UNIVERSITÀ DEGLI STUDI DI PADOVA DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE Department Of Civil, Environmental and Architectural Engineering

Corso di Laurea Magistrale in Environmental Engineering

TESI DI LAUREA

CARBON DIOXIDE CAPTURE BY ALKALINE WASTE MATERIALS: AN EXPERIMENTAL ASSESSMENT

Relatore: Chiar.mo PROF. ING. ALBERTO PIVATO Laureando:

ALBERTO DANELON

Matricola:

Correlatore: DOTT. ING. GIOVANNI BEGGIO 2028623

ANNO ACCADEMICO 2021-2022

CONTENTS

PREMISE	5
PART I - INTRODUCTION	
1.1 INTRODUCTION AND CONCEPTUAL MODEL	5
1.2 CHEMISTRY	
1.2.1 Introduction to carbonation	
1.2.2 Ion equilibrium solution for calcium carbonation	
1.2.3 Final considerations	
1.3 MATERIALS FOR CARBONATION	
1.4 MATHEMATICAL MODELS FOR CO ₂ SEQUESTRA	TION 15
1.4.1 Theoretical models for CO2 sequestration	
1.4.2 Semi empirical models applied to recycled concrete aggregate	s 17
1.5 FURTHER DEVELOPMENTS	22
1.5 TORTHER DEVELOT MENTS	22 27
1.5.1.1 Experimental setup and RPB characteristics	
1.5.1.2 Application field	
1.5.1.3 Results	
1.5.2 Drum reactors pilot-scale experimentation - MSW BA	
1.5.2.1 Experimental setup and characteristics	
1.5.2.2 Application field	
1.5.2.3 Results	
1.5.2.4 Conclusions	
1.5.3 Rotating drum reactor pilot-scale experimentation - Biomass	BA
1.5.3.1 Experimental setup and characteristics	
1.5.3.3 Results	
1.5 CRITICAL REVIEW	
1.6.1 Methodology adopted for critical review	
1.6.1.1 Premise	
1.6.1.2 Objective	
1.6.1.3 Analysis methodology	
1.6.2 Papers analyses and data collection	
1.6.2.1 Reactors classification	
1.6.2.2 Materials for accelerated carbonation classification	
1.6.2.5 Scale of the experiment	
1.0.2.4 Operations route and variables	
1.6.2.5 Characterization of material sol bent 1.6.2.5 Results	31
1.6.2.6 Methods to measure carbonates content	31
1.6.2.7 Operative conditions	
PART II – SCIENTIFIC PAPER	
2.1 INTRODUCTION	
2.1.1 The role of the carbon accelerated carbonation in the Clim	nate change and carbon neutrality
2 1 2 The accelerated carbonation in the field of waste residues	
2.1.2 The accelerated carbonation materials	
2.1.4 Carbonation Chemistry	34
2.1.3 Critical review	
2.1.4 Introduction to our experimental study	

2.2 MATERIALS AND METHODS	
2.2.1 Experimental design	
2.2.2 Materials	
2.2.3 Accelerated carbonation test	
2.2.4 Chemical analyses	
2.2.5 Statistical analysis.	
2.3 RESULTS AND DISCUSSION	47
2.3.1 Influence of operative conditions on the process	
2.3.1.1 L/S	
2.3.1.2 Granulometry	
2.3.1.4 Mass	
2.3.2 Comparison with scientific literature	
2.3.3 Mobility of pollutants after the the accelerated carbonation tests	
2.4 Conclusions	55
PART III - ANNEX	56
ANNEX I: Included papers table comparison	56
ANNEX II: Full table comparison	59
ANNEX III: Quantitative analysis table of the included papers	67
ANNEX IV: Mathematical models calculations	
ANNEX V: Box plot Mild and Intensive conditions	
ANNEX VI: Box plot Very Mild, Mild, Intensive, Very intensive conditions	74
ANNEX VII: Schematic of the Accelerated carbonation setup experiment	
ANNEX VIII: Calcimetry results and CO ₂ content calculations	
ANNEX IX: Moisture content of the sample	
ANNEX X: Temperature, pressure and relative humidity of the CO ₂ incubator	
ANNEX XI: Hardness test of leachate water	
ANNEX XII: Leachate tests analyses	
ANNEX XIII: Experimental setup photos	
ANNEX XIV: Experimental Results	102
REFERENCES	112

PREMISE

This written elaborate resumes the master thesis work carried out between February and November 2022. It consists of three parts. Part I plays an introductory role to give the key concepts for a full comprehension of the subject of accelerated carbonation. Part II consists of a scientific article that summarizes the theoretical considerations found in the literature with a systematic bibliographic research, and the experience of an experimental work performed in the laboratory. The second part is the real heart of the work, since it was written as a scientific article that will be submitted to a specialized peer reviewed journal in order to be published. Part III contains all the dirty work that does not appear in the previous two. It is made up of graphs, tables and calculations that have been utilized for the realization of the entire master thesis project.

PART I - INTRODUCTION

1.1 INTRODUCTION AND CONCEPTUAL MODEL

Since the aim of this study is to start from a bibliographic review to understand how the accelerated carbonation processes have been carried out in literature, a conceptual model was designed to further understand the mechanisms of the accelerated carbonation and to design the experimental campaign. In Fig. 1 the schematic of the conceptual model is displayed. The systematic review has the purpose to identify the parameters for the evaluation of the process, to obtain a list of parameters with standards, equipment and references. Moreover, it has the objective to identify the potentiality of CO2 capture of the different materials tested in previous accelerated carbonation study. At last the systematic review has as its goal to define the technology: classify the sorbent materials, the route of the process and the operative conditions. All these information are present in the paragraph related to the critical review. Since formulas for the theoretical prediction of the CO₂ uptake are widely used in the literature, a paragraph has been dedicated to mathematical modelling. Through the data collected by literature analyses, the design of experimental activities was created. The paragraph named "Part 2" related to the experimental campaign collects all the information regarding the execution of the experimental campaign. It has the purpose to investigate the possibility of applying the accelerated carbonation process on a mix of alkaline wastes with the aim of assessing their potential for CO₂ sequestration. Different conditions have been tested to provide the basis for a future scale up of the process. For the purpose of this work, several accelerated carbonation tests were performed at three different grain sizes (0/6mm, 6/16mm and 16/31mm) according to 3 different liquid to solid ratios (L/S=0.0 L/kg, L/S=0.2 L/kg and L/S=0.3 L/kg), for three different times (2, 4, 8h) to 4 different masses (200g, 100g, 50g, 25g) under fixed operating conditions (relative humidity, CO₂ concentration, pressure and temperature).

Figure 1. Schematic of the conceptual model.

1.2 CHEMISTRY

1.2.1 Introduction to carbonation

The process is based on acid-base reactions in which carbonate acid is neutralized by a base (alkaline mineral). After this neutralization reaction, carbon dioxide is fixed in solid state in the form of carbonate. Because of the wide range in composition of alkaline wastes, other oxides like (free *CaO*, *Ca*(*OH*)₂, *Ca*2*SiO*3, *MgO*, *K*2*O*, *Na*2*O*) also react with carbon dioxide and contribute to the carbon sequestration. Not only *Ca*(*OH*)₂, but also other hydrate compounds can react with CO₂. For instance, $Mg(OH)_2$ produce $MgCO_{3(s)}$ and the calcium-silicate-hydrates (C-S-H) produce *CaCO*3 and a silica gel.

The general formula that summarizes the entire calcium carbonate formation process states that lime $(CaO_{(s)})$ reacts with carbon dioxide according to the following reaction:

$$CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}; \ \Delta H = -178 \ kJ/molCO_2$$

In calcium rich wastes, free *CaO* hydrates to *Ca(OH)*₂. The *Ca(OH)*₂ dissolves providing high concentrations of Ca^2^+ and OH^- . A high pH value conditions are es, the water acts as a CO₂-trap where carbonic acid formed at equilibrium with the prevailing *CO*₂ partial pressure fully dissociates to $CO_3^2^-$. The protons released are neutralized by OH^- whereas Ca^2^- combines with the carbonate anion and precipitates as *CaCO*₃.

This process is represented by:

$$Ca(OH)_{2(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + H_2O_{(l)}; \Delta H = -113 \, kJ/molCO_2$$

This process is better explained through the following equations:

$$CO_{2(g)} + H_2O_{(l)} \to 2H^+_{(aq)} + CO^{2-}_{3(aq)}$$

$$CaO_{(s)} + H_2O_{(l)} \to Ca(OH)_{2(s)}$$

$$Ca(OH)_{2(s)} \to Ca^{2+}_{(aq)} + 2OH^-$$

$$Ca^{2+}_{(aq)} + CO^{2-}_{3(aq)} \to CaCO_{3(s)}$$

As magnesium oxide is present in significant concentrations in alkaline wastes (in particular it is the most present after lime) magnesium oxides reactions with carbon dioxide are presented:

$$MgO_{(s)} + CO_{2(g)} \rightarrow MgCO_{3(s)}; \Delta H = -118kJ/molCO_2$$

Even hydrated magnesium reacts with carbon dioxide to form magnesium carbonate as the following equation:

$$Mg(OH)_{2(s)} + CO_{2(g)} \rightarrow MgCO_{3(s)} + H_2O_{(l)}; \Delta H = -81kJ/molCO_2$$

Since Enthalpy has a negative value, the reactions are exothermic, so it produces heat. According to Le Chatelier principle, if temperature increase, the product formation is inhibited.

1.2.2 Ion equilibrium solution for calcium carbonation

Carbonation involves 3 steps: the leaching of calcium in solid particles, dissolution of CO₂ into the solution, carbonate precipitation.

1.2.2.1 Leaching of calcium and metal oxides.

The first step of carbonation was believed to be the leaching of calcium in solid particles. Dissociation of calcium species present in alkaline solid waste is favored at low pH. The dissolution of lime and other metal oxides in water causes a strong increase in pH (10.88–11.88). Usually the alkaline-metal oxides are blocked into the silicate, aluminate or ferrite phase. One of the most present metal-oxide in alkaline waste is larnite $Ca_2SiO_{4(s)}$. While, for instance MgO is rarely present in pure form. The dissolution process of lime and larnite in water is presented through the following equations:

$$CaO_{(s)} + H_2O_{(l)} \rightarrow Ca^{2+} + 20H^-_{(aq)}$$

 $Ca_2SiO_{4(s)} + 2H_2O_{(l)} \rightarrow 2Ca^{2+} + H_2SiO_{4(s)} + 20H^-_{(aq)}$

In order to improve this process, is necessary to disintegrate coarse, or larger granular feed solids to obtain a finer granulometry.

1.2.2.2 Dissolution of carbon dioxide into the solution

The second step of carbonation is assumed to be the dissolution of CO₂ into the solution. CO₂ has a critical point at 31.06°C and 73.8 bars and a critical density of 0.469 g/cm3. It could be dissolved from the atmosphere in available water, and carbonic acid can be created with a pH around 5.6. In addition, diffusion of CO₂ in water is approximately 10000 times lower than in air as Henry's constant will demonstrate. CO₂ can be physically absorbed in water (or a solvent) in accordance with Henry's law. Henry's law states that the relationship between the gas solubility in water and the partial pressure of the gas is strictly valid only for gases that can be infinitely diluted in solution. The binding of the solvent with CO₂ occurs at high pressure, and a reduction in pressure releases the gas.

The amount of CO₂ dissolution in water can be expressed by Henry's law as shown in previous equations:

$$C_{CO_2} = H_{CO_2} \cdot P_{CO_2}$$

Where C is the concentration of CO₂ dissolved in aqueous solution (M); HCO₂ is Henry's constant for CO₂ (= $10^{-1.46}$ M/atm at 25°C); and P_{CO2} is the partial pressure of CO₂ in the gas phase (atm). Therefore, the higher partial pressure of CO₂ will result in a large amount of dissolved CO₂.

In addition, Henry's constant is a function of temperature that can be modified by the following equation: (Morel and Hering, 1993)

$$K_{H,T} = K_{H,298K} \cdot \exp\left[C \cdot (\frac{1}{T} - \frac{1}{298})\right]$$

Where C is the constant for all gases (2400 K for CO₂) and T is the temperature (K).

Dissolution of CO_2 into water is pH-dependent because of the dissociation of carbonic acid (H_2CO_3) into carbonate ($CO_3^2^-$) and bicarbonate (HCO_3^-) ions. The dissociation of the carbonic ions is shown in the following equations:

$$CO_{2(g)} + H_2O_{(aq)} \rightarrow H_2CO_{3(aq)}$$

 $H_2CO_{3(aq)} \rightarrow H^+_{(aq)} + HCO^-_{3(aq)} \rightarrow 2H^+_{(aq)} + CO^{2-}_{3(aq)}$

The corresponding equilibrium constants could be expressed as function of K_a, K_b :

$$K_a = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}; \qquad K_b = \frac{[H^+][CO_{3(aq)}^2]}{[HCO_{3(aq)}]};$$

where $K_a = 10^{-6.3}$; $K_b = 10^{-10.3}$ at 25°C.

Fig.2 shows the mole balance and equilibrium conditions for carbonation of alkaline solid wastes.

Figure 1 Mole balance and equilibrium conditions for carbonation of alkaline solid wastes.

The mole balances of the carbonic acid system can be expressed as:

$$C_T = \left[H_2 C O_{3(aq)}\right] + \left[H C O_{3(aq)}^{-}\right] + \left[C O_{3(aq)}^{2-}\right]$$

where C_T is the total inorganic carbon (TIC) concentration (M).

By substitution of K_a , K_b into Eq.15, an explicit formula for $[H2C03^*(aq)]$, $[HC03^-(aq)]$ and $[C03^2^-(aq)]$ is obtained as:

$$\left[H_2 C O_{3(aq)}\right] = \alpha_0 \cdot C_T; \, \alpha_0 = \frac{[H^+]^2}{[H^+]^2 + K_a [H^+] + K_a K_b};$$

$$[HCO_{3(aq)}^{-}] = \alpha_1 \cdot C_T; \qquad \alpha_1 = \frac{K_a[H^+]}{[H^+]^2 + K_a[H^+] + K_aK_b};$$
$$[CO_{3(aq)}^{2-}] = \alpha_2 \cdot C_T; \quad \alpha_1 = \frac{K_aK_b}{[H^+]^2 + K_a[H^+] + K_aK_b};$$

Where the fraction (α_i) of each carbon species present is dependent on the solution pH.

At a low pH (~4), the production of H_2CO_3 dominates, at a mid pH (~8) HCO_3 dominates, and at a high pH (~12) CO_3^2 dominates. Therefore, accelerated carbonation is favored at a basic pH due to the availability of carbonate ions. Alkaline wastes, due to the high concentration of metal oxides, are characterized by a basic pH. Thus, they establish good conditions for carbonation therefore they are suitable materials for carbon capture and storage studies.

Dissolution of Carbon Dioxide into Solution - Kinetics

In Fig.3 the kinetics of dissolution of CO₂ and dehydration of H₂CO₃ are presented. It was noted that these two reactions should occur simultaneously as shown in the figure below.

Figure 3. Dissolution of Carbon Dioxide into Solution

Therefore, the rate expression of the dissolution-dehydration reaction is:

$$-\frac{d[CO_2]}{dt} = (k_1 + k_2)[CO_2] - k_{-1}[H_2CO_3] - k_{-2}[HCO_3^-][H^+]$$

By substituting the relations of K_a , K_b into the rate expression of the dissolution-dehydration reaction, we obtain:

$$-\frac{d[CO_2]}{dt} = (k_1 + k_2)[CO_2] - (k_{-1} + k_{-2}k_{\alpha 1})[H_2CO_3] = k_{CO_2}[CO_2] - k_{H_2CO_3}[H_2CO_3]$$

where the overall rate constants in Eq. were simplified to be k_{CO2} and k_{H2CO3} . The values of k_{CO2} and k_{H2CO3} at 25°C were 0.032 s⁻¹ and 26.6 s⁻¹, respectively. However, at higher pH (pH > 9), an alternative reaction pathway would be expressed as:

 $CO_2 + OH^- \leftrightarrow HCO_3^-$; with kinetic rate constant k4. Where k4 (i.e., 8500 1/M-s at 25°C) and k-4 (i.e., 0.0002 s⁻¹ at 25°C) are the rate constants.

1.2.2.3 Carbonate precipitation

The carbonation formulation can be simply described by:

$$Ca^{2+}_{(aq)} + CO^{2-}_{3(aq)} \rightarrow CaCO_{3(nuclei)}$$
$$CaCO_{3(nuclei)} \rightarrow CaCO_{3(s)}.$$

Contact between Ca^{2+} -ions and CO₂ leads to *CaCO*₃ precipitation, which is almost insoluble in water at pH levels above 9 (the solubility of *CaCO*₃ is 0.15 mmol/L at 25°C).

The solubility-product constant (K_{Sp}) of calcium carbonate as shown in Eq. 124 ranges from 3.7 × 10^{-9} to 8.7 × 10^{-9} at 25°C, and 4.47 × 10^{-9} .

 $K_{sp} = [Ca^{2^+}][CO_3^{2^-}]$. Where $[Ca^{2^+}]$ and $[CO_3^{2^-}]$ are the concentrations of calcium and carbonate ions (M) in the solution, respectively.

Rate of Calcium Carbonate Precipitation

The carbonation reaction is regulated by solution equilibrium, and the reaction of calcium ions combining with carbonate ions is very fast. It was widely assumed that the carbonation reaction as shown in previous equation was of the first order with respect to the concentrations of Ca^2^+ and $CO_3^2^-$.

Therefore, the rate of carbonation could be expressed by the following differential Equation:

$$Q_{CO_2} = \frac{d(CaCO_3)}{dt} = \frac{d(CO_3^{2^-})}{dt} = k[Ca^{2^+}][CO_3^{2^-}]$$

where C_{CaCO3} is the concentration of calcium carbonate (mole/L), and k is the reaction rate coefficient (1/mol-sec).

The precipitation rate is related to the CO_3^2 concentration in the liquid phase, but not to the concentration of other species containing carbonate. In addition, the reaction rate coefficient (k) is dependent on the reaction temperature according to Arrhenius's law.

As the calcium ions are converted to metal carbonates and precipitated out, more calcium hydroxide dissolves to equalize the concentration of metal ions. Although the Ca^{2+} ion dissolution kinetics improved with increasing temperature, carbonation precipitation was retarded at higher temperatures due to reduced CO_2 solubility. That's why it is convenient to operate at mild conditions (T=room temperature).

Dissolution or crystallization of precipitations does not occur instantaneously. Some characteristic time, often longer than the time constant for the overall process, is needed to achieve a new equilibrium.

In nature, calcium carbonate crystallizes most commonly in hexagonal form (as calcite) but also occurs in orthorhombic form (aragonite). Analyzing the results of the carbonation process using steelmaking slag, the carbonates crystallize mainly in calcite ($CaCO_3$). The crystal volume of calcium carbonate is approximately 11.7 % more than that of calcium hydroxide. This means that in general, the pore structures of solid wastes are thought to become finer with carbonation, leading to a solid of lower porosity, and lower pore area with calcite infilling the pore space after carbonate. Therefore, when carbonation occurs it can be expected that after a rapid increase of carbonate mass, there will

be a smaller increase. This is also demonstrated by experimental results, where the the curve representing CO2 uptake during time is steep for the first hours and then become asymptotic.

Alkaline wastes contain lots of different metal oxides, and as reported before, the dissolution of them in water causes an increase in pH. Calcium is not the most soluble, it is preceded by magnesium, and followed by other metals with less relevance for carbonation. The descending order for solubility of metal oxides is as follows: $Mg^2 > Ca^2 > Zn^2 > Cd^2 > Pb^2$.

It is interesting to note that for magnegium oxide carbonation, which is present mainly in steel slags, mild operating conditions would not be effective. Indeed, limited $MgCO_3$ formation for carbonation of steel slag under ambient conditions was expected due to the relatively low magnesium oxide content in the slag (with respect to calcium and silicious oxides), low pressure of CO_2 and short reaction times (we remember mild operating conditions was defined as P= 1bar (atmospheric pressure), T=25°C (room temperature)). Typical process conditions for the formation of magnesium carbonation via aqueous carbonation are $pCO_2 > 100$ bar and a reaction time of hours. However, $MgCO_3$ formation could be observed when natural ores (serpentine, olivine) were selected as the feedstock for carbonation, but this is out of concern of this study.

1.2.3 Final considerations

In order to obtain carbonation reactions there are challenges to face. The first one is that the dissolution of calcium species in alkaline solid waste is favored at low pH, however it is not favored for the precipitation of calcium carbonate. Moreover, the Ca^{2+} ion dissolution kinetics improved with increasing temperature as carbonation precipitation (since it follows the Arrhenius law) but this one was retarded at higher temperatures due to reduced CO_2 solubility. After all, carbonation reactions need water to happen, that's why a wet route experiments are preferred. Therefore, this suggests that a well-designed reactor to enhance the mass transfer between the gas, liquid, and solid phases is needed to facilitate the carbonation reaction and increase the carbonation conversion. In the end, finding a balanced operating condition between these two mechanisms is essential for optimizing the overall carbonation process.

1.3 MATERIALS FOR CARBONATION

1

Both alkali metals (i.e., Na, K, etc.) and alkaline earth metals (i.e., Ca, Mg, etc.) can be carbonated from a chemical elements perspective and a thermodynamic view point. A number of other metals such as Mn, Fe, Co, Ni, Cu, and Zn could potentially be carbonated, but most of these metals are impractical due to their unique and precious features. To provide significant storage of CO₂, large amounts of raw materials are required as feedstock for carbonation, which must be abundant and cheap. One kind of feedstock for accelerated carbonation is natural silicate minerals, such as wollastonite (CaSiO₃). serpentine (Mg3Si2O5(OH)4), olivine (Mg_2SiO_4) . talcum (Mg3Si4O10(OH)2), pyroxene, and amphibole, which are rich in calcium or magnesium content, or industrial residues, the former being abundant but generally difficult to access and the latter relatively scarcer but easily accessed. Although the CO2 storage capacity of these natural Ca-Mg-silicate minerals is sufficient to fix the CO₂ emitted from the combustion of fossil fuels, the technological carbonation of these minerals is slow and energy demanding. One way to avoid some of these drawbacks is to utilize alkaline waste residues.

The goal of accelerated carbonation is to reduce the time that is necessary for the natural weathering processes, in which CO₂ reacts with metal oxide bearing materials to form stable and insoluble carbonates. Calcium or magnesium oxides are the most favorable metal oxide in reacting with CO₂. Besides that, carbonation is an exothermal reaction, so energy consumption and costs may be reduced by its inherent properties. In all cases, carbonation must provide base ions, such as monovalent sodium and potassium, or divalent calcium and magnesium ions to neutralize the carbonic acid. Other carbonate-forming elements such as iron carbonates are not practical due to their unique and precious features. Industrial residues such as steelmaking slags, combustion residues, waste concrete, fly ashes, etc. are alkaline and also appear to be potential raw materials for CO₂ sequestration by accelerated carbonation due to the fact that these materials are generally rich in metal oxides including calcium, magnesium, aluminum, iron, and manganese oxide. Tab.1 shows the mineralogical composition of these alkaline wastes.

Waste group	Major compounds in Carbonation
Steelmaking Slag	Larnite (Ca2SiO4); Brownmillerite (Ca2FeAlO5); Lime (CaO); Ettringite (Ca6Al2OH12(SO4)3•26H2O); Portlandite (Ca(OH)2)
MSWI fly ash	Lime (CaO); Portlandite (Ca(OH)2); Ca(OH)Cl; Gehlenite (Ca2Al2SiO7)
MSWI bottom ash	Gehlenite (Ca2Al(AlSiO7)); Portlandite (Ca(OH)2); Ettringite (Ca6Al2OH12(SO4)3•26H2O)
Cement kiln dust	Lime (CaO); Portlandite (Ca(OH)2); Calcium silicates; Gehlenite (Ca2Al(AlSiO7))

Table 1. Major cmompounds involved in carbonation present for each waste group.

Accelerated carbonation of applied industrial alkaline solid wastes include many potential advantages. For instance, carbonation products such as calcium or magnesium carbonates are thermodynamically stable under ambient conditions, that is, in the absence of acidification. Since these wastes have been largely produced around the world, they offer great availability of deposits. Moreover a carbon capture technology based on these wastes may be useful for these highly emitting industries where alkaline wastes are produced (i.e. cement factories, foundries, incinerators etc.). And then it does not require transport at sites, so it is therefore cost effective. Moreover, products may be beneficially reused in a variety of application, such as construction materials. This also because carbonation eliminates environmental impacts due to decreased leaching of heavy metal trace elements such as Pb, Ni, and Cd from residues and stabilizing of the waste leading to an improvement of environmental quality.

Industrial alkaline solid wastes such as sources of calcium or magnesium oxide are ideal CO₂ sequestration materials due to their availability and low cost. These materials are generally rich in calcium-content and often associated with CO₂ point source emissions, so no mining is needed and the consumption of raw materials is avoidable. In addition, these solid wastes tend to be chemically less stable than geologically derived minerals. Carbonation of industrial solid waste does not generally require the extraction of reactive ions from the solid matrix due to the alkaline-containing silicates, oxides and hydroxides as the mainly reactive phase. Since CaO is one of the most concerned chemical compounds in carbonation, its content can give an idea on the carbon capture of these materials. In Fig.3 the relationship of CaO content with the actual CO₂ capture capacity of various alkaline solid wastes in the literature is displayed. It's pointed out that a higher lime content is related to a greater carbon capture potential. The CaO contents were significantly high in the following wastes: steelmaking slag (30–60% wt. CaO), residues from APC (Ca content up to 35%) and bauxite (4.8% Ca), cement kiln dust (~34–50% wt. CaO), oil-shale waste (CaO content up to 50%), and fly ash (53% CaO) from municipal solid waste incinerators.

Figure 3. Comparison of actual CO₂ capture capacity with the CaO content in solid for different types of wastes.

1.4 MATHEMATICAL MODELS FOR CO2 SEQUESTRATION

1.4.1 Theoretical models for CO2 sequestration

(Steinour et al., 1959) have proposed a formula to calculate the maximum theoretical amount (mass percentage) of CO_2 that can be stored in cement-based materials considering their oxide contents. In particular it relies on carbonation reactions to synthesized metal carbonates from metal oxides present in cement. It is applied on conventional ordinary Portland cement concrete. They indicated that all the *CaO* present in Portland cement except the one present in the form of *CaSO*₄ can be converted to *CaCO*₃, all *MgO* to *MgCO*₃, all *Na2O* to *NaHCO*₃, all *K2O* to *KHCO*₃.

For the purpose of the calculations, it was assumed that free water was present and that the solids were freely exposed so reactions could progress as it would if a powder were stirred in a laboratory beaker with water kept saturated with carbon dioxide. Therefore, in dense concrete the reaction would only be superficial.

 $\% ThCO_2 = 0.785 \ CaO + 1.091 \ MgO + 1.41 \ Na_2O + 0.935 \ K_2O - 0.55 \ SO_3$.

Where: ThCO2 = theoretical CO2 storage capacity in mass % gCO2/gCement, CaO = gCaO/gCement mass fraction of calcium oxide, SO3 is the mass fraction of sulfur trioxide, MgO is the mass fraction of magnesium oxide, Na2O is the mass fraction sodium oxide, K2O is the mass fraction potassium oxide.

Despite the fact that the Steinour formula was developed to work with cement-based materials, many authors applied it for assessing potential carbon dioxide uptake of different materials which have high alkaline metals oxides content, for instance: (Nam et al., 2012a).,(Schnabel et al., 2021).,(Chang et al., 2015) applied it to municipal solid waste incineration bottom ashes;(Yuan et al., 2022), (Schnabel et al., 2021) (Pei et al., 2018) applied it to fly ashes from incinerators and power plant; (Schnabel et al., 2021) applied it to steel slags.

The formula has been modified in order to reduce the gap between theoretical and experimental quantities of CO2 stored measured in laboratory. Indeed, the theoretical equation gives the potential (and so maximum) amount of the CO2 uptake considering that all alkaline metals oxides would react. Actually, this doesn't happen, as the reactions take place near the surface of the aggregates particles and the formation of calcium carbonate impedes further carbonation. As we will see, there is not correlation between chemical species considered in the Steinour equation modified by the authors and the materials for which it is used.

(Nam et al., 2012a) applied the original Steinour equation for assessing carbon dioxide storage of bottom ashes. They considered chemical composition of municipal solid waste incineration bottom ash can vary depending on the incinerating and operating conditions but decided to apply the original formula previously conceived for Portland cement.

(Schnabel et al., 2021) cites the Steinour Equation by (Huntzinger et al., 2009) for assessing potential carbon dioxide uptake on several materials which they are: steel slags, fly ashes, bottom ashes. They consider that the oxides of Ca, Mg, Na, and K undergo carbonation, while the corresponding carbonates as well as sulfur and chlorine compounds ($CaCO_3, SO_3$, and KCl) lower the CO_2 uptake. They considered that the chemical composition of these materials is different from the one of the Portland cements, so they adapted the formula changing the coefficient of Na_2O and K_2O , and considering the contribution of KCl and of the already present $CaCO_3$.

$$\label{eq:main_state} \begin{split} \% ThCO_2 \ = \ 0.785\ CaO \ + \ 1.091\ MgO \ + \ 0.71\ Na_2O \ + \ 0.468\ K_2O \ - \ 0.55\ SO_3 \ - \ 0.44CaCO_3 \\ \ + \ 0.296KCl \end{split}$$

Where: CaO=mass fraction of the calcium oxide on the total sample mass in %, MgO=mass fraction of the magnesium oxide on the total sample mass in %., Na_2O =mass fraction of the sodium oxide on the total sample mass in %, K_2O =mass fraction of the potassium oxide on the total sample mass in %, SO_3 =mass fraction of the sulfur trioxide on the total sample mass in %, $CaCO_3$ =mass fraction of the calcium carbonate on the total sample mass in %, KCl=mass fraction of the potassium chloride on the total sample mass in %.

The same formula has been considered for assessing potential carbon dioxide uptake on recycled concrete aggregates by (Fang et al., 2017), (Xuan & Poon, 2018); but in this case they modified it by removing the contribution of *KCl*. So the formula becomes:

%ThCO₂ = 0.785 CaO + 1.091 MgO + 0.71 Na₂O + 0.468 K₂O - 0.55 SO₃ - 0.44 CaCO₃.

The same coefficient for K_2O reported by (Steinour et al., 1959.) and (Nam et al., 2012a) was reported also by (Pei et al., 2018)., which used this Steinour equation modified to assess the carbon sequestration of petroleum coke fly ashes. Unlike them, Pei et al. don't consider the contribution of *Na*₂*O*, instead they considered the contribution of *CaCO*₃. The formula becomes:

 $\% ThCO_2 = 0.785 \ CaO + \ 1.091 \ MgO + \ 0.935 \ K_2O - 0.55 \ SO_3 - 0.44 \ CaCO_3.$

(Yuan et al., 2022) also modified the Steinour equation, for assessing the CO_2 captured by fly ashes aggregates. But they only considered the contribution of CaO, MgO, $CaCO_3$. So the modified formulation is changed as:

 $\% ThCO_2 = 0.785 CaO + 1.091 MgO - 0.44 CaCO_3$.

Similarly to (Yuan et al., 2022), even (Chang et al., 2015) considered only the contribution to carbonation of three chemical species, which are: CaO, SO_3 , $CaCO_3$. They did not considered the contribution of MgO due to the relatively low content of MgO in the bottom ashes. They assessed the carbon sequestration on bottom ashes, and reported the following formula:

 $\% ThCO_2 = 0.785 \ CaO - 0.55 \ SO_3 - 0.44 \ CaCO_3 \,.$

If we compare the theoretical formulas applied to assess carbon dioxide sequestration for the same material, we don't find any correlation between chemical species considered by each author and the material itself. For instance considering the fly ashes, compared to the more complete formula of (Schnabel et al., 2021), (Pei et al., 2018) al does not consider the influence of Na_2O and KCl, and finally (Yuan et al., 2022)) It does not consider the influence of Na_2O , KCl, K_2O and $CaCO_3$. The same occurs with the bottom ashes, where (Nam et al., 2012a) consider the influence of CaO, MgO, Na_2O , K_2O , SO_3 , while (Chang et al., 2015) take into account $CaCO_3$ but not MgO, Na_2O , K_2O . In the end we can conclude the authors consider different chemical species with different coefficients for assessing the carbon uptake for the same material. Theoretical models have been collected in ANNEX IV to be completed with quantitative data (%mass of chemical species), thus obtain a $%ThCO_2$ in mass %.

1.4.2 Semi empirical models applied to recycled concrete aggregates

The theoretical amounts of sequestrated CO_2 calculated with the Steinour formula do not depend on others factors other than the chemical composition. However, the carbonation rate and CO₂ uptake of alkaline materials would be greatly influenced by factors as: time of reaction, humidity, temperature, CO_2 partial pressure and concentration of CO_2 , CO_2 flow, water to solid ratio, cement content and particle size.

(Fang et al., 2017) (Kaliyavaradhan et al., 2020) worked on carbon dioxide storage of recycled concrete aggregates. They developed semi-empirical models which fits the experimental results according to the change of process parameters.

1.4.2.1 Kaliyavaradhan et al. model

(Kaliyavaradhan et al., 2020) studied the carbonation effects on recycled concrete aggregates. They proposed a semi-empirical model in wich the CO2 uptake depends on the water to solid ratio and the reaction time. The effects of two process parameters, were evaluated on maximum CO2 uptake capacity of concrete slurry waste using response surface methodology.

In this study, field of application sees that: the w/s ratio is ranging from 0 to 0.7 and reaction time is ranging from 1 to 168 h, while keeping other factors constant (temperature: 20 °C, relative humidity: 65 %, and CO₂ concentration: 20 %).

Response Surface Methodology is an effective statistical method used for optimizing the process conditions and developing the models. It can evaluate the influence of various experimental factors and their interactions on one or more response variables under investigation. The relationship between experimental variables and one or more response (by the model) variables can be established by a regression procedure using a second-order polynomial equation.

$$[y = \beta_0 + \Sigma \beta_i X_i + \Sigma \beta_{ii} X_i^2 + \Sigma \beta_{ij} X_i X_j + \varepsilon]$$

Where: y = predicted response, $\beta_0 =$ intercept, $\beta_i =$ linear effect coefficient, $\beta_{ii} =$ quadratic effect coefficient, $\beta_{ij} =$ interaction effect coefficient, X_i , $X_j =$ independent variables, $\varepsilon =$ residual.

In this study, field of application sees that: the w/s ratio is ranging from 0 to 0.7 and reaction time is ranging from 1 to 168 h, while keeping other factors constant (temperature: 20 °C, relative humidity: 65 %, and CO₂ concentration: 20 %).

This method produced a statistical model to predict the maximum CO2 uptake:

$$Uptake_{co_2}(sample) = +5.607 + 90.906 (w/s) + 0.193 (t) - 0.0687 (w/s * t) - 257.917 (w/s)^2 - 0.00206(t)^2 - 0.00172 (w/s)^2 * (t) + 0.0006 (w/s) * (t)^2 + 195.039 (w/s)^3 + 0.000063 (t)^3$$

Where: $Uptake_{CO_2}(sample) = mass of CO_2$ sequestered by the dry mass of sample predicted by the model, in %; w/s = water to solid ratio [kg/kg]; t = time [h].

This model showed predicted results near the ones measured in laboratory. The Absolute Relative Deviation (ARD%) was the parameter chosen as a measure of predictability. It is defined as:

$$ARD(\%) = \frac{Experimental \ value - Predicted \ value}{Experimental \ value} \cdot 100$$

It was found ARD to be 0,8% and 3,0% for two samples. Being less than 10% means this semi empirical model is a very effective tool for predict *CO*₂ sequestration.

1.4.2.2 Fang et al. model

(Fang et al., 2017) developed a semi empirical model by regression analysis of the gathered data, for the CO_2 uptake of recycled concrete aggregates. They tried to find an equation that relates the CO₂ uptake of the sample (from experimental results) and the potential CO₂ uptake of the sample (related to the Steinour equation), carbonation duration (t), particle size (d), relative humidity, CO₂ concentration ([CO₂]) and pressure (P) or flow rate (v) (P for pressurized carbonation and v for flow-through carbonation). A is a factor depending on the carbonation route (batch and pressurized reactor or open and flow through reactor).

The CO₂ uptake (g) presented was normalized to 1 kg of RCAs (noted as *CO*2 uptake(sample) (g/kg)).

The following general equation expresses the relationship between the CO₂ uptake (*CO*₂ uptake), theoretical CO₂ uptake potential (*Potential*_{CO₂}(sample)), carbonation duration (t), particle size (D), relative humidity (*RH*), CO₂ concentration [*CO*₂] and pressure (*P*) or flow rate (*Q*).

$$Uptake_{CO_2}(sample) = A * f(t, d, RH, [CO_2], P, Q) \cdot Potential_{CO_2}(sample)$$

According all previous considerations on test conditions, for the parameters including time, relative humidity, size of aggregates, CO₂ gas concentration and carbonation methods (open or closed reactor), their relationships with CO₂ uptake can be written as:

 $CO2 uptake(sample) = A * f(t, d, RH, [CO_2], P, Q) \cdot Potential_{CO_2}(sample)$

• **Carbonation potential** *Potential*_{CO₂}(sample)

Natural carbonation starts right after the concrete is prepared. In order to calculate the CO_2 uptake during accelerated carbonation, we need to assess the initial CO_2 uptake before accelerated carbonation, defined as $m^0_{CO_2}$. This step was to set up a reference point, so that the increment in CO_2 uptake is the result of the accelerated carbonation. Accordingly, X^0 represents the mass ratio of the initial CO_2 uptake to cement:

$$X_{CO_2}^0 = \frac{m_0^{CO_2}}{C_m \cdot m_{RCA}}$$

Where: $X_{CO_2}^0$ = mass ratio of the initial *CO*₂ uptake to cement [%]; C_m = cement mass inside the RCA sample [%]; $m_0^{CO_2}$ = initial mass of *CO*₂ already carbonated [g]; m_{RCA} = mass of the RCA sample [g]. Here, is set =1kg.

So, the potential uptake in RCA can be expressed as:

 $Potential_{CO_2}(sample) = m_{RCA} \cdot C_m \cdot (\%ThCO_2 - X_{CO_2}^0).$

%*ThCO*₂ is the theoretical maximum *CO*₂ uptake obtained by the Steinour formula. This formula was applied to $C_m = 12,11 - 22,47$ %; $X^0_{CO_2} = 8,4 - 12,47$ %.

• Carbonation extent (CO2 uptake) by RCA as a function of time

It is generally known that the relationship between carbonation depth and time of a monolithic concrete is:

$$x_c \propto \sqrt{t}$$

with x_c =carbonation depth, t =time. The above equations are therefore further modified to establish the relationship between CO₂ uptake and carbonation duration:

CO2 uptake(sample)
$$\propto \frac{\sqrt{t}}{(a+\sqrt{t})}$$

CO2 uptake(sample) (g/kg) is the CO2 uptake of 1 kg dry RCAs for a duration of t (hours).

According to their experiments, a= regression constant =1,2; R^2=0,8. The field of application of these experiments are 0-24h.

• Carbonation extent (CO2 uptake) by RCA as a function of particle size

The particle size of RCAs affects CO₂ uptake in several aspects. One of them is that larger particles have lower area per unit of mass, meaning that RCAs with larger particle sizes have a slower CO₂ take up rate (per unit mass). The size fractions used in the current study, are: 10–20, 5–10, 2.36–5 and<2.36 mm.

$CO2 uptake(sample) \propto bD^c$

Where: D=diameter [m], B=5,23 C=-0,34; B, C are coefficients obtained by the regressing analysis.

• Carbonation extent (CO₂ uptake) by RCA as a function of relative humidity

Past research studies on natural carbonation of concrete indicated that the relative humidity (RH) affected the CO₂ diffusivity as well as the rate of CO₂ uptake. It had been reported that the carbonation rate decreased significantly when the RH was either too high or too low and the optimal RH for carbonation was between 50 and 70%. In this study the effect of RH was studied at three major situations: dry gas (RH < 5%), middle RH (50 ± 5%), and moistened gas (RH > 95%).

The relationship between RH and CO2 uptake can be expressed as:

$$CO2 uptake(sample) \propto [1 - e(RH - 0.5)^2]$$

Where: RH = Relative Humidity, e=4 regression constant

• Carbonation extent (CO₂ uptake) by RCA as a function of CO₂ concentration

The study used the flow-through test to study the 24-h CO₂ uptake under three (CO₂) values (natural (0.03%, 10, 100%)). The effect of (CO₂) on rate of carbonation can be expressed as following equation according to regression analysis:

$$CO2 uptake(sample) \propto [CO_2]^g$$

Where: $[CO_2]$ = carbon dioxide concentration [%], g= 0,072 regression constant.

• Carbonation extent (CO2 uptake) by RCA as a function of pressure (for batch reactors)

The carbonation pressure affects the CO₂ uptake. The equation was determined by varying the CO₂ pressure, keeping constant the concentration at 100%. In particular the pressures monitored varied from 1 to 6 bar.

The following equation is to describe the influence of the carbonation pressure on CO₂ uptake:

$$CO2 uptake(sample) \propto (1 + hP^i)$$

P is the additional positive pressure of the carbonation process (P=0 means atmospheric pressure); h, i = Regression constants h = 0,311; i = 0,112

• Carbonation extent (CO₂ uptake) by RCA as a function of gas flow rate (for open reactors)

When using the flow through carbonation test to carbonate RCAs, the gas flow rate Q would affect the CO₂ uptake. A series of tests have been conducted in open reactors where CO₂ was mixed with N₂. The concentration of carbon dioxide was varied from 10-30%. The regression analysis of all three fitting curves suggested an expression for the effect of gas flow rate:

$$CO2 uptake(sample) \propto jQ^k$$

Where: Q = flow rate of gas mixture [L/min]; j, k = regression constants. j = 0,74; k = 0,18.

• Final Formula and model predictions:

According all previous considerations on test conditions, for the parameters including time, relative humidity, size of aggregates, CO₂ gas concentration and carbonation methods (open or closed reactor), their relationships with CO₂ uptake can be written as:

$$CO2 uptake(sample) = A * f(t, d, RH, [CO_2], P, Q) \cdot Potential_{CO_2}(sample)$$

Becomes:

 $CO2 uptake(sample) = A \cdot [1 - 4(RH - 0.5)^{2}] \cdot 5.23D^{-0.34} \cdot \frac{\sqrt{t}}{(1.2 + \sqrt{t})} \cdot [CO_{2}]^{0.072} \cdot C_{m} \cdot (\%ThCO_{2} - X_{CO_{2}}^{0}) \cdot f(P,Q).$

Where in pressurized and batch reactor conditions $f(P,Q) = 1 + 0.311P^{0.112}$. And in open reactor with gas flow conditions, we have that $f(P,Q) = 0.74Q^{0.18}$.

The value of A = 0.012 and A = 0.01 are recommended for the pressurized test (batch reactor) and flowthrough test (open reactor), respectively.

CO2 uptake(sample)[g/kg] uptake of the dry mass of the sample. The CO2 uptake (g) presented was normalized to 1 kg of recycled concrete aggregates, C_m = cement mass inside the RCA sample [%], *D*=particle size [m], *t*=carbonation time [h], *RH*= relative humidity [%], [*CO*2] = carbon dioxide concentration [%], *P*= carbon dioxide additional pressure [bar], *Q*= gas flowrate [L/min].

Based on the above test data and analysis, the optimal conditions for accelerated carbonation of recycled concrete aggregates are: 100% CO₂ gas concentration with 0.1 bar additional pressure or 10% CO₂ gas concentration with 5 L/min flow rate.

1.5 FURTHER DEVELOPMENTS

1.5.1 Rotating packed bed reactor theoretical model

(Chen et al., 2020) developed a pilot–scale RPB (Rotating packed bed reactor) theoretical model to evaluate the performance of simultaneous removal of NO_X-SO₂-CO₂ by a flue gas. By utilizing the alkaline solid wastes (fly ash). O₃ Was added to oxidize nitrogen and sulfur oxides. Namely NO, SO₃ and then converted to the higher valence and water solubility species. This is displayed in Fig.5. The high alkalinity and large amount of calcium ions (Ca²⁺) present in fly ashes cause the CO₂ absorption and precipitation of calcium carbonate (CaCO₃). The schematic of the general process is presented in the following image Fig.4.

Figure 4. Schematic of the general process

Figure 5. Process chemistry of simultaneous removal of CO₂, NO_x and SO₃ using O₃ oxidation and alkaline solid wastes.

1.5.1.1 Experimental setup and RPB characteristics

The system was equipped with power, tank, blower, RPB reactor, pump and heat exchanger. The rotation type was horizontal rotation with a countercurrent flow of mixed gas and liquid. The packing zone equipped stainless steel wire as a packing material, had an inner diameter of 0.558 m, an outer diameter of 0.61 m, mean diameter of 0.584 m and axial height of 0.286 m. The weight, density and voidage of the packing medium were 4.5 kg, 7990 kg/m³ and 0.99 m³/m³. The volume of packed bed was 0.007 m³. Six holes of liquid distributor with a diameter of 0.02 m were designed. The designed maximal capacities of gas flow rate and liquid flow rate were 20 m³/min and 0.032 m³/min. A gaseous composition analyzer was used for measuring the concentration of NOx, SO2 and CO2 in flue gas. A schematic of the process flow is displayed in Fig.6.

Figure 6. Schematic flow sheet of the process: (1) Mixing tank; (2) Solvent tank; (3) Pump; (4) Flow meter; (5) Rotating packed bed; (6) O3 generator; (7) Oxygen cylinder; (8) Blower; (9) Gas analyzer

1.5.1.2 Application field

In the flue gas, the major pollutants are NO, SO, and CO_2 with the concentration ranges of 100-220 ppm, 40-300 ppm and 8-15 vol%, respectively. The temperature, humidity and average density of flue gas were observed to be 90-110 °C, 14-20% and 0.92 kg/m³ respectively.

1.5.1.3 Results

The obtained results indicated that the conc. of SO₂ decreased quickly within 150 sec. while the concentration of CO₂ declined slowly within 0 to 450 sec. Afterward, the conc. of CO₂ and SO₂ gradually increased and then remained at a stable value of 11.5 vol% and 37 ppm, respectively. The conc. of NO was abruptly fell down from 122 ppm to 1.3 ppm at 750 to 900 sec. and then remained at 1-5 ppm within 1050 to 2700 sec.

1.5.2 Drum reactors pilot-scale experimentation - MSW BA

(Lombardi et al., 2016) proposed a laboratory scale process to remove by carbonation the CO2 present in a gas stream through reaction with bottom ashes waste. The idea is to compare the performance of two drum reactors: one has a fixed bed and the other has a rotating one.

1.5.2.1 Experimental setup and characteristics

The experimental facility mainly consists of the laboratory scale fixed bed or rotating drum reactors and the measuring systems. BA is loaded into the reactor and the gas is flowed through the BA bed.

The **fixed bed** reactor (R1) is a 27l stainless steel cylindrical tank (internal diameter: 26.5 cm, height: 66 cm. The reactor can be opened from the top, by means of a semispherical cap, for loading and unloading the BA; the gas seal is ensured by a series of twelve bolts. The gas flows into the reactor from the bottom to the top (upflow configuration). That's visible in Fig.7. Inside the reactor three internal supports are welded every 12 cm. In this way it is possible to decide to place the overall amount of BA in just one layer or to divide it into two/three layers. This feature was added to check if the multi-layer configuration allows better performance with respect to the single layer one. With the three-layer configuration we would like to reduce the possibility for the gas to follow preferential paths through the ash bed, by introducing a plenum between one layer and the other.

Figure 7. Schematic and external view of Fixed bed reactor

As an alternative to the fixed bed reactor, the rotating drum concept was selected in order to provide continuous mixing of the solid reactive particles with the gas.

The rotating drum concept was selected in order to provide continuous mixing of the solids. The rotating drum reactor (R2) is a 18 L stainless steel cylindrical tank (Fig. 8), with horizontal-axis rotation, provided with thermal insulation (not shown in Fig. 8). The main body has an internal diameter of 21.9 cm and a global length of 43 cm. The gas flows from one side to the other. A large circular opening (with a nominal diameter of 10 cm) with a screw cap is present to easily fill and

empty the reactor with bottom ash. As the reactor rotates, conveyor blades, welded inside the reactor favor the exit of BA at the end of the treatment and promote internal mixing.

Figure 8. External view of the rotating drum reactor

1.5.2.2 Application field

For fixed bed rotatory drum, bottom ashes was sieved under 10 mm and 5mm. Mass of bottom ashes inside the reactor was 6kg that could be divided in 1-3 layers according the selected configuration. The flow of 100% CO₂ was fixed to 400 Nml/min. While for for rotating bed rotatory drum: the amount of BA used for each test was equal to 3-6-9 kg according to the filling ratio selected. Bottom ashes was sieved under 10 mm to remove inerts. Flow of 100% CO₂ of 200-400-600 Nml/min was tested. Three Filling ratio were: 10-20-30%. And rotation speed of 2.5-5.0 rpm was selected. In both cases the time duration of the tests in the range of 8-14 h.

1.5.2.3 Results

According to the various reactor configuration and variables, various results have been achieved.

- Fixed bed reactor: achieved an uptake of 42-47 gCO₂/kg (with bottom ash material from sample lot A) and 27-35 gCO₂/kg (with bottom ash material from sample lot B) through a configuration of 3-layers with 10 mm thickness. When the thickness was changed to 3 layers 5 mm thick, the CO2 uptake ranged 45-48 gCO₂/kg (for lot A) g/kg and 34 (for lot B).
- Rotating bed reactor: achieved an uptake of 19-23 gCO₂/kg with FR (filling ratio) =30%; 2.5 rpm and sample media 21g; 25-31 gCO₂/kg FR=20% 2.5 rpm media 28g; 33-37 gCO₂/kg FR=10%. 2.5 rpm media 35g; 23-39 gCO₂/kg FR=20%. 5 rpm media 26g.

It is clearly observed that working with a lower filling ratio is beneficial allowing an improved contact between BA and the gas flow

1.5.2.4 Conclusions

For fixed bed reactor, no significative differences were observed between the carbon dioxide specific removal average trends obtained for the different conditions. Trends related to smaller particle size (i.e. 5 mm sieving) are slightly better than those related to larger particle size (i.e. 10 mm sieving). While comparing different layers configurations, the multiple layer arrangement seems not to influence significantly the process performances. While comparing fixed and rotating bed conditions, from this comparison The rotating drum reactor is able to provide improved carbon dioxide removal with respect to the fixed bed reactor. It is clear that the lower filling ratio allows better performances, while the rotating speed variation effect does not seem to be very significant. Comparing the carbon dioxide specific removal achievable by using the rotating reactor in the best operating conditions (35– 37 g/kgBA) with that measured for the fixed bed reactor (21–23 g/kgBA), an increase of about 61– 66% is observed. The most merging limit of the technology is that: The CO2 uptake is more influenced by the characteristics of BA rather than by the reactor operating conditions.

1.5.3 Rotating drum reactor pilot-scale experimentation - Biomass BA

(Schnabel et al., 2022) developed and tested a rotating drum reactor integrating hydration and carbonation of biomass bottom ash. In the carbonation experiments, the influence of: rotation rate, fill level and moisture content on the bed motion was studied. The reactant gas was 10 vol% CO₂. It was fed either simultaneously with or subsequently to humidification.

Figure 9. Setup of the carbonation experiments with axial section of the reactor. (1) CO₂ and compressed air supply,
(2) gas mixing station for constant flux and concentration of CO₂, (3) water reservoir on a scale for acquisition of the water flow rate and adjustment of peristaltic pump, (4) flowmeters to adjust an equal supply to both nozzles, (5) static front plates equipped with v-seals and gas outlets, (6) two- fluid nozzles for supply of water and reactant gas, (7) bearing wheels, (8) variable-speed motor with drive sprocket, (9) scale measuring the mass of the reactor, (10) temperature and relative humidity sensor, (11) CO₂ sensor, (12) biomass bottom ash or quartz sand.

1.5.3.1 Experimental setup and characteristics

The carbonation experiments were conducted in a rotating drum reactor. The reactor was a stainlesssteel cylinder with an inner diameter of 0.3 m and a length of 1.5 m running within v-seal rings in static front plates. The drum was driven by a motor with variable speed. Four stainless steel pipes were conducted through one front plate feeding two two-fluid nozzles. The nozzles served for spraying water and feeding gas into the reactor. They were positioned at 0.38 m and 1.13 m from the reactor front-end and directed to the material bed with a flat spraying characteristic (spraying angle 80° to 130° , depending on the fluid pressure). Gas outlets were integrated in the reactor front and back ends. The exhaust was routed to a flow-through cell equipped with sensors for temperature, relative humidity and CO₂ with tolerances of $\pm 0.5 \,^{\circ}C$, $\pm 4.5\%$ RH and $\pm 0.5 \,$ vol% CO₂. Temperature and humidity were recorded every minute and CO₂ concentration was logged every 10 s. The schematic of the process is displayed in Fig.9.

The reactant gas was continuously supplied by a gas mixing station mixing CO_2 and compressed air. Water was supplied by a peristaltic pump to both nozzles. The water supply was determined gravimetrically by weighing the water reservoir and recording the mass every 10 s. The water supply to the nozzles was monitored with two flowmeters and adjusted by a valve. The latter ensured equal flow through each nozzle.

1.5.3.2 Application field

The gas was CO2 at fixed concentration of 10% v/v. The fill level (vol% of the void volume) varied between 5 and 20 vol%. Reactor rotation rate (in rpm) varied 0.5 - 7 rpm and L/S ranged between 0.0, 0.1, 0.2. Mass tested was 19.1 kg dry matter corresponding to a fill level of 20 vol%. The gas flow rate was kept at 50 L/min (referring to standard conditions, i.e. dry gas, 101.325 kPa, 0 °C), and it was fed for a total of 120 min. Considering the flow rate, CO₂-level, duration of feed, and reactor loading the cumulative CO₂ supply was 62 g CO₂/kg bottom ash. Bottom ash material was sieved with 2mm mesh seize.

1.5.3.3 Results

Overall, the CO₂ uptake by BBA varied between 22 and 31 g/kg, which is far from full conversion of the alkaline components predicted from the elemental composition of the material. The bottom ash had a significant carbonate content already before the carbonation (31–40 g/ kg) which increased to 42–76 g/kg after carbonation. The material sequestered 1/3 to 1/2 of the total CO₂ supply (62 g/ kg). The favorable bed motion was identified at a rotation rate of 7 rpm and a fill level of 20 vol%. The maximum CO₂ uptake of 31 g/kg was achieved at a moisture content of L/S 0.1 within a reaction time of 2 h.

1.5 CRITICAL REVIEW

1.6.1 Methodology adopted for critical review

1.6.1.1 Premise

This bibliographic research was carried out for a master thesis of Environmental Engineering course of Università degli studi di Padova. It is part of an activity in which the bibliographic research is followed by a critical analysis of notable results and these will be utilized as a basis for experiments carried out in laboratory.

The investigation allowed to quantify the potential carbon dioxide sequestration by alkaline wastes despite the variety of methodologies through with the experiments were carried out.

1.6.1.2 Objective

Assess the potentiality of carbon dioxide capture of alkaline waste materials, find methodologies to carry out a laboratory experimentation, understand which parameters influence carbonation.

1.6.1.3 Analysis methodology

The methodology adopted for the systematic bibliographic analysis is the one defined by "*The PRISMA 2020 statement: An updated guideline for reporting systematic review*". (Page et al., 2021).

The execution of this methodology allows to identify in a rigorous way, a list of articles present in the scientific literature, coherent with the intended objective. The identification of the list of items is obtained through a step-by-step procedure, based on the following phases:

- Identification;
- Screening and Eligibility;
- Inclusion.

This methodology is illustrated by figure 1.

Identification

The following key-words have been used for the bibliographic research:

("Accelerated" AND "carbonation") AND ("aggregates" OR "fly ashes") AND ("CO2").

This means that the key words *Accelerated carbonation* and *CO2* have to be present as well as one of the words word *aggregates* or *fly ashes*.

The search for words was limited to their presence in the title of the publication, in the abstract or in the keywords of the article.

Database consulted was Scopus. The research was concluded in the March of 2022. 194 records have been found. Of these, 6 records have been removed before screening. The reasons are the: fact that they cannot be downloaded, they were duplicated, or they were available only in Korean language. Moreover, 17 records have been identified from other databases, which are: ScienceDirect, researchgate.net or papers cited by authors of papers already included.

Screening and Eligibility

In the screening phase, all abstracts of the papers have been read. The ones which do not concern with the aim of this study have been excluded. 146 papers have been excluded, the reasons are: aim of paper out of scope, the study utilizes temperatures too high and out of our concern, the paper focus on mechanical, physical or chemical properties. For instance the paper focus on carbonation depth (physical property) or to compression strength (mechanical properties).

42 papers resulting from scopus research and 17 from other databases have been assessed for eligibility. In the eligibility phase, 20 reports coming from scopus have been removed. The reasons are: quantitative CO2 capture was not assessed, or formulas to convert CO2 uptake were not present. From 17 papers coming from other databases, 5 of them have been excluded, the reasons are: paper results cite other authors already analyzed, or paper results expressed in terms of carbonate content (for instance through total inorganic carbon content parameter), there were not equations to convert results in g^{CO_2}/kg sorbent .

Inclusion

In this phase, 22 papers coming from scopus and 12 coming from other sources have been fully analyzed and included in this study.

1.6.2 Papers analyses and data collection

Then the included papers have been analyzed through the following features: typology of reactor, sorbent typology (i.e. the substrate material), experimentation routes and variables (wet or dry route, Liquid to solid ratio applied, relative humidity, CO_2 concentration, CO_2 flow, temperature, pressure, granulometry), operative conditions (mild or intensive), scale of the experiment (mass of the sorbent and time of exposure), characterization of the sorbent (typology of analyses conducted), methods to assess the carbonation uptake, results (gCO_2/kg dry weight), objective of the paper. These features have been collected in a table, for more informations, see ANNEX I, ANNEXIII. Then a quantitative analysis have been carried out, to compare numerically the features collected in the previous research step, and it is available in ANNEX III. At last, the schematic of the experimental

1.6.2.1 Reactors classification

Reactor division was chosen between open and closed reactor configuration. Closed reactor configuration represents a reactor in whose chamber the gas exchange is prevented. Before injecting gas inside, the chamber was vacuumed by a vacuum pump. Concentration and pressure of gases inside can be changed before closing the valves. Open reactor configuration is composed by a chamber connected with a vacuum pump and gas cylinders in which gas flow was controlled by a flowmeter. Carbonation chambers are equipped with P, T sensors, inlet and outlet valves, pressure gauge.

1.6.2.2 Materials for accelerated carbonation classification

setup utilized in literature was collected, they are visible in ANNEX VII.

Materials in which accelerated carbonation tests have been carried out have been classified in eight classes.

Fly Ashes class includes granulated fly ashes from incinerators so APC (Air Pollution ٠ Control) residues, and ashes from MSW (municipal solid waste) combustion processes; fly

ashes from coal fired power plant; fly ashes from hydrocarbons fired power plant; fly ashes from biomass combustion; fly ashes from carbon coke and petroleum combustion. 9/34 of the papers that have been included in this study worked on this material.

- Fly ashes-monolites class includes petroleum coke fly ashes is added as supplementary cementitious material in blended cement mortars. Have been found 2 studies on this material.
- Slags class includes granulated steel slags from EAF (electric arc furnace) furnace; stainless steel slags; granulated blast furnace slag (iron slags); steel slags from Basic Oxygen Furnace. Have been found 5 studies on this material.
- Bottom ashes class includes granulated bottom ashes from MSW incinerators, bottom ashes from biomass combustion. Have been found 3 studies on this material.
- Natural aggregates class includes siliceous aggregates, not other specifications about their origin. Have been found only one study on this material.
- Concrete-monolites class includes sample of concrete prepared according to classical mix design (water, cement, aggregates) with expanded slags aggregates; Portland limestone cement paste, without aggregates. Have been found 3 studies on this material.
- RCA class includes Recycled Concrete aggregates: recycled concrete aggregates produced by crushing old concrete debris; RCA obtained from crushing a designed concrete mix produced by a ready mixed concrete plant; RCA obtained from crushing laboratory concrete cubes; RCA derived from demolition concretes, which are crushed on recycling plants, RCA obtained from crushing old foundation piles. Have been found 8 studies on this material.
- RCA-Monolite class includes concrete blocks made up by water, cement, and RCA as aggregates. Have been found 2 studies on this material.

1.6.2.3 Scale of the experiment

Experimentations carried out in previous studies were performed in laboratory scale. In particular, time range was 0.5-168h, where times over 24h experiments have been carried out mostly on recycled concrete aggregates and concrete monoliths to assess the effects of carbonation on the sample. 13/34 studies performed test on range time 0-2h; 10/34 on range >2-8h; 15/34 on range 8-24h; 7/34 on time >24h. obviously many studies carried out tests on different times. Sample mass ranges 1-6000g, where masses over 300g generally are associated to concrete monoliths samples.

3/34 studies found in literature worked on range 44mg-10g mass sample; 4/34 on 11-100g; 5/34 on 101-300g; 3/34 on 301-500g; 3/34 over 500g. it's important to note that in 21/34 cases mass of sorbent was not found.

1.6.2.4 Operations route and variables

Accelerated carbonation treatment have been carried out through different operations route and variables. Experimentation route has been divided in dry and slurry, where in dry route experimentations, sample material has been dried in oven at 105°C for 4 hours before to be exposed to carbonation; while in slurry route sample material has been mixed with demineralized water and stirred to achieve the desired liquid to solid ratio (L/S in L/kg) before to be exposed to carbonation. 20 on 34 included studies worked with an applied L/S=0. 14/34 studies worked through the wet route, with different L/S ratios, which range found is 0,1-3 L/kg. Relative humidity range in the chamber was 0.04-100%, and it was maintained by solutions of *NaCl*, *Ca*(*NO*₃)₂, *Mg*(*NO*₃)₂. CO₂ flows

range was 0.01-10 L/min. 7/34 studies performed carbonation through an open reactor. The carbonation experiments were performed with a pressure range of 1-9 bar inside the static chamber. 25/34 studies included in the review carried out tests with atmospheric pressure condition, while 15/34 utilized a pressure greater than 1 bar. Granulometry of materials varied according to the typology of material. Fly ashes displayed the lowest values and ranged from a minimum value of 0.0000152 mm to 10mm. Bottom ashes ranged 0.125-10mm. RCA granulometry ranged 1-20mm. Slags granulometry ranged <0.1-9.53mm.

1.6.2.5 Characterization of material sorbent

Characterization of sorbent found in literature varied greatly according to the objectives of the studies. Physico-chemical characterizations found in literature include: Leaching test according UNI EN 12457-2, TC (total carbon content), LOI (Loss on ignition), XRD (X-ray diffractometric), TG (Thermogravimetric), SEM (scanning electric microscope) analyses, GC (Gas Chromatography), ANC (acid base neutralization) tests, XRF (X-ray fluorescence microscopy), DSC (differential scanning calorimetry), moisture content, water absorption capacity, pH and electric conductivity analyses, particle density analyses, SSA (specific surface area).

1.6.2.5 Results

The CO_2 uptake results from the analyzed papers were converted into the $gCO_2/kg dry sorbent$ unit of measurement through the formulas required depending on the specific case study. They have been organized in box plot according to their operative conditions. They are visible in paragraph 2.1.3 and in ANNEX V, VI.

1.6.2.6 Methods to measure carbonates content

The most utilized method to measure carbonates content was TGA (15/34) coupled with DTG (differential thermogravimetry analysis) or DTA (Differential thermal analysis), followed by Mass gain method (5/34) and calcimetry analyses (3/34), XRF measurements (1/34), ideal gas law (2/34), inorganic carbona measurements (2/34).

1.6.2.7 Operative conditions

Operative conditions have been classified according to the values of temperature (T), pressure (P), and % CO₂ concentration in "very mild", "mild", "intensive", "very intensive". Which correspond respectively to T=room temperature $< 35^{\circ}$ C, P=1bar and CO₂=0-20% for the first category; to T $<35^{\circ}$ C, P=1 bar and CO₂=20-100% for the second one; to T>35°C or P>1and CO₂ < 20% for the third and to T>35 °C or P>1bar and CO₂=20-100% for the last one. Temperature range found in this research is 20-400 °C, while pressure range utilized was 0.1-9 bar. Higher pressure tests (8-9 bar) usually are coupled with high temperature (T>60°C) and have been carried out especially for fly ashes and steel slags materials.

Figure 10. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources.

PART II – SCIENTIFIC PAPER

"Accelerated carbonation of alkaline waste: from a bibliographic review to an experimental assessment to evaluate the CO₂ capture potential"

2.1 INTRODUCTION

2.1.1 The role of the carbon accelerated carbonation in the Climate change and carbon neutrality policies

According to latest IPCC report [IPCC, 2021] The increase in global mean surface temperature, which reached 0.87 ° C in 2006-2015 compared to 1850-1900, has increased the frequency and magnitude of shocks, increasing evidence of how a temperature increase of 1.5 ° C or more could impact natural and human systems. Without a marked acceleration in emissions cuts, the plans to achieve the climate goals set in Paris in 2015 are linked to the possibility of capturing and storing excess carbon dioxide (CO₂) emissions in the atmosphere.

The net-zero emissions target is part of the measures designed to limit global warming, as underlined in the text of the Paris Agreement on climate change in 2015 and set as a goal within 2050 by the European commission.

This concept includes not only the reduction of greenhouse gases emissions, but also the capture of those that will inevitably continue to be released into the atmosphere.

Therefore, it is necessary to capture the CO_2 emissions produced in excess by human activities (such as from power plants, waste thermal plants and heavy industry) and then store them utilizing merging Carbon Capture and Storage (CCS).

Among CCS methods, the accelerated carbonation process has recently captured the interest of more and more researchers. The aim of the process is to store gaseous CO_2 in a stable form making it react with alkaline earth-metal oxides to precipitate stable carbonates (Pan et al., 2012).

Considering that 1,076,515 tons of bottom ashes and non hazardous slags have been produced in Italy in 2019 and assuming an average absorption of 20 gCO₂/kg dw then 21530 tons of carbon dioxide per year could be fixed. While increasing the scale, in UE in 2019 and 2020 800 million tons of C&D waste and 19 million tons of bottom ashes have been produced, with the previous capture assumption, a technology based on this process can mineralogically fix 16.38 million tons of CO₂.

2.1.2 The accelerated carbonation in the field of waste residues

Carbonation occurs in natural conditions, but at those conditions it is a slow process, involving the reaction of CO_2 with metal oxides present mainly on the material surface. This is because the concentration in the atmosphere of carbon dioxide is 0.04% v/v and the materials rich in alkalineearth-metals oxides are not sufficiently porous to guarantee the diffusion of co2 to react with all reactive species present in the bulk. Thus, natural carbonation requires long periods (even years) to exploit its whole carbonation potential. Therefore, recently, many studies have focused on accelerating the carbonation process duration. In present times, the research focuses on assessing and maximizing the CO_2 uptake by optimizing the variables which affect the process such: materials and granulometry, moisture content, temperature, pressure, gas flow rate, CO₂ concentration and liquidto-solid ratio applied. (dos Reis et al., 2020) (Schnabel et al., 2021) (Jiang et al., 2013).

2.1.3 Accelerated carbonation materials

Materials particularly suitable for accelerated carbonation are alkaline wastes. Metallurgical slags, bottom incineration ashes, fly ashes from air pollution control devices and cement-based construction & demolition waste are generally rich in Ca and Mg oxides, hydroxides and silicates which make the material alkaline. Construction and demolition waste is one of the macro items of the European Waste Catalogue (EWC). It accounts for 37.1% of all waste generated in Europe in 2020, corresponding to about 800 million tonnes, making construction and demolition activities the largest source of waste in UE [EC Europe]. In Ue during 2018 approximately 19 million tons of bottom ash was produced [cewep.eu]. Looking worldwide about 130 million tons of various steel slags are produced every year (Schnabel et al., 2021).

Accelerated carbonation treatments of alkaline wastes can bring other benefits than the carbon dioxide capture. It can increase the environmental quality of the residues by reducing the release of heavy metal oxides (Cappai et al., 2012). And improve the mechanical properties of aggregates for a possible utilization as construction material (Gunning et al., 2009) (Pei et al., 2018). Furthermore, developing a full-scale CO_2 capture plant applied to large carbon dioxide emitters such as incinerators, foundries and cement factories utilizing their same wastes, would mean that, in addition to being a tool for achieving carbon neutrality, the method for capturing the carbon dioxide though accelerated carbonation is also a process inserted in a circular economy context.

2.1.4 Carbonation Chemistry

Natural carbonation occurs such that the alkaline earth-metal oxides present in the solid phase react with CO_2 to form earth-metal carbonates. The process requires the presence of water to occur and is based on acid-base reactions in which carbonate acid is neutralized by a base (alkaline earth-metal oxide). Due to the wide range in composition of alkaline wastes, oxides like *CaO*, *Ca2SiO3*, *MgO*, *K2O*, *Na2O* react with carbon dioxide and contribute to the carbon sequestration. Since lime is one of the most abundant metal-oxides in alkaline wastes (Pan et al., 2012) and calcium carbonate is one of the most carbonates concerned in carbonation studies, its reaction with carbon dioxide is given below. The general formula that summarizes the entire calcium carbonate formation process states that lime (*CaO*_(s)) reacts with carbon dioxide according to the following reaction:

$$CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}; \ \Delta H = -178 \ kJ/molCO_2$$

Since enthalpy has a negative value, the reactions are exothermic, so it produces heat. According to Le Chatelier principle, if temperature increases, the product formation is inhibited.

Scientific literature identifies the following factors as influencing factors for carbonation: L/S ratio, CO₂ concentration, pressure, temperature, time of treatment.

Carbonation is a phenomenon that is influenced by the moisture content presented in the aggregates as reported by (dos Reis et al., 2021). That's because moisture influences the permeation properties of the aggregates, indeed water presence is necessary for the oxides hydration. They reported that higher water-content than 8% can decrease the carbon dioxide uptake. Indeed, water can fill material pores which can slow down the access of CO_2 that occurs by diffusion.

Many authors performed carbonation tests through a wet route and demonstrated its effectiveness. In particular, the range 0.2-0.3 for the L/S ratio was demonstrated as the most effective by (Baciocchi et al., 2009) concerning carbon capture in aqueous route. As a matter of fact, (Baciocchi et al., 2009) found that liquid to solid ratios higher than 0.3 decreased the carbon dioxide uptake for fly ashes.

This probably due to the fact that CO₂ diffusion in the water layer ecreases when increasing the water quantity. This optimal range of liquid to solid ratio was reported even by (Ukwattage et al., 2015)(Schnabel et al., 2021) (Nam et al., 2012b). Most of the experiments found in literature have been carried out with 100% concentration of CO₂.(Zhang & Shao, 2016); (El-Hassan & Shao, 2014). However, (Sereng & Dangla, 2020) performed accelerated carbonation on recycled concrete aggregates with "very mild" operative conditions (static chamber, atmospheric pressure and 15% CO₂ concentration) and stated that CO₂ concentration impacts the uptake. Indeed, the higher the concentration, the greater its storage. But the increase in concentration over 15% is not significant on CO₂ uptake. Even (Fang et al., 2017) found that the effect of CO2 concentration on the uptake becomes insignificant after (CO2) has reached value typically over 20%. Moreover, according to (Baciocchi et al., 2009) results, fast kinetics can be obtained with a flow with 10% CO₂ pressure (0.1-1 bar) inside the reaction chamber, significantly increased the carbonation rate. Otherwise, a further increase of 2-4 bar only a slight improvement in CO₂ uptake was observed.

Many authors (Rostami et al., 2011; Schnabel et al., 2021), (Fang et al., 2017) found that the carbonation rate is higher in the initial hours and then gradually decreased until approached a stable CO₂ uptake level. In fact, the studies that aimed to evaluate the absorption of co2 had a duration of less than 24h (Chang et al., 2015) (Lombardi et al., 2016)(Nam et al., 2012b). Instead, those who had as objective to understand the carbonation of concrete and how to improve its mechanical properties (Kaliyavaradhan et al., 2020) (Suescum-Morales et al., 2021) carried out carbonation tests with duration greater than 24h.

2.1.3 Critical review

For the purpose of this study, it was decided to conduct a systematic review according to the methodology defined by "*The PRISMA 2020 statement: An updated guideline for reporting systematic review*". (Page et al., 2021).

From this bibliographic analysis, it's pointed out that there is no standardized method to carry out the accelerated carbonation treatment. Many kinds of operation routes, variables and measurement methods have been tested. Despite the fact that the most used carbonate measurement method is TGA, it is highlighted that this has the limit of measuring a very limited portion of the test, and having to analyze wastes, there is a great risk of error given the heterogeneous nature of the material. It should be noted that the studies were often incomplete for some information, in particular data for particle size are missing in 8/34 cases; sample mass 21/34 cases.

In Fig.11 results of carbon uptake for the different material classes and for the different operative conditions are shown. Are also shown the number of records found per box plot.

0 0 VERY MILD MILD INTENSIVE VERY INTENSIVE VERY MILD MILD INTENSIVE VERY INTENSIVE 🔲 n=8 🔲 n=0 🔲 n=7 🔲 n=0 🔲 n=0 🔲 n=3 🔲 n=0

🔲 <u>n</u>=9

Figure 11. Results of CO₂ uptake after accelerated carbonation treatment of different classes of materials found in literature. n=x is the number of data found.

The Fig11. highlights the following notable results:

- From the statistics the CO_2 sequestration values into the sorbent materials cover a large range, demonstrating the variability and conditions analyzed in the experiments. The maximum value of CO_2 captured was found for granular fly ashes, 250 and 200 gCO₂/kg_{dw}, in mild, intensive, and very intensive operative conditions respectively.
- RCA granular is the material for which most data have been found, for a total of 100, in 8 on 34 included studies on which the research was conducted. Data found for very mild conditions 29 range 9.5-192.7 gCO₂/kg_{dw}; while in mild conditions 66 data range 2.076-55 gCO₂/kg_{dw} which seems more consistent.
- Moreover, RCAs granular seem to capture better in very mild conditions. But it must be noted that very mild conditions plot is influenced by 23 on 29 total results of experiments in which the carbonation treatment lasted 168h. However, the criteria utilized to build the plot did not consider the carbonation duration.
- The material is able to capture CO_2 better when it is in granular form, as it is visible for recycled concrete aggregates and fly ashes. This due the fact that in granular form the specific surface is greater than in the monolithic one, thus the diffusivity of CO_2 inside the material is improved.
- According to this bibliographic research the best material according to the carbon dioxide potential is the granular fly ashes. This due the high presence of alkaline oxides presents inside.

The high range of values recorded by the papers is underlined. Results are characterized by a great variability, because the parameters which influence the CO_2 uptake (time, L/S ratio, reactor, granulometry, mass of the sample) were not taken into consideration in the plots construction.

The fact that there is no standardized method to perform accelerated carbonation and evaluate the absorption of CO_2 can explain the great variability of the results.

2.1.4 Introduction to our experimental study

This study investigates the possibility of applying the accelerated carbonation process on a mix of alkaline wastes with the aim of assessing their potential for CO_2 sequestration. Different conditions have been tested to provide the basis for a future scale up of the process on the materials used. For the purpose of this work, several accelerated carbonation tests were performed at three different grain sizes (0/6mm, 6/16mm and 16/31mm) according to 3 different liquid to solid ratios (L/S=0.0 L/kg, L/S=0.2 L/kg and L/S=0.3 L/kg), for three different times (2, 4, 8h) to 4 different masses (200g, 100g, 50g, 25g) under fixed operating conditions (relative humidity, CO_2 concentration, pressure and temperature).

2.2 MATERIALS AND METHODS

2.2.1 Experimental design

EXPERIMENTAL DESIGN FOR ACCELERATED CARBONATION TREATMENT

Figure 12. Schematic of the Experimental Design. Granulometry of the samples, liquid to solid ratio applied and carbonation treatments duration are shown.

The schematic of the experimental design is graphically displayed in Fig.12.

The treatments consisted of two different routes: a single step aqueous-route process carried out through two different liquid to solid ratios (L/S): 0.2 and 0.3 L/kg; and a single step dry-route process carried out with L/S=0.0 L/kg. Each process was carried out for every fraction i.e. 0/6; 6/16; 16/31 mm and for three increasing value of incubation time. (i.e., 2, 4, 8h). Each treatment was performed in triplicate. Each replicate consisted on a mass of 200g in aluminum vessels and placed in the CO₂ incubator for the selected amount of time. Since this study is the basis for a possible application it makes sense to test a significant quantity of material, and it was decided 200g. This test was also carried out with sample mass of 100; 50; 25g each.

The experimental setup has been designed according to what have already been done before in literature. While the novelty introduced in this study is that the carbonation is performed on a mix of waste materials previously treated to be inertized and intended for use in construction or disposed in landfill. Now the applied variables chosen will be discussed. Since the carbonation reaction occurs in water environment, it makes sense to add a certain amount of water to the sample before to apply the carbonation treatment. In particular, water is necessary for leaching of calcium and metal oxides and solvation of CO_2 .

In this study 3 liquid to solid ratios have been chosen. First is the $\frac{L}{s} = 0.0 \frac{L}{kg} dry matter}$, where no water was added and we have still to consider that the samples had a certain moisture. In the second route experiment 2 different liquid to solid ratios have been used: 0.2 and 0.3 $\frac{L}{kg} dry matter}$. It was fixed a 10% CO₂ concentration in volume in air to simulate the

concentration of carbon dioxide presents in the chimney fumes of an incinerator (since Padua's incinerator has 7-8% CO₂ concentration in volume) [relazione tecnica inceneritore padova 2020]. This gives value to carry out accelerate carbonation through these concentrations to simulate the contact with chimney gases of an incinerator. It was decided to keep the pressure atmospheric to be consistent with the pressure of incineration fumes. Moreover, the incubator (N-BIOTEK NB-203) can't increase the pressure inside the static chamber. Temperature was kept at room temperature $25^{\circ}C \pm 5^{\circ}C$, that corresponds to analogue operative conditions of experimentations carried out by (Baciocchi et al., 2009) (El-Hassan & Shao, 2014) (dos Reis et al., 2020, 2021). Since the carbonation reaction is exothermic ($\Delta H = -178 \ kJ/molCO_2$) it makes sense to carry out the experimentation not at high temperatures. Furthermore, higher the temperature lower is the solubility of CO₂ in water, inhibiting the carbonates formation. (Baciocchi et al., 2009) (Berber et al., 2020) (Yuan et al., 2022) Tests have been carried out with incubation periods of 2, 4, 8h because it was demonstrated by (Wang et al., 2019)(Xuan & Poon, 2018) that most of the CO₂ captured occurred in the first hours of carbonation. Since the focus of this study is to assess the carbon dioxide sequestration, it was decided to perform accelerated carbonation tests for the duration of 2, 4, 8h. Different masses of the test portion subjected to accelerated carbonation test were tested (200, 100, 50, 25g) to evaluate the influence of the fluid dynamic configuration. In particular increasing the sample mass, thickness material increase, therefore diffusion of CO₂ is hindered. Tests were carried out through 8h treatment to better evaluate the difference in carbon capture between the different samples.

2.2.2 Materials

The samples of mineral/alkaline waste for this study were collected from an industrial waste treatment plant located near Verona (IT). They are the result of an inertization process of a mix of wastes which are: foundry slags, municipal solid waste incinerated bottom ashes and construction and demolition waste. Materials have undergone a process of metal separation, sieving and stored in piles. Here, the material is moved and left to mature for about 30 days on open air and irrigated. This process has the aim of increasing the stabilization to the release of contaminants by transforming oxides in hydroxides. At the end of maturation process alkaline wastes are screened in different grain size, namely 0/6, 6/16 and 16/31 mm, respectively. Laboratory samples are illustrated in **Fig.3**, **Fig.4** and **Fig.5**. Samples have been collected for the 3 fractions with about 30 kg in mass for each. All the samples were quartered and stored in closed buckets to prevent natural weathering and further natural carbonation.

Initial characterization of the aggregates is displayed in Tab.2 and included the determination of water content, pH, electric conductivity, total dissolved solids, DOC, anions, and metals according to UNI EN 12457-2 2004 leaching test. For raw data of the moisture content test, see ANNEX IX. For Carbonates content was assessed by calcimetry according to DM 13 09 1999 Met. V.1. Calcimetry tests have been performed on unaltered state and wet samples before the accelerated carbonation treatment to quantify the already carbonates content. The methodology for determining the carbonate content and the consequent carbon dioxide uptake performed is described in detail elsewhere.

Parameter	Unit	0/6 mm	6/16 mm	16/31 mm
рН	-	11.89	11.4	11.8
TS	%	85.51	97.86	95.96
Carbonates	gCO_2/kg_{dw}	15.79	12.00	2.69
Electric conductivity	μS/cm	3510	2410	1820
TSS	mg/l	2700	1860	1410
DOC	mg/l	155	56	2.22
Fluorides	mg/l	< 0.0088	0.0222	0.157
Chlorides	mg/l	687	445	9.1
Sulphates	mg/l	55	121	18.5
As	mg/l	0.00113	0.00122	0.000411
Sb	mg/l	0.0272	0.059	0.00101
Ba	mg/l	0.262	0.092	0.087
Cd	mg/l	< 0.00016	0.000107	< 0.000099
Cr	mg/l	0.042	0.0209	0.0255
Hg	mg/l	0.0000680	0.000234	< 0.000068
Мо	mg/l	0.085	0.119	0.069
Ni	mg/l	0.033	0.0142	0.000656
Pb	mg/l	0.044	0.0139	0.000490
Cu	mg/l	2.07	0.00134	0.00468
Se	mg/l	0.00133	0.0514	0.00115
Zn	mg/l	0.106	0.0514	0.00384

Table2. Chemical characterization of the material under analyses. These results were obtained from performing UNI 12457-2:2004 Leaching test. Carbonates content were evaluated through calcimetry analyses. TS stands for total solids, TSS for total dissolved solids, DOC for dissolved organic carbon.

The material of the fraction 16/31 mm is particularly inhomogeneous, where it is possible to clearly distinguish inerts, glass, metal slags and concrete in Fig.13. While for 6/16 and 0/6 mm fractions material appears more homogeneous. Heterogeneity of the material is an important feature, because it may determine important variations on the results as it will be discussed in the paragraph 3: results.

Since it is composed of aggregates of a mix of alkaline waste, in which aggregates have been crushed and washed, it was found a certain amount of them have already carbonated in the recycling plant. Old recycled concrete aggregates obtained from demolished concrete structures are usually partially carbonated as result of exposure to air and rain during the lifetime of the structure. This was noted also by (Fang et al., 2017) which studied carbonation effects on recycled concrete aggregates.

Moreover, has been found that the coarser the fraction, the lower is the initial carbonates content. This probably meant that after the maturation period in the industrial waste treatment plant, only portion of the waste surface naturally carbonated. Initial carbonates content amounts for 15.79 gCO_2/kg , 12.00 gCO_2/kg dw and 2.69 gCO_2/kg dw for 0/6; 6/16 and 16/31 mm fractions respectively as can be seen in Tab.2.

Figure 13. 200g Samples from the left to the right 0/6 mm, 6/16mm; 16/31 mm.

Figure 14. 200g dry samples of 6/16 and 16/31 mm fractions

Figure 15. 200g dry sample with granulometry 0/6mm.

2.2.3 Accelerated carbonation test

It was decided to perform an accelerated carbonation in "very mild" conditions, that means in a batch reactor (static chamber) incubator N-BIOTEK NB-203 with the following operative conditions: fixed CO₂ concentration of 10% v/v, constant relative humidity of 98,5%, atmospheric pressure, and temperature $25 \pm 5^{\circ}C$. The static chamber was able to keep constant the operative conditions just mentioned. Temperature, relative humidity, temperature and pressure measurements are displayed in ANNEX X. Experimental setup is represented in Fig.16.

Figure 16. Experimental setup for carbonation tests: (1) CO₂ gas cylinder; (2) Valve; (3) Static chamber; (4) Samples; (5) Relative Humidity sensor; (6) Temperature sensor; (7) CO₂ partial pressure sensor.

For each granulometric fraction the experimental design allowed to test different incubation periods (2, 4, 8h) with different applied liquid to solid ratio and mass of the test portion (see Paragraph 2.3, 2.4 for detailed information).

In particular, to simulate the influence of the degree of moisture of the material, different liquid to solid ratio were applied. This was done by adding to 600g of each fraction a certain amount of demineralized water to according to the chosen L/S ratio. The slurry mix was put inside a 2 L bottle and then mixed by an agitator (MPM Instruments M100-MB) for 30 min at 8 rpm. Then, the slurry has been filtered through a filter paper (90 gsm) until it was drained. The leachate water was preserved in closed in plastic containers to be further analyzed. The filtering operation and then removal of a certain amount of water was chosen to avoid the creation of a water head in the sample that would have prevented the diffusion of CO₂. It must be noted that the water retained by samples was as bigger as the granulometry was fine. It can be seen in the Tab.3.

	Mass (g)	H ₂ 0 (mL)	Leachate (mL)	Leachate/H ₂ 0 (%)
0/6-02	627,83	125,57	20	15,93
0/6-03	610,48	183,14	50	27,30
6/16-02	638,19	127,64	70	54,84
6/16-03	553,22	165,97	130	78,33
16/31-02	617,13	123,43	90	72,92
16/31-03	560,34	168,10	155	92,21

Table 3. Leachate of the slurry filtered through the filter paper is displayed. Mass of the tal quale sample, water volume added according to the selected L/S ratio, volume of leachate passed through the filter paper are shown for each sample fraction, i.e. 0/6, 6/16 and 16/31mm

Then the so-prepared material was placed in aluminum vessels (Fig.17) in triplicate with a mass of 200g each and inserted in the incubator for the selected amount of time (2, 4, or 8h). Photos of the experimental setup and samples have been reported in ANNEX XIII.

Figure 17. 0/6 samples with a mass at least of 200g placed in aluminum vessels.

2.2.4 Chemical analyses

At the end of carbonation treatment, 3 calcimetry tests have been carried out for each replicate undergone accelerated carbonation.

The extent of carbonation was determined through calcimetry analyses as described in DM 13 09 1999 Met. V.1. For coarse fractions (6/16 mm and 16/31 mm) aggregates size was first reduced by hammer to increase the initial low homogeneity of the material.

A total of 5 ml HCl (34-37% v/v UN1789) was added to 5g of sample in the Dietrich-Fruehling apparatus, where it was possible to read the volume in mL of CO₂. For calculations carried out see ANNEX VIII. The effect of carbonation on several chemicals (As, Ba, Be, Cd, Co, Cr, Hg, Mo, Ni, Pb, Cu, Sb, Se, V, Zn, Na, K, Mg, Ca, fluorites, sulphates, nitrates, chlorides) mobility was assessed by performing the EN 12457-2:2004 leaching test on the untreated aggregates of the finest fraction (0/6mm) before and after carbonation treatment. Raw data are displayed in ANNEX XII. It was decided to assess the effects of carbonation on leaching behavior of the finest fraction because it resulted the most effective for carbon capture and so for the future development of a full-scale plant. Leachate "hardness" tests have been carried out according to APAT CNR IRSA 2040 Met.B Man 29 2003 on the liquid filtered by paper filter to assess the quantity of carbonates that have been washed when demineralized water was added and then removed from the samples. Results of this test are displayed in ANNEX XI.

2.2.5 Statistical analysis.

Data have been collected in Excel and starting from the amount of CO_2 read in the Dietrich-Fruhling calcimeter it was calculated the amount of $\frac{gCO_2}{kg \, dry \, sorbent}$ that was sequestrated by the sample during accelerated carbonation. With Grubb test outliers were eliminated and an ANOVA Tukey test was carried out to assess if two groups of data are significatively different (confidence limit 95%, p=0.05).

It was noted that, when performing calcimetry tests, the calcimeter presented some spills of gas by submerging it in water. This caused a loss in gas pressure which meant a drop in the level of CO_2 that can be read with the instrument.

Dietrich -Fruhling calcimeter has been tared according to the following procedure.

50mL have been selected as volume of CO₂ to be reached by reaction of pure CaCO3 in stoichiometry excess of HCl. For the experiment CaCO3 (MW=100.09 g/mol) and HCl (34-37% UNI1789 PM) have been utilized.

The reaction is formulated with the following expression:

$$CaCO_{3(s)} + 2HCl_{(l)} \rightarrow CaCl_{2(aq)} + H_2O_{(l)} + CO_{2(g)}.$$

Through the formula PV = nRT, starting from the volume of CO₂ to be expected (50 ml), number of moles of $CaCO_3$ to react is calculated. It corresponds to 0,00204 mol, since the stoichiometric ratio between $CaCO_3$ and CO_2 moles is 1:1. For calculations were used P(pressure) in atm, n(number of moles) in mol, R gas constant equal to 0,08205734 $latm/_{Kmol}$, V (volume) in l, and T (temperature) in K. Moles of calcium carbonates have been converted in mass (g) by multiplying it by its molecular weight (PM = 100,087). So, it was obtained that 0,2045g of $CaCO_3$ were necessary to react and produce 50mL of carbon dioxide.

9 tests have been carried out, and the calibration factor has been calculated as *Calibration Factor* = $\frac{V_{exp}}{V_{th}}$, where V_{exp} stands for mean experimental volume, and V_{th} for mean theoric volume. It was obtained a *Calibration Factor* = 1,809042033.

Tests results and calculations have been summarized in the following Tab.4.

C ₂ CO3	mass (g)	Experimental volume (mL)	mol CaCO ₃	mol CO ₂	Theoric volume(mL)
sample	0,25	28	0,0025	0,0025	61,1103
	0,21	33	0,0021	0,0021	51,3327
	0,25	35	0,0025	0,0025	61,1103
	0,24	32	0,0024	0,0024	58,6659
	0,18	29	0,0018	0,0018	43,9994
	0,24	27	0,0024	0,0024	58,6659
	0,19	30	0,0019	0,0019	46,4438
	0,26	33	0,0026	0,0026	63,5547
	0,23	30	0,0023	0,0023	56,2215
Mean		30,778			55,678

Calibration factor	1,809
(Vexp/Vth)	

Table 4. Calulations to determine the Calibration Factor

All experimental volume of CO_2 collected by calcimetry analyses have been multiplied by the calibration factor.

2.3 RESULTS AND DISCUSSION

2.3.1 Influence of operative conditions on the process

In this chapter the analysis of the experimental results is presented, and the influence of: L/S ratio, particle size, carbonation time and mass of the sample on the CO_2 uptake and in general on the carbonate content is discussed.

2.3.1.1 L/S

Fig.18 shows the influence of L/S ratio applied to 0/6, 6/16 and 16/31mm granulometry according to different timing tests.

In Fig.18a is pointed out that for 0/6 mm, L/S=0.0 L/kg caused a significant better uptake with respect the others liquid to solid ratios, achieving 8.75 gCO₂/kg dw, 10.15 gCO₂/kg dw and 13,92 gCO₂/kg dw in 2, 4, 8h respectively. Even if after 2h treatment the carbon dioxide uptake results of the samples with L/S=0.0 L/kg were comparable with the ones with L/S=0.0 L/kg, it's not possible to state the same for the results found after 4 and 8h. For there latter samples with applied L/S=0 L/kg show a significantly higher uptake with respect to samples with applied L/S=0.2 and 0.3 L/kg, the ones which behave in a similar way to each other. Fig.18b Highlights that 6/16 mm fraction, showed a better uptake with an applied L/S=0.2 L/kg with respect the others two L/S (0.0 and 0.3 L/kg respectively). This made it possible to capture 0.79, 3.24 and 2.73 gCO₂/kg dw. However, this uptake didn't increase proportionally to the carbonation treatment duration. Moreover, when L/S=0.3 L/kg was applied, the samples didn't show any uptake. Fig.18c points out that the fraction 16/31 mm increased its carbon sequestration potential with increasing L/S ratio. Indeed, after the 2h treatment it achieved a CO₂ uptake value of 16.81 gCO₂/kg dw with an applied L/S=0.3 L/kg decreased, reaching 0 gCO₂/kg dw after 8h. The same can be said for the other L/S ratio applied.

Although it is widely demonstrated in the literature that carbonation is improved with an adequate L/S ratio (Yuan et al., 2022) (Berber et al., 2020) the same cannot be said from our results. After the accelerated carbonation treatment, it has been found that increasing the liquid to solid ratio had a negative effect on CO_2 uptake for 0/6 fraction, while for the other fractions results are inconsistent with the treatment duration.

Figure 18a. CO2 uptake of the fraction 0/6 mm with applied different L/S ratios

Figure 18b. CO₂ uptake of the fraction 6/16 mm with applied different l/s ratios

Figure 18c. CO₂ uptake of the fraction 16/31 mm with applied different l/s ratios

This observed behavior may be determined by two causes. The first is related to the decreased CO_2 diffusion potential within the material, likely due to the agglomeration and the thickening of the water layer around the solid particles. The second one could be due to the washout process probably occurred when demineralized water was firstly added and then removed from the sample before the accelerated carbonation treatment. Through washout effect chemical species involved in the carbonation process are removed from the particle surface. (Berber et al., 2020) indicates that increasing the L/S ratio on fly ashes sample material, the resulting agglomeration process inhibited CO_2 diffusion and the following carbonation reaction. This can explain the inefficiency of the accelerated carbonation treatment on 0/6 mm fraction performed in this study.

Thus, to further investigate possible influence of the washout in the decrease of carbonation potential, analyses of the leachate in terms of chemical species involved in carbonation is suggested.

Since the results on graph on Fig.18a show the highest carbon uptake for 0/6mm fraction was achieved through L/S=0 L/kg, we can infer that the inner moisture of the samples left by the maturation treatment that took place in the industrial treatment plant was enough to allow a good extent of carbonation without adding further water.

Results for the other granulometries, shown in Fig.18b and Fig.18c. seemed to be not consistent. In particular, the results of applying a L/S does not entail any benefits on carbon dioxide uptake. However, as will be further discussed, the carbonation potential of coarser fractions resulted significantly lower than the finest fraction.

2.3.1.2 Granulometry

Fig.19 shows the influence of granulometry on the carbonation uptake when accelerated carbonation is performed in 2, 4, 8h on samples with an applied L/S ratio of 0.0 L/kg. It highlights that finest fraction (i.e. 0/6 mm) had a significantly greater uptake potential than the coarser fractions (i.e. 6/16

mm and 16/31mm) with respect all the different times tested. This is verified by the Tukey test analyses carried out on these data. Indeed, while the uptake of the 0/6 fraction is never comparable to the carbon sequestration occurred in the others in all the times tested (i.e. 2, 4, 8h), the uptake of the 6/16 and 16/31 fractions is comparable after 4h accelerated carbonation treatment. Moreover, the coarsest fraction (16/31 mm) always showed a greater uptake compared to the 6/16 mm one.

It is clearly visible that granulometry 0/6 shows a positive increment to carbonation treatment that is directly proportional to time. We can't say the same for the other two fractions. 6/16 fraction uptake doesn't show any correlation to treatment duration. Indeed after 2 hours of exposure the carbonates content decreased, which means that the uptake was not significant. A slight increase in carbonates content can be visible after 4 and 8h, when a maximum uptake of 1.78 gCO2/kg dw was measured. 16/31 fraction showed a smaller uptake in 4h than in 2h, meaning that this material doesn't respond directly to CO₂ exposure.

This trend could be due the specific surface increase and consequently more material amount per unit weight is exposed to carbonation. This result was validated by other authors findings, even performing carbonation to different materials: for instance, (Nam et al., 2012b) on bottom ashes and (Fang et al., 2017) on recycled concrete aggregates. Being carbonation a superficial phenomenon, a decrease in particle size will increase the absorption of CO_2 as reported by (Xuan & Poon, 2018).

Figure 19. Influence of granulometry on the CO_2 uptake when accelerated carbonation is performed in 2, 4, 8h on samples of 0/6, 6/16 and 16/31mm granulometries with an applied L/S ratio of 0.0 L/kg.

Such differences may also be ascribed to the non-homogeneity of the collected waste samples: in particular the coarser granulometries (6/16 and 16/31 mm) could have been characterized by different (i.e., lower) concentrations of earth-metal oxides involved in the carbonation process. (Lombardi et al., 2016) also reported that non consistent results in terms of CO₂ uptake are due to the heterogeneity of the sample material. The fact that the 6/16 and 16/31 particle sizes do not show an absorption proportional to time could not suggest them as effective substrates for an upscale in real conditions.

2.3.1.3 Time

The Fig.20 displays the influence of accelerated carbonation treatment time on the different sample fractions (i.e. 0/6 mm, 6/16mm, 16/31mm) with an applied L/S ratio of 0.0 L/kg.

Figure 20. Carbon dioxide sequestration of the different granulometries according to 2, 4, 8h accelerated carbonation treatment with a L/S=0.0 L/kg applied.

From Fig.20 can be noted that for 0/6 fraction, there is a rapid increase in uptake after 2h treatment. A carbon sequestration of 8.75, 10.15, 13.92 gCO₂/kg dw resulted after 2, 4, 8h respectively. In our experimentation 62.86% of the total CO₂ uptake occurred in the first 2h, while the other 37.14% took place in the following 6h. Indeed, the uptake occurred in the treatment period 2-4h and 4-8h does not show significantly different data (since the letters are the same for each group of data) with respect the 0-2h period. This means that the carbonation rate is higher in the initial hours and then gradually decreased until approached a stable CO₂ uptake level. (Rostami et al., 2011) found that CO₂ uptake consequent accelerated carbonation process on concrete samples saw a rapid increase in the first 10 min, during which more than 40% of the total carbon uptake over 2 h took place. Then the reaction continued at a reduced rate and carbon uptake accumulated to about 9% after a period of 2 h, for a total accelerated carbonation treatment of 4h. Further (Xuan & Poon, 2018) reported that after 5h, where the carbonation rate was faster, it slows down to a lower rate to an approximately stable CO₂ uptake level. (Wattage et al., 2013) which performed accelerated carbonation tests on alkaline wastes among which recycled concrete aggregates, metal slags and incineration ashes.

For 6/16 and 16/31 mm fraction the uptake rate was lower than the 0/6mm. As can be noted in the Fig.20, for the fraction 6/16 no uptake after 2h was reported. While for 16/31 fraction can be observed that the uptake after 4h was lower than the one after 2h. The fact that after a longer accelerated carbonation treatment time there is a lower uptake was also found by (Xuan & Poon, 2018) which reports the fact that the recycled concrete aggregates had a lower CO_2 uptake after 5h compared to 3h treatment. Since for 6/16 and 16/31mm after 2h accelerated carbonation treatment the uptake was 0 and 2.93 g/kg dw, after 4h was 0.57 and 1.25 g/kg dw, and after 8h was 1.78 and 9.28 g/kg dw respectively, it can be concluded that 6/16 and 16/31 mm fraction are not suitable to be exploited in an upscale project. Nevertheless, since fraction 0/6mm demonstrated to be effective in absorbing CO_2

in the first hours of carbonation treatment, it could be suggested to utilize it in order to perform accelerated carbonation treatments in upscale conditions through short-duration tests (i.e. 2h).

2.3.1.4 Mass

In Fig.21 are displayed the results of performing 8h accelerated carbonation tests on 0/6mm fraction with an applied L/S = 0.0 L/kg for different sample mass, i.e. 200g, 100g, 50g, 25g.

It has been found that the sample mass is discriminating for results in term of the carbonation extent: less sample mass leads to greater results in uptake. As a matter of fact, by decreasing the mass of the sample, the thickness of the sample inside the vessels decreases. This allows the gas to spread more easily within the finest fraction. In this way the reactive surface of the material has been increased and a greater carbonation extend achieved.

Carbon uptake shows a significant increase when the mass is reduced from 200 to 100g, but not significant when reducing from 100 to 50g. After 8h carbonation, 200g of sample mass captured 13.92 gCO₂/kg dw, while decreasing the mass to 100g an uptake of 19.59 gCO₂/kg dw was observed. This means that decreasing by a half the mass, a capture increase of 40% was observed. When the mass tested was 50g the CO₂ uptake was 24.67 gCO₂/kg dw and when mass halved again the carbon capture amounted to 25.64 gCO₂/kg dw. CO₂ uptake results for 50g mass sample showed comparable results with the ones achieved by 100g and 25g but not with the 200g initial mass. In literature were not found studies which studied the mass sample influence on carbonation extent, and thus there are not comparable results.

Since the oligodynamic configuration is discriminant for the carbonation uptake, for the purposes of an upscale these results suggest using a thin layer of material to improve the carbonation reaction.

Figure 21. CO2 uptake related of the 0/6 mm fraction after 8h accelerated carbonation treatment of samples with different mass, i.e.: 200, 100, 50, 25g.

2.3.2 Comparison with scientific literature

REFERENCE	MATERIAL	FLOW (L/min)	TIME (h)	%CO2	L/S (L/kg)	MASS (g)	UPTAKE gCO2/kg dw	OPERATIVE CONDITIONS	CO ₂ ASSESSMENT	REACTOR
Jiang, et al. 2013	FA	0,01	1,2	12	0	100	41	Very Mild	TGA; DSC	Static
Suescum- Morales, et al. 2021	slurry mortar: RCA + cement + water	0	24-168	5	0.08	4000	3.3-27.1	Very Mild	TGA; DTA	Static
Sereng, et al. 2020	RCA	0	24	15	water content 2-13%	Not found	8.6-12.6	Very Mild	Mass gain method; TGA	Static
Fang, X et al. 2017	RCA	1-5-10	3-5-7-24	10	0	Not found	9.5-9.8-9.6-10.5	Very Mild	TGA	Static
Nam, et al. 2012	BA	0	Not found	10-30	0.1-0.3	Not found	3-165	Very Mild; Mild	Not found	Static
Berber, et al 2020	FA	100	0,5	20	0.2-0.3	200	22-108	Very Mild	Not found	Rotating

Table 5. Comparison of experimentations found in literature carried out through similar conditions to the ones presented in this study. FA= fly ash; BA= bottom ash; RCA= Recycled concrete aggregates; TGA= Thermogravimetric analysis; DSC= differential scanning calorimetry; DTA=differential thermal analysis

Our experimental results are comparable with the ones obtained from accelerated carbonation experiments in which operative conditions were very mild (temperature =ambient <35°C; pressure =atmospheric and %CO₂=0-20%) performed on recycled concrete aggregates, which are visible in Tab.5. In particular, (Sereng & Dangla, n.d.) performed carbonation tests on RCA in very mild conditions with a concentration of CO₂ equal to 15% and they found a capture range of 8.6-12.6 gCO₂ /kg dw in 24 hours. (Fang et al., 2017) performed carbonation tests on RCA in mild conditions with a concentration of CO₂ equal to 10%. Their results ranged between 9.5-10.5 gCO₂ /kg dw in 3-24 hours. If we consider concentration less than 10%, (Suescum-Morales et al., 2021) found results ranging 1.5-16,55 gCO₂/kg dw performing carbonation on RCA with 5% CO₂ concentration in very mild conditions. CO₂ concentration play a discriminant role in the carbonation extent, as reported by (dos Reis et al., 2020) an increase of the partial pressure determines an important increase in CO₂ uptake. Regarding time and mass, (Jiang et al., 2013) and (Baciocchi et al., 2009) performed accelerated carbonation tests on fly ashes samples with comparable masses (i.e., 100g and 200g respectively) and times: 80 and 20 min respectively. They found a CO₂ capture of 41 and a range of 22-108 gCO₂ /kg dw. The last one carried out their tests through a rotating drum reactor, that can explain the higher values achieved.

It's important to note that the operative conditions together with material, time and sample mass variables play a determinant role to achieve higher values of carbon dioxide capture. That's why it was decided to compare previous studies with similar ones. For instance if we take in consideration acceleration tests performed with similar CO_2 concentration but with different operative condition and variables we found that (Baciocchi et al., 2009) obtained 250 gCO₂ /kg dw uptake in an acceleration carbonation test on fly ashes with 10% CO₂, but it was carried out in intensive conditions (pressure =1bar, temperature=300-500°C) on a sample with mass 44mg. Others considerations are that tests of this study were performed in a 98.5% relative humidity atmosphere conditions, and (Morandeau et al., 2013) reported that increasing the relative humidity of the chamber where carbonation treatment has been carried out, significantly decreased the carbonation rate. They found an optimal relative humidity value for carbonation was in the range of 50-70%, and when it was either too low or too high it would negatively affect the carbonation reactions, thus the carbon uptake. Results in terms of uptake and carbonates content are graphically represented in ANNEX XIV.

2.3.3 Mobility of pollutants after the the accelerated carbonation tests

All control (0/6-00-t0) and carbonated samples (0/6-00-t8h; 0/6-02-t8h; 0/6-03-t8h) were subjected to batch leaching tests at L/S 10 according to UNI EN 12457-2 2004 to determine the influence of the accelerated carbonation treatment on contaminant mobility. Results are displayed in Tab.6.

UNI EN 1	2457-2						
Chemical	Unit	0/6-00-t0	0/6-00-t8	0/6-02-t8	0/6-03-t8		
рН	/	$11,\!89\pm0,\!07$	$9,\!43 \pm 0,\!16$	$11,\!28 \pm 0,\!04$	$11{,}53\pm0{,}03$		
Barium	mg/l Ba	$0,\!09\pm0,\!01$	$0,\!05\pm0,\!00$	$0,\!04\pm0,\!00$	$0,\!06\pm0,\!01$		
Cadmium	μg/l Cd	${<}1\pm0{,}00$	$<1 \pm 0,00$	$<1 \pm 0,00$	$<1\pm0,00$		
Chromium	μg/l Cr	$54{,}00\pm15{,}59$	$203{,}00\pm9{,}64$	$115,33 \pm 4,73$	$34{,}67 \pm 6{,}66$		
Molybdenum	mg/l Mo	$0,\!03\pm0,\!03$	$0,\!11\pm0,\!00$	$0,\!03\pm0,\!01$	$<\!0.013 \pm 0.01$		
Nickel	µg∕l Ni	$14{,}33\pm0{,}58$	$8{,}43 \pm 0{,}38$	$12,\!00 \pm 1,\!00$	$9,\!40\pm0,\!60$		
Lead	µg/l Pb	$21,\!67 \pm 7,\!09$	$<5 \pm 0,00$	$<5\pm>0$	$11,\!37\pm7,\!70$		
Copper	mg/l Cu	$0,\!89 \pm 0,\!03$	$0,\!77\pm0,\!02$	$0,\!82\pm0,\!07$	$0{,}63 \pm 0{,}03$		
Antimony	mg/l Sb	$0,\!03\pm0,\!01$	$0{,}08\pm0{,}01$	$0,\!06\pm0,\!01$	$0,\!04\pm0,\!00$		
Zinc	mg/l Zn	$0,\!11\pm0,\!08$	$0{,}00\pm0{,}00$	$0{,}02\pm0{,}00$	$0,\!04\pm0,\!00$		
Magnesium	mg/l	$0{,}02\pm0{,}01$	$5{,}80 \pm 3{,}55$	$0,\!15\pm0,\!10$	$0,\!01\pm0,\!00$		
Calcium	mg/l	$52{,}67 \pm 2{,}52$	$224,\!33\pm5,\!51$	$81,\!67 \pm 5,\!03$	$59{,}67 \pm 1{,}53$		
Sulfates	mg/L SO4=	$115,33 \pm 21,57 \\ 462,33 \pm$	$828,67 \pm 39,72 \\ 528,00 \pm $	416,33 ± 61,01 375,67 ±	$160,00 \pm 11,27$ $345,33 \pm$		
Chlorides	mg/L Cl ⁻	17,90	19,67	104,71	14,74		

Table 6. Leaching test results according to UNI EN 12457-2 on 0/6 mm fraction before (t0h) and after (t8h) 8h accelerated carbonation treatment with different L/S ratios applied (00 stands for L/S= 0.0 L/kg; 02 stands for L/S= 0.2 L/kg; 03 stands for L/S= 0.3 L/kg). Results are expressed as the mean value of the triplicate leaching test \pm the standard deviation.

0/6 mm fraction samples with L/S=0.0 L/kg had the most effective performance in terms of carbon dioxide uptake. The maximum CO₂ uptake of 13,9 gCO₂/kg dw after 8h accelerated carbonation treatment caused a drop in the leachate pH from 11.9 (native material) to 9.5 (carbonated material). The leachate concentrations of Ba, Ni decreases by a half, while for Pb and Zn the concentration decreases drastically from a mean of 22 to $<5 \mu g/L$ and from 0.1 mg/l to 0.03mg/l. However, the leachate concentrations of total Cr, Mo, Sb, Mg, Ca, sulfates increased with CO₂ uptake. Same results for Cr, Mo, Sb, Pb and Zn have been found by (Schnabel et al., 2021) which performed accelerated carbonation tests on biomass bottom ashes. Same we can say for Pb, Zn Sb (Baciocchi et al., 2009) on fly ashes.

Moreover Mo, Cd, Pb, Zn, Cu were immobilized in full accordance with the what explained by the solubility-pH graphs, so on how pH influenced leachability of these contaminants (Meima et al., 1998).

Results of leaching tests on 0/6-02-t8h and 0/6-03-t8h samples displayed similar values among them. pH slight decrease (i. e. from 11.89 to 11.28 and 11.53) could indicate a lesser extent of occurred carbonation with respect to the L/S=0.0L/kg sample. This agrees with the lower CO₂ uptake values obtained from the calcimetries. For both has been found that Mo, Cu, concentration in leachate keeps constant, while Pb, Zn, chlorates decreases and sulfates concentration increases. All these contaminant concentrations variations are in agreement with the variations occurred due to carbonation. Cr makes an exception; it increases for L/S=0.2 L/kg samples while in the L/S=0.3 L/kg it remains constant. We can conclude that the carbonation treatment had the expected effects on leachate.

2.4 Conclusions

- \circ There is no standardized method to perform accelerated carbonations tests in literature. Thus, results found in terms of uptake (gCO₂/kg dw) for different materials showed a great range, due to the applied boundary conditions. Our study is limited to evaluate material, particle size, L/S, time and mass of the sample with fixed operative conditions (i.e. temperature, CO₂ concentration) in order to estimate the better conditions to get the maximum carbon sequestration.
- In any fractions studied, the applied water according to different L/S ratios didn't increase the CO₂ uptake of materials which already have an inner moisture content. Thus, it has been found that the best L/S ratio is 0.0 L/kg. Since this result is not in agreement with literature, it probably means that the maturation treatment occurred in the industrial waste treatment plant already carbonated the material utilized in this study.
- Fractions 6/16 and 16/31mm didn't show a visible trend of carbonation that increases with treatment time or with increasing liquid-to-solid ratio. They are therefore unsuitable for use in a subsequent upscale level plant.
- Decreasing the mass of the sample there is a significant increase in CO2 capture.
- A maximum uptake of 25.64 gCO₂/kg dw was achieved by the 0/6 mm fraction, through a sample of 25g of mass, with L/S=0.0 L/kg applied, after a 8h accelerated carbonation treatment in a static incubator with very mild conditions, i.e.: 25°C temperature, 98.5% relative humidity, and 10% CO₂ at atmospheric pressure.
- The results in uptake of the 0/6mm fraction agree with other studies carried out in similar conditions.

PART III - ANNEX

In this part the annex of the thesis are present. In this section is possible to find any table and graph utilized for the calculations which made possible this study.

ANNEX I: Included papers table comparison

Here the table utilized for analyze and compare the included papers is reported. It includes 34 articles as reported in the paragraph of the critical review. It was utilized to compare qualitatively the papers, to find discriminant factors and variables and to find common features present in previous studies.

l material ing age, tration	rmance not from CR, ty of cited by quester another paper	ce not from CR, cited by another paper	ea ough the moreover, s' produce il	estration harged coretical cches.	s of kedensity, nd the CO2 recus natural onry	onation in speed	r produced blid watte ures, the ted in order the basis of nent, ture, and	ropose active g previous	ish from a wer haterial dry cess to	ve n coke fly in was	test vestigate an id ratio, id on the teel-	ased on Ind terated sh is pro- : above
the use of carbonated w. as the mixing and/or cur solvent on cement-basec properties at an early cur as well as the CO2 seques capacity	improve durability perfo and explore the possibili using concrete pipe to se carbon dioxide	maximize the performan improvement and the ca storage capacity	Improve the soliny of negot aggregates to store CO2 thr rolling carbonation process; recycled concrete aggregates physicochemical properties secondary aggregates for ch engineering applications we.	to examine the CO2 sequences of the CO2 sequences of the constraint of four dry-disk waster materials using the and experimental approximental approximenta	This study examines the effect accelerated exponsion on the methanical properties, dry but porosity accessible to water, a sequestration capacity of a po common-based material that co different replacement ratios of aggregate (MA) by verycled ma- aggregate (MA).	to study accelerated cab varying moisture, rotatic	Focusing mainly on the effect by the content of municipal so incleneation such in the admixt granule compositions were we to tailor granule properties on Iozdu publicks, strength developin leaching behaviour, microstru motoholase.	This study attempts to p two approaches to evalu CO2 uptake amount of re magnesia-lime fly ash/sit solidified soils, rather thin improvement proved by findings.	the utilization of the fly: solid retused fue (FR) p plant as a solid sorbert n for CO2 apture via semi carbonation reaction wa evaluated as a simple pro reduce CO2	In this study, an innovat valorization of petroleur ash as supplementary cementitious ma-terials blended cement mortars investigated	In the present study, the apparatus was used to in the effect of three reactit parameters (water-to-sol tem- perature and pressu mineral carbonation of s making slag	An innovative process, b carbon dioxide capture : ; storage by means of acce carbonation of bottom a posed and studied for thi purpose.
max CO2 uptake = 13,8 and 16,5 gCO2/Kg dry sorbent. Results and details on paper sheet.	87; 89; 79 gCO2/kg sorbent	With mass gain method: 101,3: 1581, gCO2/Kg dry cement: mass curve method: 113,3 gCO2/Kg dry cement: increasing pressure to 5 bar: 99,5 to 146,0 gCO2/Kg dry cement	according moisture variation and drum rotation velocity, CO2 captured=16,0 to 39.5 g/Kg dry sorbent	varying according US ratio 43.56; 92,84; 76,56; 111,76 gCO2Ag sorbart	verying in a range 1,573-26,35 gCO2/Kg sorbent	according moisture, drum velocity CO2 uptake varies: 4,2,47,4 gCO2/Kg sorbent	several results: ranging 23-108 gCO2/Kg sorbent	several results: ranging: 4,87 to 14,66 gCO2/kg sorbent	101,7 gC02/kg sorbent	84,5 gCO2/kg sorbent	up to 29,47 gCO2/kg sorbent	35-37 gCO2/kgsorbent for rotating reactor. 21-23 gCO2/kgsorbent for fixed reactor.
The CO2 uptake of the hardened mixes can be determined using TGA/DTA	Mass gain method	Mass gain method	not found	TGA	TGA	TGA	analytical determination via mathematical formula considering concentration of chemical species	TGA	XRF pre and post carbonation	TGA	ideal gas law	calcimetry
Wowelength dispersive X-ray functscence spectrum of ZCR PM MDS (N, Rguss, A W power) sperformed to obtain the chemical ICN Rguss, A W power) sperformed to address the chemical interpolation of the raw materials (N, RMA, and ceremit) o determine the morphology and composition of the statistics' actioning detricon microscopy (SEM) and mapping were performed with a JEOL SM 7800 F.	The mixture of samples were proportioned using ordinary Portland cemeri (GAT type GU) at 266 kg/m3, coarse aggregates 730 kg/m3, fine aggregates 1050 kg/m3 and water 100 kg/m3	Mixture proportions of concrete are given.	particle sized shape obtained from along and particle shape obtained according to the standard french YP 2 8.565-2002 (MONS) obtained strong solution analysis was obtained stronglis a zeaming electron. Increase (SM) equal of this mergy- plexes very approximation of this XM3. Sweethol, Particle Genty and water absorption potential were assessed according NE EN 2024-6.	Notative contervant determined greatericals, after driver, sambles disposition 24.105. (For 34.1,) For additional greateristic structure (2014) and a The edd controlling exactive (10 cm samples) structure (2014) and (2014) for the edge of the edge engineering and a solicit 15.2 disposition and (Cod) in mill 42.1 and edge of the edge of the edge of the edge of the edge of the edge engineering and a solicit 15.2 disposition of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge of the edge of the edge of the edge edge of the edge of the edge edge of the edge of the	According to LVNE (by 23) - 11.2009, was get composition of MAA (carently, motion careful and the second second second second second second second second second leader to have absorption were measured according to the following (careful according to the second second second second second second second second second leader to have absorption were measured according to the following (careful according to the second second second second second second second second second leader second second second second second second second second second leader second second second second second second second second second protection of the second second second second second second period second s	water absorption capacity, density was given. The morphology of the recycle asards was observed with a scanning electron microscope (SRM) (TEGSAM 5, sweeth), Thermagawinnetic (TGA) and Differential Instruments model SDT OGOD (New Castle, USA) Instruments model SDT OGOD (New Castle, USA)	The Bunauer, Emmett, and Teler (BET)-specific unitera ena (SSA) and particle state structure) (FSU) were enabled and the structure and state structure) (FSU) analysis: enabled and the structure and composition is pervering legal on the structure (XPB) spectroscopy (legals manual i)) and caustration K-ray efficiencing (XPB) (Bauer DB Abranced) methods. T. Cand Teler Bine counteries were performed.	chemical properties of sorberts are given	The intropolagia and structure of the fly wave analyzed by SEM (MeXF00F, EKU, Noko, Japan). The cyriad structure were investigated by XGD (Year EP were, Makmen PAMAytica) with investigated units X-ray. Hearth and a structure and isompositions of the fly all were withwisen. UKI, The elemental compositions of the fly all were investigated units X-ray. Investigated units X-ray (Network and Units) allow investigated units X-ray (Network and Units) allow investigated units X-ray.	The compositions of PCFA and clinker in this study were examined by X-Ray Fluorescence (XRF) and chemical titration analysis	X-ray fluorescence spectroscopy (XRF) analysis of the mineral composition	The molisture content was measured after drying for 24 h at 105 C, providing an average value (25.3.5.5.5.W) providing in the reation was drived, reduced in size, sleved at 5.Wm and mixed in the reation 10.0 g of the relationed water (UNIX 12452-73.1 The pit was measured by means of a pit-meter, with average value of 13.08.20.34.03.4 size of shorter (particles 5-10 mm.
time of curing: 1,3,7 days, mass of sorbent= 2500g and 3500g	mass of sorbent not found; time of carbonation=2h.	massof sorbent not found; time of carbonation: 12h.	curing time= up to 7 days; mass of sorbent= 500g	mass of sorbent = 200g; curing time=2; 168 h	time for carbonation: 1- 3-7 days. mass of sorbent not found	mass of sorbent sample=500g carbonation time=7h	carbonation time= 20+30 min; mass of dry sorbent =200g.	carbonation time: from 0,5 to 24h	mass of sorbent=200g; carbonation time=60 min	mass of sorbent; time for carbonation = not found	mass of sorbent=100 g; time=48h	mass of sorbent=6 kg.
PIIW	Intensive;	Intensive	PIIW	PIIW	PIIW	PIIM	Mild	Intensive	PliM	PIIW	Intensive	PIIW
2 different experiments were carried out. In the air curving typology a normal climatic chamber waves, CO2 control on - structure transformer (0.04%); 724 ± 22 , $78 \pm 65 \pm 10\%$, in the twater curving, typology dry samples were put indirect contrainters where natural wave or carbonated wave was added containters were soled and kept at 1^{-2} , 22 , 22 .	P-1.5 bar: carbonation time-2h; To-24 C; CO2 purity-99, 2%; RH=30%. The P-1.5 bar: carbonation time-2h; To-24 cuid point-ay-0 buttand cement (CSA Types Cui) at 26 bg/m; 2, course aggregater 30 g/m; 3, ine aggregater 3 102 0 Rg/m3 and water 100 kg/m3. In the carbonated samples	P-1.5 bar; CO2 purity-99,8% time of carbonation-12h; RH= 65 ± 5%, T-25±3*C.	Pr0,75 bar, CO2 concentration =100%; T=2.°C, samples were initially dried, then immersed in water and then redriced at 7.0°C to reach adguate molicute grade. molicute, size of particles and rotation speed of the drum were varied	dry samples are nixed with deonized water (U.S.40,1:0,2:0,3:0,4:0,5). They have been allowed to hydridater for 30 min or 24 h according fast or slow is carbonation. Pressure-atmospheric pressure	Insy experiment carried out in a climatic chamber CO2 conce_0.04%. Head-200%, ECC Petar-Partin J. C. Para-Partin J. Para Para Para J. Para Para Para Para Para Para Para Par	T=22°C: P=atmospheric pressure, CO2 partial pressure = 0.8:1 bar. Samples are dived and then pre treated with water to reach the warned level of motisture. The rotation speed of the drum was increased from 0 to 100 rpm. Initial motisture was veried (4:12%)	the initial materials (200g) were mixed with water (L/S=0.2-0.3 w/w) for 2 min. The nage flow of CSC cDi rain water flox the equator is a rate of 1001 1 for 3 dmin. Then Additives, such as OPC and/or quary. Thes, were added. Then water was added as rule upilou for (L/S=0.2-0.5 w/w) to initiate particle aggromeration. Tast extrohenion rateges with gas (low of 20K GO2 in air that was led into the quapter (for 20min. F-room temperature	samples contain a mix of the sorbents (concrete was created). The 2 mm-siered stamples contain powders, which have been thinking presentation schriter where deligned initial water content of 17%, we are after wards inmedihomogeneously with fly speaking and a stample of 17% are after wards inmedihomogeneously with fly generations are subjected in for 02 acceleration and and the mixer. Some generations were subjected in for 02 acceleration and and the rank mixer. I 2 and 24 h under CO2 pressure of 150 kPa and confining pressure of 300 kPa period period	fly shi + vater (50g) vere put inside the round bottom flask reactor, rotation fly shi + vater (50g) vere put inside the round bottom flask reactor, rotation velocity floct to 40 rpm. Pure CO2 at a flow relea (10 Cmm, 1-25°C, Water added was variest. US ratio=0.35, 0,50-0,75-1, reaction rime=60 min.	The start of the start with provident moster start in a furth trait restrict scaling (JS reaction of 12 mm/3/kg. Subsequently, the fly and hum vare purposed in the RP restor of a constant flow restor (10.02 m/1) mills (restor with the scalar flow restor (10.02 m/1) mills (restor with the scalar with the scalar with the scalar start for a carbonic or complete with the scalar start scalar scal	for Jurry tests: L/S= from 02,5 to 3. 1r2/0-00-80°C; CO2 pressure-1 to 6MPa. Samples were stirred at 60 rpm. Pressure, L/S ratio; Temperature were varied	fixed bed reactor: CO2 gas flow/solid ratio equal to 4 N(h) kgAk). Rotating reactor: filling ratio (10, 20, 30% of volume reactor) and rotating speed (2, 5; 5 hyber weat the reactor) and rotating ratio (different as the ratio between the volume occupied by the bottom ash to the reactor internal volume, and the rotating speed.
Natural aggregates, RCA (recycled concrete aggregates)	concrete pipes	OPC (Ordinary Portland Cement)	RCA (Recycled Concrete Aggregates)	Fly ashes (biomass bottom and fly; ashes from fuel inconeration) and steel slags	RCA; Natural aggregate	RCA (recycled concrete aggregates)	APC residues from MSW incineration	Fly ashes, slags, lime, magnesia, kaolin powder	fly ashes	Fly ashes from petroleum coke power plant	steel slags	Bottom ashes (MSW incineration)
batch reactor; slurry reactor	batch reactor	batch reactor, slurry reactor	batch reactor + rotating drum	batch reactor	batch reactor	batch reactor	open reactor; slurry reactor	batch reactor	round bottom flask (rotating reactor) is an open reactor	rotating packing bed reactor - slurry reactor	slurry, batch reactor	rotating reactor; open reactor
Suescum-Morales, D., Fernández-Rodríguez, J. M., 8/89, 1996 - A. R. (2012). Bod cárcobrada water to improve the mechanical properties and reduces the carbon foophrint of the mechanical and activity of second programs. Actionation of the carbon of the carbon of the carbon whys.//doi.org/10.1016/j.jcon.2022.101386.	Restaml, V., Sha, Y., Sa38; Boyd, A.J. (2011). Durability of concrete pipe subjected to combined steam and actionation curing. A-Sconstruction and Building Materialsc/i>, A-252-(I>(8), 3345–3355. https://doi.org/10.1016/jj.conbuildmat.2011.03.025-/div https://doi.org/10.1016/jj.conbuildmat.2011.03.025-/div	Zhang, D., & H38, Shao, Y. (2016). Early age carbonation curing for precast reinforced concretes. <a>Construction and Building Materials , >> <a>U133 , 134-143.	Dos Reis, Glaydion S., et al. "Coupling of Attrition and Accelerated Carbonation for CO3 Sequenciation in Necycled Concrete Aggaetics, "Conner England", Conner England, Technology, vol. 3. Essever (Ld., 2021, https://doi.org/10.1016/j.def.2021.100106.	Schnabel, Kevin, et al. "Technically Ecololable Mineral Cantoorabor Powhala of "Four Akaline Washe Materials and Effects on Contaminant Mobility." <i>Caeenhousas</i> (Sasses: Schene and Technology, vol. 11, no. 3, John Wiley & Sons, 2021, pp. 506-19, Wiley & Sons, 2021, pp. 506-19,	Suecum-Morales, David, et al. "Accelerated Carbonation of Presh Carment-Based Products: Containing Recycles Mazony Agenetic Proc. Cosqueration, "Journal of CO2 Unitiation, vol. 48, 2021. https://doi.org/10.1016/j.jou.2021.101461.	dos Reis, Glaydson Simoas, et al. "Effect of the observated Catoriaton Treatment on the Recycled Sand Physicochemical Characteristics through the Rolling Carbonation Process." <i>Journal of CO2</i> thips://doi.org/10.1016/j.jou.2000.101181.	Technology Gamulation of Industrial Wase: Effects of Technology Gamulation of Industrial Wase: Effects of Mixture Composition on Product Properties. Waste Industrian Composition on Product Properties. Waste International Solid Vasies and Public Cleansing the International Solid Vasies and Public Cleansing the International Solid Vasies and Public Cleansing the International Solid Vasies and Public Cleansing Americal Cleansing	Wing. Domping, et al. "Out-infriction and Micro- Mechanismo of CO2 Sequestration. In Magnesia-Ume-fly Joh/Sag Solidhiet Solis." International Journal of Evenhouse Gas Control., vol. 91. Exercit Science, 2019, https://doi.org/10.1016/j.ijgs. 2019.102827.	Km. Jung, and Woo Kwon. "Sumi-Dry Carbonation Process Using P Ash Thron Soft Retables (E. In Provet Plant", Statianabily. vol. 11, no. 3. Molecular Diversity Preservation International, 2019. Diversity Preservation International, 2019.	Peu, SLLu, et al. "Efficacy of Carbonated Petroleum Coke Pi y Ani as Supplementary Commettoos Materials of Commet Mortans." <i>Commat of Causan Production</i> , 1, od. 190, Esever Science Jul, 2018, pr 689–97, https://doi.org/10.1016/j.jelepro.2018.01.055.	Urwattingo, M., et al. "Steel-Making Step for Mineral Sequestration Cateron Doxoba Accelerated Carborators, Massurement, vol. 97, Published for MIRCOUV phe institute of Massurement and Control, 2017, pp. 1–522, https://doi.org/10.1016/j.massurement.2016.10.057,	Lombardi, L., et al. "Experimental Evaluation of Two different Types of Heacuros's for CS Permoval from Gaseous Steam by Bottom Ash Accelerated Contronation: "Waste Management, vol. SR, Pergamon Press., 2016, pp. 287–38, https://do.org/10.1016/j.wastman.2016.09.038.
13	4	15	9	1	89	19	20	21	5	23	24	25

An innovative process, based on carbon dioxide capture and storageby means of accelerated carbonation of bottom ash is pro- posed and studied for the above purpose.	To investigate the CO2 sequestration potential of concrete slury waste (CSW) and its valorisation with fine recycled concurction aggregates (FRUs) for the potaction parallel construction products by direct gas- solid mirrer (sinbronation	Accidental enformation of allotion varies including municipal solid water inclusions because because all (ASTW) municipal solid water inclusions and (COV) to sur- neuroscipated for exclusions (LO) and allot allocation and COV to concentrate A. (and the solid traft, pendic inclu- ant COV to second traft, pendic inclu- ant COV theorem.	The present shall constrained the effect of two operatorial parameters on the manufactions of Advances and a shard for CO 3 seques-turbion at Advances paster.	This work reports the results of a combined accelerated carbonation and when a provident removing the set of the size Owgen Furnace (BOF) steel size with the aim of producing secondary aggregates aim of producing secondary aggregates storing COE in a solid and thermodynamically stable form.	The influence of CO2 content and presence of SO2 on the sequestration of CO2 by municipal solid waste inchnetarc (MSW) fly as h was studied by investigating the carbonation reaction of NSW fly ash with different combinations of simulated flue gas.	The present study attempts to identify then potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation.	This study seles to determine the degree of influence of several main factors, such as the optimum factors, such as the optimum and CO2 concentration, on the process of accelerated carbonation of the bottom ash	Carbon dioxide (CO2) sequestration experiments using the acceleration experiments using three types of steel making slags, i.e., uttra-fine (LP) slag, fly-sah (FA) slag, and band by articulic slag cement (BHC), were performed in an autoclave reactor.
23-37 gCO2/Agoobent for rotating reactor, 21-33 gCO2/Agoobent for fixed reactor.	uto gCO2/kg dry slurry wase; 52gCO2/kg dry mixture (concretel; 20 gCO2/kg RCAs	78 gC02/hg sorbent; 102 fC02/hg sorbent	10,71,20,13,27,05 gCO2/kg dy sorbent	120; 149 gCO2/Kg sorbent	87,41 gCo2/kgsorbent	7,66 gCO2/Kg sorbent	3.4.5,18,50,84 gC02/kg sorbent	283 gCO2/kg sorbent
calcimetry	Mass gain mehtod	TGA	at 60 pm. continously stirred at 60 pm. carbonation time. J0h. water-to-solid (W/S) ratio 60.3. in preserves 20, 40, 60, 80 c were used for testing at an initial CO2 pressure of MMa. US ratio, pressure pressure of an optimisture control twee varied	Inorganic carbon analyses	TGA	TGA	particle size; US ratio, Temperature were varied	TGA
The moisture content was measured after drying (for 24 h at 105 C, providing an average value of 23.3 ± 5.2 %. For pH measurement, The DB of the adding an average value of 23.3 ± 5.2 %. For pH measurement, the DB of the Adding and the adding	The average water content in the collectud fresh CSWs, determined by the water loss at 105° Cn three own was about 50% and the amount particle starts of the dried solid loss and 12.5 mm. The amount no particle starts of the dried solid chement was even amount of CSWs, fraction and chement was even a by using X-ray fluorescence spectroscopy (Bernent anal-yrae, JEOL IS) 23012). Tok analysoy were performed to assess carbonate content.	The chemical properties of MSW-BA were measured in accor, denor with Weiherland, and the constraints of the constraint of the constraint of the constraint Weiherland, and the constraint of the constraint of the constraint of the constraint SSTM method CLI and KAV share were meaned as constraint and the SSTM method CLI and KAV share constraint of the MSVM-BA before and the constraint of the constraint on constraint of the MSVM-BA before and the MSVM method CLI and KAV share constraint of the MSVM-BA before and the MSVM method CLI and KAV share constraint of the MSVM-BA before and the	Interaction of the state of the	Particle size-Zmm. The exchanate content was evaluated by Inorgani Successon anyors using the analysing of the analyser equipped with Successon and success the mineralogical composition was determined by powder XRD analysis	X-ray fluorescence (XRF) gives elemental composition. Thermo- verse used to investigate CO2 uptation indianet (XRF) (XRF) were used to investigate CO2 uptation and refease form fly ad. Microstructure analysis of the BT specific surface area, i-plot Microstructure analysis of the BT specific surface and uptation. 2.7-300 mill of the fly ada Micrometrics Co., USA).	avenge size particlee0,9 mm,X-ray spectroscopy gives chemical composition.	DM4188 standards for sleving samples. Chemical composition is given.	size of particles. 44.µm. The conversion of the carbonation products and additument of parameteric analysis (TGA) and additumeNP X-ray diffraction (PRB) and scanning-electron microscopy (SBM).
mass of sorbent=6 kg.	mass of sorbent not found. time for carbonation up to 144h.	mass of sorbent not found: carbonation time= 120 min	carbonation time=10h; mass of sorbent=300g	carbonation time= 120 min, mass of sorbert not found.	mass of sorbent=100; 150g. Carbonaiton time=80 min.	mass of sorbent=300g	mass of sorbent=100g; carbonation time=30 min.	mass of sorbent not found; carbonation time=12h.
piiM	PIIW	PIIW	Intensive	PIIW	pliM	Intensive	PliW	Intensive
fixed bref reactor: CO2 gas flow/solid ratio equal to 4 M(h) KgR4, Rotating freestor: filling ratio (10.30.3 GW of volume reactor) and rotating speed (25,5 rpm) verse valces. ¹² = Armospheric pressure: the filling ratio, defined as the ratio between the volume occupied by the bottom ash to the reactor internal volume, and the rotating speed.	samples preparations mixture of RCA+ cement+water, samples were firstly pseroficioned in merivionmental chambe with a south campacture of 35 * C and a redistry elifolds for 6. It mine for carbonation: 1,2,5,6,8,8,41 P=0,1;5 faur Pressure, carbonation time, type of RCA (pre-carbonated or not) were varied	T= room temperature. US ratio used were. S, 10, 20, and 40 mUg. CO2 flows continuously at P-14 tim at different flowarties. () 22, 05, 11, 15 Umin. Teaction continuously at P-14 tim was sampled at 15, 10, 30, 60, and 120 min. 3 different particle isses: (123 min. 123 – 300 m; 89 – 300 m; 80 – 400 m; 104 – to-solid (LS) ratio, gai flow rate, and particle size	The mixture was continuously stirred at 60 pm carbonation time-10h, water- to-solid W/SP indo 60.3. Temperatures of 20, 40, 90.0. Ceverue do for testing at an initial CO2 pressure 31 MPa. L/S ratio; pressure drop, moisture content were varied and controlled	1~23°C; Pratm=100%.CO2; 74 rpm. L/5 ratio = 0.12 L/kg. Reaction times=30, 60, 120 min. pH was monitored;	CO2 flow-c0 01 L/min. CO2 concentration= 100%; 12%; reaction time up to 80 min. T-ambient: Istantaneous flow, P. Twere monitored. CO2 concentration was varied.	Tr40°C; samples were prepared with 1.5 solid to liquid ratio. Pressure of CO2+2 to SMPs. Time of carbonation=10h. US ratio was varied from 0.1 to 0.6. US ratio? Pressure were varied.	RH-35%, LS ratio = 0.1.0.3. mixture gas of 10.30% CO2 in N2. carbonation time30 min. T-20.40.60°C.	L/5 ratio was fixed at 10 mL/g. Pressure-700 pai (circa 5 MPa)-1300 paig (circa 9 MPa), T40-160°C. reaction times 5 min to 12.h. resction time (p.), liquid- to-solid ratio (L/3), reaction temperature (1), CO2 pressure (P), and initial pH were varied.
Bottom ashes (MSW incineration)	concrete slurry waste concrete; recycled concrete aggregates	Bottom ashes (incineration); cold rolling waste water.	fly ashes (coal power plant)	steel slags	fly ash from MSW incineration	ffy ash from coal combustion	Bottom ash from incineration	steel slags
rotating reactor; open reactor	batch reactor	Slurry reactor	stirred autoclave reactors-slurry reactor	Lab scale granulator reactor (Slurry reactor - batch reactor)	open reactor	slurry reactor	slurry reactor/ batch reactor	autoclave reactor
Lombard, L., et al. "Experimental Evaluation of Two Different Types of Reactors for CO 2 Removal from Gaseous Stream by Bottom AAA Accelerated Carboration." Waste Management, vol. 58, Pergamon Press, 2016, pp. 287–98, https://doi.org/10.1016/j.wastman.2016.09.038,	Xuan, Dongstrig, et al. "Carbon Doxide Sequestration of Concrete Surry Waste and its Valorisation in of concrete Surry Waste and its Valorisation is Materiale, vol. 113, Butterworth Scientific, 2016, pp. 664–72.	Chang, E. E., et al. "Accelerated Cathonation Using Chang, E. E., et al. "Accelerated Cathonn Ada and Cad-R-Bing Westewater: Preformance Evaluation and Cad-R-Bing Westewater: Preformance 1, vol. 43, Pergamon Press, 2015, pp. 288–92, Phys. / Vol. org / 10, 1016/, wastman 2015, 05, 001,	Montilipe, M.L. et al. Al. Informative Scale Blauky of the Autonous Mineral Carbonation of Cost PLAR for COS and Carbonator Octawar Production, vol. 103, Elevier Salence Ltd. 2015, pp. 685–74, https://doi.org/10.1016/j.jelepro.2014.03.005.	Morone, Milena, et al. "Valorization of Sheel Stag by a Combined Carbonation and Canutation Treatment." <i>Minerals Engineering</i> , vol. 59, Pergamon Press, 2014, p. 22–90, https://doi.org/10.1016/j.mineng.2013.08.009.	Jang, Jianguo, et al. "Influence of SO2 in Incineration Flue Gas on the Sequestration of O22 by Municipal and Waste Incinerator Py Ash." <i>Journal of</i> <i>Environmental Sciences</i> , vol. 25, no. 4, 2013, pp. 755–40, Imps.//doi.org.10.1016/S1001-	Ukwattage, N.L. *Investigation of the Potential of Coal Combustion Fly Ash for Mineral Sequestration of CO2 Potentiation Catoconduch. Factoronduch. Factoron	Nam, Saong-Young, et al. "Accelerated Carboration of Nam, Saong-Young, et al. "Accelerated Carboration of Display and Name Increation Bottom Air In Co. 2 Sequetration." Geosystem Engineering. vol. 15, no. 4, 2012, pp. 205–11. https://doi.org/10.1080/12289328.2012.732319.	Chang, E. E. et al. "COC Sequestration by carbonation of Steelmaking Stags in an Autoctave Reactor." Journal of Hazardous Materials, vol. (19). Reactor." Journal of Hazard 2011, pp. 107–14, https://doi.org/10.1016/j.lazarda2011.08.006.
2	~	~	Č	,	, m	,	, m	, m

ANNEX II: Full table comparison

In this table all the paper screened in this study have been mentioned. It includes 211 studies, informations regarding their eligibility and inclusion are given. In green are colored the cells of the included studies, while the red ones belong to studies passed to the eligibility step but not included in the study. The reason of this exclusion are also reported.

				Intensive/Mild operative							Excluded	
REFERENCES	Typology	Sorbent typology	Experimentation routes and variables	conditions	Scale of the experiment	Characterization of the sorbent	Methogology to assess CO ₂ captured	Results	Objective of paper	Bigibility	motivation inc	lusion
 Mutuoni, A., Pireda, M., 2012. Mutuoni, A., Pireda, M., 2012. coelevated carbonation on MSW combustion retail immobilisation and CO 2 sequestratic rate and retain and retain and retain hazmat. 2011.04.013 	n Batch reator (???) slurry	APC residues Air pollution control (APC) residues form municipal solid waste combustion	The popiled scelerated carbonation treatment consisted of a single step aqueous-oute process carried out at ambient conditions (20 °C and atmospheric pressure)	PIIM	 Material: not found Time: about 3 h to reach the prefixed ph (end of carbonation) 	metal and anion content treat acronoment (IC) loss ngiviton (ID) mineradaptical (Xrang diffractionetic (XBD), nermogravimetric (IG) and diffreential thermo analyse (IDA))	thermogravimetric (TG) and differential thermo analyses (DTA))	200 g.CO, aborbed/kg _m sorbert	Application of an aqueous phase accelerated carbonation treatment on air pollution control pollution control			
an, D., Li, Liu, S.; Poon, C. S. (2021). (gas-solid carbonation conditions of recycled g alinear weighted sum method. Developmen iconment, 6/j.albe.2021.100053-/div>	d batch reactor/slurry(?)	Regular mortar aggregates (RMMo), Recycled Concrete Aggregates, While Ordinary Portland Coments (OPC)	Accelerated carbonation treatment consists in 2 steps: first background acceptored that maximum transit in CA2+ context. Then REA, RMA are pileed inside autoclarer chamber, where CO2, REA, and a pileed inside autoclarer chamber, where CO2, the context of the context of the context of the context duration time for carbonation text of were 3 6, 22, 24. h.	Mid	t ta found	The second secon		water absorption % and highest bulk density (kg/m3) indicate more carbonation activity	To demonstrate the use of linear weighted sum method to optimize the pretreatment and carbonation test		resu exp of cont cont	ults rressed erms conate vtent,
Poon, C. S. (2018), Methods for the assessment e aborded by cementitious materials. Carbon stration in Cementitious Construction Materia Islavier. doi.org/10.1015/B978-0-08-10244 (p	t of als batch reactor 4.	cement-based materials (hydratation products and unhydrated cement clinker minerals), ordinary portland cement + fly ables	The and the system section of the se	Intensive; Mild	4 mass of sorbent treated: not c found. Time: 30 min - 1h c for carbonation, while up tor carbonation, while up to 5 h for pretreating samples	viring with Cost and an operation mass of spectrum calculated before viring with CO2. After and the mass of water wappointed adving the arbonation is measured, preconditioning time (time to exaporate a arbonation is measured, preconditioning time (time to exaporate arbonation is measured, preconditioning time (time to extern arbonation of water measured). The arbonation orientration of interpret to any operation of the precondition of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the orientration of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of the arbonation of	mass of specimen and water evaporated are measured in the mass evaporated are measured in the mass change of inlet-outlet CO2 gas method: amount of CO2 reacted is measured once every minute by the measured once every	several results and papers are cited, they will be analyzed below	Comparison of different methods for determining CO2 uptake in cement-based materials		tes other apers ready valyzed	
Zheng, J., &435, Ling, T. C. (2018). Carbon stration on recycled aggregates. Carbon Dioxid in Cementitious Construction Materials (pp. in Kee. doi.org/10.1016/B978-0-08-102444- ive.	de batch reactor	Inert waste from C&D (Recycled gravel aggregate, recycled crushed limestone)	temperature changes due to carbonation reactions have been from 18°C (start carbonation) to 30°C, inscribed after 20 min of experimentation, were most of reactions occurred.	PIIW	time: >210 min. mass of 5 sorbent tested not found 3	artisle dimension of RCA 0.15 - 2,5 mm. thermogravimetric tabjest (TGA) coorducted to measure quantity of CaCO3 and CaOrig titeched on RCA.		results are expressed in carbonate content, not in CO2 uptake.	improve quality of RCA by accelerated x carbonation		resu exp of cart	ults rressed rerms ponate itent,
n, C. S. (2018). Sequest ration of carbon dioxid ancement of properties of RAC by accelerated New Trensis in Co-efficient and Recycled 477–4971, Eisevier. doi.org/10.1016/8978.0.0 016.64/diro	e by Datch reactor, open reactor	Recycled cement aggregates	2 accelerated carbonation methods are used: 1) presuritad presuritad methods in the model with 10002. In 5th value at Pro- 0.5 bar waspoduced them pure CCX was injected to reach Pro.0.1.5 bar. 2) flow through carbonation method: flowrate of 20.1.5 bar. 2) flow through carbonation method: flowrate of 20.25 sector 20.2 bar. 2) flow through carbonation of Pro.0.1.5 bar. 2) flow through carbonation method: flowrate of 20.25 sector 20.2 bar. 2) flow through carbonation of 20.25 sector 20.2 bar. 2) flow through carbonation method. How rate of 20.25 sector 20.2 bar. 2) flow through carbonation of 20.25 sector 20.2 bar. 2) flow through car	Intensive; Mid	time for carbonation: 24h. s mass of sorbent not found o	as of agregates, apparent density, ater absorption (7-16%), connert ontent (11-24%).	CO2 sequestrated has been measured with termogravimetric aniyals, so heated to 850°C and then mass loss was measured	Mild conditions different values according to the carbonation time 6.5 (xo) : 12.6 (xo) : 24.0:19.5; 11.5 s (2020/kg dry softwart ; Intensive conditions: 19-5 kan) up to 28.2.2 gCO27/kg dry softwart. Data are deduced from plots	adopt accelerated carbonation technique to mprove quality of RCA.			
r of carbon dioxide in steel slag. mbathula, degree project in materialis zi ence ar KTH Royal Institute Of Technology ustrial Engineering And Management	nd open reactor ? (tubular furnace)	EAF slag with high content of CaO	2 experiments with CO2 flow= 3L/min, steam flow=6 mL/min. 11 in first experiment cabronic was tead for time=1,2,4,6 at T=200C.2) in second experiment 2 temperatures were tested T=200,350C7. Boh for time=2h.	Intensive;	mass of sorbent not found. time for carbonation up to c 6h	hemical composition of sorbent is given	no informations are provided regarding how the data are collected	20-40 gCO2/Ng	develop a process to sequester CO2 in steel slag which can be adopted as			
, Costa, G., Polettini, A., Pomi, R., & 138; (2009). Comparison of different reaction route on of APC residues. 4851–4858. doi/10.1016/	S open reactor (7), slurry reactor (7)	APC residues from MSW combustion	2 experiments: 1) dry-route: sample carbonated at T=300°C to T=50°C, seding a cO2 -argon gas mixture (10:50% vd: CO2). 2)samples placed in a thermitatic bath. T=30,40,50°C.	Intensive;	44 mg APC residues; 1 g v dry ash; time: from 10 min c to 48h	ater content and loss on ignition (LOI), element and major anion ontent, carbonate content, mineralogy, acid/base neutralization apactty/ANC/BNC) as well as leaching behaviour	Thermogravimetric system (TGA, Netzsch 57A 409 CD) coupled with Gas Chromatography (GC, 2-channel Varian Micro GC, equipped with a	max CO2 uptake = 250 g/kg	analyses and compares the results of accelerated			
.; Shao, Y. (2014). Carbon Storage through Conc. nation. Journal of Clean Energy Technologies, tos://doi.org/10.7763/jocet.2014.v2.141	rete batch reactor	concrete slabs	Concrete slab samples after initial curing were placed in a sealed chamber, which was then vacuumed to about 0.7 bars and filled with carbon dioxide gas to a pressure of 1 bar. The chamber was placed on a digital balance to obtain the mass	Mild	slab of concrete = 677 g	thature composition of the sample is given,	mass curve method, thermal decomposition analysis, mass gain method	- cement: 75-348 gCO2/Ng - concrete: 0.3-45.8 gCO2/Ng	The effect of initial curing on carbonation curing of lightweight			
A. Z., Poon, C. S; Shi, C. (2016). Effects of limests acO3 precipitation in CO2 cured cement pastes ad Concrete Composites, 9–16. reg/10.1016/j.cemconcomp.2016.05.019	ane batch reactor	Cement (P-I Portland cement - CEM I 42.5)	The curing chamber was vacuumed to a pressure of 600 mmHg and maintained at that pressure level for 3 min before injecting the pure (99.3 ACQ2. The CO2 pressures used were 0.1 bar (1) and 4 bar (1) for (low and high pressure CO2 curing.	Mild, Intensive	mass of sorbent tested: not found, time of carbonation=24h	hemmical and physical properties of the cement are given	Furnace method, thermal gravimetric method (TG), and quantitative X-ray diffraction (QXRD)) were employed to quantitatively analyze the CO2 curing	results expressed in terms of carbonate content, no equation to convert the results.	the study investigated the x effects of incorporating		resu in tu of	ults rressed orms
(n), 4483, Poon (c. 2011), finghtes un (c. 01 applate by recycled concrete agregatura carbonation confilions, chAlketaia, and Anternau et constructions. angl 0.1617/s11537-017-1066-yc/diso	uder Batch reactor; Open reactor	RCA (Recycled Concrete Aggregates)	2 kinds of kookenteed carbonation: 1) Presurings carbonation: the transmission carbonation (20 model) of 5 bas using a vacuum pump. Then the parel [35 × 58] CO2 was by cooken in the parel [35 × 58] CO2 was related in the parel parel of the the parel [35 × 58] CO2 was related in the parel parel of the the parel parel CO3 was using a parel parel (21 was using a parel parel of the cooken (21 was used to parel parel was 1.2) to 10 min.	Mild, intensive	mass of sorbent tested: not found, time of 1,3,5,7,24h)	hemical composition of solvent is given	thermogravimetric methods.	Mild operation: - pressure at 0.1 bar (batch reactor):7;12,8;24; 13:19:00:00:X0;55:10:12,4;620;76; for through test:5:10:12,4;620;76; Intervive operation: - pressure at P+5 bar (barch reator):28;620;76;	assess the potential CO2 capture ability of recycled concrete aggress (RCAc) x aggresses (RCAc) acuterated acuterated carbonation			
tami, V., He, Z. Boyd, A. J. (2014). Accelerated of Portland Limestone Cement. 4Nournal of Civil Engineering 117–124. (061 /(acce)mt. 1943-5533.00007733/d/iv>	batch reactor	Cernent paste (Portland limestone Cernent)	Initially air cured samples were placed in the chamber and carbon dioxide of 99.5% purity was injected to a constant pressure of 0.15 MPa. Carbonation time:2h, 7=25°C.	Mild	mass of sorbent tested: not 1 found, time of a carbonation=2h	he fractured samples were collected for XBD, p.H. TG, FTIR, MAR, nd SEM analysis. A thermal analyzer (NETZSCH, TG 449 E3 Jupiter) Ath a resolution of 0.01 mg.	TG analysis and obtain the mass loss of the samples.	121;129;128 gCO2/Kg	The accelerated carbonation of x portland limestone x cernent (PLC) was			
ungia, P. (n.d.). 4>Accelerated carbonation of crete aggregates-(1>. .researchgate.net/publication/352366234 <td>open reactor</td> <td>RCA (Recycled Concrete Aggregates)</td> <td>samples were kept in a desiccator as a curing chamber and a concentration of CO2 (15% or 100% of CO2) is maintained during 24 hours, at atmospheric pressure.</td> <td>Mild</td> <td>mass of sorbent tested: not p found, time of carbonation=24h</td> <td>hysical properties as Water absorption coefficient, Portlandite ontent</td> <td>TGA</td> <td>8,6; 17,3; 49,9; 10,4; 21,8; 14,9; 20,4 g CO2/Ng</td> <td>To investigate the effectiveness of x cerbonation</td> <td></td> <td></td> <td></td>	open reactor	RCA (Recycled Concrete Aggregates)	samples were kept in a desiccator as a curing chamber and a concentration of CO2 (15% or 100% of CO2) is maintained during 24 hours, at atmospheric pressure.	Mild	mass of sorbent tested: not p found, time of carbonation=24h	hysical properties as Water absorption coefficient, Portlandite ontent	TGA	8,6; 17,3; 49,9; 10,4; 21,8; 14,9; 20,4 g CO2/Ng	To investigate the effectiveness of x cerbonation			
an, S. K., Ling, T. C., & 438; Mo, K. H. (2020). stion of fresh concrete slurry waste: Optimizatic and feasible use as a potential cament binder. CO2 Utilization, 4>42-6/5.	on slurry	RCA-slurry	some process conditions (temperature: 20 · C, relative humidity: 58, and COS concentration: 50%) sweet expt constant, and only the w/s ratio (10 o. 0.1) and reaction time (1-168 hours) were varied. 10 g of CSW was mixed with the	Mild	mass of sorbent = 10g. Time of carbonation up to E8h.	he oxide composition of CSW was examined by X-ray fluorescence extroscopy (possit) [Shi-mado (game) and Shi-2000 General) X-ray uorescence spectrometer). The specific autifices area is a set or evolume were analysed using BET and BiH method (Quadrasorb	The carbonate content of fresh and carbonated CSW was quantified by the thermogravimetric analyzer (TGA) (Rigaku TG-DTA 8121 H). The weight	23 results: from 10.16 to 192,7 gC02/Kg sorbent dry	The main objective of this work is to maximize CO2 uptake of the CSW			
ilietto, G., Naitza, S., & 438; Mazzella, A. (2014). (CO2 uptake under mild accelerated carbonatio i cement-based and lime-based mortars. Materials Research-(jr>, 4>980-(jr>, 57-61.	batch reactor	cement based and lime based mortar	P=1 bar, T=25*C. Samples are cured in an atmosphere of 100%C02 with accelerated carbonation. Results were given after 1,7,28 days.	PIIW	mass of samples= 45g each; time of texting= 1,7,28 days	he mineral composition of the mortars was evaluated by powder X- sy diffraction analysis.	CO2 content was determined through Dietrich-Fruehling calcimetry. CO2 content was measuerd also recording the diffence	d liferent reutits according method XRD or RKS equation: generally from 5,0 to 26,4 gCO2/kg sorbent for XRD; from 13,7 to 27,4 gCO2/kg sorbent for RKS equation	This study aims to explore the CO2 x sequestration capacity of a			
T.; Guo, R. (2020). Sustainable building materia reralization slag: Aggregate for concretes and eff y 45r0urnal of CO2 Utilization-(h>, rg/10.1016/j.jcou.2020.101366-(div>	fect Batch reactor	OPC (Ordinary Portland Cement)	working temperature=40°C. Time for carbonation process= 2b) RH==90% pressures texted: 0,5/1,0/1,5/2,0/2,5 Mps.	Intensive	mass of sorbent not found. It time for carbonation up to 2h.	he chemical composition of OPC is determined by XRF.	not found	results vary according to pressure, water to cement ratio. From 57 to 160 gCO2/Kg cement	This study discussed the effects of CMS aggregate on CO2			
gio Roberto, et al. "Relationship Between the roperties and Carbonation of Concretes with i and Demolition Waste." Case Studies in									c	<u>16 X 5 E</u>	m out of ope (focus n echanical	
g. G., Zhang, Y., Wang, T., Wang, J., &H38 Rom, Supercritical CO2 coupled with mechanical forc arbonation of fly ash and heavy metal 1. d>Fuel	ce batch reactor, slurry reactor	Fly ashes - coal fired poweer plant	working pressure. 1MPa, SMPa. Temperature-40, 60, 80*C. amount of water added to dry sampless.15,10,20,30,50, 100, 2003, 300 m//g, after reactor is cooled, samples were dried again.	Intensive	mass of sorbent= 10g. Time of carbonation up to 25h	hemical composition of sorbent is given	TGA	for 1 Mpa pressure: 42,3 gCO2/Ng Fly ach; for 8 Mpa pressure: 54,9 gCO2/Ng fly ach (dry).	to investigate the absorbent capacity x of fly ashes for CO2			
huftan Yin, Akanksha Srivastava, Greedma solvents mediate accelerated low temperature and carbon mineralization of ash and nano-scale									×		NO, etp nts: carr	are are
Ideep, et al. "Carbon Sequestration in Engineere Foamed Montar – Effect on Rheology, Mechanica ty Properties." Construction & Building ol. 322, Butterworth Scientific, 2022,	ed al								c	0.0	nnot ownload	
rales, D., Fernández-Rodríguez, J. M., 8,#38; (2022): Use of carbonated water to improve th roperties and reduce the carbon footprint of 3 materials with recycled aggregates. 4>Journal	6 batch reactor; slurry reactor 1 of	Natural aggregates, RCA (recycled concrete aggregates)	2 different experiments were carried out. In the air curying typology a normal climatic chamber was used. CO2 concentration = atmospheric concentration (0,04%); T=0.1 ± 2 °C, RH = 65.1.0%. In the water curing, typology of stamples	PIIW	time of curing: 1,3,7 days: https://days.of.corbent=2500g_conditional 3500g_conditional 3500g_conditio	it avelength dispersive X-ray fluorescence spectrometry (ZX PRI- ULS IV, Rigaku, A W power) was performed to determine the entral composition of the raw materials (MA, RMA, and cement) o teemine the morphology and composition of the "datastites".	The CO2 uptake of the hardened mixes can be determined using TGA/DTA	max CO2 uptake = 13,8 and 16,5 gCO2/Ng dry sorbent. Results and details on paper sheet.	This study evaluated the effect of the use of carbonated water			
 al. "Development of Hybrid Machine Learning astion Models with Weighting Function." & Building Materials, vol. 321, Butterworth 22, 									c	6 1 1 1 1 1	m out of ope (focus a machine arning	
& Gao, X. (2022). Preparation of durable avysulfate cement with the incorporation of ixtures and sequestration of carbon dioxide. e Totol Environment , 809 .									×		upt det	and a state is
Sundar, et al. "Carbonation Model for Concret. Slag, and Limestone Calcined Clay - Using and Five - Year Natural Exposure Data." Coment 8 mposites, vol. 126, Elsevier., 2022,	য অ								c	<u> </u>	m out of ope (relies n very long sm	

				CO2 uptake is not determine					CO2 uptake is not determine	CO2 uptake is not determine	not from	CR, cited by another	not from CR, cited by another	CO2 uptake is not determine														
m out of tope (solid tatrix out of	mout of mout of ope (focus n arbonation	annot awnioad	im out of cope (relies n very long srm		m out of ope (focus n echanical	m out of ope (focus n	m out of ope (focus n	m out of cope (focus n chloride smoval)			m out of :ope (relies n very long srm				m out of cope (focus n echanical		m out of :ope (focus n steel orrosion)	smperatures fresting out finterest 00°C)		im out of cope (focus n pathways o end with	im out of cope (full cale plant, o		m out of :ope (focus n leaching flects of	im out of cope (focus n ecal cificatio	m out of cope (focus n	m out of ope (focus n echanical	im out of :ope(focus n steel orrosion)	m out of cope (focus n
18 2 8 2	2 2 2 2 5 7	3.6	202		18 X 8 E	17 X 5 E	17 X 5 E	19 2 2 2			10 20 21				<u>19 X 9 E</u>		10 2 0 2	2000			<u>, e x x 5</u>		10 X 01	<u>9 6 8 8 9</u>	16 X 6 E	- 2 2 2	<u> </u>	ai X ai
Q	2	Q	Q	×	Ê	ę	2	2	×	×	e.	×	×	×	0L	×	Q.	ę	×	QL	Q	×	р.	P	P	e.	Q	0L
											cove durability	ormance and ore the ibility of using	imize the ormance rovement and carbon storage	sses a bined ferated onation and		rove the ability cycled egates to store through the			camine the CO2 iestration stial of four discharged			study nines the its of ferated						
											- Carl	expl post	2/Kg max 02/Kg perf 9,5 to imp the	3,6;5; com acce carb		tation of re dry aggr CO2			76,56; sequ			thent effect acce						
													,3; 158,1 gCC Iod: 113,3 gC Ireto 5 bar: 9	itent: results:		t and drum ro to 39,5 g/Kg			3,56;92,84;1			i5 gC02/Kg so						
												2/kg sorbent	method: 101 ass curve meti creasing press dry cement	ased on IC col		sture variation aptured=16,0			ing L/S ratio 4 g sorbent			ge 1,573-26,5						
												7; 89; 79 gCO	Vith mass gain ry cement; m: ry cement; in 46.0 eCO2/ke	/CO2 uptake b ,25; 6,6 %		ccording moi: elocity, CO2 c orbent			arying accord 11,76 gCO2/A			arying in a ran						
													>004	20		a > 4			24			>						
												hođ	hođ															
												Mass gain met	Mass gain met	TGA		not found			TGA			TGA						
												rs 5 mm oH value		alkaline s of the 2 s measured PH model)		shape 2002 hed through ergr-			rying kg-1 dry stons using			of RMA as obtained articles d water						
												iccessive layer reatment on J face.		P-OES analysi C content wa		g and particle XP P 18-566-; sis was obtain pped with en			rically after d s (ANC in mol queous susper			composition of istribution we carding the p lk density, and						
												neasured in su arbonation tr ipth from surl	te are given.	he ash was de bllowed by IC nic carbon (IC reanic Carbor		d from sievin idard French) iosition analy pe (SEM) equi			ned gravimet A hr. of the sample by titrating ac			009, we get c barticle size di 12 before dis alent, dry bul						
												olution was n the effect of c respect to de	ons of concre	sposition of t at 1050 °C fi ns. The inorga		hape obtaine ng to the star iemical comp on. microsco			was determi e 105 °C for 2 ing capacity determined i			5 EN 933-11:2 rs ecc) The p 5 EN 933-1:20 n. Sand equiv						
												i of the pore s ck to examine tribution with	dure proporti	chemical con ion with LIBO: tained solution ploving a Shin	2	ticle size and : tained accordi NOR 2002). Cl			isture conten nple aliquots a acid neutrali tter [DM]) was			cording to UNI ramics, morta ording to UNE ater than 4 mi						
												ot found; hi on=2h. dist	t found; Mison: 12h.	00g dry The 1 lab = 30 fusi ifter lab obt		par 7 days; obt 00g (AF			Mo 200g: san 8 h The ma			on: 1-3- Acc bent not acc gre						
												s of sorbent ne s of carbonatie	sof sorbent no e of carbonatio	s of sorbent=5 Curing time Is . Curing time : s = 28 d.		ng time= up to s of sorbent= 5			s of sorbent = ; ng time= 2; 16			a for carbonati ys. mass of sori od						
												mas tim	time	mas nin test		curi mas			mas			time 7 dar four						
												sive;	sive															
											36	18 Inten oarse Inten	RH= Inten	ne L/Kg. Mild n. 2 0%		were lat Mild of			2; 0, 3; o r 24 Mild seric			Pill R						
											CO nuritvide	iortioned usi 286 kg/m3, o 1 kg/m3 and v	onation=12h;	with an alkali iratio is 0,24 refor t=30 mi ttori of 40. 10		:2°C; samples then re-drice noisture, size ere varied			r (L/S =0,1; 0, ate for 30 mi ture= atmosp			lamber: CO2 Patm): secon CO2 conc=59 gregates were						
											2h:Ti24°C-0	oles were prog A Type GU) at gregates 105	; time of carb	ized water or sydroxide. L/' m temperatu ow (open rea		on =100%; T=; 8 in water and isture grade. I of the drum w			eionized wate wed to hydral nation. Pres			a climatic c) 21±2°C (Pair hamber with: Patm). the ag						
											in time	ixture of samp rd cement (C g/m3, fine ag	ourity=99,8%	ed with deion ip of sodium h o react at roo for eas inlet fi	>	: concentration hen immersex adeguate mo tation speed of			mixed with d ave been allo or slow carbo			carried out i He5±10%; T= ied out in a cl 21±2°C (Pair=						
											1.5 har carb	4=30%. The m dinary Portia gregates 730	d-5 bar; CO2 i±5%; T=25±3	y ash was mix lution made u mple are left t		0,75 bar, CO2 itially dried, t 70°C to reach rticles and ro			y samples are 4; 0,5). They h according fast essure			st experiment nc=0,04%; RF periment carr t=65±10%; T=						
											ă	<u>. 2 5 8</u>	Cement) 65	e ritation Sa of Co		<u>a e e a</u>			m and fly; dr tion) and h; h;			<u># 8 9 4</u>						
												sadi	ary Portland	es ag filters of thi in and desulfu		ied Concrete			iomass botto fuel inconera			al aggregates						
												concrete p	OPC (Ordin	APC residu (from he bu combustio section of a		RCA (Recyc Aggregates			Fly ashes (b ashes from steel slags			RCA; Natur						
													y reactor	r reactor m reactor)		sting drum												
												reactor	reactor, slurr	ale granulato r reactor - ope		reactor + rota			reactor			reactor						
ide Bor	yand f pp.	re on ipore,	43°, 1	n of als., onal	and esia M	10 °.0		a ental	erties a	d urnaí I,	hers,	tion batch	ring Iding batchi v>	ion- Lab sc trch. (Slurry	đ	ed batch	ete no. 121.	ence fly 6	al batch	and 197 021.	j.	of ry ion, batchi 61.	Acid	snc	e ievier	19 - C - 2	s	
er Nickel Sulfi anced Nickel s Series, Sprin	ation of Binar te." Journal of no. 1, 2022, 1 2021.197189	eral Admixtu. e: A Review." Springer Singa 1/978-981-16	of Carbonatio e Effects of the iociety of Japi 321, pp. 739	e Addition of al Substitution tars." Materia	Properties I active Magnu nica Acta , vo	arbon-Neutra Carbon no. 7, IOP Pu	fodel for with Stress als , vol. 304,	SWI Fly Ash: and Water ra Environm 2.	duced Prope aturated and of Greenhour	t of Recycles onation." Jos Science Ltd 21.127867.	ased is and lemic Publis	and carbona als	ction and Buil 6.03.048 <td>a Carbonat alorization of mistry Resea</td> <td>icycled 14, MDPI AC</td> <td>ition and ion in Recycle vd Technology</td> <td>ferent Concr lat, vol. 25, I Jniversity. 20</td> <td>(2021). Influ- ttion of MSWI Ingineering 2021.12875</td> <td>stable Miner ste Material eenhouse no. 3. John</td> <td>22 Utilization ducts by ntiers in Ener undation]2</td> <td>ratod Ash Under nagement , v</td> <td>Carbonation cycled Mason f CO2 Utilizat u.2021.1014</td> <td>e Tetra-Acetic Properties of Increte</td> <td>rry Cementiti. Cement and L. 2021, 106358.</td> <td>icial Aggregat. , vol. 291, Els 215.</td> <td>cled Aggregat aying Ca2+Ri "Constructio entific, 2021,</td> <td>nt Corrosion mmed Earth 'ails , vol. 274</td> <td>le lons on th. Sea Sand tementtious fion</td>	a Carbonat alorization of mistry Resea	icycled 14, MDPI AC	ition and ion in Recycle vd Technology	ferent Concr lat, vol. 25, I Jniversity. 20	(2021). Influ- ttion of MSWI Ingineering 2021.12875	stable Miner ste Material eenhouse no. 3. John	22 Utilization ducts by ntiers in Ener undation]2	ratod Ash Under nagement , v	Carbonation cycled Mason f CO2 Utilizat u.2021.1014	e Tetra-Acetic Properties of Increte	rry Cementiti. Cement and L. 2021, 106358.	icial Aggregat. , vol. 291, Els 215.	cled Aggregat aying Ca2+Ri "Constructio entific, 2021,	nt Corrosion mmed Earth 'ails , vol. 274	le lons on th. Sea Sand tementtious fion
ation of Copp tion and Enh and Materia an 227–39	n the Carbon r and Concre nance, vol. 7, 0/24705314	luence of Min 1g of Concret ng, vol. 196, 1.org/10.100	ical Analysis lication to th the Ceramic ty of Japan, 2	 "Effect of th stes as a Parti nation of Mor rsity Preserva 	sment of the bonated Re Thermochil	eveloping Ci Wastes as s., vol. 861, 2/1755.1315	Numerical N h of Concret Ming Mater	ride from MS Carbonation g Kexue/Chi DD. 4184-5	bonation-Inv kposed to S mal Journal ier Science	inhancemen by Wet Carb 313, Elsevier 5/i,jclepro.20	"Effects of A f Ceramic-B ermal Analyc Kuwer Acad	nbined steam Ilding Materi). Early age ci s. <i>Constru 143. buildmat.203</i>	sessment of iss for the V ineering Che	ement of Re eans of CO2 vol. 11, no. Vapp11146	upling of Attu 22 Sequestrat Engineering a	s of Carbonu g Steel in Dif eering Journ ulabnokorn	g. D., & Jin, B. d dry carbons es. Chemical 10.1016/i.ce	nically Explo Alkaline We Mobility." Gr ogy., vol. 11	a Costa. "CC Mineral Pro stocks." Fro Research Fi	Scale Accele rator Bottom ." Waste Ma . DD. 40-48.	"Accelerated containing Re on." Journal o	yienediamin pnation and f Cement & Ci 2021.	Supplementa ment Pastes.' rgamon Pres conres.2021.	ances in Artif r Production oro 2020.125	ment of Recy atment of Spr Carbonation.	teinforceme abilised Rar uiding Mate	ts of Chlorid operties of t blementary C ted Carbon
, et al. "Utiliz 02 Sequestra nerals, Metal: lichine: 2022	al. "A Study o ement Morta y and Mainte J.org/10.108	iar, et al. "Infi onation Curis ivil Engineeri 8, https://do	t al. "Theoret hent and App n." Journal of bramic Socie	Wilfrido, et a ndustrial Wa for the Carbou	at al. "Asses pact of Car trial Waste." b Co., 2021.	A. Tong. "D terials Using rence Serie	"A Modified mation Dept ruction & Bu	oval of Chlor ccelerated (guo Huanjin no. 9. 2021	 et al. "Car d Cement E: Internatic 1 110. Elsev 	Properties t Properties t rotion., vol. .org/10.1016	Properties of Properties of fournal of Th 145, no. 6, V 8438 Peo	pjected to con Inction and Bu	hao, Y. (2016 ced concrete (13, 134- 0.1016/l.conl	to, et al. "As zation Proce ustrial & Eng	t al. "Improv erties by M f Sciences	n S., et al. "Co nation for CC es." Cleaner I 2021,	et al. "Effect of Reinforcin, trials." Engli ineering. Ch	Vu, W., Wany on accelerate temperatur ps://doi.org/	et al. "Tech ential of Four ontaminant and Technol	to, and Giuli ge in Useful Jkaline Feed J. [Frontiers	et al. "Full-5 Vaste Incine 1 Conditions Press., 2021	David, et al. ed Products C Sequestrations://doi.org/	"Effects of Eth sierated Carb Aggregates." 18. Elsevier	al. "Effect of onation of Ce vol. 142, Pe	"Recent Adv nal of Cleane 0.1016/Licles	al. "Enhance ombined Tre low-through vol. 277, Bu	a H., et al. "F ernatively-SI truction & Bi ntific. 2021.	echanical Proceeding Supplements
u, Adamantia e Tailings for (dization." Mir national Publ	sain, Shaik, et ary Blended C ctural Integrit 0, https://doi	ta, Ashok Kun sleration Carb ure Notes in C 1, pp. 1005–11	WVA, Yutaka, hanism of Cer tion of Fly Ast 129, no. 12, C	business and I land Cement 1 14. no. 23. Mo	in, Shaoqin, Ironmental In taining Indus Elsevier Put	t, T. C., and I struction Ma	Xinyu, et al. Xinyu, et al. flicting Carbi vage." Const	Y. M. "Ren nparison of A hing." Zhong nce, vol. 41.	arakoon, M kali-Activate ercritical CO Control. vol	g, Xiacliang, Aggregates Ieaner Produ	bonation on polymers." , rimetry, vol	rrete pipes su №. ⊲⇒Constr 5>(8), 3345	Ig, D., &. arecast reinfor trials, <i>) trials/i>, <i>10</i></i>	iocchi, Rena ed CO 2 Util IC Ash." Indi IO. no. 29. A	eng, Marie, 4 regates Prog tike." Applied	Reis, Glaydso Sierated Carbo crete Aggregat 8, Elsevier Ltd	h, Sothyrak, rosion Rate (Repair Mate scutv of Engl	Q., Wang, T., retreatments inder medium nol . 414 . htt	nabel, Kevin bonation Pot Effects on C is: Science	iocchi, Rena g-Term Stora bonation of A sarch. , vol. 5	nabel, Kevin bonation of V finuous-Feed Pergamon F	cum-Morales h Cement-Bas egates for CO 16, 2021, http	8, Shuo, et al. A) on the Acci Icial Steel Slag posites, vol. 2	io, Mickael, e erials on Carb trete Research s://doi.org/10	Pengfei, et al fuction." Jour nee Ltd, 2021, c//doi.ore/10	La Xiaoliang, e Concrete by C tewater and F ling Materials	sk, Alexandr nent- and Alt nrials." Cons nrworth Sciev	g, Viet Quoc ability and M crete Incorp sriats Under
Lato Minu Sulfi	Za IIIIe Husi Tern Strui 25 46-6	Gup Acce Lecti 26 2022	AIK/ Mec Addi 27 vol. 3	Mar. Agril Port	Emv. Cont	Con Sink	Prev Darr Darr	Total Con Flusi 32 Scien	San of A Sup	Fan Fine of C	Sch Carl Geo 35 Calo	cont curte 36 <i>25</i>	2har for p Mate 37 http:	Bac Bas CFB	Seri Agg Uptu 39 2021	Acce Acce Cone 40 vol. 3	Rati Con and 41 6. Fa	Gu, of pr ash u 42 Journ	Sch Carl and 43 Gase	Bac Lon Cart A4 Res	Sch Carl Coni 45 125.	Fres Aggr 46 vol. 4	Yanı (EDT Artif 47 Com	Saill Mati Cont 48 http:	Ren, Proc Sciet	Fang and Wast So Build	Mek Cen Mati 51 Buth	Dan Dun Con

						CO2 uptakeis not determine											no quantitati ve assessmen						formulas to convert % carbonate			no quantitati ve assessmen		
im out of cope (CO2 ptake is	im out of cope (focus n	im out of cope (focus n nechanical	im out of cope (focus in use of ta20 for	im out of cope (focus n nechanical	im out of cope (focus in chemical		im out of cope (focus arbonation	im out of cope (focus in steel orrosion)	iim out of cope (focus in chemical roperties)	iim out of cope (focus n nechanical	iim out of cope (focus in physical roperties)	iim out of cope (focus in chemical- eachate	iim out of cope (not ocus on occelerated	iim out of cope (focus in physical roperties)	im out of cope (focus in physical properties)	im out of cope (focus in physical iroperties)			im out of cope (focus on nechanical	im out of cope (solid natrix out of concern)	iim out of cope (relies in very long erm	iim out of cope (not ocus on ccelerated			iim out of cope (focus in chloride emoval)		jià citato in in altro inticolo di ereng (riga	iim out of cope (focus m nechanical
												1402			N U U U				N N O L									
8	2	e	e	ę	e	×	e	e	e	e	e	e	e	e	e	e	×	×	2	2	e	e	×	×	e	×	×	2
																		study celerated bronation vine moisture						effects produce the content of micipal solid ste incineration				
																		uptake ac cal						sorbent ^{by} wa				
																		velocity CO2 1 orbent						108 gCO2/Kg				
																		ioisture, drum 7,4 gCO2/Kg s						ts: ranging 23				
																		according m varies: 4, 2-4						several resul				
																								n via considering cal species				
																								l determinatic tical formula ation of chemi				
																		the TGA						analytical mathema concentri				
																		iorphology of an microscope and Differenti ne a TA						ea (SSA) and vin 1042 ser, respectively e (XBF)				
																		as given. The m anning electro vimetric (TGA) re made by us						becific surface an inned using a Kel aring PSD analy ray fluorescence				
																		ity, density w erved with a so en). Thermogra						d Teller (BET)- s SD) were detern c-950 laser-scatt ven using both 3				
																		sorption capa sands was obs SCAN 3, Swed						uer, Emmett, ar te distribution (P ter and Horiba L composition is gi				
																		water ab recycled (SEM) (TE thermore						30 The Bruna nt sorptome chemical o				
																		orbent 500g carbonat						ion time= 20+ is of dry sorbe				
																		mass of s sample= time=7h						carbonat min; mae =200g.				
																		he Mild						vas Mild				
																		I pressure = 0,8 with water to cion speed of t						water (L/S = 3% CO2 in air v or 30min. The were added. Tl				
																		re, CO2 partia n pre treated v ture. The rota 100 rom. initi						re mixed with a gas flow of 2 te of 100Lh-1 f quarry. fines,				
																		spheric pressu dried and the d level of mois						ials (200g) we 2 min. Then, pment at a rat s OPC and/or				
																		22°C; P=atmo ir. Samples are ach the wante um was increa						e initial mater 2–0.3 w/w) for d into the equi ditives, such z				
																		aggregates) bi re dr						19.9 X				
																		cled concrete						ues from MSW ion				
																		RCA (recy						APC resid incinerat				
																								urry reactor				
																		tch reactor						sen reactor; slu				
ts of t Ratios of	ces., vol. Cement- tals , vol.	ons of r and tar	1 of alkali- <i>ting</i>	tion fortar- tion., vol.	Chemical ve Fly item	imental und Civil	f Rice Under nal of can	dimad t als in	, B., & oscopic terent CO2 , 257 .	ing CO2 2020,	rrated 4VFA) rre and icrete	oils vol. 161,	af A:a	from CO2 Effect of 020,	.252,	Wimad ttack and increte 1, 250,	r Carbon argy 1]., 2020,	e Rolling ba.	on rating erials in of civil	Biochar ing and ction &	C selerated Suilding	ng 1 Storage tainable smistrv	ficial 1 for Post- 0p.	ts of op ste cd for the	crete in orides " Book of	A, 2021,	d Session vil	ea Sand posed to p.
Belie. "Effec d by-Produc -to-Emission	pplied Scienc nologies in C Mdhig Materi # 2020 12164	Chemical lation Conditi ype of Binde no. 4, Molecu	ect of Na2O in carbonation ction and Buil	e the Carbonal ali-Activated N Jeaner Produc	uctural and C of High-Volun Jestration." R	stration in Co on and Exper	hat. "Effect o of Concrete Levels." Jour	and Rizwan A carbonation ir ste Containin rnal of Mater	Xing, F., Dong Nases and micr It pastes in diff ding Material	ngth, Shrinka ncrete Includ Cement and mon Press.,	al and Accele me Fly Ash († Microstructu Cement & Coi	nuation by S egate Road d Recycling,	. "Valorization ete Life Cycl of Cleaner ce Ltd. 2020	ling Material 1 procretes and bn , vol. 40, 2 01196.	f Carbonation Ny Ash <i>Materials</i> , vol	Ind Rizwan A on Sulfate Al Recycled Co Materials , vo	echnology fo ontiers in Enu ch Foundatio 10142.	Effect of the on the Recyc cs through th	. "Carbonatic crete Incorpc ournal of Mai crican society	rrbonation of sites: Enhanc als." Constru orth Scientific	of Loaded R(e Types: Acc Istruction & E ntific, 2020,	Arrine Loopi inversion and bonate." Sus Society of Ch	uction of Arti Influences of Inulation And ol. 36, 2020.	Carbonation Waste: Effec perties." Wa o. 2, Publishe	Fly Ash Con Between Chi Conference o	onation Treat ng Flue Gas: J mance ation, vol. 43,	n of Recycle of the 2020 (posium in Ci	oride Ion in S Concrete Ex Votes in Civil pore, 2020, p
and Nele De on Testing an Sequestration	Systems." Ay estration Tec struction & B. tific, 2021, // conhuiledmi	Physical and rated Carbor t Based on T ars., vol. 13,	, Z. (2021). Eff /binder ratio o ients. Constru	hes to Enhanc Slag Based Alk ." Journal of C 2021,	Carbonation Carbonation Carbon Sequencies	CO 2 Seque tion: Simulation Journal of El	ed Ahmed B mation Depth nd Humidity ering , vol. 33	anjiakumari, a Attack and C orced Concr gregate." Jou	g, L., Dong, Z., in chemical pl slended cemer ction and Buil	n, et al. "Stre spects of Co Aggregate." al. 136, Perga	et al. "Natur of High-Volu nal Moisture, portioning." (st al. "pH Atte concrete Agg sservation, an 020,	Kumar, et al ement-Conci ure." Journa	tainable Buik pregate for Ci f CO2 Utilizat /i.icou.2020.1	al. "Studies of as Modified F 7 & Building / 2020.	anglakpam, a phene Oxide te Containing on & Building	heralization T 1 Storage." F thers Resear Menro 2020.0	noes, et al. "I on Treatment Characterist	wan A. Khan pacting Con ggregates." J 2. no. 6. Ame	celerated Ce Ash Compo uliding Mater 244, Butterw	Carbonation rrent Concret dictions." Co terworth Scie	vel Aqueous t Capture, Co gnesium Car no. 3. Roval 3	ai Ling. "Prod Making Slag: on During Gre	Accelerated (of Industrial Product Pro ch., vol. 38, n	bined Action international (aterials and (ilerated Carb gregates Usi wards Perfon of CO2 Utiliz	id Carbonatio Proceedings 238-45 238-45	luence of Chi ies of Fly Ash on." Lecture I oringer Singa
feede, Philp, ad Carbonatk on the CO2-S	, et al. "Sequ tterials." Con rworth Scient	, Yuto, et al. " lips in Accele vated Cemen ator." Polyme	hi, C., & Zhang tion and water lag/fly ash cem 269 .	et al. "Approac of Fly Ash and: tal Evaluations rt Science Ltd,	duardo B., el Accelerated irs in View of	na, et al. "On via Carbona n." European	hida, and Jav on the Carbo Uring Ages at n Civil Engine	glakpam Chir lect of Sulfate Oxide-Reinfi Concrete Age	Y., Lin, S., Tan 020). Changes Atics of fly ash b ions. Construc	, Gombosure d Durability A ecycled Fine. Research , vo	feede, Philp, on Behaviour fects on Inter id Phase Proj	ernando D., v g Recycled C isources, Con cience BV, 20	adhan, Senthi wders from C o Circular Fut 3 vol. 268. E	ei, et al. "Sus titon Slag: Agç ig." <i>Journal</i> o i.org/10.1016	ndran, D., et n Nanopartich " Construction in Scientific. 2	umari Devi, 5 Iuence of Gra on of Concret ." Constructio	D., et al. "M Utilization, and , vol. 8, [Fron Loro/10.3389	Glaydson Si 9d Carbonatk sicochemical	Rahul, and Ri e of Self-Corr lag as Fine Ag	Sai, et al. "Ac d Cement-Fly ring CO2 in Bi faterials , vol.	io-Hui, et al. * Made of Diffe of Future Prec vol. 243, Buth	nen, et al. "No for the Direc Produce Ma "uels, vol. 4, r	and Tung-Ch is from Steel- id Carbonatic purnal of CO2	lakan, et al. ", ty Granulation omposition or ont & Resear	R., et al. "The xt of the Com onation." XV // of Building Me	ii, et al. "Acce Concrete Ag ive Study Tov ent." Journal	1. "Accelerati Aggregates." 1 Fib Internati 1 2020, pp.	N., et al. "Im inical Propert of Carbonatic g , vol. 80, Sp
Van den h Accelerate Allocation	53 Fly Ash-B Llu, Baoju Based Mi 272, Butte	Yamazaki Relations/ Alkali-Acth 55 Alkali Acth	Zhang, J., S concentral activated s 56 Materials,	Liu, Shan, Resistance Experimen 57 280, Elsevi	Pereira, E Effects of Ash Binde	Aggregate Verification 59 Encineerin	Nisar, Na Husk Ash Different C Materials i	Devi, San Khan. "Efi Graphene 61 Recycled	Liu, W., Li, Hong, S. (2 characteris 62 concentrat	Chinzorigi Creep an Treated R 63 Concrete	Van den I Carbonati Mortar: Ef 64 Carbonate	Oliveira, F Underlyin Base." Re 65 Elsevier S	Kaliyavan Waste Po Pathway t 66 Production	Yi, Zhenw Mineraliza CO2 Curir 67 https://do	Ramacha Process i Concrete. 68 Butterwort	Chiranjiak Khan. "Inf Carbonati 69 Aggregate	Hills, Colit Capture, I Research. 70 https://do	dos Reis, Accelerati Sand Phy 71 Carhonati	Sharma, F Resistanc Copper S 72 Civil Engin	Praneeth, Reinforce. Sequester 73 Building M	Wang, Xia Elements Testing an 74 Materials.	Llu, Melsi Approact of CO 2 to 75 Energy & I	Jiang, Yi, Aggregate Accelerate 76 Curing." J	Berber, H. Technolog Mixture C 77 Managem	Malheiro, the Conte and Carbi 78 Durability	Pu, Yunh, Recycled Comparat 79 Improvem	Sereng, N Concrete of the 13th 80 Engineerin	Reddy, J. on Mecha Accelerate 81 Engineerin

									sorbent out of concern															no quantitati ve assessmen		no quantitati ve assessmen		
im out of cope (focus m	im out of cope (not ocus on occelerated	im out of cope (focus on pathways o end with	im out of cope (focus on steel corrosion)	im out of cope (focus in perhanical		annot lownload	ilm out of cope (not ocus on	im out of cope (not ocus on occelerated		im out of cope (focus on chemical properties)	im out of cope (focus on pathways o end with	im out of cope (not ocus on occelerated	iim out of cope (focus an arbonation	im out of cope (focus in nechanical	iim out of cope (focus on physical properties)		im out of cope (focus on nechanical	im out of cope (focus on physical properties)	im out of cope (focus on nechanical	iim out of cope (focus on deep lighoritm	ilm out of cope (focus on physical properties)	iim out of cope (focus on physical sroperties)	im out of cope (not ocus an		annot Iownload		im out of cope (focus an	im out of cope (solid natrix out of concern)
					-																							
e	e	2	e	2	spts ×	2	2	2	×	e	2	ę	2	ê	2	× = = = =	2	8	2	2	e	e	ê	×	2	×	8	2
					his study attern propose two pproaches to valuate the CO											te utilization o se fly ash from blid refused fue RF) power plar												
					BCO2/Kg to											4480												
					; 4,87 to 14,66																							
					results: ranging											CO2/Kg sorben												
					several											101,7 g												
																carbonation												
					84											RF pre and post												
					10											rere XI with XI al) with XI v ash were												
																y ash were anal ital structures v lvern PANalytic sitions of the fl												
					bents are given											actures of the fl Japan). The cry rt3 Powder, Ma emental compo												
					roperties of so											f, JEOL, Tokyo, by XRD (X'pe ern, UK). The el												
					chemical p											The morph (JSM-6700 in investigate Japan). alv												
					ion time: from											orbent=200g; ion time=60 m												
					carbonat 0,5 to 24											mass of s carbonat												
					e																							
					ated). nitially of h/slag											Task flow Mild rtio=												
					oncrete was cre ich have been i l water content suslv with flv as											round bottom I. Pure CO2 at a us varied: L/S ri I.												
					the sorbents (c) in powders, wh designed initia ced homogenes											put inside the fixet to 40 rpn Water added w n rime= 60 mis												
					ontain a mix of sieved dry kaol to achieve the afterwards mi:											ater (50g) were rtation velocity L/min. T=25*C. 0,75-1. reactio												
					samples co The 2 mm- pretreated 17%, were											fly ash + w reactor, rc rate of 10 0,25-0,50												
					lime, magnesia,																							
					fly ashes, slags, l kaolin powder											fly ashes												
																rotating actor												
					reactor											l bottom flask (or) is an open re												
d nt Fly	vol	ation of ates eries,	M	ctive	anisms dified batch , vol.	Suan intv.	esign sring rete	f Yess	Jence ad d	P at p		i, Y duct	ation and ding	ability szolan	d urnal,	ver round sity reacto	gates ivity of ol.	is on cali-	aining	0 ling 2019.	H by 9, pp.	sh: The		ly ash	rete the srials,	avi d	O- tion &	treams and inger.
Alkali-Activate Carbon Conte	on Dioxide by a argy Reviews	a, et al. "Evalu cycled Aggreg " Riem Book	o, et al. "Evalu gh-Volume SC odel." Rilem o. 365-71.	tion-Induced ructure of Rea onstruction &	nd Micro-Mech ly Ash/slag Soli se Gas Control	ivation and g Bricks 例因過行。Kuei	imal Mixture D Increte Consid- ement & Conc	Carbonation o tating Drum 9, Pergamon F	Parameter Infl ortar Accelera nal Analysis ar cademic Publ	ionation induc y ash cements: onstruction an	ding Materials 3 Steel Slag 6. Callao 0. 9. 2019. pp	in, SY., Cher deployment of ppture and pro	ictical Carbon Ash Concrete truction & Buil Min 2019, pp	Inty Age Curiny Interest and During Int and Lime-Puring Int and Lime-Puring	ffect on SH and Groun in Concrete Jo	r Carbonation used Fuel Pov folecular Dive	onated Aggre armal Conduct og Materials, v 241-50.	uring Condition sistance of Al Cement and	th and Freeze Mortars Cont Scelerated	Prediction of 3 Deep Learni stainable Build vol. 10. no. 4.	Synthetic C-5 4, no. 1-2, 201	ated and Natu kumes of Fly A uctural	Change on od Low-CO 2 - 116, no. 3,	8 A, A I, tives to treat f of Cleaner	ecycled Conc troceedings of vations in Math	J. (2019). an Municipal Su psulation of He grafs. Metals ar	f Reactive Mg posite (ECC) ing." Construct	m of Wood m Gaseous S ental Science
am G., et al. * gh Unburned orrosion	pation of Carb ion in Concret Rustainable Er	ose Fernando Iniques in Re n of Concrete pp. 391-99.	ose Fernando orrosion in Hi quare Root M inoar. 2020. r	CO2 Carboni 1 and Microst ified Solls." C	uantification a agnesia-Lime-F ial of Greenhou	t of Alkali-Act ated Steel Sla 比許同炎应影! of the Chines	e Fly Ash Cor 2 Uptake." C	inuous-Feed m Ash in a Rc ement, vol. 9	Siauciunas. " Paste and Mi urnal of Therr	Z. (2019). Carl ctivated slag/f of activators. C 566–582.	ogress of Buil onized Curing 作料的研究进员 rds. vol. 33. n	Pei, SL., Pa fopment and ontrol, CO2 ca	Model for Pre h Volume Fly ncrete." Cons erworth Scien	 "Effect of Ei hanical Prope ortland Ceme with Long Sis 	tion and Its E ete with Fly A ce Slag." India 10-21.	on. "Semi-Dry rom Solid Rei M. 11, no. 3, M al., 2019,	Effect of Cart erties and Th ction & Buildh	L "Effect of C arbonation Re lag Pastes." (116. Percan	kaline-Based ummited to A	Study on the I efficient Usin, Journal of Su Development	nation Rate of Heron., vol. 6	at al. "Acceler with High Vc and Microstr Deen Science	N Ash-Blend N Ash-Blend S Journal, vol	E Muñ, E S, F nce of alterns plant, Journal	bonation of H arb Project." F ancrete - Inno 2019 pp. 201	C., & Whan, A tration of Kore n Ash and Ence bonation. Min.	evelopment c entitious Com rbonation Cur	ed Carbonati 2 Removal fro m." Environm
Saavedra, Wil s Based on Hi ionation and C	ing, et al. "Mit od Sequestral tenewable & S ier Science2	-Hernandez, v Treatment Tecl the Production pringer, 2020, J	Hernandez, v ion-Induced C Through the Sk s, vol. 22, Spri	mpxing, et al. vent in Strengt -Fty Ash-Solid Interviele vol.	nguing et al. "O nestration in N rnational Jourr Science 2019	/nergistic Effer ion on Carbon 資約額後发-報行	30-Yong, "Sim 22 High-Volum hange and CC	inerator Botto Waste Manag 135-45,	yte, A., and R. nkinite Binder on Curing." Jo	Shi, C., & Zhang ution in alkali-a icate moduluse ateriols , 223 ,	-Research Pr from the Cart 肾迹制备迷炎症 faterials Repo	L., Fang, YK 3, PC., "Devt air pollution co	Vedran, et al. Miction for Hig Aggregate Co	mior, Alex, et a ion on the Mex tial Strength Pr ss Reinforced	B. S. "Carbon cture of Concr d Blast Furnak	 and Woo Kw Jsing Fly Ash stainability. , vr on Internation. 	ii, Imen, et al. ' ichanical Prop rete." Constru rworth Scientil	vic, Marija, et 4 Solution and C Fly Ash and S Research , vol	Aggregates S Aggregates S And Advances	"An Analytical ion Velocity Cc " International v and Urban I	study of Carbo R and FTIR."	Heede, Philp, ion of Concret Mineralogical Toyal Society C	ao-Yong. "Imp nal Design of F " ACI Material	, J L, A Ferná, ental performa ste to energy	J. M. "Fast Ca is: The FastCt psium 2019: Ci of Structures	", Ramakrishna ous CO2 Seques neration Bottor ccelerated Carl	Liang, et al. "L igineered Cerr ccelerated Ca	I, L. "Accelerat on Ash for CO ge in Solid For 'esearch Interr
Valencia- Concrete: Ash: Carb	Zhang, Ni Zhang, Ni Accelerati Debris." F 83 117, Elsev	Martirena Different T for Use in 84 vol. 22. Sp	Martirena Carbonati Mixtures 1 85 Booksenies	Wang, Do Improven: MgO-CaO 86 Brukeing M	of CO2 Seq. Soils." Inte 87 91. Elsevier	Ye, J. "Sy Carbonati 钢连敲化程 88. Jen Hsunh	Wang, Xia of Low-CC Climate Cl	Brück, Fe Waste Inc Reactor." 90 2019, pp.	Smigelsky on the Ra. Carbonati 91 Cakrimetr	Zhang, J., 5 phase evoli effect of sili 92 Building M	Wang, A. Prepared 銀化的第5名 93 Dacbac/N	Chen, Ti H., Chiang Integrated	Carević, \ Depth Pre Recycled	Neves Ju Carbonati of High Ini 96 Commostis	Dhanya, E Microstru Granulater 97 vol. 83. no	Kim, Jung Process (Plant." Su	Rahmoun on the Me Eco-Conc 99 197. Butte	Nedelkov the Pore 5 Activated	Mastall, N Resistanc Recycled 01 Carhonate	Jung, D. ' Carbonati Algorithm.' 102 Technolog	Wu, B. *5 XRD, NM 21-38.	Van den F Carbonati Chemical, I04 Effects." F	Wang, Xia Proportior Concrete.	M M, S C, Environme from a war	Torrenti, J Aggregate Fib Sympo	Thriveni, T Simultanen Waste Incir 08 Metals by A	Wu, Hao-i Based En through A	Combusti and Stora Loikuton R
																							-					

C02	uptakeis not determine																												
		iim out of cope (not scus on	iim out of cope (focus n	im out of cope (focus n physical romerties)	aim out of cope (focus n	aim out of cope (focus n		tim out of cope (focus n physical	DOPPIONE, SIÀ NALIZZATO, IGA6.	eim out of cope (focus n physical roperties)	aim out of cope (focus n	aim out of cope (focus n nechanical	iim out of cope (focus n steel prrosion)	iim out of cope (focus n	șià citato in în altro rticolo di	aim out of cope (focus n physical romerties)		aim out of cope (focus n steel prrosion)	iim out of cope (focus n rechanical	iim out of cope (focus n physical		aim out of cope (not scus on ccelerated	aim out of cope (focus n pathways > end with	iim out of cope (focus n chemical roperties)	iim out of cope (focus n pathways send with		sim out of cope (focus n leaching ffects)	aim out of cope (focus n nechanical	
		n o 2 n													<u>2036</u>				. 8 4 0 5			0 0 2 0			4000				
	×	ê	e	2	2	2	×	2	×	2	2	2	ê	2	×	2	e ed x	2	e	2	×	2	2	2	ê	×	ê	Ê	e C
							n this study, an nnovative ralorization of										n the present tudy, the text apparatus was u to investigate th				An innovative process, based of carbon dioxide capture and					This study assess the potential of adopting an accelerated			to investigate th CO2 sequestration optential of
																					ctor; 21-23					g sorbent			/kg dry
																	rbent				for rotating rea					; 23-26 gCO2/i			waste; 52gC02 gC02/kg RCAs
)2/kg sorbent										/47 gC02/kg so				02/kgsorbent sorbent for fixe					.02/Kg sorbent			2/kg dry slurry (concrete); 20
_							84,5 gCC										up to 29				35-37 g(gC02/kg					18-24 g(110 gCO mixture
																	el gas law				imetry					s gain mehtod			
							mined by TGA										ides				105 C, hent, the heratio The pH					Was			mined the TGA amined
							ttudy were exa on analysis										s of the minera				r pH measurem and mixed in the EN 12457-21.					y BS EN 1097-6			ish CSWs, deter oout 50% and t cles was 0.15 r
							clinker in this themical titrati										y (XRF) analysi				asured after dr. 16.3 ±5.2%. Fo deved at 5 mm lled water (UN					s determined b			he collected fr he oven, was al iried solid part Wc.FRCAs and
							ns of PCFA and nce (XRF) and e										ice spectrosco				ontent was me erage value of i duced in size, : 100 mL of disti					of all aggregate			or content in t as at 105 °C in t cle size of the c
							The compositio X-Ray Fluoresce										X-ray fluorescer composition				The moisture of providing an av BA was dried, re of 10 e of BA to					The properties			The average wat by the water lo: maximum parti elemental com
							nt; time for - not found										nt=100 g.				nt=6 kg.					nt= not for up to 24h.			nt not found. onation up to
							mass of sorbe carbonation										mass of sorbe time=48h				mass of sorbe					mass of sorbe filound; time carbonation=			mass of sorbe time for carbo 144h.
							Mild										Intensive				Mild					Intensive			Mild
							ater in a slurry htly, the fly ash istant flow rate am which was										°C; CO2 rpm. Pressure,				I to 4 NI/(h of volume ried. d as the ratio					• water. onmental and a relative L,2,3,6,18,24			n the sidity (RH) and ionation. After oferresed to
							vdown wastew /Kg. Subseque reactor at a coi he exhaust stre										13. T=20-50-80 re stirred at 60 ed				olid ratio equa tio (10,20,309 5 rpm) were va ne ratio. define					fRCA+ cement ned in an envir ature of 25 *C: cabronation:			es: pretreated i 5% relative hur ed mineral carl
							ixed with blov ratio of 10m^3 d into the RPB cogether with t										5= from 02,5 to Pa. Samples we sture were varia				CO2 gas flow/s actor: filling ra ing speed (2,5; essure, the filli					ion=mixture o ly precondition onstant temper or 6 h. time for			oncrete sampl amber at 50 ±9 efore acceleration over a milled of
							ke fly ash was n sk reaching L/S rry was pumpe 0.02 m3/min,										slurry tests: L/ essure=1 to 6M i ratio; Temper				ed bed reactor: 3A); Rotating re actor) and rotat atmospheric pr					mples preparat nples were first amber with a co midity of 50% (a treatment of o vironmental ch ± 3 °C for 6 h b
							m coke tar										\$ L S				fix ineration) kg					cement + sa			pr oncrete; en igates 23
							s from petroleu iant										n				ashes (MSW inc					blocks: RCA + 0			siurry waste co concrete aggre
_							Fly asher power pl										steel slag			<u> </u>	Bottom					concrete water			concrete
							g bed reactor -										actor			i on carbonatio	r; open reactor								
							rotating packin slurry reactor										slurry, batch re			NB: when focus depth= physica	rotating reacto					batch reactor			batch reactor
ity of Akali-	18, pp. 018.07.216.	/,, Kim, S., scale Enzyme s Transfer for tralveis . 8 (7)	perties of sring and	, vol. 109,	cture of ntary og	ing ment &	eum Coke ials in on., vol.	ated 11 Under frocholt	ation of f Properties inds in Eco- 7-97.	es Caused ag Blends fernational , -96.	as Binding	struction hinical 7, pp. 017.50.	noin-Based nd , 2017, pp.	ed vggregate bl. 69, no.	02 Uptake elerated rres : 017	of Cement us uiding	ineral ed of for ontrol.	tt in 9, Chloride 85 of the	more of Materials II : ternational	ent-based als Science 902.74	f Two from	Moring, and of vol. 127,	re Steel terial vol. 137.	Carbonation aviour of a Compost vol. 75. no.	erties of tal and erials , vol.	Generation ed Mineral vol. 133,	d Waste rbonation exue	ressure to Fly Ash- is , vol. 70,	stration of construction /ol. 113,
Inding Capac	s." Ceramics amurgica., 20 6/l.ceramint.2	eijeiro Seijas, ' m-Based Nano bility, and Mar ration. ACS Co	on on the Pro M Civil Engine p. 1605–11.	Aicrostructure on rete Researci	nd Microstru ng Suppleme ction & Buildi	nent of Recyc ated CO2 Cu Process." Ce	onated Petro ntitious Mater iner Producti pp. 689-97.	CO 2 Acceler N Ash Ceme	ihancement of the Tre	mical Chang led Fly Ash/s Ceramics In 17. pp. 12490	bonation and with Steel Slag ent & Concre	Bonded Con ." RILEM Tec is SARL, 201	Life of Metaku n." <i>Cement a</i> jarmon Press,	ak-Accelerat ig Recycled / Research. , v	Modelling of C as Under Acc bis and Struct	t of Porosity of try Cementitic Instruction & B	ng Slag for M by Accelerat 97, Publishe ement and C	Reinforcemer on Resistanc sion Potential	Fly Ash, and gic Ceramic i at the 40th In	onation of cerr ontent. Materi	I Evaluation o O 2 Removal Accelerated of . vol. 58. Pe	of Curing, Shi Carbonation og Materials , 306-20,	and Innovati on, Green Ma Accelerated Production.	Accelerated 1 eaching Beh ve Its Use as h Sciences.	Athermal Prop s: Experimen Building Ma pp. 279-89,	ient of a New by Accelerat Production. , 235–41.	bilization and Aunicipal Soli celerated Ca ebao (Ziran A	Using CO 2 F and Cement- ste Composite	ioxide Seque alorisation in C og Materials, '
et al. "CO2 E	nd Slag Paste 4, no. 16, Cer soi.oro/10.101	., Woo, K. M., 7 8). Precipitatio ed Loading, Sta preion and Itili	t of Carbonati ional Journal o no. 7, 2018, p	Changes in Cement Paste ent and Conc	 "Durability e te Incorporati ials." Constru Butterworth 5 	al. "Enhancen ss by Acceler vater Soaking	ficacy of Cart ficacy of Cart nentary Ceme lournal of Cles ce Ltd. 2018.	e Influence of all-Activated F ure and	d Chi Sun Po RCAs and Er ated Carbona led Concrete	L "Physicoch Alkali-Activa Carbonation. 20	celerated Car norete Made egates." Cem	. "Carbonate- line Residues M Publication aro/10.21809/	t al. "Service to Carbonatic , vol. 99, Pen pro/10.1016/1	Effect of Press s on Enhancie of Concrete Services 20	ete Aggregat ions." Materi	"Developmer Supplements conation." Col	 "Steel-Mak arbon Dioxide surement, vol sute of Measu 	sion of Steel s - Carbonati minary Corro	., et al. "Dural takaolin, Slag nents in Strate ars Presented	017). The carb int aggregate o ~78. 028/www.scie	"Experimenta Reactors for C / Bottom Ash	w on Effects Upon Natura ction & Buildi ic, 2016, pp.	 "Integrated on Reclamation 2 Fixation via nal of Cleaner 	t al. "Effect of operties and I Ash, to Impro onmental Ear	I, et al. "Hygr co-Aggregate Construction &	al. "Developn Increte Blocks Inal of Cleaner d. 2016, pp. 1	I Study on Str wy Metals in I Based on Ac nan Daxue Xu	ectiveness of nation of Port nent & Concn 78-85.	al. "Carbon E iste and Its Vi ction & Buildi in 2016, pp
lković, Marija,	ational, vol. 4 -60. https://d	 S., Hong, S. G. & Kim, J. (201 ir with Improve atic CO2 Conver- 	lika, A. "Effec rete." Internati iology, vol. 9, I	Vineet, et al. Acteristics of C mation." Cerry	g, Shukai, et a Sand Concret ntitious Materi take vol 171	Bao Jian, et : gate Propertic ed with Limew	ere control -Lu, et al. "Ef th as Supplen nt Mortars." J lsevier Science	I, S., et al. "Th phation on Alki led Temperatu	Dongxing, an Dongxide by C by Accelera	Vam Kon, et al aactive MgO In r Accelerated L no. 15. Cera	wu, et al. "Ac mance of Cor ials and Aggre	ials from Alkal s, vol. 2, RILE	er, Raphaël, e rete Exposed 'ete Research	Mimi, et al. "E onation Factor rs." Magazine	Xiaolang, et a cycled Concr mation Conditi with and Testin	Bended with Blended with als after Carb	ttage, NL, et a estration of Ca mation." Meas D by the Institu	ček, P. "Corn olymer Mortar tion, and Prelli	Activated Mer Activated Mer ds." Developn	0, & Pan, G. (2 ials with differe 1, 902 MSF, 74	ardi, L., et al. ent Types of F sus Stream by mation." Wasti	, SO. "A Revit Concentration ete." Construe worth Scientifi	Shu-Yuan, et a Jilization for Ir Intion and CO	ttage, N. L., er N. Chemical Pro Man Coal Fly / dment." Envice	fot, Alexandra s Based on E rical Study." (lutterworth Sc	Dongxing, et o-Friendly Con mation." Journ er Science Lto	"Experimenta fication of Hea ration Fly Ash ology." Dongr	wu, et al. "Eff hore the Carbo Mortars." Cen er 2016. pp.	Dongxing, et rete Slurry Wa icts." Construv worth Scientifi
Nedel	Active Interna 111 19646-	Kim, H. Lee, J., Reacto 112 Foroms	Prava Concr Techn	Shah, Chara Carbo	Coral: Coral: Cemei	Aggre, Coupli	Fly As Cemei 117 180. E	Elevat	Xuan, Carbo of RAC 119 Efficien	Lee, h by Re Under 120 vol. 43	Mo, L Perfor Materi 121 Commo	Nielse Materi Letters 122 53–58	Bucht Concr Concr 123 18–29	Zhan, Carbo Mortar 124 16 The	Eang, by Re Carbo	Wu, B Paste Materi 126 Materi	Ukwa Seque Carbo 127 IMEKC	Hlavá Geopt Migrat 128 Data *	Kriven Alkali- Hybric 129 a Colle	Shen, A materi Forum 130 https://	Lombi Differe Gased 131 Carbo	Ekolu, CO2 (Concr 132 Butter	Pan, S Bag L Produ 133 Carbo	Ukwai on the Austra 134 Amenc	Bouro Block: Numer 135 125, B	Xuan, of Ecc Carbo 136 Elsevie	Ji, X. ' Soldif Incinei 137 Techn	Mo, L Enhan MgO N 138 Elsevie	Xuan, Concr Produ 139 Butteor

														CO2 uptake is not determine								formulas to convert % carbonate							
moutof	ope (nocus n chemical- achate	ope (not cus on celerated	m out of ope (focus n echanical	m out of ope (not cus on celerated	m out of ope (not cus on celerated	m out of ope (flocus h		m out of ope (flocus h	m out of ope (focus h physical operties)	m out of ope (focus n echanical	m out of ope (not cus on celerated	m out of ope (focus n echanical	ot available			m out of ope (flocus n pathways	m out of ope (no 3essment of 02 uptake)	m out of ope (no sessment of D2 uptake)		m out of ope (no sessment of D2 uptake)	m out of ope (no 32 uptake)		orean nguagel ennot find e original		m out of ope (no Sessment of D2 uptake)	m out of ope (not cus on celerated	m out of ope (focus n chemical operties)	m out of ope (no sessment of D2 uptake)	m out of ope (no sessment of 02 uptake)
18	7 2 3 1	1754	76 X 8 E	# X 2 #	.# X & #	77 X 8 E		78 24 5 6	71 2 3 3	# X 5 E	# # 2 #	74 X 5 E	2			# X 8 5	1 2 2 2 3	***0		1 2 2 0	***0		2305		1220	# X & #	77 X 8 Z	14 2 8 0	2885
L	2	ę	ę	ę	8	8	×	8	Q	ę	Q	Q.	8	×	×	2	Q	ę	×	Q	ę	×	Q.	×	ę	ę	ę	ę	2
							diation works including manipul work war inclusion better and (MSW) (M) and fits and colling wateworks (CBN) was								for effect of two operational parameters on the associations of Association and By about the CO 2 suppor- tation of Monsters with.									of a semiclosed accolutesed autocastion and we president to solve and applicad to Blook Oropan Farman (DOF) and day with the aim					
							78 ac03.Au sorbent: 102 fC02.Au sorbent								10,71;20,13;27,05 gC02/kg dry sorbent									120;149 gCO2/Kg sorbent					
							TGA								not found									Inorganic carbon analyses					
							The chemical properties of MSWn BA were measured in accordance with ASTM method C114 using X-ray fluorescence (X65, PW2430, Phillip, Uketherand)								morphological analysis was done using a scanning electron microscope Nova Nano 450. The mineralogy of the Yashes was determined by X-ray diffraction spectroscopy using a PMM sytical formoreana diffraction spectroscopy and the X standard on a 45 VV and									particle size-Zmm. The carbonate content was evaluated by Integratic Carbon analysis using a Samadau TOC VDH analyser equipped with a SSM-SOOD solid sampler. The mineralogical composition was determined by powder XBA analysis.					
							ass of sorbent not found; T rbonation time= 120 v								rbomation time= 10h; ass of sorbent=300g									rbonation time= 120 in; mass of sorbent not und.					
							201								ensive ca									to II a					
							In room temperature. US ratio used were: 5, 10, 20, and 40 aU(2, CO2 flows continuously at P-13 and at filterent and 2, CO2 flows continuously at P-13 and at filterent and was samined at 1, 5, 10, 30, 60, and 120 min, 3 different has was samined at 1, 5, 10, 30, 60, and 120 min, 3 different								The mixture was continuously stirred at 60 rpm carbonation inne 10h, water 40-solid (WS) stato of 0.3. Temperatures of 10, 40, 60, 80° Cwe used for testing at an initial CO2									143*C; P witms100%CO2; 24 rpm, L/5 ratio = 0,12 L/Np. beaction times-30, 60, 120 min, pH was monitored;					
							Bottom ashes (incineration); cold for notified water.								fly ashes (coal power plant)									steel slags					
							Slurry reactor								stirred autoclave reactors-slurry reactor									Lab scale granulator reactor (Slurry reactor - batch reactor)					
Wang, L., Chen, Q., Jamro, I. A., Li, R., Li, Y., Li, S., & Luan, J.	(JU10). Geocomencial modeling and assessment of leaching from carbonated municipal solid wate incinerator (MSWI) fry alh. 140 Environmental Science and Political Research 23 (12). Dono M M 100: D 25: Science of Political Science and Politi	unset, m. rs. venue, r. v. ar research, s. r. fouroap, descriment modeling of brine remediation using accelerated carbonation of fly ash. Desolingtion and Woter Treatment, 57 [11], 141 4853–4863.	Wang, L., et al. "Accelerated Co-Precipitation of Lead, Zanc and Copper by Carbon Dioxide Bubbing in Akative Lincipal Solid Wates Incinentor (MSW) FP Ash Wash (12) Water " FRO: Advances., vol. 6, no. 24, Royal Society of	Wang, L., et al. "Accelerated Co-Precipitation of Lead, Zinc and Copper by Carbon Dioxide Bubbing in Akatine Municipal Solid Wate Inchmotor (MSW) FP Acth Wath (13) Water." FRO: Advances. , vol. 6. no. 24. Royal Society of	Silva, R. v., Silva, A., Neven, R., & de Brito, J. (2016). Statistical Modeling of Carbonation in Concrete incorporating Recycled Aggregates. Journal of Materials in Civil Experimenta, 2.8 (1), 164 (04015082, https://doi.org/10.1061/Maselmu.1543-	Xuan. Dongring, et al. "Assessment of Mechanical Properties of Concrete Incorporating Carbonated Repropending Concrete Aggregates." Contract & Concrete Reproposations voil 65. Environ. 2016. Don 67–74.	Chang, E. E., et al. "Accelerated Carbonation Using Municipal Solid Waste Incrementor Bottom Ash and Cold- Municipal Solid Waste Incrementor Bottom and Reaction (46 Roletton "Waste Manacement", vol. 42 Recommon Press.	Zhang, F. "Mechanical Strength and Microstructure of Mortars Prepared with MgO-CaO-Fly Ash-Pontand Commit Binds and Acceleration Catoral 13 Suan Jan Heauth Pao, Sciumal of the Chinese Carmice	Na, S., and M. Kanp, "Gamma-C 2 S Synthesis from Py Ash of Fuidles-Bod Bloke for CO 2 Capture," Acta Physics Proteins, A Gamerar Physics, 260 State Physics, 148 Applied Physics, vol. 127, no. 4, MSP Polons, 2015, pp.	Zhao, G. "Critical Use Level of Fly Ash Based on the Carbonation Durability of Corceve.", Janzinu Caliso Xueboo/Journa of Building Materials, vol. 18, no. 1, 2015, 149 po. 118–52, https://doi.org/10.39959/18nn.1007-	Pascual, Concepcion Domingo, and Pascale Subra- Paternaut. "Supercritical CO2 for the Reactive Calcium Carbonate: Used Fordiant Carbonate: Description of 150 Repletations to industriate Processing." Supercritical Paid	Mo. L. "Accelerated Carbonation and Performance of Steel Stag Concrete with Pressuriated CO2 Cuming." 5th International Conference on Accelerated Carbonation for International Conference on Accelerated Carbonation for IE Environmental and Mattivitie Enciperencies 2015. DO:	"5th International Conference on Accelerated Carboration for Environmenta and Material Engineering 2015." 5th Accelerated Carborates on Accelerated Carboration for 12 Environmental and Material Engineering 2015. 2015.	Warg, Luk et al. "Muture Design and Treatment Mehods for Recycling Contaminated Sediment." Journal of Landoux Meholie, Vol. 283, Elevier Scientific Pub 151 (20. 2016, non. 1024–20.	Ukwattago, NL, et al. "A Laboratory-Scale Study of the Aqueous Mineral Carboratory of Coal Fy Ash for Co2 to guestration. "Journal of Cleaner Photoction. vol. 103, Statemone Lint 2015, on. 655-724.	Guidkold, Genetima, and Ah-hyung Alisa Park. "Accelerated Carbonation of Ca- and Mg-Bearing the second surface Water Using Carbon Ki Divinice Meansford: Cranot file Carbon Carbon	Morandeau, A., et al. "Impact of Accelerated Carbonation on OPC Comment Plaste Blended with Fy Ash." Commun and Concrete Research, vol. 67, Pergamon Press, 2015, 156 pp. 226–36.	Baclocchi, Renaño, et al. "Carbonation of Industrial Reaktues for CS strange and Utilization as Treatment to Achieve Multiple Environmental Benefits." Energy 157 Procedie, vol. 63, Elsevier., 2014, <u>10</u> , 5679–96.	Gentaliez, A., et al. "CO 2 Carbonation Under Aqueous Conclators Using Petroleum Cole Combustion Fly Card Champere, vol. 117, no. 1, Elsevier Science, 158 (2014, pp. 139–43.	Petrez-Fortes, M. Techno-Economic Assessment of Carbon Utilisation Potential in Europa." Chamical Cognoering Transactions, vol. 39, no. Special Issue, 159 Balan Association of Chemical Environment – AIDIO, 2014.	Jung, Seck, et al. "Two-Stap Accelerated Mineral Carbonation and Decomposition Analysis for the Reduction of CO2 Emission in the Eco-Industrial (40) Panks, "Journal of Emiscrimential Sciences, vol. 28, no. 7,	Jung, Seok, et al. "Mineral Carbonation by Blowing Incinentation faat Containing CO 2 into the Southon of Py Aeth and Ammonia for EX Stat Carbon Capiture and 161 Storate." Geostration Environmentor, vol. 17, no. 2, 2014.	Nam, Seong-Young, et al. "Quantitative Evaluation of CO 2 Sequestration in Cai-Rich Waste Minneral for Accelerated Sectoration: "Journal of the Konsan Cenamic Society, vol. Ict. 51, no. 2, 2014, pp. 64–71,	Morone, Milens, et al. "Valorization of Steel Stag by a Combined Carbonation and Gamilation Transment." Mintrais Engineering , vol. 59, Pergamon 18 Threes., 2014, p.o. 82–90.	Mohammed, Mahmoud Khashaa, et al. "Carbonation of Filer Typed Self-Compacting Concretes and Its Impact on the Microsthructure by Utilization of 100% CO2 (44) Accelerating Techniques." Construction & Building	Murith', Grace N., et al. "Comparison of CO2 Capfure by Ex-Stu Accelerated Certorention and in in-Stal. Naturally Weathered Cost 127, Academic press, 2013, pp. 165 Menagement, vol. 127, Academic press, 2013, pp.	Bernal, Susan A., et al. "Gel Nanostructure in Akali- Activated Binders Based on Stag and PA Akit, and Effects of Accelerated Carbonation." Comment and 166 Concrete Research, vol. 53, Pergamon Press, 2013, pp.	Fria, M. "Accelerated Carbonation Effect on Behaviour of Ternary Portland Cempatits." Composites, vol. 43, Elsevier Science Pub Co., 2013, pp. 122–28, 167 https://doi.org/10.1016/j.compositesh.2012.12.008.	Kashei Haghighi, Sormeh, and Subhasis Ghoshal. "Physico-Chencel Phonesea Lamba CO 2 Upatke in Concrete During Accelerated Carbonation 461 Curing." Industrial & Engineering Chemistry Research, vol.

				ъ.–	, ¹ 8.–							~		- T	Ja -		- ¹ 0	- a	- a					~			a	at a	
	_		cannot download	aim out of scope (no assessment CO2 uptake	aim out of scope (no assessment CO2 uptake		aim out of scope (focu: on mechanical	aim out of scope (focu: on physical pronecties)		aim out of scope (focu: on mechanical	aim out of scope (focu: on mechanical	aim out of scope (focu: on merhanical	aim out of scope (focu: on physical	aim out of scope (no assessment	aim out of scope (no assessment	aim out of scope (focu: on machanical	aim out of scope (no assessment CO2 uptake	aim out of scope (no assessment CO2 uptake	aim out of scope (no assessment CO2 uptake	aim out of scope (focu: on mechanical	aim out of scope (focu: on leaching effects)	aim out of scope (focus on chemical properties)	aim out of scope (focus on leaching effects)	aim out of scope (focu: on leaching effects)	aim out of scope (focu: on physical properties)	aim out of scope (focus on mechanical	aim out of scope (no assessment CO2 uptake	aim out of scope (no assessment	aim out of scone ino
the initiation of CO a for x	sequestration of CO 2 by manicipal solid The present study	attempts to identify the potential of coal fly	2	2	2	This study seeks to determine the degree of influence of several main	2	8	Carbon dioxide (CO2) x sequestration x experiments using	2	8	2	2	2	ę	2	2	2	<u>e</u>	8	0	<u>e</u>	<u>e</u>	2	e.	8	e.	2	
17,41 gCO2/kg sorbent		1,66 gCO2/Kg sorbent				t; 4; 5; 18; 50; 84 gCO2/kg sorbent			183 gCO2/kg sorbent																				
TGA		TGA				particle size; L/S ratio, Temperature were varied			TGA																				
c-ray fluorescence (XRF) gives elemental composition. Thermo- gravimetric analysis (TGA) and differential scanning calorimetry procession and an elements of the scanner of a scanner of the scanner o	DSc) were used to investigate CU2 uptake into and release from fly isb. Microstructure analysis of the BET specific surface area, T-plot	verage size particle=0,9 mm; X-ray spectroscopy gives chemical composition.				0114188 standards for sleving samples. Chemical composition is given.			ize of particles. 44,µm. The conversion of the carbonation products was determined quantitatively by thermo. gravimetric analysis (TGA) and a calitatively by X-ray diffraction (XRD) and scanning electron microscopy (SRM).																				
mass of sorbent=100; 150g. Carbonaiton	time=80 min.	mass of sorbent=300g				mass of sorbent=100g: carbonation time=30 min.			mass of sorbent not found; v carbonation time=12h.																				
Pild		Intensive				PIW			Intensive																				
CO2 flow=0,01 L/min. CO2 concentration=100%; 12%; reaction time up to 80 min. T=ambient; Istantaneous flow, P, T	were monitored. CO2 concentration was varied. Ted0°C: examples were prepared with 1-5 colid to liquid ratio	Pressure of CO2=2 to 6MPa. Time of carbonation=10h. Then L/S ratio was varied from 0,1 to 0,8. L/S ratio; Pressure were varied.				RH=75%; L/5 ratio = 0,1-0,3. mixture gas of 10-30% CO2 in N2. carbonation time=30 min. T=20-40-60°C.			L/S ratio was fixed at 10 mL/g. Pressure-700 psi (circa 5 MPa) 13100 psig (circa 9 MPa). Tw0.160°C. reaction firmer5 min to 131. reaction inter (h. jiquid-10-co-sind ratio fuc), reaction the moreature (T). CO2 pressure (P), and initial pH were warfed.																				
fly ash from MSW incineration		fly ash from coal combustion				Bottom ash from incineration			steel slags																				
open reactor		slurry reactor				slurry reactor/ batch reactor			autoclave reactor																				
Jiang, Jianguo, et al. "Influence of SO2 in Incineration Flue Gas on the Sequestration of CO2 by Municipal Solid	Waste Incinerator Fly Ash." Journal of Environmental Sciences vol 250, no. 4, 2013, pp. 735–40. Il fundmane M.1. "Investination of the Environmental of Creat	Combustion Fly Ash for Mineral Sequestration of CO2 by Accelerated Carbonation." Energy, vol. 52, Pergamon Press, 2013, pp. 230–36.	Madrawski, J. "Traditional and Alternative Methods of Assessment of Carbon Dioxide Sequestration Process by Recycled Concrete Aggregates (Tradity/prine) Alternativum Methody Connu Interexumeric) Process	Gruyuert, Elke, et al. "Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation on the Pore Structure." Connect & Concrete Connoceles vol 36.	Aperador, W. "Industrial Byproduct: Based Concrete Subjected to Carbonation. Electrochemical Behavior of Felencontent," International Journal of Felencontennical X vol. 7, no. 12, Electrochemical	Nam, Seong-Young, et al. "Accelerated Carbonation of Municipal Solid Waste Incineration Bottom Ash for CO 2 Agreestration." Geosystem Engineering, vol. 15, no. 4, 2012 on 2016-11.	Zhang, Y. M. "Accelerated Carbonation Test of Concrete at 3% and 20% CO2 Volume Fraction." Janzhu Calilao Inteododucmart of Buiding Materials, vol. 5, no. 5, 2012, No. 694–60 https://rigit.nor/1.2966/i.sen.1072.	Tu, Lu One on the second second second on the Microstructure of Concrete Containing Fly Ash and Expansive Admitture. "Admitture" Admitture. The Admitture and Admitture	Chang, E. E., et al. "CC2 Sequestration by Carbonation of Steelmaking Stags in an Audoclave Reactor." <i>Journal of</i> 2011, pp. 107–14, 2011, pp. 2011, pp. 2011, pp. 200, 2011, pp. 107–14,	Yoursi, A., et al. "Performance-Based Design and Carbonation of Concrete with High Fly Ash Institut." Centrate Concrete Composities, vol. 33, no. 10, Elsevier 2011, pp. 980–1000.	Ye, Ging, "Influence of Early Age Wet Curing Time, Cirkler and CaO Content on the Carbonation Resistance of C40 Orienary Concrete: A dwared Materials Research, vol. 311-313, 2011, pp. 1984–900.	Ye, Oing, et al. "Variation of Carbonation Coefficient of Pumping Concrete with Moist-Curing Time at Early Ages and Phy-skih Contrart." Advanced Materials Research, vol. 2972-300. 2011 no. 800-010	Her, R. Carbonation Depth Prediction of Concrete Made with Fly Ash." The Electronic Journal of Geotechnical Engineering: LCGE: World Wide Veb Journal of Condension: Environment Meth Draw 2011 and Ale 14	Aperador, Willin, et al. "Monthree Mediante ETI: Do log Acero Embebido En Un Concreto de Escoria Activada Acero Embebido En Un Concreto de Escoria Activada Aceinamente Expuesto a Carbonatación , <i>Prevista</i>	Pleady Kata J, et al. "Smuthmoous Capture and Meddy Kata J, et al. "Smuthmoous Capture and Mineralization of Coal Combustion Flue Gas Carbon Dioxide (CO2)." Energy Proceedia , vol. 4, Elsevier, 2011, on 652-000	Ruka, H. E. *A Study on Carbonation for Low Calcium Fly Ruka, H. E. *A Study on Carbonation for Low Calcium Fly Ash Concrete Under Different Temperature and Relative Fundingly. "The Electronic Journal of Goodenfinal	Bouccubase not, et al. "Carbonation of thy Ash Concrete: Bouccubas, N., et al. "Carbonation of Py Ash Concrete: Laboratory and Field Data." Carbonation of Civil Spreening, vol. 37, no. 12, 5010, pp. 1535–49, https://doi.org/10.1138/10.081.	Wang, Lei, et al. "Investigation of Accelerated and Natural Carbonation of MSWI Fly Ash with a High Content of Carbonation of Mazurdous Materials, vol. 1174, no. 1-3, Elsewier Schemittie Flyh Co. 2010. no. 334–43.	Lin, Mireo, et al. "Environmental Reproved Conversion of Carbon Dioxide (CO2) into Useful Green Conversion of Carbon Dioxide (CO2) into Useful Green Technolow " International Lournal of Environmental	Wu, Hao Z., et al. "Carbonate Steen water and Multi Hao Z., et al. "Carbonate Steen water als Manufacture Building Materials." Advanced Materials Baserch, vol. 79, 282, 2009. D. 1933–46, Advanced https://doi.org/10.0028/xxxxx	Wang, L. ***Celetrated Carbonation of High Ca Content Municipal Solid Waste Incineration Fly Ash and Impact on Municipal Solid Waste Incineration Fly Ash and Impact on Eaching of Heavy Media. ***Araying Kouse-Ferrivormental Sciences. vol. 30 no. 11, 2009. no. 3398–404.	Jiang, J., Zhang, C., Chen, M., & Zhang, Y. (n.d.). Assessing the Chemical Behavior of Metals in Municipal Solid Waste Incrineration Fly Ash Using an Enhanced CO 2 Aboversion	Suer, Pascal, et al. "Reproducing Ten Years of Road Ageing – Accelerated Carbonation and Leaching of EAF Ageins Saga, "The Science of the Todal Environment, vol. 407, no. 18, Eservier Science J. 2009, pp. 5110–18.	Jianguo, Jiang, et al. "Pb Stabilization in Fresh Fly Ash from Municipal Solid Waste Incimentator Using Accelerated antonetion Fechnology: "Journal of Hazard ous Manteriak. vol. 161. no. 2-3. Ekwine Scientific Pub Co.	Chindaprasit, Prinya, et al. "Effect of Carbon Dioxide on Chioride Penetration and Chioride Ion Diffusion Coefficient I Beneded Penetration Carbonide Lon Diffusion Coefficient Buildion Materials, vol. 22, no. 8, Buildeworth Scientific.	Baert, G., et al. "Strength and Durablity of High-Volume Fly Ash Concrete." Structural Concrete: Journal of the Flat, vol.s, no. 2: Thomas Bretord, 2008, pp. 101–08, https://dia.red/10.1680/stcn.2008.92, 101.	Costa, Guia, et al. "Current Status and Perspectives of Accelerated Carbonation Processes on Municipal Waste Combuston Pedicleus." Environmental Monicipal and Assessment vol. 135. no. 1-3. Koww. Academic.	Villain, Géraldine, et al. "Measurement Methods of Carbonation Profiles in Concrete: Thermogravimetry, Chemical Analysis and Gammadens inetry." Cement and	Concrete research, vol. 37, itu, o, retrainter reasu
	169	170	121	122	121	174	175	126	177	178	179		a		8			1	187	000	68		161	192	193	194	195		

scope (focus on physical properties)	aim out of scope (no assessment of CO2 uptake)	cannot download	aim out of scope (not focus on arrelerated	aim out of scope (no assessment of CO2 uptake)	aim out of scope (focus on mechanical	aim out of scope (no assessment of CO2 uptake)	aim out of scope (focus on physical properties)	aim out of scope (no assessment of CO2 uptake)	aim out of scope (focus on physical properties)	aim out of scope (focus on steel corrosion)	aim out of scope (focus on chemical properties)	aim out of scope (not focus on accelerated	aim out of scope (no assessment of CO2 uptake)	
	c		c	c	c	c	c		c	c		c	c	
														ded
	n of 7		. *	_ 4		g	pa A		un		y ≻II,		6	= not inclu
Permeauury le Considering Concrete ess. 2007. nn.	Combined Actio for Concrete wrmal of Building	nation for , ACI Special ~-62.	rikul. "Model for crete." Journal c o. 5, American	tion Model for Xuebao (Zirar rsity (Natural 2005. pp. 149–5	DMPARISON OF VD DURABILITY MENT * Camant	Mud Drill Cuttin Jogy." SPE fety and and Production	tion of Accelerat W Incinerator Green Chemist strv., 2004, pp.	lsh , ACI Special 9-56.	olding and <i>" Industrial &</i> 38, no. 7, Americ	orrosion of is for Highway osion Conferenc	rete Structure b ョウトカンキョ tai,, 1995, pp. 991.44.690.	our of Hydraulic ate and Calciun ssearch , vol. 25 26.	oosition, ne Mortar Coati nd Structures: unod, 1992, pp	
sung-Jun rwon. oonated Concre e." Cement and 3. Percamon Pro	al Research on Ind Carbonation Igou Xuebao/Jc SLIPPI 2006	al Use of Carbo concrete Institute 5, 2006, pp. 141	of Fly Ash Con ering, vol. 17, n	Production Producti Production Production Production Production Production Pr	UATION AND C ICTERISTICS A DIFFERENT CE	ion of Oil Based bonation Techni e on Health, Sal Gas Exploration	et al. "Investige tbilisation of MS tration of CO 2." nciety of Chemis	bonation of Fly . oncrete Institute 2, 2000, pp. 535	ligh-Pressure M titious Materials. Research, vol. 1 pp. 2641–49.	ation-Induced C trete Mix Design fermational Corro h, 1998.	fioration of Conc と戦能 [[ザイ リ 」 B Öshoku Kyök /10.3323/icorr15	ng-Term Behav sium Sulfoatumir and Concrete Ri 1995, pp. 113	. "Effect of Com and Cement-Lir on." Materials au vol. 25, no. 5, D	_
Ha-Won, and s cteristics of Car. iry Pore Structur rch. vol. 37. no.	"Experiment haw Cycles a s." Jianzhu Ji	n, S. "Benefic ." American (on , vol. SP-23	gkeaw, J., ar g Carbonation in Civil Engine	with Fly Ash.	et al "EVAL ICAL CHAR/ RETE WITH MFNT I FVF	 "Stabilisa" "Stabilisa" elerated Cai al Conference nt in Oil and 	Bertos, M. n for the St the Seques . B. Roval S	. D. A. "Ca American (vol. SP-19	arl, et al. "F 1 of Cemen 1 Chemistry 1 chemistry	I. "Carbon ement Con " NACE - In 1998-Marc	oshi. "Dete sition." 하위위 12, Fushok ps://doi.orc	V., et al. "Lo ised on Cal a." Cement	, V. G., et a ntal Factors & Carbonat and Testing.	t not include
ong, hara. apilla	이 너 도 왜 왜	té ete	Lo di la c	Bau Bau	S N N S	P. V Acc tion	natio and 3. nc	ste."	F. C. nation ering	o, E. 3d-C. res.	epos htt	an, h 's Ba 's Ba	nmei Incret Icret	p

ANNEX III: Quantitative analysis table of the included papers

In this table, every line corresponds to a quantitative result in terms of gCO_2/kg dw found in the literature. Data found have been converted in selected units of measurement to be comparable each other. Every paper have been classified according various features which describes how the accelerated experimentations have been carried out.

							CO2 UPTA	AKE g/kg sorben	ţ		CO		RE	ACTOR	AOISTURE CONTENT %
RIF	MATERIAL	OPERATIVE CONDITIONS	PRESSURE (bar)	TEMPERATURE (°C)	TIME (h)	HUMIDITY (RH %)	PUNCTUAL VALUE	MIN VALUE	IAX VALUE	RANULOMETRY (mm) (Flow (L/min)	Conc %	DRY S	SLURRY: L/S ratio	
Cappai, G., Cara, S., Muntoni. A., Piredda.	:LY ASHES	MILD	1	20			200				0			2,5	
Xuan, D.; Poon, C. S.			* 0		•		L				v	100	:		
(2018). Sequestration	ACA .	MILD	0,1	KUUM		50±5 E0±E	6,9 17 E					100	×		
	NA	MILD	0,1	NOON	n	51 H 2	24					100	<		
	ICA	WILD	0.1	ROOM	~ ~	50±5	19.5				0	100	. ×		
	ICA	WILD	0.1	ROOM	24	50±5	19.5				0	100			
	RCA	INTENSIVE	1,1	ROOM	24	50±5	25,8				0	100	×		
-	RCA	INTENSIVE	5	ROOM	24	50±5	28,2				0	100	×		
	RCA	MILD				50±5	55			1,00	0	100	×		
-	RCA	MILD				50±5	32			3,50	0	100	×		
	RCA	MILD				50±5	25			7,50	0	100	×		
	RCA	MILD				50±5	27			15,00	0	100	×		
Sequestration of										70 26					
carbon aroxide in steel slag	1065	INTENSIVE	-	002	,		40			67/05	٤	100	,		
21001 3186/	ILAGS	INTENSIVE		360	2		20			<0.25	n e	100	. ×		
	ILAGS	INTENSIVE	, , ,	200	-		0			<0.25		100	. ×		
	ILAGS	INTENSIVE	1	200	2		40			<0,25	е	100	×		
	SLAGS	INTENSIVE	1	200	4		44			<0,25	3	100	×		
	SLAGS	INTENSIVE	1	200	9		53			<0,25	3	100	×		
Baciocchi, R., Costa, G., Polettini, A., Pomi,															
V. (2009). Comparison	-LY ASHES	INTENSIVE	>1	400	<0,17	75	250					10	×		
-	LY ASHES	INTENSIVE	>1	30	0,17	75	250					100		0,2	
El-Hassan, H.; Shao, Y. (2014). Carbon															
Storage through	ONCRETE-MONOLITES		-	MODA	V		11.6			_	c	100	*		
Concrete Block		MIILU	-	NOON	7 T		0/11			,		100	< >		
			-	ROOM	• •		0.3				0	100	< ×		
			1	ROOM	4		28,3				0	100	×		
			1	ROOM	4		0,8			/	0	100	×		
				ROOM	0		0,4				0	100	×		
				ROOM	4		29,8				0	100	×		
				POOM	4 0		0,6		T			100	<		
			-	ROOM	•		30.5		T			100	<		
			-	ROOM	4		0,9				0	100	< ×		
			1	ROOM	0		0,6				0	100	×		
			1	ROOM	4		31,5			/	0	100	×		
			1	ROOM	4		32			/	0	100	×		
			1	ROOM	2		28,2				0	100	×		
				ROOM	96		45,8 0 9				0 0	100	××		
Fang. X Xuan. D			-	lioou	, 		2.2			_	>	201	<		
& Poon, C. S.															
(2017). Empirical modelling of CO2	ţ					ŝ	,				c		;		
uptake by recycled	ILA	MILLU	0'T			05	12.8			5 < SIZE < 10	0 0	100	<		
			0.1		5	20	24			5 < SIZE < 10	0	100	×		
			0,1		~	50	19			5 < SIZE < 10	0	100	×		
			0,1		24	50	19			5 < SIZE < 10	0	100	×		
		INTENSIVE	5		24	50	28			5 < SIZE < 10	0	100	×		
		MILD	1		e	50	5,8			5 < SIZE < 10	1	100	×		
					5	20	12,2			5 < SIZE < 10	1	100	×		
			1		~	50	12,4			5 < SIZE < 10	-1	100	× :		
			-		24	20	12,4			5 < SIZE < 10	- -	100	×		
					- L	00	0,9 0,0						< >		
					n r	00	9,0			5 < 517F < 10		1 1	< >		
			-		24	205	10.5			5 < SIZE < 10	-	10	< ×		
			1		e e	50	4			5 < SIZE < 10	1	100	×		
			1		2	50	4,2		Π	5 < SIZE < 10	1	100	×		
			1		7	50	3,5		_	5 < SIZE < 10	1	100	×		
			1		24	50	3,4		_	5 < SIZE < 10	1	100	×		

		1		m	50	5			5 < SIZE < 10	S	100	×		
		1		5	50	5,4			5 < SIZE < 10	5	100	× :		
		., ,		.;	50	6,6 7 7			5 < 512F < 10	۰ ۱	100	× >		
				77	00	2,0			5 < SIZE < 10	n ç		< >		
				n .	20	c,o				01 ¢		<		
		-		n		0					DOT 1	<;		
		-1		2	20	6,6			5 < SIZE < 10	10	100	×		
		1		24	50	6,4			5 < SIZE < 10	10	100	×		
		1		24	50	55			<2,36	0	100	×		
		-		24	50	30			2.36 < SIZE < 5	c	100	×		
		-		24	50	26			5 < SIZE < 10	C	100	×		
		1		24	50	27			10 < SIZE < 20	0	100	×		
		1		;	2	i				,		:		
									``					
									_					
CRETE-MONOLITES	MILD	1	25	22	60	121				0	100	×		
		1	25	22	60	129			<u> </u>					
		1	25	22	60	128			_					
									1<5IZE<4					
	MILD	1	25	24		/	8,6	49,9				×		
		1	25	24		17,3			1 <size<4< td=""><td></td><td></td><td>×</td><td></td><td></td></size<4<>			×		
		1	25	24		14,9			10 < SIZE < 20		15	×		
		1	25	24		20,4			10 < SIZE < 20		100	×		
									<0,3					
					ţ								1	
	MILD		20	120	65	138,5				0	30	-	0,7	
		-1	20	72	65	169,5			<0,3		80	\	0,1	
		1	20	168	65	192,7			<0,3		30		0,4	
			20	120	65	189,7			<0,3		30	-	0,4	
			20	24	65	186,2			С,0 ₂		8		0,25	
		-1	20	72	65	138,5			<0,3		e l		0,7	
		., ,	20	72	65 1	186,6			<0,3		202	+	0,4	
		1	20	168	65	174,7			<0,3		30	\ \	0,1	
		, ,	20	1.00	65 1	126,9			<0,3		30	-	0,1	
		- ,	07	120	5	188,6			50,3		30	_`	67'N	
		-	20	-1	65	126,9			€,0,3		30	_	0,1	
		-	20	120	65	171,3			<0,3		<u>م</u>	-	0,1	
		1	20	72	65	186,6			<0,3		8	-	0,4	
		1	20	168	65	192,7			<0,3		8	-	0,4	
			20	168	65	180,5			<0,3		8		0,7	
			20		65	101,6			<0,3		80		0,7	
			20	24	65	122,9			<0,3		80	-	0,55	
			20		65	101,6			<0,3		8	-	0,7	
		., ,	20	10	65 r	126,5			<0,3 2,0,2		02	-	0,4	
			20	168	59	174.7			5(0) E (D>		00 00	+	0,1	
		1	20	72	65	143			<0,3	-	30		0,55	
		-	00	77	65	186.6			<0,3		30	,	0.4	
ASHFS		-	2	r		27.5			0,0000152		100	. ~		
	INTENSIVE	. ∞	80	2		39,4			0,0000152		100	. \	30 mL/g	
									8					
MONOLITES	MILD	1	21	24	65	1,573					0,04	×		
		1	21	72	65	5,207			8		0,04	×		
		-1	21	168	65	5,871			4		0,04	×		
		1	21	24	65	3,296			\$		2	×		
		1	21	72	65	19,928			2		5	×		
			21	168	65	23,96			2		5	×		
-MONOLITES	MILD		21	24	65	2,14			4		0,04	×		
		-1	21	72	65	5,5			4		0,04	×		
			21	168	65	8.35			0		0.04	×		
			21	24	65	8.62			0		L.	×		
			21	72	55	20.59			,0	T	, r	: ×	T	
			5	150	3 4	1 2 2		-	+ <		۰ ۱ u	; >		
-		-	17	001	60	1,12			7		- n	<	-	

									4	4	4	4	t 6	4	2	10	4														0	7	- 5	9	7	00	6	10	12	4	8	0					
				0,3-0,4	0,3-0,4	0,3-0,4	0,3-0,4												0,3-0,2	c/0-c/0	0,3-0,5																		+				0,2-0,5	0,2-0,5	0,2-0,5	2020	C'0-3'0
×	. × >	<			T				×	×	×	× >	< ×	×	×	×	×						××	< ×	×	×	×	×	<		× ,	<	< ×	×	×	×	×	×	×	×	××	<					
100	100	DOT		100	100	100	100		80	80	80	08 08	808	80	80	80	80		100	100	100		ۍ <u>ب</u>	n 10	2	5	5	۰ <i>۰</i>	۰ ر		80		808	80	80	80	80	80	80	80	08 08	8	20	20	20	00	70
																																											1,667	1,667	1,667		1,66/
_			/	-		. \	_	8		4	~	₹	41	<12	<13	<14	<15	۵	2	2 9	, Ø	<0,5	205	¢,5	<0,5	<0,5	<0,5	<0,5	c()5	¢ Ø	*	9 4	9 9	9	9	66	9	\$	9	ŵ,	\$ \$	7	4 < SIZE < 10	4 < SIZE < 10	4 < SIZE < 10	A - CITE - 10	4 < 212E < 10
				146																																											
				99,5	T																																			T	T						
87	89	£/		176	128	136	145		47,4	41,2	17,2	30,4	12	15,3	4,2	9,2	15,5		92,84	43,30	111,76		1,5 5 173	5,88	2,076	5,452	8,317	14,005	15,845		2,6	13 E	16.2	13,5	15	14,3	12	~	11,8	27,5	30	r'er	45,62	39,71	108,06		54,45
Q	30	05		65 65	65	65	65																65 65	65	65	65	65	65	c0 59																		
~	2	7		12	12	12	12		7	7	~ "	\	, _	7	7	7	2		168	168	1		24	168	24	72	168	24	168		~ ~	,	, _	7	7	7	2	2	~	21	21	77	0,5	0,5	0,5		0,5
40	24	74		25	25	25	25		22	22	22	77	22	22	22	22	22						21	21	21	21	21	21	21	:	21	21	21	21	21	21	21	21	21	21	21	17	ROOM				
	1,5	C,L		5	a c	4	S		1,4	1,4	1			1	1	1	1		1		1		1		1						1												1				
NTFN I				INTENSIVE					INTENSIVE	INTENSIVE	MILD	MILD	MILD	MILD	MILD	MILD	MILD		MILD		MILD		MILD		MILD						MILD												MILD				
CONCRETE-MONOLITES				ONCRETE-MONOLITES					CA										LY ASHES		LAGS		ATURAL AGGREGATES		CA						CA												LY ASHES				
Rostami, V., Shao, Y., & Boyd, A. J. (2011). Durability of concrete pipes subjected to and C		Zhang, D., & Shao, Y. (2016). Early	age carbonation curing for precast	reinforced concretes.			DOS REIS, GIAYUSOTI D.,	et al. "Coupling of Attrition and	Accelerated								Cabaabal Kavin at	scnnabel, kevin, et al. "Technically Exploitable Mineral	Carbonation		SI	David, et al. "Accelerated Carbonation of Fresh	N		R					Simoes, et al. "Effect of the Accelerated Carbonation	I reatment on the R											Derber, makan, et	al. "Accelerated Carbonation FL				

																											FIXED BED	FIXED BED	FIXED BED multi layer	FIXED BED multi layer	rotating bed	rotating bed			10										
0.2-0.5	0.2-0.5	0,2-0,5	0,2-0,5	0,2-0,5	0,2-0,5	0,2-0,5	0,2-0,5	0,2-U,5	c'n-z'n															10 m^3/kg	3:1													10 mL/g				0,12 L/kg	0,12 L/kg		
											×	×	× >	×	< >	< >	<	< ×	×	×	×	:	×				×	×	×	×	× ,	<		××	×	×	×		×	×	×			×	×
20	20	20	20	20	20	20	50	70	70		100	100	100	100	100	100	100	100	100	100	100		DOT				100	100	100	100	100	100		100	100	100	100	100	100	100	100	100	100	100	12
1 667	1.667	1,667	1,667	1,667	1,667	1,667	1,66/	1,66/	T,00/													ç	9				0,4	0,4	0,4	0,4	0,4	0,4 0.4		0				0,5						0.01	0,01
4 < SI7F < 10	4 < SIZE < 10	4 < 512E < 10	4 < 21/2 < 10	/				, ,					. ~	. \	/	0,002-0,130			<0.1	5 <size<10< td=""><td></td><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<></td></size<10<></td></size<10<></td></size<10<></td></size<10<></td></size<10<>		5 <size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<></td></size<10<></td></size<10<></td></size<10<></td></size<10<>	5 <size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<></td></size<10<></td></size<10<></td></size<10<>	5 <size<10< td=""><td>5<size<10< td=""><td>5<size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<></td></size<10<></td></size<10<>	5 <size<10< td=""><td>5<size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<></td></size<10<>	5 <size<10< td=""><td>-</td><td>_</td><td><0,15</td><td>Ś</td><td>Å</td><td>0,125 < SIZE < 0,35</td><td>0,32</td><td>0,116</td><td>0,054</td><td><4</td><td>4<size<9,53< td=""><td></td><td></td></size<9,53<></td></size<10<>	-	_	<0,15	Ś	Å	0,125 < SIZE < 0,35	0,32	0,116	0,054	<4	4 <size<9,53< td=""><td></td><td></td></size<9,53<>								
																											26	48	47	35	23	37		24											
																											24	43	42	27	19	33		23											
85 5.7	88,31	67,67	71,67	80,96	93,82	65,71	64,72	80,28	43,00		4,87	10,22	13,05	6,96	12 47	27,01	12 41	13.33	5,99	13,79	14,66		/'TAT	84,5	29,47										110	52	20	102	10,71	20,13	27,05	145	149	87	41
																																	L C	50±5	50±5	50±5	50±5								
20	0.5	0,5	0,5	0,5	0,5	0,5	ر0 د ر	ر) ۲	c'n		9	، م	ہ م	, م	ע מ	7	24	24	24	24	24		-		48		8-14	8-14	8-14	8-14	8-14	8-14 8-14		24 24	144	144	144	2	10	10	10	2	1,5	1.2	1,2
											ROOM											Ļ	67	ROOM	40		ROOM	ROOM	ROOM	ROOM	ROOM	ROOM		ROOM	ROOM	ROOM	ROOM	25	60	60	60	23	23	MOON	
											1,5												-	1	7		1	1	1	1				0,1 5	0,1	0,1	0,1	1	e	е	3	1	1	÷	,
											INTENSIVE												MILLU	MILD	INTENSIVE		MILD							MILD	WILD			MILD	INTENSIVE			MILD		UIIM	
											FLY ASHES-MONOLITES												LT ASILES	FLY ASHES-MONOLITES	SLAGS		BOTTOM ASHES							KCA-MONOLITES	CONCRETE	RCA	RCA	BOTTOM ASHES	FLY ASHES			STEEL SLAGS		FLYASHES	
									wang, Dongxing, et al.	"Quantification and Micro-Mechanisms of												Kwon. "Semi-Dry Carbonation Deconded Licing Elv.	Pel, Sh-Lu, et al. "Efficient of	Carbonated	Ukwattage, NL, et al. "Steel-Making Slag for Mineral	"Experimental Evaluation of Two	Different Types of						Xuan, Dongxing, et al. "Development of a New Generation of	Eco-Friendly	Auan, DongAing, et al. "Carbon Dioxide Sequestration of Concrete Slurry	_		"Accelerated Carbonation Using Municipal Solid	al. "A Laboratory- Scale Study of the Aqueous Mineral			al. "Valorization of Steel Slag by a Combined Carbonation and		Jiang, Janguo, et al. "Influence of SO2 in Incineration Flue Gas on the	

						_			_				
	ŕ			0,2	0,2	0,2	0,2	0,2	0,2	0,2		10 mL/g	
	~	:											
	100			20	20	20	20	20	20	20		100	
												0	
60			>4,75		2,36 <size<4,75< td=""><td>1,18<size<2,36< td=""><td>0,6<size<1,18< td=""><td>0,3<size<0,6< td=""><td>0,15<size<0,3< td=""><td><0,15</td><td><0.044</td><td></td><td><0.044</td></size<0,3<></td></size<0,6<></td></size<1,18<></td></size<2,36<></td></size<4,75<>	1,18 <size<2,36< td=""><td>0,6<size<1,18< td=""><td>0,3<size<0,6< td=""><td>0,15<size<0,3< td=""><td><0,15</td><td><0.044</td><td></td><td><0.044</td></size<0,3<></td></size<0,6<></td></size<1,18<></td></size<2,36<>	0,6 <size<1,18< td=""><td>0,3<size<0,6< td=""><td>0,15<size<0,3< td=""><td><0,15</td><td><0.044</td><td></td><td><0.044</td></size<0,3<></td></size<0,6<></td></size<1,18<>	0,3 <size<0,6< td=""><td>0,15<size<0,3< td=""><td><0,15</td><td><0.044</td><td></td><td><0.044</td></size<0,3<></td></size<0,6<>	0,15 <size<0,3< td=""><td><0,15</td><td><0.044</td><td></td><td><0.044</td></size<0,3<>	<0,15	<0.044		<0.044
	7 66			8	4	S	18	50	84	165		127	107
				75	75	75	75	75	75	75			
	10			0,5	0,5	0,5	0,5	0,5	0,5	0,5		12	
	40			20								160	
	'n			1								5-9	
	INTENSIVE			MILD								INTENSIVE	
	FI V ASHES			BOTTOM ASHES								SLAGS	
Ukwattage, N. L. "Investigation of the Potential of Coal	Combustion Fly Ash for Mineral Sequestration of	et al. "Accelerated	Carbonation of	Municipal Solid							Cnang, E. E., et al. "CO2 Sequestration	by Carbonation of Steelmaking Slags in	

ANNEX IV: Mathematical models calculations

Here theoretical models found in literature are presented. Theoretical models relate the potential CO₂ uptake of the sample given the % mass of chemical species which compose the sample material. The theoretical formulations are present in chapter 1.4 of the introduction. The initial idea was to test their validity through the % mass of chemicals present in our material and to include it inside the thesis. Since we didn't obtain the XRD (X-ray diffractometric) analyses, which could give us the quantitative analyses of the chemical present in the material sorbent, it was not possible to compile these Excel table. Thus, the same fictious values (1-2-3-4-5) have been inserted in the cells to show the difference in results of the different models.

	THEORETICAL MODELS													
inam,														
Seong-														
Young, et														
al. "Accelerate														
Accelerate	BOTTOM ASHES		CaO		MgO		Na2O		K20		503			
u	coefficienti		CaO	0 785	IVIGO	1 001	1482.0	1 / 1	K20	0 935	303	-0.55		
	Mass Eraction (%)			0,783		1,091		1,41		0,955		-0,33		
	Theo2 units (9(mass)			1		2		3		4		5		
	Incoz uptake (% mass)	8,187												
Xuan, D.;														
Poon, C. S.														
(2018).														
Sequestratio														
n of carbon	RCA		CaO		MgO		Na2O		K2O		SO3		CaCO3	
	coeffiicienti			0,785		1,09		0,71		0,47		-0,5495	-0,4396	1
	Mass Fraction (%)	/		1		2		3		4		5	6	J
	ThCO2 uptake (% mass)	1,5899												
Fang, X.,														
Xuan, D.,														
& Poon,														
C. S. (2017).														
Empirical														
modelling of	RCA		CaO		MgO		Na2O		к20		SO3		CaCO3	
	coeffiicienti			0,785		1,09		0,71		0,47		-0,5495	-0,4396	i
	Mass Fraction (%)	1		1		2		3		4		5	6	i
	ThCO2 uptake (% mass)	1.5899												
	,	_,												
Yuan O														
Yang G														
Zhang V														
Wang T														
Wang, L.	FLY ASHES		CaO		MgO		Na2O		к20		SO3		CaCO3	
	coeffiicienti			0,78	-	1,1	/	'		/		-0,55	1	
	Mass Fraction (%)	1		. 1		2		'		/		3		
	ThCO2 uptake (% mass)	1.33												
		_,												
Schnabel														
Kevin, et al.														
"Technically														
Exploitable														
Mineral														
Carbonation	STEEL SLAGS - FA - BA		CaO		MgO		Na2O		К2О		SO3		CaCO3	KCI
	coeffiicienti			0,785		1,091		0,71		0,468		-0,5495	-0,4396	0,2958
	Mass Fraction (%)	1		1		2		3		4		5	e	5 7
	ThCO2 uptake (% mass)	3,6545												
Pei, Si-Lu,														
et al.														
"Efficacy of														
Carbonated														
Petroleum														
Coke Fly	FLY ASHES		CaO		MgO		Na2O		K2O		SO3		CaCO3	
	coeffiicienti			0,785		1,091	/	'		0,935		-0,5495	-0,4396	J
	Mass Fraction (%)			1		2	/	'		3		4	5	ı
	ThCO2 uptake (% mass)	1,376												
Chang, E.														
E., et al.														
"Accelerate														
a	BOTTOM ASHES		CaO		Mao		Na2O		K20		503		CaCO3	
Carbonation	coefficienti		CuO	0 784	/		/		/		303	-0 55		
	Mass Fraction (%)			0,700	/		/		/		-	-0,35	-0,42	
	Th(O) untaka // mars)													
	moz upidke (% mass)													
ANNEX V: Box plot Mild and Intensive conditions

Results of carbon uptake for the different material classes and for the different operative conditions are shown. This classification for the operative conditions indicates such that: Mild conditions correspond to pressure=1 bar, T=room temperature; Intensive conditions correspond to pressure>1 bar, t>35°C. Are also shown the number of records found per box plot.

ANNEX VI: Box plot Very Mild, Mild, Intensive, Very intensive conditions

Results of carbon uptake for the different material classes and for the different operative conditions are shown. Also shown the number of records found per box plot are shown. These graphs are present in paragraph 2.1.3 Critical review, inside the scientific paper (Part II) where detailed description is given.

 VERY MILD
 MILD
 INTENSIVE
 VERY INTENSIVE

 n=0
 1
 n=21
 n=0
 n=7

ANNEX VII: Schematic of the Accelerated carbonation setup experiment

The following images refer to the schematic of the experimental setup found of the studies included in the review. Operative conditions are also present.

Cappai, G., Cara, S., Muntoni, A., Piredda, M., 2012. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO 2 sequestration. J. Hazard. Mater. 207–208, 159–164. doi:10.1016/j.jhazmat.2011.04.013

· Material: MSW combustion residues

- Process: Single step aqueous route process
- T= ambient (20°C)
- P= Patm
- Time= 3h
- pH monitored

Vasca di essicazione

He, P., Shi, C.; Poon, C. S. (2018). Methods for the assessment of carbon dioxide absorbed by cementitious materials. Carbon Dioxide Sequestration in Cementitious Construction Materials (pp. 103-126). Elsevier. doi.org/10.1016/B978-0-08-102444-7.00006-X</div>

Schematic of the CO2 curing equipment

Schematic of the CO2 curing equipment

Method: Mass change of the whole test set-up

3

Sojobi, A. O., Xuan, D., Li, L., Liu, S.; Poon, C. S. (2021). Optimization of gas-solid carbonation conditions of recycled aggregates using a linear weighted sum method. Developments in the Built Environment, doi.org/10.1016/j.dibe.2021.100053</div>

Xuan, D.; Poon, C. S. (2018). Sequestration of carbon dioxide by RCAs and enhancement of properties of RAC by accelerated carbonation. New Trends in Eco-efficient and Recycled Concrete (pp. 477–497). Elsevier. doi.org/10.1016/B978-0-08-102480-5.00016-6</div>

Schematics of carbonation chambers of RCA

Method 2: gas flow carbonation, open reactor.

- · Material: Recycled cement aggregates
- T= 25 ± 3°C
 - Gas flow air+CO2 = 1-10 L/min
- Time= 24h
- RH= 50±5 %

El-Hassan, H.; Shao, Y. (2014). Carbon Storage through Concrete Block Carbonation. Journal of Clean Energy Technologies, 287–291. https://doi.org/10.7763/jocet.2014.v2.141

Tu, Z., Guo, M. Z., Poon, C. S; Shi, C. (2016). Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. <i>Cement and Concrete Composites, 9–16. https://doi.org/10.1016/j.cemconcomp.2016.05.019

Fang, X., Xuan, D., & Poon, C. S. (2017). Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. <i>Materials and Structures/Materiaux et Constructions. https://doi.org/10.1617/s11527-017-1066-y</div>

Sereng, M.; Dangla, P. (n.d.). <i>Accelerated carbonation of recycled concrete aggregates</i>. https://www.researchgate.net/publication/352366234</div

Furcas, C., Balletto, G., Naitza, S., & Mazzella, A. (2014). Evaluation of CO2 uptake under mild accelerated carbonation conditions in cement-based and lime-based mortars. <i>Advanced Materials Research</i>, <i>980</i>, 57–61. https://doi.org/10.4028

Rostami, V., Shao, Y., & Boyd, A. J. (2011). Durability of concrete pipes subjected to combined steam and carbonation curing. Construction and Building Materials, 3345–3355. https://doi.org/10.1016/j.conbuildmat.2011.03.025</div>

Zhang, D.; Shao, Y. (2016). Early age carbonation curing for precast reinforced concretes. <i>Construction and Building Materials</i>, <i>113</i>, 134–143.

Yuan, Q., Yang, G., Zhang, Y., Wang, T., Wang, J.; Romero, C. E. (2022). Supercritical CO2 coupled with mechanical force to enhance carbonation of fly ash and heavy metal solidification. <i>Fuel</i>, <i>315</i>. https://doi.org/10.1016/j.fuel.2022.123154</div>

Fig. 1. Schematic diagram of supercritical CO_2 carbonation reaction platform 1: speed control; 2: temperature control; 3: heating control; 4: operation panel; 5: exhaust valve; 6: stirring motor; 7: heating jacket; 8: stirrer; 9: thermocouple; 10: pressure gauge; 11: intake valve; 12: booster pump; 13: compressed air; 14: CO_2 gas source.

- · Material: fly ashes
- Here stirring process is present to increase CO2
 permeability
- P=1-8 Mpa
- T=40-60-80 °C
- T=5 hours

Dos Reis, Glaydson S., et al. "Coupling of Attrition and Accelerated Carbonation for CO2 Sequestration in Recycled Concrete Aggregates." Cleaner Engineering and Technology, vol. 3, Elsevier Ltd., 2021,

- Material: RCA
- Ppartial pressure=0,75 bar 100%CO2 in a P=1bar air test;
- time of carbonation=;
- T=22°C.
- Presence of a rolling machine (rotatory drum)

Fig. 1. Set-up of the laboratory-scale rolling carbonation experiments. (1) CO₂ gas cylinder; (2) vacuum pump and CO₂ flow automated controller; (3) hermetic vessel (with pressure sensor) for placing the concrete aggregates; (4) rolling machine.

Schnabel, Kevin, et al. "Technically Exploitable Mineral Carbonation Potential of Four Alkaline Waste Materials and Effects on Contaminant Mobility." Greenhouse Gases : Science and Technology., vol. 11, no. 3, John Wiley & Sons, 2021, pp. 506–19, https://doi.org/10.1002/ghg.2063

Wang, Dongxing, et al. "Quantification and Micro-Mechanisms of CO2 Sequestration in Magnesia-Lime-Fly Ash/slag Solidified Soils." International Journal of Greenhouse Gas Control., vol. 91, Elsevier Science,, 2019, https://doi.org/10.1016/j.ijggc.2019.102827.

- Material: Fly ashes, Steel slags, clay
- T= room
- P= 150 to 300 kPa
- Time= 0.5, 1, 3, 6, 12 and 24 h

Ukwattage, NL, et al. "Steel-Making Slag for Mineral Sequestration of Carbon Dioxide by Accelerated Carbonation." Measurement, vol. 97, Published for IMEKO by the Institute of Measurement and Control,, 2017, pp. 15–22, https://doi.org/10.1016/j.measurement.2016.10.057.

- Material: steel slags
- P= 3-6 MPa
- Time= 48h
- L/S ratio = 0,25-3
- T=40°C
- Rotation = 60 rpm

Xuan, Dongxing, et al. "Development of a New Generation of Eco-Friendly Concrete Blocks by Accelerated Mineral Carbonation." Journal of Cleaner Production., vol. 133, Elsevier Science Ltd, 2016, pp. 1235–41, https://doi.org/10.1016/j.jclepro.2016.06.062.

Chang, E. E., et al. "Accelerated Carbonation Using Municipal Solid Waste Incinerator Bottom Ash and Cold-Rolling Wastewater: Performance Evaluation and Reaction Kinetics." Waste Management, vol. 43, Pergamon Press,, 2015, pp. 283– 92, https://doi.org/10.1016/j.wasman.2015.05.001.

- Material: Bottom ashes
- P= 1 atm
- Time= 120 min
- L/S ratio = 5, 10, 20, 40 mL/g
- T=25°C
- CO2 flowrate= 0,2; 0,5; 1; 1,5 L/min

Nam, Seong-Young, et al. "Accelerated Carbonation of Municipal Solid Waste Incineration Bottom Ash for CO 2 Sequestration." Geosystem Engineering, vol. 15, no. 4, 2012, pp. 305–11, https://doi.org/10.1080/12269328.2012.732319.

- Material: Bottom ashes
- P= 1 atm; conc of CO2 in N2 10-30%
- L/S ratio = 0,1-0,3
- T=20-40-60°C
- RH=75%

24

ANNEX VIII: Calcimetry results and CO₂ content calculations

In the following tables, the calculations to get the CO_2 content of the samples tested through calcimetry is presented. Starting from the sample mass tested (ca. 5g) and the volume of CO_2 obtained with reaction with HCl (in mL) it is possible to calculate the moles of CO_2 which spilled from the reactor and so the gCO_2/kg dw. The formula utilized to pass from volume to moles of carbon dioxide was the ideal gas law. For detailed process and calulations, see paragraph 2.2.4 and 2.2.5. Letters A, B, C, stand for the different granulometries: namely 0/6mm, 6/16mm, 16/31mm. Numbers 00, 02, 03 refer to the L/S applied. t0, 02, 04, 08 are related to the carbonation treatment duration. a, b, c are the letters related to the replicate samples (of 200g each) which have been carbonated. a1, a2, a3 are the calcimetry tests (executed in triplicate per each sample of carbonated material). Outliers have been removed.

Action Action Constraint A0000001 Cons	06-00	0 V(mL)		V (L)	n (mol)		m CO2	g)	1	mass TQ (g)	TS %	dry mass (g)	gCO2/g dw	CO2 [gCO2 kg-1 dw]
A000011 3.3.717980 00.449179 00.049015 0.00538256 5.3 86.0 4.742755 0.0130722 13.06 A000012 18.000102 0.0259457 0.0139724 0.0139724 0.0139724 0.0139724 0.0139724 0.0139724 0.0139724 0.0159747 5.55 6.60 4.92225671 0.0140124 17.21 A000102 0.0159749 0.00519749 0.00218377 0.007970455 5.09 6.66 4.9319029 0.00221837 0.00218377 0.002183779 0.0139728 0.0021844 0.00217342 2.228 A000002 25.368680 0.00318776 0.013191846 5.53 6.66 4.8119225 0.0271441 2.225 A000022 5.388680 0.00218277 0.00218277 0.0021827														
A000h02 18,0004023 0.0189942 0.00739429 0.012359472 6.11 6.60 5,2533985 0.0058123 6.19 A0001051 19,7985972 0.0137744 0.0135707 5.55 6.60 4,7275011 0.0148268 1436 A0001051 19,7985972 0.00518055 0.0157801 0.0180585 5.57 8.60 4,7275011 0.0148268 1436 A0001051 12,3288226 0.00759801 0.00518201 0.001482712 2.50 6.60 4,3184029 0.0127742 2.228 A000102 64,2280060 0.00248472 0.01148872 0.00148472 0.0111878 1.116 A000102 12,2868120 0.0028447 0.0118386 0.0227742 2.01011388 6.60 4,8112725 0.01111782 1.116 A0001021 5,72568610 0.00287775 0.0111878 5.61 8.60 4,8112725 0.0277481 7.2765 A000121 7,25686120 0.00287775 0.0111878 5.61 8.60 4,81127275 0.0277481 7.	A/00/t0a1	34,3717	9863	0,034371799	0,001404915		0,061	816256		5,5	86,08	4,734257625	0,013057223	13,06
AM00has 64.8441348 0.048844135 0.048944135 0.067944133 5.73 66.08 4.9222567 0.0738021 178.1 A/00/hbs 51.5072931 0.06157474 0.0579443 0.0579443 0.0579443 0.05294671 0.2524672 225.5 A/00/hbs 51.5072931 0.00159566 5.2 86.68 4.38301533 0.01574884 15.75 A/00/hbs 0.5222051 0.00188572 0.001797916 0.01317919 5.55 86.68 4.3834023 0.0227482 22.8 A/00/hbs 45.2266081 0.00188572 0.001317919 5.55 86.68 4.3134023 0.0227482 1.8.5 A/00/hbs 2.2364681 0.00255774 0.013013986 5.59 86.88 4.313423 0.02734634 22.765 A/00/hbs 2.3584585 0.00236172 0.00138719 5.59 86.88 4.3132729 0.2724634 22.765 A/00/hbs 2.3584585 0.00236172 0.00136177 0.01313486 5.59 86.88 4.3172729 0.2724634	A/00/t0a2	18,0904	2033	0,01809042	0,000739429		0,032	534872		6,11	86,08	5,259329835	0,006186125	6,19
A000001 4000002 39.398242 (5).9982430 003597845 00715/77/ (5).50 550 (5).608 66.08 4.7729331 001698683 4.58 A000002 51.3988828 0.037989833 0.0015674 0.0563222 5.60.8 4.33801533 0.01574884 15.75 A000002 52.20662 0.0552201 0.0184572 0.097064013 5.20 66.08 4.3834023 0.027774 2.28 A000002 52.20602 0.0552201 0.0118307 5.55 66.08 4.8172295 0.011157832 11.6 A000021 72.3556812 0.002957716 0.0130396 5.59 66.08 4.8172295 0.07746314 72.05 A000021 72.3516812 0.002957716 0.01411589 5.58 86.08 4.8172295 0.07746314 72.05 A000021 72.3516812 0.00731484 0.01411589 5.51 86.08 4.8172295 0.0276781 70.8 A000021 73.359450 0.00521347 0.01411589 5.51 86.08 4.81722975 0.0276781 2.276	A/00/t0a3	48,8441	3489	0,048844135	0,001996458		0,087	844153		5,73	86,08	4,932235671	0,01781021	17,81
A00002 61.507429 0.00254055 22.55 A/00002 32.507429 0.00254055 0.0053423 22.55 A/00002 54.71269 0.00212227 0.00632232 5.06 6.66 4.3380133 0.01574844 22.28 A/00002 45.2265028 0.04522631 0.0148572 0.06133779 5.15 66.06 4.3380133 0.022742 22.28 A/00002 25.4464735 0.05448473 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0344873 0.0348873 0.037481 27.05 0.02746314 27.05 A/000021 57.889460 0.0378845 0.0025487 0.0025487 0.00254873 0.02849739 0.0225478 0.00254873 0.0284973 0.0284973 0.0284973 0.0284973 0.02059735 0.02059735 0.02059735 0.02059735 0.02059735 0.02059735 0.02059735 0.02059735 0.02059735	A/00/t0b1	39,7989	2472	0,039798925	0,001626744		0,071	576717		5,55	86,08	4,777296331	0,014982683	14,98
A/Q/(bb) 27.989828 0.00155201 0.00155201 0.00157201 0.001574843 15.75 A/Q/(bb) 45.2260582 0.001584857 0.001848572 0.001848572 0.001848572 0.001848572 0.001848572 0.001848572 0.001848572 0.001848572 0.001848572 0.00118306 0.001117782 11.16 A/Q0/021 77.2845633 0.00255716 0.010118306 5.82 86.08 4.66339566 0.01115782 11.16 A/Q0/021 77.2845633 0.00255716 0.010111585 5.82 86.08 5.00770542 0.007046314 72.056 A/Q0/023 5527156 0.00228377 0.001113384 5.82 86.08 5.00770542 0.007045315 2.0208 A/Q0/023 55275846 0.00228377 0.00226347 0.0040137 0.041313435 5.8 86.08 4.84310966 0.00579531 2.0208 A/Q0/023 65.1255131 0.00261544 0.01172558 5.3 86.08 4.8410966 0.0055676 2.5.67 A/Q0/0261 72.352797840	A/00/t0b2	61,5074	2912	0,061507429	0,002514058		0,110	618563		5,7	86,08	4,906412448	0,022545712	22,55
A/00/002 \$4271260 0.00221837 0.02227734 22.28 A/00/002 452265080 0.04522051 0.001848572 0.0113779 5.15 86.08 4.8130229 0.02277342 11.6 A/00/002 452265080 0.04524051 0.0118086 0.05205794 5.42 86.08 4.0256668 0.01115782 11.16 A/00/021 72.858813 0.02255716 0.01015845 5.59 86.08 4.1172725 0.027046314 27.05 A/00/022 57.8589356 0.02255716 0.01411589 5.52 86.08 4.02073517 2.078 A/00/021 72.851831 0.002551716 0.0265573 86.08 4.82033507 0.02967918 2.29.70 A/00/022 65.153181 0.02651716 0.14135435 5.6 86.08 4.52102802 0.0576738 2.5,67 A/00/022 65.153181 0.02261741 0.14666049 5.58 86.08 4.8910942 0.25,677 A/00/022 65.155181 0.0225716 0.01061855 5.59 8	A/00/t0b3	37,9898	8269	0,037989883	0,001552801		0,06	832323		5,04	86,08	4,338301533	0,015748843	15,75
A/00/02 45,2269502 0.04522051 0.0018337179 5.15 86.08 4.43286685 0.01115782 11.16 A/00/021 72,3616812 0.02257716 0.05305794 5.42 86.08 4.65339596 0.01115782 11.16 A/00/022 57,388455 0.05285774 0.0111589 58.8 86.08 4.65339596 0.02175732 12.05 A/00/022 57,388455 0.05285774 0.00111589 58.8 86.08 4.4285386 0.00259731 20.25 A/00/021 72,3878456 0.0757840 0.00259744 0.0112538 5.5 86.08 4.4285386 0.02597312 20.58 A/00/025 65,1251818 0.065125513 0.00256194 0.1112538 5.5 86.08 4.4285386 0.02597386 25.67 A/00/025 65,1251818 0.065125731 0.00256194 0.1112538 5.8 86.08 4.4328685 0.0258678 2.749 A/00/0261 73,5876316 0.00235467 0.01313977 0.01313972 0.013552785 13.55	A/00/t0c1	54,2712	6099	0,054271261	0,002218287		0,097	604615		5,09	86,08	4,381340239	0,022277342	22,28
AM00/02 28.946723 0.02894473 0.01113806 0.05205794 5.42 86.0 4.66339569 0.01115782 11.16 A/00/02a1 72.3616412 0.072361641 0.02726172 0 0.10111599 5.52 86.08 4.66339569 0.02704614 22.055 A/00/02a1 52.883460 0.07893745 0.02704614 20.00781979 20.74 A/00/02b1 79.5978495 0.07959749 0.03253487 0 0.011175538 5.56 86.08 4.203307 0.022957251 20.75 A/00/02b1 79.5978495 0.003512513 0.00361273 0.011175538 5.5 86.08 4.803307 0.022957251 20.77 A/00/02b1 79.5978495 0.003512513 0.00351274 0.00351276 0.0361147 30.61 A/00/02c2 63.215313 0.00351726 0.0235467 0.01135576 20.72446588 27.45 A/00/02c3 32.557559 0.03256277 0.0133097 0.02284778 0.22447658 20.2244768 27.45 A/00/04c4 <td< td=""><td>A/00/t0c2</td><td>45,2260</td><td>5082</td><td>0,045226051</td><td>0,001848572</td><td></td><td>0,081</td><td>337179</td><td></td><td>5,15</td><td>86,08</td><td>4,432986685</td><td>0,018348167</td><td>18,35</td></td<>	A/00/t0c2	45,2260	5082	0,045226051	0,001848572		0,081	337179		5,15	86,08	4,432986685	0,018348167	18,35
A/00/02a1 72,36168132 0.072361681 0.020957716 0.130139486 5.59 96.08 4,811727295 0.027048314 27.05 A/00/02a1 57,8893450 0.057889346 0.02366172 0.10411158 5.82 86.08 5,009705342 0.027048314 20,78 A/00/02b1 79,59789450 0.0221827 0.097064615 5.51 86.08 4,27328536 0.022957351 20,27 A/00/02b1 79,59789450 0.05793746 0.03253447 0.1313153435 5.58 86.08 4,28033007 0.029971818 27,00 A/00/02b1 79,59789450 0.05512533 0.00261344 0.11712538 5.3 86.08 4,28033007 0.02997184 20,61 A/00/02c1 72,361631 0.07536161 0.0131039466 5.58 6.08 4,34999666 0.03610427 3.0,61 A/00/02c1 32,25627590 0.0235477 0.02514058 0.011061863 5.05 86.08 4,34990651 0.0254736 2.2,45 A/00/02c1 32,25627590 0.02352447 0.01	A/00/t0c3	28,9446	7253	0,028944673	0,001183086		0,052	055794		5,42	86,08	4,665395696	0,011157852	11,16
A/00/02a1 72,666132 007286181 007286181 007286181 007286181 007286181 007286181 007286181 007286181 007286181 007286181 007889345 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00027819395 00025851 0002957915 002286 A/00/02b1 75,55784455 0079579449 0003253487 0003253487 0.0141553435 5.6 86.08 4,829139636 0002957718 22,76 A/00/02b2 65,1255131 000255716 0.014966409 5.68 86.08 4,891196966 0.00510427 30,61 A/00/02c2 61,50742910 0.002514058 0.014919946 5.53 86.08 4,891196061 0.013552789 0.02785565 27,49 A/00/02c1 32,5627557 0.00130972 0.0013972 0.05856279 5.02 86.08 4,587926026 0.02765665 27,66 A/00/041 75,556398 0.00255487 0.01325487 0.12688599 5.33 86.08 4,592126690 0.03997575 <														
A/00/02a2 57.8894955 0.07894345 0.00236172 0.024111589 5.82 86.08 5.002705124 0.020781979 20.78 A/00/02a1 54.2712609 0.054271261 0.002367327 0.007604615 5.51 86.08 4.74265366 0.020579251 20.58 A/00/02b1 79.577449 0.003253447 0.141315435 5.6 86.08 4.74265366 0.020579251 20.58 A/00/02b1 65.1253113 0.002661744 0.11712538 5.3 86.08 4.5210200 0.02557356 25.57 A/00/02c1 72.36168132 0.002357716 0.01303468 5.5 86.08 4.734257625 0.02748489 27.49 A/00/02c2 61.50742912 0.002547716 0.01303972 0.005852769 0.0254775 0.02547785 0.254757 0.02547785 0.254757 0.0254778 0.254757 0.0254778 0.254757 0.025565 7.766 A/00/02c1 79.5578494 0.03253487 0.14135435 5.52 86.08 4.5273569 0.03086972 3.977 <	A/00/02a1	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,59	86,08	4,811727295	0,027046314	27,05
A/00/02a3 54,2722699 0.00257251 20,88 4/4286536 0.002579251 20,89 A/00/02b1 79,59784945 0.003253487 0.03253487 0.143153435 5,5 86,08 4,82035032 0.022657356 29,70 A/00/02b2 65,125513 0.063125513 0.002619341 0.01413153435 5,5 86,08 4,89196966 0.00610427 30,61 A/00/02b2 61,25513 0.06319745 0.0130139486 5,55 86,08 4,74257625 0.027484765 27,45 A/00/02c2 61,507423 0.002514058 0.0110161563 5,05 86,08 4,74257625 0.027484765 27,45 A/00/02c3 32,56275659 0.02284773 0.0110161563 5,05 86,08 4,597926025 0.02765655 27,66 a/2 79,59784945 0.07552498 0.00233487 0.14315435 5,52 86,08 4,6527873 0.02002531 28,09 a/2 79,59784945 0.079597849 0.00233487 0.14315435 5,52 86,08 4,6527873	A/00/02a2	57,8893	4505	0,057889345	0,002366172		0,104	111589		5,82	86,08	5,009705342	0,020781979	20,78
A/00/02b1 795978445 0,003253487 0,0143153435 5,6 86,08 4,20335037 0,02597818 2970 A/00/02b2 65,12551318 0,003612513 0,003401373 0,143155435 5,3 86,08 4,520326037 0,02567368 20,657 A/00/02c1 72,36168132 0,003401373 0,14366049 5,5 86,08 4,74257625 0,0274888 27,49 A/00/02c2 61,5074912 0,06125716 0,0130139486 5,5 86,08 4,346909274 0,025447636 25,45 A/00/02c3 32,5575659 0,02254758 0,00235347 0,058562769 5,02 86,08 4,321086051 0,013552769 13,355 A/00/02c3 32,5575659 0,002833773 0,028850769 5,32 86,08 4,58795026 0,02756505 2,766 A/00/041 7055263928 0,070552639 0,00283347 0,143153435 5,52 86,08 4,5235699 0,037549 2,869 3,979 A/00/041 79,5978445 0,07355487 0,043153435 5,52	A/00/02a3	54,2712	6099	0,054271261	0,002218287		0,097	604615		5,51	86,08	4,742865366	0,020579251	20,58
A/000/biz 65,1255131 0,002661944 0,117125538 5,3 86,08 4,562102802 0,025573586 25,67 A/000/bit 83,21933351 0,003401373 0,14966409 5,68 86,08 4,88919696 0,003610427 30,61 A/000/bit 72,3616813 0,072351681 0,00257716 0,013019486 5,55 86,08 4,346909274 0,02547638 27,49 A/000/bit 0,555 0,0255677 0,00310972 0,02586779 0,02547638 27,49 A/000/bit 0,5556329 0,02556779 0,00359789 0,00253773 0,01359789 0,03556779 0,01359789 0,02586779 0,01359789 0,02756505 27,66 a 79,597849 0,003253487 0,14315435 5,92 86,08 5,9978273 0,02809231 28,09 a 79,597849 0,003253487 0,14315435 5,92 86,08 5,99782755 0,02780563172 0,02809231 28,09 b 72,366813 0,07957849 0,003253487 0,01313486 5,51 <t< td=""><td>A/00/02b1</td><td>79,5978</td><td>4945</td><td>0,079597849</td><td>0,003253487</td><td></td><td>0,143</td><td>153435</td><td></td><td>5,6</td><td>86,08</td><td>4,820335037</td><td>0,029697818</td><td>29,70</td></t<>	A/00/02b1	79,5978	4945	0,079597849	0,003253487		0,143	153435		5,6	86,08	4,820335037	0,029697818	29,70
A/00/02b3 83,21593351 0,0030401373 0,014660409 5,68 66,08 4,89196966 0,030610472 30,61 A/00/02c1 72,3616812 0,072361681 0,002957716 0,113013946 5,55 86,08 4,74257625 25,45 A/00/02c2 61,5074291 0,02514058 0,0130972 0,055862769 5,02 86,08 4,321086051 0,01355778 13,55 A/00/04a1 70,55263328 0,07552639 0,00233487 0,126885999 5,33 86,08 4,587926026 0,027656505 27,56 a2 79,59784945 0,079597849 0,00233487 0,143153435 5,37 86,08 4,62235699 0,03069723 30,97 A/00/04b1 79,59784945 0,079597849 0,003253487 0,143153435 5,37 86,08 4,6235699 0,030969723 30,97 A/00/04b1 79,59784945 0,079597849 0,003253487 0,143153435 5,592 86,08 5,09782755 0,020969731 28,09 b2 5,06537062 0,05563170 0,00253487 0,00253487 0,020957716 0,1310139486 5,41 86,08	A/00/02b2	65,1255	1318	0,065125513	0,002661944		0,117	125538		5,3	86,08	4,562102802	0,025673586	25,67
A/00/02c1 72,3616812 0.072361681 0.002957716 0.10103986 5,5 86,08 4,74257625 0.02748893 27,49 A/00/02c2 61,50742912 0.061507429 0.002514058 0.010618563 5,05 86,08 4,346909274 0.02544758 25,45 A/00/02c3 32,56275659 0.02254757 0.001330972 0.10618563 5,02 86,08 4,321086031 0.02548758 13,55 A/00/04a1 70,5526392 0.00253487 0.126885999 5,33 86,08 4,52108051 0.027685052 27,66 a2 79,59784945 0.079597849 0.002353487 0.143153435 5,327 86,08 4,62235699 0.030969792 30,97 A/00/04b1 79,59784945 0.079597849 0.003253487 0.143153435 5,522 86,08 4,50231755 0.022082531 28,09 b2 50,5331769 0.002554716 0.143153435 5,522 86,08 4,5031755 0.02296513 28,09 b3 72,3616812 0.072561681 0.002957716	A/00/02b3	83,2159	3351	0,083215934	0,003401373		0,149	660409		5,68	86,08	4,889196966	0,030610427	30,61
A/00/02c2 61,50742912 0,002514058 0,00254058 0,015618633 5,05 86,08 4,346909274 0,025447636 25,45 A/00/02c3 32,527569 0,00330972 0,01330972 0,01350729 0,01350729 13,55 A/00/04a1 70,5526392 0,07552639 0,00253487 0,025643763 0,22647636 27,66 a2 79,5978495 0,07957849 0,00253487 0,0143153435 5,52 86,08 4,587926026 0,027656505 27,66 a3 79,5978495 0,079597849 0,00253487 0,143153435 5,52 86,08 4,62235699 0,33 86,08 4,62235699 0,302802531 28,09 a3 79,5978495 0,079597849 0,00253487 0,0143153435 5,52 86,08 4,6233669 0,030809271 0,020802531 28,09 b12 50,65317692 0,05653177 0,002070401 0,01319486 5,54 86,08 4,80311954 0,013896349 18,97 b13 72,36168132 0,072561681 0,00255716 0,130139486 5,54 86,08 5,0137695 0,02796191 27,79	A/00/02c1	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,5	86,08	4,734257625	0,02748889	27,49
A/00/023 32,56275659 0,03252757 0,001330972 0,055862769 5.02 86,08 4,321086051 0,013552789 13,55 A/00/04a1 70,55263928 0,07552639 0,00253487 0 0,126885999 5.33 86,08 4,587926026 0,027556505 27,66 a2 79,59784945 0,079597849 0,003253487 0 0,143153435 5,92 86,08 4,62235699 0,030969723 28,09 a3 79,59784945 0,079597849 0,003253487 0 0,143153435 5,92 86,08 4,62235699 0,030969723 28,09 b2 50,65317662 0,003253487 0 0,143153435 5,92 86,08 5,9028953 0,20896349 18,97 b3 72,3616812 0,07257716 0 0,1310139486 5,44 86,08 4,50487955 0,02796191 27,795 c4 0,1310139486 5,44 86,08 4,51247309 0,0317742 30,18 c5 4,000/04c1 39,79892472 0,073978494 <th< td=""><td>A/00/02c2</td><td>61,5074</td><td>2912</td><td>0,061507429</td><td>0,002514058</td><td></td><td>0,110</td><td>618563</td><td></td><td>5,05</td><td>86,08</td><td>4,346909274</td><td>0,025447636</td><td>25,45</td></th<>	A/00/02c2	61,5074	2912	0,061507429	0,002514058		0,110	618563		5,05	86,08	4,346909274	0,025447636	25,45
A/00/04a1 70.55263928 0.070552639 0.002883773 0.0126885999 5.33 86.08 4.587926026 0.02765505 27.66 a2 79.59784945 0.079597849 0.003253487 0.143153435 5.52 86.08 5.095782753 0.022082531 28.09 a3 79.59784945 0.079597849 0.003253487 0.143153435 5.37 86.08 4.62235699 0.03096792 30.97 A/00/04b1 79.59784945 0.079597849 0.003253487 0.143153435 5.32 86.08 5.095782753 0.020052531 28.09 b2 55.0531702 0.0030253487 0.143153435 5.32 86.08 5.05782753 0.02095251 28.09 b2 55.05317027 0.00270401 0.09109764 5.58 86.08 4.656787955 0.027946191 27.95 A/00/04c1 39.79892472 0.093998925 0.01626744 0.07157617 6.03 86.08 5,190467905 0.013790022 13.79 c2 72.26168132 0.072561681 0.002957716	A/00/02c3	32,5627	5659	0,032562757	0,001330972		0,058	562769		5,02	86,08	4,321086051	0,013552789	13,55
A/00/04a1 70,5526392 0,0705526392 0,022683773 0 0,12688999 5,33 86,08 4,87926026 0,027656030 27,66 a2 79,59784945 0,07957849 0,003253487 0 0,143153435 5,32 86,08 5,95782733 0,02802531 28,09 a3 79,59784945 0,079597849 0,003253487 0.143153435 5,32 86,08 5,95782733 0,02802531 28,09 b2 50,65317692 0,003053177 0,002070401 0.0143133435 5,52 86,08 4,903119554 0,018966349 18,97 b3 72,3616812 0,072561681 0,002957716 0,0130139466 5,44 86,08 4,682611178 0,01399002 13,79 c2 72,3616812 0,072561681 0,002957716 0,130139486 5,44 86,08 4,82611178 0,02792076 2,7,79 c3 72,36168132 0,072561681 0,002957716 0,130139486 5,04 4,812478309 0,03017742 30,18														
a2 79,5978445 0,07957784 0,0220323487 0,143153435 5,92 86,08 5,095782733 0,022002531 28,09 a3 79,59784495 0,079597849 0,003253487 0,143153435 5,32 86,08 4,6223569 0,030969792 0,03096792 0,0399672 0,01896349 18,97 b3 72,3616812 0,072561681 0,00255716 0,013193486 5,44 86,08 4,86211178 0,01379032 13,79 c2 72,3616812 0,072561681 0,00257716 0,130139486 5,04 86,08 4,312478309 0,03017742 30,18	A/00/04a1	70,5526	3928	0,070552639	0,002883773		0,126	885999		5,33	86,08	4,587926026	0,027656505	27,66
a3 79,59784945 0,079577849 0,003253487 0,143153435 5,37 86,08 4,62235693 0,039969723 30,97 A/00/04b1 79,59784945 0,079577849 0,003253487 0,143153435 5,92 86,08 5,095782153 0,028095712 30,97 b2 50,65317662 0,050565177 0,00270401 0,09109764 5,58 86,08 4,62735695 0,02896349 128,97 b3 72,3616812 0,072361681 0,00257716 0,1310139486 5,41 86,08 5,90467905 0,013790322 13,79 c1 72,3616812 0,072561461 0,07157617 6,03 86,08 4,682611178 0,027946191 27,79 c1 72,3616812 0,07256716 0,130139486 5,041 86,08 4,682611178 0,0279174 30,18 c1 72,3616812 0,07256716 0,130139486 5,011 86,08 4,682611178 0,0279174 30,18 c1 72,3616812 0,0725716 0,130139486 5,01 86,08 4	a2	79,5978	4945	0,079597849	0,003253487		0,143	153435		5,92	86,08	5,095782753	0,028092531	28,09
A/00/04b1 79,5978494 0,079597849 0,003253487 0,013153435 5,92 86,08 5,095782753 0,028092531 28,09 b2 50,6531762 0,0030070401 0,09199764 5,58 86,08 4,03115555 0,012896319 1,03297041 18,97 b3 72,36168132 0,072361681 0,00295716 0,130139486 5,44 86,08 4,519967905 0,01279419012 27,95 A/00/04c1 39,79892472 0,00295716 0,00295716 0,0130139486 5,44 86,08 4,682611178 0,02792076 27,79 c1 72,36168132 0,072361681 0,002957716 0,130139486 5,44 86,08 4,682611178 0,02792076 27,79 c1 72,36168132 0,072576181 0,00253487 0,130139486 5,49 86,08 4,72564984 0,030177424 30,18 A/00/08a1 79,59784945 0,072561681 0,00253487 0,143153435 5,49 86,08 4,72564984 0,030177424 30,18 a2 72,36168132	a3	79,5978	4945	0,079597849	0,003253487		0,143	153435		5,37	86,08	4,62235699	0,030969792	30,97
b2 50,6531762 0,00207401 0,00207401 0,00199764 5.58 86,08 4,00119564 0,01896619 18,97 b3 72,3616812 0,072361681 0,002957716 0,13013946 5.41 86,08 4,565787955 0,02796191 27,95 c2 72,3616812 0,072361681 0,002957716 0,0139139486 5,44 86,08 4,582611178 0,02792076 27,79 c3 72,36168132 0,072361681 0,002957716 0,0130139486 5,04 86,08 4,822611178 0,02792076 27,79 c3 72,36168132 0,07257161 0,002957716 0,130139486 5,04 86,08 4,725649884 0,030177424 30,18	A/00/04b1	79,5978	4945	0,079597849	0,003253487		0,143	153435		5,92	86,08	5,095782753	0,028092531	28,09
b3 72,3616812 0,072361681 0,002957716 0,10139486 5,41 86,08 4,565787955 0,02796191 27,95 A/00/04c1 39,79892 472 0,03799825 0,00126744 0,071576717 6,03 86,08 5,190467905 0,013790322 13,77 c2 72,36168122 0,072361681 0,002957716 0,130139486 5,04 86,08 4,82611178 0,02796717 0,1317 c3 72,36168122 0,072361681 0,002957716 0,130139486 5,01 86,08 4,312478309 0,03017742 30,18	b2	50,6531	7692	0,050653177	0,002070401		0,09	109764		5,58	86,08	4,803119554	0,018966349	18,97
A/00/04c1 39.79892472 0.093798925 0.001267044 0.0715717 6.03 86.08 5.190467905 0.013790027 13.79 c2 72.36168132 0.072561681 0.002957716 0.130139486 5.44 86.08 4,86261118 0.027792076 27,79 c3 72.36168132 0.072561681 0.00255716 0.143153435 5.49 86.08 4,725649884 0.030172425 30,29 A/00/08a1 79.5978495 0.07255716 0.143153435 5.49 86.08 4,725649884 0.030227857 30,29 a2 72.36168132 0.07255716 0.143153435 5.49 86.08 4,725649884 0.030222857 30,29 a3 86.83401758 0.06884018 0.0025895716 0.156167383 5.65 86.08 4,863373742 0.03210916 32,11 A/00/08b1 10.49244379 0.004288688 0.00288684 0.186702255 6.07 86.08 5.2489887 0.0311916 32,11 b2 57.8834565 0.002866172 0.186702255	b3	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,41	86,08	4,656787955	0,027946191	27,95
c2 72,3616813 0,002957716 0,002957716 0,002957716 27,79 c3 72,3616812 0,002957716 0,002957716 0,130139486 5,04 86,08 4,682611178 0,0227792076 27,79 c4 72,3616812 0,002957716 0,002957716 0,130139486 5,04 86,08 4,725649884 0,030177424 30,18 a2 72,3616812 0,07251681 0,002957716 0,130139486 5,09 86,08 4,725649884 0,030292857 30,29 a3 86,83401758 0,06834018 0,003549259 0,130139486 5,09 86,08 4,81340239 0,029703123 29,70 a3 86,83401758 0,06834018 0,00349259 0,156167383 5,65 86,08 4,86331742 0,032110916 32,11 A/00/08b1 104,9244379 0,10424438 0,04288688 0,188702255 6,07 86,08 4,86433132 0,032179158 23,22 b2 57,88934505 0,0256172 0,01411589 5,21 86,08 4,86433132 0,032179158 23,22	A/00/04c1	39,7989	2472	0,039798925	0,001626744		0,071	576717		6,03	86,08	5,190467905	0,013790032	13,79
C3 72,36168132 0,0723761681 0,002957716 0,002957716 0,002957716 0,002177424 30,18 A/00/08a1 79,59784945 0,079577849 0,00253487 0,0130139486 5,04 86,08 4,725649884 0,030177424 30,18 a2 72,36168132 0,072361681 0,002957716 0,0130139486 5,09 86,08 4,8134029 0,0292857 30,29 a3 86,83401758 0,06834018 0,00349255 0,156167383 5,65 86,08 4,8633742 0,032110916 32,11 A/00/08b1 104,9244379 0,0424868 0,0428688 0,18670255 6,07 86,08 5,22489807 0,03511916 32,12 b2 57,88934505 002766172 0,01411589 5,21 86,08 4,84633132 0,03211916 23,22	c2	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,44	86,08	4,682611178	0,027792076	27,79
A/00/08a1 79,59784945 0,07597849 0,003253487 0,143153435 5,49 86,08 4,725649884 0,030292857 30,29 a2 72,36168132 0,072561681 0,00255716 0,130139486 5,09 86,08 4,81340239 0,029703123 29,70 a3 86,83401758 0,08634018 0,003549259 0,156167383 5,65 86,08 4,86337342 0,032110916 32,11 A/00(08b1 10,49244379 0,049248688 0,188702255 6,07 86,08 5,22489867 0,03511956 36,12 b2 57,88934505 0,0256172 0,10111589 5,21 86,08 4,86433132 0,02311516 23,22	c3	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,01	86,08	4,312478309	0,030177424	30,18
A/00/08a1 79,5978494 0,079597849 0,003253487 0,013153435 5,49 86,08 4,72564984 0,030292857 30,29 a2 72,3616812 0,07251681 0,00257716 0,003549259 0,013153435 5,09 86,08 4,81340239 0,029703123 29,70 a3 86,8401758 0,0834018 0,003549259 0,1561733 5,65 86,08 4,86337374 0,03211016 32,11 A/00/08b1 104,9244379 0,0424888 0,0428688 0,188702255 6,67 86,08 5,22489847 0,03611596 32,12 b2 57,88934505 0.003549259 0,023486172 0,104111589 5,21 86,08 4,8643132 0,03211518 23,22														
a2 72,36168132 0,072361681 0,002957716 0,0130139486 5,09 86,08 4,881340239 0,029703123 29,70 a3 86,83401758 0,06834018 0,003549259 0,156167333 5,65 86,08 4,86337342 0,0211016 32,11 A/00/08b1 104,9244379 0,04248688 0,0428688 0,188702255 6,07 86,08 5,22489807 0,03611596 32,12 b2 57,88934505 0027566172 0,104111589 5,21 86,08 4,8433132 0,03215185 23,22	A/00/08a1	79,5978	4945	0,079597849	0,003253487		0,143	153435		5,49	86,08	4,725649884	0,030292857	30,29
a3 66,8340178 0,06834018 0,003549259 0,15617383 5,65 86,08 4,86337342 0,03211016 32,11 A/00/08b1 104,9244379 0,0424638 0.0428688 0.188702255 6,07 86,08 5,22489887 0,03611056 32,11 b2 57,88934505 0.0578593545 0.0226172 0.104111589 5,21 86,08 4,8463132 0,0231518 23,22	a2	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,09	86,08	4,381340239	0,029703123	29,70
A/00/08b1 104,9244379 0,104924438 0,004288688 0,188702255 6,07 86,08 5,22489887 0,036115963 36,12 b2 57,88934505 0.0578893450 0.002366172 0.104111589 5,21 86,08 4,494633132 0.023215185 23,22	a3	86,8340	1758	0,086834018	0,003549259		0,156	167383		5,65	86,08	4,863373742	0,032110916	32,11
b2 57.88934505 0.057889345 0.002366172 0.104111589 5.21 86.08 4.484633137 0.023215185 23.22	A/00/08b1	104,924	4379	0,104924438	0,004288688		0,188	702255		6,07	86,08	5,22489887	0,036115963	36,12
	b2	57,8893	4505	0,057889345	0,002366172		0,104	111589		5,21	86,08	4,484633132	0,023215185	23,22
b3 86,83401758 0,086834018 0,003549259 0,156167383 5,57 86,08 4,794511813 0,032572114 32,57	b3	86,8340	1758	0,086834018	0,003549259		0,156	167383		5,57	86,08	4,794511813	0,032572114	32,57
A/00/08c1 72,36168132 0,072361681 0,002957716 0,130139486 5,99 86,08 5,156036941 0,025240216 25,24	A/00/08c1	72,3616	8132	0,072361681	0,002957716		0,130	139486		5,99	86,08	5,156036941	0,025240216	25,24
c2 68,7435972 0,00280983 0,123632512 5,4 86,08 4,648180214 0,026598046 26,60	c2	68,7435	9725	0,068743597	0,00280983		0,12	632512		5,4	86,08	4,648180214	0,026598046	26,60
c3 81,40689148 0,081406891 0,00332743 0,146406922 5,39 86,08 4,639572473 0,031556124 31,56	c3	81,4068	9148	0,081406891	0,00332743		0,146	406922		5,39	86,08	4,639572473	0,031556124	31,56

Calcimetry tests and results for 0/6 mm, L/S=0.0 L/kg, t=0 to 8h.

6-02								massa TQ (g)				
A/02/t0a1	41,60	796676	0,041607967	0,001700686			0,074830205	5,04	71,9197471	3,624755255	0,020644209	20,64
a2	37,98	988269	0,037989883	0,001552801			0,06832323	5,16	71,9197471	3,711058952	0,01841071	18,41
a3	43,41	700879	0,043417009	0,001774629			0,078083692	5,32	71,9197471	3,826130547	0,020408005	20,41
A/02/t0b1	45,22	605082	0,045226051	0,001848572		 	0,081337179	5,77	71,9197471	4,149769409	0,019600409	19,60
b2	39,79	892472	0,039798925	0,001626744			0,071576717	5,94	71,9197471	4,27203298	0,01675472	16,75
b3	1,809	042033	0,001809042	7,39429E-05		 	0,003253487	5,12	71,9197471	3,682291053	0,00088355	
A/02/t0c1	45,22	605082	0,045226051	0,001848572			0,081337179	5,27	71,9197471	3,790170674	0,021460031	21,46
c2	28,94	467253	0,028944673	0,001183086			0,052055794	5,89	71,9197471	4,236073106	0,012288691	12,29
c3	50,65	317692	0,050653177	0,002070401			0,09109764	5,57	71,9197471	4,005929915	0,022740697	22,74
A/02/02a1	56,08	030302	0,056080303	0,00229223			0,100858102	5,39	71,9197471	3,87647437	0,026017998	26,02
a2	52,46	221895	0,052462219	0,002144344			0,094351128	5,27	71,9197471	3,790170674	0,024893636	24,89
a3	54,27	126099	0,054271261	0,002218287			0,097604615	6,06	71,9197471	4,358336676	0,022394923	22,39
A/02/02b1	52,46	221895	0,052462219	0,002144344			0,094351128	5,36	71,9197471	3,854898446	0,024475645	24,48
b2	63,31	647115	0,063316471	0,002588001			0,11387205	6,32	71,9197471	4,545328019	0,025052548	25,05
b3	57,88	934505	0,057889345	0,002366172			0,104111589	6,36	71,9197471	4,574095918	0,022761129	22,76
A/02/02c1	14,47	233626	0,014472336	0,000591543			0,026027897	5,94	71,9197471	4,27203298	0,006092626	
c2	68,74	359725	0,068743597	0,00280983			0,123632512	5,71	71,9197471	4,106617561	0,030105679	30,11
c3	54,27	126099	0,054271261	0,002218287			0,097604615	5,41	71,9197471	3,89085832	0,025085625	25,09
A/02/04a1	50,65	317692	0,050653177	0,002070401			0,09109764	5,7	71,9197471	4,099425586	0,02222205	22,22
a2	47,03	509286	0,047035093	0,001922515			0,084590666	6,01	71,9197471	4,322376803	0,019570405	19,57
a3	47,03	509286	0,047035093	0,001922515			0,084590666	5	71,9197471	3,595987357	0,023523627	23,52
A/02/04b1	48,84	413489	0,048844135	0,001996458			0,087844153	5,47	71,9197471	3,934010168	0,022329417	22,33
b2	50,65	317692	0,050653177	0,002070401			0,09109764	6,5	71,9197471	4,674783564	0,019487028	19,49
b3	52,46	221895	0,052462219	0,002144344			0,094351128	5,87	71,9197471	4,221689157	0,022349141	22,35
A/02/04c1	39,79	892472	0,039798925	0,001626744			0,071576717	5,23	71,9197471	3,761402775	0,019029262	19,03
c2	41,60	796676	0,041607967	0,001700686			0,074830205	5,52	71,9197471	3,969970042	0,01884906	18,85
c3	25,32	658846	0,025326588	0,0010352			0,04554882	5,17	71,9197471	3,718250927	0,012250066	12,25
A/02/08a1	47,03	509286	0,047035093	0,001922515			0,084590666	5,41	71,9197471	3,89085832	0,021740875	21,74
a2	37,98	988269	0,037989883	0,001552801			0,06832323	5,55	71,9197471	3,991545966	0,017116984	17,12
a3	50,65	317692	0,050653177	0,002070401			0,09109764	5,38	71,9197471	3,869282396	0,023543808	23,54
A/02/08b1	66,93	455522	0,066934555	0,002735887			0,120379025	5,95	71,9197471	4,279224954	0,028131034	28,13
b2	50,65	317692	0,050653177	0,002070401			0,09109764	6,13	71,9197471	4,408680499	0,020663244	20,66
b3	43,41	700879	0,043417009	0,001774629			0,078083692	5,6	71,9197471	4,027505839	0,019387605	19,39
A/02/08c1	52,46	221895	0,052462219	0,002144344			0,094351128	5,29	71,9197471	3,804554623	0,02479952	24,80
c2	52,46	221895	0,052462219	0,002144344			0,094351128	5,16	71,9197471	3,711058952	0,025424314	25,42
c3	56,08	030302	0,056080303	0,00229223			0,100858102	6,22	71,9197471	4,473408272	0,022546143	22,55

Calcimetry tests and results for 0/6 mm, L/S=0.2 L/kg, t=0 to 8h.

Calcimetry tests and results for 0/6 mm, L/S=0.3 L/kg, t=0 to 8h.

06.02							matta TO (a)				
00-05	<u> </u>			 			1110350 1Q (6)				
A/03/t0a1	27,13563049	0.02713563	0.001109143		0.048802	807	5.04	75.50	3.804954413	0.01282599	12.83
a2	34,37179863	0.034371799	0.001404915		0.061816	256	5.7	75.50	4.303222253	0.014365109	14.37
a3	32,56275659	0.032562757	0.001330972		0.058562	769	5.02	75.50	3,789855388	0.015452508	15.45
A/03/t0b1	43.41700879	0.043417009	0.001774629		0.07808	592	6.37	75.50	4.809039605	0.016236858	16.24
b2	41.60796676	0.041607967	0.001700686		0.074830	205	5.51	75.50	4.159781511	0.017988975	17.99
b3	47.03509286	0.047035093	0.001922515		0.084590	66	6.75	75.50	5.095921089	0.016599681	16.60
A/03/t0c1	36,18084066	0,036180841	0,001478858		0,065069	43	5,3	75,50	4,001241744	0,016262387	16,26
c2	27,13563049	0,02713563	0,001109143		0,048802	807	5,7	75,50	4,303222253	0,011340875	11,34
c3	37,98988269	0,037989883	0,001552801		0,06832	323	5,27	75,50	3,978593206	0,017172711	17,17
A/03/02a1	43,41700879	0,043417009	0,001774629		0,078083	i92	6,22	75,50	4,695796914	0,016628422	16,63
a2	47,03509286	0,047035093	0,001922515		0,084590	666	6,09	75,50	4,597653249	0,018398662	18,40
a3	50,65317692	0,050653177	0,002070401		0,09109	764	5,64	75,50	4,257925176	0,021394843	21,39
A/03/02b1	52,46221895	0,052462219	0,002144344		0,094351	128	5,5	75,50	4,152231998	0,02272299	22,72
b2	48,84413489	0,048844135	0,001996458		0,087844	153	6,23	75,50	4,703346427	0,018676947	18,68
b3	19,89946236	0,019899462	0,000813372		0,035788	359	6,55	75,50	4,944930834	0,007237383	
A/03/02c1	39,79892472	0,039798925	0,001626744		0,071576	17	5,89	75,50	4,446662995	0,016096726	16,10
c2	47,03509286	0,047035093	0,001922515		0,084590	666	5,54	75,50	4,182430049	0,020225243	20,23
c3	48,84413489	0,048844135	0,001996458		0,087844	153	5,52	75,50	4,167331024	0,021079236	21,08
		-									
A/03/04a1	52,46221895	0,052462219	0,002144344		0,094353	128	6,56	75,50	4,952480347	0,019051288	19,05
a2	45,22605082	0,045226051	0,001848572		0,081337	179	5,32	75,50	4,016340769	0,020251563	20,25
a3	45,22605082	0,045226051	0,001848572		0,081337	179	6,36	75,50	4,801490093	0,016939987	16,94
A/03/04b1	43,41700879	0,043417009	0,001774629		0,078083	592	5,32	75,50	4,016340769	0,019441501	19,44
b2	28,94467253	0,028944673	0,001183086		0,052055	94	5,19	75,50	3,918197104	0,01328565	13,29
b3	39,79892472	0,039798925	0,001626744		0,071576	17	6,1	75,50	4,605202762	0,015542577	15,54
A/03/04c1	56,08030302	0,056080303	0,00229223		0,100858	102	7,04	75,50	5,314856958	0,018976635	18,98
c2	27,13563049	0,02713563	0,001109143		0,048802	807	6,44	75,50	4,861886194	0,010037731	10,04
c3	39,79892472	0,039798925	0,001626744		0,071576	717	5,28	75,50	3,986142718	0,017956386	17,96
		-									
A/03/08a1	36,18084066	0,036180841	0,001478858		0,065069	743	5,19	75,50	3,918197104	0,016607062	16,61
a2	48,84413489	0,048844135	0,001996458		0,087844	153	6,23	75,50	4,703346427	0,018676947	18,68
a3	61,50742912	0,061507429	0,002514058		0,110618	63	6,12	75,50	4,620301787	0,023941848	23,94
A/03/08b1	48,84413489	0,048844135	0,001996458		0,087844	153	5,58	75,50	4,2126281	0,020852577	20,85
b2	59,69838709	0,059698387	0,002440115		0,107365	076	6,33	75,50	4,778841554	0,022466758	22,47
b3	48,84413489	0,048844135	0,001996458		0,087844	153	5,86	75,50	4,424014456	0,019856208	19,86
A/03/08c1	43,41700879	0,043417009	0,001774629		0,07808	592	5,84	75,50	4,408915431	0,017710408	17,71
c2	43,41700879	0,043417009	0,001774629		0,078083	592	5,17	75,50	3,903098078	0,020005567	20,01
c3	37,98988269	0,037989883	0,001552801		0,06832	323	5,73	75,50	4,325870791	0,015794099	15,79

C/4 C 00								. (-)				
6/16-00							massa it	1 (g)				
D/00/40-4	20.04467252	0.000044670	0.004403005		 0.05	000000		5.40	00.63	5 4 4 00 3 00 3 3	0.04.04.00073	40.47
B/00/1041	28,94487233	0,028944873	0,001183086		 0,03	4930305		5,19	96,05	5,118929932	0,010169273	10,17
32	41,60/966/6	0.042844125	0,001006458		 0,07	4830205		5 27	98,63	5 206465074	0.01658542	12,36
d5	46,64413469	0,048844133	0,001998438		 0,08	044135		3,37	96,05	3,298463074	0,01638343	16,39
6/00/1001	77,78800742	0,077788807	0,003179344		 0,13	455 4000		6,05	96,05	5,551549887	0,010397932	18,40
b2	25,52058840	0,025320588	0,0010352	 	 0,0	4554662		5.06	98,05	5,009014015	0,003334071	7.75
B/00/t0c1	65 12551318	0.065125513	0.002661944	 	 0,0	7125538		6.06	98.63	5 977016453	0,007748525	19.60
c7	5.427126099	0.005427126	0.00022001544		 0,00	9760461		5.05	98,63	4 980847044	0.001959599	196
62	50 65317697	0.050653177	0.002020401		 0,00	9109764		6.5	98,63	6 410991244	0.014209603	14.71
	30,03311032	0,000000000	0,002070402		0,0	105704		5,0	50,05	0,410551244	0,014205005	17,21
B/00/02a1	41.60796676	0.041607967	0.001700686		0.07	4830205		5.36	98.63	5,286602011	0.014154688	14.15
2a2	34.37179863	0.034371799	0.001404915		0.06	1816256		6.12	98.63	6.036194833	0.010240931	10.24
2a3	32,56275659	0.032562757	0.001330972		0.05	8562769		5.79	98.63	5,710713739	0.010254895	10.25
B/00/02b1	37 98988269	0.037989883	0.001552801		0.0	5832323		6.4	98.63	6.31236061	0.010823721	10.82
b2	18.09042033	0.01809042	0.000739429		0.03	2534872		5.48	98.63	5,404958772	0.006019449	6.02
b3	25.32658846	0.025326588	0.0010352		0.0	4554882		5.2	98.63	5.128792996	0.008881002	8.88
B/00/02c1	34,37179863	0.034371799	0.001404915		0.06	1816256		6.88	98.63	6.785787656	0.009109666	9.11
c2	25,32658846	0,025326588	0,0010352		0,0	4554882		5,36	98,63	5,286602011	0,008615897	8,62
c3	23,51754643	0,023517546	0,000961258		0,04	2295333		5,41	98,63	5,335917328	0,007926535	7,93
B/00/04a1	36,18084066	0,036180841	0,001478858		0,06	5069743		5,64	98,63	5,562767787	0,011697368	11,70
a2	37,98988269	0,037989883	0,001552801		0,0	5832323		5,15	98,63	5,079477678	0,013450838	13,45
a3	45,22605082	0,045226051	0,001848572		0,08	1337179		6,12	98,63	6,036194833	0,013474909	13,47
B/00/04b1	34,37179863	0,034371799	0,001404915		0,06	1816256		5,34	98,63	5,266875884	0,011736798	11,74
b2	54,27126099	0,054271261	0,002218287		0,09	7604615		5,55	98,63	5,474000216	0,017830583	
b3	32,56275659	0,032562757	0,001330972		0,05	8562769		5,3	98,63	5,22742363	0,011202989	11,20
B/00/04c1	39,79892472	0,039798925	0,001626744		0,07	1576717		5,36	98,63	5,286602011	0,013539267	13,54
c2	37,98988269	0,037989883	0,001552801		0,0	6832323		6,03	98,63	5,947427262	0,011487863	11,49
c3	37,98988269	0,037989883	0,001552801		0,0	6832323		4,95	98,63	4,882216409	0,013994306	13,99
B/00/08a1	52,46221895	0,052462219	0,002144344		0,09	4351128		6,62	98,63	6,529348006	0,014450314	14,45
a2	36,18084066	0,036180841	0,001478858		0,06	5069743		5,68	98,63	5,602220041	0,011614992	11,61
a3	34,37179863	0,034371799	0,001404915		0,06	1816256		5,42	98,63	5,345780392	0,011563561	11,56
B/00/08b1	32,56275659	0,032562757	0,001330972		0,05	8562769		5,27	98,63	5,19783444	0,011266763	11,27
b2	45,22605082	0,045226051	0,001848572		0,08	1337179		5,34	98,63	5,266875884	0,015443155	15,44
b3	47,03509286	0,047035093	0,001922515		0,08	4590666		5,76	98,63	5,681124549	0,014889775	14,89
B/00/08c1	54,27126099	0,054271261	0,002218287		0,09	7604615		5,85	98,63	5,76989212	0,016916194	16,92
c2	41,60796676	0,041607967	0,001700686		0,07	4830205		5,56	98,63	5,48386328	0,013645527	13,65
c3	41,60796676	0,041607967	0,001700686		0,07	4830205		5,32	98,63	5,247149757	0,014261115	14,26

Calcimetry tests and results for 6/16 mm, L/S=0.0 L/kg, t=0 to 8h.

Calcimetry tests and results for 6/16 mm, L/S=0.2 L/kg, t=0 to 8h.

6/16 02							massa TO (a)				
6/18-02							massa i Q (g)				
B/02/H0+1	45 22605092	0.045226051	0.001949572		0	091227170	5.26	91.10	4 702010060	0.016972499	16.07
32	10 90046726	0.019899462	0,001848572		 0,	025799250	5,20	91,10	5 1 200006 25	0,010973435	6.09
33	32 56275659	0.032562757	0,000813372		0,	058562769	5,05	91 10	5,010656916	0.011687643	0,58
B/03/t0b1	10 90046226	0.019999462	0.000912272		0,	025799250	5.42	91.10	4 946994910	0.007224524	7.72
b/01/001	19 89946236	0.019899462	0.000813372		0,	035788359	5,45	91 10	5,019767201	0.007129486	7,13
62	21 70950420	0,013833402	0,000813372		 0,	020041946	5,51	91,10	5 256624610	0,007123480	7,13
B/02/t0c1	5 427126099	0.005427126	0.000221829		0,	009760461	5 79	91 10	4 819340924	0.002025269	2.03
c2	27 13563049	0.02713563	0.001109143			048802307	5 52	91 10	5 028877486	0.009704414	9.70
(3	16 2813783	0.016281378	0,0001105145		0,	079781384	5,52	91 10	6 04922944	0.004840515	4 84
	10,2013703	0,010201370	0,000003400			,025201504	0,04	51,10	0,04522544	0,004040515	
B/02/02a1	25.32658846	0.025326588	0.0010352			0.04554882	5.32	91.10	4.84667178	0.009397958	9.40
a2	18.09042033	0.01809042	0.000739429		0	032534872	5.16	91.10	4,700907216	0.006920977	6.92
a3	28.94467253	0.028944673	0.001183086		0	052055794	5	91.10	4,555142651	0.011427918	11.43
B/02/02b1	23,51754643	0.023517546	0.000961258		0	042295333	5.12	91.10	4 664466074	0.009067562	9.07
b2	27.13563049	0.02713563	0.001109143		0.	0.048802307	6.14	91.10	5.593715175	0.008724489	8.72
b3	25.32658846	0.025326588	0.0010352			0.04554882	6.11	91.10	5,566384319	0.008182838	8.18
B/02/02c1	21,70850439	0.021708504	0.000887315		0.	0.039041846	6.31	91.10	5,748590025	0.006791552	6.79
c2	28.94467253	0.028944673	0.001183086		0.	0.052055794	5.74	91.10	5.229303763	0.009954632	9,95
c3	32,56275659	0,032562757	0,001330972		0,	,058562769	6,05	91,10	5,511722607	0,01062513	10,63
B/02/04a1	23,51754643	0,023517546	0,000961258		0,	0,042295333	5,1	91,10	4,646245504	0,009103121	9,10
a2	19,89946236	0,019899462	0,000813372		0,	0,035788359	6,47	91,10	5,89435459	0,006071633	6,07
a3	27,13563049	0,02713563	0,001109143		0,	,048802307	5,27	91,10	4,801120354	0,010164775	10,16
B/02/04b1	41,60796676	0,041607967	0,001700686		0,	,074830205	5,37	91,10	4,892223207	0,015295746	15,30
b2	43,41700879	0,043417009	0,001774629		0,	,078083692	6,92	91,10	6,304317429	0,012385749	12,39
b3	16,2813783	0,016281378	0,000665486		0,	,029281384	5,43	91,10	4,946884919	0,005919156	5,92
B/02/04c1	41,60796676	0,041607967	0,001700686		0,	0,074830205	5,51	91,10	5,019767201	0,014907107	14,91
c2	23,51754643	0,023517546	0,000961258		0,	0,042295333	5,21	91,10	4,746458642	0,008910924	8,91
c3	54,27126099	0,054271261	0,002218287		0,	0,097604615	5,26	91,10	4,792010069	0,020368199	20,37
B/02/08a1	27,13563049	0,02713563	0,001109143		0,	,048802307	5,5	91,10	5,010656916	0,009739702	9,74
a2	39,79892472	0,039798925	0,001626744		0,	0,071576717	5,75	91,10	5,238414048	0,013663814	13,66
a3	34,37179863	0,034371799	0,001404915		0,	,061816256	5,87	91,10	5,347737472	0,011559329	11,56
B/02/08b1	36,18084066	0,036180841	0,001478858		0,	0,065069743	5,75	91,10	5,238414048	0,012421649	12,42
b2	25,32658846	0,025326588	0,0010352			0,04554882	 5,37	91,10	4,892223207	0,009310454	9,31
b3	32,56275659	0,032562757	0,001330972		0,	,058562769	 5,94	91,10	5,411509469	0,010821892	10,82
B/02/08c1	25,32658846	0,025326588	0,0010352			0,04554882	6,09	91,10	5,548163749	0,008209711	8,21
c2	32,56275659	0,032562757	0,001330972		0,	0,058562769	5,95	91,10	5,420619754	0,010803704	10,80
c3	32,56275659	0,032562757	0,001330972		0,	,058562769	5,34	91,10	4,864892351	0,012037834	12,04

Calcimetry tests and results for 6/16 mm, L/S=0.3 L/kg, t=0 to 8h.

che	02					1			massa TO (a)				1
6/16-	03								massa IQ (g)				
B/03/t0a1	47.035	09286	0.047035093	0.001922515			0.08459	566	6.04	93.97	5.675708377	0.014903984	14.90
a2	43.417	00879	0.043417009	0.001774629			0.07808	592	5.38	93.97	5.055515077	0.01544525	15.45
a3	9,0452	10165	0,00904521	0,000369714			0,01626	136	5,81	93,97	5,459580409	0,002979613	2,98
B/03/t0b1	52,462	21895	0,052462219	0,002144344			0,09435	128	5,01	93,97	4,707830955	0,020041316	20,04
b2	37,989	88269	0,037989883	0,001552801			0,0683	323	5,35	93,97	5,027324473	0,013590376	13,59
b3	47,035	09286	0,047035093	0,001922515			0,08459	566	6,2	93,97	5,826058268	0,014519365	14,52
B/03/t0c1	39,798	92472	0,039798925	0,001626744			0,07157	717	6,4	93,97	6,013995631	0,011901691	11,90
c2	34,371	79863	0,034371799	0,001404915			0,06181	256	5,68	93,97	5,337421123	0,011581671	11,58
c3	28,944	57253	0,028944673	0,001183086			0,05205	794	5,19	93,97	4,876974582	0,010673788	10,67
B/03/02a1	23,517	54643	0,023517546	0,000961258			0,04229	333	5,39	93,97	5,064911946	0,008350655	8,35
a2	32,562	75659	0,032562757	0,001330972			0,05856	769	5,88	93,97	5,525358486	0,010598908	10,60
a3	25,326	58846	0,025326588	0,0010352			0,0455	382	5,37	93,97	5,046118209	0,009026507	9,03
B/03/02b1	19,899	46236	0,019899462	0,000813372			0,03578	359	5,55	93,97	5,215261836	0,006862236	6,86
b2	65,125	51318	0,065125513	0,002661944			0,11712	538	5,29	93,97	4,970943264	0,023562035	
b3	19,899	46236	0,019899462	0,000813372			0,03578	359	5,21	93,97	4,895768318	0,00731006	7,31
B/03/02c1	28,944	57253	0,028944673	0,001183086			0,05205	794	5,53	93,97	5,1964681	0,010017534	10,02
c2	19,899	46236	0,019899462	0,000813372			0,03578	359	5,28	93,97	4,961546396	0,007213146	7,21
c3	28,944	67253	0,028944673	0,001183086			0,05205	794	5,65	93,97	5,309230518	0,009804772	9,80
B/03/04a1	25,326	58846	0,025326588	0,0010352			0,0455	382	5,77	93,97	5,421992936	0,008400752	8,40
a2	10,85	42522	0,010854252	0,000443657			0,01952	923	5,26	93,97	4,942752659	0,003949403	3,95
a3	12,663	29423	0,012663294	0,0005176			0,0227	141	5,38	93,97	5,055515077	0,004504864	4,50
B/03/04b1	19,899	46236	0,019899462	0,000813372			0,03578	359	5,16	93,97	4,848783978	0,007380894	7,38
b2	25,326	58846	0,025326588	0,0010352			0,0455	382	5,1	93,97	4,792402768	0,009504381	9,50
b3	32,562	75659	0,032562757	0,001330972			0,05856	769	5,9	93,97	5,544152222	0,01056298	10,56
B/03/04c1	21,708	50439	0,021708504	0,000887315			0,03904	346	5,09	93,97	4,7830059	0,008162617	8,16
c2	36,180	84066	0,036180841	0,001478858			0,06506	743	5,6	93,97	5,262246177	0,012365393	12,37
c3	21,708	50439	0,021708504	0,000887315			0,03904	346	5,51	93,97	5,177674364	0,007540421	7,54
B/03/08a1	133,86	91104	0,13386911	0,005471774			0,2407	305	6,47	93,97	6,079773708	0,039599837	
a2	47,035	09286	0,047035093	0,001922515			0,08459	566	5,94	93,97	5,581739695	0,015154893	15,15
a3	32,562	75659	0,032562757	0,001330972			0,05856	769	5,36	93,97	5,036721341	0,011627161	11,63
B/03/08b1	25,326	58846	0,025326588	0,0010352			0,0455	382	5,59	93,97	5,252849309	0,00867126	8,67
b2	18,090	42033	0,01809042	0,000739429			0,03253	372	5,43	93,97	5,102499418	0,006376262	6,38
b3	32,562	75659	0,032562757	0,001330972			0,05856	769	5,79	93,97	5,440786672	0,010763658	10,76
B/03/08c1	23,517	54643	0,023517546	0,000961258			0,04229	333	5,64	93,97	5,29983365	0,007980502	7,98
c2	30,753	71456	0,030753715	0,001257029			0,05530	282	5,45	93,97	5,121293155	0,010799866	10,80
c3	27,135	53049	0,02713563	0,001109143			0,04880	307	5,36	93,97	5,036721341	0,009689301	9,69

Calcimetry tests and results for 16/31 mm, L/S=0.0 L/kg, t=0 to 8h.

16/31-00							massa TQ (g)				
C/00/t0a1	66,93455522	0,066934555	0,002735887			0,120379025	5,36	97,97	5,25108238	0,022924612	
a2	10,8542522	0,010854252	0,000443657			0,019520923	5,29	97,97	5,182504811	0,003766697	3,77
a3	3,618084066	0,003618084	0,000147886			0,006506974	5,75	97,97	5,633157404	0,00115512	1,16
C/00/t0b1	9,045210165	0,00904521	0,000369714			0,016267436	5,61	97,97	5,496002267	0,002959867	2,96
b2	12,66329423	0,012663294	0,0005176			0,02277441	5,09	97,97	4,986568902	0,00456715	4,57
b3	3,618084066	0,003618084	0,000147886			0,006506974	5,36	97,97	5,25108238	0,001239168	1,24
C/00/t0c1	3,618084066	0,003618084	0,000147886			0,006506974	5,5	97,97	5,388237516	0,001207626	1,21
c2	16,2813783	0,016281378	0,000665486			0,029281384	6,32	97,97	6,191574746	0,004729231	4,73
c3	5,427126099	0,005427126	0,000221829			0,009760461	5,3	97,97	5,192301607	0,001879795	1,88
		_									
C/00/02a1	21,70850439	0,021708504	0,000887315			0,039041846	5,85	97,97	5,731125358	0,006812248	6,81
2a2	21,70850439	0,021708504	0,000887315			0,039041846	5,37	97,97	5,260879175	0,007421164	7,42
2a3	28,94467253	0,028944673	0,001183086			0,052055794	6,3	97,97	6,171981155	0,008434212	8,43
C/00/02b1	16,2813783	0,016281378	0,000665486			0,029281384	6,36	97,97	6,230761928	0,004699487	4,70
b2	10,8542522	0,010854252	0,000443657			0,019520923	5,37	97,97	5,260879175	0,003710582	3,71
b3	3,618084066	0,003618084	0,000147886			0,006506974	5,47	97,97	5,35884713	0,001214249	1,21
C/00/02c1	19,89946236	0,019899462	0,000813372			0,035788359	5,4	97,97	5,290269562	0,00676494	6,76
c2	1,809042033	0,001809042	7,39429E-05			0,003253487	5,64	97,97	5,525392653	0,000588825	0,59
c3	34,37179863	0,034371799	0,001404915			0,061816256	5,77	97,97	5,652750995	0,010935606	10,94
C/00/04a1	9,045210165	0,00904521	0,000369714			0,016267436	5,38	97,97	5,270675971	0,003086404	3,09
a2	18,09042033	0,01809042	0,000739429			0,032534872	5,89	97,97	5,77031254	0,005638321	5,64
a3	7,236168132	0,007236168	0,000295772			0,013013949	5,07	97,97	4,966975311	0,002620095	2,62
C/00/04b1	3,618084066	0,003618084	0,000147886			0,006506974	6,06	97,97	5,936858064	0,00109603	1,10
b2	19,89946236	0,019899462	0,000813372			0,035788359	6,1	97,97	5,976045246	0,005988636	5,99
b3	14,47233626	0,014472336	0,000591543			0,026027897	5,43	97,97	5,319659948	0,004892775	4,89
C/00/04c1	10,8542522	0,010854252	0,000443657			0,019520923	5,21	97,97	5,104130447	0,003824534	3,82
c2	14,47233626	0,014472336	0,000591543			0,026027897	5,76	97,97	5,642954199	0,004612459	4,61
c3	10,8542522	0,010854252	0,000443657		<u> </u>	0,019520923	5,36	97,97	5,25108238	0,003717505	3,72
C/00/08a1	37,98988269	0,037989883	0,001552801			0,06832323	 5,95	97,97	5,829093313	0,011721073	11,72
a2	32,56275659	0,032562757	0,001330972			0,058562769	 5,16	97,97	5,05514647	0,011584782	11,58
a3	21,70850439	0,021708504	0,000887315		 	0,039041846	 5,01	97,97	4,908194538	0,007954421	7,95
C/00/08b1	28,94467253	0,028944673	0,001183086	 	 	0,052055794	 5,15	97,97	5,045349675	0,010317579	10,32
b2	32,56275659	0,032562757	0,001330972		 	0,058562769	 5,21	97,97	5,104130447	0,011473603	11,47
b3	27,13563049	0,02713563	0,001109143		 	0,048802307	 5,22	97,97	5,113927243	0,009543019	9,54
C/00/08c1	37,98988269	0,037989883	0,001552801		 -	0,06832323	 5,2	97,97	5,094333652	0,013411613	13,41
c2	47,03509286	0,047035093	0,001922515		 	0,084590666	 5,24	97,97	5,133520834	0,016478099	16,48
c3	45,22605082	0,045226051	0,001848572			0,081337179	5,45	97,97	5,339253539	0,015233811	15,23

Calcimetry tests and results for $16/31$ mm, $L/S=0.2$ L/kg, t=0 to 81	n, L/S=0.2 L/kg, t=0 to 8h.
--	-----------------------------

16/31-02							massa TO	(g)				
C/02/40+1	65 13551310	0.055135513	0.003661044		01	17125520		5 20	02.00	4 0710100	0.03404145	
22/02/081	24 27170962	0,003123313	0,002001944		 0,1	61916756		5,25	92,09	5 020007408	0,02404145	10.42
32	34,37173003	0,034371733	0,001404915		 0,0	01010250		5 1	92,09	4 606926612	0,010422732	10,42
C/02/t0b1	0.045210165	0.00904521	0.000269714		 0.0	16767426		5.07	92,09	5 452014264	0.002092749	2.02
6/02/1001	12 66220422	0,00504321	0,0005176		 0,0	02277441		5,52	92,09	5,074425428	0,002383748	2,58
b2	16 2912792	0,012003234	0,0005170		 0	70701204		5,51	92,09	5 1 7 9 6 9 7 2 7 9	0,004488077	4,43
C/02/t0c1	12 66220422	0,010281378	0,0005176		 0,0	022221304		5 20	92,09	4 9719169	0,003708220	3,71
c702/1001	7 236168132	0.007236168	0,0005170		 0	13013949		67	92,09	5 709879803	0,004074720	7.78
	10.8542522	0.010854252	0.000443657		0,0	19520923		6.01	92,09	5 534899616	0.003526879	3 53
	10,0341511	0,010034232	0,000445057		0,0	15526525		0,01	52,05	5,554055010	0,003520075	دىرى
C/02/02a1	19 89946736	0.019899467	0.000813372		00	35788359		5 32	92.09	4 89944525	0.007304574	7 30
27	48 84413489	0.048844135	0.001996458		 0,0	87844153		5.57	92,09	5 129682339	0.017124677	17.12
33	32 56275659	0.032562757	0.001330972		0,0	58562769		53	92,09	4 881026283	0.011998044	17,12
C/02/02b1	25 32658846	0.025326588	0.0010352		0,0	04554882		5 78	92,09	5 323081494	0.008556852	8 56
b2	43 41700879	0.043417009	0.001774629		0.00	78083692		5 54	92,09	5 102053889	0.015304364	15 30
b3	19,89946236	0.019899462	0.000813372		0,0	35788359		5.84	92,09	5 378338395	0.006654166	6.65
C/02/02c1	41.60796676	0.041607967	0.001700686		0.0	74830205		5.46	92.09	5.02837802	0.014881579	14.88
c7	19 89946236	0.019899467	0.000813372		0.0	35788359		5 71	92.09	5 258615109	0.006805662	6.81
	14 47233626	0.014472336	0.000591543		0,0	26027897		5 38	92,09	4 954702152	0.005253171	5.25
	14,47233020	0,014472550	0,000331343		0,0	2002/05/		3,30	52,05	4,554702252	0,005255271	لاعراد
C/02/04a1	36,18084066	0,036180841	0,001478858		0,0	65069743		5,6	92,09	5,15731079	0,012616991	
a2	9,045210165	0,00904521	0,000369714		0,0	16267436		5,38	92,09	4,954702152	0,003283232	3,28
a3	10,8542522	0,010854252	0,000443657		0,0	19520923		5,05	92,09	4,650789194	0,004197336	4,20
C/02/04b1	10,8542522	0,010854252	0,000443657		0,0	19520923		5,44	92,09	5,009959053	0,003896424	3,90
b2	14,47233626	0,014472336	0,000591543		0,0	26027897		5,45	92,09	5,019168537	0,005185699	5,19
b3	14,47233626	0,014472336	0,000591543		0,0	26027897		5,53	92,09	5,092844405	0,00511068	5,11
C/02/04c1	12,66329423	0,012663294	0,0005176		0	02277441		5,9	92,09	5,433595296	0,004191407	4,19
c2	9,045210165	0,00904521	0,000369714		0,0	16267436		5,16	92,09	4,752093514	0,003423215	3,42
c3	10,8542522	0,010854252	0,000443657		0,0	19520923		5,6	92,09	5,15731079	0,003785097	3,79
							•					
C/02/08a1	12,66329423	0,012663294	0,0005176		0	02277441		6,22	92,09	5,72829877	0,003975772	3,98
a2	27,13563049	0,02713563	0,001109143		0,0	48802307		6,29	92,09	5,792765155	0,0084247	8,42
a3	7,236168132	0,007236168	0,000295772		0,0	13013949		5,87	92,09	5,405966846	0,00240733	2,41
C/02/08b1	19,89946236	0,019899462	0,000813372		0,0	35788359		5,63	92,09	5,184939241	0,006902368	6,90
b2	25,32658846	0,025326588	0,0010352		0	04554882		5,37	92,09	4,945492668	0,009210168	9,21
b3	21,70850439	0,021708504	0,000887315		0,0	39041846		5,69	92,09	5,240196142	0,007450455	7,45
C/02/08c1	10,8542522	0,010854252	0,000443657		0,0	19520923		6,29	92,09	5,792765155	0,00336988	3,37
c2	19,89946236	0,019899462	0,000813372		0,0	35788359		5,33	92,09	4,908654734	0,007290869	7,29
c3	12,66329423	0,012663294	0,0005176		0	02277441		5,07	92,09	4,669208162	0,004877574	4,88

Calcimetry tests and results for 16/31 mm, L/S=0.3 L/kg, t=0 to 8h.

16/31-03							massa TO (g)				
10/51 05							110330 1 Q (6)				
C/03/t0a1	16,2813783	0,016281378	0,000665486		0,02928138	4	5,49	91,20	5,006824104	0,005848295	5,85
aZ	14,47233626	0,014472336	0,000591543		0,02602789	7	5,3	91,20	4,833546038	0,005384845	5,38
a3	18,09042033	0,01809042	0,000739429		0,0325348	2	5,78	91,20	5,271301151	0,006172076	6,17
C/03/t0b1	14,47233626	0,014472336	0,000591543		0,02602789	7	5,27	91,20	4,806186344	0,005415499	5,42
b2	14,47233626	0,014472336	0,000591543		0,02602789	7	5,19	91,20	4,733227158	0,005498975	5,50
b3	19,89946236	0,019899462	0,000813372		0,03578835	9	5,26	91,20	4,797066445	0,007460468	7,46
C/03/t0c1	10,8542522	0,010854252	0,000443657		0,01952092	3	5,28	91,20	4,815306242	0,004053932	4,05
c2	14,47233626	0,014472336	0,000591543		0,02602789	7	5,13	91,20	4,678507769	0,00556329	5,56
c3	9,045210165	0,00904521	0,000369714		0,01626743	6	5,33	91,20	4,860905733	0,003346585	3,35
C/03/02a1	68,74359725	0,068743597	0,00280983		0,12363251	2	5,6	91,20	5,107142984	0,024207764	24,21
a2	79,59784945	0,079597849	0,003253487		0,1431534	5	5,56	91,20	5,070663391	0,028231697	28,23
a3	65,12551318	0,065125513	0,002661944		0,1171255	8	5,4	91,20	4,92474502	0,023783066	23,78
C/03/02b1	50,65317692	0,050653177	0,002070401		0,0910976	4	5,32	91,20	4,851785835	0,018776105	18,78
b2	50,65317692	0,050653177	0,002070401		0,0910976	4	5,36	91,20	4,888265427	0,018635985	18,64
b3	61,50742912	0,061507429	0,002514058		0,11061856	3	5,41	91,20	4,933864918	0,022420266	22,42
C/03/02c1	86,83401758	0,086834018	0,003549259		0,15616738	3	5,01	91,20	4,569068991	0,034179257	34,18
c2	45,22605082	0,045226051	0,001848572		0,0813371	9	5,25	91,20	4,787946547	0,016987905	16,99
c3	32,56275659	0,032562757	0,001330972		0,05856276	9	5,01	91,20	4,569068991	0,012817221	12,82
C/03/04a1	12,66329423	0,012663294	0,0005176		0,0227744	1	5,02	91,20	4,578188889	0,004974546	4,97
a2	37,98988269	0,037989883	0,001552801		0,0683232	3	5,02	91,20	4,578188889	0,014923637	14,92
a3	21,70850439	0,021708504	0,000887315		0,03904184	6	5,35	91,20	4,879145529	0,008001779	8,00
C/03/04b1	28,94467253	0,028944673	0,001183086		0,05205579	4	5,95	91,20	5,42633942	0,00959317	9,59
b2	47,03509286	0,047035093	0,001922515		0,08459066	6	5,89	91,20	5,371620031	0,015747701	15,75
b3	54,27126099	0,054271261	0,002218287		0,09760463	5	6,75	91,20	6,155931275	0,015855378	15,86
C/03/04c1	19,89946236	0,019899462	0,000813372		0,03578835	9	5,11	91,20	4,660267973	0,007679464	7,68
c2	19,89946236	0,019899462	0,000813372	 	0,03578835	9	7,05	91,20	6,429528221	0,00556625	5,57
c3	25,32658846	0,025326588	0,0010352		0,0455488	2	5,51	91,20	5,0250639	0,009064327	9,06
C/03/08a1	12,66329423	0,012663294	0,0005176	 	 0,0227744	1	5,04	91,20	4,596428685	0,004954805	4,95
a2	9,045210165	0,00904521	0,000369714	 	 0,0162674	6	5,26	91,20	4,797066445	0,003391122	3,39
a3	9,045210165	0,00904521	0,000369714	 	0,0162674	6	5,16	91,20	4,705867464	0,003456841	3,46
C/03/08b1	10,8542522	0,010854252	0,000443657	 	0,01952092	3	5,45	91,20	4,970344511	0,003927479	3,93
b2	12,66329423	0,012663294	0,0005176	 	 0,0227744	1	5,67	91,20	5,170982271	0,004404272	4,40
b3	12,66329423	0,012663294	0,0005176	 	 0,0227744	1	5,21	91,20	4,751466955	0,004793132	4,79
C/03/08c1	9,045210165	0,00904521	0,000369714	 	0,0162674	6	5,82	91,20	5,307780744	0,003064828	3,06
c2	7,236168132	0,007236168	0,000295772	 	0,01301394	9	5,56	91,20	5,070663391	0,002566518	2,57
c3	9,045210165	0,00904521	0,000369714		0,0162674	6	5,18	91,20	4,72410726	0,003443494	3,44

Calcimetry tests and results for 0/6 mm, L/S=0.0 L/kg, t=8h. with different sample masses: 200, 100, 50, 25g.

A-50g-8h	90,45210165	0,090452102	0,003697144	0,162674358	5,33 81	6,08 4,587	926026 0	,035457058	35,46
	101,3063538	0,101306354	0,004140802	 0,182195281	5,15 8I	6,08 4,432	986685 0	,041099894	41,10
	99,49731181	0,099497312	0,004066859	0,178941794	5,47 81	6,08 4,708	434402 0	,038004521	38,00
	103,1153959	0,103115396	0,004214745	0,185448768	5,13 8I	6,08 4,415	771203 0	,041996915	42,00
	139,2962365	0,139296237	0,005 69 360 3	0,250518511	5,39 8I	6,08 4,639	572473 0	,053996034	54,00
	108,542522	0,108542522	0,004436573	 0,195209229	5,16 81	6,08 4,441	594427	0,04395026	43,95
	95,87922774	0,095879228	0,003918973	 0,172434819	5,13 81	6,08 4,415	771203 0	,039049763	39,05
	92,26114368	0,092261144	0,003771087	0,165927845	5,01 81	6,08 4,312	478309 0	,038476216	38,48
	85,02497555	0,085024976	0,003475316	0,152913896	5,53 8I	6,08 4,760	080849 0	,032124223	32,12
	0								
A-100g-8h	90,45210165	0,090452102	0,003697144	 0,162674358	5,17 8I	6,08 4,450	0202168 0	,036554375	36,55
	95,87922774	0,095879228	0,003918973	0,172434819	5,99 8I	6,08 5,156	036941 0	,033443286	33,44
	92,26114368	0,092261144	0,003771087	0,165927845	6,05 8I	6,08 5,207	683388 0	,031862122	31,86
	97,68826978	0,09768827	0,003992916	0,175688306	5,45 8I	6,08 4,691	218919	0,03745046	37,45
	88,64305961	0,08864306	0,003623202	0,159420871	5,33 81	6,08 4,587	926026 0	,034747917	34,75
	97,68826978	0,09768827	0,003992916	0,175688306	5,19 8I	6,08 4,46	5741765 0	,039326591	39,33
	99,49731181	0,099497312	0,004066859	0,178941794	5,1 81	6,08 4,38	994798 0	,040761712	40,76
	86,83401758	0,086834018	0,003549259	 0,156167383	5,48 81	6,08 4,717	042143 0	,033107057	33,11
	79,59784945	0,079597849	0,003253487	 0,143153435	5,34 81	6,08 4,596	533767	0,03114378	31,14
	0								
A-25g-8h	110,351564	0,110351564	0,004510516	 0,198462716	5 8	6,08 4,303	870568 0	,046112613	46,11
	99,49731181	0,099497312	0,004066859	 0,178941794	5,27 8I	6,08 4,536	279579 0	,039446818	39,45
	103,1153959	0,103115396	0,004214745	 0,185448768	5,18 81	6,08 4,458	0 606608	,041591539	41,59
	104,9244379	0,104924438	0,004288688	 0,188702255	5,33 81	6,08 4,587	926026 0	,041130187	41,13
	112,160606	0,112160606	0,004584459	 0,201716204	5,1 81	6,08 4,38	994798 0	,045949566	45,95
	110,351564	0,110351564	0,004510516	 0,198462716	5,17 8I	6,08 4,450	0202168 0	,044596337	44,60
	101,3063538	0,101306354	0,004140802	 0,182195281	5,44 81	6,08 4,682	611178 0	,038908907	38,91
	103,1153959	0,103115396	0,004214745	 0,185448768	5,64 81	6,08 4,854	1766001 0	,038199322	38,20
	94,07018571	0,094070186	0,00384503	 0,169181332	5,32 81	6,08 4,579	318285 0	,036944655	36,94

			Moisture content calculation	ons (campioni in stufa)		
	Tare muffin heater (g	Gross mass inlet heater (g)	Net mass inlet heater (g)	Gross mass outlet heater (g)	Net mass outlet heater (g)	TS %
0/6-L/S0-t0	2,19		10,82	11,50	9,32	86,08
0/6-L/S0-t0A	2,16	18,05	15,89	15,62	13,46	84,73
0/6-L/S0-t0B	2,18	20,82	18,64	18,13	15,95	85,54
0/6-L/S0-t0C	2,19	18,49	16,30	16,16	13,96	85,68
0/6-L/S0-t8h	2,20	14,57	12,37	12,60	10,40	84,11
0/6-L/S0.2-t0	2,18	17,94	15,76	13,51	11,33	71,92
0/6-L/S0.2-t0A	2,19	24,55	22,35	18,59	16,40	73,35
0/6-L/S0.2-t0B	2,18	24,44	22,27	18,87	16,69	74,97
0/6-L/S0.2-t0C	2,17	30,37	28,20	22,61	20,43	72,46
0/6-L/S0.2-t8h	2,18	17,17	14,99	13,69	11,52	76,81
0/6-L/S0.3-t0	2,18	22,87	20,70	17,80	15,63	75,50
0/6-L/S0.3-t0A	2,20	29,42	27,21	21,72	19,52	71,71
0/6-L/S0.3-t0B	2,19	34,51	32,32	25,89	23,70	73,34
0/6-L/S0.3-t0C	2,21	28,35	26,14	21,28	19,07	72,96
0/6-L/S0.3-t8h	2,18	24,10	21,92	18,19	16,02	73,07
6/16-L/S0-t0	2,18		15,69	17,66	15,48	98,63
6/16-L/S0-t0A	2,19	32,70	30,51	31,93	29,74	97,49
6/16-L/S0-t0B	2,20	31,58	29,37	30,94	28,73	97,82
6/16-L/S0-t0C	2,18	34,66	32,48	33,85	31,66	97,48
6/16-L/S0.2-t0	2,18	29,04	26,86	26,65	24,47	91,10
6/16-L/S0.2-t0A	2,21	28,82	26,61	27,04	24,82	93,28
6/16-L/S0.2-t0B	2,21	25,49	23,28	23,96	21,75	93,44
6/16-L/S0.2-t0C	2,21	26,17	23,96	24,69	22,48	93,83
6/16-L/S0.3-t0	2,20	28,84	26,64	27,23	25,04	93,97
6/16-L/S0.3-t0A	2,20	29,26	27,07	26,84	24,64	91,04
6/16-L/S0.3-t0B	2,18	40,44	38,26	37,43	35,25	92,13
6/16-L/S0.3-t0C	2,20	30,67	28,47	28,73	26,53	93,20
16/31-L/S0-t0	2,17		30,97	32,51	30,34	97,97
16/31-L/S0-t0A	2,18	38,51	36,33	36,72	34,54	95,06
16/31-L/S0-t0B	2,20	44,64	42,45	42,09	39,89	93,99
16/31-L/S0-t0C	2,20	42,25	40,06	40,99	38,79	96,83
			0,00			
16/31-L/S0.2-t0	2,20	30,94	28,74	28,67	26,47	92,09
16/31-L/S0.2-t0A	2,18	39,31	37,13	37,59	35,41	95,36
16/31-L/S0.2-t0B	2,20	38,88	36,68	36,52	34,32	93,56
16/31-L/S0.2-t0C	2,20	41,53	39,33	39,51	37,31	94,87
16/31-L/S0.3-t0	2,17	30,38	28,21	27,89	25,73	91,20
16/31-L/S0.3-t0A	2,2073	36,2141	34,01	34,12	31,91	93,83
16/31-L/S0.3-t0B	2,199	47,4406	45,24	45,38	43,18	95,44
16/31-L/S0.3-t0C	2,20	44,23	42,03	42,04	39,83	94,77

The following table collects the mean values of the conducted tests when samples haven't already carbonated:

Sample	TS %
0/6-L/S0-t0	85,51
0/6-L/S0.2-t0	73,17
0/6-L/S0.3-t0	72,67
6/16-L/S0-t0	97,86
6/16-L/S0.2-t0	92,91
6/16-L/S0.3-t0	92,58
16/31-L/S0-t0	95,96
16/31-L/S0.2-t0	93,97
16/31-L/S0.3-t0	93,81

ANNEX X: Temperature, pressure and relative humidity of the CO₂ incubator

Temperature, pressure and relative humidity have been measured 10 times every 6 min, for a total test duration of 1h. It can be seen that all the parameters keep constant values.

Date	Relative Humidity [%RH]	Temp[°C]	Pressione [mbar]
22/09/22	98,3	25,8	1022,7
22/09/22	98,4	25,9	1022,8
22/09/22	98,5	25,9	1022,8
22/09/22	98,5	25,9	1022,7
22/09/22	98,5	26	1022,6
22/09/22	98,6	26	1022,7
22/09/22	98,6	26	1022,6
22/09/22	98,6	26	1022,5
22/09/22	98,6	26	1022,5
22/09/22	98,6	26	1022,4

М	EAN	
Relative Humidity [%RH]	Temp[°C]	Pressione [mbar]
98,52	26,00	1022,70

ANNEX XI: Hardness test of leachate water

Leachate "hardness" tests have been carried out according to APAT CNR IRSA 2040 Met.B Man 29 2003 on the liquid filtered by paper filter to assess the quantity of carbonates that have been washed when demineralized water was added and then removed from the samples.

	mass (g)	H₂0 (mL)	Leachate (mL)	Leachate/H ₂ 0 (%)
0/6-02	627,83	125,57	20	15,93
0/6-03	610,48	183,14	50	27,30
6/16-02	638,19	127,64	70	54,84
6/16-03	553,22	165,966	130	78,33
16/31-02	617,13	123,43	90	72,92
16/31-03	560,34	168,102	155	92,21

Diluted samples 1-10	Num. drops fenolftaleina	Num. drops Bromocresolo	tot drops	x20	mgCaCO ₃ /L
0/6-02	1	5	6	120	1200
0/6-03	4	6	10	200	2000
6/16-02	0	4	4	80	800
6/16-03	2	14	16	320	3200
16/31-02	4	3	7	140	1400
16/31-03	2	4	6	120	1200

Sample	mgCaCO3/L
0/6-02	1200
0/6-03	2000
6/16-02	800
6/16-03	3200
16/31-02	1400
16/31-03	1200

ANNEX XII: Leachate tests analyses

UNI EN 12457-2 2004 leaching test was performed on 0/6mm fraction sample, at t=0h on the untreated material and after 8h carbonation tests as reported in Part II, paragraphs 2.2.2; 2.2.4; 2.3.3 of the main text. Tests were carried out in triplicate.

Sample	рН	Conductivity [mS/cm]
t0/00/a	11,82	3,55
t0/00/b	11,96	3,58
t0/00/c	11,90	3,76
t8h/00/a	9,26	3,76
t8h/00/b	9,45	3,68
t8h/00/c	9 <i>,</i> 58	3,72
t8h/02/a	11,32	2,90
t8h/02/b	11,25	3,30
t8h/02/c	11,28	3,22
t8h/03/a	11,53	2,55
t8h/03/b	11,5	2,66
t8h/03/c	11,56	2,58

UNI EN 1	2457-2	0/6-0	0-t0	0/6-0	0-t8	0/6-0	02-t8	0/6-0	3-t8
Chemical	Unit	М	σ	М	σ	м	σ	М	σ
рН	/	11,89	0,07	9,43	0,16	11,28	0,04	11,53	0,03
Barium	mg/l Ba	0,09	0,01	0,05	0,00	0,04	0,00	0,06	0,01
Cadmium	μg/l Cd	<1	0,00	<1	0,00	<1	0,00	<1	0,00
Chromium	µg/l Cr	54,00	15,59	203,00	9,64	115,33	4,73	34,67	6,66
Molybdenum	mg/l Mo	0,03	0,03	0,11	0,00	0,03	0,01	<0.013	0,01
Nickel	µg/l Ni	14,33	0,58	8,43	0,38	12,00	1,00	9,40	0,60
Lead	µg/l Pb	21,67	7,09	<5	0,00	<5	>0	11,37	7,70
Copper	mg/l Cu	0,89	0,03	0,77	0,02	0,82	0,07	0,63	0,03
Antimony	mg/l Sb	0,03	0,01	0,08	0,01	0,06	0,01	0,04	0,00
Zinc	mg/l Zn	0,11	0,08	0,00	0,00	0,02	0,00	0,04	0,00
Magnesium	mg/l	0,02	0,01	5,80	3,55	0,15	0,10	0,01	0,00
Calcium	mg/l	52,67	2,52	224,33	5,51	81,67	5,03	59,67	1,53
Sulfates	mg/L SO4=	115,33	21,57	828,67	39,72	416,33	61,01	160,00	11,27
Chlorides	mg/L Cl-	462,33	17,90	528,00	19,67	375,67	104,71	345,33	14,74

			0/6-00-t0			0/6-00-t8			0/6-02-t8			0/6-03-t8	
Н	/	11,82	11,96	11,9	9,26	9,45	9,58	11,32	11,25	11,28	11,53	11,5	11,56
Arsenico	µg/I As	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Bario	mg/I Ba	0,08	60′0	60'0	0,05	0,05	0,05	0,04	0,04	0,04	0,06	0,05	0,06
Berillio	µg/I Be	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmio	µg/I Cd	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cobalto	µg/I Co	<5	<5	< 5	< 5	<5	<5	<5	<5	< 5	<5	< 5	<5
Cromo	µg/l Cr	72	45	45	214	196	199	110	119	117	29	42	33
Mercurio	µg/I Hg	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5
Molibdeno	mg/I Mo	0,06	0,01	0,02	0,11	0,11	0,11	< 0,01	0,03	0,02	0,02	< 0,01	< 0,01
Nichel	µg/l Ni	15	14	14	8,6	8,7	∞	11	13	12	8,8	10	9,4
Piombo	hg/I Pb	14	23	28	< 5	<5	<5	<5	<5	5	8,9	5,2	20
Rame	mg/I Cu	0,89	0,87	0,92	0,79	0,77	0,76	0,75	0,89	0,83	0,6	0,65	0,63
Antimonio	mg/ISb	0,03	0,03	0,02	60'0	0,07	0,07	0,05	0,06	0,06	0,04	0,04	0,04
Selenio	µg/I Se	<5	<5	< 5	<5	<5	<5	<5	< 5	< 5	<5	<5	<5
Vanadio	µg/I V	<5	<5	< 5	<5	<5	<5	<5	<5	< 5	<5	<5	<5
Zinco	mg/IZn	0,046	0,079	0,203	0,003	0,002	0,004	0,023	0,02	0,02	0,038	0,034	0,043
Sodio	mg/l	205	216	224	230	221	193	220	222	210	149	163	156
Potassio	mg/l	301	319	328	285	273	280	273	313	299	220	238	230
Magnesio	mg/l	0,02	0,01	<0,01	6'6	3,8	3,7	0,22	0,2	0,03	0,01	0,01	0,01
Calcio	mg/l	55	53	50	218	227	228	77	87	81	58	60	61
Fluoruri	mg/IF-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Solfati	mg/L SO 4=	140	100	106	860	842	784	415	356	478	153	173	154
Nitrati	mg/L NO 3-	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25	< 0,25
Cloruri	mg/L CI-	458	447	482	546	531	507	295	494	338	334	362	340

ANNEX XIII: Experimental setup photos

Aluminum vessels containing 6/16 fraction sample with applied L/S=0.2 L/kg ready to be incubated for 4h in the static chamber for accelerated carbonation treatment.

16/31 mm fraction samples have been crushed before to carry out calcimetry test

Experimental setup to carry out calcimetry analyses as described in DM 13 09 1999 Met. V.1. On the left bottles containing 5g of sample. In the center the Dietrich-Fruehling calcymeter. On the right Falcon test tubes containing HCl.

Empty CO₂ incubator utilized for carry out the accelerated carbonation tests.

Dietrich-Fruehling apparatus utilized.

CO₂ incubator filled with aluminum vessels containing samples. Temperature (28.6°C) and CO₂ concentration (10%) can be read on the control panel.

2L plastic bottle filled with 600g of 0/6 mm fraction sample and water for an amount of L/S=0.2 L/kg. the bottle is then inserted in the agitator for 30 min at 8 rpm.

CO₂ cylinder connected to the incubator.

ANNEX XIV: Experimental Results

Tables and graphs with the experimental results expressed in gCO₂/kg dw uptake. A, B, C letters stand for the granulometry, namely 0/6, 6/16 and 16/31mm.

The following 3 graphs and table shows the uptake on the same fraction (fraction fixed) with different times and L/S ratio.

	Uptake	CO2 [g0	CO2 kg-1 dw] fraction	0/6		
t (h)	A/00/	SE	A/02/	SE	A/03/	SE
0	$0,00$ \pm	1,75	0 \pm	1,09	0 \pm	0,72
2	$8,75 \pm$	1,79	$6,059964 \ \pm$	0,79	$4,04$ \pm	0,7831682
4	10,15 \pm	1,90	$0,9182389 \ \pm$	1,12	$1,\!47$ \pm	1,1161989
8	$13,\!92$ ±	1,35	3,5564022 ±	1,11	4,19 ±	0,8874718

	uptake (CO2 [gCO	2 kg-1 dw] fraction	6/16			
t (h)	B/00/		SE	B/02/		SE	B/03/	SE
0		0,00	±1,80		0,00	±1,42	0,00	±1,54
2		-2,44	±0,75		0,79	±0,52	-4,20	±0,48
4		0,57	±0,38		3,24	±1,58	-4,81	±0,89
8		1,78	±0,65		2,73	±0,56	-2,72	±0,89

uptake CO2 [gCO2 kg-1 dw] fraction 16/31

.0 0					
C/00/	SE	C/02/	SE	C/03/	SE
0,00	±0,51	0,00	±1,01	0,00	±0,39
2,93	±1,13	6,17	±1,48	16,81	±2,13
1,25	±0,51	-0,13	±0,23	4,74	±1,43
9,28	±0,90	1,73	±0,80	-1,64	±0,27
	C/00/ 0,00 2,93 1,25 9,28	C/00/ SE 0,00 ±0,51 2,93 ±1,13 1,25 ±0,51 9,28 ±0,90	C/00/ SE C/02/ 0,00 ±0,51 0,00 2,93 ±1,13 6,17 1,25 ±0,51 -0,13 9,28 ±0,90 1,73	C/00/ SE C/02/ SE 0,00 ±0,51 0,00 ±1,01 2,93 ±1,13 6,17 ±1,48 1,25 ±0,51 -0,13 ±0,23 9,28 ±0,90 1,73 ±0,80	C/00/ SE C/02/ SE C/03/ 0,00 ±0,51 0,00 ±1,01 0,00 2,93 ±1,13 6,17 ±1,48 16,81 1,25 ±0,51 -0,13 ±0,23 4,74 9,28 ±0,90 1,73 ±0,80 -1,64

The following 3	graphs and tabl	e shows the uptake	e on the different	fractions when	n the L/S is fixed.
	0				

uptake CO2 [gCO2 kg-1 dw] L/S=0.0 [L/Kg]							
t (h)	A/00/		B/00/		C/00/		
0		0,00		0,00		0,00	
2		8,75		-2,44		2,93	
4		10,15		0,57		1,25	
8		13,92		1,78		9,28	

.

uptake CO2 [gCO2 kg-1 dw] L/S=0.2 [L/Kg]							
t (h)	A/02/	B/02/	C/02/				
0	0,00	0	0				
2	6,06	0,79	6,17				
4	0,92	3,24	-0,13				
8	3,56	2,73	1,73				

uptake CO2 [gCO2 kg-1 dw] L/S=0.3 [L/Kg]						
t (h)	A/03/	B/03/	C/03/			
0	0,00	0	0			
2	4,04	-4,20	16,81			
4	1,47	-4,81	4,74			
8	4,19	-2,72	-1,64			

Uptake of 0/6mm fraction with L/S =0.0 L/kg and different masses: i.e. 200, 100, 50, 25g.

uptake CO2 [gCO2 kg-1 dw] L/S=0.0 [L/Kg]

					A/00/50		A/00/25	
t (h)	A/00/200g	SE	A/00/100g	SE	g	SE	g	SE
8	13,92	1,35	19,59	±1,12	24,67	2,06	25,64	±1,14

In the following table the carbonates content of the different fraction with different L/S ratio are displayed

In the following table and graphs the carbonates content are reported in terms of gCO₂/kgdw.

			CARBONATES CONTENT						
	Ι. Ι								
Fraction	L/S ratio	0h	SE	2h	SE	4h	SE	8h	SE
0/6	L/S=0 [L/kg]	15,79	±1,75	24,54	±1,79	25,94	±1,90	29,71	±1,35
6/16		12,00	±1,80	9,56	±0,75	12,57	±0,38	13,78	±0,65
16/31		2,69	±0,51	5,62	±1,13	3,94	±0,51	11,97	±0,90
0/6	LS/S=0.2 [L/kg]	19,04	±1,09	25,10	±0,79	19,96	±1,12	22,59	±1,11
6/16		8,22	±1,42	9,01	±0,52	11,46	±1,58	10,95	±0,56
16/31		4,26	±1,01	10,43	±1,48	4,13	±0,23	5,99	±0,80
0/6	L/S=0.3 [L/kg]	15,36	±0,72	19,40	±0,78	16,83	±1,12	19,55	±0,89
6/16		12,85	±1,54	8,65	±0,48	8,04	±0,89	10,13	±0,89
16/31		5,42	±0,39	22,23	±2,13	10,16	±1,43	3,78	±0,27

	CARBONA	TES CONTENT	[gCO2 kg-1 dw]	L/S=0.0 [L/Kg]		
t (h)	A/00/	SE	B/00/	SE	C/00/	SE
0	15,79	±1,75	12,00	±1,80	2,69	±0,51
2	24,54	±1,79	9,56	±0,75	5,62	±1,13
4	25,94	±1,90	12,57	±0,38	3,94	±0,51
8	29,71	±1,35	13,78	±0,65	11,97	±0,90

L/S is fixed, and carbonates content is displayed related to time and granulometry.

CARBONATES CONTENT [gCO2 kg-1 dw] L/S=0.2 [L/Kg]								
t (h)	A/02/	SE	B/02/	SE	C/02/	SE		
0	19,04	±1,09	8,22	±1,42	4,26	±1,01		
2	25,10	±0,79	9,01	±0,52	10,43	±1,48		
4	19,96	±1,12	11,46	±1,58	4,13	±0,23		
8	22,59	±1,11	10,95	±0,56	5,99	±0,80		

CARBONATES CONTENT [gCO2 kg-1 dw] L/S=0.3 [L/Kg]									
t (h)	A/03/	SE	B/03/	SE	C/03/	SE			
0	15,36	±0,72	12,85	±1,54	5,42	±0,39			
2	19,40	±0,78	8,65	±0,48	22,23	±2,13			
4	16,83	±1,12	8,04	±0,89	10,16	±1,43			
8	19,55	±0,89	10,13	±0,89	3,78	±0,27			

The following graphs and tables display the carbonates content when the fraction is fixed.

CARBO								
0/6	0h	SE	2h	SE	4h	SE	8h	SE
L/S=0	15,79	1,75	24,54	1,79	25,94	1,90	29,71	1,35
L/S=0.2	19,04	1,09	25,10	0,79	19,96	1,12	22,59	1,11
L/S=0.3	15,36	0,72	19,40	0,78	16,83	1,12	19,55	0,89

CARBON								
6/16	0h	SE	2h	SE	4h	SE	8h	SE
L/S=0	12,00	1,80	9,56	0,75	12,57	0,38	13,78	0,65
L/S=0.2	8,22	1,42	9,01	0,52	11,46	1,58	10,95	0,56
L/S=0.3	12,85	1,54	8,65	0,48	8,04	0,89	10,13	0,89

CARBONATES CONTENT [gCO2 kg-1 dw] FRACTION 16/31									
16/31	0h	SE	2h	SE	4h	SE	8h	SE	
L/S=0	2,69	0,51	5,62	1,13	3,94	0,51	11,97		0,90
L/S=0.2	4,26	1,01	10,43	1,48	4,13	0,23	5,99		0,80
L/S=0.3	5,42	0,39	22,23	2,13	10,16	1,43	3,78		0,27

REFERENCES

- Baciocchi, R., Costa, G., Polettini, A., Pomi, R., & Prigiobbe, V. (2009). Comparison of different reaction routes for carbonation of APC residues. *Energy Procedia*, *1*(1), 4851–4858. https://doi.org/10.1016/j.egypro.2009.02.313
- Berber, H., Tamm, K., Leinus, M. L., Kuusik, R., Tõnsuaadu, K., Paaver, P., & Uibu, M. (2020). Accelerated carbonation technology granulation of industrial waste: Effects of mixture composition on product properties. *Waste Management and Research*, 38(2), 142–155. https://doi.org/10.1177/0734242X19886646
- Cappai, G., Cara, S., Muntoni, A., & Piredda, M. (2012). Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO 2 sequestration. *Journal of Hazardous Materials*, 207–208, 159–164. https://doi.org/10.1016/j.jhazmat.2011.04.013
- Chang, E. E., Pan, S. Y., Yang, L., Chen, Y. H., Kim, H., & Chiang, P. C. (2015). Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics. *Waste Management*, 43, 283–292. https://doi.org/10.1016/j.wasman.2015.05.001
- Chen, T. L., Chen, Y. H., & Chiang, P. C. (2020). Enhanced performance on simultaneous removal of NOx-SO2-CO2 using a high-gravity rotating packed bed and alkaline wastes towards green process intensification. *Chemical Engineering Journal*, 393. https://doi.org/10.1016/j.cej.2020.124678
- dos Reis, G. S., Cazacliu, B., Artoni, R., Torrenti, J. M., Hoffmann, C. S., & Lima, E. C. (2021). Coupling of attrition and accelerated carbonation for CO2 sequestration in recycled concrete aggregates. *Cleaner Engineering and Technology*, *3*. https://doi.org/10.1016/j.clet.2021.100106
- dos Reis, G. S., Cazacliu, B. G., Artoni, R., & Torrenti, J. M. (2020). Effect of the accelerated carbonation treatment on the recycled sand physicochemical characteristics through the rolling carbonation process. *Journal of CO2 Utilization*, 39. https://doi.org/10.1016/j.jcou.2020.101181
- El-Hassan, H., & Shao, Y. (2014). Carbon Storage through Concrete Block Carbonation. *Journal of Clean Energy Technologies*, 287–291. https://doi.org/10.7763/jocet.2014.v2.141
- Fang, X., Xuan, D., & Poon, C. S. (2017). Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. *Materials and Structures/Materiaux et Constructions*, 50(4). https://doi.org/10.1617/s11527-017-1066-y
- Gunning, P. J., Hills, C. D., & Carey, P. J. (2009). Production of lightweight aggregate from industrial waste and carbon dioxide. *Waste Management*, *29*(10), 2722–2728. https://doi.org/10.1016/j.wasman.2009.05.021
- Huntzinger, D. N., Gierke, J. S., Kawatra, S. K., Eisele, T. C., & Sutter, L. L. (2009). Carbon dioxide sequestration in cement kiln dust through mineral carbonation. *Environmental Science* and Technology, 43(6), 1986–1992. https://doi.org/10.1021/es802910z
- JEANNET A. MEIMA. (1998). Application of Surface Complexation/ Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash. https://pubs.acs.org/sharingguidelines
- Jiang, J., Tian, S., & Zhang, C. (2013). Influence of SO2 in incineration flue gas on the sequestration of CO2 by municipal solid waste incinerator fly ash. *Journal of Environmental Sciences (China)*, 25(4), 735–740. https://doi.org/10.1016/S1001-0742(12)60142-9
- Kaliyavaradhan, S. K., Ling, T. C., & Mo, K. H. (2020). CO2sequestration of fresh concrete slurry waste: Optimization of CO2uptake and feasible use as a potential cement binder. *Journal of CO2 Utilization*, 42. https://doi.org/10.1016/j.jcou.2020.101330

- Lombardi, L., Carnevale, E. A., & Pecorini, I. (2016). Experimental evaluation of two different types of reactors for CO2 removal from gaseous stream by bottom ash accelerated carbonation. *Waste Management*, *58*, 287–298. https://doi.org/10.1016/j.wasman.2016.09.038
- Nam, S. Y., Seo, J., Thriveni, T., & Ahn, J. W. (2012a). Accelerated carbonation of municipal solid waste incineration bottom ash for CO2 sequestration. *Geosystem Engineering*, 15(4), 305–311. https://doi.org/10.1080/12269328.2012.732319
- Nam, S. Y., Seo, J., Thriveni, T., & Ahn, J. W. (2012b). Accelerated carbonation of municipal solid waste incineration bottom ash for CO2 sequestration. *Geosystem Engineering*, 15(4), 305–311. https://doi.org/10.1080/12269328.2012.732319
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. In *The BMJ* (Vol. 372). BMJ Publishing Group. https://doi.org/10.1136/bmj.n71
- Pan, S. Y., Chang, E. E., & Chiang, P. C. (2012). CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. *Aerosol and Air Quality Research*, 12(5), 770–791. https://doi.org/10.4209/aaqr.2012.06.0149
- Pei, S. L., Pan, S. Y., Gao, X., Fang, Y. K., & Chiang, P. C. (2018). Efficacy of carbonated petroleum coke fly ash as supplementary cementitious materials in cement mortars. *Journal of Cleaner Production*, 180, 689–697. https://doi.org/10.1016/j.jclepro.2018.01.055
- Rostami, V., Shao, Y., & Boyd, A. J. (2011). Durability of concrete pipes subjected to combined steam and carbonation curing. *Construction and Building Materials*, *25*(8), 3345–3355. https://doi.org/10.1016/j.conbuildmat.2011.03.025
- Schnabel, K., Brück, F., Pohl, S., Mansfeldt, T., & Weigand, H. (2021). Technically exploitable mineral carbonation potential of four alkaline waste materials and effects on contaminant mobility. *Greenhouse Gases: Science and Technology*, 11(3), 506–519. https://doi.org/10.1002/ghg.2063
- Schnabel, K., Brück, F., Pohl, S., & Weigand, H. (2022). Development and Test of a Rotating Drum Reactor for the Simultaneous Hydration and Carbonation of Dry Biomass Bottom Ash. *Waste and Biomass Valorization*, 13(10), 4319–4330. https://doi.org/10.1007/s12649-022-01784-z
- Sereng, M., & Dangla, P. (n.d.). *Accelerated carbonation of recycled concrete aggregates*. https://www.researchgate.net/publication/352366234
- Suescum-Morales, D., Kalinowska-Wichrowska, K., Fernández, J. M., & Jiménez, J. R. (2021). Accelerated carbonation of fresh cement-based products containing recycled masonry aggregates for CO2 sequestration. *Journal of CO2 Utilization*, 46, 101461. https://doi.org/10.1016/j.jcou.2021.101461
- Ukwattage, N. L., Ranjith, P. G., & Wang, S. H. (2013). Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation. *Energy*, 52, 230–236. https://doi.org/10.1016/j.energy.2012.12.048
- Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., Bui, H. H., & Xu, T. (2015). A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. *Journal of Cleaner Production*, *103*, 665–674. https://doi.org/10.1016/j.jclepro.2014.03.005
- Wang, D., Zhu, J., & He, F. (2019). Quantification and micro-mechanisms of CO2 sequestration in magnesia-lime-fly ash/slag solidified soils. *International Journal of Greenhouse Gas Control*, 91. https://doi.org/10.1016/j.ijggc.2019.102827
- Xuan, D., & Poon, C. S. (2018). Sequestration of carbon dioxide by RCAs and enhancement of properties of RAC by accelerated carbonation. In *New Trends in Eco-efficient and Recycled Concrete* (pp. 477–497). Elsevier. https://doi.org/10.1016/B978-0-08-102480-5.00016-6

- Yuan, Q., Yang, G., Zhang, Y., Wang, T., Wang, J., & Romero, C. E. (2022). Supercritical CO2 coupled with mechanical force to enhance carbonation of fly ash and heavy metal solidification. *Fuel*, 315. https://doi.org/10.1016/j.fuel.2022.123154
- Zhang, D., & Shao, Y. (2016). Early age carbonation curing for precast reinforced concretes. *Construction and Building Materials*, 113, 134–143. https://doi.org/10.1016/j.conbuildmat.2016.03.048