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Abstract

Object pose estimation is a significant challenge in computer vision, involving determining

the position and orientation of an object within an image. This task requires a large training

dataset representing various poses of the object. However, collecting such data can be costly

and labor-intensive. This thesis examines the architecture of Generative Adversarial Networks

(GANs), which can generate realistic images from random noise, and aims to study various

GAN architectures and apply them to generate images that can be used in object pose estimation.

Throughout the experiments, pre-rendered images of the Cat’s model from LINEMOD [1]

will serve as input to the considered GAN’s models, aiming to reproduce realistic images con-

taining the reference Cat in the same predefined pose.

First, a Domain Adaptation (DA) approach has been used to generate underwater images

based on an unpaired dataset. This experiment served as a proof-of-concept to illustrate the pro-

cess of generating images in environments where data collection is notably challenging. Next,

the focus has been shifted to generating new samples from the LINEMOD’s dataset. Here, the

objective is to capture features and spatial relationships between objects from the real images

and use them to generate new pictures coherent with the input Cat’s model. Finally, the best

GAN models have been combined with Pixel-wise Voting Network (PVNet [2]) to compare

their performance against the PVNet model trained using the conventional image Superimpos-

ing Method (PVNet-SM).

The main conclusion of this work is that GANs can achieve similar performance as PVNet-

SM while eliminating the need for manual work in background selection and dataset prepara-

tion.
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Chapter 1

Object pose estimation

Accurately estimating the poses of objects represents a fundamental challenge with profound

implications for a wide range of applications, from autonomous navigation and augmented real-

ity to industrial automation and medical imaging. Object pose estimation involves determining

the position and orientation of an object relative to a reference frame. It serves as a critical build-

ing block for enabling machines to perceive and interact with their surroundings in a manner

similar to human perception.

For example, a robot must precisely assess the pose of an object to manipulate it effectively.

In augmented reality, a seamless integration of virtual objects into the real world relies on

accurate pose estimation. Moreover, applications such as quality control in manufacturing,

warehouse automation, and even remote surgery heavily depend on this capability.

1.1 Objective of Object pose estimation

Object pose estimation is a computer vision problem that involves determining the 3D position

and orientation (pose) of an object in a 3D space, usually based on a 2D image or a set of

images. In other words Object pose estimation aims to find the 6-degree-of-freedom (6-DoF)

pose of an object in a 3D space, expressed by:

• The position of the object, represented as a 3D vector t = [tx, ty, tz], where tx, ty, and tz
are the coordinates of the object’s center in a global coordinate system.

• The orientation of the object, represented by a 3x3 rotation matrix R that encodes the

rotation from the object’s local coordinate system to the global coordinate system.

The complete 6-DoF pose of the object, denoted as T, can be represented as a 4x4 transfor-

mation matrix:

1



T =

[︄
R t
0 1

]︄

1.2 Challenges

While object pose estimation is a critical problem with numerous applications, it has to deal

with many challenges. This section introduces some of them.

1.2.1 Ambiguity

Ambiguity arises when multiple valid pose hypotheses exist for an object based on the available

data. This challenge can be characterized by several key aspects:

• Symmetry and Repetitive Patterns: Objects exhibit symmetrical or repetitive charac-

teristics, making it difficult to distinguish one pose from another.

• Occlusions and Partial Observations: Object is partially occluded or observed only in

part.

• Low-Dimensional Data: Challenges in distinguishing poses when data is low-

dimensional, like 2D images.

1.2.2 Real-Time Requirements

Real-time object pose estimation is a critical challenge that demands the development of effi-

cient algorithms capable of rapid data processing and timely pose estimation. This challenge

is particularly important in applications where immediate decision-making and responsiveness

are essential.

1.2.3 Challenging Environments

Sometimes Object Pose Detection must be done in challenging environments that do not offer

the possibility to acquire high quality data. Underwater cameras, for instance, contend with

refraction, distortion and low visibility. Addressing these limitations necessitates specialized

techniques, such as sensor calibration and underwater-specific computer vision algorithms.

2



1.3 PVNet

PVNet [3] is a model that aims to achieve 6DoF pose estimation from a single RGB image,

even under severe occlusion or truncation. It takes inspiration from other Perspective-n-Point

(PnP) methods, that are characterized by the following two-stage pipeline:

• detect 2D object keypoints using CNNs

• compute 6D pose parameters using the PnP algorithm

PVNet novelty consists in using a Pixel-wise Voting Network (PVNet) to detect 2D key-

points.

1.3.1 Voting-based keypoint localization

Given an RGB image, PVNet predicts pixelwise object labels and unit vectors that represent the

direction from every pixel to every keypoint. Given the directions to a certain object keypoint

from all pixels belonging to that object, the algorithm generates hypotheses of 2D locations for

that keypoint as well as the confidence scores through RANSAC-based voting. Based on these

hypotheses, we estimate the mean and covariance of the spatial probability distribution for each

keypoint

1.3.2 Uncertanty-driven PnP

Traditional methods use off-the-shelf solvers to solve the Perspective-n-Point (PnP) problem

and find the object’s pose. However, these methods often overlook the fact that keypoints may

have varying confidences and uncertainties. Conversely, PVNet initializes the 6D pose (R and

t) of the object using the standard EPnP algorithm, but then refines this values by minimizing

the Mahalanobis distance, which takes accounts of the mean and covariance of each keypoint

estimation calculated before.
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Chapter 2

LINEMOD dataset

The LINEMOD dataset is a valuable resource in the field of computer vision. It was created to

enable the development and evaluation of object detection algorithms, especially in scenarios

where objects exhibit distinctive and well-defined features. Introduced by [1], LINEMOD has

become a benchmark dataset for researchers working on object detection and localization.

2.1 Dataset Composition

LINEMOD is composed of several object instances, each meticulously curated to provide a

challenging yet diverse set of test cases. The key components of the dataset include:

• Object Models: For each object instance, LINEMOD provides detailed 3D models that

accurately represent the object’s shape and appearance. These models serve as ground

truth for the object detection task.

• Annotated Images: The dataset includes a collection of annotated images captured from

various viewpoints. These images contain instances of the target object(s) against com-

plex backgrounds, simulating real-world scenarios.

• 2D Keypoints and Masks: To aid in the development and evaluation of object detection

algorithms, LINEMOD images are annotated with 2D keypoints that indicate specific

object landmarks. Additionally, object masks are provided to indicate the pixel-wise

location of the object within the image.
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(a) RGB image (b) Mask associated to the image

Figure 2.1: LINEMOD dataset example

2.2 Dataset variety

In order to reflect real-world scenarios, LINEMOD images are intentionally made challenging

for Computer Vision tasks. Images include:

• Variations in Lighting: Images in the dataset exhibit variations in lighting conditions,

including shadows and highlights, which require algorithms to be robust to changes in

illumination.

• Occlusions: LINEMOD images often feature occlusions of varying degrees, emphasizing

the need for object detectors to handle partial object visibility.

• Cluttered Backgrounds: The dataset includes images with cluttered and complex back-

grounds, making it necessary for detectors to discriminate objects from their surroundings

effectively.

2.3 Usage and Evaluation

Researchers and developers in the field of computer vision use LINEMOD to benchmark their

object detection algorithms, since it provides a standard evaluation framework for assessing

the performance of these models. Common evaluation metrics used with LINEMOD include

precision-recall curves, average precision (AP), and intersection over union (IoU) scores.
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Chapter 3

Generative Adversarial Networks (GANs)

3.1 Introduction

Generative Adversarial Networks (GANs) have emerged as a revolutionary approach in the

field of machine learning and computer vision since their introduction by Ian Goodfellow and

his colleagues in their 2014 paper titled "Generative Adversarial Nets" [4]. GANs have made

significant strides in generating realistic data, creating artwork, super-resolution of images, and

even aiding in drug discovery.

3.1.1 Background

Prior to the inception of GANs, generative models primarily relied on probabilistic approaches

like Variational Autoencoders (VAEs) and Markov Chain Monte Carlo (MCMC) methods.

While these methods were effective, they often struggled with generating high-quality, coherent

samples from complex datasets. GANs introduced a new paradigm for generative modeling by

employing adversarial training.

3.2 The Original GAN Paper

The original paper [4] introduced the concept of GANs as a two-player minimax game between

a generator (G) and a discriminator (D). The central idea is to train the generator to create data

that is indistinguishable from real data, while the discriminator aims to distinguish between real

and generated data. This adversarial process drives the improvement of both the generator and

discriminator over time.
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3.2.1 Adversarial Framework

The adversarial framework in the original GAN paper can be summarized as follows:

• Generator (G): The generator takes random noise as input and produces synthetic data

samples. Its objective is to create data that is visually and statistically similar to real data.

• Discriminator (D): The discriminator assesses whether a given input is real (from the

dataset) or fake (generated by the generator). Its goal is to become proficient at distin-

guishing real data from generated data.

The generator and discriminator are trained iteratively. The generator tries to minimize

the discriminator’s ability to distinguish real from fake data, while the discriminator aims to

maximize its accuracy in discrimination. This results in a Nash equilibrium where the generator

creates increasingly realistic data, and the discriminator’s ability to distinguish real and fake

data approaches chance.

Figure 3.1: Sketch of a GAN network

3.2.2 Loss Function

The original GAN paper introduced the following minimax loss function:

V (G,D) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]

8



Where:

V (G,D) is the value function.

Ex∼pdata(x) represents the expectation over real data.

Ez∼pz(z) represents the expectation over the noise vector.

D(x) is the discriminator’s output for real data.

D(G(z)) is the discriminator’s output for generated data.

3.3 GAN Architectures and Variants

Since the original GAN paper, numerous architectures and variants have been proposed to ad-

dress various challenges and improve GAN performance. Some notable variants include:

• Conditional GANs (cGANs): Extending GANs to generate data conditioned on addi-

tional information such as class labels, enabling controlled data generation.

• Deep Convolutional GANs (DCGANs): Leveraging convolutional neural networks to

generate high-resolution images with improved stability.

• Wasserstein GANs (WGANs): Introducing the Wasserstein distance as a new metric for

measuring the discrepancy between real and generated data distributions, leading to more

stable training.

3.3.1 Generator Architectures in GANs

The generator is responsible for generating data that resembles the real data it is trained on.

Over the years, various generator architectures have been proposed, each with its own strengths

and applications.

Fully Connected Networks (FCNs)

Fully Connected Networks (FCNs), also known as feedforward neural networks, were among

the earliest generator architectures used in GANs. These networks consist of multiple layers of

densely connected neurons. While FCNs are simple and can be used for various tasks, they may

struggle to capture complex spatial dependencies in data such as images.
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Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have become the backbone of many modern generator

architectures in GANs. CNNs are well-suited for image generation tasks because they can

capture local patterns and spatial hierarchies effectively. These networks typically comprise

convolutional layers, followed by normalization and activation layers.

Residual Networks (ResNets)

Residual Networks (ResNets) introduced residual connections that enable the training of very

deep networks. In GANs, ResNets have been employed in generator architectures to facilitate

the generation of high-quality images with improved training stability. These architectures are

particularly useful when dealing with high-resolution image generation.

(a) Resnet

(b) Resnet Block

Figure 3.2: Sketch of Resnet and Resnet Block structures

Autoencoders and Variational Autoencoders (VAEs)

Autoencoders and Variational Autoencoders (VAEs) can also serve as the basis for generator

architectures in GANs. Autoencoders compress input data into a lower-dimensional represen-

tation and then decode it to reconstruct the original data. VAEs add a probabilistic component,

making them suitable for generating diverse data samples with controlled variability.

10



Figure 3.3: Sketch of Autoencoder structure

U-Net Architecture

The U-Net architecture is a specialized network design primarily used in tasks involving im-

age segmentation, medical imaging, and image-to-image translation. It consists of a contract-

ing path, which captures context, and an expansive path, which generates the output. U-Net’s

unique structure incorporates skip connections that help preserve spatial information and alle-

viate the vanishing gradient problem.

Figure 3.4: Sketch of U-Net structure

Self-attention generators

Self-attention generators in GANs utilize self-attention layers to calculate attention scores be-

tween different parts of the generated content, allowing the model to focus on relevant regions

and capture long-range dependencies.

11



Figure 3.5: Sketch of Self-attention layer structure

3.3.2 Discriminator Architectures in GANs

CNN Discriminator

Similarly to the Generator counterpart, CNN-based discriminators are effective at capturing

spatial hierarchies in the input data.

PatchGAN Discriminator

The PatchGAN discriminator evaluates small patches of the input image rather than the entire

image. This approach allows for fine-grained discrimination and can be particularly useful for

tasks like image-to-image translation.

Figure 3.6: Sketch of Patch Discriminator structure

Multi-Scale Discriminator

In some GAN variants, multiple discriminators are employed at different scales of the image.

These discriminators help capture both local and global features, enhancing the model’s ability

to generate high-quality images.
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3.4 Applications of Generative Adversarial Networks
(GANs)

Image Generation and Style Transfer

GANs are renowned for their ability to generate high-quality, photorealistic images. They have

been used to create art, simulate natural scenes, and generate images from textual descriptions.

Style transfer, which involves transferring the artistic style of one image onto another, is another

popular application of GANs, enabling the creation of visually stunning images and videos.

Super-Resolution and Image Enhancement

In the realm of image processing, GANs have been employed to enhance image quality and

achieve super-resolution. They can upscale low-resolution images, restoring fine details and

improving visual clarity. This is invaluable in medical imaging, surveillance, and enhancing the

quality of old photographs.

Data Augmentation

GANs can be used to augment datasets by generating synthetic data that is similar to the real

data. This is particularly useful when working with limited data or addressing class imbalance

in machine learning tasks.

Text-to-Image Synthesis

Text-to-image synthesis is the process of generating images from textual descriptions. GANs

have shown promise in this domain, allowing for the creation of visual content from natural

language input.

Generative Models for Audio and Music

Beyond visual data, GANs have been adapted for audio generation and music composition.

They can produce realistic audio samples and even compose music.

13
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Chapter 4

Image-to-Image Translation

Image-to-image translation is a popular and challenging computer vision task that involves

converting an input image from one domain to another while preserving relevant content and

structure.

4.1 Image-to-Image Translation applications

• Semantic Segmentation to Real Image: Converting a semantic segmentation map,

which assigns a class label to each pixel, into a realistic image that visually represents

the segmented objects.

• Style Transfer: Changing the artistic style of an image, such as converting a photograph

into the style of a famous painting.

• Colorization: Adding color to grayscale images, preserving the semantic information

and object boundaries.

• Super-Resolution: Increasing the resolution of a low-resolution image while preserving

its content.

• Domain Adaptation: Adapt a model trained on data from one domain to perform well

on data from a different but related domain, acting only on the relevant aspects of the

domain shift.

4.2 Pix2Pix: cGAN for Image-to-Image Translation

One of the pioneering approaches to image-to-image translation using GANs is the Pix2Pix

framework [5]. Pix2Pix employs a conditional GAN architecture, where both the generator and

15



discriminator are conditioned on the input image. Generator is a U-Net that takes an input image

and generates a corresponding output image. The discriminator is a PatchGAN Discriminator

and it is trained on paired input and output images.

The training objective is to minimize the adversarial loss, which encourages the generator

to produce realistic outputs, and a pixel-wise loss, such as L1 loss, which enforces pixel-level

similarity between the generated and target images.

Figure 4.1: Pix2Pix examples

4.3 CycleGAN: Unpaired Image-to-Image Translation

While Pix2Pix requires paired training data (input-output image pairs), CycleGAN introduced a

breakthrough in unpaired image-to-image translation. It uses a cycle-consistency loss to enable

the translation between two domains without direct correspondences.

CycleGAN consists of two generators and two discriminators, one for each domain. The

generators aim to translate images from one domain to the other and back, while the discrim-

inators evaluate the authenticity of the generated images in the respective domain. The cycle-

consistency loss enforces that translating an image from domain A to domain B and then back

to domain A should result in an image close to the original input.

16



Figure 4.2: Sketch of CycleGAN structure

4.4 Contrastive Unpaired Translation (CUT)

CUT is another model designed for unpaired image translation tasks that aims to be an evolu-

tion over CycleGAN. One of its key advantages is faster training as it doesn’t require training

a second module to return to the original domain. CUT instead employs a loss function called

PatchNCELoss (Patch-wise Noise-Contrastive Estimation Loss), which is a variant of the stan-

dard cross-entropy loss. The main idea behind this loss is that corresponding patches should

have mutual information.

Figure 4.3: CUT’s PatchNCE Loss
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4.4.1 Using CUT to generate underwater images

As said before, gathering high quality underwater images is a very challenging task. To address

this challenge a key idea is to use CUT to generate synthesized underwater images, an subse-

quently use them as dataset in other applications. In this section CUT has been trained to adapt

images from a Domain A, containing images with the Cat’s model from the LINEMOD, to a

Domain B containing underwater images.

Black background

In the first experiment, the Cat’s model was superimposed on a plain black background, reveal-

ing some difficulties for CUT in handling it. It appears that a uniform color is not well adapted

in the generated image, resulting in visible texture inconsistencies. One possible reason for this

occurrence could be that the PatchNCE loss, which aims to maintain high correlation between

patches of the input and output images, struggles when there is a lack of variety within the input

picture, making the network training less effective.

(a) Domain A (b) Domain B (c) Fake Domain B

Figure 4.4: Results of CUT training with black background

Water-environment background

To address the previous issue, the next step involved using a random water-environment back-

ground for the Cat’s model. As expected, this change led to significantly more consistent images

with finer texture details. When examining the Cat’s model, a small halo can be observed around

it, and it exhibits some transparency, as if it were made of glass.
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(a) Domain A (b) Domain B (c) Fake Domain B

Figure 4.5: Results of CUT training with a random background

Water-environment background and Cat superimposed in domain B

From an experimentation point of view it might be interesting to see how CUT behaves if

the Cat’s model is superimposed also in domain B. Unfortunately this change led to a worse

image generation, with the appearance of distortion around the model, which is a deal-breaker

for object pose estimation. The likely reason is that the Discriminator should be trained to

understand the textures of the target domain rather than the Cat’s model itself, allowing the

Generator to ensure that the output image’s structure remains similar to the input.

19



(a) Domain A (b) Domain A (c) Domain A

Figure 4.6: Results of CUT training with a random background and Cat superimposed in both
domains
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Chapter 5

Image Synthesis

5.1 Introduction

The primary goal of this chapter is to show solutions for generating new data samples from a

dataset source using GANs.

In the following experiments, the objective is to create new sample data from the LINEMOD

dataset. Beginning with an image of the Cat’s model positioned in a predefined location as a

prior, the aim is to synthesize an image that closely resembles the LINEMOD dataset while

retaining the Cat’s model in its original position.

The key components of the experimental roadmap include:

1. Architectural Innovations: Modifications to the neural network architecture, such as the

incorporation of attention mechanisms and the utilization of patch-wise discriminators.

This techniques are explored with the aim of not only improving the model’s capability

to produce high-quality images, but also effectively managing prior knowledge given by

input images.

2. Loss Function Refinements: Provide additional losses to enhance particular aspects of

the synthetic image. For example the incorporation of L1 loss on masked sections of the

image, and the usage of grayscale loss to emphasize structural details.

3. Data Augmentation: Given the context of data scarcity, data augmentation assumes a

pivotal role in enhancing model robustness and generalization.

21



5.2 Dataset preparation

The dataset for all of these experiments is sourced from two primary channels:

• Input: Images rendered with PVNet utility

• Ground truth: LINEMOD real images

The entire LINEMOD dataset contains in total 1179 real images, but for the scope of the

upcoming chapter, most of the subsequent experiments will show results derived from a subset

of 177 images, which corresponds to the PVNet default subset used for training and not for

validation or testing.

(a) (b)

Figure 5.1: Sample Images from Input Dataset and Target Domain
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5.3 Building a model from scratch

5.3.1 DCGAN

Beginning with DCGAN establishes a strong foundation for the exploration into image synthe-

sis. It is the simplest model used in image synthesis and it provide an immediate insight about

what are the challenges to overcome.

In the results displayed in Figure 5.2, it is immediate to notice that the DCGAN model’s

performance doesn’t meet the expectations. Specifically, there are the following issues:

• Cat Doesn’t Appear: DCGAN model is supposed to generate images containing the

Cat’s model, but it’s failing to do so.

• Low Image Quality: The generated images don’t look very good; they’re blurry and lack

detail.

• Mode Collapse: This is a common problem with GANs. It means the generator is getting

stuck and producing very similar images instead of a variety.

The reasons behind these problems are quite simple, and next experiments aim to fix or

reduce them:

• Poor Model Design: DCGAN might not be suitable for this task. It might lack the

necessary complexity or features to capture the required image details properly.

• Data Scarcity: There is a limited amount of training data, and this made it challenging

for the model to learn and generate high-quality images. The Discriminator overfit early

in the training process, which stops the Generator from effectively learning.

Figure 5.2: Result of training DCGAN with LINEMOD dataset
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5.3.2 U-Net generator and masked loss

One simple solution to address the issue of Cat not appearing is to use the pre-rendered Cat

image as input to the generator and apply a loss function to ensure that rendering occur in the

output as well. As discussed in Section 3.3.1, the U-Net generator helps in preserving spatial

information between the input and the generated image, making it well-suited for this particular

task. The loss can be calculated exclusively on the pixels related to Cat’s model.

#CODE FOR THE GRAYSCALE MASKED LOSS

X_MASKED = torch.mean(X * X_mask, (1)).view(
b_size, 1, params["imsize"], params["imsize"]

)

FAKE_Y_MASKED = torch.mean(fake_Y * X_mask, (1)).view(
b_size, 1, params["imsize"], params["imsize"]

)

non_zero_pixels = torch.nonzero(X_mask).size()[0]

masked_loss = mask_criterion(X_MASKED, FAKE_Y_MASKED) / non_zero_pixels

Figure 5.3 shows in fact that after this changes, the Cat’s model becomes visible in the

generated image, however the overall image quality still falls below the desired standard.

Figure 5.3: Result of training DCGAN with LINEMOD dataset with U-NET and masked loss
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5.3.3 Introducing conditional information

The idea is to use the input as a conditioning factor of the discriminator training, in order

establish a connection between the Cat’s model and the background. The LINEMOD dataset

conveniently supplies masks for the photographed Cat, allowing for straightforward extraction

of only the model from the dataset.

Unfortunately this final step resulted in non-convergence of the model, both on the training

dataset and the complete dataset, leaving only one viable option: the need to update the model

again.

(a) Training LINEMOD dataset

(b) Complete LINEMOD dataset

Figure 5.4: Results of DCGAN with conditional information
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5.3.4 Patch Discriminator

Since the Generator has already been updated, it’s time to focus on the Discriminator. Taking

cues from the Pix2Pix [5] approach, one viable option is implementing a Patch discriminator

(Section 3.3.2).

Figure 5.5 and Figure 5.6 shows that Patch discriminator successfully restored convergence

to the model and, in addition, introduced certain spatial information between Cat and the back-

ground, even though this one lacks geometric coherence with the ground truth.

Figure 5.5: Patch Discriminator + L1 masked loss

Figure 5.6: Patch Discriminator + MSE masked loss
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5.3.5 Self-attention U-Net

Incorporating self-attention into the generator is a common practice employed to strengthen

spatial relationships between objects in the generated images. As depicted in Figure 5.7, the

board now consistently maintains a coherent position relative to the Cat’s model. Additionally,

the board resembles more to the ground truth than before, confirming that the inclusion of self-

attention was indeed the appropriate choice.

Figure 5.7: Result of training with Self Attention U-Net

Even in the early stages of training, the impact of self-attention becomes particularly pro-

nounced. As shown in Figure 5.8, it’s observable that when self-attention is employed, the

generated samples already exhibit a distinct pattern around the Cat’s model. This suggests that,

to some extent, the generator immediately manages to capture information about the board’s

structure from the ground truth images.
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(a) Without SA

(b) With SA

Figure 5.8: Early stages of training w/wo Self Attention mechanisms
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5.4 FastGAN

FastGAN, as introduced in [6], is a ready to use model specifically designed to perform well

on low-dimensional datasets. Its primary objectives are minimizing mode collapse and avoid

discriminator overfitting.

5.4.1 Main Features

Generator

To generate high-resolution images the Generator inevitably needs to become deeper. This usu-

ally leads to longer training time and the risk of suffering from the gradient vanishing problem.

To avoid all of this, FastGAN’s creators introduced a module called Skip-Layer Excitation. This

module takes inspiration from the ResBlock, but it manage to connect layers at different resolu-

tions within the upsampling process. By doing so, it effectively addresses the vanishing gradient

problem while avoiding the additional computational overhead associated with the traditional

ResBlock.

Figure 5.9: Sketch of FastGAN Generator

Discriminator

The Discriminator is treated as an encoder and trained with small decoders. This auto-encoding

training forces the Discriminator to extract image features that the decoders can effectively

reconstruct. The decoders are optimized using a basic reconstruction loss, exclusively trained

on real samples.
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5.4.2 Training with LINEMOD

After training FastGAN with LINEMOD images, it becomes clear that the model can indeed

generate high quality images from a small dataset. However, as shown in Figure 5.10, they tend

to lack in finer details. To address this limitation and have images that can train an Object pose

estimation models, it becomes necessary to introduce additional information of the Cat’s model

into the image generation process.

Figure 5.10: Result of training FastGAN on LINEMOD dataset

Introducing Cat in FastGAN

Since it’s crucial to maintain Cat’s structure properties as close as possible to the input, the initial

attempt involves superimposing Cat over the generated image. Unfortunately, this approach

made the pipeline unstable, as evidenced in Figure 5.11.

Figure 5.11: Results of superimposing Cat over the generated image

The next approach involve making slight modifications to the FastGAN model. These con-

sist in introducing an encoded version of Cat’s image during the upsampling process, and also
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directly adding (not superimposing) the input image to the output, similarly to the U-Net struc-

ture. The objective is to enable the training process to learn how to effectively blend Cat’s model

in the background. In order to stabilize the training a masked loss has been added. Results in

Figure 5.12.

These results demonstrate that FastGAN is highly effective for generating samples from

low-dimensional datasets. However, harmonizing an input image with the generated instance is

not its intended purpose. Nonetheless, it can serve as an alternative approach for general image

superimposition.

(a) Grayscale loss

(b) RGB loss

Figure 5.12: Results of the modified FastGAN model
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Chapter 6

End-to-End models

Finally, this chapter will assess the performance of Generative Adversarial Networks (GANs)

in the context of object pose detection, comparing them to a simple superimposing technique.

This evaluation aims to show the potential of GANs to enhance the accuracy and effectiveness

of object pose detection models when combined with them.

6.1 Training pipeline

Best of PatchGAN and FastGAN models have been incorporated into the PVNet model and

trained through the following pipeline:

1. Train the Discriminator using both real images and images generated by the Generator.

2. Train the Generator using the output from the Discriminator, a masked loss, and the loss

returned by PVNet.

3. Train PVNet using the dataset of real images along with a set of images generated by the

Generator.

The ratio of real images to fake images is adjusted to ensure an equal number of total itera-

tions in both the training on superimposed images and the training with the Generative models.

It is worth noting that the pipeline is not only training an Object Pose Estimation model, but

also a Generative model at the same time.
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# End-to-End pipeline

# Retrieve inputs
real_image, real_mask, real_pose = real_sample
CAT_image, CAT_mask, CAT_pose = CAT_sample

# PVNet training
fake_image = Generator(CAT_image)
pvnet_real_loss = PVNet(real_image, real_mask, real_pose)
pvnet_fake_loss = PVNet(fake_image, CAT_mask, CAT_pose)

# Discriminator training
discriminator_real_loss = Discriminator(real_image, fake=False)
discriminator_fake_loss = Discriminator(fake_image.detach(), fake=True)

discriminator_loss = discriminator_real_loss + discriminator_fake_loss

# Generator training
generator_disc_loss = Discriminator(fake_image, fake=True)
masked_loss = grayscale_masked_loss(fake_image, CAT_image, CAT_mask)
generator_pvnet_loss = pvnet_fake_loss

generator_loss = generator_disc_loss + masked_loss + generator_pvnet_loss

(a) Sketch of the End-to-End network
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6.2 Evaluation metrics

The numeric evaluation of the End-to-End network is performed using the following standard

Object Pose Estimation metrics:

• Average Distance of Displacements: The ADD measures the mean distance between

transformed model points based on the estimated and ground truth poses. A pose is

considered correct when the computed distance is below 10% of the model’s diameter.

• Average Precision: AP computes the area under the precision-recall curve.

• Correctness with a 5-Pixel Threshold: CMD5 is a measure indicating the correctness

of pose estimation when the computed distance between 2D projections of model points

for estimated and ground truth poses is less than 5 pixels.

• 2D Projection: PROJ2D measures the mean distance between the 2D projections of

model points for estimated and ground truth poses, considering a correct pose if the dis-

tance is less than 5 pixels.

6.3 Comparing to the conventional approach

When training Object Pose Estimation models, a common practice involves to create a diverse

dataset superimposing 3D models of objects in various positions, rotations, and lighting con-

ditions onto random backgrounds. It’s important to note that achieving perfect blending of

these 3D models with background images can be challenging, particularly in terms of ensuring

consistent lighting and perspective alignment. The PVNet module of the End-to-End network

will be compared to PVNet trained with the same Cat’s models, but superimposed into random

backgrounds.

Figure 6.2: Images from the superimposition dataset
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6.4 Results

Looking at Figure 6.4, the first observation is that the training converges, with PatchGAN still

performing better in blending the Cat model into the background. Furthermore, introducing

the PVNet loss to the Generator made the Cat’s model much more distinguishable from the

background.

Moreover, also from the standpoint of Object pose estimation results are at least acceptable.

As illustrated in Figure 6.3, metrics show comparable performance among the different models,

achieving the same top-notch results in both PROJ2D and AP. However, it’s worth noting that

both GAN models performed less optimally in ADD and CMD5 metrics. This can be attributed

to the early training phases of the Generative Models, where PVNet encounters suboptimal

images due to the limited capabilities of the GAN network at that stage. Consequently, PVNet

undergoes to fewer effective training iterations than the model relying on superimposed images.

ADD AP CMD5PROJ2D
0

0.2

0.4

0.6

0.8

1

0.55

1

0.85

0.99

0.46

1

0.71

0.99

0.39

1

0.7

0.98

Metrics

V
al

ue
s

Superimposition
PatchGAN
FastGAN

Figure 6.3: Metrics evaluation on end-to-end models
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(a) FastGAN

(b) PatchGAN

Figure 6.4: Samples form Generative Models trained End-to-End with PVNet
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Chapter 7

Diffusion Models

Towards the conclusion of this thesis, it is noteworthy to introduce a novel category of generative

models known as Diffusion Models.

7.1 How diffusion models work

Fundamentally, they operate by gradually introducing Gaussian noise to the training data, de-

stroying them, and then learning how to reverse the process recovering the data from the noise.

Once the training is complete, the Diffusion Model can be used to produce new data from ran-

dom noise.

Figure 7.1: Stable diffusion process

Diffusion models have been proven [7] to be at least as powerful as GANs in generating

images, with the clear advantage on mode coverage and diversity (Figure 7.2), which is indeed

a valuable property in the field of Object pose estimation.
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Figure 7.2: Strong and weak points of Generative models

In this chapter will be presented some key ideas that could inspire further researches on the

topic of combining object pose estimation with generative models.

7.2 Repaint

RePaint is an inpainting method based on Denoising Diffusion Probabilistic Models (DDPM).

RePaint excels at handling arbitrary binary masks, providing high-quality and diverse image

inpainting. It outperforms existing approaches, including Autoregressive and GAN methods, in

various inpainting scenarios, making it a robust solution for free-form inpainting tasks.

Figure 7.3: Example of how RePaint works

7.2.1 Application to LINEMOD

This section acts as a proof of concept, demonstrating how a model like RePaint could poten-

tially be leveraged to generate new samples for the LINEMOD dataset. It’s important to note

that it has been employed a pretrained model on ImageNet [8], and the results obtained here

may not be directly applicable to the specific objectives of this thesis. Nevertheless, they offer

valuable insights into the potential utility of such a model in this context.

40



Figure 7.4 displays the results of applying RePaint to images featuring a random back-

ground, a circular mask of random size, and Cat within it. It is possible to observe how RePaint

generates an image that attempts to seamlessly blend Cat with the background, exhibiting good

results in terms of variety and background reconstruction. However, as previously mentioned,

the pretrained model lacks prior knowledge of Cat, leading to less-than-ideal outcomes, such as

a black halo around the Cat’s model or the occasional hallucination of a dog. This last issue is

a known problem attributed to a bias in the ImageNet dataset.

Figure 7.4: Utilizing RePaint with Cat and random backgrounds
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Chapter 8

Conclusions

In this thesis, various GAN models were employed to generate datasets for Object pose esti-

mation. Specifically, the goal was to create images containing pre-rendered models, serving as

ground truth for training models such as PoseCNN or, in this case, PVNet. The input model

used for all experiments was the Cat’s model from LINEMOD.

8.1 Image-to-Image Translation

Chapter 4 introduced essential Image-to-Image Translation models suitable for domain adapta-

tion, where images from Domain A are transformed to resemble those from Domain B.

This functionality ca be leveraged to generate datasets of images in environments where data

acquisition is particularly challenging. In this thesis, the CUT model was utilized to generate

underwater images by providing it with three types of input:

• Cat with a black background from Domain A and underwater images from Domain B.

• Cat with a random image background and underwater images from Domain B.

• Cat with a random image background and underwater images from Domain B, also con-

taining the Cat’s model.

The results demonstrated that achieving optimal performance requires the use of a back-

ground from Domain A; otherwise, CUT may attempt to maintain a uniform background in the

adapted image. Furthermore, superimposing the Cat’s model in Domain B results in undesirable

distortions of the model.
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8.2 Image Synthesis

The experiments in Chapter 5 aimed to explore ways to expand an existing dataset, using dif-

ferent generative architectures.

8.2.1 Building a Model from Scratch

In Section 5.3 experiments began with DCGAN, in order to gain a preliminary understanding

of the main challenges to overcome. The generated images exhibited blurriness, Cat was not

clearly visible, and mode collapse was evident.

Model changes and relative improvement included:

• U-Net generator coupled with L1 loss to help to preserve the details of the input image in

the output.

• Patch discriminators to improve the model’s stability and to introduce some spatial infor-

mation between objects and the background.

• Self-Attention layers to further enhance the spatial relations between objects, noticeable

even in the early stages of training.

All of these mechanisms helped the model generate satisfactory images in the end.

8.2.2 FastGAN

In Section 5.4 another approach was adopted: an already performing model was trained on

LINEMOD images. FastGAN was selected for this task because it was specifically designed to

perform well with small datasets, which aligns with the focus of this thesis.

The results showed a generally high quality of the samples, but Cat didn’t appear clearly

in the output, so two further experiments were conducted to introduce it into the final image.

Firstly, Cat was superimposed directly in the output, but this approach made the pipeline un-

stable. The changes were made to the FastGAN model in order to provide information of the

Cat’s model in input. This involved using an encoder linked to the FastGAN generator at the

early stages of the upsampling, and then summing the input Cat with the output of the network.

Results showed that this changes ensured the presence of the Cat in the final image, although

the network struggled to capture the spatial relationship between Cat and the background.

8.2.3 End-to-End Approach

The best-performing models from previous experiments have been integrated into an end-to-end

network that concurrently trains:
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• A GAN network that generates samples resembling the LINEMOD dataset starting from

a rendered Cat.

• PVNet, a 6DoF Object pose estimation model.

The pipeline has demonstrated to be stable, with images showing a more distinguishable Cat

from the background. What’s particularly noteworthy is that in all cases PVNet performed sim-

ilarly to the model trained with the more traditional technique of superimposing the object into

random backgrounds. Some metrics fell slightly below expectations, but this may be attributed

to the poor quality of images provided to PVNet during the early stages of GAN training. This

means that this pipeline can eliminate the need for manual labor in collecting backgrounds and

creating customized datasets.

8.2.4 Diffusion Models

Diffusion Models are an innovative framework that has proven to be very promising in terms

of generating high-quality samples and achieving mode coverage. The main idea is to progres-

sively degrade an image with random noise and then train a network to reverse this process.

An example of how these networks can be applied in Object Pose Estimation is by starting

with an image of the rendered object and solving an inpainting problem with RePaint. This

network can be employed to fill in missing or damaged portions of an image, so, by considering

the mask of the object as the part of the image to retain and allowing RePaint to handle the rest,

it is possible to generate new samples containing the original pose of the object.

The main achievement of this thesis work has been to demonstrate that GANs, and, more in

general, Generative Models, represent a powerful tool for dataset generation, and can boost

the performance of Object Pose Estimation models to train on larger dataset and consequently

increase precision and accuracy.
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