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Abstract

Motivation In software development it is very common to deal with bugs during the
code-writing process and not every bug is detected through the usual validation
work, and consequently, post-release bugs remain present. These bugs can impact
the final product and they can be fixed by subsequent software releases, but this
process of bug fixing can be expensive and time-consuming.

Problem statement This research introduces a novel approach called predictive bug
modeling. Using data analytics and machine learning, it aims to predict and resolve
software bugs at the initial stages of coding. Instead of relying on traditional bug-
fixing methods that address issues after they occur, this approach tries to prevent
them and it tries to find them more efficiently.

Approach To solve the problem we used some machine learning models to study the
presence of bugs in the project on a file level, we confronted different models and at
the end we embedded the code in the pipeline to make it work the model every time
that a file is modified. In particular we extracted software metrics, but since they
were not enough, we increased their size using data augmentation techniques. Then,
we split the dataset into two parts: files with bugs and bug-free files. We trained
various models and tested them to obtain the results. Finally, we used Explainable
AI techniques to understand how the various models worked.

Results The result of most models in terms of precision is good. We integrated the
predictive bud modeling into a devops pipeline. Explainable AI techniques helped
us to comprehend why a file is defective so that we can intervene on that file in
order to change it and to make it better and fixing bugs.

Conclusions This is only a first step. The models could be improved, for example,
one could look for a way for the models to work primarily not on static metrics,
but rather on dynamic metrics to show the possibility that a file may have a bug
between two commits, assuming that it was bug-free before the previous commit.
It is also possible to work on a non-deterministic prediction, but rather to divide
the whole thing into more nuances (definitely bug-free, low probability of bug in
the file, medium probability of bug in the file, high probability of bug in the file,
definitely has a bug in the file) to have a more complete view. or finally, one could
work on comparing these models between projects and not between files to see which
ones are more truthful and perhaps also try with a finer granularity (e.g., at the
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module level) to see if there is a possibility of further improving the ”zoom” without
affecting the excellent precision figures obtained in this experiment.
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Chapter 1

Introduction

During software development, it is very common to face bugs. However, not all bugs are
caught during testing, leading to bugs that remain after release.

These hidden bugs can affect the final product and require additional software updates
to fix them. If a bug in a car’s infotainment system goes undetected, it could pose a serious
risk to drivers. Identifying and fixing post-release bugs is challenging and time-consuming,
consuming valuable resources.

When a new software application is released, despite careful planning, unexpected bugs
can still arise. While fixing these bugs in later releases is essential, it requires significant
time, effort, and money from the development team. Identifying them could be more
challenging than writing the code itself, especially when they are assigned to developers
unfamiliar with the project or who have worked on it extensively. This highlights a
common struggle in modern software development: the ongoing presence of bugs and the
strain they put on development resources.

1.1 Motivation

Software developers face an ongoing issue with bugs that show up after software is released.
These bugs can slow down progress and use up resources. Finding and fixing these bugs
is a big part of keeping software in good shape, and it can take a lot of time, work, and
money.

To effectively address this ongoing issue, we need a proactive and comprehensive ap-
proach to detecting and preventing bugs. Such a solution should be seamlessly integrated
into the software development process, becoming an essential part of the quality assurance
phase. By employing advanced technologies like automated testing, static code analysis,
and anomaly detection, this solution would proactively identify potential vulnerabilities
and defects before they appear in the final product.

An ideal bug detection system should not only identify defects but also predict future
issues using historical data, code complexity measurements, and context analysis. By
constantly monitoring the system and providing feedback, it would help development
teams proactively resolve potential problems. This would strengthen the software’s overall
dependability and resilience.
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This ground-breaking solution not only detects bugs but also transforms software
development. By proactively preventing bugs, teams can use their time better. They can
now concentrate on creating new features and enhancing products. This speeds up the
release of high-quality software without compromising quality.

Not only users but all those involved in software development (stakeholders) would
benefit from this. Individuals using the software would be happier and more confident in
its reliability. Companies would also save money, improve their reputations, and gain an
edge over their competitors.

Fixing bugs after releasing software is a vital task in software engineering. It impacts
software developers and users. If we can find and fix bugs before releasing software,
software development will improve significantly and become more reliable.

1.2 Objective

This research introduces a novel approach called predictive bug modeling. Using data
analytics and machine learning, it aims to predict and resolve software bugs at the initial
stages of coding. Instead of relying on traditional bug-fixing methods that address issues
after they occur, this approach emphasizes proactive measures.

The objective is not just to improve code quality but to revolutionize software devel-
opment by incorporating predictive bug modeling as an integral part of the process.

To improve software development, the emphasis is shifting away from merely fixing
bugs after they occur. Instead, a proactive approach is being adopted to identify and
prevent bugs before they can cause problems in released software. This approach is more
efficient and uses resources more effectively.

1.3 Approach

This research aims to predict bugs on a file-level using various models, from simple ones
like logistic regression to complex ones like neural networks and decision forests. Files are
written in Python and C++, from them we extracted code-related metrics and fed them
into these models. The results were analyzed from different angles to determine the most
effective model for the project’s objectives.

First of all it is important to say that all the data of the thesis are taken from a
real project. In fact they are taken after a long internship in a factory that produces
infotainment (the software of the on-board computer) for luxury car, differently from
other works about this argument that product data artificially. This lead us to have a
strong opportunity to improve a software in a practical way, but it also caused problems
and issues. The first one was that there were only sixty-nine files in the project, so we
devised a plan to create robust predictive models. We knew we needed more data, so we
took several steps: first we added more data to the dataset and then we improved the
way we build predictive models.

We started by augmenting our dataset with a technique to create more data samples:
a Python script that matched the properties of the original dataset; it was important to



overcome the limitations of our initial dataset generating synthetic data The goal was
not just to add quantity but also to maintain the characteristics and distribution of the
existing data. We carefully crafted the algorithms to ensure that the augmented dataset
retained its integrity and usefulness.

Using the enhanced dataset, we embarked on the essential process of clustering and la-
beling. We employed clustering techniques to identify underlying patterns and structures
in the data, enabling us to assign meaningful labels to each file. This was done grouping
carefully similar files together based on their shared characteristics. By clustering and
labeling the data, we brought organization and semantic meaning to it, which will aid in
more effective model training and evaluation.

To build reliable predictive models, we implemented a strict data splitting method for
training and testing. Our dataset was divided into two parts: a training set to develop the
models and a test set to assess their performance. This separation allowed us to objectively
evaluate our models on data they had not been trained on, protecting against overfitting
and biased results. By following rigorous methodology, we ensured the robustness of our
models and strengthened our belief in their predictive accuracy.

After preparing our data and training our machine learning models, we evaluated their
performance to determine the best approach for our project. We used several algorithms,
including logistic regression and neural networks. We carefully examined the performance
of each model, using various metrics and cross-validation techniques to assess their effec-
tiveness. This analysis helped us understand the advantages and limitations of each model
and provided guidance for further improvement.

During the development of our AI models, we discovered the significance of using
explainable AI techniques. These techniques allowed us to understand how our models
make decisions. We went beyond the model predictions and investigated the relation-
ships between different data features and the model’s classifications. By combining inter-
pretability and logical reasoning, we aimed to make our models more transparent. This
provided stakeholders with valuable information about how the models function, helping
them make informed decisions.

We addressed the challenges of data preparation, organization, training, and perfor-
mance assessment through a rigorously designed approach. By leveraging data science
principles and teamwork, we were able to unlock valuable insights from hidden data pat-
terns, ultimately creating highly accurate prediction models that empower better decision-
making.

1.4 Structure of the thesis

This thesis is divided into eight chapters: chapter 1 introduces the problem and describes
the objective of the thesis, chapter 2 describes the background knowledge required for
the thesis, chapter 3 goes in the details of the principal objectives of the thesis, facing
first the problems that bugs can cause, chapter 4 analyzes the main other works on this
topic, chapter 5 describes how it is faced the problem and how it is solved in details. then
chapter 6 evaluates the project focusing on the fact if the main goals are reached or not,
chapter 7 discuss about how the work is done focusing on positive and negative aspects



and at the end chapter 8 concludes the thesis and focuses on related jobs that could be
done citing this thesis.



Chapter 2

Background Information

2.1 Introduction

The whole work takes office in the context of the Agile Methodology, DevOps and automa-
tion. In this chapter we explain well the main differences between Agile Methodology and
Classic Methodology and we face the concept of Quality Assurance, which we mentioned
in the previous chapter, explaining how and when it is implicated. At the end of the
chapter we will speak of the defect prediction, focusing on the modelling pipeline and on
the possible granularity levels. Moreover we will face the theoretical basis of the project,
for example the explanation of the models used and what is explainable AI and why it is
useful.

2.1.1 Agile methodology

The agile methodology is a new way of organizing work within companies, in particular it
is hugely used in companies working on software and programming. It is contrasted with
the traditional methodologies, such as waterfall models or spiral models:

• The waterfall model (figure 2.1) is a traditional software development methodology
that follows a linear and sequential approach. In this model, each phase of the
software development process must be completed before the next phase begins. The
phases typically include requirements gathering, system design, implementation,
testing, deployment, and maintenance. Once a phase is completed, it is challenging
to revisit or make changes, as the process flows in one direction, like a waterfall.
This model is characterized by its structured and inflexible nature.

• The spiral model (figure 2.2) is an evolution of waterfall model, in fact it combines
elements of waterfall model and iterative development. It was developed to over-
come some of the limitations of the traditional waterfall model. In this model the
software development process is divided into a series of cycles or ”spirals”. Each
spiral represents a phase of the development process, such as planning, risk analy-
sis, engineering, testing, and evaluation. The key feature of the spiral model is its
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Figure 2.1: Example of a waterfall model

Figure 2.2: Example of a spiral model



emphasis on risk analysis and management. In particular the spiral model is based
on some key principles:

– Planning: The project starts with the initial planning phase, where the work
group defines goals and requirements.

– Risk Analysis: In this phase, the decision-making group identifies potential
risks and challenges. Strategies are developed to mitigate and manage these
risks.

– Engineering: The actual development and coding of the software take place.
This phase is similar to the implementation phase in the waterfall model. The
development department work on this stage.

– Testing: After each spiral, testing is performed to ensure that the software
meets the specified requirements and functions correctly. In particular the
validation department works on this phase.

– Evaluation: At the end of each spiral, an evaluation is conducted to review
the progress and determine whether the project should proceed to the next
spiral or be modified or terminated.

Figure 2.3: Example of Agile Methodology

The agile methodology (example on figure 2.3) involves a continuous exchange of in-
formation among all parties involved. The goal is not merely the sale of the product
but the satisfaction of the customer and everyone working on the project. The work is
done in teams, not individually, and there are continuous releases. It is characterized by



iterative and incremental development, where work is divided into smaller units known
as ”iterations” or ”sprints.” The agile methodologies’ aim is to deliver functional soft-
ware quickly and adapt to changing requirements. As written above, agile projects are
divided into short iterations or sprints, typically lasting two to four weeks. At the end of
each iteration, a ready product increment is delivered. It is very important the customer
collaboration, in fact agile teams work closely with customers and stakeholders to un-
derstand their needs and gather feedback throughout the development process and there
are continuous feedback between the parts involved, to identify and address issues early
in the development cycle. Teams must be flexible and open to changing requirements,
even late in the development process because changes are considered as opportunities for
improvement; in particular work is prioritized based on customer value, and the highest-
priority items are tackled first and it may change according to the customer’s requests.
The most important difference between agile methodology and traditional methodologies
is on the production of the documentation: while in traditional methodologies it was
heavy, in the agile methodologies it is lighter because agile methodologies prioritize work-
ing software over comprehensive documentation. In particular the documentation, like
the Doxygen package cited above, is largely produced automatically by the system and it
is more lightweight.

2.1.2 DevOps

Figure 2.4: Example of DevOps

The most famous agile methodology used is DevOps (in figure 2.4). It is a set of prac-
tices and principles whose aim is to enhance collaboration and communication between



the development (Dev) and IT operations (Ops) teams within an organization. It tries
to automate the processes involved in software development, testing, deployment, and
infrastructure management to deliver high-quality software in a more efficient and precise
way. For DevOps automation is very important, in particular the repetitive and manual
tasks, such as code deployment, testing, and infrastructure provisioning, to reduce errors
and save time. It is facilitated through the continuous integration of code changes into
a shared repository, allowing for early detection of integration issues and faster devel-
opment cycles and through the continuous delivery, that is the ability to automatically
and consistently deploy code changes to production or other environments, reducing the
time between development and delivery. Automation testings (continuous integration and
continuous delivery, shortly CI/CD) makes easier the monitoring of applications and in-
frastructure, combined with feedback loops, to detect and address issues quickly. It is
also important to incorporate security practices into the DevOps process to identify and
address vulnerabilities early in the development life-cycle. It is very important the use
of Git, a web platform that allows the creation of public and private repositories where
developers can upload their code and manage changes to different versions concurrently,
encouraging and making easier work in team. In fact it is possible to work simultaneously
with others on the same project without generating conflicts, upload one’s work to his
branch and then proceeding with a merge request to the master branch. This helps the
tracking issues because before every merge request everyone can check the comparison
between the old version and the updated one. In the following experiments it is used Git-
lab as Git and the automatized pipeline is created by a file .yml. It is divided in stages,
some of them consequential and some of them independent by the others; the stages are
usually divided in jobs. The file .yml is written in bash and it uses docker to create the
pipeline. Docker is fundamental for the DevOps technology because it offers a more agile
and efficient system architecture thanks to his divisions in container that are initiated by
the dockerfile. Moreover Docker is executed by computer and remote virtual machines,
so that it does not stop the other’s people work.

2.2 Software Quality Assurance

The set of processes and activities designed to ensure that software is developed and deliv-
ered with a quality suitable for its intended purpose is called software quality assurance
(SQA). This field, as written above, focuses on defect prevention, on monitoring, and
on continuous improvement of software development processes to ensure that the final
product satisfies established quality standards. So Software Quality Assurance is funda-
mental on realizing software and it must be embedded as a quality culture throughout the
life cycles from planning to release so teams can follow best practices to prevent defects,
rather than wasting time detecting them. However with modern software development
practices several difficulties can be found to apply the current SQA practices. Since the
team work is encouraged, everyone is responsible of the quality, so developers have to test
their own code, and this is done creating unit tests to perform an initial screening of the
most obvious errors and to receive notifications quickly during the software development
life cycle in case of any breakages. Usually the minimum percentage of code that must



Figure 2.5: An overview of the software quality assurance activities (from [1])

be covered by unit tests is eighty percent, possibly well distributed in the files. In the
merge request, as it is written above, the success percentage of unit test is also compared,
so this is one of the parameters for accepting or rejecting the merge request. By the way
this process of static analysis does not guarantee a defect-free software product because it
produces too many false positives or false alarms and it does not identify the problematic
areas that may present bugs after the software release nor offer any practical advice on
how to reduce risk; so it has to be integrated with some other bug prevention and detec-
tion techniques, because otherwise teams may release poor quality software product to
costumers and it could cause slow project progress and high cost development, in terms
of money and time.

2.2.1 SQA activities during the development stage

During the development stage, developers implement new functions and other modifica-
tions to the source code. This commit has to be submitted to SQA activities, for example
continuous integration and code review, before the developers do a merge request with the
principal branch. Since these commit-level SQA activities are time-consuming, it has been
proposal the Just-In-Time defect preview to support developers prioritizing their limited
SQA effort to modify the parts of code that more probably will present post-release de-
fects. However, JIT defect prediction only early detects defect-inducing changes, rather
than post-release defects. Despite the SQA activities work during the develop cycle, for
example code revision, it is still possible that some post-release defect remain also after
the release of the software product. So the SQA activities are still necessary during the
release preparation.

2.2.2 SQA activities during the release preparation

During the release preparation is important to execute SQA activities to ensure that
the software product is ready for release and to reduce the probability that the software
product will have post-release defects. In this phase all the files that are changed during
the development have to be checked to ensure that these changes will not get worse the
global quality of the software products; in fact so many SQA activities, for example
regression tests or manual tests are done by the validation department. However it is
almost impossible to check and verify that the software product does not present defect
with SQA activities in an exhaustive way, since the code is too big and there are limited



resources, for example from a monetary and time perspective especially in rapid-release
development practices. To help the developers to canalize resources in the optimal way
it is important to identify what are the most defect-prone areas of source code that
could present post-release defects. Moreover it is advantageous to obtain in real time
estimation of the areas of the code source where it is more likely to find defects to help
the develop team to have a more profitable management of SQA resources. Menzies et
al. [2] mentioned that software contractors tend to prioritize their effort on reviewing
software modules tend to be fault-prone. A case study at ST-Ericsson in Lund, Sweden
by Engstrom et al. [3] found that the selection of regression test cases guided by the
defect-proneness of files is more efficient than the manual selection approaches. At the
Tizen-wearable project by Samsung Electronics [4], they found that prioritizing APIs
based on their defect-proneness increases the number of discovered defects and reduces
the cost required for executing test cases.

2.2.3 How to calculate SQA

Now we are going to face the activities that it encompasses the parameters and the
methods that are used to calculate SQA. We start from the activities that it encompasses:

• Planning and management: This involves defining the quality goals for the software
project and creating a plan to achieve them.

• Development: This involves creating the software product, including coding, testing,
and debugging.

• Deployment: This involves making the software product available to users.

• Maintenance: This involves fixing bugs, adding new features, and updating the
software product over time.

SQA parameters are the characteristics that are used to measure the quality of a
software product. These parameters can be divided into two main categories: functional
parameters that relate to the functionality of the software product, such as its correctness,
reliability, efficiency, and usability and non-functional parameters that relate to other
aspects of the software product, such as its performance, security, and maintainability.

SQA is calculated using a variety of methods, including:

• Inspections: This involves manually reviewing the software product to identify po-
tential defects.

• Testing: This involves executing the software product to find and fix defects.

• Metrics: This involves collecting data about the software product to measure its
quality.

By the way the specific SQA parameters and calculation methods that are used will
vary depending on the specific software project. However, the overall goal of SQA is to
ensure that the software product meets the needs of its users and is of high quality. We
can see an example of the possible SQA certifications that could be taken in figure 2.6



Figure 2.6: Example of SQA certifications

2.3 Defect prediction

Several models of defect prevention have been created to anticipate which are the areas of
the source code that present a higher probability of having post-release defects. A model
of defect prevention is a classification model which gives an estimation of the probability
that a file presents a post-release defect. As it is written above, one of the principal aim
of the model of defect prevention is to help the developers to spend the limited SQA
resources on the code areas that present the higher probability of presenting post-release
defects in the most profitable way.

2.3.1 The modelling pipeline of defect prediction models

The predictive accuracy of the model of defect prediction is based on the modelling
pipelines of defect prediction models. To predict precisely the source code areas which
more likely present defects, there are many past studies that conducted a complete eval-
uation to identify the best modelling pipeline technique of defect prediction models. For
example there are feature selection techniques, collinearity analysis, class rebalancing
techniques, classification techniques, parameter optimization, model validation and model
interpretation. Despite the recent progress on modelling pipelines for defect prevention
models, the cost-effectiveness of the SQA resources is still based on granularity of predic-
tion.



2.3.2 The granularity levels of defect predictions models

As it is written above, the cost-effectiveness of the SQA resources depends on the gran-
ularity levels of defect prediction. Previous studies sustained that prioritizing software
modules at the finer granularity is more cost-effective. For example Kamei et al [5] found
out that file-level defect prediction is more effective than package-level defect prediction;
Hata et al. [6] found out instead that method-level defect prediction is more effective than
file-level defect prediction. There are models of defect predictions at various granularity
levels, for example packages, components, modules, files and methods; however the actual
granularity is still too coarse-grained, so developers could still need to waste some SQA
effort on manually identifying the most risky lines. For this reason defect prediction is
useful to SQA team to spend SQA effort in an optimal way to analyze and identify defects.

2.4 The models

In this section we will describe the different models that are compared in the thesis. Of
course they are not the only models that could be used, but the choice was to take these
because they are the most common and the easiest to work on.

Before explaining how each model works, it is important to divide them in two families:
interpretable models and black box models. Logistic regression and decision tree are
interpretable models, in fact it is possible to understand and interpret how the model
makes decisions and generates predictions. On the other hand Random Forests, Neural
Networks, Gradient boosting Machine and Extreme Gradient Boosting Tree are black box
models and so we do not know how they make decision and how they work. To solve this
issue we will speak later about the algorithms of Explainable AI to see how they work
and to have better feedbacks from them.

2.4.1 Logistic regression

Logistic regression is a statistical method used primarily for binary classification tasks,
where the goal is to predict whether an observation belongs to one of two possible cat-
egories, in our case if the file presents bugs or not. Unlike linear regression, which is
suited for predicting continuous outcomes, as we can see in figure 2.7, logistic regression
is tailored specifically for handling categorical outcomes.

At the heart of logistic regression lies the logistic or sigmoid function, which transforms
the linear combination of input features and model coefficients into a probability score
between 0 and 1. This sigmoid function is pivotal in logistic regression as it allows us to
model the probability of an observation belonging to the positive class, in our case the
probability of a file to be bug-free.

Before applying the sigmoid function, logistic regression computes the linear combina-
tion of input features and model coefficients: z = β0+β1 ∗x1+β2 ∗x2+ ...+βn ∗xn, where
z is the linear combination, β0 is the intercept term and β1, β2, ..., βn are the coefficients
associated with each feature x1, x2, ..., xn.

At the end the logistic regression works like this: P(Y = 1|X) = σ ∗ z, where P(Y =



Figure 2.7: Example of a graph of logistic regression

1|X) represents the probability of the dependent variable (Y ) taking the value 1 given the
independent variables (X), σ is the sigmoid function cited previously and z is the linear
combination of input features and model coefficients.

Then there is the training phase, where logistic regression learns the optimal values
for these coefficients by minimizing the discrepancy between the predicted probabilities
and the actual class labels in the training data. This process usually involves iterative
optimization techniques such as gradient of Newton descent.

Once the model is trained, it can be used to predict the probability of an observation
belonging to the positive class based on its input features. These predicted probabilities
can then be converted into binary class labels using a predefined threshold. If the predicted
probability exceeds the threshold, the observation is classified as belonging to the positive
class; otherwise, it is classified as belonging to the negative class.

In summary, logistic regression is a versatile and hugely used algorithm for binary
classification tasks, but it cannot be used for non-binary classification tasks. Its ability
to model nonlinear relationships and predict probabilities makes it invaluable in various
domains, including healthcare, finance, marketing and of course bug prediction. Under-
standing the underlying principles of logistic regression is essential for effectively applying
and interpreting its results in real-world scenarios.

2.4.2 Decision tree

A decision tree (figure 2.8) is a hierarchical decision support model that represents de-
cisions and their potential outcomes in a tree-like structure. This includes considering
chance event results, resource expenses, and utility. It serves as a visualization of an
algorithm comprising solely conditional control statements. Now we are going to enter in
the details in how it works.



Figure 2.8: Example of Decision Tree

The tree begins at the root node, representing the entire dataset, then it splits the
data into subsets based on feature values; this process is repeated recursively until certain
stopping criteria are met. At each non-terminal node (decision node), a decision is made
based on a specific feature’s value, determining the path through the tree for each data
point. The process continues until reaching a stopping criterion, that could be maximum
depth, minimum samples per node, or achieving a pure node. At this point, the node
becomes a leaf node, providing the final prediction or decision. Various criteria guide
the splitting process, including Gini impurity, entropy, and information gain, assessing
node impurity or uncertainty. To prevent overfitting, tree pruning techniques are applied
post-construction, removing nodes that do not enhance predictive performance. Once
constructed, the tree can predict outcomes for new data points by traversing from the
root to a leaf node based on their feature values.

In summary, decision trees offer a balance of power and interpretability, making them
widely applicable across domains due to their transparent nature and ability to handle
diverse data types.

2.4.3 Random Forest

Random forests (example in figure 2.9) have emerged as a prominent technique in machine
learning, renowned for their versatility and robustness. Unlike traditional models that
rely on a single approach, random forests leverage the collective wisdom of an ensemble of
decision trees. This essay delves into the core principles behind random forests, exploring
how they harness diversity and randomness to construct powerful models.



Figure 2.9: Example of Random Forest

At the heart of a random forest lies the concept of ensemble learning. Instead of
a solitary model, a random forest meticulously cultivates a multitude of decision trees.
Each tree operates independently, analyzing the data through a unique lens. To ensure
diversity within the ensemble, random forests incorporate a touch of randomness during
the training process. This manifests in two ways:

• Subsetting: Each tree is presented with a random subset of the training data. This
prevents any one tree from becoming overly reliant on the entire dataset and fosters
a wider range of perspectives within the ensemble.

• Feature Selection: At each branching point within a tree, a random selection of
features (data attributes) is considered for splitting the data. This further diver-
sifies the exploration paths taken by individual trees and helps prevent overfitting,
a common pitfall in machine learning. The learning process within a random for-
est unfolds iteratively. Each tree independently partitions the data based on the
chosen features, aiming to isolate regions with similar characteristics. This process
continues until a predefined stopping criterion is met, ensuring the trees maintain a
manageable complexity.

Once the forest has matured, individual trees don’t directly make predictions. Instead,
random forests leverage the power of collective intelligence. When presented with a new
data point, each tree casts a vote, predicting the most likely class or value based on its
unique exploration path. The final prediction is then determined by aggregating these
individual votes, often through a majority rule or averaging approach. This ensemble
approach, akin to combining the insights of multiple experts, leads to more robust and
accurate predictions compared to a single decision tree.



The advantages of random forests are multifaceted. By design, they are less prone to
overfitting compared to single decision trees. The randomness injected during training
prevents the ensemble from becoming overly swayed by specific patterns within the train-
ing data, leading to models that generalize well to unseen data. Additionally, random
forests can effectively handle problems with a high number of features due to their reliance
on random subsets during training.

In conclusion, random forests offer a powerful and versatile approach to machine learn-
ing. Their ensemble learning strategy, combined with the strategic use of randomness,
empowers them to tackle complex problems with remarkable accuracy and robustness. As
research delves deeper into the intricacies of random forests, they hold immense promise
for unlocking the potential hidden within data across various scientific disciplines.

2.4.4 Gradient Boosting Machine

Gradient boosting machines (GBMs) are a powerful machine learning technique that
combines the strengths of multiple weak models to create a single strong model. (figure
2.10).

Figure 2.10: Example of Gradient Boosting Machine

Imagine a student faced with a daunting mountain of knowledge – mastering the
intricacies of machine learning. Traditional methods present a solitary path, forcing the
student to grapple with the complexities of a single model. But what if there was a way to
learn through collaboration, leveraging the strengths of multiple perspectives? Gradient
boosting machines (GBMs) offer precisely this approach, emerging as a powerful ensemble
learning technique within the machine learning landscape.

This thesis delves into the fascinating world of GBMs, exploring how they orchestrate
a team of weak learners to construct robust and accurate models. We shall embark on
a journey to understand their core principles, unveiling the sequential learning strategy
that empowers them to tackle intricate problems that might baffle individual models.



At the heart of GBMs lies the philosophy of ensemble learning. Unlike traditional
methods that rely on a single model to learn patterns within data, GBMs embrace a more
collaborative approach. They meticulously construct an ensemble of weak learners, typi-
cally decision trees, where each learner builds upon the knowledge of its predecessor. This
sequential learning process allows the ensemble to progressively refine its understanding
of the data, akin to a group of students collectively deciphering a complex concept.

The learning process within a GBM unfolds in a captivating dance. The ensemble
commences with a rudimentary model, often a shallow decision tree. This initial model
makes a preliminary prediction on the data, akin to a student offering a tentative ex-
planation. However, the learning doesn’t stop there. GBMs meticulously analyze the
discrepancies between the model’s predictions and the actual values, uncovering the areas
where the model faltered. These discrepancies, termed residuals, become the cornerstone
of the next stage.

Fueled by the insights gleaned from the residuals, a new decision tree emerges. This
new learner acts as a dedicated tutor, focusing on rectifying the errors made by the
previous model. By meticulously studying the areas of weakness, the new tree refines the
overall understanding of the data. This iterative process continues, with each new decision
tree building upon the accumulated knowledge of its predecessors, akin to students sharing
their insights and collectively deepening their comprehension.

The brilliance of GBMs lies in their ability to leverage the strengths of each individual
learner within the ensemble. Each decision tree, though weak on its own, contributes a
specific piece to the puzzle. Through a process of aggregation, the predictions from these
individual trees are combined, culminating in a robust and accurate ensemble model.
This final model, much like a group of students who have mastered the subject through
collaboration, surpasses the capabilities of any single learner.

The advantages of employing GBMs are manifold. By harnessing the collective intel-
ligence of the ensemble, they can capture intricate relationships within data that might
elude a solitary model. This collaborative approach often leads to more accurate and
reliable predictions, a boon for researchers and practitioners alike. Furthermore, the flex-
ibility of GBMs allows them to adapt to diverse tasks. By selecting different base learners
and loss functions, they can be tailored to a wide range of problems, showcasing their
versatility across various domains.

In conclusion, gradient boosting machines offer a compelling alternative to traditional
machine learning methods. Their sequential learning strategy and ensemble approach
empower them to tackle complex problems with remarkable accuracy and flexibility. As we
delve deeper into the captivating world of GBMs, we unlock a powerful tool for unlocking
the secrets hidden within data, paving the way for advancements in various scientific
disciplines.

2.4.5 Neural Network

Artificial neural networks (ANNs) are a strong tool in machine learning. They are inspired
(as the name suggests) to the structure and the function of the human brain to work on
complex tasks. Now we are going to delve into the core principles behind ANNs, exploring



Figure 2.11: Example of a Neural Network

how these network of interconnected nodes process information and learn from data.

First of all there is a big difference with the traditional machine learning algorithms
with predefined models: Artificial Neural Networks adopt a more flexible approach, in fact
they are built upon a network of interconnected processing units called artificial neurons.
These artificial neurons are organized in layers, with information flowing from the input
layer through hidden layers, arriving at the end of the process to the output layer, we can
see a scheme of a Neural Network on figure 2.11.

Each artificial neuron is equipped with weights and biases that influence how it pro-
cesses incoming signals. During the training process, these weights are adjusted, basing
on the errors between the network’s predictions and the actual outcomes. ANNs iter-
atively update their internal parameters to minimize these errors, gradually improving
their performance on the task after the other. In this way ANNs are very flexible and are
very able to learn in a fast and reliable way.

Then, the input layer receives data points, which are transformed by activation func-
tions living within artificial neurons. These activation functions introduce into the net-
work non-linearity elements, making the network able to capture relationships within the
data that linear models may not look. Progressing through the hidden layers, the data is
transformed by the network, according to the value of weights and biases of the neurons.

The training process in ANNs often involves a technique called back propagation.
This algorithm calculates the gradients of the error function with respect to each weight
and bias in the network. The gradients essentially indicate how much each parameter
contributes to the overall error and by adjusting the weights and biases in the opposite
direction of the gradients, the network gradually learns to minimize the error and improve
its predictions.

ANNs are very good at learning complex patterns from data and this power makes
them appropriate for a wide range of tasks; moreover, ANNs can handle high-dimensional
data in a very effective way, making them a valuable tool for researchers working with
intricate and big datasets.

In conclusion, artificial neural networks offer a powerful and versatile approach to
machine learning. Their great ability to learn from data and capture complex relation-
ships has revolutionized various fields. As research delves deeper into the intricacies of
ANN architectures and training algorithms, they hold immense promise for unlocking new
frontiers in artificial intelligence and beyond.



2.4.6 Extreme Gradient Boosting Tree

Figure 2.12: Example of eXtreme Gradient Boosting Tree from [7]

Extreme Gradient Boosting (XGB) Tree is a very important technique in machine
learning, renowned for its remarkable accuracy and robustness in tackling complex tasks.
Now we are going to describe the core principles behind XGBoosting, exploring its se-
quential learning strategy and ensemble approach.

Unlike traditional models that learn in isolation, Extreme Gradient boosting leverages
the collective wisdom of an ensemble. However, it departs from conventional random
forests by adopting a more strategic approach to ensemble construction (figure 2.12).
XGboosting meticulously builds its ensemble in a stage-wise manner, with each new model
(typically a decision tree) focusing on improving the predictions of the previous ones. In
fact XGboosting starts with a simple model, often a shallow decision tree, that makes an
initial prediction on the data. But the learning doesn’t stop there.

XGboosting analyzes the discrepancies between the model’s predictions and the actual
values. These discrepancies, termed residuals, highlight areas where the initial model
failed; XGboosting then harnesses the power of these residuals to create a new decision
tree that targets the errors made by the previous model, with the scope to refine the
overall understanding of the data.

The brilliance of XGboosting lies in its focus on boosting. Each new decision tree,
instead of being built from scratch, leverages the knowledge accumulated by the ensemble
so far. This sequential approach ensures that the ensemble progressively improves its
performance with each iteration.

However, XGboosting doesn’t simply add the predictions from each tree. It metic-
ulously assigns weights to them based on their individual performance. This ensures
that trees that contribute more accurate predictions have a greater influence on the final
ensemble output.



The advantages of XGboosting are multifaceted. By harnessing the power of ensem-
bles and focusing on boosting, it achieves superior accuracy compared to single models.
Additionally, XGboosting incorporates efficient algorithms for tree construction and split
selection, making it computationally efficient and well-suited for large datasets. Further-
more, XGboosting offers built-in mechanisms to prevent overfitting, a common pitfall in
machine learning.

In conclusion, Extreme Gradient Boosting stands as a powerful and versatile tool in
the machine learning landscape. Its sequential ensemble learning strategy, combined with
a focus on boosting and efficient algorithms, empowers it to tackle complex problems
with remarkable accuracy and robustness. As research delves deeper into optimizing
XGboosting architectures and exploring its applications, it holds immense promise for
unlocking breakthroughs in various scientific endeavors.

2.5 Explainable AI

As it is written in the previous chapter, we used some model that are clearly explainable,
that everybody can comprehend how they works and why they give some results and they
are contrapposed to black box models, that work in a misterious way and we cannot com-
prehend why they give their output. For this reason Explainable AI (XAI) is important:
it is a set of techniques and methodologies that aim to shed light on the inner workings
of a model. It helps us understand how the model arrives at its predictions by providing
insights into the features used by the model and their contributions to the final outcome.

2.5.1 What is Explainable AI and why it is important

There are several reasons why XAI is becoming increasingly important: first of all trust
and transparency is crucial in many applications to understand why a model makes a
certain decision. XAI helps build trust in AI systems by providing explanations for their
actions. Moreover by understanding how features contribute to predictions, XAI can
help identify potential biases or weaknesses in a model, leading to improvements in its
performance. Moreover it can help uncover potential biases in the model’s predictions by
analyzing how features from different subgroups contribute to the output. This is crucial
for ensuring fair and ethical use of AI systems. Finally in some industries, regulations are
emerging that require AI systems to be explainable. XAI helps ensure compliance with
these regulations.

2.6 Techniques of Explainable AI

There are various XAI techniques available, each with its own strengths and weaknesses
and now we are going to explore them.



Figure 2.13: Example of SHAP

SHAP

SHAP, which stands for SHapley Additive exPlanations, is a specific technique used in
Explainable AI (XAI) to understand the inner workings of complex machine learning
models. It helps us interpret why a model makes a particular prediction by calculating
the contribution of each feature to the final outcome. We can see an example on figure
2.13.

SHAP leverages concepts from game theory to explain individual predictions. It calcu-
lates a value (SHAP value) for each feature in a prediction, representing its contribution
to the final outcome. It essentially asks: ”If we removed this feature from the data point,
how much would the model’s prediction change?”

SHAP estimates the impact of each feature on the model’s prediction. It first calculates
the local value with the following formula: SHAPi(x) = E[f(xi, x̂−i)− f(x̂)], where f(x)
is the prediction function of the model, xi is the value of feature x for data point i, x̂

−i is
the vector of features for data point i with feature x replaced by its average value and E is
the expected value operator. By calculating all the local SHAP values, we can calculate
the global SHAP value, that for a feature x is defined as SHAP (x) =

∑

N

i=1
SHAPi(x),

where N is the number of data points.

Positive SHAP values indicate that the feature increases the model’s prediction, while
in the opposite way negative SHAP values indicate that the feature increases the model’s
prediction. Furthermore a high SHAP value for a feature indicates it significantly influ-
enced the prediction, while a low value suggests minimal influence. Moreover SHAP can



Figure 2.14: Example of LIME

provide both local and global explanations: local explanations break down the reasons be-
hind a specific prediction for a single data point while global explanations offer an overview
of how different features generally contribute to the model’s overall behaviour. To show
the results, SHAP uses various visualization techniques like force plots and dependence
plots to illustrate the feature contributions and their interactions. These visualizations
make it easier to grasp the reasoning behind the model’s decisions.

Using SHAP is very convenient for various reason: first of all by understanding the
contributions of individual features, users can have greater confidence in the model’s
decisions and identify potential biases, moreover insights from SHAP explanations can
help to identify features with unexpected behavior or redundant information, aiding in
model refinement and XAI with SHAP can help uncover potential biases in the model’s
predictions by analyzing feature contributions from different subgroups. Overall, SHAP
is a powerful tool within XAI, providing valuable insights into how complex models make
decisions. This understanding fosters trust, enables better decision-making based on
model outputs, and facilitates model improvement.

LIME

LIME, which stands for Local Interpretable Model-agnostic Explanations, is another tech-
nique used in Explainable AI to understand how machine learning models make predic-
tions. Unlike SHAP, which focuses on explaining individual feature contributions, LIME
explains a model’s prediction for a specific data point by creating a simpler, interpretable
model locally around that point. Here on figure 2.14.

LIME tackles interpretability by focusing on local explanations. For a particular data
point (instance) you’re interested in, LIME creates a new, interpretable model (often a
linear model) that approximates the behavior of the original complex model only around
that specific data point. This local model helps explain why the original model made the
prediction it did for that particular instance.

LIME generates a set of alternative explanations for the data point by slightly mod-
ifying its features (e.g., removing or changing feature values); then it assigns weights to
these explanations based on how well they agree with the original model’s prediction for
that data point. Finally, LIME builds a simple interpretable model (usually a decision



tree or linear model) that uses the weighted explanations to approximate the original
model’s behaviour around the data point of interest.

First of all LIME can be applied to any type of machine learning model, regardless of its
internal workings. This makes it a versatile tool for XAI; moreover LIME explanations are
specific to a single data point, providing insights into why the model made a particular
prediction for that instance. Another key aspect is that the local model generated by
LIME is often simpler and easier to understand than the original complex model, making
it easier to grasp the reasoning behind the prediction. Overall, LIME offers a valuable
approach to XAI by providing local explanations for individual predictions. This helps
users understand how the model makes decisions for specific data points, fostering trust
and enabling better decision-making.

Let us focus now between the key differences between LIME and SHAP:

• Focus: LIME focuses on explaining individual predictions for specific data points,
while SHAP focuses on explaining feature contributions globally across all predic-
tions.

• Model-Agnosticism: LIME can be applied to any model, while SHAP works best
with models that have some inherent feature importance (for example decision
trees).

• Interpretability: Both techniques aim for interpretability, but LIME directly creates
a simpler model, while SHAP provides insights into feature contributions through
techniques like force plots.

• Choosing between LIME and SHAP depends on your specific needs. To understand
the reasoning behind a specific prediction for a particular data point, LIME might
be a good choice, while if the main aim is to understand the overall importance of
features across all predictions, SHAP could be more suitable.

Anchor

In Explainable AI, Anchor is a technique that focuses on identifying sufficient conditions
for a model’s prediction. Unlike LIME and SHAP, which delve into feature contribu-
tions or local explanations, Anchor aims to pinpoint the core reasons behind a prediction
through a set of ”anchors.” We can see an example of output Anchor in the figure.

Anchor is a model-agnostic technique, meaning it can be applied to various machine
learning models. It works by identifying a set of conditions, called anchors, that are
sufficient to guarantee a specific prediction from the model. These anchors essentially
represent the core reasons why the model makes a particular prediction for a given data
point.

Anchor starts by simplifying the complex model’s decision function into smaller, easier-
to-understand rules. Then it searches for these simplified rules (anchors) within the data
point’s features. An anchor essentially represents a combination of feature values that is
sufficient to guarantee the model’s prediction. There might be multiple anchors fulfilling



Figure 2.15: Example of Anchor

this condition for a single prediction. The identified anchors are presented in a human-
readable format, such as logical statements or data point subsets. This makes it easier to
understand the core reasons behind the model’s prediction.

Anchor is used because it has some potentiality, for example his ability to work with
various models makes it a flexible tool in the XAI toolbox; moreover by identifying suf-
ficient conditions (anchors), Anchor emphasizes the key factors driving the prediction,
offering a more concise explanation compared to techniques that analyze all features. A
key role is played by the human-readable explanations as it is written above, in fact the
identified anchors are easy to understand for humans, promoting trust and fostering better
decision-making based on model outputs.

Overall, Anchor provides a valuable approach to XAI by identifying the core reasons
behind a prediction through a set of interpretable anchors. This helps users gain insights
into the model’s decision-making process and fosters trust in its capabilities.





Chapter 3

Problem Statement

In the previous chapters of this thesis, we discussed in general terms of the problems that
can be caused by code bugs; in this chapter, we are going to enter in the details of the
principal objectives of the thesis, facing first the problems that bugs can cause.

Bugs are a common occurrence in software development, they can be caused by mis-
takes in coding, misunderstandings in requirements, or problems with integration. Not
all bugs are found and fixed before the software is released, so they can end up in the
final product as post-release bugs.

Post-release software bugs are a major problem, affecting both developers and users.
They can cause the software to malfunction, slow down, or even crash, which is frustrating
for users and it can be expensive for companies. Since the data of the thesis are extracted
from a project which develops the infotainment system for a luxury car, we will face
an example from the reality. If there is a post-release bug on the infotainment it could
happen that this is a minor bug such as the touch screen that does not work perfectly or
that it is not aligned; but it could also happen that the bug affects a more sensitive area
such as the fuel level or the electric part which controls the brake balance of the car. It
could be that the car has no more fuel in the middle of a highway without any gas station
nearby or, even worse, that the car does not brake and that this bug causes an incident.

This thesis aims to examine methods for preventing, finding, and managing post-
release bugs in software. By studying real-world examples, using different development
techniques, and applying specialized tools, we hope to create new solutions to this serious
problem in software development.

Our aim is to develop more dependable, secure, and superior software by reducing
the effects of bugs that arise after software has been released, which benefits businesses
and end-users. Specifically, our research focuses not only on the complex task of finding
bugs. In fact it is usually harder finding bugs than fixing them. So the aim of the thesis
is to help developers to find bugs and to do this we will use probability-based models of
different types, starting from logistic regression and moving on to black box models such
as neutral networks or random forest. We will confront these models to find which is the
best for this project and trying to understand and investigate why this model is the best
and, if it is a black box model, how it works in the part inaccessible to us.
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3.1 Requirements

We know that it can be harder to spot bugs than to fix them. So, we want to create and
use probability-based models to make bug detection easier. This will help us find and
deal with bugs quickly and effectively.

Of course the project is crucial for all parties involved, for example customers benefit
from early bug detection, resulting in a higher-quality product delivered quickly, enhanc-
ing their experience. With fewer bugs after release, customers can trust the software’s
dependability, fostering brand trust and loyalty.

Our approach simplifies bug detection for programmers, saving them from the time-
consuming and expensive task of manually searching for errors. By using probability-based
models, they can quickly pinpoint issues, freeing up their time for more important things
like creating new features and improving the application. This not only makes them
happier but also makes them more productive, leading to better projects and increased
success.

Investing in strong bug detection systems benefits companies in many ways. Apart
from providing customers with top-notch software, it also creates a favorable brand iden-
tity. Satisfied customers tend to recommend the company’s offerings, leading to increased
customer loyalty and the acquisition of new customers through positive feedback.

Furthermore, by reducing time and resources spent on fixing bugs, the company can
improve its efficiency and use of resources. This leads to cost savings and higher profits in
the long term because fewer employees spend time troubleshooting and fixing problems
after the release.

The aim of this work is to make happier everyone who is involved in software, from
helping developers in their every-day job of finding bugs and of course the customers, to
offer them a quality product as soon as possible.

3.1.1 Quality scenarios

In a large tech company’s software development pipeline, our bug prediction tool is seam-
lessly integrated. As developers work on different projects, our tool automatically analyzes
their code to detect potential bugs early on. Each time new code metrics are created, the
tool diligently examines the code, searching for any red flags that could indicate upcoming
issues.

Precision is crucial for our bug prediction model. False positives (files incorrectly
reported as bugged) waste developer time and resources on non-existent issues. Con-
versely, false negatives (missing actual bugs) result in undetected problems reaching pro-
duction,they would transform in post-release bugs, potentially leading to software failures
or disruptions. To make sure that our bug prediction model is reliable, we set a rule that
it must be at least eighty-five percent accurate. This means that when the model says
there is a bug, there is a good chance that there really is one in the file, and of course
when the model says that there is not a bug it is very probably that the file is bug-free.
To get this level of accuracy, we have to carefully adjust the model’s algorithms, test it
and keep watching and improving it as we get more information.



Our bug prediction model helps developers find bugs in a file-level with high accuracy.
This gives them specific information about possible bugs, in particular in which file is
more probably to find a bug, so they can decide which ones to fix first. The importance
of reducing the number of false alarms is that developers can spend their time fixing real
problems, improving the quality and reliability of the software they make. Moreover, it
makes the development process run more smoothly and gets the software to users faster.





Chapter 4

Review of the state of the art

Before solving this problem it was important to read who tried to solve it in the past and
more in general who worked on this argument. In this chapter we will face every work
that was important to reach our objective in this thesis.

Explainable AI for software Engineering [1] makes the comparison between dif-
ferent machine learning models for software defect prediction starting from the difference
between model-specific techniques and model-agnostic techniques for generating explana-
tions (global or local, depending on which technique it is chosen). Then the authors used
a dataset of 10 open-source software projects to train and evaluate the models, working
on a project-level bug prediction. They considered four different types of defects: crashes,
security vulnerabilities, code smells, and documentation defects. The authors evaluated
the models using several metrics, including precision, recall, F1-score, and AUC-ROC.
At the end in the paper it is evaluated the explainability of the models with different
techniques, in particular are used LIME, Shap and LoRMIkA.

Analisi della complessità di tecniche di offuscamento [8] is a thesis not properly
on this argument, but it touches the theme of the data collection and of the metrics of the
software, so we will describe briefly only what it is about this argument. It investigated the
use of code complexity metrics to analyze the effectiveness of different software obfuscation
techniques. The thesis starts examining various complexity metrics, which are numerical
representations of how complex a code is in terms of interactions between different entities.
The study then explored several types of obfuscation techniques currently in use and how
each one modifies software, both at the code and control flow levels, based on its intended
function and the type of protection to be introduced. Then it automate the application
of specific protections and the extraction of certain metrics (from both source files and
binaries) using tools.

Use of relative code churn measures to predict system defect density [9] stud-
ies how to predict the likelihood of defects in software systems early in the development
process. The paper proposes a technique to predict the density of defects (number of
defects per unit of code) early on in the development process. This prediction is based on
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a set of relative code churn measures. These measures do not just consider the absolute
amount of code changes, but also factors like component size, in particular they focus
on how much code is being changed in the component and the temporal extent of churn,
that is how the code changes over time are spread out and if they were all done at once
or spread out over a longer period.

Software Defect Prediction using Machine Learning Algorithms: Current State
of the Art [10] explores the field of Software Defect Prediction (SDP), a crucial area
within software quality assurance. Software engineering encompasses various methods for
predicting aspects of software quality, focusing in particular on the following metrics:

• How much effort will be required for testing (test effort prediction)

• How much cost can be prevented by identifying defects early (cost prevention)

• Where errors are likely to occur (error prediction)

• How reusable code components might be (reusability prediction)

• Whether the software meets safety standards (safety prediction)

• How consistent the codebase is (consistency prediction)

The paper acknowledges that many of these prediction methods are still in their early
stages and require further research. However, there is a growing interest in SDP from both
academia and industry. This is because SDP offers mechanisms to increase the efficiency of
software quality assurance activities and to allocate resources more effectively by focusing
efforts on areas most likely to contain defects. The paper delves into the current state of
the art, discussing how machine learning algorithms are being utilized for software defect
prediction.

Don’t Touch My Code! Examining the Effects of Ownership on Software
Quality [11] investigates the connection between ownership patterns in large software
development projects and the likelihood of software failures. The study focuses on two
major projects, Windows Vista and Windows 7.

The research explores how different ways of measuring ownership, such as the number
of developers with limited experience working on a code section and the concentration
of ownership with a single developer or small group. These ownership measures are
examined in relation to defects identified before the software’s release (pre-release faults)
and failures encountered after the software’s release (post-release failures). The findings
suggest a correlation between a particular ownership structure and the occurrence of
software failures. The paper delves deeper by exploring why developers with less expertise
might be making changes to specific code sections.

Furthermore, the research analyzes the impact of removing contributions from less
experienced developers on defect prediction models based on code changes. This analysis
reveals a significant decrease in the model’s performance, suggesting that even these
contributions hold valuable information.



By drawing on these insights, the paper concludes by offering recommendations for
source code change policies that might influence ownership patterns and resource alloca-
tion strategies, such as employing code inspections more effectively based on the ownership
structure.

How, and why, process metrics are better [12] discusses about the different metrics
used in defect prediction techniques for software development. In particular investigating
two categories of metrics, process metrics and code metrics, it analyzes data from 85
releases of 12 open-source software projects and finds out that process metrics are generally
more useful than code metrics for predicting defects. In particular code metrics tend to be
less dynamic, in fact they do not change much between different versions of code, leading
to models repetition and identifying always the same file as problematic. Overall, the
paper argues that despite code metrics are more used, it would be more effective to focus
on process metrics for bug prediction.

A Survey on Bug Prediction Models [13] provides a comprehensive overview of
bug prediction models, classifying them based on various criteria and discussing their
advantages and disadvantages. In particular it offers a broad overview of bug prediction
methods, with an emphasis on statistical and machine learning models. In particular it
focuses on deep learning techniques for defect prediction to automatically analyze code,
identify defective part of the software by patterns and improve software quality.

Bug Prediction: A Literature Review [14] offers a broad overview of bug prediction
methods, with an emphasis on statistical and machine learning models.

Predicting Defects for Eclipse [15] maps defects from the bug database of eclipse
(one of the largest open-source projects) to source code locations. The resulting data set
lists the number of pre- and post-release defects for every package and file in the eclipse
releases 2.0, 2.1, and 3.0. It additionally annotated the data with common complexity
metrics. All data is publicly available and can serve as a benchmark for defect prediction
models.

Mining software repositories for comprehensible software fault prediction mod-
els [16] discusses using a specific data mining technique called Ant Colony Optimiza-
tion (ACO) to predict errors in software modules. The paper proposes using data mining
techniques to analyze software repositories (collections of software code) to predict these
errors beforehand. This allows managers to address potential problems before they be-
come critical. Moreover it specifically investigates the use of an ACO-based technique
called AntMiner+, that is a data mining technique inspired by how ants find optimal
paths. It is considered a comprehensible technique, meaning the results are relatively
easy to understand by humans. Then it compares AntMiner+ to other common clas-
sification techniques (C4.5, logistic regression, support vector machines) on real-world
software datasets and it arrives as a conclusion that the accuracy of AntMiner+ in pre-
dicting errors is competitive with other techniques and additionally, the paper argues that



AntMiner+ offers superior comprehensibility. Finally the paper suggests that AntMiner+,
an ACO-based data mining technique, can be a valuable tool for software managers to
proactively identify potential errors in software projects. This can help improve software
quality, stay within budget, and meet deadlines.

A historical perspective of explainable Artificial Intelligence [17] discusses
about the Explainable AI, in particular it focuses on the (short) history of this tech-
nology, focusing on differences between explanations in expert systems, in recommender
systems, in machine learning, underlining the difference between the global explanations,
local explanations and counterfactual explanations; and in neural-symbolic learning. In
particular it discusses how explainability was conceived in the past, how is understood
now and how it might be developed and understood in the future.

Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI [18] speaks about the field of Explainable
Artificial Intelligence (XAI), which focuses on making machine learning models more un-
derstandable and interpretable. It solves the problem of explainability of new techniques
of machine learning, identifying future research directions of the XAI field and discussing
potential implications of XAI and privacy in data fusion contexts.

Discussion In conclusion, there are several studies on the topic, some advanced, some
less so, and many study software bug prediction, which is a very important topic at this
time in history. However, a real comparison between the various models with a comparison
of the explainable part is not present in any of these works. Furthermore, the strength of
this thesis is the fact that the data is real, in other words it is taken from a real project
and not artificially created. This makes the thesis unique in the field of software bug
prediction in this sense and makes it a work that is not only theoretical, but applied to
real problems.



Chapter 5

Problem Solution

In this chapter we are going to present the solution. First of all it is important to collect
data from the code (section 5.1), then the file are divided in two cluster based on the
presence of bugs in the file (section 5.2). Then we construct the models (section 5.3),
we evaluate them (section 5.4) and we rank based on some values (section 5.5). At the
end we are going to use Explainable AI to explain why the models label a file bug-free or
defective (section 5.6) and at the end we insert the code in the pipeline (section 5.7).

5.1 Data collection

First of all, there was a need for the project to start from, as mentioned in the previous
chapters: it is a software project for the infotainment system of a luxury car. Given this
project, the first step was to choose the level of granularity for the research. The best
choice seemed to be working at a file-level granularity, as a coarser granularity implied less
data and therefore the work would have been less effective. However, a finer granularity
posed challenges in extracting the data because it was not clear who had worked on each
method and how the work on the project had been done in general. Moreover, it is not
evident that working at a finer granularity would make developers’ work easier, so we
opted for a file-level granularity.

The decision to adopt a file-level granularity was made to ensure that each individual
file, containing specific code components, could be analyzed comprehensively. This ap-
proach allowed for a detailed examination of the software components, including modules,
functions, and classes, within each file. By focusing on the file level, we could capture
the nuances and intricacies of the code structure and behaviour, which are crucial for
accurate bug prediction.

Moreover, working at the file level provided a balance between granularity and fea-
sibility. It offered sufficient detail to identify patterns and correlations related to bug
occurrences, while also ensuring that the dataset remained manageable and interpretable.
This granularity level enabled us to gather relevant metrics and features from the source
code, which served as input for bug prediction models.

However, it is worth noting that choosing the appropriate granularity level is not a
one-size-fits-all decision and may vary depending on the nature of the software project
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and the specific research objectives. In this case, the file-level granularity was deemed
most suitable for achieving the goals of the bug prediction study.

To accumulate the necessary data, we primarily utilized Git and Jira. Git served as
the primary source for code-related metrics, such as the number of lines of code per file
or the number of commits per file. On the other hand, Jira was used to track past errors
and determine how many developers had worked on each file within the project.

Additionally, to acquire further metrics such as the number of functions and classes
per file, we leveraged an online tool. This tool, in addition to the above mentioned
metrics, provided insights into cognitive complexity, cyclomatic complexity, and code
ratings. Consequently, for each file, a comprehensive set of ten metrics was available,
including commits, modifications, comments, developers who worked on the file, lines of
code, classes, functions, cognitive complexity, cyclomatic complexity, and code rating.
Now we are going to explain what these data represent:

• Lines of code is the number of lines of the code of the file. It is calculated by Git;

• Commits is the number of times that the file has been modified in the past and
after that is pushed. It is calculated by Git;

• Changes it is the number of times that the file has been modified but, differently
from commits, it counts also the time that it is not saved. Of course it is always
greater or equal than the number of commits and it is calculated by Git;

• Comments is the number of the lines that contains a comment. It is calculated by
Git;

• Functions is the number of functions declared in each file. It is calculated by Git;

• Classes is the number of classes declared in each file. It is calculated by Git;

• Developers is the number of people that worked on the file and modified it. It is
calculated by Jira;

• Cyclomatic complexity is typically calculated using a formula developed by
Thomas McCabe Sr. in 1976. The formula considers the number of nodes and
edges in the program’s control flow graph. It is calculated by SonarQube;

• Cognitive complexity shares some similarities with with cyclomatic complexity,
but it is not a purely structural measure, but it incorporates additional factors that
influence human understanding, such as lines of code, decision points, cognitive load
(like nesting, recursion, lack of comments and meaningless names of the variables).
It is calculated by SonarQube;

• Rating is an evaluation given by some tools that rates a file considering a set
of metrics and quality indicator, like code maintainability, code reliability, code
coverage by unit tests, security and the amount of duplicated lines of code. It is
calculated by SonarQube.



By the way this elaborated approach did not ensure a robust dataset for our analysis
yet, because the files were not enough to have a good data sample, because we could
not divide it in two parts and have a numerically sufficient-sized dataset. Indeed, with a
restricted dataset, the data is too limited to provide a significant and accurate result: there
would be too much variance between different attempts, and consequently, the outcome
would be too influenced by random factors. For this reason, we proceeded to expand the
dataset. A small Python script was used, based on the Sci-Py library, which increased
the number of samples in a non-random way, but following the distribution of the original
data. This approach involved carefully generating additional data points that, as long as
possible, had the same statistical distribution as the original dataset, effectively enlarging
the dataset while preserving its underlying characteristics. By imitating the distribution
of the original data, we ensured that the newly generated samples represented the same
patterns and trends present in the actual project data. This augmentation process enabled
us to overcome the limitations posed by the initial dataset’s size and variability, resulting
in a more comprehensive and representative dataset for our analysis. As a result, we
managed to obtain a sufficiently large dataset, equivalent to approximately five hundred
files, enhancing the robustness and reliability of our analysis.

5.2 Clustering

Now it is important to divide the dataset in clusters, based on the probability of having
bugs in the file. Unfortunately Jira tracks the error but not highlighting in which file are
they. So we do not know what are the file with an higher probability of containing bugs.
So the dataset is divided into clusters, also in this case using the SciPy library, based on
the similarity of the data, particularly in geometric proximity in a hypothetical ℜ10 space.
To choose how many clusters, we rely on Principal Component Analysis (PCA), which
helps in reducing the dimensionality of the dataset while retaining most of the relevant
information. This step is crucial for grouping similar instances together and forming
clusters that can later be analyzed individually.

5.2.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical technique used in data analysis
and in machine learning to analyze and reduce the dimensionality of large datasets. Its
main objective is to identify patterns hidden in the data while simultaneously simplifying
complexity through transformation into a new coordinate system, ensuring that variables
are uncorrelated and maximizing the information contained in the original data.

To apply Principal Component Analysis we start by calculating the covariance matrix
and so that we can find the most influential components, that are the ones which have
the biggest impact on the others. Then we calculate eigenvalues and eigenvectors and we
sort the eigenvalues in a descending order and we associate the eigenvectors at the corre-
spondent eigenvalue. In this way we can see the ”principal direction” and the magnitude
in that direction. Now in this project we use Principal Component Analysis to see in
how many clusters we have to divide the dataset. To do this we see when there is a big



difference between two consecutive eigenvalues. In our model it is at two, so we decided
to divide the dataset into two clusters and we assigned a label to each file (zero or one)
based on which cluster it belonged to. Clearly files which are close in the hypothetical
ℜ10 space will stay in the same cluster.

Figure 5.1: Cluster projection in ℜ2

We can see from the graph in figure 5.1 of a projection in the ℜ2 space of the clusters on
the two principal components. In particular the violet points are the files that, according
to the division, are bug-free, while the yellow points are the ones that have bugs. We can
see that the two regions are almost separated a part from a small amount of points, so
the cluster has worked well and we can go on.

5.3 Model Construction

Now the whole dataset has to be divided in two parts (this is the principal reason for the
data augmentation tool that we explained above in the previous sections): the first part
is used as a train for the model and the second part is the test part.

In the training part the model learns patterns and relationships in the data, adjusting
the parameter of the model in order to minimize the difference between the actual and
the predicted values. After the training part, the model’s performance is evaluated with



the test set, which is not used during the training part of course. Here the model makes
a prediction on the values of the test set and then it compares with the real values,
estimating how well the model will perform on new data. It is important to use cross-
validation to data: it is a resampling procedure used to evaluate the performance of a
prediction model. It involves repeatedly training and evaluating the model on different
partitions (folds) of the data. This helps to ensure that the model is not simply memorizing
the training data and that it will generalize well to new, unseen data. First of all it divides
the data into folds: The dataset is split into k roughly equal-sized folds. In our model the
choice is k=10. Then there is the training part: it uses all folds except the current fold
to train the model. Now it evaluates the trained model on the current fold, which was
not used for training and it repeats the process for all k folds. At the end it calculates
the average performance metric (e.g., accuracy, F1-score) across all k folds. This average
represents the model’s overall generalizability.

Cross-validation it is used because it has many benefits that we are going to see
now. First of all it prevents over-fitting, which occurs when a model learns the training
data too well and fails to generalize to new data. Moreover cross-validation provides
a more unbiased estimate of the model’s true performance and it can be used also to
compare different machine learning models fairly, as they are all evaluated on the same
data partitions.

There are some types of cross-validation:

• k-fold cross-validation: As described above, this is the most common type, where
the data is split into k folds.

• Leave-one-out cross-validation (LOO): In LOO, there are k=n folds, where n is the
number of data points. Each point is left out as a validation fold once.

• Stratified cross-validation: This method ensures that each fold contains a similar
proportion of classes as the overall dataset, especially important for imbalanced
datasets.

Cross-validation is a crucial step in the machine learning process, providing a robust
way to evaluate model performance and select the best model for a given task. It helps
to ensure that the model will perform well on unseen data, which is the ultimate goal of
any predictive model.

5.4 Model Evaluation

Now we have all the data that we need, so we can do a classification of the models to
determine the one that have worked better. To do this first we have to introduce on what
we base on to evaluate the model and to compare the different models one to each other.

The models are ranked basing on performance metrics, that are usually precision and
the area under the receiver operator characteristic curve (that is often abbreviated with
area under the curve: AUC).

The precision is very important, because it measures the proportion between the num-
ber of files defective correctly identified as defective and the number of files that are really



defective, whether they are recognised or not. In particular the formula used in the thesis
is TP

TP+FP
, where TP is the number of files defective identified as defective and FP is the

number of false positive, that is the number of the files identified as defective but which
are not defective. It is important because a high precision value indicates that the models
can correctly identify high number of defective lines.

Another important aspect to measure is the False Alarm Rate (FAR). It is the propor-
tion between the number of clean files identified as defective and the real number of clean
files. More precisely, the false alarm rate can be calculated with a calculation of FP

FP+TN
,

where FP is the number of false positives and TN is the number of clean files that are
not predicted as defective. Of course the false alarm rate is lower as long as is lower the
number of false positives or bigger the number of the clean files considered clean by the
model. The false alarm rate is very important, because it measures the effective accuracy
and the degree of confidence that developers should have in the code, in the sense of how
confidently they can go ahead to fix bugs in a particular file.Using these two metrics, we
obtain valuable insights into the performance and reliability of our bug prediction model.

We also will use the true positive rate (TPR), that is the proportion of true positives
correctly identified (TP) by the model over the positives present in the project, that
include also the false negatives (FN), that are the bugs not identified by the model; and
it can be calculated with a calculation of TP

TP+FN
.

In our case since it is a binary classification problem, we can calculate the area under
the receiver operator characteristic curve, that is the typical metric that is measured for
models that have the aim to identify if something is defective or non-defective. The model
predicts the probability that an instance belongs to the defective class, and the AUC
assesses how well the model ranks instances by this probability. To calculate the AUC we
used a machine learning formula from sci-kit learn.metrics, that is a Python library. Let
us see better how it works: to compute the AUC, first, it generates a Receiver Operating
Characteristic (ROC) curve that plots the true positive rate (TPR) against the false
positive rate (FPR). After plotting the graph of the Receiver Operating Characteristic
curve, the AUC is the area under that curve. It ranges from 0 to 1: when the value is 1 it
means that the model is a perfect classifier (all true positives and no false positives), while
when the value is 0,5 it suggests that the model has no discriminatory power, in other
words it means that the model is not better than deciding randomly if a file is bug-free
or not.

After that, we calculate the precision of each model. This is done using code from the
scikit-learn library and in particular it gives as output the number of file with bugs that
are correctly reported (true negative), the number of file with bugs that are not reported
(false positive), the number of file bug-free that are clean to the model (true positive) and
the number of files bug-free that are reported as defective by the model (false negative)
between the part of files that are in the test part of the dataset. Then we calculate the
precision that is the ratio between the false positive files and all the clean files of the test
part of the dataset.



5.5 Model Ranking

In this section we will analyze the models and we will try to do a classification.
First of all we start with the precision score, that we indicate in this table 5.1 and the

relative graph:

Model Precision score

(

True Positive False Positive
False Negative True Negative

)

Decision Tree 0.9942028985507246

(

343 2
4 558

)

eXtreme Gradient Boosting Tree 0.9914040114613181

(

346 3
1 557

)

Random Forest 0.9913544668587896

(

344 3
3 557

)

Gradient Boosting Machine 0.9884726224783862

(

343 4
4 556

)

Neural Network 0.912

(

342 33
5 527

)

Logistic Regression 0.7611940298507462

(

306 96
41 464

)

Table 5.1: Precision score of models

We can see in figure 5.2 that the results are very close one to each other except for
the logistic regression that has clearly a lower precision score, in fact it has many false
positives and false negatives. Also Neural Networks seem like that is worse than the best
models in terms of precision score (0,912 versus around 0,99 of Decision Tree, XGB Tree,
Random Forest and GBM). In particular the best model for the precision is the Decision
Tree, in fact it has the lowest number of false positive and of consequence the lowest ratio
of False positive over all positives.

By the way this is not the only parameter that we took in consideration, but it is
important also the AUC, that is the Area under the ROC curve that we explained above.
Here there is a table and the relative graph of the different values for every model of the
AUC.

We can see from the table and the graph in figure 5.3 that the value of the AUC is
almost similar for every model except the logistic regression, whose AUC is around 0.885,
and Neural Network that has AUC around 0.931. The other four models have the same
value rounded to the nearest hundredth.

In conclusion Decision Tree, Random Forest, eXtreme Gradient Boosting Tree and
Gradient Boosting machines are almost equivalent looking to AUC and precision, while
Neural Network and Logistic Regression are clearly worse than the others. It is pretty
surprising that Decision Tree has a similar rating to Random Forest and eXtreme Gradient
Boosting Tree that are evolution of Decision Tree. Probably it is due to the fact that
the number of terms of evaluation is not so large (there are only ten metrics taken into
consideration).



Figure 5.2: Precision Values for Models

(a) AUC Table for Models (b) AUC Graph for Models

Figure 5.3: AUC for Models



5.6 Explainable AI

Lastly, it is important to understand the rationale behind the model’s choices and the
motivations that lead to classifying a file as bug-free or as containing bugs.

First of all there is a main difference between the models: in fact two of them (Logistic
Regression and Decision Tree) are explainable models, while the other (eXtreme Gradient
Boosting Tree, Neural Network, Gradient Boost Machines and Random Forest) are black
box models. The first two models can be explained without any help: in fact they are
”transparent” models and we can see with our eyes the process that lead the model to
label a file as bug-free or defective. On the other hand we do not know the process of
black box models, they are as a black box where we do not know anything inside it, but
we know only the input and the output. This can lead to difficulties in comprehending
why a file is defective, what the developer can do to fix it and where the developer has to
focus to fix the bug and to write better the code.

To make black box models less mysterious to us, it is fundamental the technology
of Explainable AI. In particular we used three techniques (SHAP, LIME and Anchor)
to explain the process inside the black box and the reason why a model labels a file as
defective or bug-free, which are the main metrics that influence the final result and what
patterns they follow to classify files.

5.6.1 An explainable model: Decision Tree

In figure 5.4 there is the decision tree of the project: we can see that it is coloured: in
fact with every decision it goes towards labeling the file that it is examining as bug-free
or defective. In this case blue means that it is a defective file, while orange means that
it is bug-free. On every node the model has to take a decision, now we are going to see
what is written in one of the rectangles (it was not possible to make it more visible inside
the graph for reasons of space) and explore the meaning, in this case we will take the first
decision node (the one at the top).

(Lines of Code f 394.5, ngini = 0.452, nsamples = 2114, nvalue = [1384, 730])

• Lines of Code f 394.5: This line represents the condition that determines how
data points are directed through this node. In this case, it’s considering the number
of ”Lines of Code” (a feature in your data). Data points with a value of ”Lines
of Code” less than or equal to 394.5 are sent down one branch of the tree (in the
bug-free branch, so to the left), while those greater than 394.5 go down another
branch (to the right).

• ngini = 0.452: This value, called the Gini impurity, indicates how well-separated
the classes (possibly target variables) are at this node. A Gini of 0 represents
perfect separation (all data points belong to the same class), while a value closer
to 1 signifies a more even mix of classes. In this case, 0.452 suggests some level of
separation but not perfect.

• samples = 2114: This tells us the total number of data points that reach this node
in the decision process.



Figure 5.4: Decision tree in the model

• value = [1384, 730]: This likely represents the distribution of class labels (or target
values) among the 2114 data points at this node. The bracketed numbers, [1384,
730], could indicate the count of data points belonging to two different classes. In
our case 1384 belong to class 0 (the orange one) while 730 belong to class 1 (the
blue one).

This text is present for every decision node (figure 5.5) and it explains what is the
process that lead the decision tree to label a file as bug-free or defective.

SHAP

SHAP shows which are the most important metrics for the software for every model. In
particular we show on figure x the graphs of every black box model. We can note that for
every model except for Neural Networks the most important metric to determine whether
a file present or not a bug is the number of lines of the code. Then we can also note that
the models do not work in the same way: for example the metric that indicates the rating
of a file and the one that indicates the number of functions for neural networks is much
more important than for the other models, while lines of code are less important.

We start studying Gradient Boosted Machines model. In figure 5.6 we can note that
the most important feature for Gradient Boosted Machines model is definitely Lines of



Figure 5.5: Decision Tree text

Code; in fact the mean SHAP value of the feature is almost four times more than the
SHAP value of cyclomatic complexity. This means (and we will see examples in figure
5.14 in next pages when we will face the Anchor technique) that lines of code are really
important for this model and if a file will have many lines of code, automatically it will be
flagged as a defective file. On the other way if a file has a few number of lines of code, it
will be flagged as a bug-free file. Other important features are cyclomatic and cognitive
complexity, while rating and number of commits are almost negligible.

Then we are going to face SHAP on eXtreme Gradient Boosting Tree model. In
figure 5.7 we can see that the graph is really similar to the 5.6 of SHAP for Gradient
Boosted Machines model. For eXtreme Gradient Boosting Tree too the most important
feature is the number of lines of code and in this case too it is so much more important
than the other features, by the way here cognitive complexity is more important then
cyclomatic complexity and we can see that number of classes and comments are very
close for importance to the previous two features.



Figure 5.6: SHAP Gradient Boosted Machine

Figure 5.7: SHAP eXtreme Gradient Boosting Tree



Figure 5.8: SHAP Random Forest

Figure 5.9: SHAP Neural Network

For random forest things does not change so much: we can see from figure 5.8 that
lines of code are still the most important feature, followed by cyclomatic complexity that
for this model is more important in proportion to lines of code respect to the other.
Moreover some features like number of classes, rating of files and number of developers



are really close to zero, so they are almost negligible because their weight in the decision
of the Random Forest are very low.

At the end we can see how neural network works on figure 5.9. Neural Network is
different from the previous model as behaviour of the model and reason why it flags a file
as defective whether not. In fact here the number of lines of code is the most important
feature, but it is very important cognitive complexity too, differently from the previous
models where lines of code was so much more important than every other feature. By
the way the number of lines of code is still the most important feature, but not as by far
as for other models. Moreover there are two features almost negligible: the number of
functions and the rating of the file.

LIME

Differently from SHAP, LIME is a punctual technique of explainable AI and it works on
a single file to show why it has bug whether it is bug-free and why. In fact it collects the
metrics and it underlines which metric is the most important for the result, that is the
metrics that have a major contribution to the possibility of a file to have bugs. Now we
can see four example of LIME applied to each black box model.

Figure 5.10: LIME Gradient Boosted Machine

For the Gradient Boosting Machines the file presents bugs according to the model. In
particular from figure 5.10 we can deduce that this is caused principally by the magnitude
of lines of code that has a big impact on the system; also the cyclomatic complexity
contributes, but we can see from the bar graph in the middle that it has a contribution
almost insignificant respect to the importance of the lines of code.

In the example of LIME for eXtreme Gradient Boosting Tree above in figure 5.11 the
file analyzed is bug-free. We can see that the feature that more contributes to the choice,
differently from the LIME for Gradient Boosted Machines previously cited, is the number
of functions, but it is not a decisive contribution. In fact despite the number of functions
is pretty big and it would have lead the file to have a potential bug, the other metrics are
good and they balance the fact that with that number of functions it is probably that a
file presents a bug.



Figure 5.11: LIME eXtreme Gradient Boosting Tree

In the file examined with LIME for Random Forest (figure 5.12) we have that, as in
the previous example of Gradient Boosted Machine, that the number of lines of code plays
an important role on the classification of the files. In fact it is considered that the file has
a number of lines of code that lead the Random Forest to classify it as a non defective
file. The other metrics are negligible respect to the metric that counts lines of code, by
the way almost all the metrics lead to classify the file as non defective.

Figure 5.12: LIME Random Forest

At the end we are going to examine LIME for Neural Network in figure 5.13. The file
examined results not defective, but in Neural Networks we can observe, differently from
the previous example that we faced, that some metrics have negative values. Of course
that value does not indicate the value of the metric (it is impossible that lines of code
are negative), but it is calculated in a different way and it is the impact that the metric
has on the choice. Then it is multiplied by the weight of the metric and we obtain that
the file has no bug, in particular thanks to the number of lines of code that is typical of
a bug-free file.



Figure 5.13: LIME Neural Network

Anchor

Finally we used the Anchor technique to explain how the AI works. First of all it is
important to recall that Anchor is a punctual technique as LIME is, so we will proceed
as above analyzing one file with each model.

We start with Anchor used to explain how Gradient Boosted Machines works on a file
(figure 5.14): we note first of all that Anchor provides not the exact value of the metrics,
but a range: in fact it underlines that Cognitive Complexity is minor than 100, while the
lines of code are major than 474. In particular Gradient Boosted Machines classifies the
file as defective; it then explains us why it is defective: in fact it underlines that every file
that has more than 474 lines of code is classified by AI as a defective one. Moreover it
provides us some examples (we attached only two of them, but they were ten) where the
AI classifies the files as defective. We note that in both the cases lines of code are more
than 475 and as a consequence the file is classified as defective.

Then in figure 5.15 Anchor is used to explain eXtreme Gradient Boosting Tree. We
can note that the file is bug-free, in fact according to Anchor, if a file has less than 284
lines of code it surely does not contain bugs according to the eXtreme Gradient Boosting
Tree model. In particular it provides ten examples (as before we will show two) in which
the file has less than 284 lines of code and as a consequence it results bug-free.

In figure 5.16 Anchor is used to explain Random forest. We can note that the file
considered is bug-free, in fact according to Anchor, if a file has less than 139 lines of
code it surely does not contain bugs according to the eXtreme Random Forest model. In
particular it provides ten examples (as before we will show two) in which the file has less
than 284 lines of code and as a consequence it results bug-free. We can see that also if
the other features change, the file is still bug-free.

By the way this is not true for Neural Network model. We can see in figure 5.17 in
fact that for Anchor this model presents a particularity: it takes into consideration lines
of code and cyclomatic complexity and if the number of lines of code is more or equal
than 475 and the cyclomatic complexity is higher than 60, the AI will predict bugs 99, 9%
of times. First of all we can underline that it was expected from SHAP (figure 5.9) that



Figure 5.14: Anchor Gradient Boosted Machine

in Neural Network could happen that the result depend by two features, while in the
other models it could not. In fact we discussed above that the cyclomatic complexity is
important for neural network almost as much as the number of lines of code. Moreover it
is interesting that Anchor provides us ten examples of file that present a bug for neural
network with the number of lines of code is more or equal than 475 and the cyclomatic
complexity is higher than 60, but it presents also the counterexample, that is the file that
does not present bug.

At the end we can conclude that the most important feature for all the models is the
number of lines of code and that in general there are some features (in particular rating,
number of classes and number of functions) that are almost negligible for all the models.
Moreover also the other features has an impact very limited respect to the one that have
the number of lines of code that is in fact the principal component that we calculated in
section 5.2.



Figure 5.15: Anchor eXtreme Gradient Boosting Tree

5.7 Insertion in pipeline

At the end of this job it is important to insert all this file in the pipeline to work on it every
time a modification is done by the developers. To do this it is enough to insert the whole
python file on the one that regulates the flow of the pipeline (the one with the extension
.yml that is cited in chapter 2). It is important to make this file interactive in real time
with the rest of the project: in particular it is important to insert the values dynamically
and to make a call to Git, Jira and the tools that calculate cyclomatic complexity, rating
of the file and cognitive complexity to get data.

Since it is a test it has to be inserted in the test job of the pipeline and it has to be
subordinated to every other job, in particular to the build job which find the bugs in the
code and to the unit test part (that in this project are not presented, but that usually
are), of course with the model (or models) that is chosen for the project; that could be one
between Decision Tree, Random Forest, eXtreme Gradient Boosting Tree and Gradient



Figure 5.16: Anchor Random Forest

Boosting Machines that we have seen above that are almost equivalent. Then every time
that a developer makes a modification the models work and the developers know which is
the probability of finding a bug in the various files and have all the Explainable AI part
available to see why a file could have bugs and to comprehend what developers can do to
fix them.



(a) File with bugs (b) File with no bugs

Figure 5.17: Anchor Neural Network



Chapter 6

Evaluation

The objective of the thesis was to find which is the best model (at least for this project) to
predict bug, to check if this model was good enough for a factory that works on software,
to learn how it works with Explainable AI techniques and to insert in the pipeline. Of
course since we have some different models and terms of comparison, the comparison can
be done and it is in line with expectations. In this chapter we are going to delve into
details on how we get to know that we reached our original objective.

First of all it is important to say that all the models worked very well and that they
had very good numbers in terms of rate of false positives and in terms of Area under
the curve. We saw that there is not a model that is the best for sure, but there are four
equivalent models.

Before starting we expected that the black box model would be more precise and more
appropriate with this amount of data, because they are usually more accurate. In fact it
is obvious for instance, that a random forest or a Extreme Gradient Boosted Tree works
more accurately than a Decision tree because they are an upgrade of the decision tree,
using many trees within each model. We expected reliable models, but perhaps not to
this extent, and we were surprised. In fact, previously we had tried to build the same
model with only a quarter of the data (thus applying data augmentation of 500 data
points instead of 2000), and the models had an AUC of approximately 0.999, rounded
to the first three decimal places. This led to the decision to further increase the data to
introduce a discrepancy, although we expected, as described in the previous chapters, not
to be very large, in order to have a point of comparison.

The cross-validation was an important aspect for this model and it makes the results
more truthful: since we cross-validate the data, since we perform cross-validation on the
data, it is not taken in order but in a random order. This means that by trying and
retrying to evaluate the models, they will always work on the file in a different way and
consequently by doing more experiments we will have a truthful view of which model
works best on the data. This has been done: data from different simulations have been
collected and the average has been calculated. In this way the result is not too much
influenced by bias.

The Explainable AI explains us that every model works based on a logic and all the
logic are similar, in fact for all the models the principal component is the number of lines
of the file, which was also the principal component calculated to cluster the dataset. This
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means that there is coherency between the way the models reason and so the results are
comparable, and consequently we can figure out which is the best model, at least for this
project. There is also a correspondence between the SHAP technique, that is a global
technique, and the LIME and Anchor techniques that are punctual. This is good because
it means that the examples that LIME and Anchor take in consideration is not a ”tail”
example, but an example that behaves in a similar way to the other that could be taken.

At the end the file was inserted in the pipeline and it was chosen for the file the Decision
Tree model because, since it was almost equivalent in terms of precision and AUC respect
to the best, but it was faster than eXtreme Gradient Boosting Tree, Random Forests and
Gradient Boosting Machine. It works well, in particular it is bug-free and it last in a
short time.

In fact we can see from the figure 6.1 (the name of the factory is hidden) the output
of Linux when the pipeline is launched; since unit tests are completely absent (we will
focus on this in chapter 7) there is not the test stage, that would have contained that
part. Moreover the time to complete the bug prediction stage is less than the one of the
deploy stage, so it is a short time that does not make the developer wait too much. We
can also see that the total time of the pipeline does not coincide with the sum of times;
in fact the Environment stage does not depend by the Building stage, so they are done
at the same time and the consequence is that it is time-saving. By the way it is the only
stage independent, there would have been the stage test that is independent of the deploy
stage, but here it is not present for the reason explained above.



Figure 6.1: Output of the pipeline





Chapter 7

Discussion

In this work there have been positive and negative aspects, some of them depending on
poverty of resources in terms of tools that could be used, some of them depending on the
original project. In this chapter we will write about them and we will explain in details if
in this thesis there are positive aspects or negative aspects and why and which difficulties
we encountered and how we managed to overcome them.

7.1 Difficulties: what could have done better?

In this section we will discuss about the difficulties and the negative aspects, dividing
them in subsection every step and focusing on how they impact in the correctness and
robustness of the model and the ways that can be used to overcome them.

7.1.1 Data collection

First of all let us start with the first difficulty: how collect data. In the previous chapters,
we briefly discussed the challenges encountered during data collection, but now we are
going looking deeper into these obstacles.

The main problem is the poverty of the data: we had too few data in terms of quantity
of files and in terms of quantity of data about files. Now we are going to see what data
could be studied by the model and the reason why they are not present in our model.

First of all, the coding approach was not the best: in fact, as it is written in the
previous chapters, it is very important to detect bugs as soon as possible and the best
way to do it before using these models is to create unit tests for the code. In fact they
are indispensable to detect bugs that do not make work the software, so they are crucial
to do a first screening. Moreover it is important for prediction bug models to know which
is the part screened by the unit test to do a better job of prediction; of course without
this screening the model has to work on more bugs and consequently it could lose some
power. By the way, the project was done without considering the possibility of building
a model to predict bugs, so unit tests were considered non-essential.

Moreover the documentation was insufficient: it is important not only for developers
to make easy the study of the code in a successive bug fixing session, but also for the model
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to have more data and to be more precise in finding bugs. In fact the documentation for
every file is important to detect the probability of presenting a bug for every file: more
documentation is written about a file, more is the probability of being bug-free for that
file.

Another important challenge of the data collection is that it was difficult to find the
metrics. In fact many online tools are available by paying important sums or they were
not available for students, so since the money budget was not high we could not use
these tools. By the way there was a free-tool that returned some secondary metrics of
the software, such as cognitive complexity, cyclomatic complexity and rating of the file.
However since the files of the project are written half in Python and half in C++, there is a
potential compatibility issue. The tools that calculate complexity metrics for files written
in C++ and Python analyze the source code to identify control flow structures, such as
loops and conditions, and compute the number of possible execution paths through the
code. Complexity metrics, like cyclomatic complexity and cognitive complexity, are then
calculated using specific algorithms tailored to each metric.

However, the complexity values generated by these tools may not be directly compara-
ble between files written in C++ and those written in Python due to intrinsic differences
in the two languages and their structures. This is due to several reasons, first of all C++
and Python have different syntax and semantics, meaning the same code construct could
have a different impact on complexity in the two languages. For example, pointer man-
agement and memory handling in C++ may affect complexity differently compared to
object management and Python’s automatic memory management.

Moreover, while both languages support the same control flow structures (like loops
and conditions), the specific implementations of these structures can vary, affecting the
number of possible execution paths and thus the calculated complexity.

Handling of Libraries and Dependencies: C++ and Python often use different libraries
and frameworks, which can introduce additional complexity to the code. Calls to library
functions, use of external APIs, and dependency management may impact complexity
differently in the two languages.

Another difference between languages is in programming styles and development prac-
tices and they can influence code complexity. For instance, C++ is often used for low-level
application and embedded systems development, while Python is more common in high-
level development environments and web application development.

Therefore, while the complexity values calculated by the tools can provide a measure
of the relative complexity of files in each language, it may not be directly possible to
compare them between C++ and Python due to these intrinsic differences. It is important
to consider the project context and language specifics when interpreting and comparing
complexity metrics.

Coming back to the original problem, the decision taken about this problem is that
we trust in the tool, supposing that the results that gives to us are comparable.

As it is written above the trickiest problem was that the number of files was too few.
In fact there were only eighty-six files, that had to be used to train models and test them
and it was an insufficient number. This problem could be faced in various ways but all
these ways wold have an impact on the final product. For example one idea could be



working on something smaller than files (methods or classes for example), but this would
have made the research of data more difficult and would have transform data in less useful
because many classes and methods could not contain comments and it could have made
the data of the files very similar to each other with many repetitions and so we could not
have much more data. Moreover also for developers is better to concentrate on a file than
on a class to find bugs because he would have a good vision of the whole file. To overcome
this issue, it was decided to create a small Python script for data augmentation based
on the Sci-Py library, which increased the number of samples in a non-random way, but
following the distribution of the original data. This decision helped us to have of course
more data, but some of them are not original data but similar to the original data. It is
not perfect of course, it would have been better if we had a project of more file or more
projects, but this seemed the best way to compensate for the numerical need for data
while maintaining the veracity of the original sample as much as possible. In fact the
additional data points that, as long as possible, had the same statistical distribution as
the original dataset and so they could be considered effectively metrics of a real file. The
number of data we decided to have was five hundred, with this script was possible to do
it. Another reason not to work on classes is the increase in false positives. This would
indeed be a significant issue, as described earlier, because the number of false positives is
a major determinant of model quality. It would almost guarantee to the developer that
the bug is located in a specific place, consequently facilitating its rapid detection and
reducing the time spent on each one.

7.1.2 Error log

Another significant challenge encountered was the difficulty in accessing the comprehen-
sive error log for each individual file within the project. While leveraging Jira, we man-
aged to uncover a trove of past bugs reported by the validation team. However, due the
project’s structure it was not indicated which file contained the bug. Although these bugs
were logged against the final product, the convoluted nature of the project’s architecture
made it arduous to pinpoint the exact file harboring the reported bug.

Furthermore, the absence of a detailed record regarding the bug resolution process
compounded the issue, leaving us in the dark about when and where the bug was recti-
fied. To address this glaring gap in our data, we took proactive measures by augmenting
the dataset with supplementary entries that offer insights into the historical bug occur-
rences associated with each file. Indeed, metrics such as the number of individuals who
have worked on the file, the number of file commits, or the revision history, while not
replacing the count of past bugs, can provide a similar description. Consequently, the
entry for past bugs exhibits a high correlation with these metrics. Therefore, while not
entirely redundant, it would not have been one of the primary components discussed in
the previous chapters. Instead, it would have been almost a dependent component and,
as a result, would have been given little consideration by the predictive model.



7.2 Positive aspects

In this section we will find out the positive aspects of this work and we will introduce the
next chapter of the related works.

First of all it is important to underline that this thesis is based on a real project and
so it is based on real data and on a real problem. This is important because it makes this
work spendable for a project in the ”real world” and it could be an important application
in the software development world.

Another positive aspect is certainly the fact that the various models are compared
using cross-validation, therefore an important work is done under the aspect of bias re-
duction, as explained in the previous chapters. This leads to being a well-done work
under the aspect of model evaluation and consequently leads this ranking of models to be
taken into consideration for future work, in case some company should choose a model
to control the quality of their software and to try to improve it through the research and
removal of bugs.

Furthermore, the Explainable AI part is very useful for explaining what the bug search
is based on and, if the model is reliable, it would also help developers to write code
differently, being careful about the parameters that lead to more errors in the software
files. In fact, new metrics or parameters could be added to the model and see if they have
an important influence or not, so that, in addition to carrying out a study on how to find
bugs in the software, a statistical study can be conducted on which metrics and which
aspects of the code lead to more errors. In fact Explainable AI could help developers to
understand the complex relationships between different parts of a software system. This
could help them to identify potential problems before they occur and it could also help
developers to debug software more effectively. By understanding how the software works,
they could more easily identify the root cause of a bug. The immediate consequence is
an improvement of the performance of software by understanding how the software uses
resources, in fact in this way developers could identify areas where it could be optimized
and they could also create more user-friendly software, understanding how users interact
with the software, designing it to be more intuitive and easier to use.



Chapter 8

Conclusion and Further Studies

In summary, in this thesis we attempted to solve the problem of bugs within software. We
extracted software metrics, but since they were not enough, we increased their number
using data augmentation techniques. Then, we split the dataset into two parts: files with
bugs and bug-free files. We trained various models and tested them to obtain the results.
Finally, we used Explainable AI techniques to understand how the various models worked
and integrated everything into the pipeline.

We have seen that there are some models that are more precise than the others (in
particular

However, this is only a first step. The models could be improved, and above all, better
data could be obtained, as mentioned in the previous chapters. Furthermore, one could
look for a way for the models to work primarily not on static metrics, such as the number
of lines, but rather on dynamic metrics, such as the number of changes since the last
commit or the number of people who have worked on it since the last bug-free commit.
This is because it shows the possibility that a file may have a bug between two commits,
assuming that it was bug-free before the previous commit.

It is also possible to work on a non-deterministic prediction, i.e., not to work on a
model that only outputs whether a file has a bug or not, but rather to divide the whole
thing into more nuances (definitely bug-free, low probability of bug in the file, medium
probability of bug in the file, high probability of bug in the file, definitely has a bug in
the file) to have a more complete view.

Finally, one could work on comparing these models between projects and not between
files to see which ones are more truthful and perhaps also try with a finer granularity
(e.g., at the module level) to see if there is a possibility of further improving the ”zoom”
without affecting the excellent precision figures obtained in this experiment.

We hope that this thesis could be a springboard for the study of other explainable AI
techniques and for improving code quality.
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