the wing in an aircraft [66].
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Table 8.1: Collection of sparse matrix in analysis.

Matrix Size [GB] Row Number Non-zero Terms Non-zeros/Row
aggl4m.bin 15.0 14106 408 633142730 44.88
Cubo_1772481.Ext_bin 5.0 5317443 222615 369 41.86
Wing_4538k.csr.Ext_bin 4.2 4538205 187714431 41.36
Wing_BIG_BC.csr.Ext_bin 62.0 33654 357 2758 580899 81.97
M20.bin 71.0 20056 050 1634926 088 81.52

Finally, the matrix M20.bin is derived from the 3D mechanical equilibrium of a loosely
constrained symmetrical machine cutter. The unstructured mesh is composed of 4 577 974
second-order tetrahedra and 6 713 144 vertices, resulting in 20 056 050 DOFs. The material
is linear elastic with (F, v) = (108 M Pa, 0.33) [65]. Table 8.1 provides a summary of key
details for each matrix, including size, number of rows, number of non-zero terms, and
non-zero terms per row.

Initially, all the matrices were used in the different experiments, the matrices M20.bin
and Wing_BIG_BC.csr.Ext_bin caused memory management problems, requiring an amount
of GB that could not be allocated in the Cineca machines, and very high execution times.

The matrix agg/4m.bin was used until experiment 2, when it showed scalability prob-
lems with a number of cores, so that the execution could not be finished in 24 hours, to
avoid problems we preferred to use the other two matrices, which have similar exit times.

8.3 Overview of the Experiments

The first experiment, labeled Experiment O (section 8.4), serves as a basic verification
process. Its primary objectives are to confirm the accuracy of the data generated by the
COUNTDOWN tool. It also aims to validate the information obtained by reverse engi-
neering as described in chapter 7. Experiment 1 (section 8.5) shifts the focus to verifying
the seamless operation of COUNTDOWN alongside the algebraic solver Chronos. This
experiment evaluates the performance of COUNTDOWN when used with Chronos, as
described in chapter 7.

Experiment 2 (section 8.6) involves the search for optimal points for more in-depth
COUNTDOWN tests. Experiment 2 uses a configuration with a lower number of itera-
tions to reduce the influence of the iterative part, which computes the matrix solution,
with respect to the setup and preconditioning part. In this way, about half of the runtime
is used by the setup and preconditioning and the remaining time is utilized by the itera-
tive computation, as opposed to the normal unbalanced distribution, which is described in
section 3.5. This choice also allows for more samples at the same cost.

Experiments 3 (section 8.7), 4 (section 8.8), and 5 (section 8.9) analyze the perfor-
mance of COUNTDOWN applied to the optimal points, which have been identified in
Experiment 2. Specifically, Experiment 3 analyzes the point with the best energy-time ra-
tio, Experiment 4 analyzes the fastest point, and finally Experiment 5 analyzes whether the
value of the COUNTDOWN callback delay, namely 500 ps, is the ideal one.

Experiment 6 (section 8.10), on the other hand, selects a few runs with a full iteration
configuration, i.e. with a sufficient number of iterations for the problem to converge.

Experiments 7 and 8 (sections 8.11.1 and 8.11.2), investigate the effects of lowering
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the processor frequency in the configuration with the best energy/time ratio. In particular,
Experiment 7 tests the configuration with a reduced number of iterations, and Experiment
8 attempts to converge the problem with the correct number of iterations.

Experiments 9, 10, and 11 (sections from 8.12 to 8.14) investigate the actual duration
of MPI calls and analyzing their absolute relative frequency, as well as whether the Linux
kernel actually accepts processor downlock requests, and propose a small modification to
COUNTDOWN to verify some of the considerations made in the previous experiments.

With the exception of Experiments 1 and 2, all the other experiments change a single
parameter, so we can be sure that we are framing the phenomenon well. The results are
presented in various forms, the most common of which are Box Plots, a graph showing
the median (50" percentile), first and third quantiles (Q1 or 25" percentile and ()3 or 75%
percentile). The interquartile range (IQR) is defined as the range of values between the
Q1 and Q)3 percentiles, this value also defines the minimum and maximum, through the
formula Q1 — 1.5-1QR and @3 + 1.5 - IQR. Finally, the outliers are the values outside the
maximum and minimum. The boxplot box represents the first and third quantiles and thus
the IQR, and the median line represents the median. The whiskers represent the maximum
and minimum values, and the scattered dots represent outliers. Figure 8.2 displays the
components of the boxplot just described.

Another graph used is the Event Plot, which is useful for analysing the variance of
runs, a value that the Box Plot only provides through quantile data. Bar, column, castesian
plot and scatter plots are used to display the remaining data. In column and cartesian plots,
pink is the maximum value, blue is the average value and orange is the minimum value.

8.4 Experiment (

The initial experiment serves as a crucial validation step, with the aim of confirming the
reliability, applicability, and precision of the data provided by COUNTDOWN.

To accomplish this, we devised a stress test suite, which comprises six distinct pro-
grams, with their source code referenced in [69]. Here’s a brief overview of each program:

timer This iterative method keeps the processor under stress by running a timer until a
specified duration elapses, primarily stressing the CPU.
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Table 8.2: COUNTDOWN consistency stress test results.

Program EXE Time [s] Energy PKG [J] Power PKG [W] IPC
Intel-defined, high-complexity workload (1 node) 330

Intel-defined, high-complexity workload (2 node) 660

timer (1 node) 60.200 8859 147.16 1.25
timer (2 node) 60.733 18480 304.29 1.25
eratostene (1 node) 60.572 9455 156.09 0.78
eratostene (2 node) 60.377 19444 322.04 0.77
pi (1 node) 60.475 9065 149.90 1.42
pi (2 node) 60.252 18625 309.13 1.42
matrix (1 node, int) 72.807 11124 152.78 1.45
matrix (2 node, int) 73.595 23248 315.89 1.49
matrix (1 node, double) 73.884 22141 299.68 1.01
matrix (2 node, double) 73.178 41051 560.98 0.99
sse (1 node) 60.706 18574 305.97 1.49
sse (2 node) 60.098 37105 617.41 0.68
avx (1 node) 60.014 18297 304.88 1.49
avx (2 node) 60.315 38481 638.02 1.31

eratostene Similar to timer, this program involves multiplication operations and nu-
merous memory accesses, thereby also stressing the RAM.

pi Utilizes the Gregory-Leibniz series to compute the decimal digits of pi, making use
of the FPU within the CPU, which is known to consume significant resources.

matrix Performs various operations such as sums and products between matrices, sup-
porting different data types like double, float, integer, and long. For simplicity, we
utilized the double data type in this scenario.

sse A modified version of [70], this program executes calculations using SSE primitives.

avx Another modified version of [70], this program performs calculations using AVX2
primitives.

The “Intel-defined, high-complexity workload” program represents the workload de-
fined by Intel for conducting its own power consumption and TDP calculations [63]. For
Intel’s processor architecture, we anticipate that maximum power consumption occurs ex-
clusively with SSE and AVX instructions, with consumption decreasing as instruction
complexity decreases. In other words, simpler integer instructions should consume the
same amount or less power compared to complex double instructions, as depicted in ta-
ble 8.2.

8.5 Experiment 1

The first experiment devised involved a comprehensive exploration of all four potential
scenarios offered by the COUNTDOWN feature. These scenarios included:

COUNTDOWN with Analysis only (Baseline) COUNTDOWN executed in parallel with
the program, without any analysis of slack or power-saving algorithms. This sce-
nario served as a baseline to examine the basic functionality of COUNTDOWN.
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COUNTDOWN with slack Analysis (Analysis) COUNTDOWN was run with simulta-
neous slack analysis and without implementing any power saving algorithms. The
purpose of this scenario was to evaluate the impact of COUNTDOWN when coupled
with slack analysis, but without power optimization.

COUNTDOWN without slack (CNTD) Execution of the energy saving algorithm with-
out the inclusion of the slack optimization algorithm. This scenario isolated the
power saving aspect and explored its effects without slack time optimization.

COUNTDOWN with slack (CNTD SLACK) Execution of the energy saving algorithm
along with optimization of slack times. This scenario investigated the combined im-
pact of energy optimization and slack time optimization through the COUNTDOWN
mechanism.

By systematically exploring each of these scenarios, the experiment aimed to provide
a nuanced understanding of how COUNTDOWN operates under various configurations,
shedding light on its potential benefits and limitations in different operational contexts.
The configurations in this experiment involve a variable number of nodes, 2 MPI Tasks,
and 24 for OpenMP Threads, to obtain the number 48, as recommended in Besker and
Bari [64].

In the following paragraphs, we present a summary of the main results noted in Ex-
periment 1 and expressed numerically in the tables from 8.3 to 8.5. A description of the
matrices is presented in section 8.2. Tables reporting the numerical results of Experiment
1 contain the following data:

Node and run config Number of nodes, task and openMP threads (section 4.2) and con-
figuration used, the acronyms are as listed above.

Solver normRES Accuracy of the Chronos result.
Solver ITER Number of iterations to reach the solution with the required accuracy.
EXE time Execution time, calculated by COUNTDOWN (section 7.3).

MAX Memory usage Maximum memory (RAM) usage, calculated by COUNTDOWN
profiler (section 7.3).

AVG IPC Average number of instructions per clock executed by the program, calculated
by COUNTDOWN (section 7.3).

AVG CPU frequency Average number of CPU clocks during the runtime of the program,
calculated by COUNTDOWN (section 7.3).

MPI Network - TOT Total MB exchanged between nodes, task from MPI, calculated by
COUNTDOWN (section 7.3).

Energy Total energy consumed by program execution, calculated by COUNTDOWN
(section 7.3).

AVG Power Average power consumed by the program, calculated by COUNTDOWN
(section 7.3).
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The tables from 8.3 to 8.5 also shows a percentage comparison to the base case for
all runs with COUNTDOWN. Positive time percentages indicate overhead, and positive
energy or power percentages indicate savings.

aggldm.bin The first matrix examined is agg/4m.bin, boasting a sizable dimension of
15GB and containing 14 106 408 rows. Key data points are succinctly presented in ta-
ble 8.3. Upon examination of the three explored configurations of this matrix, it becomes
evident that energy savings are realized exclusively in the 8 x 2 x 24 configuration, result-
ing in a total energy savings of 6 %. However, it should be noted that despite the nearly
11 % reduction in execution time, the average power has increased by 5 %. Despite this
increase in power, there remains a notable efficiency gain as a result of the substantial
reduction in both time and energy consumption.

Furthermore, it is intriguing to observe that the COUNTDOWN algorithm plays a piv-
otal role in indirectly enhancing synchronization among the various nodes. This improve-
ment in synchronization is believed to be a contributing factor to the observed time savings.
It should be noted that while the 8 x 2 x 24 configuration demonstrates commendable ef-
ficiency gains, the intricate interaction between time, energy, and power factors requires a
nuanced consideration to optimize overall system performance.

Cubo_1772481.Ext_bin The second matrix subjected to analysis is the Cubo_1772481.Ext_bin
matrix, presenting a size of 4.2 GB and containing 5 317 443 rows. The key data points are
succinctly presented in table 8.4. In this particular case, notable observations emerge, es-
pecially in the 1 x 2 x 24 configuration, where energy savings reach impressive 8 Y. This

is attributed to the COUNTDOWN mechanism, which not only reduces execution times

but also contributes to a 4 % savings in power. Once again, the improved synchroniza-

tion among nodes facilitated by COUNTDOWN is identified as a key factor. However, it

is intriguing to note that in the other two configurations, energy savings drop to 6 % and

2 Y%, respectively. This variance could be linked to the nuanced interplay between thread
synchronization and overall system dynamics.

The disappearance of the time reduction phenomenon in the 16 x 2 x 24 configuration
is particular interesting. This occurrence is hypothesized to be a result of the increased
number of threads that need to be synchronized, leading to a more complex synchroniza-
tion process. This observation underscores the intricate relationship between thread count,
synchronization, and the effectiveness of the COUNTDOWN algorithm.

Wing_4538k.csr.Ext_bin The third matrix subjected to analysis is Wing_4538k.csr.Ext_bin
matrix, featuring a considerable size of 5.0 GB and containing 4 538 205 rows. The essen-
tial data points are summarized concisely in table 8.5.

In contrast to the previous matrices, this matrix does not exhibit improvements in ex-
ecution times attributable to enhanced synchronization via COUNTDOWN. However, a
discernible range of energy savings, ranging from 6 % to 2 %, is observed in the two config-
urations. In particular, power consumption experiences a 7 % increase in one configuration
and a 2 % decrease in the other.

This distinctive behavior underscores the matrix-specific impact of COUNTDOWN on
the measured metrics. Although the synchronization-related time gains may not be evident,
the energy and power dynamics show variability.
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Table 8.3: Average results of Experiment 1 for the matrix agg/4m.bin. Three blocks of runs were conducted, each comprising three different
configurations. For each configuration, all four COUNTDOWN operating modes were explored.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Node and run Solver norm- Solver EXE MAX AVGIPC AVG MPI Energy AVG

config RES ITER time [s] Memory CPU fre- network [J] Power
usage quency - TOT [W]
[GB] [MHZz] [MB]

4% 2x24,base- 9.66 x 10710 904 1591.1 524 1.9 3100 1.6 930629 584.9

line

4 x 2 x 24, 9.66 x 10710 904 1591.3 52.4 1.9 3100 1.6 930722 584.9

analysis 0 % 0% 0 %

4 x 2 x 24, 9.64 x 10710 902 1569.7 524 1.8 3099 1.6 934281 595.2

CNTD —1% 0 % —2%

4 x 2 x 24, 9.94 x 1071 901 1585.5 52.4 1.9 3096 1.6 925031 583.4

CNTD SLACK 0 % 1% 0%

8 x 2x 24,base- 9.71x 107%  831.5 96.6 52 1.8 3099 73 105703 1094.3

line

8 X 2 x 24, 9.93 x 107 831 98.6 52 1.7 3099 7.2 99359 1008.0

analysis 2 % 6 %o 8 %o

8 X 2 x 24, 9.71 x 107  831.5 86.2 52 1.7 3099 7.3 99411 1153.2

CNTD —11% 6 % —5%

8 X 2 x 24, 9.73x 107  831.5 87.1 52 1.7 3099 73 100054 1148.9

CNTD SLACK —11% 6 % —5%

2 x 2x 24, base- 9.80 x 1071 901.2 121.7 52.4 1.6 2985 20.3 80152 659.0

line

2 X 2 x 24, 9.80 x 1071 901.3 121.7 524 1.6 3002 20.3 81755 671.6

analysis 0 % —2% —2%

2 X 2 x 24, 9.82 x 10710 902.8 122.0 52.4 1.6 3001 20.3 80232 658.0

CNTD 0 % 0% 0%

2 X2 x 24, 9.80 x 1071 901.0 121.7 524 1.7 2994 20.3 78299 643.3

CNTD SLACK 0 % 2 % 2 %o
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Table 8.4: Average results of Experiment 1 for the matrix Cubo_1772481.Ext_bin. Three blocks of runs were conducted, each comprising
three different configurations. For each configuration, all four COUNTDOWN operating modes were explored.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Node configand Solver norm- Solver EXE MAX AVGIPC AVG MPI Energy AVG
Run config RES ITER time [s] Memory CPU fre- network [J] Power
usage quency - TOT [W]
[GB] [MHZz] [MB]
1x2x24,base- 0.2 1151 131 18 1 3100 410 38151 292
line
1x2x24, 0.2 1151 129 18 1 3100 410 35297 274
analysis 2 % —7% —6 %
1x2x24, 0.2 1151 126 18 1 3099 410 35169 279
CNTD 4 % —8% —4 %
1x2x24, 0.2 1151 126 18 1 3100 410 35227 279
CNTD SLACK —3 % 8 % 4%
8 x 2x 24,base- 9.71x 1077 6273 109 19 2 3097 29835 139602 1269
line
8 X 2 x 24, 9.77 x 107 6273 109 19 1 3098 29580 130507 1162
analysis 0 % —7% —8%
8 X 2 x 24, 9.93 x 107 6275 108 19 1 3096 29590 129624 1168
CNTD 1% —7% —8%
8 X 2 x 24, 9.61 x 107 6397 110 19 1 3096 30065 131840 1168
CNTD SLACK 0 % 6 % 9%
16x2x24,base- 6.92 x 107° 2203 16 28 2 3093 320350 68731 4256
line
8 X 2 x 24, 6.94 x 107 2203 15 28 2 3095 320370 65752 4404
analysis 6 % —4 % 3 %
8 X 2 x 24, 6.71 x 107° 2204 15 28 2 3095 320410 65987 4411
CNTD 6 % —4% 4%
8x2x24,CNTD 6.86 x 1077 2203 15 28 2 3012 320350 67046 4396
SLACK —6 % 2% —3%
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Table 8.5: Average results of Experiment 1 for the matrix Wing_4538k.csr.Ext_bin. Two blocks of runs were conducted, each comprising three
different configurations. For each configuration, all four COUNTDOWN operating modes were explored.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Node and Run Solver norm- Solver EXE MAX AVGIPC AVG MPI Energy AVG

config RES ITER time [s] Memory CPU fre- network [J] Power
usage quency - TOT [W]
[GB] [MHz] [MB]

4x2x24,base- 9.31 x 1077 833 81.7 51.9 1.6 3097 10.3 97939 1033.0

line

4 x 2 x 24, 9.50 x 107 832 89.9 51.9 1.8 3099 8.0 96393 1071.8

analysis 10 % 2% —4 %

4 x 2 x 24, 9.54 x 107 832 83.5 51.9 1.7 3099 8.0 92453 1107.5

CNTD 2% 6 % —7%

4 x 2 x 24, 9.90 x 107 831 83.1 51.9 1.7 3099 7.2 92248 1109.9

CNTD SLACK +2 % 6 % —7%

8 x 2x 24,base- 9.91 x 107 10486 174.2 17.3 1.2 3098 46.8 218320.5 1253.4

line

8 X 2 x 24, 9.82 x 107° 10623 175.7 17.3 1.2 3097 473 220555.5 1255.5

analysis 1% —1% 0 %

8 X 2 x 24, 9.92 x 107? 10525 173.8 17.3 1.2 3098 46.9 218267 1255.8

CNTD 0 % 0 % 0%

8 X 2 x 24, 9.93 x 107° 10369 175.2 18.0 1.2 3098 46.3 214337 1223.5

CNTD SLACK +1 % 2 % 2%
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8.6. EXPERIMENT 2

8.6 Experiment 2

The second experiment involves an exhaustive analysis of node configurations ranging
from 1 to 32, which is the maximum number of cores that can be used on Cineca G100
with a type C project. The main goal is to find the most environmentally sustainable node

configuration, referred to as the greenest point. We identify the greenest point as the point

) N. Core x EXE Time . . . ) .
where the ratio of 5 is minimized. This concept represents an opti-
nergy

mal state where the balance between energy efficiency and time effectiveness is achieved,
with the goal of reducing environmental impact and resource consumption.

In addition, the experiment aims to determine the optimal performance point, called
the fastest point. This refers to the configuration in which the execution time is equal to
or less than other configurations with a different number of nodes. It is well known that
programs have a scalability limit, where they stop scaling after a certain number of nodes,
an example of which can be seen in the graph in fig. 8.3.

In this experiment, we only change the core value and it was decided not to allocate
threads exclusively to OpenMP, as realized in the previous experiment section 8.5, in or-
der to achieve a more balanced distribution. In this and the next Experiment, the threads
were divided between OpenMP and MPI node threads, with a split of 8 and 6 threads re-
spectively, to get the number 48, as recommended in Besker and Bari [64]. All runs are
performed with this configuration:

COUNTDOWN with Analysis only (Baseline) COUNTDOWN executed in parallel with
the program, without any analysis of slack or power-saving algorithms. This sce-
nario served as a baseline to examine the basic functionality of COUNTDOWN.

In the following paragraphs, we present a summary of the main results noted in Ex-
periment 2 and expressed numerically in the figs. from 8.4 to 8.6. A description of the
matrices is in section 8.2. Tables containing the numerical results of Experiment 2 contain
the following data:

Node and run config Number of nodes, task and openMP threads (section 4.2) and con-
figuration used, the acronyms are as listed above.

EXE time Execution time, calculated by COUNTDOWN (section 7.3).

APP time Total computation time of the application, understood as the sum of the various
Tcomp of each node and rank, calculated by COUNTDOWN.

MPI time Total communication time of the application, understood as the sum of the
different Tcomm of each single node and rank, calculated by COUNTDOWN.

TOT time Total time of the application, understood as the sum of the various Tcomp and
Tcomm of each single node and rank, calculated by COUNTDOWN.

Energy PKG Total energy consumed by the CPU, calculated by COUNTDOWN.
Energy DRAM Total energy consumed by the RAM, calculated by COUNTDOWN.
AVG Power PKG Average power consumed by the CPU, calculated by COUNTDOWN.
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Scaling on SuperMUC Phase 2 (MPI vs. MPI-OMP)
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Figure 8.3: Scalability plot for the ECHO-3DHPC software in two OpenMP configura-
tions.

Source: Bugli et al. [71].

AVG Power DRAM Average power consumed by the RAM, calculated by COUNTDOWN.

AVG CPU frequency Average number of CPU clocks during the runtime of the program,
calculated by COUNTDOWN.

Energy Total energy consumed by program execution, calculated by COUNTDOWN.
AVG Power Average power consumed by the program, calculated by COUNTDOWN.

The figs. from 8.4 to 8.6 also shows a percentage comparison to the base case for
all runs with COUNTDOWN. Positive time percentages indicate overhead, and positive
energy or power percentages indicate savings.

aggldm.bin The results of the experiments carried out with the matrix agg/4m.bin are
visually presented in fig. 8.4. From figs. 8.4a and 8.4e the greenest point is identified,
which is located at 4 x 6 x 8. Also, the fastest point is located at 16 x 6 x 8. It should
be noted that the execution of the 32 X 6 x 8 configuration failed to complete within
acceptable time limits, underscoring the intricacies and challenges associated with this
particular setup. A configuration with more than 16 nodes increases the execution time
exponentially.

Cubo_1772481.Ext_bin The results of the experiments performed with the matrix Cubo
_1772481.Ext_bin are visually presented in fig. 8.5. The most noteworthy data is graphi-
cally presented in fig. 8.51, while additional insights can be derived from figs. 8.5a and 8.5e.
In this context, the table 8.7 indicates that the greenest point is located at 8 X 6 X 8, as
shown in the graphs. At the same time, the fastest point is located at 32 x 6 x 8. With 32
usable nodes as the maximum limit, it is not possible to examine how it behaves with more
than 32 nodes, but it is plausible that configurations beyond 32 nodes may yield improved
execution times, albeit at the expense of increased energy consumption.
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Figure 8.4: Experimental Results for Experiment 2 on the agg/4m.bin matrix.
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Run config EXE time [s] Energy [J] AVG Power [W] Ratio [(core/W)!]

1x6x8 117.3 76104 645.95 0.001 54
2x6x8 79.3 78 445 989 0.002 02
3x6x8 58.3 76 242 1307 0.00229
4x6x8 40.3 78 890 1956 0.002 04
6 x6x8 31.2 82402 2645 0.002 27
8x6x8 25.3 83509 3300 0.002 42
10 x 6 x8 21.8 87295 4007 0.00249
12 x6 x8 18.6 86 165 4623 0.002 59
14 x6 %8 18.9 103990 59516 0.002 54
16 x 6 x 8 15.8 106 164 6705 0.002 39

Table 8.6: Median values for Experiment 2 on the agg/4m.bin matrix.

Run config EXE time [s] Energy [J] AVG Power [W] Ratio [(core/W)!]

1x6x8 98.5 31241 318 0.00316
3X6x8 50.6 34550 650 0.003 04
4x6x8 26.3 34953 1330 0.00301
6x6x8 19.4 39009 2009 0.00299
8§ X6 x8 14.2 38031 2679 0.00299
16 x 6 x 8 9.0 44 398 4941 0.00324
32 X6 x8 4.9 48022 9824 0.003 26

Table 8.7: Median values for Experiment 2 on the Cubo_1772481.Ext_bin matrix.
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Figure 8.5: Experimental Results for Experiment 2 on the Cubo_1772481.Ext_bin matrix.
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Run config EXE time [s] Energy [J] AVG Power [W] Ratio [(core/W)!]

1x6x8 93.4 29643 326 0.00315
2x6x8 48.3 32544 668 0.00297
4x6x8 25.1 33 844 1336 0.002 96
6x6x8 17.6 35207 1997 0.00301
8§ X6 x8 13.6 35056 2581 0.002 89
16 x 6 x 8 9.4 43525 4636 0.003 46
32 X6 x8 4.1 40530 9900 0.003 23

Table 8.8: Median values for Experiment 2 on the Wing_4538k.csr. Ext_bin matrix.

Wing_4538k.csr.Ext_bin The results of the experiments performed with the matrix
Wing_4538k.csr.Ext_bin are visually presented in fig. 8.5. The most remarkable data are
graphically presented in fig. 8.6, while additional insights can be derived from figs. 8.6a
and 8.6e. In this context, the table 8.8 indicates that the greenest point is located at 8x 6 x 8,
as shown in the graphs. At the same time, the fastest point is located at 32 x 6 x 8.
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Figure 8.6: Experimental Results for Experiment 2 on the Wing_4538k.csr. Ext_bin matrix.
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8.7 Experiment 3

The third experiment delves into the analysis of energy savings with the COUNTDOWN
mechanism at the greenest point identified in the previous section 8.6. This inquiry is tai-
lored to measure the magnitude of energy efficiency gains facilitated by COUNTDOWN
when it harmonized with the most ecologically advantageous configuration as described
in the previous section. Central to this effort is the quantification of energy consumption
patterns at this specific point in time. By carefully isolating and examining the energy dy-
namics at play, our goal is to provide a focused assessment of the effectiveness of COUNT-
DOWN in promoting the highest level of environmental sustainability within the system.
In this experiment, we run our linear solver with 4 different configurations:

COUNTDOWN with Analysis only (Baseline) COUNTDOWN executed in parallel with
the program, without any analysis of slack or power-saving algorithms. This sce-
nario served as a baseline to examine the basic functionality of COUNTDOWN.

COUNTDOWN with low power configuration (1.0 GHz) COUNTDOWN is set to keep
the CPU frequency at 1.0 GHz, despite which the power saving algorithm is not en-
abled, since the Linux kernel as we will see, will not follow our instructions for long.
We can also call this execution mode as COUNTDOWN enabled without timer, i.e.
as soon as there is an MPI call, the CPU sets to low power.

COUNTDOWN without slack (CNTD) Execution of the energy saving algorithm with-
out the inclusion of the slack optimization algorithm. This scenario isolated the
power saving aspect and explored its effects without slack time optimization.

COUNTDOWN with slack (CNTD SLACK) Execution of the energy saving algorithm
along with optimization of slack times. This scenario sought to investigate the com-
bined impact of energy optimization and slack time optimization through the COUNT-
DOWN mechanism.

Tables containing the numerical results of Experiment 3 contain the following data:

Node and run config Number of nodes, task and openMP threads (section 4.2) and con-
figuration used, the acronyms are as listed above.

EXE time Execution time, calculated by COUNTDOWN (section 7.3).

APP time Total computation time of the application, understood as the sum of the various
Tcomp of each node and rank, calculated by COUNTDOWN (section 7.3).

MPI time Total communication time of the application, understood as the sum of the
different Tcomm of each single node and rank, calculated by COUNTDOWN (sec-
tion 7.3).

TOT time Total time of the application, understood as the sum of the various Tcomp and
Tcomm of each single node and rank, calculated by COUNTDOWN (section 7.3).

MAX Memory usage Maximum memory (RAM) usage, calculated by COUNTDOWN
profiler (section 7.3)
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AVG IPC Average number of instructions per clock executed by the program, calculated
by COUNTDOWN (section 7.3).

Energy PKG Total energy consumed by the CPU, calculated by COUNTDOWN (sec-
tion 7.3).

Energy DRAM Total energy consumed by the RAM, calculated by COUNTDOWN (sec-
tion 7.3).

AVG Power PKG Average power consumed by the CPU, calculated by COUNTDOWN
(section 7.3).

AVG Power DRAM Average power consumed by the RAM, calculated by COUNTDOWN
(section 7.3).

AVG CPU frequency Average number of CPU clocks during the runtime of the program,
calculated by COUNTDOWN (section 7.3).

MPI Network - TOT Total MB exchanged between nodes, task from MPI, calculated by
COUNTDOWN (section 7.3).

Energy Total energy consumed by program execution, calculated by COUNTDOWN
(section 7.3).

AVG Power Average power consumed by the program, calculated by COUNTDOWN
(section 7.3).

The tables also shows a percentage comparison to the base case for all runs with
COUNTDOWN. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Cubo_1772481.Ext_bin As observed in section 8.6, the most environmentally friendly
configuration for Cubo_1772481.Ext_bin is determined to be 8 X 6 x 8, with key data
points graphically depicted in appendix fig. B.1 and in table 8.9.

It is observed that in this scenario the utilization of the COUNTDOWN Slack mech-
anism results in an increase in energy consumption from fig. B.le in the baseline from
37006.0 to 38 840.0J, marking a rise of 5 %. Similarly, the average power decrease from
2752.8 to 2695.1 W, representing a 2 % decrement. This increase in energy consumption
and a reduction in power is caused by a 7 % increase in execution times, from 13.4to 14.4 s.
Notably, the MPI time experiences a substantial increase of 35 %, escalating from 124.3
to 167.4 s. Additionally, the energy consumption of the CPU (PKG) have increase by 5 %
and the power decrease of 2 %, and the same changes also result in the DRAM. These find-
ings suggest that in this specific scenario, the utilization of COUNTDOWN Slack leads
to increased energy consumption and environmental entropy, indicating that it may not be
advisable to utilize this mechanism.

The low power (1.0 GHz) configuration demonstrates relatively stable energy con-
sumption and execution times compared to the COUNTDOWN-enabled scenarios. The
energy consumption remains consistent, with a marginal reduction of only 6 %, and the
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power consumption experiences a slight decrease of 4 %. As in experiment 3 relative to
this matrix, this suggests that all MPI calls are generally take more than than 500 ps.

Enabling COUNTDOWN without the SLACK results in a similar effect to low-power
execution, with a 10 % and 5 % reduction in energy in power.

Wing_4538k.csr.Ext_bin Asevident from section 8.6, the most environmentally friendly
configuration for the Wing_4538k.csr. Ext_bin matrix is also determined to be 8 X 6 X 8§,
with key data points visually represented in fig. B.2 and table 8.10.

In this instance, the COUNTDOWN Slack mechanism yields to energy savings of 4 %
(from 31341 to 300881J) and a power reduction of 6 % (from 2622.4 to 2463.2 W), as
illustrated in figs. B.2e and B.2i. However there is a simultaneous 2 % increase in execution
times, from 12.0 to 12.2 s, as detailed in fig. B.2a. It is crucial to note that the MPI time
(fig. B.2d) has experienced a substantial increase of 12 % escalating from 116.9sto 131.0s,
while the energy and average power consumption of the RAM has decreased by 16 % and
18 %, respectively (figs. B.2h and B.21), from 4285 to 3595 J and from 358.3 to 294.6 W,
also the energy of the CPU have a little reduction from 27 056 to 26 484 J (2 %), and the
average power has a reduction of 4 %, from 2264.2 to 3596 W. In this particular scenario,
the usage or non-usage of COUNTDOWN leads to modest energy savings, quantifiable in
4 Y.

The low power (1.0 GHz) configuration demonstrates relatively stable energy con-
sumption and execution times compared to the COUNTDOWN-enabled scenarios. The
energy usage remains consistent, with a marginal deviation of only 1 %, while the power
consumption experiences a slight decrease of 8 %. Despite this, the execution times exhibit
minimal fluctuations.

Enabling COUNTDOWN without the SLACK leads to a drastic increase in both en-
ergy consumption and execution times. The energy consumption surges by 145 %, accom-
panied by a substantial 195 % increment in execution times. This sharp rise underscores
the significant impact of aggressive COUNTDOWN settings, resulting in heightened re-
source utilization and extended computation durations.
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Table 8.9: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 3 on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J1 PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHZz]
[GB]
8x6x8,Base- 134 522.0 1243 646.8 30597 6400 2276.0 4764 325 1.6 3089 37006 2752.8
line
8 X 6 x 8, 132  516.1 1169 6332 29747 5085 2259.6 3863 320 1.6 3084 34831 2645.9
1.0GHz —2% —1% —-6% —-2% 3% 21% 1% 19% 1% 0 % 0 % 6 % 4 %
8 X 6 x 8, 13.5 521.5 125.8 6504 30228 7704 2241.2 570.2 330 1.6 3097 37909 2811.6
CNTD 1 % 0 % 1% 1% 1% —20% 2% —20% —2% —1% 0% —2% —2%
8 X 6 X8, 144 5249 1674 693.6 32112 6728 22282 4669 325 1.7 2976 38840 2695.1

CNTD SLACK 7% 1% 35% 7% —95% —5% 2% 2 % 0 % —2% 4% —5% 2%
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Table 8.10: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 3 on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J1 PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHZz]
[GB]
8x6x8 Base- 12.0 4579 1169 5752 27056 4285 2264.2 3583 27.0 1.6 3084 31341 2622.4
line
8 X 6 X8, 11.5 4528 103.1 556.0 26217.53776.5 2267.6 327.1 264 1.6 3090.5 29997 2594.6
1.0GHz —3% —1% —-12% —3% 3% 12% 0% 9 % 1% 1 % 0 Y% 4 %o 1%
8 X 6 X 8, 13.0 462.1 163.4 625.3 28441 4525 2192 348.6 27.0 1.6 2965 32966 2540.0
CNTD 9 % 1 % 40% 9% —5% —6% 3% 3 % 0 % —3% 4% —5% 3%
8 X 6 X8, 12.2 4569 131.0 587.5 26484 3595 2168.0 294.6 26.4 1.6 2973 30088 2463.2

CNTD SLACK 2% 0 % 12% 2% 2% 16% 4% 18% 1% 1% 4% 4% 6 %
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8.8 Experiment 4

The fourth experiment focuses on the analysis of energy savings with the COUNTDOWN
mechanism at the fastest point, identified in the previous section 8.6. This point will be
the base point, that is, the starting point, for the purposes of the final conclusion. The
purpose of this study is to quantify the extent of the energy efficiency improvements facil-
itated by COUNTDOWN when integrated with the fastest point configuration described
in section 8.6. In addition, this analysis aims to quantify the energy consumption behav-
ior for this particular configuration. Central to this effort is the quantification of energy
consumption patterns at this maximum performance point in time. By carefully isolating
and examining the energy dynamics at play. Our goal is to provide a focused assessment
of the effectiveness of COUNTDOWN in promoting the highest level of environmental
sustainability within the system.

In this experiment, we run our linear solver with 4 different configurations, which are
the same as in Experiment 3 (section 8.7). The tables with the numerical results of Exper-
iment 4 contain the same data of Experiment 3 (section 8.7).

The table also shows a percentage comparison to the base case for all runs with COUNT-
DOWN. Positive time percentages indicate overhead, and positive energy or power per-
centages indicate savings.

Cubo_1772481.Ext_bin As shown in section 8.6, the faster configuration for the Cubo
_1772481.Ext_bin matrix is 32 X 6 x 8, with key data points visually represented in ap-
pendix (fig. B.3) and all data displayed in table 8.11.

In this case, the COUNTDOWN mechanism results in a higher energy consumption of
11 % and a power reduction of 6 %, as clearly illustrated in figs. B.3e and B.3i. However,
despite these gains, there is a simultaneous 18 % increase in execution times, as detailed
in fig. B.3a, which effectively nullifies the average power savings of 6 %. It is crucial to
note that the APP time (fig. B.3d) has experienced a significant increase of 63 %, escalating
from 333.0 s to 495.6 s, and the MPI time has also drastically increased by 2 %. In addition,
there is a higher variance in the data, as shown in fig. B.3b. Meanwhile, the average RAM
energy consumption has increased by 15 % and the power consumption has decreased
by 3 % (figs. B.3h and B.3I). On the other hand, the CPU consumption of the nodes has
increased by 15 % in terms of energy and decreased by 7 % in terms of average power.

The low power (1.0 GHz) configuration has relatively stable energy consumption and
execution times compared to the COUNTDOWN enabled scenarios. The energy consump-
tion remains constant, with a decrease of 12 %, while the power consumption experiences
a decrease of 3 %. Despite this, execution times show minimal variation, indicating stable
performance under the baseline configuration.

Enabling COUNTDOWN without SLACK leads to a drastic increase in both power
consumption and execution times. Energy consumption jumps by 7 %, accompanied by a
2 % decrease in execution times. This sharp increase underscores the significant impact of
aggressive COUNTDOWN settings, resulting in increased resource utilization and longer
execution times.

In this particular scenario, using or not using COUNTDOWN does not result in any
discernible environmental benefits or savings. Despite the reduction in RAM energy and
power consumption, the significant increase in MPI execution times and the offsetting of
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the average power savings highlight the complex tradeoffs involved.

Wing_4538k.csr.Ext_bin As shown in section 8.6, the faster configuration for the Wing
_4538k.csr.Ext_bin matrix is also determined to be 32 x 6 x 8, with key data points visually
represented in appendix (fig. B.4) and all data displayed in table 8.12.

In this case, the COUNTDOWN mechanism results in a higher energy consumption
of 6 % and a power reduction of 4 %, as clearly illustrated in figs. B.4e and B.4i. However,
despite these gains, there is a simultaneous 11 Y% increase in execution times, as detailed in
fig. B.4a, which offsets the average power savings of 6 %. It is crucial to note that the MPI
time (fig. B.4d) has experienced a significant increase of 19 %, escalating from 558.3 s to
701.0's, and the APP time has also increased by 1 %. In addition, there is a higher variance
in the data, as shown in fig. B.4b. Meanwhile, the average RAM energy consumption has
increased by 10 % and the power consumption has decreased by 1 % (figs. B.4h and B.41).
On the other hand, the CPU consumption of the nodes has increased by 4 % in terms of
energy and decreased by 5 % in terms of average power.

In this particular scenario, using or not using COUNTDOWN does not result in any
discernible environmental benefits or savings. Despite the reduction in RAM energy and
power consumption, the significant increase in MPI execution times and the offsetting of
the average power savings highlight the complex tradeoffs involved.

The low power (1.0 GHz) configuration has relatively stable energy consumption and
execution times compared to the COUNTDOWN enabled scenarios. The energy consump-
tion remains constant, with a reduction of 33 %, while the power consumption experiences
an increase of 1 %, due to an incongruity, i.e., the reduction in execution time. Similarly,
COUNTDOWN without slack also performs very well, which is evident by the fact that
the transmitted data is not affected by the clock reduction. Enabling COUNTDOWN with-
out SLACK leads to a drastic reduction in energy of 29 %, in time of 28 %, and a small
increase in power of 1 Y.
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Table 8.11: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 4 on the

Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power

percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J1 PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHZz]
[GB]
32 x 6 x 8, 49 594.8 333.0 949.4 39904 9445 8144.8 1931.7 60.9 2.0 3091 49380 10078.1
Baseline
32 X6 X8, 4.4 580.9 276.1 857.7 37686 5924 8480.8 1336.2 56.3 1.9 3089 43615 9823.1
1.0GHz —9% —2% —17% —10% 6 % 37% —4% 31% 8% 4 % 0 Y% 12% 3%
32 X6 X8, 4.6 581.2 313.3 900.6 39381 5309 8487.6 1142.0 54.1 2.0 3088 44672 9622.6
CNTD —5% —2% —6% —-5% 1% 44% —4% 41% 11% 3% 0 Y% 10% 5%
32 X6 X8, 5.8 604.3 495.5 1119.0 44146 10874 7604.4 1879.1 60.9 2.1 2818 54985 9466.1
CNTD SLACK 18% 2% 49% 18% —11% —15% 7% 35% 0% —2% 9% —11% 6%
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Table 8.12: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 4 on the

Wing_4538k.csr.Ext_bin matrix. matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power

percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J1 PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHZz]
[GB]
32 x 6 x 8, 56 483.1 575.2 1069.1 39903 13310.57287.5 2465.6 59.5 2.3 3093 53196 9735.4
Baseline
32 X6 X8, 3.6 459.5 2454 7059 31141 4733 8518.0 12978 46.2 1.9 3088 35883 9819.0
1.0GHz —34% —5% —58% —34% 23% 65% —18% 47% 22% 16% 0% 33% —1%
32 X6 X8, 4.0 461.5 307.8 770.1 33522 4764 8428.6 1197.8 453 2.0 3089 38286 9624.2
CNTD —28% —5% —48% —28% 17% 65% —16% 51% 24% 14% 0% 29% 1%
32 X6 X8, 4.6 469.8 402.1 885.3 35401 7374 7734.7 1614.0 496 2.0 2802 42775 9336.7
CNTDSLACK 11% 1% 19% 10% —4% —10% 5% 1% 0% 5 % 17% —6% 4%
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8.9 Experiment S

In this experiment we investigate if the default callback delay value of 500 s is the ideal
value, since we know that this value is due to the fact that Linux updates the CPU speed
every 500 us and that in general an MPI call does not take longer than 500 ps, as described
in more detail in section 4.4.

For this experiment, we run our linear solver with the following callback delays 100 us,
250 ps, 750 us and 1000 us along with the configurations already seen:

COUNTDOWN with Analysis Only (Baseline) COUNTDOWN run in parallel with the
program, without any analysis of slack or power-saving algorithms. This scenario
was used as a baseline to examine the basic functionality of COUNTDOWN.

COUNTDOWN with low power configuration (1.0 GHz) COUNTDOWN is set to keep
the CPU frequency at 1.0 GHz, although the power saving algorithm is not enabled,
since the Linux kernel will not follow our instructions for long. We can also call this
execution mode as COUNTDOWN enabled without timer, i.e. as soon as there is an
MPI call, the CPU sets to low power.

COUNTDOWN without slack (CNTD) Execution of the power saving algorithm with-
out including the slack optimization algorithm. This scenario isolated the power
saving aspect and explored its effects without slack time optimization.

COUNTDOWN with slack and a callback delay of 100 us (CNTD 100) Running the power
saving algorithm along with slack time optimization. This scenario examines the
combined effects of energy optimization and slack time with a slack callback delay
set to 100 ps.

COUNTDOWN with slack and a callback delay of 250 us (CNTD 250) Running the power
saving algorithm along with slack time optimization. This scenario examines the
combined effects of energy optimization and slack time with a slack callback delay
set to 100 ps.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 500 ps.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 750 ps.

COUNTDOWN with slack and a callback delay of 1000 us (CNTD 1000) Running the
power saving algorithm along with slack time optimization. This scenario seeks to
investigate the combined impact of power optimization and slack with a slack call-
back delay set to 100 ps.
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8.9.1 Experiment Sa

In this sub-experiment we investigate if the default value of callback delay of 500 ps is the
optimal value in the greenest point.

Cubo_1772481.Ext_bin The key data of the result are visually represented in appendix
(fig. B.5) and all data displayed in table 8.13, Varying the COUNTDOWN time, we ob-
serve that execution times remain quite table, with an increase of 12 % count 100 us and
5 % in 750 and 1000 ps. In other cases, 250 us and 500 us, of an 8 and 7 Y%. Notably, the pre-
dominant increase is observed in MPI Time, with an escalation of 53 % at 100 us, 37 % at
250 ps, and reaching 20 % at 750 ps. This highlights the significant impact of the COUNT-
DOWN algorithm on MPI communications, despite the presence of the MPI barrier, which
is intended to mitigate such effects. This phenomenon also extends to APP time, with
maximum increases of 1 % in all configurations, which is negligible and acceptable. The
average energy generally increase by 3 %—5 Y% for all configurations, while average power
decrease by 2 %—3 Y.

Wing_4538k.csr.Ext_bin Asevident from section 8.6, the most environmentally friendly
configuration for the Wing_4538k.csr. Ext_bin matrix is also determined to be 8 X 6 X 8§,
with key data points visually represented in appendix (fig. B.6) and all data displayed in
table 8.14.

The situation is similar for the Wing_4538k.csr.Ext_bin matrix regarding execution
times. Here, we observe minimal increases in the 750 and 1000 us configurations, with a
rise of 1 %—2 %, while other configurations exhibit increases ranging from 6 to 12 %. This
results in a modest power saving of around 2 % in the 750 ps configuration but we have a
4 % on 500 ps. These values might seem marginal compared to expectations. This is evi-
dent in the significantly increased MPI times, up to 54 % in the 100 us configuration, while
the other configurations show only a 6 % increase at 750 us, suggesting that perhaps this
is the more suitable value for this specific case. The APP time does not vary significantly
in this instance, with variations of at most 2 %.
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Table 8.13: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5a on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
8x6x8,Base- 13.4 522.0 1243 646.8 30597 6400 2276.0 476.4 325 1.6 3089 37006 2752.8
line
8 X6 X8, 13.2  516.1 1169 633.2 29747 5085 2259.6 386.3 32.0 1.6 3084 34831 26459
1.0GHz —2% —1% —6% —2% 3% 21% 1% 19% 1% 0 % 0 % 6 Yo 4 %

8x6x8, CNTD 13.5 521.5 125.8 650.4 30228 7704 2241.2 570.2 33.0 1.6 3097 37909 2811.6
1% 0 %o 1 % 1% 1% —20% 2% —20% —2% —1% 0% —2% —2%

8 X 6 x 8, 150 5294 190.8 722.8 33031 6929 2199.0 461.0 325 1.7 2932 39966 2659.2
CNTD 100 12% 1% 53% 12% —8% —8% 3% 3 % 0% —2% 5% —8% 3%
8 X 6 x 8, 146 525.1 1704 7009 32097 6685 2204.8 459.0 325 1.7 2961 38782 2663.9
CNTD 250 8 % 1% 37% 8% —5% —4% 3% 4 Y% 0% —2% 4% —5% 3%
8 X 6 X8, 144 5249 1674 693.6 32112 6728 22282 4669 325 1.7 2976 38840 2695.1
CNTD 500 7 % 1 % 35% 7% —5% —5% 2% 2 % 0 % —2% 4% —5% 2%
8 X 6 X8, 14.1 5223 149.6 6764 31322 6516 2231.6 463.8 325 1.6 2993 37877 2695.2
CNTD 750 5 % 0 % 20% 5% —2% —2% 2% 3 % 0 % —1% 3% —2% 2%
8 X 6 x 8, 14.1 5235 152.0 676.5 31445 6615 22342 4705 325 1.6 2993 38052 2704.6

CNTD 1000 5 % 0 Y% 22% 5% —3% —-3% 2% 1 % 0 Y% —1% 3% —3% 2%
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Table 8.14: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5a on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
8x6x8 Base- 12.0 4579 1169 5752 27056 4285 2264.2 3583 270 1.6 3084 31341 26224
line
8 x 6 x 8 11.5 4528 103.1 556.0 26217.53776.5 2267.6 327.1 264 1.6 3090.5 29997 2594.6
1.0GHz

3% —1% —12% —3% 3% 12% 0% 9 % 1% 1% 0 % 4 % 1%
Ix6x8 CNTD 13.0 462.1 163.4 6253 28441 4525 2192 348.6 27.0 1.6 2965 32966 2540.0
9 % 1% 40% 9% —5% —6% 3% 3 % 0 Y% —3% 4% —5% 3%

8 X 6 x 8, 134 4654 180.0 645.1 29104 4616 21689 3443 266 1.6 2916 33736 2511.6
CNTD 100 12% 2% 94% 12% —8% —8% 4% 4 % 0 % —3% 5% —8% 4%
8 X 6 x 8, 12.7  460.3 141.2 609.2 27616 4083 21789 3226 264 1.6 2959 31687 2501.8
CNTD 250 6 % 1% 21% 6% —2% 5% 4 % 10% 1% 0 % 4 % —1% 5%
8 X 6 x 8, 122 4569 131.0 587.5 26484 3595 2168.0 2946 264 1.6 2973 30088 2463.2
CNTD 500 2 % 0 % 12% 2% 2 % 16% 4% 18% 1% 1% 4 % 4 % 6 %o
8 X 6 x 8, 12.1 4574 1243 5829 26696 3984 2204.6 3288 264 1.6 2970 30682 2533.7
CNTD 750 1% 0 % 6 % 1% 1% 7 % 3 % 8 % 1% 1% 4 % 2 % 3 %
8 X 6 X8, 127  460.3 150.3 610.5 28008 4454 2202.7 351.3 270 1.6 2081 32476 2554.2

CNTD 1000 6 % 1% 29% 6% —4% —4% 3% 2 % 0 Y% —2% 3% —4% 3%
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8.9.2 Experiment Sb

In this sub-experiment we investigate if the default value of callback delay of 500 ps is the
optimal value in the fastest point.

Cubo_1772481.Ext_bin As evident from section 8.6, the faster configuration for the
Cubo_1772481.Ext_bin matrix is determined to be 32 x 6 x 8, with key data points visually
presented in appendix (fig. B.7) and all data displayed in table 8.15.

In this scenario, the increase in execution times ranges from at 14 % to 51 %, with the
configuration of 100 us exhibiting the highest increase. The optimal choice, once again,
is the 750 us setup, with a 7 % power saving and a 6 % increase in energy. This increase
in energy consumption is primarily attributed to the rise in MPI time, which increases
by 35 %, resulting in an overall 14 % increase when considering no change in APP time.
Energy, in all cases, increases from 6 % (750 ps) to 37 % (100 us), while power ries from
6 % (500 ps) to 9 % (100 ps and 250 ps).

Wing_4538k.csr.Ext_bin As evident from section 8.6, the faster configuration for the
Wing_4538k.csr.Ext_bin matrix is also determined to be 32 x 6 x 8, with key data points
visually represented in appendix (fig. B.8) and all data displayed in table 8.16.

In this configuration, we observe that, unlike the more environmentally friendly setup,
COUNTDOWN can make a significant difference when well-configured. A remarkable
19 % energy savings is achieved when the barrier triggers after 750 ps, a value close to the
25 % mentioned in the paper Cesarini et al. [35]. However, it’s worth noting a still sub-
stantial 17 % reduction in median time, probably due to improved synchronization, a side
effect of COUNTDOWN observed in other scenarios, along with the increased variance
in the distribution of APP times.

Examining individual data points, it is notable that the 250 ps configuration exhibits a
substantial 32 % reduction in memory consumption, followed closely by the 750 us setup
with a 30 % reduction. In this scenario, when COUNTDOWN applies the consumption
reduction algorithm, especially when the frequency is lower than the default, it signifi-
cantly influences the average, resulting in genuine overall energy savings rather than just
instantaneous reductions.

Nevertheless, not all execution times are decreased. For instance, with 100 and 1000 ps,
there is a relative increase in execution times of 38 % and 13 %, primarily driven by MPI
time, which sees an increase of 66 % and 24 %, respectively.
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Table 8.15: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5b on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
32x6x8,Base- 4.9 594.8 333.0 949.4 39904 9445 8144.8 1931.7 609 2.0 3091 49380 10078.1
line
32 x 6 x 8, 44 580.9 276.1 857.7 37686 5924 8480.8 1336.2 563 1.9 3089 43615 9823.1
1.0 GHz
—9% —2% —17% —10% 6 % 37% —4% 31% 8% 4 % 0% 12% 3%
32x6x8,CNTD 4.6 581.2 313.3 900.6 39381 5309 8487.6 1142.0 54.1 2.0 3088 44672 9622.6
—5% —2% —6% —-5% 1% 44% —4% 41% 11% 3% 0 % 10% 5%
32 X 6 X 8, 7.4 621.9 766.4 1428.3 54274 13428 7353.5 18174 61.1 2.2 2785 67713 9164.6
CNTD 100 51% 5% 130% 50% —36% —42% 10% 6% 0 % —9% 10% —37% 9%
32 X6 X8, 6.5 605.3 576.6 1255.7 48978 10495 7581.5 1613.6 58.1 2.1 2811 59508 9196.8
CNTD 250 33% 2% 3% 32% —23% —11% 7% 16% 5% —6% 9% —21% 9%
32 X6 X 8, 5.8 604.3 495.5 1119.0 44146 10874 7604.4 1879.1 609 2.1 2818 54985 9466.1
CNTD 500 18% 2% 49% 18% —11% —15% 7% 3 % 0% —2% 9% —11% 6%
32 X6 X8, 5.5 596.3 448.4 1074.4 42982 9207 7766.3 1659.8 58.1 2.0 2846 52145 9419.1
CNTD 750 14% 0% 35% 13% —8% 3% 5 % 14% 5% 0 % 8 %o —6% 7%
32 X 6 X8, 59 601.8 463.1 1135.2 44760 10995 7635.7 1877.0 60.8 2.1 2844 55755 9515.8
CNTD 1000 20% 1% 39% 20% —12% —16% 6% 3 % 0 % —2% 8% —13% 6%
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Table 8.16: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5b on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
32x6x8,Base- 5.6 483.1 575.2 1069.1 39903 13310.57287.5 2465.6 59.5 2.3 3093 53196 9735.4
line
32 x 6 x 8, 3.6 459.5 2454 7059 31141 4733 8518.0 12978 46.2 1.9 3088 35883 9819.0
1.0GHz

20% 1% 39% 20% —12% —16% 6% 3 Y% 0% —2% 8% 6 Y% 6 %
32x6x8, CNTD 4.0 461.5 307.8 770.1 33522 4764 8428.6 1197.8 453 2.0 3089 38286 9624.2
20% 1% 39% 20% —12% —16% 6% 3 % 0 Y% —2% 8% 6 % 6 %

32 X 6 X 8, 7.5 505.7 9534 1454.5 51403.518180 6856.7 2416.8 59.6 2.3 2611.5 69332 9277.9
CNTD 100 20% 1% 39% 20% —12% —16% 6% 3 % 0% —2% 8% 6 % 6 %o
32 X6 X8, 5.5 4774 5633 1059.2 41952 9191 7514.1 1676.1 50.7 2.2 2763 51264 9190.3
CNTD 250 20% 1% 39% 20% —12% —16% 6% 3 % 0 % —2% 8% 6 % 6 %o
32 X6 X 8, 4.6 469.8 402.1 8853 35401 7374 77347 1614.0 496 2.0 2802 42775 9336.7
CNTD 500 20% 1% 39% 20% —12% —16% 6% 3 % 0% —2% 8% 6 % 6 %o
32 X6 %8, 4.6 472.1 3974 895.0 35904 7946 7770.2 1719.0 509 2.0 2822 43850 9489.1
CNTD 750 20% 1% 39% 20% —12% —16% 6% 3 % 0% —2% 8% 6 % 6 %o
32 X 6 X8, 6.3 489.6 727.7 1216.4 42714 15361 6799.3 24469 59.5 2.2 2587 58295 9219.8
CNTD 1000 20% 1% 39% 20% —12% —16% 6% 3 % 0 % —2% 8% 6 % 6 %o
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8.9.3 Experiment Sc

In this sub-experiment we investigate if the default value of the callback delay of 500 us
is the optimal value in the intermediate case between the greenest and the fastest case, i.e.
the point 16 X 6 x 8.

Cubo_1772481.Ext_bin In the Cubo_1772481.Ext_bin matrix case, the graphical re-
sults of which are in appendix (fig. B.9) and all data displayed in table 8.17, we note that
the behavior is almost better than the previous situations. With an overhead of 9 %, it con-
sumes more than 5 % and it has a power reduction of 4 %.

Analyzing the table, it’s evident that the execution time (EXE time) varies signifi-
cantly across different configurations. The baseline setup takes 7.2 s, while the 1.0 GHz
configuration drastically increases this time to 58.2 s, representing a 708 % increase. When
COUNTDOWN (CNTD) is applied, there’s a slight increase in execution time across all
configurations, with the highest increase observed at the 100 us setup (21 %). However,
the impact on execution time remains relatively low, with most configurations showing
single-digit percentage increases.

Looking at the application time (APP time), similar trends are observed, with the base-
line configuration taking 550.9 s and the 1.0 GHz setup taking 2199.7 s, indicating a 299 %
increase. Although COUNTDOWN slightly increases the application time, the changes are
minimal, with most configurations showing negligible percentage changes.

The message changes slightly when examining the MPI time. Here the effect of COUNT-
DOWN is more pronounced, especially at lower callback delays. For example, the 100 pus
setup sees a significant increase in MPI time (92 %), which has a noticeable impact on the
total execution time. However, with a higher callback delay, the increase in MPI time is
less significant.

In terms of overall energy consumption, both Energy PKG and Energy DRAM show an
increase over over the baseline for most configurations. The largest increase is observed
in the 1.0 GHz configuration, with a 568 % increase in PKG energy consumption and a
423 % increase in DRAM energy consumption. Despite the slight reductions observed with
COUNTDOWN, the overall trend remains an increase in power consumption compared to
the baseline.

Wing_4538k.csr.Ext_bin The results for the Wing_4538k.csr.Ext_bin matrix case fol-
low a similar pattern, the graphical results of which can be found in the appendix (fig. B.10)
and all data displayed in table 8.18. Here we observe an overhead of 16 %, which coincides
with a consumption increase of 13 %.

Analyzing the table, we notice that the baseline configuration has an execution time
(EXE time) of 6.5 s, while the 1.0 GHz setup slightly reduces this time to 6.3 s, marking a
modest 3 % decrease. However, upon applying COUNTDOWN (CNTD), there’s a notable
increase in execution time across all configurations, with the highest spike observed at
8.4's (29 % increase).

Examining the application time (APP time), there’s a negligible decrease of 1 % in
the 1.0 GHz setup compared to the baseline. With COUNTDOWN, the application time
increases slightly across all configurations, indicating minimal impact on application per-
formance.
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The most significant changes are observed in MPI time, where the baseline configura-
tion consumes 169.1s. The 1.0 GHz setup reduces this time to 154.9 s, indicating an 8 %
decrease. However, with COUNTDOWN, there’s a substantial increase in time across all
configurations, with the highest one observed at 334.2's (98 % increase).

In terms of energy consumption, both Energy PKG and Energy DRAM show an in-
creases across most configurations compared to the baseline. The highest increase is noted
in the COUNTDOWN configuration, with a 16 % rise in PKG energy consumption and a
13 % increase in DRAM energy consumption.
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Table 8.17: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5c¢ on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
16 x 6 x 8, Base- 7.2 5509 143.1 693.7 32445 4565 4503.5 6339 359 1.7 3081 37006 5139.2
line
16 x 6 x 8, 582 2199.7 3389.0 5591.3 216868.33877 3728.1 4104 358 2.6 3099 240800 4139.0
1.0GHz

708 % 299% 2269% 706% —5H68 %—423%17% 35% 0% —51% —1% —551%19 %
16x6x8,CNTD 7.8 556.9 196.6 755.5 33830 7221 4287.0 813.3 39.1 1.8 3093 40881 5193.7
9 % 1% 37% 9% —4% —58% 5% —28% —9% —5% 0% —10% —1%

16 X 6 x 8§, 8.7 559.7 274.8 836.9 36773 5130 4234.0 590.7 359 1.8 2898 41908 4824.3
CNTD 100 21% 2% 92% 21% —13% —12% 6% 7 % 0% —5% 6% —13% 6%
16 X 6 x 8§, 7.7 553.8 193.2 748.1 33735 4772 4354.1 6162 358 1.7 2945 38501 4969.1
CNTD 250 8 % 1% 35% 8% —4% —5% 3% 3 % 0 % —1% 4% —4% 3%
16 X 6 x 8§, 7.8 553.9 203.2 757.0 34111 4813 43439 6120 358 1.8 2938 38921 4955.9
CNTD 500 9% 1% 42% 9% —5% —5% 4% 3 % 0 % —2% 5% —5% 4%
16 X 6 x 8§, 7.7 554.3 191.3 746.1 33747 4770 4357.0 616.6 358 1.7 2937 38523 4972.1
CNTD 750 7 % 1% 34% 8% —4% —4% 3% 3 % 0 % —1% 5% —4% 3%
16 X 6 x 8, 7.7 554.0 189.7 742.9 33649 4759 4353.3 616.7 358 1.7 2942 38417 4968.9

CNTD 1000 7 Y% 1% 33% 7% —4% —4% 3% 3 Y% 0 Y% —1% 5% —4% 3%
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Table 8.18: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 5c¢ on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
16 x 6 x 8, Base- 9.6 612.1 317.8 923.2 35376 8571.5 3737.5 892.9 339 2.1 3093.5 43947.54636.3
line
16 x 6 x 8, 6.3 4527 1549 608.0 27903 3798 4429.1 602.2 303 1.7 3075 31696 5030.1
1.0GHz

—34% —26% —51% —34% 21% 56% —19% 33% 11% 18% 1% 2% —8%
16x6x8,CNTD 8.4 464.8 334.2 807.0 33104 8096 3960.0 967.2 343 2.0 3089 41163 4933.1
—13% —24% 5 % —13% 6 % 6 % —6% —8% —1% 5% 0 Y% 6 % —6 %

16 X 6 x 8§, 7.5 463.4 262.0 726.5 31175 5947 41256 7904 326 1.8 2870 37112 4916.3
CNTD 100 —21% —24% —18% —21% 12% 31% —10% 11% 4% 14% 7% 16% —6%
16 X 6 x 8§, 7.6 4639 268.2 730.6 31275 5994 412277 789.8 32.6 1.8 2863 37255 4913.6
CNTD 250 —21% —24% —16% —21% 12% 30% —10% 12% 4% 14% 7% 15% —6%
16 X 6 x 8§, 7.6 462.5 2639 728.7 31222 5978 4130.2 7909 326 1.8 2864 37201 4921.9
CNTD 500 —21% —24% —17% —21% 12% 30% —11% 11% 4% 15% 7% 15% —6%
16 X 6 x 8§, 7.1 4599 2228 6853 29401 5696 41663 8024 326 1.8 2868 35084 4971.6
CNTD 750 —26% —25% —30% —26% 17% 34% —11% 10% 4% 17% 7% 20% —7%
16 X 6 x 8, 7.6 462.8 269.6 7337 31345 5997 41199 788.8 32.6 1.8 2865 37355 4905.6
CNTD 1000 —21% —24% —15% —21% 11% 30% —10% 12% 4% 14% 7% 15% —6%
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CHAPTER 8. EXPERIMENTS

8.10 Experiment 6

Experiments 3-5 (sections from 8.7 to 8.9) were performed with an insufficient number
of iterations for the convergence of the problem, just over 1000 iterations as opposed to the
more than 6000 required for Cubo_1772481.Ext_bin and 10000 for Wing_4538k.csr.Ext_bin.
However, this was done in order to ensure a more even distribution between the parts and
to avoid too much dwelling on the solving part of the problem, as described in section 3.5.
Experiment 6 seeks to analyze real-life performance and to confirm or disprove the results
obtained in the previous experiments. In this experiment, we see only the most promising
configurations from Experiment 5, along with those also presented in Cesarini et al. [36].

COUNTDOWN with Analysis Only (Baseline) COUNTDOWN run in parallel with the
program, without any analysis of slack or power-saving algorithms. This scenario
was used as a baseline to examine the basic functionality of COUNTDOWN.

COUNTDOWN with low power configuration (1.0 GHz) COUNTDOWN is set to keep
the CPU frequency at 1.0 GHz, although the power saving algorithm is not enabled,
since the Linux kernel will not follow our instructions for long. We can also call this
execution mode as COUNTDOWN enabled without timer, i.e. as soon as there is an
MPI call, the CPU sets to low power.

COUNTDOWN without slack (CNTD) Execution of the power saving algorithm with-
out including the slack optimization algorithm. This scenario isolated the power
saving aspect and explored its effects without slack time optimization.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 500 ps.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 750 ps.

8.10.1 Experiment 6a

Sub-experiment 6a analyzes the performance of the linear solver Chronos in the greenest
point, i.e., the configuration of 8 x 6 x 8 nodes.

Cubo_1772481.Ext_bin The comparison between profiles with and without COUNT-
DOWN for Experiment 6a on the Cubo_1772481.Ext_bin matrix reveals notable insights,
particularly when considering COUNTDOWN 500 and COUNTDOWN 750 relative to
the baseline configuration.

In terms of performance, the addition of COUNTDOWN 500 results in an 8 % increase
in total execution time compared to the baseline, while COUNTDOWN 750 shows a 3 %
increase. Regarding energy consumption, there is a 7 % increase in package energy (CPU)
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8.10. EXPERIMENT 6

with COUNTDOWN 500 and a 2 % increase with COUNTDOWN 750 relative to the
baseline.

Looking specifically at the application performance, COUNTDOWN 500 exhibits a
2% increase in application time compared to the baseline, while COUNTDOWN 750
shows a marginal 1 % increase. Meanwhile, for memory usage, COUNTDOWN 500 shows
a modest 6 % increase, while COUNTDOWN 750 does not see any significant change
compared to the baseline.

These results are supported by the graphical results of which are in appendix (fig. B.11)
and all data displayed in table 8.19.

Wing 4538k.csr.Ext_bin The comparison between profiles with and without COUNT-
DOWN for Experiment 6a on the Wing_4538k.csr.Ext_bin matrix unveils significant in-
sights, particularly concerning COUNTDOWN 500 and COUNTDOWN 750 relative to
the baseline configuration.

In terms of execution time, there is an 8 % increase with COUNTDOWN 500 and
8 % with COUNTDOWN 750 compared to the baseline. Meanwhile, the application time
experiences a marginal 1 % increase with both COUNTDOWN 500 and COUNTDOWN
750, indicating relatively stable performance. However, MPI time exhibits a considerable
51 9% increase with COUNTDOWN 500 and a 47 % increase with COUNTDOWN 750,
showcasing the impact on parallel computing efficiency.

Regarding energy consumption, package energy (CPU) sees an 8 % increase with COUNT-
DOWN 500 and a 7 % increase with COUNTDOWN 750 relative to the baseline. Notably,
DRAM energy consumption fluctuates, with a 19 % decrease observed with COUNT-
DOWN 500 and a 17 % increase with COUNTDOWN 750, suggesting varying memory
utilization patterns.

Analyzing the IPC, both COUNTDOWN 500 and COUNTDOWN 750 show improve-
ments of 6 % and 8 %, respectively, compared to the baseline. This increase signifies en-
hanced instruction throughout with the implementation of COUNTDOWN.

These results are supported by the graphical results of which are in appendix (fig. B.12)
and all data displayed in table 8.20.
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Table 8.19: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6a on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
8x6x8,Base- 19.8 780.8 167.7 952.2 45641 11227 2307.6 5599 328 1.6 3080 56744 2835.9
line
8 x 6 x &8 106.2 2136.3 2967.1 5099.8 203099 22619 1913.3 2129 31.7 2.6 3099 225686 2126.9
1.0GHz

436% 174% 1670% 436% —345%—101%17% 62% 3% —66% —1% —298 %25 %
Ix6x8& CNTD 19.8 7824 170.5 951.4 45853 10522 2319.0 532.0 32.5 1.6 3070 56380 2850.1
0 Y% 0 Y% 2 % 0 % 0 Y% 6 % 0 Y% 5 % 1% 1 % 0 Y% 1 % —1 %

8 X 6 X 8, 21.5 786.7 246.0 1032.0 48656 11890 2266.8 546.1 32.8 1.6 2988 60481 2800.0
CNTD 500 8 % 1% 47% 8% —7% —6% 2% 2 % 0 Y% —2% 3% —7% 1%
8 X 6 X 8, 20.5 781.8 204.1 985.7 46776 11474 2283.1 5547 32.8 1.6 3011 58124 2819.8

CNTD 750 3 % 0 Y% 22% 4% —2% —2% 1% 1 % 0 Y% —1% 2% —2% 1%
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Table 8.20: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6a on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
8x6x8,Base- 67.5 2585.1 693.8 3244.5 158754 38261.52347.6 5852 273 1.4 3068 200657.3933.7
line
8 X 6 x 8 426.6 5890.7 14564.120476.6784874 175395 1840 411 274 2.6 3099 960269 2251.2
1.0 GHz

531% 128% 1999% 531 % —394 % —358%22% 30% 0% —82% —1% —379 %23 %
Ix6x8 CNTD 72.4 2645.3 923.4 3477.4 168999 45754 2305.7 630.1 28.0 1.5 3043 214753 2937.9
7 Y% 2 % 33% 7% —6% —20% 2% —8% —1% —4% 1% —7% 0%

8 X 6 x 8, 66.3 2567.4 609.7 3184.3 156568 46040.52358.6 692.4 28.0 1.3 3072 202627 3047.8
CNTD 500 —2% —1% —-12% —2% 1% —20% 0% —18% —2% 4% 0 % —1% —4%
8 X 6 x 8, 71.1  2549.4 854.4 34149 167474 45328 2353.3 634.6 28.0 1.4 3038 212824 2987.9
CNTD 750 5 % —1% 23% 5% —5% —18% 0% —8% —1% —-3% 1% —6% —2%
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CHAPTER 8. EXPERIMENTS

8.10.2 Experiment 6b

Sub-experiment 6a analyzes the performance of the linear solver Chronos in the fastest
point, i.e., the configuration of 32 x 6 x 8 nodes.

Cubo_1772481.Ext_bin The comparison between profiles with and without COUNT-
DOWN for Experiment 6b on the Cubo_1772481.Ext_bin matrix reveals notable insights,
particularly when considering COUNTDOWN 500 and COUNTDOWN 750 relative to
the baseline configuration.

In terms of execution time, both COUNTDOWN 500 and COUNTDOWN 750 show
an increases over the baseline, with COUNTDOWN 500 showing a 30 % increase and
COUNTDOWN 750 showing a 11 % increase.

When analyzing application time, COUNTDOWN 500 shows a 2 % increase, while
COUNTDOWN 750 shows a marginal 1% increase over the baseline. This suggests a
relatively stable application performance with the implementation of COUNTDOWN.

For MPI time, there is a significant 86 % increase with COUNTDOWN 500 and a 31 %
increase with COUNTDOWN 750 compared to the baseline. This indicates a significant
impact on parallel computing efficiency for both configurations.

In terms of power consumption, package power (CPU) shows a significant 21 % in-
crease with COUNTDOWN 500 and a 6 % increase with COUNTDOWN 750 compared to
the baseline. Conversely, DRAM power consumption shows a 20 % increase with COUNT-
DOWN 500 and a 7 % increase with COUNTDOWN 750.

When analyzing IPC, both COUNTDOWN 500 and COUNTDOWN 750 show im-
provements over the baseline, with increases of 7% and 1 %, respectively. These im-
provements suggest an improvement in instruction throughout with the implementation
of COUNTDOWN.

These results are supported by the graphical results of which are in appendix (fig. B.13)
and all data displayed in table 8.21.

Wing_4538k.csr.Ext_bin Comparing the profiles with and without COUNTDOWN for
Experiment 6b on the Wing_4538k.csr.Ext_bin matrix reveals significant insights, par-
ticularly when considering COUNTDOWN 500 and COUNTDOWN 750 relative to the
baseline configuration.

In terms of execution time, both COUNTDOWN 500 and COUNTDOWN 750 show
increases over the baseline, with COUNTDOWN 500 showing a 27 % increase and COUNT-
DOWN 750 showing a 12 % increase. However, compared to the baseline configuration,
the increase in execution time of the low-power configuration is 2421 % and the increase
in energy is 1643 Y%.

When analyzing application time, COUNTDOWN 500 shows a marginal 1 % increase,
while COUNTDOWN 750 shows any significant change from the baseline. This suggests
relatively stable application performance with the implementation of COUNTDOWN.

For MPI time, there is a significant 69 % increase with COUNTDOWN 500 and a 33 %
increase with COUNTDOWN 750 compared to the baseline. This indicates a significant
impact on parallel computing efficiency with both configurations.

In terms of power consumption, package power (CPU) shows a significant 21 % in-
crease with COUNTDOWN 500 and a 8 % increase with COUNTDOWN 750 compared to

118
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the baseline. Conversely, DRAM power consumption shows a 19 % increase with COUNT-
DOWN 500 and a 9 % increase with COUNTDOWN 750.

When analyzing IPC, both COUNTDOWN 500 and COUNTDOWN 750 show im-
provements over the baseline, with increases of 6 % and 1 %, respectively. These im-
provements suggest improved instruction throughout with the implementation of COUNT-
DOWN.

In summary, the introduction of COUNTDOWN 500 and COUNTDOWN 750 results
in increases in execution time, MPI time, and package power (CPU) compared to the base-
line. However, the improvements in IPC indicate improved processor efficiency despite
fluctuations in energy consumption and MPI time.

These results are supported by the graphical results of which are in appendix (fig. B.14)
and all data displayed in table 8.22.

119



0cl

Table 8.21: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6b on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
32 x 6 x 8, Base- 6.6 860.3 420.7 1282.9 59426 10340 8890.0 1530.6 57.0 1.9 3086 69956 10473.2
line
32 x 6 x 8 106.1 6228.9 14140.220376.4757681 101500 7138.3 956.6 56.4 2.7 3099 859141 8095.2
1.0GHz
1496 % 624 % 3261 % 1488 % —1175 %882 %20% 38% 1% —43% 0% —1128 R3 %
32x6x8,CNTD 6.9 860.1 471.1 1331.5 60968 10434 8848.0 1511.6 56.9 1.9 3089 71405 10358.3
4 % 0% 12% 4% —3% —1% 0% 1 % 0 % —1% 0% —2% 1%
32 X6 X8, 8.6 876.7 784.4 1663.4 71645 12446 8318.8 1410.2 57.0 2.0 2895 84570 9794.9
CNTD 500 30% 2% 86% 30% —21% —20% 6% 8 %o 0% —T7% 6% —21% 6%
32 X6 X8, 7.4 866.7 550.8 1420.8 63238 11062 8552.0 1469.3 57 1.9 2925 73980 10048.6
CNTD 750 11% 1% 31% 11% —6% —7% 4% 4 Y% 0% —1% 5% —6% 4%
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Table 8.22: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6b on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
32x6x8, Base- 19.5 23019 1448.2 3754.2 182891 38903 9386.7 1990.7 50.5 1.9 3077 221726 11379.8
line
32 x 6 x 8, 4922 22742.471759.694501.3343389531101.6981.4 8759 450 2.7 3099 38653841857.3
1.0GHz
2421 % 888 % 4855 % 2417 % —1778 %1008 B6 % 56% 11% —42% —1% —1643%B1 %
32x6x8 CNTD 20.7 22879 1690.4 3975.6 194304 32853 9427.1 15909 469 1.9 3082 227157 11022.1
6 % —1% 17% 6% —6% 16% 0% 20% 7% —1% 0% —2% 3%
32 X6 X8, 24.8  2313.6 2451.3 4760.5 221034 46312 8939.5 1872.3 50.6 2.0 2940 267210 10810.9
CNTD 500 27% 1% 69% 27% —21% —19% 5% 6 % 0% —6% 4% —21% 5%
32 X6 X8, 21.9  2301.8 1931.7 4221.7 198060 42306 9034.0 1928.3 50.6 1.9 2947 240737 10938.9
CNTD 750 12% 0% 33% 12% —8% —9% 4% 3 % 0% —1% 4% 9% 4%
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8.10.3 Experiment 6¢

The last sub-experiment analyzes the intermediate case between the greenest and the fastest
case, i.e., the 16 x 6 x 8 configuration, since we want to analyze how COUNTDOWN
behaves in this situation.

Cubo_1772481.Ext_bin The comparison, as shown in table 8.23, illustrates notable
trends. First, in terms of execution time, both COUNTDOWN 500 and COUNTDOWN
750 show an increases over the baseline, with COUNTDOWN 500 showing a 16 % in-
crease and COUNTDOWN 750 showing a 8 % increase.

In terms of application time, COUNTDOWN 500 shows a marginal 1 % increase, while
COUNTDOWN 750 shows no significant change from the baseline. This suggests a rela-
tively stable application performance with the implementation of COUNTDOWN.

However, in terms of MPI time, both COUNTDOWN 500 and COUNTDOWN 750
show significant increases compared to the baseline, indicating a significant impact on
communication efficiency.

In addition, the energy consumption metrics show different trends. Package (CPU)
power shows significant increases with both COUNTDOWN 500 and COUNTDOWN
750, while DRAM power shows mixed results.

In addition, both COUNTDOWN 500 and COUNTDOWN 750 show improvements
in IPC compared to the baseline.

These results are supported by the graphical results of which are in appendix (fig. B.15)
and all data displayed in table 8.23.

Wing 4538k.csr.Ext_bin In Experiment 6¢, a comparison was made between differ-
ent configurations of the Wing_4538k.csr. Ext_bin matrix, with and without the COUNT-
DOWN feature enabled.

COUNTDOWN 500 shows a slight decrease in execution time (—3 %) and application
time (—2 %), while COUNTDOWN 750 shows similar trends. However, there are signifi-
cant decreases in MPI time for both COUNTDOWN 500 (—4 %) and COUNTDOWN 750
(—3 %0).

In terms of energy consumption, configurations with COUNTDOWN generally show
mixed results. While there are decreases in some metrics, such as package power and aver-
age power, there are increases in others, such as DRAM power. These fluctuations indicate
a complex interaction between COUNTDOWN and power utilization. While COUNT-
DOWN 500 shows improvements in execution time and application metrics, COUNT-
DOWN 750 stands out for its significant energy savings, as evidenced by the decrease in
package energy and average power. Specifically, for COUNTDOWN 750, there is a 9 %
decrease in package energy and a 6 % decrease in average power compared to the baseline.

In addition, improvements in IPC are observed with COUNTDOWN configurations
compared to the baseline, indicating improved processor efficiency. However, there is a
slight decrease in average CPU frequency for COUNTDOWN configurations compared to
the baseline.

These results are supported by the graphical results of which are in appendix (fig. B.16)
and all data displayed in table 8.24.
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Table 8.23: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6¢ on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
16 x6x8,Base- 11.5 8504 256.8 1109.9 52574.513054 4510.3 948.0 39.2 1.7 3089 64141.55488.3
line
16 x 6 x 8 103.0 3547.4 6300.8 9892.9 381396 40724 3708.3 3959 359 2.7 3099 422079.8104.3
1.0GHz

794% 317% 2353% 791% —625%—212%18% 58% &% —53% 0% —5H58 %25 Y%
16x6x8,CNTD 11.6 841.5 274.0 1120.0 53023 12981 4517.6 1116.2 40.0 1.7 3086 65979 5635.3
1% —1% 7% 1 % —1% 1% 0 Y% —18% —1% 1% 0 Y% —3% —3%

16 X 6 x 8§, 13.4 858.6 428.9 1289.6 58356.514582.54319.1 951.3 39.1 1.8 2944 71373 5260.1
CNTD 500 16% 1% 67% 16% —11% —12% 4% 0 % 0 % —5% 5% —11% 4%
16 X 6 x 8§, 124 854.0 337.0 1192.0 54137 13397.54393.3 944.6 392 1.7 2956 66334 5352.3
CNTD 750 8 % 0 % 31% 7% —3% —3% 3% 0 % 0% —1% 4% —3% 2%
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Table 8.24: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 6¢ on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG EnergyAVG
time time time time PKG DRAMPower Power Mem- IPC CPU [J] Power
[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W] [W] us- quency
age [MHz]
[GB]
16 x 6 x 8, Base- 35.9  2455.2 965.5 3448.5 165623 46970 4621.2 1300.0 359 1.7 3074 212333 5889.0
line
16 x 6 x 8, 4204 8983.9 31380.840361.51533862164913 3647.0 392.3 30.3 2.7 3099 1698775639.0
1.0GHz

1072 % 266 % 3150 % 1070 % —826 %—251%21% 70% 16% —60% —1% —700 %31 %
16 x6x8,CNTD 349 2406.5 929.7 3356.8 16534229773 4735.7 8552 312 1.6 3053 195172 5588.8
—3% —2% —4% —-3% 0% 37% —2% 34% 13% 2% 1 % 8 % 5 %
16 x6x8,CNTD 41.4 2462.5 1494.7 3976.3 187180 50873.54528.7 1212.4 359 1.7 2971.5 236321 5586.4
500

15% 0% 5% 15% —13% —8% 2% 7 Y% 0 Y% —5% 3% —11% 5%
16x6x8,CNTD 34.8 2404.1 934.4 3344.1 163803 29674.54707.9 852.6 31.2 1.6 2990 193583 5557.0
750

3% —2% —-3% —-3% 1% 37% —2% 34% 13% 4% 3 % 9 % 6 %
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8.11 Experiments 7 and 8

In Experiments 7 and 8, comprehensive power analyses were performed using COUNT-
DOWN, analyzing the frequencies not analyzed in previous experiments, i.e., 3.1 GHz
(baseline) to 1.0 GHz (called low power in previous experiments), which we nevertheless
report in order to have a complete comparison. Multiple runs were then performed with
CPU frequencies between 1.2 GHz and 2.8 GHz, with a step size of 0.2 GHz.

The purpose of this experiments is to evaluate the impact of frequency reduction on
energy efficiency and performance by allowing evaluation of energy saving or non-saving
trends across different frequency settings. By systematically varying the maximum fre-
quency within this range. In addition, this experiments sheds light on the extent to which
the Linux scheduler accepts downclocking requests, which we have already mentioned are
not well respected.

COUNTDOWN with Analysis Only (Baseline) COUNTDOWN run in parallel with the
program, without any analysis of slack or power-saving algorithms. This scenario
was used as a baseline to examine the basic functionality of COUNTDOWN.

COUNTDOWN with low power configuration (1.0 GHz) COUNTDOWN is set to keep
the CPU frequency at 1.0 GHz, although the power saving algorithm is not enabled,
since the Linux kernel will not follow our instructions for long. We can also call this
execution mode as COUNTDOWN enabled without timer, i.e. as soon as there is an
MPI call, the CPU sets to low power.

COUNTDOWN without slack (CNTD) Execution of the power saving algorithm with-
out including the slack optimization algorithm. This scenario isolated the power
saving aspect and explored its effects without slack time optimization.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 500 ps.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 750 ps.

8.11.1 Experiment 7

Experiment 7 performs the analyses with a low configuration of iterations, a little more
than 1000, so that both the effect generated by the setup and preconditioning and that
generated by the iterative computation step can be analyzed in a more balanced manner,
as opposed to the normal unbalanced distribution as described in section 3.5.
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CHAPTER 8. EXPERIMENTS

Cubo_1772481.Ext_bin In the case of the Cubo_1772481.Ext_bin matrix, the results
showed a notable trend: as the CPU frequency decreased, there was a pronounced increase
in execution times. For instance, the transition from the baseline frequency of 3.1 GHz to
1.0 GHz led to a 350 Y% increase in execution time. This shift was particularly noticeable
in both application execution time and MPI time, which surged by 134 % and 1143 %,
respectively. These findings underscore the substantial impact that CPU frequency adjust-
ments can have on computational performance. Furthermore, a closer examination of the
data reveals compelling insights into the performance at specific frequencies. At 2.2 GHz,
the execution time exhibited a significant 217 % increase compared to the baseline config-
uration, highlighting the diminishing returns associated with lower frequencies. Similarly,
at 2.8 GHz, the execution time experienced a notable 334 % increase, emphasizing the
trade-off between power consumption and computational speed. Conversely, the 1.6 GHz
configuration showcased a 328 % increase in execution time, indicative of the profound
impact of lower frequencies on computational efficiency.

These results are supported by the graphical results of which are in appendix (fig. B.17)
and all data displayed in table 8.25.

Wing_4538k.csr.Ext_bin In the case of the matrix Wing_4538k.csr.Ext_bin, similar
trends were observed regarding the impact of varying CPU frequency on execution times.
Transitioning from the baseline frequency of 3.1 GHz to 1.0 GHz resulted in a notable de-
crease in execution time across various metrics. For example, the execution time decreased
by 4 %, 1 %, and 16 % for the application, MPI, and total time, respectively. However, the
energy consumption saw a slight increase of 3 %, primarily attributed to the reduction in
frequency. At 2.8 GHz, while there was a 6 % reduction in execution time, the energy con-
sumption increased by 3 %, demonstrating a trade-off between performance and energy
efficiency. Similarly, at 1.6 GHz, there was a 60 % increase in execution time, accom-
panied by a 50 % reduction in energy consumption, showcasing the significant impact of
frequency adjustments on power usage. Moreover, the application time relative to the base-
line configuration fluctuated, ranging from a 4 % decrease at 2.8 GHz to a 69 % increase at
1.6 GHz, highlighting the sensitivity of application performance to CPU frequency varia-
tions.

These results are supported by the graphical results of which are in appendix (fig. B.18)
and all data displayed in table 8.26.

126



LTI

Table 8.25: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 7 on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE time [s] APP time [s] MPI time [s] TOT time [s] Energy PKG [J] Energy DRAM [J] AVG Power PKG [W] AVG Power DRAM [W] MAX Memory usage [GB] AVG IPC AVG CPU frequency [MHz] Energy [J] AVG Power [W]

8 x 6 x 8, Baseline 13.4 522.1 124.9 647.2 30618 6410 2276.0 476.3 325 1.6 3089 37031 2752.8

8 x 6 x 8,1.0GHz 132 516.1 116.9 633.2 29747 5085 2259.6 386.3 32.0 1.6 3084 34831 2645.9
—2% —1% —6 % —2% 3% 21 % 1% 19 % 1% 0% 0% 6 % 4%

8 x 6 x 8, CNTD 13.5 521.5 125.7 650.4 30228 7704 2241.8 570.5 33.0 1.6 3097 37909 2812.8
1% 0 % 1% 1% 1% —20 % 2% —20 % —2% —1% 0% —2% —2%

8 x 6 x 8 CNTD 500 14.4 524.8 167.4 693.6 32112 6721 2227.1 466.0 325 1.7 2984 38840 2694.1
7% 1% 34 % 7% —5% —5% 2% 2% 0% —2% 3% —5% 2 %

8 x 6 x 8 CNTD 750 14.1 5224 150.2 676.5 31339 6527 2231.3 463.9 325 1.6 2993 37877 2695.2
5 % 0% 20 % 5% —2% —2% 2% 3% 0 % —2% 3% —2% 2 %

8 x 6 x 81.6GHz 57.5 1219.2 1545.3 2762.3 108357.5 12472 1885.3 216.8 31.7 2.5 3099 120805 2102.1
328 %o 133 % 1137 % 327 % —254 % —95 % 17 % 54 % 2 % —54 % 0% —226 % 24 %

8 x 6 x81.8GHz 47.6 999.7 1287.5 2287.0 94672.5 13039.5 1987.8 273.8 32.1 25 3097 107709.5 2261.9
254 % 91 % 930 % 253 % —209 % —103 % 13 % 43 % 1% —52% 0% —191 % 18 %

8 x 6 x 8 2.0GHz 53.5 1108.2 1455.5 2570.0 104571.5 17010.5 1956.2 318.0 322 2.5 3098 121582 2273.7
298 % 112 % 1065 %o 297 % —242 % —165 % 14 % 33 % 1% —54 % 0% —228 % 17 %

8 x 6 x82.2GHz 42.6 838.0 1212.4 2046.6 84122 14482 1973.0 3399 323 24 3098 98592.5 23133
217 % 60 % 870 % 216 % —175 % —126 % 13 % 29 % 1% —52 % 0% —166 % 16 %

8 x 6 x 8 2.4GHz 51.7 1074.1 1406.2 2484.3 101142 16359.5 1954.6 316.3 322 2.5 3098 117501.5 2271.1
285 % 106 %o 1025 % 284 % —230 % —155 % 14 % 34 % 1% —54 % 0% —217 % 18 %

8 x 6 x82.6GHz 50.6 1064.4 1365.7 2431.8 97702 11368.5 1925.6 2244 31.7 24 3098 109070.5 2150.5
277 % 104 % 993 %o 276 % —219 % —77 % 15 % 53 % 2 % —52% 0% —195 % 22 %

8 x 6 x 8 2.8GHz 58.4 1283.1 1532.3 2805.6 109808 34594.5 1874.3 592.3 33.9 2.6 3098 144402.5 24673
334 % 146 %0 1126 % 334 % —259 % —440 % 18 % —24 % —5% —60 % 0% —290 % 10 %

8 x 6 x 81.6GHz, CNTD 500 77.7 1363.4 2367.6 3731.3 131005.5 16099 1685.8 207.1 31.7 2.6 2957 147104.5 1892.6
478 %o 161 % 1795 % 477 % —328 % —151 % 26 %0 57 % 2 % —58 %o 4% —297 % 31 %

8 x 6 x 8 1.8 GHz, CNTD 500 64.5 1140.0 1945.6 3099.1 115485.5 16923 1789.3 262.2 32.0 2.6 2879.5 132440 2051.0
380 %o 118 % 1457 % 379 % —277 % —164 % 21 % 45 % 1% —57% 7% —258 % 25 %

8 x 6 x 8 2.0GHz, CNTD 500 72.4 1213.8 2266.9 3479.5 126614 22217 17473 306.9 322 2.6 2945.5 148831 2054.0
439 %o 132 % 1714 % 438 % —314 % —247 % 23 % 36 % 1% —59 % 5% —302 % 25 %

8 x 6 x 8 2.2GHz, CNTD 500 49.7 883.8 1497.2 2388.2 90413 16566.5 1818.0 3335 323 2.5 2837.5 107001 2151.7
270 % 69 % 1098 %o 269 % —195 % —158 % 20 %o 30 % 1% —54 % 8% —189 % 22 %

8 x 6 x 8 2.4GHz, CNTD 500 68.2 1164.9 21182 3274.1 119678 20898.5 1759.0 306.5 322 2.6 2950 140576.5 2064.8
407 % 123 % 1595 % 406 % —291 % —226 % 23 % 36 % 1% —58 %o 4% —280 % 25 %

8 x 6 x 8 2.6GHz, CNTD 500 67.7 1176.4 2087.4 32532 118564 14450.5 1740.4 213.2 31.7 2.6 2981.5 133014.5 1953.6
404 %o 125 % 1571 % 403 % —287 % —125% 24 %o 55 % 2% —57% 3% —259 % 29 %

8 x 6 x 8 2.8 GHz, CNTD 500 75.0 1314.8 22834 3601.4 1273735 437825 1700.6 583.9 34.0 2.7 2948.5 171156 2285.6
458 %o 152 % 1728 % 456 % —316 % —583 % 25 % —23 % —5% —65 % 5% —362 % 17 %

8 x 6 x 81.2GHz, CNTD 750 61.5 1152.1 1798.6 2953.9 110029 22479.5 1781.8 365.5 325 2.6 2828.5 132589 21493
357 % 121 % 1340 % 356 %o —259 % —251 % 22 % 23 % 0% —57% 8% —258 % 22%

8 x 6 x 81.4GHz, CNTD 750  66.1 1190.4 1969.6 3175.1 116680 17269.5 1768.0 261.2 32 2.6 2855 133901 2029.3
392 % 128 % 1476 % 391 % —281 % —169 % 22 % 45 % 1% —56 % 8 % —262 % 26 %

8 x 6 x 81.6GHz, CNTD 750 59.5 1089.1 1757.0 2858.9 103750 13034 1739.2 218.9 31.7 2.5 2863 116784 1959.0
343 % 109 % 1306 % 342 % —239 % —103 % 24 % 54 % 2% —54% 7% —215% 29 %

8 x 6 x 81.8GHz, CNTD 750 58.5 1080.3 17335 2809.7 106233.5 15801.5 1805.7 2654 32 2.5 2886 122800 2069.6
335 % 107 % 1287 % 334 % —247 % —147 % 21 % 44 % 1% —55 % 7% —232 % 25 %

8 x 6 x 8 2.0GHz, CNTD 750 69.5 1189.2 2125.7 3336.7 121540 21413 1763 308.1 322 2.6 2933 142953 2071.1
417 % 128 % 1601 % 416 % —297 % —234% 23 % 35 % 1% —58 % 5% —286 % 25 %

8 x 6 x 82.2GHz, CNTD 750 46.6 851.8 1361.9 22374 85106 15592 1836.2 336.4 323 2.5 2817 100776 2175.0
246 % 63 % 990 % 246 % —178 % —143 % 19 % 29 % 1% —52 % 9 % —172% 21 %

8 x 6 x 8 2.4GHz, CNTD 750 67.7 1261.2 2018.2 3250.3 117372 20928 1729.7 308.4 322 2.6 2804 138501 2039.3
403 % 142 % 1515 % 402 % —283% —226 % 24 % 35 % 1% —57 % 9 % —274 % 26 %o

8 x 6 x 82.6GHz, CNTD 750 62.0 1201.6 1875.4 2977.1 109736 14672 1762.7 216.3 31.8 2.6 2996 131938 1980.4
361 % 130 % 1401 % 360 % —258 % —129 % 23 % 55 % 2 % —57 % 3% —256 % 28 %

8 x 6 x 82.8GHz, CNTD 750 13.4 522.1 1223 644.3 30185.5 6372.5 2250.8 475.8 325 1.6 3092 36558 2727.0

0% 0% —2% 0% 1% 1% 1% 0% 0% 0% 0% 1% 1%
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Table 8.26: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 7 on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE time [s] APP time [s] MPI time [s] TOT time [s] Energy PKG [J] Energy DRAM [J] AVG Power PKG [W] AVG Power DRAM [W] MAX Memory usage [GB] AVG IPC AVG CPU frequency [MHz] Energy [J] AVG Power [W]

8 x 6 x 8, Baseline 12.0 457.9 117.2 575.7 27064 4285 2264.2 358.3 27.0 1.6 3084 31351 2622.4

8 x 6 x 8,1.0GHz 11.5 452.8 103.1 556.0 26217.5 3776.5 2267.6 327.1 26.4 1.6 3090.5 29997 2594.6
—3% —1% —12% —3% 3% 12 % 0% 9 % 1% 1% 0% 4% 1%

8 x 6 x 8, CNTD 13.0 462.1 163.4 625.3 28441 4525 2192 348.6 27.0 1.6 2966 32966 2540.0
9% 1% 39 % 9% —5% —6 % 3% 3 % 0% —3 % 4% —5% 3%

8 x 6 x 8 CNTD 500 12.2 456.9 131.0 587.5 26484 3595 2168.0 294.6 26.4 1.6 2973 30088 2463.2
2 % 0% 12 % 2% 2% 16 % 4% 18 % 1% 1% 4% 4% 6 %

8 x 6 x 8 CNTD 750 12.1 4574 124.3 582.9 26696 3984 2204.6 328.8 26.4 1.6 2970 30682 2533.7
1% 0% 6 % 1% 1% 7% 3% 8% 1% 1% 4% 2% 3%

8 x 6 x 81.4GHz 24.1 503.0 656.8 1160.0 49931 6221.5 2073.9 257.8 26.4 22 3095.5 56152.5 2330.2
102 % 10 % 460 %o 101 % —84 % —45 % 8 % 28 % 1% —39 % 0% —79 % 11 %

8 x 6 x81.6GHz 19.1 4772 437.1 918.5 40522.5 5185.5 2136.6 271.5 26.4 2.0 3084.5 45713.5 2408.0
60 %o 4% 273 % 60 %o —50 % —21% 6 % 24 % 1% —29 % 0% —46 % 8%

8 x 6 x 81.8GHz 51.6 935.2 1545.5 24779 99818 11326.5 1933.2 219.3 26.4 2.4 3099 111124 2152.6
332 % 104 % 1219 % 330 % —269 % —164 % 15 % 39 % 1% —53 % 0% —254 % 18 %

8 x 6 x82.0GHz 15.6 465.2 286.4 751.1 34006 4583 2174.0 293.5 26.4 19 3092.5 38589 2464.6
31% 2% 144 % 30 %o —26 % —7% 4% 18 % 1% —18% 0% —23% 6 %

8 x 6 x 82.2GHz 459 776.0 1431.3 2203.7 88050.5 10394.5 1917.8 226.4 26.4 2.4 3098 98445 21445
284 % 69 % 1121 % 283 % —225 % —143 % 15 % 37 % 1% —53 % 0% —214 % 18 %

8 x 6 x824GHz 11.5 453.7 98.7 552.5 26073.5 3660.5 2269. 318.7 26.4 1.6 3084.5 29734 2587.4
—4 % —1% —16 % —4% 4% 15 % 0% 11 % 1% 2% 0% 5% 1%

8 x 6 x 82.6GHz 11.5 456.7 95.2 553.1 26135 4331.5 22759 376.9 26.7 1.6 3079 30465.5 2652.8
—4 % 0% —19% —4% 3% —1% —1% —5% 0% 3% 0% 3% —1%

8 x 6 x 8 2.8GHz 11.5 4543 98.8 554.3 26313.5 37355 2290.8 324.1 26.4 1.6 3087 30042.5 2615.2
—4 % —1% —16 % —4% 3% 13 % —1% 10 % 1% 2% 0% 4% 0%

8 x 6 x 8 1.4GHz, CNTD 500 30.1 576.1 869.1 1445.5 56290 7385 1866.9 2453 26.4 2.3 2515 63686.5 2111.6
152 % 26 % 642 % 151 % —108 % —72% 18 % 32 % 1% —43 % 18 % —103 % 19 %

8 x 6 x 81.6GHz, CNTD 500 20.2 520.5 453.9 972.7 40248.5 5414.5 1982.6 267.6 26.4 2.0 25255 45663 2247.6
69 % 14 % 287 % 69 %o —49 % —26 % 12 % 25 % 1% —29 % 18 % —46 % 14 %

8 x 6 x 8 1.8 GHz, CNTD 500 74.6 1052.9 2533.4 3582.5 127500.5 15623.5 1711.2 209.5 26.4 2.6 2962.5 143087.5 1920.7
524 % 130 % 2062 % 522 % —371 % —265 % 24 % 42 % 1% —60 % 4% —356 % 27 %

8 x 6 x 8 2.0GHz, CNTD 500 19.5 502.4 434.1 936.6 38678 5332 1984.7 273.6 26.4 2.0 2572 44003.5 22583
63 % 10 % 270 % 63 %o —43 % —24% 12 % 24 % 1% —25% 17 % —40 % 14 %

8 x 6 x 8 2.2GHz, CNTD 500 57.6 834.1 1939.9 2768.2 99150.5 12599 1718.3 218.5 26.4 2.5 2846 111730.5 1936.3
382 % 82 % 1555 %o 381 % —266 % —194 % 24 % 39 % 1% —57% 8% —256 % 26 %o

8 x 6 x 82.4GHz, CNTD 500 13.6 4724 181.3 653.1 28866.5 4040 2120.7 297.5 26.4 1.7 2711 32906.5 2417.7
14 % 3% 55 %0 13 % —7% 6 % 6 % 17 % 1% —6 % 12 % —5% 8%

8 x 6 x 8 2.6GHz, CNTD 500 13.2 468.6 165.4 635.3 28369 4734.5 2150.3 358.7 27.0 1.7 2797 33095.5 2509.7
10 % 2% 41 % 10 % —5% —10 % 5% 0% 0% —4% 9 % —6% 4%

8 x 6 x 82.8GHz, CNTD 500 13.1 463.5 166.1 630.1 28605 4024 2181.5 308.0 26.4 1.6 28425 32632 2489.6
10 % 1% 42 % 9 % —6 % 6 % 4% 14 % 1% —4% 8 % —4% 5 %

8 x 6 x 81.4GHz, CNTD 750 28.4 566.5 797.2 1363.8 53531 7062.5 1893.5 248.8 26.4 22 2458.5 60593.5 2141.0
137 % 24 % 580 % 137 % —98 % —65% 16 % 31% 1% —41% 20 % —93% 18 %

8 x 6 x 81.6GHz, CNTD 750 29.7 563.4 861.5 1425.7 55325 7115 1867.2 239.8 26.4 2.3 2550 62449.5 2105.9
148 %o 23 % 635 % 148 % —104 % —66 % 18 % 33 % 1% —43 % 17 % —99 % 20 %

8 x 6 x 8 1.8GHz, CNTD 750 74.7 1048.8 2528.5 3586.4 127771 15647 1710.7 209.5 26.4 2.6 2974 143418 1920.2
525 % 129 % 2057 % 523 % —372% —265 % 24 % 42 % 1% —60 % 4% —357 % 27 %

8 x 6 x 82.0GHz, CNTD 750 19.3 499.8 430.5 930.0 38789 5301 2000.7 274.0 26.4 2.0 2621.5 44090 2272.7
62 % 9% 267 % 62 % —43 % —24 % 12 % 24 % 1% —26 % 15 % —41 % 13 %

8 x 6 x 8 2.2GHz, CNTD 750 57.5 830.3 1941.9 2763.4 99347 12576 1727.0 219.0 26.4 2.5 2889 111970 1945.2
381 % 81 % 1557 % 380 % —267 % —193 % 24 % 39 % 1% —57 % 6 % —257 % 26 %o

8 x 6 x 82.4GHz, CNTD 750 13.1 469.3 163.9 632.4 28163.5 3966 21385 301.6 26.4 1.7 27235 32140.5 2440.8
10 % 2 % 40 % 10 % —4% 7% 6 % 16 % 1% —6 % 12 % —3% 7%

8 x 6 x 8 2.6GHz, CNTD 750 12.8 466.6 146.7 614.0 27555.5 4630.5 2161.2 362.8 26.7 1.6 2830.5 32196.5 2524.6
7% 2% 25 % 7% —2% —8% 5% —1% 0% —3% 8% —3% 4%

8 x 6 x 82.8GHz, CNTD 750 12.7 459.7 148.6 610.1 27810 3948 2194.0 3113 26.4 1.6 2894.5 31758 2504.3

6% 0% 27% 6% —3% 8% 3% 13 % 1% —3% 6 % —1% 5%
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8.11. EXPERIMENTS 7 AND 8

8.11.2 Experiment 8

Experiment 8 is similar to Experiment 7, however it is performed with a much higher
number of iterations to evaluate the complete execution of the linear solver with COUNT-
DOWN.

Cubo_1772481.Ext_bin When we increase the CPU frequency to 1.6 GHz, we see a sig-
nificant improvement in execution time compared to the baseline. However, this improve-
ment comes at the cost of higher energy and power consumption. The relative execution
time of the application decreases by about 50 %, indicating a significant increase in per-
formance, but energy consumption and power usage increase by about 50 %, highlighting
the trade-off between performance and energy efficiency.

Moving to a CPU frequency of 2.2 GHz, we see a further reduction in execution time,
indicating improved speed. However, this increase in speed is accompanied by even higher
energy consumption and power usage compared to the 1.6 GHz configuration. Despite the
higher power consumption, the performance gains are substantial, with execution time
reduced by approximately 60 %.

These results are supported by the graphical results of which are in appendix (fig. B.20)
and all data displayed in table 8.28.

Wing_4538k.csr.Ext_bin At a lower CPU frequency of 1.6 GHz, execution times are
generally longer compared to higher frequencies. This is to be expected, as lower fre-
quencies result in slower processing speeds. However, energy and power consumption are
comparatively lower at this frequency.

Increasing the CPU frequency to 2.2 GHz significantly reduces execution times in all
configurations. This improvement in speed comes with a corresponding increase in en-
ergy and power consumption, as the processor runs at a higher frequency and therefore
consumes more power.

Moving to the highest frequency of 2.8 GHz results in the fastest execution times of the
configurations tested. However, this comes at the cost of significantly higher power and en-
ergy consumption compared to lower frequencies. The trade-off between performance and
energy efficiency becomes more pronounced at this frequency, as the processor operates
at its maximum potential and it consumes significant power to achieve peak performance.

These results are supported by the graphical results of which are in appendix (fig. B.19)
and all data displayed in table 8.27.
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Table 8.27: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 8 on the
Cubo_1772481.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE time [s] APP time [s] MPI time [s] TOT time [s] Energy PKG [J] Energy DRAM [J] AVG Power PKG [W] AVG Power DRAM [W] MAX Memory usage [GB] AVG IPC AVG CPU frequency [MHz] Energy [J] AVG Power [W]

8 x 6 x 8, Baseline 19.808 780.829 167.653 952.189 45641 11227 2307.65 559.91 32.78 1.52 3080 56744 2835.9

8 x 6 x 8,1.0GHz 106.217 2136.306 2967.131 5099.825 203099 22619 1913.34 212.88 31.73 2.52 3099 225686 212691
436 %o 174 % 1670 % 436 % —345 % —101 % 17 % 62 % 3% —66 %o —1% —298 % 25 %

8 x 6 x 8, CNTD 19.772 782.424 170.506 951.355 45853 10522 2318.27 532.04 325 1.51 3070 56380 2850.08
0% 0% 2 % 0% 0% 6 % 0% 5 % 1% 1% 0% 1% —1%

8 x 6 x 8 CNTD 500 21.464 786.672 246.021 1031.988 48656 11890 2266.81 546.13 32.78 1.55 2988 60481 2799.29
8% 1% 47 % 8% —7% —6% 2% 2% 0% —2% 3% —7% 1%

8 x 6 x 8, CNTD 750 20.5 781.831 204.091 985.733 46776 11474 2283.13 554.75 32.77 1.53 3011 58124 2819.8
3% 0 % 22 % 4% —2% —2% 1% 1% 0 % —1% 2% —2% 1%

8 x 6 x 81.4GHz 97.905 1886.232 2811.3755 4700.8965 186103 22579 1899.675 230.685 31.73 2.53 3099 208681 2130.165
394 %o 142 % 1577 % 394 % —308 % —101 % 18 % 59 % 3% —66 %o —1% —268 % 25 %

8 x 6 x81.6GHz 101.2085 2000.859 2841.9355 4859.725 197641 27194.5 1953.585 268.69 32.02 2.53 3099 224843 222251
411 % 156 %o 1595 % 410 % —333 % —142 % 15 % 52 % 2 % —66 %o —1% —296 % 22 %

8 x 6 x 81.8GHz 70.1145 1318.6105 2046.581 3366.6675 136569 23914.5 1982.17 341.27 32.26 2.455 3098.5 160910.5 2323.305
254 % 69 % 1121 % 254 % —199 % —113 % 14 % 39 % 2 % —62 % —1% —184 % 18 %

8 x 6 x 82.0GHz 101.4 1988.691 2880.37 4868.6465 199169 22943 1965.205 226.34 31.74 2.52 3099 222103.5 2191.545
412 % 155 % 1618 % 411 % —336 % —104 % 15 % 60 % 3% —66 % —1% —291 % 23 %

8 x 6 x 82.2GHz 102.197 2005.5195 2908.2755 4906.7395 194351.5 21736.5 1903.105 212.695 31.74 2.52 3099 216088 2115.765
416 %o 157 % 1635 % 415 % —326 % —94 % 18 % 62 % 3% —66 %o —1% —281 % 25 %

8 x 6 x824GHz 86.41 1591.92 2552.9625 4148.9075 171560.5 20284.5 1985.405 234.755 31.74 2.495 3096.5 191845 2220.16
336 %o 104 % 1423 % 336 % —276 % —81 % 14 % 58 % 3% —64 % —1% —238 % 22 %

8 x 6 x 8 1.4GHz, CNTD 500 120.4105 2077.7455 3723.708 5781.0475 208551 26823 1731.935 222.73 31.75 2.55 2925.5 235437.5 1954.7
508 %o 166 %o 2121 % 507 % —357 % —139 % 25 %o 60 % 3% —68 % 5% —315 % 31%

8 x 6 x 81.6GHz, CNTD 500 128.2755 2209.527 3945.424 6158.6625 227429.5 33439.5 177234 260.63 32.005 2.57 2982.5 260827 2032.78
548 %o 183 % 2253 % 547 % —398 % —198 % 23 % 53 % 2 % —69 % 3% —360 % 28 %

8 x 6 x 8 1.8 GHz, CNTD 500 86.2775 1444.7645 2698.7165 4143.481 155568 28560.5 1820.445 331.16 32.265 2.515 2871.5 184128.5 2149.54
336 %o 85 % 1510 % 335 % —241 % —154 % 21 % 41 % 2 % —65 % 7% —224 % 24 %

8 x 6 x 8 2.0GHz, CNTD 500 129.898 2160.2895 4086.413 6236.4105 231712.5 28216 1782.485 217.195 31.755 2.57 2985.5 259900.5 1999.79
556 %o 177 % 2337 % 555 % —408 % —151 % 23 % 61 % 3% —69 % 3% —358 % 29 %

8 x 6 x 8 2.2GHz, CNTD 500 133.404 2160.988 4264.4445 6404.932 228196.5 27145 1709.62 203.47 31.75 2.58 2955.5 255340.5 1913.455
573 % 177 % 2444 % 573 % —400 % —142 % 26 %o 64 % 3% —70 % 4% —350 % 33 %

8 x 6 x 8 2.4GHz, CNTD 500 105.2345 1696.675 3355.8395 5052.5145 191601.5 23815 1825.495 226.305 31.75 2.54 2917 215416.5 2052.735
431 % 117 % 1902 % 431 % —320 % —112% 21 % 60 % 3% —67 % 5% —280 % 28 %

8 x 6 x 8 1.0GHz, CNTD 750 61.1995 1270.978 1666.1375 2938.8245 113415.5 15361 1856.585 251.075 31.74 2.35 2606 128762 2106.86
209 % 63 % 894 % 209 % —148 % —37% 20 %o 55 % 3% —55 % 15 % —127% 26 %o

8 x 6 x 81.2GHz, CNTD 750 131.8275 2367.8675 3974.479 6329.229 230441.5 46677.5 1743.475 354.01 32.48 2.58 2983 277186.5 2097.55
566 %o 203 %o 2271 % 565 % —405 % —316 % 24 % 37 % 1% —70 % 3% —388 % 26 %

8 x 6 x 81.4GHz, CNTD 750 113.517 1901.327 3578.208 5450.478 198967 24996 1750.28 219.62 31.75 2.55 2905 224019 1969.57
473 % 144 % 2034 % 472 % —336 % —123 % 24 % 61 % 3% —68 % 6 % —295 % 31%

8 x 6 x 81.6GHz, CNTD 750 141.554 2423.057 4342.438 6796.155 244744 36354.5 1734.315 257.25 32.01 2.585 3009.5 281099.5 1990.955
615 % 210 % 2490 % 614 % —436 % —224 % 25 %o 54 % 2 % —70 % 2% —395 % 30 %

8 x 6 x 8 1.8 GHz, CNTD 750 118.6045 2004.116 3704.2185 5694.529 211105.5 26719.5 1776.5 222.61 31.755 2.56 2918.5 237427 1999.075
499 %o 157 % 2109 % 498 % —363 % —138% 23 %o 60 % 3% —68 % 5% —318 % 30 %

8 x 6 x 82.0GHz, CNTD 750 136.084 2239.209 4282512 6533.426 235003 54230 1726.76 397.89 32.76 2.62 3017 289233 2117.05
587 % 187 % 2454 % 586 % —415 % —383 % 25 %o 29 % 0 % —72% 2% —410 % 25 %

8 x 6 x 8 2.2GHz, CNTD 750 124.386 2044.643 3886.678 5971.967 220576 32125 1774.41 261.25 32 2.57 2996 250363 2037.08
528 % 162 % 2218 % 527 % —383 % —186 % 23 % 53 % 2% —69 % 3% —341 % 28 %

8 x 6 x 82.4GHz, CNTD 750 119.46 1967.651 3770.765 5735.549 211010 37683 1765.67 315.25 32.24 2.59 3002 248693 2074.74
503 %o 152 % 2149 % 502 % —362 % —236 % 23 % 44 % 2 % —70 % 3% —338 % 27 %

8 x 6 x 8 2.6GHz, CNTD 750 113.4985 1880.62 3560.601 5449.5355 202567 27473 1802.34 252.305 31.865 2.555 2989.5 230040 2060.53
473 % 141 % 2024 % 472 % —344 % —145% 22 % 55 % 3% —68 % 3% —305 % 27 %
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Table 8.28: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 8 on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE time [s] APP time [s] MPI time [s] TOT time [s] Energy PKG [J] Energy DRAM[J] AVG Power PKG [W] AVG Power DRAM [W] MAX Memory usage [GB] AVG IPC AVG CPU frequency [MHz] Energy [J1 AVG Power [W]

8 x 6 x 8, Baseline 67.5 2585.1 693.8 3244.5 158754.0 38261.5 2347.6 585.2 27.3 1.4 3068.0 200657.5 2933.8

8 x 6 x 8, 1.0GHz 426.6 5890.7 14564.1 20476.6 784874.0 175395.0 1840.0 411.0 274 2.6 3099.0 960269.0 2251.2
531 % 128 % 1999 % 531 % —394 % —358 % 22 % 30 % 0% —82 % —1% —379 % 23 %o

8 x 6 x 8 CNTD 72.4 2645.3 923.4 3477.4 168999.0 45754.0 2305.7 630.1 27.7 1.5 3043.0 214753.0 2937.9
7 % 2% 33 % 7% —6 % —20% 2% —8% —1% —4 % 1% —7% 0%

8 x 6 x 8, CNTD 500 66.3 2567.4 609.7 3184.3 156568.0 46040.5 2358.6 692.4 28.0 1.4 3072.0 202627.0 3047.8
—2% —1% —12% —2% 1% —20 % 0% —18% —2% 4% 0 % —1% —4%

8 x 6 x 8, CNTD 750 71.1 2549.4 854.4 3414.9 167474.0 45328.0 23533 634.6 27.7 1.5 3038.0 212824.0 2987.9
5% —1% 23 % 5% —5% —18 % 0% —8% —1% —3% 1% —6% —2%

8 x 6 x 8 1.2 GHz, Baseline 354.1 4700.8 12296.8 16997.5 671398.0 114425.0 1896.2 333.0 26.9 2.5 3099.0 789321.0 22292
424 % 82 % 1672 % 424 % —323 % —199 % 19 % 43 % 2 % —79 % —1% —293 % 24 %

8 x 6 x 8 1.8 GHz, Baseline 418.5 5971.3 14125.4 20087.2 790687.5 95419.5 1888.1 228.5 26.5 2.5 3099.0 886017.0 2117.3
519 % 131 % 1936 % 519 % —398 % —149 % 20 %o 61 % 3% —78 % —1% —342 % 28 %o

8 x 6 x 8 2.2 GHz, Baseline 459.2 7041.2 15004.1 22045.3 825830.0 272821.0 1801.4 594.8 28.5 2.6 3099.0 1097817.0  2395.9
580 % 172 % 2063 % 579 % —420 % —613 % 23 % —2% —4% —85 % —1% —447 % 18 %

8 x 6 x 8 2.4 GHz, Baseline 126.6 2800.1 3276.2 6076.3 271482.0 44780.0 2145.1 353.8 26.7 2.1 3096.0 316262.0 2498.9
87 % 8% 372 % 87 % —71% —17% 9% 40 % 2 % —48 % —1% —58 % 15 %

8 x 6 x 8 2.8 GHz, Baseline 108.2 2653.7 2567.8 5195.0 238108.5 40289.0 2199.5 372.3 26.7 2.0 3092.0 278122.0 25729
60 % 3% 270 % 60 % —50 % —5% 6 % 36 % 2% —38 % —1% —39 % 12 %

8 x 6 x 8 2.8 GHz, CNTD 500 122.6 2740.7 3143.1 5888.0 256629.0 36901.0 2185.8 3272 26.4 2.0 3060.0 300448.0 2485.6
82 % 6% 353 % 81 % —62 % 4% 7% 44 % 3% —44 % 0% —50 % 15 %
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8.12 Experiment 9

Experiment 9 systematically analyzes the clock frequency of individual threads within
nodes to examine Linux scheduler response times to downclock requests and return to
nominal frequencies. By closely monitoring how the Linux scheduler adjusts thread clock
frequencies in response to varying workload demands, this experiment sheds light on the
efficiency and responsiveness of the scheduler’s frequency management mechanisms. To
conduct the experiment, modifications were made to COUNTDOWN to systematically
analyze clock frequency and perform sampling at the beginning and end of each MPI call.
These changes allow for a detailed examination of thread clock frequencies and enable
precise measurement of how the Linux scheduler responds to frequency adjustments. The
source code modifications are available on the GitHub repository at [72].

In this experiment, we observe the following 4 configurations, specifically 3 already
seen in experiments 5-8, and one new to also consider the 4™ possible case, not analyzed
in previous experiments, but deserving a note here to analyze the differences with and
without the slack algorithm even at 750 ps.

The sampling of this graph was carried out every one second, plus every MPI call,
after which only a part of the plot was exclusively cropped, namely the most significant
part, where there were more frequency changes.

COUNTDOWN with slack and a callback delay of 500 us without slack (CNTD 500)
Execution of the power saving algorithm without including the slack optimization
algorithm. This scenario isolated the power saving aspect and explored its effects
without slack time optimization. Figures 8.7a and 8.8a show the clock plots respec-
tively for the matrices Cubo_1772481.Ext_bin and Wing_4538k.csr.Ext_bin.

COUNTDOWN with slack and a callback delay of 750 us without slack (CNTD 750)
Running the power saving algorithm along with slack time optimization. This sce-
nario is intended to examine the combined effects of power optimization and slack
with a slack callback delay set to 100 us. In previous runs, it is called CNTD SLACK.
Figure 8.8b show the clock plots respectively for the matrices Cubo_1772481.Ext_bin
and Wing_4538k.csr.Ext_bin.

COUNTDOWN with slack and a callback delay of 500 us (CNTD 500) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set
to 500 ps. Figures 8.7c and 8.8c show the clock plots respectively for the matrices
Cubo_1772481.Ext_bin and Wing_4538k.csr.Ext_bin.

COUNTDOWN with slack and a callback delay of 750 us (CNTD 750) . Running the
power saving algorithm along with slack time optimization. This scenario examines
the combined effects of power optimization and slack with a slack callback delay set

to 750 ps. Figures 8.7d and 8.8d show the clock plots respectively for the matrices
Cubo_1772481.Ext_bin and Wing_4538k.csr.Ext_bin.

Finally, the average duration of MPI calls and the corresponding number of calls that
took this long can be found in the appendix in figs. B.21 and B.22.
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8.12. EXPERIMENT 9

(a) Clock analysis with COUNTDOWN configuration enabled, slack disabled, COUNTDOWN
callback delay set to 500 us.

(b) Clock analysis with COUNTDOWN configuration enabled, slack enabled, COUNTDOWN
callback delay set to 750 us.

(c) Clock analysis with COUNTDOWN configuration enabled, slack disabled, COUNTDOWN
callback delav set to 500 us.

(d) Clock analysis with COUNTDOWN configuration enabled, slack enabled, COUNTDOWN
callback delay set to 500 ps.

Figure 8.7: Experimental Results for Experiment 9 on the Cubo_1772481.Ext_bin matrix.

The graph shows the first 6, 36 threads of the 48 threads of a node in an 8 X 6 X 8
configuration. Up arrow indicates start of MPI call, right arrow indicates start of callbddd
down arrow indicates MPI call, asterisk indicates frequency sampled every second.
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(a) Clock analysis with COUNTDOWN configuration enabled, slack disabled, COUNTDOWN
callback delay set to 500 us.

(b) Clock analysis with COUNTDOWN configuration enabled, slack enabled, COUNTDOWN
callback delay set to 750 us.

(c) Clock analysis with COUNTDOWN configuration enabled, slack disabled, COUNTDOWN
callback delav set to 500 us.

(d) Clock analysis with COUNTDOWN configuration enabled, slack enabled, COUNTDOWN
timer set to 500 ps.

Figure 8.8: Experimental Results for Experiment 9 on the Wing_4538k.csr. Ext_bin matrix.

The graph shows the first 10s, 36 threads of the 48 threads of a node in an 8 x 6 X 8
¢ddfiguration.
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8.13 Experiment 10

Experiment 10 extends the modifications made to the COUNTDOWN codebase in Ex-
periment 9, using the modified code to facilitate the calculation of the duration of MPI
calls.

The primary objectives of Experiment 10 are twofold: first, to visualize the time du-
ration of APP/MPI phases and the relative frequency for the configuration 8 x 6 x 8 of
Chronos with the matrices Cubo_1772481.Ext_bin and Wing_4538k.csr. Ext_bin; and sec-
ond, to plot the time and average frequency of application/MPI phases for these bench-
marks. These visualizations, which correspond to Figures 6 and 7 in the Cesarini et al.
[36] paper, provide insight into the time and frequency characteristics of application exe-
cution on a single node.

In this experiment, we see the same 4 configurations that we saw in the previous ex-
periment (section 8.12). Only MPI call-level sampling data is shown in these plots.

As expected from the data in figs. 8.9b, 8.91, 8.9j, 8.9n, 8.10b, 8.10f, 8.10j and 8.10n,
we would have predicted that requests below 500 ps would have a relatively high frequency,
while those above that threshold would have a lower frequency. However, as discussed in
section 4.4, the scheduler’s response time is not instantaneous, but rather delayed.

Nevertheless, it is interesting to observe that phases between 0 us and 500 pus show a
higher frequency for MPI phases and a lower frequency for application phases, contrary to
the expected pattern. Consequently, I designed Experiment 11 as described in section 8.14,
but it did not yield the expected results. Our hypothesis is that in phases shorter than 500 us,
the average frequency is influenced more by the frequency of the preceding phase than by
the intended one.

In figs. 8.9 and 8.10 we examine the relationship between the duration of each applica-
tion phase, the subsequent MPI phase duration, and their average frequency. The applica-
tion phase duration is plotted on the y axis, the MPI phase duration is plotted on the x axis,
and the average frequency is indicated by the color code. In figs. 8.9¢c, 8.9g, 8.9k, 8.90,
8.10c, 8.10g, 8.10k and 8.100 we show the frequency of the MPI phase, while in figs. 8.9d,
8.9h, 8.91, 8.9p, 8.10d, 8.10h, 8.101 and 8.10p we show the frequency of the application
phase.

For both plots we can identify four quadrants:

APP & MPI > 500 us This zone is characterized by long application phases followed by
long MPI phases. Instances in this zone have a low occurrence during MPI phases
and a high occurrence during application phases. This pattern is considered opti-
mal because implementing a frequency scaling strategy can reduce MPI power con-
sumption without sacrificing application efficiency. Stages in this range are excellent
candidates for detailed DVFS strategies.

APP > 500 us & MPI < 500 us This zone is characterized by long application phases fol-
lowed by short MPI phases. Instances in this zone have a remarkably high average
frequency during both application and MPI phases. The reason for this phenomenon
lies in the brevity of the MPI phases, which limits the ability of the HW power
controller to quickly adjust the frequency downward in response to the scaling re-
quest (prologue) before being overridden by the directive to operate at maximum
frequency (epilogue). Consequently, implementing COUNTDOWN control in this

135



CHAPTER 8. EXPERIMENTS

segment is not useful because the frequency reduction during MPI phases is min-
imal. However, performance is not compromised because the application phases
always run at the highest frequency. Given this scenario, it is advisable to exclude
phases in this region from the COUNTDOWN policy and keep the frequencies at
their maximum level.

APP < 500 us & MPI > 500 us In this zone, short application phases are followed by long

MPI phases. This is due to the short nature of the application phases, which does
not allow the hardware power controller enough time to respond to the frequency
increase request made at the end of the previous MPI phase before this setting is
replaced by the minimum frequency request at the beginning of the next MPI phase.
Although implementing precise DVFS strategies in this region can result in power
savings, it may compromise overall performance by running application phases at
lower frequencies. Given the significant application execution time overhead, it is
advisable not to consider applying COUNTDOWN policies to phases in this region.

APP & MPI < 500 us This zone exhibits contrasting behavior to the Application & MPI

> 500 us region. In this region, both the application and MPI phases operate errati-
cally at varying high and low average frequencies because the HW power controller
can not effectively handle and respond to the requested frequency adjustments. The
average frequency at which the MPI and application phases operate is closely re-
lated to the nature of the preceding long phase: if it was an application phase, the
subsequent short phases will operate at a high average frequency; conversely, if it
was an MPI phase, the subsequent short phases will operate at a low average fre-
quency. Implementing detailed DVES policies in this region can lead to unexpected
results that can degrade application performance. For COUNTDOWN performance
managers, it is advisable not to consider any phases shorter than 500 ps.

As seen in figs. 8.90 and 8.9p, only this configuration is the one where the COUNT-

DOWN algorithm theoretically performs best, but as we have seen in the previous results,
it does not.

136



8.13. EXPERIMENT 10

(a) CNTD 500: Av- (b) CNTD 500: Time of (c) CNTD 500: Time (d) CNTD 500: Time
erage frequency and APP phase and and rel- of APP/MPI phasesand of APP/MPI phases and
time duration of MPI ative count of the fre- average frequency of average frequency of
phases. quency at which it ap- MPI phases. APP phases.

pears in an execution of

APP phases.

(e) CNTD SLACK 500: (f) CNTD SLACK 500: (g7 CNTD SLACK (h) CNTD SLACK
Average frequency and Time of APP phase and 500: Time of APP/MPI 500: Time of APP/MPI
time duration of MPI andrelative countofthe phases and average phases and average

phases. frequency at which it frequency of MPI frequency of APP
appears in an execution phases. phases.

of APP phases.

(i) CNTD 750: Average (j) CNTD 750: Time of (k) CNTD 750: Time (I) CNTD 750: Time
frequency and time du- APP phase and and rel- of APP/MPI phases and of APP/MPI phases and
ration of MPI phases.  ative count of the fre- average frequency of average frequency of

quency at which it ap- MPI phases. APP phases.

pears in an execution of

APP phases.

(m) CNTD SLACK (n) CNTD SLACK (o) CNTD SLACK (p) CNTD SLACK
750:  Average fre- 750: Time of APP 750: Time of APP/MPI 750: Time of APP/MPI
quency and time phase and and relative phases and average phases and average
duration of  MPI count of the frequency frequency of MPI frequency of APP
phases. at which it appears in phases. phases.

an execution of APP

phases.

Figure 8.9: Average frequency and time of APP/MPI phases for Cubo_1772481.Ext_bin
on Chronos configuration 8 x 6 x 8.
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(a) CNTD 500: Av- (b) CNTD 500: Time of (c) CNTD 500: Time (d) CNTD 500: Time
erage frequency and APP phase and and rel- of APP/MPI phasesand of APP/MPI phases and
time duration of MPI ative count of the fre- average frequency of average frequency of
phases. quency at which it ap- MPI phases. APP phases.

pears in an execution of

APP phases.

(e) CNTD SLACK 500: (f) CNTD SLACK 500: (g7 CNTD SLACK (h) CNTD SLACK
Average frequency and Time of APP phase and 500: Time of APP/MPI 500: Time of APP/MPI
time duration of MPI andrelative countofthe phases and average phases and average

phases. frequency at which it frequency of MPI frequency of APP
appears in an execution phases. phases.

of APP phases.

(i) CNTD 750: Average (j) CNTD 750: Time of (k) CNTD 750: Time (I) CNTD 750: Time
frequency and time du- APP phase and and rel- of APP/MPI phases and of APP/MPI phases and
ration of MPI phases.  ative count of the fre- average frequency of average frequency of

quency at which it ap- MPI phases. APP phases.

pears in an execution of

APP phases.

(m) CNTD SLACK (n) CNTD SLACK (o) CNTD SLACK (p) CNTD SLACK
750:  Average fre- 750: Time of APP 750: Time of APP/MPI 750: Time of APP/MPI
quency and time phase and and relative phases and average phases and average
duration of  MPI count of the frequency frequency of MPI frequency of APP
phases. at which it appears in phases. phases.

an execution of APP

phases.

Figure 8.10: Average frequency and time of APP/MPI phases for Wing_4538k.csr.Ext_bin
on Chronos configuration 8 x 6 x 8.
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8.14 Experiment 11

Experiment 11 extends the modifications of Experiments 9 and 10 by adding a small delay
between the end of the slack time and the communication, as shown in fig. 8.11, this small
modification which, according to the literature, in particular Mazouz et al. [73], to be less
than 100 s, this value is of course in addition to the fact that the Linux kernel only accepts
this command once every 500 us, as described in section 4.4. This would therefore result
in a maximum overhead in execution time of about 10 s if we consider a run of 100 s and
10000 000 MPI call, since in this run we have only the 10 % of calls that are subject to
actions by COUNTDOWN.

The results of Experiment 11, shown in table 8.29 for the matrix Wing_4538k.csr. Ext_bin,
however, say that the execution times of this delay are much higher, about 20 times as long,
i.e. 10 ms, which effectively makes good prospects of this idea unfeasible, since reading
the actual CPU frequency is a time-consuming task in itself.

Application MPI Barrierl MP Application MPI Barrier MPI Library l Application

Process .
Lil

Disable S
Callback & =

Callback
Callback

P

Register
Register

y A \ 4

Callback Delay Callback Delay

Max frequency

Set Low

P-States

Reset P-States
‘Wait High P-States

Max frequency

Min frequenc

Figure 8.11: Proposed approach for Experiment 11.
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Table 8.29: Median values depicting the comparison between profiles with and without COUNTDOWN for Experiment 11 on the
Wing_4538k.csr.Ext_bin matrix.

The percentage results compare the baseline run to the current run. Positive time percentages indicate overhead, and positive energy or power
percentages indicate savings.

Run config EXE APP MPI TOT EnergyEnergyAVG AVG MAX AVG AVG Energy AVG
time time time time PKG DRAMPower Power Mem- IPC CPU []J] Power

[s] [s] [s] [s] [J] [J] PKG DRAMory fre- [W]
[W]  [W] us- quency
age [MHz]
[GB]
8x6x8 Base- 12.0 4579 116.9 5752 27056 4285 2264.2 3583 26.7 1.6 3084.0 31341 26224
line
8 X 6 % 8, 122 4569 131.0 587.6 26484 3595 21679 2945 264 1.6 2973.0 30088 2463.2
CNTD 500 2 % 0 % 12% 2% 2 % 16% 4% 18% 1% 1% 4 % 4 % 6 %o

86.8  4736.8 474.0 5211.3 24734543365 2856.2 500.2 163 1.2 3066.5 290730 3357.3

BX6X 8wt con g 93490 305% 806% —814%-912%-26% —40% 39% 24% 1%  —828%—28%
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8.15 Experiments Conclusions

To conclude these experiments with a general consideration of energy savings, we now
consider as a base case the fastest point 32 X 6 x 8, and analyze with percentages the
remaining cases 16 X 6 x 8 and 8 x 6 x 8.

As for Cubo_1772481.Ext_bin in the case of low iterations, a tripling of execution
times, i.e. a 200 % increase, can lead to a reduction of up to 30 % energy, as it can be seen
in table 8.30a. While for the case of high iterations (table 8.30b) one can save up to 20 %
with a 200 % increase in execution time.

Regarding Wing_4538k.csr.Ext_bin in the case of low iterations, doubling the execu-
tion times, i.e. an increase of 120 %, can lead to a reduction in energy of up to 40 %, as it
can be seen in table 8.30c. While in the case of high iterations (table 8.30d) one can save
up to 4 % with a 270 % increase in execution time.

While weighing the data as described in Table 3 of Cesarini et al. [35], we sum-
marize the data obtained in our previous experiments in table 8.31. In these data, we
see that COUNTDOWN does not bring advantages in many cases, for example for the
Wing_4538k.csr. Ext_bin matrix, there is not any benefit from using COUNTDOWN. Whereas
if we set the frequency to 1.0 GHz on each MPI call and let the operating system return
to the frequency it likes when it thinks it is best, we get savings between 6 % and 12 % in
an ideal configuration with a lower iteration, however, this does not allow a solution with
acceptable accuracy.

The situation in the Wing_4538k.csr.Ext_bin matrix is much better. In the case of low
iterations there is a general reduction of consumption up to 20 % both with the classical
callback delay 500 us and with the longer callback delay of 750 us, while in the case of full
iter, that is, when the problem converges, we have that the only case where COUNTDOWN
brings benefits is 16 x 6 x 8.

We have observed that the COUNTDOWN algorithm demonstrates its maximum ef-
fectiveness in specific cases, particularly when the number of threads is high, and synchro-
nization times can be significantly extended, leading to substantial energy savings, up to
19 % in one instance, closely approaching the 25 % mentioned by the COUNTDOWN’s
authors. However, this results in increased variance in the distribution of execution times,
power, and energy, highlighted by a much wider standard deviation compared to the con-
figuration without COUNTDOWN.

It is crucial to note that, especially in the case of the Cubo_1772481.Ext_bin matrix,
COUNTDOWN does not lead to improvements, but rather to longer execution times and
higher energy consumption. These findings underscore the importance of carefully assess-
ing the specific conditions under which COUNTDOWN can provide tangible benefits, bal-
ancing energy savings with potential increases in execution times and the complexity of
parallelism management.

Although the results on the Wing_4538k.csr.Ext_bin matrix are generally good, they
are not comparable to those described in [36], except in one special case and not with the
default settings. Also, the fact that 750 ps is more performant makes sense in my opinion,
since it is clear from the literature that 500 ps is the average synchronization time of the
various threads, so COUNTDOWN should only be used if it is greater than the average.
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Table 8.30: Summary mirror of Experiments 3-8 performed with COUNTDOWN and
Chronos: general reflection on energy savings.

Positive percentages represent a time overhead and/or energy/power saving. Negative per-
centages represent time and/or energy/power savings.

(a) Cubo_1772481.Ext_bin low iteration result (b) Cubo_1772481.Ext_bin full iteration result

compared with the base case 32 x 6 x 8. compared with the base case 32 x 6 x 8.
Time Energy AVG Time Energy AVG

Run config Over- Saving Power Run config Over- Saving Power
head Saving head Saving
[%o] [%o] [%0] [%o] [%o] [%o]
32 x 6 x 8,1.0GHz —9.25 11.67 2.53 32x6x8,1.0GHz 1496.34 —1128.12 22.71
32 x 6 x 8, CNTD —4.87 9.53 4.52 32 x 6 x 8, CNTD 3.84 —2.07 1.10
32x6x8,CNTD 500 18.42 —11.35 6.07 32x6x8, CNTD 500 29.75 —20.89 6.48
32x6x8,CNTD 750 13.51 —5.60 6.54 32x6x8,CNTD 750 10.93 —5.75 4.05
16 X6 X8 4743 25.06 49.01 16 X6 x8 73.33 8.31 47.60
16 x 6 x 8,1.0GHz  1090.99 —387.65 58.93 16 x 6 x 8, 1.0GHz  1450.35 —503.35 60.81
16 x 6 x 8, CNTD 60.32 17.21 48.47 16 x 6 x 8, CNTD 75.00 5.69 46.19
16 x 6 x 8, CNTD 500 60.63 21.18 50.82 16 x6x8,CNTD 500 101.44 —2.03 49.78
16 x6 x 8, CNTD 750 58.32 21.99 50.66 16 x6x 8, CNTD 750 86.36 5.18 48.90
8x6x8 174.97 25.06 72.68 88X 6x8 198.09 18.89 72.92
8 x 6 x8,1.0GHz 169.33 29.46 73.75 8 x 6 x8,1.0GHz 1498.45 —222.61 79.69
8 x 6 x 8, CNTD 176.63 23.23 72.10 8 x 6 x 8, CNTD 197.55 19.41 72.79
8x 6 x 8 CNTD 500 194.90 21.34 73.26 8 x 6 x 8 CNTD 500 223.01 13.54 73.27
8x6x8 CNTD 750 187.58 23.29 73.26 8x 6 x8 CNTD 750 208.50 16.91 73.08
(c) Wing_4538k.csr.Ext_bin low iteration result (d) Wing_4538k.csr.Ext_bin full iteration result

compared with the base case 32 x 6 x 8. compared with the base case 32 x 6 x 8.

Time Energy AVG Time Energy AVG

Run config Over- Saving Power Run config Over- Saving Power
head Saving head Saving
[%e] [%0] [%e] [%0] [%0] [%0]
32 x6x8,1.0GHz, —33.81 32.55 —0.85 32x6x8,1.0GHz 2421.45 —1643.32 30.95
32 x 6 x 8 CNTD —27.86 28.03 1.14 32 X 6 x 8 CNTD 5.95 —2.45 3.14
32x6x8,CNTD500 —17.08 19.59 4.10 32x6x8,CNTD500  26.82 —20.51 5.00
32x6x8, CNTD750 —16.12 17.57 2.53 32x6x8,CNTD 750 12.40 —8.57 3.87
16 X6 x8 73.68 17.39 52.38 16 X6 x8 83.84 4.24 48.25
16 x 6 x 8, 1.0GHz 14.52 40.42 48.33 16 x 6 x 8, 1.0GHz  2053.78 —666.16 64.51
16 x 6 x 8, CNTD 51.94 22.62 49.33 16 x 6 x 8, CNTD 78.98 11.98 50.89
16 x6 x 8, CNTD 500 37.26 30.07 49.44 16 x6x8,CNTD 500 112.01 —6.58 50.91
16 x6 x 8, CNTD 750 28.97 34.05 48.93 16 x6 x 8, CNTD 750 78.33 12.69 51.17
8x6x8 116.91 41.08 73.06 8 x6x8 246.07 9.50 74.22
8 x 6 x8,1.0GHz 109.68 43.61 73.35 8 x 6 x8,1.0GHz 2085.36 —333.09 80.22
8 x 6 x 8 CNTD 135.81 38.03 73.91 8 x 6 x 8 CNTD 270.95 3.14 74.18
8 x6x8 CNTD500 121.71 43.44 74.70 8 x 6 x 8 CNTD500 239.71 8.61 73.22
8x 6 x8 CNTD750 119.85 42.32 73.97 8x 6x8 CNTD 750 264.33 4.01 73.74
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Table 8.31: Summary mirror of Experiments 3-8 performed with COUNTDOWN and
Chronos: indidual reflection on energy savings.

Positive percentages represent a time overhead and/or energy/power saving. Negative per-
centages represent time and/or energy/power savings.

(a) Cubo_1772481.Ext_bin low iteration result.

(b) Cubo_1772481.Ext_bin full iteration result.

Time Energy AVG Time Energy AVG
Run config Over- Saving Power Run config Over- Saving Power
head Saving head Saving
[%0] [%0] [%e] [%0] [%0] [%0]
8 x 6 x 8,1.0GHz —2.05 5.88 3.88 8 x 6 x 8, 1.0GHz 436.23 —297.73 25.00
8 X 6 x 8 CNTD 0.60 —2.44 —2.13 8 X 6 x 8 CNTD —0.18 0.64 —0.50
8 x 6 x 8, CNTD 500 7.25 —4.96 2.10 8 X 6 x 8, CNTD 500 8.36 —6.59 1.29
8 x 6 x 8 CNTD 750 4.58 —2.35 2.09 8 x 6 x 8 CNTD 750 3.49 —2.43 0.57
16 x 6 x 8,1.0GHz  707.82  —550.71 19.46 16 x 6 x 8, 1.0GHz 794.47 —558.04 25.22
16 x 6 x 8, CNTD 8.74 —10.47 —1.06 16 x 6 x 8, CNTD 0.97 —2.86 —2.68
16 x 6 x 8, CNTD 500 8.95 —-5.17 3.57 16 x6x 8, CNTD 500 16.22 —11.27 4.16
16 x 6 x 8, CNTD 750 7.38 —4.10 3.25 16 x6x 8, CNTD 750 7.52 —3.42 2.48
32 x 6 x 8, 1.0GHz —9.25 11.67 2.53 32x6x8,1.0GHz 1496.34 —1128.12 22.71
32 X 6 x 8 CNTD —4.87 9.53 4.52 32 x 6 x 8 CNTD 3.84 —-2.07 1.10
32x6x8, CNTD500 18.42 —11.35 6.07 32x6x8, CNTD 500 29.75 —20.89 6.48
32x6x8, CNTD750 13.51 —5.60 6.54 32x6x8,CNTD 750 10.93 —5.75 4.05

(c) Wing_4538k.csr.Ext_bin low iteration result. (d) Wing_4538k.csr.Ext_bin full iteration result.

Time Energy AVG Time Energy AVG
Run config Over- Saving Power Run config Over- Saving Power
head Saving head Saving
[e] [e] [“e] [e] [e] [e]
8 x 6 x 8, 1.0GHz -3.33 4.29 1.07 8 x 6 x 8 CNTD 7.19 —7.02 —0.14
8 x 6 x 8, CNTD 8.71 —5.18 3.15 8 x 6 x 8,1.0GHz 531.49 —378.56 23.27
8 x 6 x 8, CNTD 500 2.21 4.00 6.07 8x6x8 CNTD500 —1.84 —0.98 —3.89
8 x 6 x 8 CNTD 750 1.36 2.10 3.38 8 x 6 x 8 CNTD 750 5.28 —6.06 —1.85
16 x 6 x 8, 1.0GHz —34.06 27.88 —8.49 16 x 6 x 8, CNTD —2.64 8.08 5.09
16 x 6 x 8, CNTD —12.52 6.34 —6.40 16 x 6 x 8 1.0GHz 1071.57 —700.05 31.41
16 x6x8,CNTD 500 —20.97 15.35 —6.16 16 x 6 x 8, CNTD 500 15.32 —11.30 5.13
16 x6x8,CNTD 750 —25.75 20.17 —7.23 16 x6x8,CNTD750  —3.00 8.83 5.63
32 x 6 x8,1.0GHz —9.25 11.67 2.53 32 x 6 x 8, CNTD 5.95 —2.45 3.14
32 x 6 x 8, CNTD —27.86 28.03 1.14 32x6x8,1.0GHz 2421.45 —1643.32 30.95
32x6x8, CNTD500 —17.08 19.59 4.10 32x6x 8, CNTD 500 26.82 —20.51 5.00
32x6x8,CNTD750 —16.12 17.57 2.53 32x6x8,CNTD 750 12.40 —8.57 3.87
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Conclusions

In this work, we have explored state-of-the-art techniques for energy-efficient execution
of parallel programs on HPC clusters. This endeavor represents a significant challenge for
the future: achieving energy savings while maintaining a comparable level of service. To
meet this challenge, the development of more tools such as COUNTDOWN, Adagio, MPI
inside, and truly efficient MPI communication implementations is imperative. These tools
facilitate the prediction and programming of CPU frequency to minimize busy wait times.
However, achieving optimal energy efficiency also requires programmers to refactor par-
allel programs to minimize branch divergence, as this can significantly impact execution
times.

Although theoretical models indicate substantial energy savings, as evidenced by up to
40 % reductions in energy consumption and a doubling of execution times in low-iteration
scenarios, practical implementations present a more nuanced picture. In high-iteration sce-
narios, where execution times increase by 400 %, energy savings are only about 15 %.

COUNTDOWN, while capable of achieving up to 25 % energy savings, demonstrates
its effectiveness in specific scenarios, such as the full iteration with the Wing_4538k.csr.Ext_bin
matrix and 16 X 6 x 8 node configuration. However, it is critical to consider the overall
energy consumption associated with performing these calculations. The cumulative en-
ergy consumption on the CINECA machines, estimated as the sum of all recorded values
in 17277619447 (480 kW h, about half the consumption of a fully electric house for one
year) with 15000 runs of Chronos, underscores the importance of evaluating energy opti-
mizations holistically to ensure they contribute to overall sustainability goals.

In addition, the emergence of big. LITTLE architectures warrants more attention. These
architectures typically use CPU hardware instructions to dynamically shift workloads be-
tween high performance and energy-eflicient cores. MPI could leverage this architecture to
use energy-efficient cores for communication tasks and high performance cores for com-
putational tasks, potentially further optimizing energy consumption.

In summary, while theoretical models provide promising insights into energy-efficient
parallel execution, practical implementations present complex challenges. Through con-
tinued research and development of tools and techniques, coupled with thoughtful archi-
tectural considerations, we can strive to achieve sustainable and efficient use of HPC re-
sources in the future.

It is important to note that while it may seem obvious that different code will produce
different results, variation in data inputs can also have a significant impact on performance.
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Even with data inputs that are not very different in size or structure, COUNTDOWN’s
performance can vary, indicating the sensitivity of its optimizations to subtle variations in
input data.

It’s also worth noting that the CINECA supercomputers are often offline for mainte-
nance, at least once a month, making it difficult to run large experiments and requiring
careful advance planning.

The HPC sector now surpasses the airline industry in terms of carbon footprint. A sin-
gle data center can use as much electricity as 50 000 houses, highlighting the significant
environmental impact of high performance computing. In addition to its significant car-
bon footprint, the HPC sector also faces challenges related to waste generation and rising
temperatures that contribute to climate change.

These findings highlight that achieving optimal energy efficiency and sustainability in
HPC requires addressing not only technical challenges, but also environmental consider-
ations and operational constraints.
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TopS500 and Green500 November 2023

In this appendix, you will find a concise overview of the top 10 supercomputers from both
the Top500 and Green500 lists. These lists, contained in tables A.1 and A.2 respectively,
showcase the leading supercomputing systems globally. The Top500 list highlights the
top performers based on raw computational power, while the Green500 list emphasizes
energy-efficient computing solutions.
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Table A.1: Top 10 supercomputers in the Top500 list, november 2023.

Source: https://www.top500.0rg/lists/top500/2023/11/.

Rank System

Manufacturer Organization and Location

Cores

Rmax [PFlop/s] Rpeak [PFlop/s]

Power [KW]

1

Frontier - HPE Cray EX235a, AMD Op-
timized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11

HPE DOE/SC/Oak Ridge National Labo-
ratory, United States

8699904

1194.0 1679.8

22703

Aurora - HPE Cray EX - Intel Exas-
cale Compute Blade, Xeon CPU Max 9470
52C 2.4GHz, Intel Data Center GPU Max,
Slingshot-11

Intel DOE/SC/Argonne National Labo-
ratory, United States

4742808

585.3 1059.3

24687

Eagle - Microsoft NDv5, Xeon Platinum
8480C 48C 2GHz, NVIDIA H100, NVIDIA
Infiniband NDR

Microsoft Microsoft Azure, United States

1123200

561.2 846.8

Supercomputer Fugaku - A64FX 48C
2.2GHz, Tofu interconnect D

Fujitsu RIKEN Center for Computational
Science, Japan

7630848

442.0 537.2

29899

LUMI - HPE Cray EX235a, AMD Opti-
mized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11

HPE EuroHPC/CSC, Finland

2752704

379.7 531.6

7107

Leonardo - BullSequana XH2000, Xeon
Platinum 8358 32C 2.6GHz, NVIDIA A100
SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband

EVIDEN EuroHPC/CINECA, Italy

1824768

238.7 304.5

7404

Summit - IBM Power System AC922, IBM
POWERY9 22C 3.07GHz, NVIDIA Volta
GV100, Dual-rail Mellanox EDR Infiniband

IBM DOE/SC/Oak Ridge National Labo-
ratory, United States

2414592

148.6 200.8

10096

MareNostrum 5 ACC - BullSequana
XH3000, Xeon Platinum 8460Y+ 40C
2.3GHz, NVIDIA H100 64GB, Infiniband
NDR200

EVIDEN EuroHPC/BSC, Spain

680960

138.2 265.6

2560

Eos NVIDIA DGX SuperPOD - NVIDIA
DGX HI100, Xeon Platinum 8480C 56C
3.8GHz, NVIDIA HI100, Infiniband
NDR400

Nvidia NVIDIA Corporation, United States

485888

1214 188.6

10

Sierra - IBM Power System AC922, IBM
POWERY9 22C 3.1GHz, NVIDIA Volta
GV100, Dual-rail Mellanox EDR Infiniband

IBM /  DOE/NNSA/LLNL, United States
NVIDIA /
Mellanox

1572480

94.6 125.7

7438

£20C YHIWAAON 00SNAAYO ANV 00SdOL 'V XIANAddV


https://www.top500.org/lists/top500/2023/11/
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Table A.2: Top 10 supercomputers in the Green500 list, november 2023.

Source: https://www.top500.0rg/lists/green500/2023/11/.

Rank TOP500 System Manufacturer Organization and Location Cores Rmax [PFlop/s] Rpeak [PFlop/s] Power [kW]
Rank

1 293 Henri - ThinkSystem SR670 V2, Intel Xeon Lenovo Flatiron Institute, United States 8288 2.9 44 65.4
Platinum 8362 32C 2.8GHz, NVIDIA H100
80GB PCle, Infiniband HDR

2 44 Frontier TDS - HPE Cray EX235a, AMD HPE DOE/SC/Oak Ridge National Labo- 120832 19.2 309 62.7
Optimized 3rd Generation EPYC 64C 2GHz, ratory, United States
AMD Instinct MI250X, Slingshot-11

3 17 Adastra - HPE Cray EX235a, AMD Op- HPE Grand Equipement National de Cal- 319072 46.1 921 58.0
timized 3rd Generation EPYC 64C 2GHz, cul Intensif - Centre Informatique
AMD Instinct MI250X, Slingshot-11 National de I’Enseignement Su-

prieur (GENCI-CINES), France

4 25 Setonix - GPU - HPE Cray EX235a, AMD HPE Pawsey Supercomputing Centre, 181248 27.2 477 57.0
Optimized 3rd Generation EPYC 64C 2GHz, Kensington, Western Australia,
AMD Instinct MI250X, Slingshot-11 Australia

5 92 Dardel GPU - HPE Cray EX235a, AMD Op- HPE KTH - Royal Institute of Technol- 52 864 9.0 146 56.5
timized 3rd Generation EPYC 64C 2GHz, ogy, Sweden
AMD Instinct MI250X, Slingshot-11

6 8 MareNostrum 5 ACC - BullSequana EVIDEN EuroHPC/BSC, Spain 680960 138.2 2560 53.984
XH3000, Xeon Platinum 8460Y+ 40C
2.3GHz, NVIDIA H100 64GB, Infiniband
NDR200

7 5 LUMI - HPE Cray EX235a, AMD Opti- HPE EuroHPC/CSC, Finland 2752704 379.7 7107 53.4
mized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11

8 1 Frontier - HPE Cray EX235a, AMD Op- HPE DOE/SC/Oak Ridge National Labo- 8 699 904 1194.0 22703 52.6
timized 3rd Generation EPYC 64C 2GHz, ratory, United States
AMD Instinct MI250X, Slingshot-11

9 84 Goethe-NHR - Supermicro AS-4124GS- MEGWARE  Universitaet Frankfurt, Germany 96 768 9.1 195 46.5
TNR, AMD EPYC 7452 32C 2.4GHz, AMD / Supermicro
Instinct MI1210 64 GB, Mellanox InfiniBand
EDR

10 496 Olaf - Lenovo ThinkSystem SR675 V3, Lenovo Science Institute, South Korea 3936 2.0 45 45.1

AMD EPYC 9334 32C 2.7GHz, NVIDIA
H100, Infiniband NDR 400



https://www.top500.org/lists/green500/2023/11/
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Graphical Results

In this appendix, we present the graphs depicting the results of Experiments 3, 4, 5, 6, 7,
8 and 9 (sections from 8.7 to 8.12). For a more detailed description, see section 8.3.
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APPENDIX B. GRAPHICAL RESULTS
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Figure B.1: Experimental Results for Experiment 3 on the Cubo_1772481.Ext_bin matrix.
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Figure B.2: Experimental Results for Experiment 3 on the Wing_4538k.csr. Ext_bin matrix.
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figuration. CPU. RAM.

Figure B.3: Experimental Results for Experiment 4 on the Cubo_1772481. Ext_bin matrix.
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Figure B.4: Experimental Results for Experiment 4 on the Wing_4538k.csr. Ext_bin matrix.
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Figure B.5: Experimental Results for Experiment 5a on the Cubo_1772481.Ext_bin ma-
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Figure B.6: Experimental Results for Experiment 5b on the Wing_4538k.csr.Ext_bin ma-
trix.
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Figure B.7: Experimental Results for Experiment 5b on the Cubo_1772481.Ext_bin ma-
trix.
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Figure B.8: Experimental Results for Experiment 5b on the Wing_4538k.csr.Ext_bin ma-
trix.
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Figure B.11: Experimental Results for Experiment 6a on the Cubo_1772481.Ext_bin ma-
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Figure B.17: Experimental Results for Experiment 7 on the Cubo_1772481.Ext_bin ma-
trix.
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Figure B.18: Experimental Results for Experiment 7 on the Wing_4538k.csr. Ext_bin ma-

trix.
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(i) Power: boxplot of distribution of the power consumed by RAM.

Figure B.19: Experimental Results for Experiment 8 on the Cubo_1772481.Ext_bin ma-

trix.
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Figure B.20: Experimental Results for Experiment 8 on the Wing_4538k.csr. Ext_bin ma-
trix.
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