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 Abstract 

 The  choice  of  mating  partner  is  a  topic  which  has  been  an  object  of  both 
 biological  and  sociological  interest.  Although  much  research  has  been 
 done  on  the  basis  of  phenotype  data,  the  age  of  next  generation 
 sequencing  together  with  genome-wide  association  studies  (GWAS)  and 
 the  establishment  of  biobanks  across  Europe  have  provided  researchers 
 with  the  possibility  to  gain  a  better  understanding  of  mate  choice  in 
 humans  from  a  genetic  point  of  view.  This  work  focuses  on  detecting  the 
 presence  of  genetic  assortative  mating  in  contemporary  human 
 populations  in  Europe  and  studying  its  patterns.  It  is  based  on  a  newly 
 developed  method  for  genotype  analysis  different  from  the  available 
 research,  since  it  builds  on  single  genomes  rather  than  on  pedigrees  or 
 couples.  Using  individual  genomes,  we  detected  signals  of  assortative 
 mating  in  the  previous  generation,  based  on  a  computed  score  from 
 genetic  windows  containing  single  nucleotide  polymorphisms  (SNPs) 
 associated  with  complex  traits  of  interest,  and  compared  it  to  each 
 individual’s  phenotype  data.  The  outcome  of  this  work  represents  an  initial 
 insight  into  the  genetic  perspective  of  partner  selection  to  have  taken 
 place  in  the  previous  generation  of  individuals  with  homogenous 
 backgrounds. 
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 1. Introduction 

 1.1. What is assortative mating? 

 Mate  choice  is  an  integral,  yet  complicated  process  that  has  been  taking 
 place  in  the  course  of  evolution.  Opposed  to  mating  under  random 
 selection,  assortative  mating  is  a  form  of  sexual  selection  in  which 
 individual  phenotypic  preferences  are  taken  into  consideration  and  thus 
 the random model of mating is no longer valid.  1 

 Assortative  mating  can  be  represented  both  by  choosing  phenotypically 
 and/or  genotypically  similar  or  dissimilar  partners,  respectively  known  as 
 positive  assortative  mating  (PAM)  and  negative  assortative  mating  (NAM). 
 Among  human  populations,  there  is  scientific  evidence  of  PAM  for  traits 
 defining  physical  appearance  2  ,  cognitive  style  and  personality  3  , 
 physiological  features  and  longevity  4,5  .  However,  mate  choice  based  on 
 the  major  histocompatibility  complex  in  humans  has  been  proven  to  be  a 
 representation  of  NAM  6  ,  explaining  the  complexity  of  partner  selection 
 regarding the immune system. 

 1.2. How and why does assortative mating take place? 

 The  reasons  explaining  PAM  occurrence  in  human  populations  are 
 proximate  and  ultimate.  Proximate  explanations  focus  on  how  the 
 phenomenon  arises  on  the  bases  of  population  stratification  and  mate 
 choice  according  to  a  mate-value  preference,  and  ultimate  explanations 
 elaborate  on  the  phenomenon  as  an  evolutionary  force  for  positive 
 selection of given traits.  8 

 Researching  PAM  from  the  proximate  point  of  view  would  require  one  to 
 consider  this  form  of  deviation  from  panmixia  as  a  consequence  of 
 population  segregation  into  separate  clusters  according  to  phenotype  (or 
 genotype).  This  could  be  also  referred  to  as  ‘social  homogamy’,  where 
 mates  tend  to  originate  from  the  same  cluster  of  individuals.  8  Therefore, 
 even  if  phenotypic  assortment  is  absent,  a  stratified  population  which 
 strictly  follows  the  social  homogamy  principles,  in  the  long  term  has  a 
 higher  probability  of  demonstrating  some  degree  of  PAM,  compared  to  a 
 well-mixed population.  8 
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 When  researching  patterns  of  assortative  mating,  the  population  scale  is 
 also  of  importance.  Depending  on  whether  the  object  of  study  is  a  local 
 group,  a  country’s  or  a  continental  population,  different  patterns  could  be 
 observed.  This  is  due  to  the  probability  of  coming  across  clines  with 
 distinct  mate  preferences  and  culturally  mediated  social  rules.  Thus,  the 
 deviation  from  the  random  pattern  of  mating  caused  by  social  norms  and 
 consequently,  evolutionary  events  like  genetic  drifts  or  natural  selection, 
 leaves  a  door  open  for  differentiation  of  groups  within  a  certain  spatial 
 continuum regardless of the degree of their shared genetic ancestry.  8 

 The  differentiation  would  then  lead  to  a  higher  phenotypic  variation  which 
 often  goes  together  with  distinct  socio-cultural  attributes.  These  attributes 
 may  be  at  the  core  of  another  possible  explanation  for  PAM,  which  is 
 mate-value  preference  (where  “value”  has  to  be  intended  as  subjectively 
 perceived  value),  or  the  preference  within  a  population  of  a  mate  in 
 possession  of  a  certain  complex  trait.  8  The  preference  of  a  trait,  ranging 
 from  physiological  to  behavioural  characteristics,  may  be  influenced  by  a 
 myriad  of  reasons  including  population-specific  culture,  environment, 
 susceptibility  to  disease  etc.  8  These  factors  could  define  the  mate  values 
 within  a  population,  and  be  the  reason  for  further  cluster  formation 
 depending on paired mate-values.  8 

 1.3. How is assortative mating accounted for? 

 Literature  regarding  assortative  mating  is  abundant  in  studies  investigating 
 the  similarity  between  spousal  couples  based  on  phenotypic  studies  of 
 traits  of  interest,  reported  as  numerical  values  and  further  processed  by 
 statistical  methods.  3,4,7  With  the  advancement  of  genotype  sequencing, 
 the  establishment  of  biobanks  and  the  broad  enlargement  of  genome-wide 
 association  studies  (GWAS)  data,  phenotypic  data  has  been  collected  to 
 provide  numerical  estimates  of  genetic  correlations  for  trait-associated  loci 
 across  the  genome,  therefore  focusing  on  the  more  specific  phenomenon 
 of  genetic  assortative  mating  (GAM).  2,  5-6,  10  As  most  complex  traits 
 associated  with  assortative  mating  are  polygenic,  multiple  predictors  are 
 taken  into  consideration  when  performing  a  correlation  estimate.  10 

 Polygenic  Risk  Scores  (PRS)  are  often  performed  on  different 
 configurations  of  related  and/or  non-related  individuals  so  as  to  estimate 
 the  putative  parents’  PRS  similarities  and  to  infer  whether  any  type  of 
 assortment  has  taken  place  from  a  genetical  point  of  view.  Using  the  latter 
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 approach,  it  has  been  found  that  partners  tend  to  be  similar  in  their  PRS 
 for educational attainment, height and depression.  10 

 1.4. What approaches have been applied so far? 

 From  a  genetic  viewpoint,  evaluation  of  assortative  mating  usually  tends  to 
 happen  by  either  using  the  above-described  strategy  of  PRS  comparison 
 between  partners,  or  by  a  comparatively  new  methodology,  which  seeks 
 traces of genetic assortative mating in the offspring’s genome.  12 

 The  latter  focuses  on  calculating  the  correlation  between  trait-increasing 
 alleles  (TIAs)  on  odd  versus  even  chromosomes,  as  an  estimate  for 
 gametic  phase  disequilibrium  (GPD).  GPD  estimate  under  random  mating 
 is  expected  to  be  approximately  0,  while  if  assortative  mating  has  taken 
 place,  the  TIAs  will  be  equally  dispersed  throughout  the  genome. 
 Therefore,  the  correlation  between  GPD  odd  and  GPD  even  is  assumed  to 
 differ from 0 under assortative mating. 

 Assortative  mating  investigations  are  a  genetic  gateway  to  understanding 
 the  underlying  biological  bases  for  mating  behaviours  in  human 
 populations.  Despite  the  need  for  establishing  a  global  understanding  of 
 this  process,  the  genotype  data  available  for  analysis  is  centred  mainly 
 around  European  populations.  2,5,9,14  A  recent  endeavour  has  been  made 
 by  Yamamoto  et  al.  in  order  to  trace  the  genetic  footprints  of  assortative 
 mating  in  the  Japanese  population.  13  The  study  implements  the  approach 
 developed  by  Yengo  et  al.  12  so  as  to  identify  the  traits  showing  most 
 significant  levels  of  GPD,  and  further  compare  the  results  with  such 
 obtained from the UK Biobank. 

 1.5.  What  is  the  approach  applied  in  this  study?  How 
 does it stand out from the previous ones? 

 In  the  current  piece  of  work,  we  develop  a  novel  method  in  order  to 
 account  for  assortative  mating  via  individual  genomes  as  by  Yengo  et  al.  , 
 however,  by  tracking  the  degree  of  genetic  assortative  mating  (GAM) 
 through  an  estimated  heterozygosity  score.  The  method  is  based  on 
 analysing  individual  autosomal  DNA  broken  down  into  windows  of  set  size 
 in  kilobases  (i.e.  50kb  wide).  The  estimated  heterozygosity  for  each 
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 window  containing  single  nucleotide  polymorphisms  (SNPs)  associated 
 with  a  trait  of  interest,  when  being  significantly  different  from  the  estimated 
 heterozygosity  for  the  rest  of  the  windows,  can  be  regarded  as  an  indicator 
 of  genetic  assortative  mating  for  the  trait  of  interest  between  the  parents  of 
 the  individual.  The  genome-division  strategy  has  been  previously  proved 
 to  be  effective  in  accounting  for  ancestral  contributions  to  complex  traits  in 
 contemporary Europeans  11  . 

 As  stated  above,  the  scores  and  differences  between  the  windows 
 associated  with  the  trait  of  interest  and  the  rest  of  the  genome  could  be 
 interpreted  as  a  marker  for  a  form  of  sexual  selection,  which  is  different 
 from  the  random  one.  Thus,  it  can  be  both  a  form  of  negative  assortment 
 and  a  form  of  positive  assortment,  depending  on  the  direction  of  the 
 difference  between  the  heterozygosity  score  for  genome-wide  and 
 trait-associated windows. 

 This  methodology  aims  to  provide  a  better  insight  into  the  patterns  of 
 recent  assortative  mating  of  homogenous-background  individuals  from 
 Europe,  looking  for  a  different  genetic  architecture  than  the  one  expected 
 under  random  mating  and  comparing  it  with  the  reported  phenotypic 
 characteristics.  2,12  Simultaneously,  it  represent  a  novel  way  for  numeric 
 representation  and  analysis  of  mating  events  that  took  place  a  generation 
 ago without the usage of couples’ data and PRS as sources. 
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 2. Aims 

 The  aim  of  this  work  is  to  investigate  key  factors  in  mate  choice  from  a 
 genetic  perspective  in  two  present  day  European  populations.  This  goal  is 
 set  to  be  fulfilled  by  the  assessment  of  contrasts  between  heterozygosity 
 levels  in  parts  of  the  genome  where  SNPs  relevant  to  the  trait  of  interest 
 are located against the rest of the genome. 

 In  order  to  acquire  a  numerical  representation  of  the  biological 
 phenomenon,  a  calculated  heterozygosity  score  is  obtained  through 
 computational  means  designed  for  the  purpose.  The  results  undergo  a 
 series  of  statistical  analysis  downstream,  which  aim  to  detect  signals  of 
 genetic assortative mating and to assess its extent on a population scale. 

 The  outlook  of  this  study  is  to  provide  a  new  insight  on  mate  choice, 
 investigating  in-depth  the  genetic  perspective  of  the  phenomenon  via  a 
 novel  method  that  has  been  applied  for  the  first  time  in  this  context. 
 Through  a  targeted  search  for  signals  of  assortative  mating  for  various 
 complex  traits,  the  goal  is  to  discover  whether  patterns  of  sexual  selection 
 are  uniform  or  different  across  modern  day  Europe.  In  addition  to  the 
 thorough  genetic  scans,  the  processed  genotype  data  is  juxtaposed 
 against  the  phenotypes  in  order  to  control  for  extreme  geno-phenotype 
 patterns. 
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 3. Methods 

 3.1. Data Availability 

 The  current  work  uses  data  from  the  UK  Biobank  project  GWAS  and  the 
 Estonian  Biobank  via  the  access  of  prof.  Luca  Pagani  due  to  collaborative 
 research  with  the  University  of  Edinburgh  and  his  research  affiliation  with 
 the  Institute  of  Genomics  of  the  University  of  Tartu,  Estonia,  which  hosts 
 the  biobank.  Each  Biobank  provided  genotypes  for  around  800K 
 genome-wide  SNPs  for  each  individual.  Genotype  and  phenotype  data  for 
 50,000  anonymous  and  unrelated  individuals  from  each  biobank  were 
 processed  and  the  per  window  summary  statistics  obtained  by  prof.  Luca 
 Pagani  using  the  script  developed  for  the  purposes  of  the  study.  The 
 aggregated  and  anonymous  results  were  then  further  processed  on  a  local 
 machine. 

 3.2. Traits of Interest: Definition, Categorisation, Source 

 The  traits  of  interest  that  were  analysed  in  this  study,  given  the  available 
 genotype and phenotype data, are divided into 4 broad categories: 

 ●  Anthropometrics and pigmentation 
 ●  Reproductive behaviour 
 ●  Educational attainment 
 ●  Subjective well-being 

 The  above-listed  classes  are  composed  of  traits  selected  from  the  GWAS 
 Catalog,  maintained  by  EMBL-EBI.  The  table  attached  on  the  next  page 
 contains  information  about  the  category,  trait,  EFO  IDs  and  whether 
 phenotype data per each trait was provided by the respective biobank. 
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 Anthropometrics and Pigmentation 

 EFO ID in 
 EMBL-EBI 

 GWAS Catalog 

 Trait  Number of 
 GWAS-significant 
 SNPs included in 

 the current 
 analysis 

 UK Biobank  Estonian 
 Biobank 

 EFO_0004339  Body height  4919  +  + 

 EFO_0004340  Body mass 
 index (BMI) 

 4520  +  + 

 EFO_0004342  Waist 
 circumference 

 4880  +  - 

 EFO_0005093  Hip 
 circumference 

 4769  +  - 

 EFO_0004343  Waist-hip ratio  1605  +  - 

 EFO_0007788  BMI-adjusted 
 waist-to-hip 

 ratio 

 4895  -  + 

 EFO_0007789  BMI-adjusted 
 waist 

 circumference 

 4858  -  + 

 EFO_0007777  Base metabolic 
 rate 

 measurement 

 11  +  - 

 EFO_0003924  Hair colour  463  +  + 

 EFO_0006336  Diastolic blood 
 pressure 

 3859  +  + 

 EFO_0006335  Systolic blood 
 pressure 

 4898  +  + 

 EFO_0007805  HDL  72  -  + 

 EFO_0007804  LDL  33  -  + 

 EFO_0003949  Eye colour  102  -  + 

 EFO_0009902  Handedness  73  +  + 

 Reproductive Behaviour 

 EFO_0004703  Age at 
 menarche 

 629  +  + 

 EFO_0004704  Age at 
 menopause 

 334  +  - 
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 Educational Attainment 

 EFO_0011015  Educational 
 Attainment 

 4983  +  - 

 Subjective Well-Being 

 EFO_0007878  Alcohol 
 consumption 
 measurement 

 3221  *  + 

 EFO_0005271  Sleep duration  754  +  + 

 EFO_0002009  Major 
 depressive 

 disorder 

 453  +  + 

 EFO_0008328  Chronotype  1194  +  - 

 EFO_0006781  Coffee 
 consumption 
 measurement 

 325  +  + 

 “+” signifies availability of phenotype data on the trait of interest 
 “-” signifies lack of phenotype data on the trait of interest; any results reported on these 
 traits are based only on genotype data. 
 “*” taken as a summed up phenotype of multiple alcohol consumption related categories 
 provided in the UK BioBank phenotype data. 

 Table 1.  Traits for each major category with provided  EFO ID from the 
 EMBL-EBI GWAS catalogue and information on phenotype availability. 

 3.3. Heterozygosity Score 

 The  foundation  for  any  further  calculations  and  analyses  in  this  work  is  the 
 estimated  heterozygosity  score  for  each  of  the  windows,  which  we  set  to 
 be  as  wide  as  50kb  in  size,  along  the  autosomal  DNA  of  the  sampled 
 individuals. 

 The score (  ) of for each window is estimated as: γ

γ   =    α    / (α   + β   ),

 where  is  the  heterozygous  positions  against  the  overall  positions  count α
 in  the  window  ratio,  and  is  the  estimated  population  average β
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 heterozygosity  for  the  window.  Thus  is  the  heterozygosity  score  per γ
 window per individual controlled against the population average. 

 The  purpose  of  is  to  provide  a  numerical  representation  of  the  window γ
 heterozygosity  per  individual,  yet  normalised  against  the  population 
 average.  The  implementation  of  this  strategy  allows  monitoring  of 
 heterozygosity  levels  in  different  windows  across  the  genome,  some  of 
 which  contain  SNPs  for  the  trait  of  interest,  and  further  comparison  in 
 order  to  detect  differences  in  the  distribution  of  trait-related  windows  and 
 the rest of the genome for the sample population. 

 We  monitor  assortative  mating  based  on  heterozygosity  scores,  as  the 
 latter  serve  as  an  indicator  of  the  ratio  of  different  haplotypes  inherited 
 from  the  individual’s  parents.  Given  the  score  is  lower  than  the  population 
 average  for  the  window,  the  individual  is  considered  to  be  more 
 homozygous  than  the  population  on  average,  having  inherited  more 
 identical  haplotypes  from  their  parents.  An  opposite  scenario  in  which  the 
 individual  holds  a  higher  heterozygosity  score  than  the  population  average 
 for  this  window,  would  mean  the  individual  is  more  heterozygous  than  the 
 population  on  average,  having  inherited  more  different  haplotypes  from 
 their parents. 

 Additionally,  in  order  to  prevent  downstream  bias  in  the  analyses,  a 
 threshold  of  available  SNPs  per  window  is  introduced  when  the 
 heterozygosity score is computed. 

 3.4.  The  Delta  Test:  Primary  Screening  of 
 Heterozygosity 

 To  provide  a  generalised  view,  the  delta  test  was  introduced  firstly.  The 
 delta  test  essentially  is  a  test  which  provides  the  numerical  difference 
 between  the  median  genome-wide  heterozygosity  score  for  each 
 individual  and  the  median  heterozygosity  score  only  for  the  trait  related 
 windows of the same individual, expressed as: 

∆   =     𝑚𝑒𝑑 ( 𝐴 )   −     𝑚𝑒𝑑 ( 𝐵 ),

 where  med  signifies  median  number,  A  -  sequence  of  values  of  A, 
 containing  the  genome-wide  heterozygosity  scores  and  B  -  sequence  of 
 values  B,  containing  the  heterozygosity  scores  only  of  trait-related 
 windows. 
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 This  method  is  used  to  provide  an  initial  view  of  what  proportion  of 
 individuals  in  a  given  population  demonstrate  extreme  levels  of 
 heterozygosity,  both  high  and  low,  at  the  genetic  loci  reported  to  be 
 associated  with  a  given  trait.  Furthermore,  this  method  facilitates  the 
 juxtaposition  of  the  acquired  delta  scores  per  individual  against  the 
 phenotype residuals for the studied complex trait. 

 The  term  “residuals”  is  used  to  describe  the  values  obtained  through 
 multiple  linear  regression  models  accounting  for  the  effects  of  an 
 individual’s  sex  and  age  on  some  numeric  phenotype  data  like  BMI,  body 
 height,  waist  circumference  etc.  Thus  the  dimensionality  of  the  data  was 
 reduced  and  the  juxtaposition  of  genotype  data  against  the  phenotype  was 
 possible. 

 The  multiple  linear  regression  models  on  the  UK  biobank  phenotype  data 
 were  generated  through  the  Statsmodels  Python  package  by  myself 
 controlling for sex and age of the individuals following the formula 

 ,  𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒    =     𝑚 
 1 

×  𝑠𝑒𝑥    +     𝑚 
 2 

×  𝑎𝑔𝑒    +  𝑎𝑔𝑒  2    +     𝑐    

 where  m  1  and  m  2  denote  the  slopes  of  the  independent  variables  and  c 
 denotes  the  residuals.  The  Estonian  biobank  residuals  were  incorporated 
 with the courtesy of Davide Marnetto, University of Turin. 

 3.5.  Statistical  Analysis:  Deciphering  Signals  of  Genetic 
 Assortative Mating 

 3.5.1. Mann-Whitney U-tests 

 The  heterozygosity  scores  across  the  genome  are  further  used  in 
 comparison  of  the  overall  heterozygosity  distributions  of  the  trait-related 
 windows  and  the  rest  of  the  genome.  In  order  to  correctly  identify 
 distribution  differences  we  used  the  Mann-Whitney  U-test,  a 
 non-parametric  statistical  test  which  aims  at  identifying  whether  two 
 independent  and  unequal  in  size  samples  have  statistically  significant 
 differences  in  their  distributions.  The  Mann-Whitney  test  is  often  called 
 Mann-Whitney-Wilcoxon,  as  the  objective  of  both  the  Mann-Whitney  and 
 the  Wilcoxon  test  is  to  compare  the  distributions  between  two  samples. 
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 However,  the  Wilcoxon  test  requires  dependent  samples  of  even  size, 
 which is practically impossible given the parameters of our analysis.  15 

 The  U-test  is  applied  to  each  complex  trait,  as  one  of  the  samples  consists 
 of  the  scores  of  the  SNPs-containing  windows,  and  the  other  sample 
 contains  the  scores  of  the  rest  of  the  genome-wide  windows.  The  results 
 we  aim  for  as  output  are  represented  by  the  p-value  for  each  individual  in 
 the  population  sample  and  if  p  <  0.05,  another  value,  𝜹,  is  calculated.  𝜹 
 estimated  as  the  difference  in  the  distributions  between  the  trait-related 
 windows and the rest of the genome, expressed as: 

 ,  𝜹    =     𝑚𝑒𝑑 ( 𝑇 )   −  𝑚𝑒𝑑 ( 𝑅 )   

 where  T  is  the  sequence  containing  all  trait-related  heterozygosity  scores, 
 and  R  is the sequence containing all the rest heterozygosity  scores. 

 Provided  there  is  a  statically  significant  difference  in  the  two  distributions, 
 𝜹  numerically  points  whether  the  distribution  of  the  trait-related  windows  is 
 less  heterozygous  than  the  rest  of  the  genome,  suggesting  PAM,  or  more 
 heterozygous than the rest of the genome, suggesting NAM. 

 3.5.2. Degree of Assortative Mating Detected 

 The  above-described  procedure  aims  at  providing  information  on  what 
 proportion  of  the  sample  population  demonstrates  significant  difference  in 
 the  distributions  of  the  trait  and  the  rest  of  the  genome.  This  on  its  own  is  a 
 good  indicator  of  possible  GAM.  However,  to  avoid  false  discoveries  (Type 
 I  errors)  and  to  assess  the  degree  of  genetic  assortative  mating  for  each 
 complex  trait,  we  accounted  for  multiple  testing  in  two  ways  :  the 
 Bonferroni  correction,  as  a  multiple  tests  correction,  and  the 
 Benjamini-Hochberg  procedure  to  decrease  the  false  discovery  rate 
 (FDR). 

 The  Bonferroni  correction  aims  to  filter  out  any  possible  false  discoveries 
 by  setting  the  threshold  p-value  as  low  as  the  initially  set  alpha  (0.05) 
 divided  by  the  number  of  individuals  forming  the  population  studied.  The 
 low  p-value  serves  as  a  strict  threshold,  allowing  only  deep  signals  of 
 GAM to pass. 

 Due  to  the  overly  conservative  nature  of  the  Bonferroni  correction  16  , 
 another  procedure  was  applied  in  order  to  prevent  the  loss  of  power.  The 
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 Benjamini-Hochberg  method  of  FDR  was  applied  as  a  milder  approach  to 
 filter  out  the  significant  results  on  a  population  scale  in  parallel.  As  Waite 
 and  Campbell  define  it,  the  Benjamini-Hochberg  procedure  “represents  a 
 compromise  between  the  need  to  correct  for  multiplicity  and  the  need  to 
 conserve power” .  17 

 The  parallel  analyses  are  introduced  in  order  to  ensure  maximally  that  the 
 final  results  are  not  excessively  conservative,  yet  to  prevent  falsely 
 abundant signals of GAM. 

 3.6. Code Availability 

 The  code  created  for  the  purposes  of  this  study  has  been  attached  as 
 Appendix A. 
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 4. Results 

 4.1. Heterozygosity Score Calculation 

 The  heterozygosity  data  for  both  biobanks  was  calculated  using  the 
 Python  script  on  Appendix  A  .  As  each  population  was  equipped  with  a 
 heterozygosity  score,  an  initial  plot  of  the  median  heterozygosity  on  a 
 population-scale  was  generated  for  both  the  UK  biobank  and  the  Estonian 
 biobank.  As  peculiar  as  it  seemed  there  was  an  unexpected  and  sudden 
 decrease  in  the  window-based  median  heterozygosity  score  for  part  of  the 
 UKBB  individuals,  which  may  indicate  inbreeding  in  a  certain  individual’s 
 family history. 

 These  individuals  were  excluded  from  further  analyses  so  as  to  prevent 
 downstream  deviation  of  the  results,  due  to  the  lack  of  information  on 
 reasons  why  this  phenomenon  was  observed.  Thus  from  a  total  of  50,000 
 individuals  included  initially,  the  downstream  data  was  based  on  44,450 
 individuals,  who  did  not  demonstrate  visible  heterozygosity  decrease 
 compared  to  the  rest  of  the  UKBB  cohort.  The  median  genome-wide 
 heterozygosity  for  the  UK  biobank  population  is  rounded  to  0.497.  The 
 heterozygosity  data  of  the  Estonian  biobank,  based  on  49,646  individuals, 
 showed  a  consistently  lower  median  genome-wide  heterozygosity  on  a 
 population  level  with  a  rounded  score  of  0.475.  This  observation  is  easily 
 explainable  by  the  largely  different  demographic  history  of  the  two 
 populations  26  . 

 4.2. Primary Screening 

 As  a  preliminary  step  aimed  at  evaluating  the  computed  statistics,  we 
 performed  a  primary  screening.  This  term  denotes  the  initial  evaluation  of 
 individual  differences  between  the  genome-wide  heterozygosity  score  and 
 the  trait-related  scores,  also  called  delta  score  (  ).  The  delta  score  is ∆   
 bound  to  have  value  either  higher  than  0,  marking  a  lower  heterozygosity 
 score  for  the  trait-related  genetic  windows  than  the  genome-wide  median, 
 or  lower  than  0,  marking  a  higher  heterozygosity  score  for  the  trait-related 
 genetic  windows  compared  to  the  genome-wide  median.  In  this  context, 
 the  results  of  the  primary  screening  are  supposed  to  serve  as  an  initial 
 assessment of the probability of GAM in both populations. 
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 Additionally,  the  results  of  the  primary  screening  are  used  as  reference 
 genetic  markers  when  plotted  against  the  residual  phenotypes  from  both 
 biobanks.  This  strategy  is  facilitated  by  the  facts  that  all  SNPs  included  in 
 the  trait  analysis  are  located  on  autosomes,  and  all  continuous 
 phenotypes are taken as residuals after controlling for sex and age impact. 

 4.2.1. Anthropometrics and pigmentation 

 The  primary  screening  of  the  traits  assigned  to  the  “Anthropometrics  and 
 pigmentation”  category,  showed  a  tendency  for  higher  proportion  of  the 
 Estonian population having  > 0, compared to the  UK population (Fig.2A) ∆
 This  finding  indicates  there  is  a  higher  percentage  of  individuals  in  the 
 Estonian  biobank,  whose  parents  are  genetically  similar  for  traits  in  this 
 category.  Exceptions  from  this  overall  observation  are  the  categories  of 
 high-density  lipoprotein  cholesterol  (HDL)  and  basal  metabolic  rate  (BMR). 
 For  HDL,  the  UK  population  demonstrated  a  slightly  higher  percentage  of 
 individuals  exhibiting  primary  similarity  for  the  trait,  with  48.03%  against 
 the  47.18%  demonstrated  by  the  Estonian  one.  Although  the  difference  is 
 comparatively  insignificant,  it  points  at  a  higher  percentage  of  Estonian 
 individuals  whose  parents  are  not  genetically  similar  for  HDL  genomic 
 windows.  Due  to  a  threshold  of  SNPs  available  for  each  window,  set  at  the 
 beginning  of  the  experiment,  genotype  data  for  BMR  is  absent  on  Fig.  2A 
 for  the  Estonian  biobank  sample.  Thus  the  two  populations  cannot  be 
 compared.  However,  the  share  of  the  population  demonstrating  similarity 
 between  mates  for  BMR  in  the  previous  generation  is  highest  in  this 
 category  with  its  55.2%,  and  third  among  all  traits,  surpassed  only  by 
 chronotype (62.47%) and age at menopause (59.34%). 

 4.2.2. Reproductive behaviour 

 The  scan  for  autosomal  similarities  between  mates  from  the  previous 
 generation  for  the  age  at  menarche  and  menopause  showed  a  different 
 primary  pattern.  The  age  at  menarche  seems  to  have  scored  a  lower 
 result  in  the  UK  population  (44.91%)  compared  to  the  Estonian  one 
 (52.81%).  In  contrast,  the  age  of  menopause  demonstrates  the  second 
 highest  similarity  in  the  UK  population  with  59.34%  compared  to  the 
 Estonian  54.56%.  Thus  a  reversed  pattern  of  similarity  for  traits  in  this 
 category can be observed in the primary screening, as depicted in Fig.2B. 
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 4.2.3. Educational Attainment 

 Results  show  Estonian  mates  from  the  previous  generation  seem  to  have 
 been  more  similar  in  windows  related  to  educational  attainment,  across 
 the  autosomal  DNA,  with  48.31%  of  >  0  against  the  UK’s  31.44%  (Fig. ∆
 2C). 

 4.2.4. Subjective Well-Being 

 This  section  aimed  to  provide  an  insight  on  how  similar  mates  from  these 
 two  different  populations  tend  to  be  for  traits  of  social  relevance.  Among 
 the  investigated  traits,  the  UK  biobank  share  of  individuals  holding  >  0 ∆
 was  highest  for  chronotype  (Fig.  2D).  This  is  the  trait  among  all  the  others 
 for  which  the  UK  population  demonstrates  the  highest  level  of  similarity  in 
 trait-related  windows  across  the  genome  (62.47%).  All  other  traits 
 demonstrated  the  traditionally  higher  proportion  of  Estonian  individuals 
 with more homozygous trait-related windows. 

 Thus,  the  primary  screening  for  similarity  in  the  trait-related  parts  of  the 
 genome  shows  a  consistent  trend  across  both  populations.  Although 
 extreme  differences  between  the  two  populations  are  absent,  there  is  a 
 predominantly  higher  proportion  of  individuals  from  the  Estonian  biobank 
 whose  parents  have  passed  on  similar  genetic  characteristics  for  the  traits 
 of  interest.  This  tendency,  of  course,  can  be  linked  with  the  genome-wide 
 lower  heterozygosity  score,  which  was  already  discussed  in  section  4.1. 
 Nevertheless,  a  few  significant  differences  in  favour  of  the  UK  biobank 
 sample  are  present,  where  the  share  of  individuals  with  >  0  is  higher  - ∆
 HDL, age at menopause and chronotype. 
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 Figure 2.  Comparison between groups exhibiting lower  heterozygosity for the trait in the UK Biobank (blue) and the 
 Estonian biobank (orange) for the following categories:  A  ) Anthropometrics and pigmentation,  B  ) Reproductive 

 behaviour,  C  ) Educational attainment and  D  ) Subjective  well-being 
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 4.3. Comparison of Genotype - Phenotype Data 

 In  order  to  understand  better  how  phenotypes  and  heterozygosity  scores 
 correlate,  a  juxtaposition  of  the  available  phenotypic  data  against  the 
 median  heterozygosity  scores  for  the  traits  and  the  primary  screening 
 results  was  introduced.  Plotting  the  available  data,  linear  regression 
 models  and  the  densities  per  phenotype  in  each  trait,  a  complete  scan  for 
 correlating  deviations  in  both  geno-  and  phenotype  was  performed.  The 
 information  regarding  phenotype  was  used  as  absolute  residuals  of 
 multiple  regression  models  accounting  for  the  phenotype  dependencies  on 
 sex and age of the individuals, as pointed in section 3.4. 

 4.3.1. Anthropometrics and pigmentation 

 Initially,  the  concept  of  low  heterozygosity  scores  at  the  loci  associated 
 with  a  given  trait,  compared  to  the  rest  of  the  genome,  may  also  point  to 
 the  expression  of  an  extreme  phenotype.  To  elaborate  on  this  part,  the 
 following  example  may  be  provided:  if  the  offspring  of  mates  with 
 haplotypes  for  higher  than  the  average  body  height  give  birth  to  an 
 offspring  with  a  low  heterozygosity  score  for  height,  one  would 
 automatically  expect  that  the  offspring  would  also  demonstrate  the 
 phenotype  by  displaying  a  higher  than  the  average  height.  Controversially, 
 the  results  did  not  actually  correspond  to  such  an  expectation.  The 
 information  gained  during  the  comparison  shows  individuals  holding  low 
 trait  median  heterozygosity  scores  actually  express  no  deviations  or 
 low-to-mild ones, as shown in fig. 3A. 

 Given  that  height  is  a  largely  polygenic  trait  with  more  than  4919 
 genome-wide  significant  SNPs  involved  in  the  analysis,  it  could  be 
 assumed  that  the  lack  of  initial  filtering  may  be  a  premise  for  vague 
 downstream  results.  However,  traits  such  as  eye  colour  (100  SNPs), 
 low-density  lipoprotein  cholesterol  (33  SNPs)  and  BMR  (16  SNPs),  which 
 hit  at  least  40-fold  less  parts  of  the  genome,  still  exhibit  the  same 
 behaviour in both their correlations. 

 The  pattern  observed  above  kept  repeating  throughout  both  datasets  for 
 the  anthropometrics  and  pigmentation  category.  No  significant  deviation  in 
 phenotype  was  observed  in  individuals  highly  homozygous  for  the  traits 
 neither  in  trait-median-vs-phenotype  correlation  nor  in  the 
 delta-score-vs-phenotype  correlation.  Individuals  who  aligned  at  the 
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 extreme  phenotypes  demonstrated  median  heterozygosity  for  traits  close 
 to the population-average. 

 Figure 3.  Linear regression models for  A)  height heterozygosity  median 
 score against absolute phenotypic residuals and  B)  primary screening 

 result against absolute phenotypic residuals. 

 Due  to  some  differences  in  the  phenotypic  data  available  in  the  UKBB  and 
 the  EstBB,  marked  in  Table  1,  information  on  a  few  categories  was  only 
 available  for  one  of  the  two  biobanks,  and  the  availability  of  sex-indicated 
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 individuals  in  the  UKBB  allowed  for  a  detailed  linear  regression  models 
 examination.  Due  to  the  availability  of  the  sex-indicated  individuals  from 
 the  UKBB,  the  linear  regression  models  for  hair  colour  showed  some 
 unexpected  difference  in  the  correlation  trends  between  male  and  female 
 individuals  .  As  hair  colour  can  be  considered  a  discrete  phenotype, 
 correlations  between  the  genome-wide  medians  and  the  delta  scores  were 
 seeked.  Among  the  available  phenotypes  in  the  UKBB,  the  “dark  brown” 
 and  “other”  phenotypes  did  not  show  any  significant  correlation  (Fig.  4A, 
 B),  whereas  the  “blonde”  and  “light  brown”  phenotypes  were  positively 
 correlated (Fig. 4C, D). 

 Figure 4.  Hair colour correlations between genome-wide  heterozygosity 
 and delta scores for  A)  dark brown,  B)  other,  C)  blonde,  D)  light brown,  E) 

 red and  F)  black hair colours. 
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 However,  a  different  trend  was  spotted  between  the  female  and  male 
 individuals  in  the  red  hair  and  black  hair  phenotypes.  The  delta  scores 
 correlation  to  the  genome-wide  median  is  positive  in  females,  while  for 
 males  the  correlation  between  the  two  is  negative  (FIg.  4E).  On  the 
 contrary,  female  individuals  with  black  hair  demonstrate  a  short-span 
 negative  correlation  between  the  delta  scores  and  their  genome-wide 
 medians,  while  males  show  a  positive  one  (Fig.4F).  This  finding  looks  in 
 detail  at  the  sex-based  difference  in  the  correlation  between  the 
 genome-wide  heterozygosity  and  the  hair  colour  primary  assortment  score 
 in individuals with red and black hair from the UKBB. 

 Other  traits  related  to  anthropometrics  and  pigmentation  did  not 
 demonstrate  differences  between  the  correlations  as  previously  described. 
 However,  the  HDL,  LDL  and  eye  colour  data  in  the  Estonian  biobank 
 cohort  showed  a  certain,  but  not  predominant,  proportion  of  individuals, 
 demonstrating  outlined  homozygosity  for  the  traits.  Those  individuals  were 
 widely  spread  across  the  absolute  residuals  axis  for  HDL  and  LDL  (Fig.5), 
 which  points  at  the  fact  that  extreme  homozygosity  scores  for  the  trait, 
 consequently  delta  scores  (  HDL  max  =  0.5,  LDL  max  =  0.5),  could  be  linked ∆ ∆
 both  with  extreme  phenotypes,  and  with  standard,  non-deviating  ones.  No 
 significant correlation trend was found. 

 Figure 5.  Linear regression models of  HDL and LDL  delta scores against 
 the absolute residual values. 
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 The  same  strong  homozygosity  is  observed  also  in  a  group  of  people  for 
 the  eye  colour  characteristics.  Considering  eye  colour  is  a  discrete 
 phenotype,  the  generated  linear  regression  models  look  for  any  specific 
 correlation  between  genome-wide  medians  and  delta  scores.  None  of  the 
 phenotypes  showed  a  significant  correlation.  However,  a  slight  gradient  of 
 individuals  with  predominantly  light-coloured  eyes  can  be  observed  in  a 
 span  of  0.06  score  units.  The  group  of  individuals  at  the  top  of  Fig.6, 
 expressing  outstandingly  high  delta  scores  also  span  through  the  whole 
 range  of  genome-wide  medians,  and  surprisingly,  this  group  is  composed 
 of  individuals  with  all  the  eye  colour  phenotypes.  Therefore,  a  correlation 
 pattern can be drawn for none of the available eye colour phenotypic data. 

 Figure 6.  Linear regression models of  eye colour delta  scores against 
 genome-wide medians from the Estonian biobank cohort. 

 4.3.2. Reproductive Behaviour 

 All  of  the  procedures  described  in  section  4.3.1  were  applied  to  both  traits 
 included  in  the  reproductive  behaviour  category:  age  at  menarche  and  age 
 at  menopause.  Phenotypic  data  on  age  of  menarche  was  provided  by  both 
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 cohorts,  while  age  at  menopause  data  was  available  only  for  the  UKBB 
 cohort.  The  generated  linear  regression  models  did  not  show  any 
 significant  trends.  In  addition,  the  data  distribution  was  uniform  suggesting 
 no distinguished genotype-phenotype patterns. 

 4.3.3. Educational Attainment 

 The  educational  attainment  phenotype  data  was  only  available  for  the  UK 
 population,  which  limited  the  scope  of  the  genotype-phenotype 
 comparison  for  this  trait.  Looking  for  patterns  linking  the  age  of  completed 
 education  with  heterozygosity  scores,  it  became  evident  the  mean  age  of 
 completed  education  for  the  population  was  between  15  and  16  years  of 
 age. This finding motivated a deeper analysis of the cohort. 

 According  to  phenotype  data  from  the  UK  Biobank,  the  average  age  of 
 individuals  who  have  provided  information  about  this  trait,  is  57  years.  The 
 individuals  aged  30  to  40  years  from  the  entire  dataset  are  276.  Taking 
 into  consideration  the  weight  of  the  rest  of  the  population  against  276 
 individuals,  it  is  understandable  why  the  mean  age  of  completed  education 
 is  shifted  towards  lower  values.  In  a  further  attempt  to  link  the  findings  with 
 events  of  educational  relevance,  the  Raising  of  School  Leaving  Age  in 
 England  and  Wales  (also  known  as  ROSLA)  provides  a  plausible 
 explanation.  This  event  provides  an  overview  of  how  the  age  of  obligatory 
 education  has  changed  over  less  than  a  century.  Reforms  on  school 
 leaving  age  were  introduced  twice  in  the  period  which  may  be  linked  with 
 the  shifted  value  in  the  analysis  -  one  in  1947  setting  the  age  of  leaving 
 school  to  15,  and  another  one  in  1972  increasing  it  to  16.  A  logical  link 
 could  be  made  between  the  average  age  of  the  individuals  recruited  in  the 
 UKBB cohort and the ROSLA reforms throughout the 20th century  25  . 
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 Figure 7.  The ROSLA footprint on the correlation between  age of 
 recruitment and educational attainment. 

 Thus,  the  most  densely  populated  groups  are  the  ones  of  the  individuals 
 who  concluded  their  education  at  the  age  of  15  and  16.  However,  there  is 
 a  moderate  gradient  towards  an  increasing  age  of  completed  education 
 (Fig.7),  corresponding  with  a  well  expressed  negative  correlation  between 
 the  age  of  recruitment  of  the  individuals  in  the  population  and  their  school 
 leaving age. 

 The  event,  however,  did  not  produce  a  specific  pattern  from  a  genetic 
 point  of  view,  with  the  exception  of  a  neglectable  number  of  individuals 
 who  demonstrated  decreased  heterozygosity  for  the  trait,  but  within  the  0 
 to 2.5 years residuals span. 

 4.3.4. Subjective Well-Being 

 Apart  from  a  general  investigation  into  whether  there  is  a  specific 
 correlation  between  the  genotype  and  phenotype  data  for  any  of  the  traits 
 in  this  category,  a  parallel  comparative  analysis  between  the  two 
 populations  was  made.  No  specific  correlation  between  the  delta  score 
 and  the  absolute  residuals  of  the  phenotypes  were  identified.  However,  the 
 Estonian  biobank  samples  were  spread  across  the  y-axis  in  the  range  min  ; ∆
 max  =  [-0.10;  0.10],  while  the  UK  biobank  ones  were  positioned  in  the  range 

 min  ;  max  =  [-0.03;  0.05].  This  would  indicate  individuals  from  the  Estonian ∆
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 cohort  demonstrated  higher  levels  of  both  homozygosity  and 
 heterozygosity  for  the  trait,  compared  to  the  UK  one.  Comparing  the 
 phenotypes  in  both  biobanks  associated  with  highest  genetic  similarity  in 
 the  parents  of  the  individuals,  the  UK  one  was  associated  with 
 consumption  of  alcohol  3  to  4  times  a  week,  and  in  the  Estonian  samples  - 
 approximately 0.5 units deviation from the mean. 

 The  parts  of  the  genome  related  with  sleep  duration  showed  a  similar 
 behaviour  as  the  ranges  of  the  delta  score  for  the  two  populations  were 
 respectively  min  ;  max  =  [  -0.10;  0.15]  for  the  Estonian,  and  min  ;  max  =  [-0.04; ∆ ∆
 0.08]  for  the  UK  one.  For  both  populations  a  higher  upper  bound  was 
 observed,  suggesting  the  presence  of  individuals  who  have  inherited  more 
 similar  genetic  information  for  this  trait  from  their  parents  rather  than 
 dissimilar.  The  observed  values  were  not  linked  to  an  extreme  phenotype, 
 with  the  maximum  values  in  both  populations  exhibiting  a  deviation  from 
 the respective means by not more than 2 hours of sleep. 

 The  tendency  of  the  Estonian  cohort  to  show  wider  delta  score  variation 
 was  repeated  in  the  coffee  consumption  group  (UK  min  ;  max  =  [-0.05;0.15],    ∆
 Estonian  min  ;  max  =  [-0.2;  0.5])  and  the  major  depressive  disorder  group ∆
 (UK  min  ;  max  =  [-0.1;  0.4],  Estonian  min  ;  max  =  [-0.2;  0.5]).  In  terms  of ∆ ∆
 phenotypic  expression,  the  coffee  consumption  in  the  UK  cohort  was  not 
 linked  with  a  specific  behaviour,  rather  a  repetition  of  the  previous  traits  for 
 which  the  highest  min  ;  max  stuck  close  to  neglectable  deviations  from  the ∆
 mean.  The  highest  delta  scores  were  detected  for  coffee  intake  not  higher 
 than  15,  which  is  more  than  25  units  from  the  maximum  extreme.  In 
 contrast,  the  model  generated  for  the  Estonian  cohort,  showed  the 
 standard  consumption  on  a  population  scale  is  between  4  and  7.  Although 
 there  was  a  gradient-like  pattern  of  increasing  consumption,  the  majority  of 
 the  samples  lied  in  the  4-to-7  range,  with  the  highest  min  ;  max  lying  there  as ∆
 well. 

 The  findings  in  this  category  do  not  differ  greatly  from  the  rest  of  the 
 results.  The  genotype-phenotype  imposition  applied  to  all  traits  with  an 
 available  phenotype  in  at  least  one  of  the  biobanks,  shows  the  probability 
 for  an  observed  phenotype  linked  with  aver  heterozygosity  for  the 
 trait-related  sections  of  the  genome  is  not  limited  to  the  extreme 
 phenotypes, but is often observed 

 The  results  in  this  section  point  to  a  tendency  of  larger  absolute 
 differences  between  the  whole  genome  heterozygosity  and  the  trait-related 
 windows  in  the  Estonian  biobank,  despite  the  population-wide  lower 
 heterozygosity  (0.475).  Nevertheless,  these  results  are  based  on  the 
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 primary  screening  data,  which  only  assessed  arithmetically  the  data  from 
 the  two  biobanks.  Further  statistical  analyses  are  necessary  to  reveal  to 
 what  extent  the  homozygosity  or  heterozygosity  of  the  trait-related 
 sections can be considered genetic assortative or disassortative mating. 

 4.4. Statistical Analyses: Proving GAM 

 The  primary  screening  is  able  to  provide  an  initial  image  of  the  groups  per 
 population  demonstrating  a  difference  between  their  genome-wide  median 
 heterozygosity  score  and  the  trait  of  interest  score.  Although  these  results 
 can  be  used  in  the  assessment  of  the  phenotype-genotype  correlations, 
 they  are  not  enough  to  prove  the  existence  of  genetic  assortative  mating 
 on  population  scale.  It  was  necessary  to  introduce  a  series  of  statistical 
 tests  to  understand  the  degree  to  which  the  differences  between 
 genome-wide and trait scores are significant per population. 

 Applying  the  Mann-Whitney  U-test  to  compare  trait-related  with 
 genome-wide  windows,  as  per  reasons  explained  in  detail  in  section  3.5.1, 
 it  was  possible  to  acquire  per  individual  p-values  at  each  given  trait. 
 However,  the  individual  p-values  do  not  provide  sufficient  information 
 about  the  driving  factors  of  mate  choice  common  for  the  entire  population. 
 Therefore  a  further  filter  in  the  form  of  Bonferroni  correction  and 
 Benjamini-Hochberg  procedure  for  FDR  were  applied,  as  reasoned  in 
 section 3.5.2. 

 The  results  of  both  procedures  were  identical  in  confirming  and  rejecting 
 the  presence  of  PAM  or  NAM  for  each  trait  in  Table  1.  Except  for  the 
 numerical  difference  in  the  results,  due  to  the  more  restrictive  or  liberal 
 nature  of  the  methods,  the  patterns  repeated  for  each  trait  for  both 
 methods.  Therefore,  the  graphs  supporting  and  clarifying  the  findings  are 
 based  on  the  Bonferroni  correction  results,  as  it  is  the  stricter  form  of 
 assessment. 

 4.4.1. Anthropometrics and pigmentation 

 The  statistical  analyses  showed  clear  signals  of  positive  assortment 
 (PAM)  for  several  traits  -  waist  circumference,  hip  circumference, 
 BMI-adjusted  waist  circumference,  BMI-adjusted  waist-hip  ratio.  A 
 comparison  between  the  strength  of  the  signals  from  the  UK  cohort  and 
 the  Estonian  one  reveals  a  2-fold  to  10-fold  difference  in  favour  of  the 
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 Estonian  population.  A  deeper  look  at  Fig.8  also  presents  a  very  slight 
 signal  for  positive  assortative  mating  from  the  Estonian  population  for 
 systolic blood pressure (1 individual from the entire cohort). 

 On  the  other  hand,  there  were  also  sound  negative  assortment  (NAM) 
 results  for  this  category.  The  UK  biobank  population  demonstrated  signals 
 for  NAM  for  more  traits  than  it  did  for  PAM.  As  visible  on  Figure  9,  the 
 strongest  signal  for  NAM  comes  from  the  Estonian  biobank  population  and 
 is  for  the  BMI-adjusted  waist-hip  ratio.  However,  for  all  the  other  traits  the 
 UK  biobank  cohort  shows  persistently  a  stronger  NAM  signal.  Traits  that 
 were  found  to  be  under  NAM  from  the  UK,  are  body  height,  BMI,  waist 
 circumference,  hip  circumference,  waist-hip  ratio,  BMI-adjusted  waist 
 circumference,  BMI-adjusted  waist-hip  ratio,  systolic  blood  pressure, 
 diastolic  blood  pressure  and  hair  colour.  All  of  those  traits  are 
 predominantly  under  negative  assortative  mating  in  the  UK  biobank 
 individuals, according to the numbers acquired during the statistical tests. 

 Figure 8.  Number of PAM individuals confirmed by Bonferroni  correction 
 for traits in Anthropometrics and pigmentation category (WC standing for 
 waist circumference, HC for hip circumference, WHR for waist-hip ratio). 

 The  predominant  proportion  of  individuals  showing  clear  signs  of 
 disassortative  mating  in  the  UK  biobank  would  essentially  signify  that  their 
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 biological  parents  did  not  share  similar  haplotypes  for  these  traits,  thus  the 
 “opposites  attract  each  other”  hypothesis  would  be  rather  accepted,  than 
 rejected  in  this  case.  This  statement  could  easily  be  defended  as  the 
 results  from  the  Estonian  biobank  cohort  do  not  indicate  such  a  behaviour. 
 On  the  contrary,  they  deeply  resonate  with  a  population  where  mates  tend 
 to  be  much  more  genetically  similar  than  dissimilar  for  traits,  concerning 
 pigmentation, metabolism and body characteristics. 

 The  statistical  tests  applied  in  this  work  cannot  provide  an  explanatory 
 evidence  of  why  there  is  such  a  difference  in  the  mating  patterns 
 concerning  anthropometrics  between  the  two  populations  studied.  They 
 are  designed  so  as  to  determine  the  patterns  already  present  in  the 
 studied individuals, rather than seek the reasons behind it. 

 Figure 9.  Number of NAM individuals confirmed by Bonferroni  correction 
 for traits in Anthropometrics and pigmentation category (WC standing for 
 waist circumference, HC for hip circumference, WHR for waist-hip ratio). 
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 4.4.2. Reproductive Behaviour 

 The  genetic  windows  associated  with  the  ages  of  menarche  and 
 menopause  did  not  show  outstandingresults  in  terms  of  neither  PAM  nor 
 NAM.  The  only  results  who  showed  significance  after  the  performed 
 statistical  analyses  come  from  the  UK  biobank  cohort  and  are  very  slight, 
 which  in  numbers  translates  as  1  individual  out  of  the  entire  cohort  per 
 trait. 

 Due  to  the  low  signals  for  both  traits  in  the  UK  biobank  and  the  lack  of  any 
 signal  from  the  Estonian  biobank,  a  comparison  of  the  polygenicity  of  the 
 traits  was  made  against  some  of  the  anthropometric  features  which 
 showed  significance,  either  in  PAM  or  NAM.  The  age  of  menopause 
 analysis  included  the  scan  of  genetic  windows  across  the  genome 
 containing  a  total  of  334  SNPs,  both  trait  increasing  and  trait  decreasing. 
 Identical  procedure  was  followed  for  the  age  of  menarche,  containing  a 
 total  of  629  SNPs.  In  comparison,  traits  from  the  anthropometrics  and 
 pigmentation  category  contained  5  to  10-fold  more  SNPs  included  in  the 
 analyses:  body  height  (4,919),  BMI-adjusted  waist-hip  ratio  (4,895),  waist 
 circumference  (4,880),  BMI-adjusted  waist  circumference  (4,858),  hip 
 circumference  (4,769)  and  waist-hip  ratio  (1,606).  Thus,  the  hypothesis 
 that  the  weak  signal  for  traits  in  reproductive  behaviour  originates  from 
 their polygenicity does not seem to be credible. 

 Figure 10.  Individuals affected by PAM and NAM in  traits from the 
 Reproductive behaviour category from both cohorts. 

 33 



 Despite  the  scarce  results,  a  check-up  for  positive  and  negative 
 assortative  mating  was  done.  The  signal  for  PAM  comes  from  the  age  at 
 menopause,  whereas  the  NAM  signal  comes  from  the  age  at  menarche 
 trait.  The  results,  however,  are  not  as  explicit  as  the  ones  acquired  for  the 
 anthropometric  traits.  Therefore,  the  weak  to  non-existing  signals  from 
 both  cohorts  make  it  difficult  to  outline  a  specific  genetic  signature  of  these 
 traits as assortative mating factors. 

 4.4.3. Educational Attainment 

 Educational  attainment  is  one  of  the  categories  which  PRS  research 
 outlines  as  a  strong  factor  in  positive  assortative  mating  (  citations  here)  . 
 The  statistical  filtering  applied  to  the  Mann-Whitney  test  results  aimed  at 
 confirming  whether  the  findings  would  replicate  using  the  novel  method. 
 Despite  the  predominance  of 
 Estonian  biobank  individuals  having 
 positive  delta  scores  as  described  in 
 section  4.2.3,  the  degree  of 
 assortative  mating  was  found  to  be 
 equal in both cohorts. 

 Although  the  strength  of  the  signals 
 from  both  biobanks  was  equal,  the 
 patterns  in  terms  of  positive  and 
 negative  assortative  mating  differed. 
 It  was  found  that  75%  of  the  total 
 signal  from  the  Estonian  population 
 showed  mates  tend  to  be  genetically 
 alike  for  genetic  windows  associated 
 with  educational  attainment,  while 
 only  25%  tend  to  be  under  NAM  for 
 the  trait  (fig.  A).  In  contrast,  the  UK 
 biobank  cohort  demonstrated  solid 
 100% of NAM for the trait (fig. B). 

 Figure 11.  Individuals affected by 
 PAM and NAM for educational 
 attainment from both cohorts. 
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 4.4.4. Subjective Well-Being 

 One  of  the  best  expressed  signals  for  assortative  mating  was  found  to 
 belong  to  this  category,  namely  the  major  depressive  disorder.  The 
 confirmed  cases  of  GAM  for  depression  status  in  the  UK  reached  a  total 
 count  of  68,  out  of  which  46  for  PAM  and  22  for  NAM.  At  the  same  time, 
 the  Estonian  biobank  reached  a  count  of  10  cases,  out  of  which  7  for  PAM 
 and 3 for NAM. 

 Although  a  stronger  signal  for  GAM  could  be  expected  in  regard  to 
 anthropometric  measurements,  the  highest  number  of  individuals  under 
 GAM  in  the  UK  cohort  is  linked  to  the  depression  status.  A  glance  at  Table 
 2  clarifies  that  the  major  depressive  disorder  trait  passed  the  Bonferroni 
 correction  test  with  approximately  2-fold  higher  count  (68)  that  one  of  the 
 most  significant  body  characteristics  -  the  BMI-adjusted  waist  hip  ratio 
 (35).  This  finding  means  the  most  important  trait  under  GAM  in  the  UK 
 biobank samples is the depression status. 

 For  the  Estonian  biobank  samples,  the  depression  status  was  found  to  be 
 the  only  trait  from  the  subjective-well  being  category  to  pass  the 
 Bonferroni  correction.  Taking  into  consideration  the  numbers  in  Table  2,  it 
 is  possible  to  state  that  the  Estonian  biobank  cohort  shows  stronger 
 signals  of  GAM  for  depression  status  rather  than  educational  attainment  or 
 reproductive behaviour. 

 In  addition  to  the  major  GAM  factor  discovery,  the  UK  cohort  demonstrated 
 PAM  for  chronotype  (3)  and  coffee  intake  (1),  and  NAM  for  alcohol 
 consumption  (1).  The  results  for  positive  assortative  mating  for  chronotype 
 match  with  the  previous  findings  from  the  primary  screening,  where  the  UK 
 biobank  showed  a  greater  proportion  of  individuals  whose  biological 
 parents tend to carry similar haplotypes. 
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 Trait 

 UKBB  EstBB 

 Bonferroni correction  BH FDR  Bonferroni correction  BH FDR 

 total  PAM  NAM  total  PAM  NAM  total  PAM  NAM  total  PAM  NAM 

 Body height  2  0  2  11  1  10  0  0  0  0  0  0 

 BMI  1  0  1  7  1  6  0  0  0  0  0  0 

 Waist circumference  13  4  9  790  215  575  33  31  2  2167  1526  640 

 Hip circumference  18  7  11  920  281  639  155  150  5  5493  4083  1407 

 Waist-hip ratio  1  0  1  1  0  1  0  0  0  0  0  0 

 BMI-adjusted waist 
 circumference 

 26  9  17  1149  399  750  38  35  3  2825  1878  946 

 BMI-adjusted waist-hip 
 ratio 

 35  13  22  2067  501  156  362  304  58  9098  4966  4129 

 BMR  0  0  0  0  0  0  -  -  -  -  -  - 

 LDL  0  0  0  0  0  0  0  0  0  0  0  0 

 HDL  0  0  0  0  0  0  0  0  0  0  0  0 

 SBP  2  0  2  24  3  21  1  1  0  1  1  0 

 DBP  1  0  1  48  7  41  1  0  1  8  3  5 

 Eye colour  0  0  0  0  0  0  0  0  0  0  0  0 

 Hair colour  1  0  1  5  0  5  0  0  0  0  0  0 
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 Trait 

 UKBB  EstBB 

 Bonferroni correction  BH FDR  Bonferroni correction  BH FDR 

 total  PAM  NAM  total  PAM  NAM  total  PAM  NAM  total  PAM  NAM 

 Handedness  0  0  0  0  0  0  0  0  0  0  0  0 

 Educational attainment  4  0  4  208  0  208  4  3  1  70  43  27 

 Age at menarche  1  0  1  3  0  3  0  0  0  0  0  0 

 Age at menopause  1  1  0  1  1  0  0  0  0  0  0  0 

 Alcohol consumption  1  0  1  9  1  8  0  0  0  0  0  0 

 Coffee intake  1  1  0  3  1  2  0  0  0  0  0  0 

 Sleep duration  0  0  0  0  0  0  0  0  0  0  0  0 

 Chronotype  3  3  0  4  4  0  0  0  0  0  0  0 

 Major depressive disorder  68  46  22  6573  2569  4004  10  7  3  3692  2791  899 

 Table 2.  Summary count of post-MCT and post-FDR signals  of genetic assortative mating in the studied populations. 
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 4.4.5. Common Tendencies 

 4.4.5.1. The UK cohort 

 Having  obtained  a  full-scale  picture  of  the  genetic  assortative  mating 
 processes  taking  place  in  the  UK  cohort,  it  can  be  concluded  that  the  traits 
 demonstrating  strongest  tendency  to  be  under  GAM  in  the  44,450 
 individuals  surveyed  here  are  major  depressive  disorder  (68), 
 BMI-adjusted  waist-hip  ratio  (35),  BMI-adjusted  waist  circumference  (26), 
 hip circumference (18) and waist circumference (13). 

 The  major  trend  among  the  traits  regarding  physical  appearance 
 converges  towards  NAM,  implying  a  tendency  for  attraction  between 
 individuals  who  are  genetically  dissimilar  for  anthropometric  characteristics 
 On  the  other  hand,  deciphering  the  mating  preferences  regarding 
 depression  status,  reveals  the  opposite  pattern.  The  majority  of  the 
 individuals  prefer  genetically  similar  mating  partners  in  regard  to  their 
 depression  status  supported  by  a  68%  fraction  of  individuals  under  PAM, 
 whilst  the  rest  of  the  individuals  demonstrate  an  inclination  for  partners 
 with different haplotypes, resulting in the NAM counts in table 2. 

 4.4.5.2. The Estonian cohort 

 The  top  five  complex  traits  for  which  the  49,646  individuals  of  the  Estonian 
 cohort  tends  to  be  under  GAM  are  BMI-adjusted  waist-hip  ratio  (362),  hip 
 circumference  (155),  BMI-adjusted  waist  circumference  (38),  waist 
 circumference (33) and major depressive disorder (10). 

 In  contrast  to  the  data  from  the  UK,  the  GAM  signal  in  the  Estonian 
 biobank  is  mainly  composed  of  PAM,  with  the  lowest  percentage  of  PAM 
 being  83.9%  for  anthropometric  traits,  and  70%  for  major  depressive 
 disorder, based on the data in table 2. 

 These  findings  mark  a  significant  difference  between  the  patterns  of 
 genetic  assortative  mating  in  the  two  populations,  as  although  the  complex 
 traits  in  the  spotlight  are  the  same,  but  inclination  towards  shared  similar 
 or  dissimilar  haplotypes  in  the  genetic  windows  associated  with  these 
 traits is different. 
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 4.4.5.3. Detection resolution 

 Two  consecutive  procedures  were  followed  in  this  study  in  order  to 
 evaluate  the  preliminary  possibilities  of  assortative  mating  (section  3.4) 
 and  then  sort  out  the  actual  traces  of  assortative  mating  in  both 
 populations  (section  3.5).  The  results  of  the  primary  screening  suggested 
 higher  chances  for  GAM,  especially  PAM,  in  the  Estonian  cohort,  as  the 
 percentage  of  individuals  demonstrating  >  0  was  generally  higher. ∆
 However,  these  expectations  were  not  met  by  the  final  results.  Firstly,  the 
 same  complex  traits  took  the  main  role  in  GAM  processes  in  both 
 populations.  Secondly,  the  primary  screening  suggested  very  good 
 chances  of  PAM  for  LDL,  educational  attainment  or  even  major  depressive 
 disorder.  These  chances,  however,  were  eliminated  by  the  statistical 
 procedures downstream. 

 This  comparison  proves  the  primary  screening  procedure  as  a  useful  tool 
 for  phenotype-genotype  juxtaposition.  However,  the  primary  screening  and 
 the  ranges  of  the  delta  scores  failed  to  predict  the  presence  of  GAM  and 
 its patterns, acquired further. 

 Thus,  evaluating  the  necessary  resolution  in  order  to  detect  GAM  and 
 identify  its  type,  a  statistical  pipeline  relying  on  MTC  and  FDR  procedures 
 seems to be the most reliable solution applied so far. 
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 5. Discussion 

 5.1. Shared patterns 

 To  review  assortative  mating  in  full,  one  needs  to  consider  both  the 
 reasons  behind  its  occurrence  and  the  genetic  footprint  it  leaves.  Some  of 
 the  variables  modulating  the  choice  of  partner  include  phenotypic 
 preferences,  phenotype  convergence  over  time  and  the  extent  to  which 
 social  and  cultural  factors  influence  mate  choice  8  .  Those  variables  are  not 
 necessarily  ubiquitous,  as  populations  tend  to  have  different  backgrounds 
 in  terms  of  history,  culture,  religion  and  other  values  forming  their 
 perception  on  sexual  selection,  or  in  a  more  socially  applicable  context, 
 marriage.  Depending  on  the  available  data,  research  through  the  last 
 decades  have  made  a  transition  from  assessing  purely  phenotypic 
 self-reported  characteristics  -  like  the  Eysenck’s  Big  Three  (extraversion, 
 neuroticism  and  psychoticism)  3,  18  or  blood  pressure  records  4  ,  to  looking 
 for  genetic  footprints  in  genotype  data  from  different  biobanks  and  projects 
 globally,  like  the  UK  Biobank  2,  12,  13  ,  MoBa  (Norway)  9  ,  BioBank  Japan  13  , 
 23&Me  2  and 1000 Genomes Project  2  . 

 The  existence  of  assortative  mating  in  couples  has  been  proved  on  the 
 bases  of  phenotype  data  3,4,7  ,  polygenic  risk  scores  10  and  gametic  phase 
 disequilibrium  (GDP)  12,13  .  A  novel  method  has  been  developed  and 
 utilised  in  this  study,  giving  the  possibility  to  detect  genetic  assortative 
 mating  in  the  previous  generation.  An  advantageous  feature  of  this 
 method  is  the  fact  it  focuses  on  an  individual’s  genome  as  a  source  of 
 information,  rather  than  requiring  data  on  siblings  9  or  spousal  couples  2-5  . 
 This  approach  has  already  been  undertaken  by  Yengo  et  al.  12  (2018) 
 Yamamoto  et  al.  13  (2022)  for  GPD  estimation  on  odd  and  even 
 chromosomes.  Apart  from  maximising  the  data  availability,  the 
 single-genome  approach  has  been  proved  as  a  reliable  detector  of  genetic 
 assortative  mating  footprints  in  the  offspring  of  mates,  without  the  need  for 
 analysing their own genotype data. 

 In  this  work,  the  single-genome  approach  was  applied  in  the  context  of 
 heterozygosity  score  calculation  based  on  the  available  genotype  data.  In 
 contrast  to  the  GPD  estimation,  which  accounts  for  the  distribution  of 
 trait-increasing  alleles  only  12  ,  the  current  method  provides  a  genome-wide 
 database  of  individual  scores  controlled  against  the  studied  population, 
 which  can  be  downstream  filtered  according  to  the  parameters  of  the 
 research.  The  results  in  this  work  are  produced  by  taking  into 
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 consideration  all  of  the  available  SNPs  for  each  trait,  having  genome-wide 
 significant  p-value.  According  to  the  aims  of  the  study,  the  latter  can  be 
 modified  by  preselective  criteria  set  by  the  researcher.  Furthermore,  the 
 detailed  dataset  acquired  after  the  heterozygosity  score  calculation  allows 
 one  to  compare  the  genome-wide  heterozygosity  score  to  the  windows 
 containing  SNPs  of  interest.  As  was  the  case  with  some  of  the  samples 
 from  both  the  UK  biobank  and  the  Estonian  biobank,  the  genome-wide  low 
 heterozygosity  score  not  mandatorily  matched  with  low  heterozygosity 
 scores  for  the  studied  trait.  This  provides  the  possibility  to  track  whether 
 the  low  genome-wide  heterozygosity  scores  of  some  individuals  match 
 with  the  hypothesis  of  assortative  mating  for  a  given  trait,  or  whether  it  is  a 
 mere  consequence  of  genealogically  reasoned  genetic  similarity  between 
 the parents. 

 5.2. The UK 

 Several  traits  have  been  repeatedly  identified  as  GAM  drivers  in  previous 
 research  on  UKBB  cohorts,  including  BMI  13,14  ,  systolic  blood  pressure  2  , 
 waist-hip  ratio  2  ,  height  2,  12,  13,  14  and  educational  attainment  2,  12,  14  .  The 
 results  from  this  work  suggest  a  different  combination  of  key  factors  driving 
 genetic  assortative  mating  in  the  UK  population,  as  the  one  with  the 
 highest  resonance  being  the  depression  status.  Previous  research  done  in 
 Europe  have  both  accepted  9,  19  the  hypothesis  of  correlation  between 
 partners’  mental  health  in  Sweden  and  Finland.  Here  it  is  confirmed  that 
 major  depressive  disorder  is  a  key-point  from  the  perspective  of  genetic 
 assortative  mating.  A  recent  study  by  Horwitz  et  al.  14  outlined 
 demographic  factors  (year  of  birth,  place  of  birth,  age  of  completed 
 education  etc.)  as  much  more  resonant  in  assortative  mating,  and  proved 
 by  meta-analysis  depression  to  be  one  of  the  lowest  ranking  traits  in  terms 
 of  partners’  correlations.  In  contrast,  current  results  reveal  mental  health 
 plays  an  important  role  in  mate  choice  from  the  genetic  viewpoint.  The 
 results  obtained  here  point  to  both  positive  and  negative  assortment,  albeit 
 the  latter  seems  to  spread  to  a  much  lower  extent.  These  results  offer  a 
 novel  point  of  view  on  the  question  by  implying  the  existence  of  an 
 unnoticed  factor  for  partner  choice  in  a  long  span  of  time,  given  the 
 studied individuals have been aged between 40 and 73. 

 Going  further,  one  of  the  most  cited  traits  under  assortative  mating  in  the 
 UK  biobank,  namely  educational  attainment,  did  not  provide  significant 
 results.  Genetic  windows  associated  with  SNPs  of  educational  relevance 
 showed  no  significant  difference  compared  to  the  rest  of  the  genome.  This 
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 implies  the  lack  of  genetically  based  assortment  for  the  trait,  in  contrast  to 
 GPD  estimates  suggesting  strong  genetic  correlation  between  partners  for 
 the  trait  12,  13  .  Nevertheless,  the  different  concept  of  the  previous  works 
 reviewing  GAM  for  the  trait  and  the  current  study,  may  be  a  root  cause  for 
 the  alternative  results.  As  a  matter  of  fact,  the  very  few  individuals 
 demonstrating  assortative  mating  for  educational  attainment,  showed 
 100%  negative  assortment.  The  translated  version  of  this  finding  implies 
 that  individuals  with  distinct  architecture  of  the  relevant  genetic  windows 
 stand for very dissimilar partners (for the genotype of the trait). 

 A  body  feature  which  tends  to  be  put  in  the  centre  of  the  already  available 
 GAM  research  is  height  2,  12,  13,  14  .  Despite  this  fact,  the  results  acquired  via 
 this  method  do  not  confirm  the  ubiquitous  GAM  for  height.  Rather  than  the 
 stature,  other  anthropometric  traits  were  identified  as  drivers  of  GAM  - 
 BMI-adjusted  waist-hip  ratio,  BMI-adjusted  waist  circumference,  hip  and 
 waist  circumferences.  These  are  the  traits  which  showed  strong  signals  of 
 genetic  assortative  mating  in  the  UK  cohort.  Another  significant  point  to 
 mention  is  all  the  anthropometric  traits  which  were  proved  to  be  under 
 GAM,  consisted  of  proportionally  larger  groups  of  negatively  assorted 
 individuals.  This  finding  reveals  a  tendency  for  individuals,  who  are 
 dissimilar  in  the  relevant  genetic  windows,  to  mate  and  give  birth  to 
 offspring.  Although  the  statistical  procedures  filtering  for  GAM  are  different 
 in  their  essence,  the  juxtaposition  of  phenotype  against  genotype  revealed 
 individuals  with  highest  delta  scores  (both  suspected  to  be  under  PAM  and 
 NAM)  were  positioned  very  close  to  the  0  residual  unit.  This  would  mean 
 that  the  individuals  suspected  of  PAM  or  NAM  did  not  necessarily  exhibit 
 physically  distinct  phenotypes.  Characteristics  like  BMI  13,  14  and  systolic 
 blood  pressure  2  produced  very  low  signals  of  GAM,  which  reduces  their 
 significance value compared to the previously mentioned traits. 

 In  summary,  the  pattern  of  genetic  assortative  mating  in  the  UK  population 
 analysed  in  this  work  points  to  similarities  for  depression  status  and 
 dissimilarities  for  anthropometrics  traits  from  the  genetic  point  of  view. 
 However,  phenotype-genotype  juxtaposition  did  not  define  those 
 similarities and differences as ones demonstrating extreme phenotypes. 

 5.3. Estonia 

 While  the  UK  biobank  datasets  have  been  in  the  focus  of  a  myriad  of 
 assortative  mating  studies,  little  is  known  for  Estonia  precisely.  Previous 
 research  on  countries  from  the  Nordic-Baltic  Eight  provided  insights  on 
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 assortative  mating  mainly  for  traits  like  BMI  22,  23  ,  psychopathologies 
 (including depression)  9, 20  , height  9, 23  and educational  attainment  9  . 

 Current  results  for  the  Estonian  population  demonstrated  how  putative 
 culturally  mediated  behaviour  may  yield  contradictory  patterns  of  human 
 sexual  selection  as  opposed  to  each  other.  Although  the  traits  under 
 genetic  assortative  mating  tend  to  be  the  same  as  the  ones  in  the  UK 
 cohort, there are several significant differences. 

 To  begin  with,  the  key  GAM  factor  in  the  UK  was  found  to  be  depression 
 status.  However,  in  the  Estonian  population  this  factor  takes  the  last  place 
 among  the  top  5  traits  under  GAM.  Nevertheless,  the  major  trend  is  the 
 same  as  in  the  UK  biobank  cohort  where  the  GAM  signals  were 
 predominantly  indicating  PAM.  Taking  into  consideration  previous  research 
 on  assortative  mating  in  the  Baltic  region,  more  specifically  in  Finland, 
 suggesting  depression  status  as  a  mating  factor  between  partners  9  ,  this 
 work  confirmed  it  to  be  a  trait  under  a  significant  degree  of  GAM  in  the 
 Estonian population as well. 

 On  the  other  hand,  traits  demonstrating  the  strongest  degree  of  GAM 
 among  Estonians  tend  to  be  related  to  anthropometrics:  BMI-adjusted 
 waist-hip  ratio,  hip  circumference,  BMI-adjusted  waist  circumference  and 
 waist  circumference.  These  4  traits  ranked  as  the  most  significant  factors 
 in  the  process  of  mate  choice,  followed  by  depression  status.  In  contrast  to 
 the  results  from  the  UK  cohort,  the  GAM  signals  indicated  mostly  PAM. 
 The  high  positive  assortment  signal  corresponds  to  a  significant  genetic 
 similarity between mating partners  for the relevant parts of the genome. 

 It  should  be  noted  that  educational  attainment  and  height,  highly  cited 
 traits  from  previous  research,  failed  to  classify  as  major  factors  in  the 
 current  search  for  genetic  assortative  mating.  While  educational 
 attainment  achieved  a  modest  signal  for  PAM,  body  height  was  found  to 
 pass  neither  the  Bonferroni  correction  nor  the  Benjamini-Hochberg 
 procedure.  This  finding  presents  a  peculiar  case  of  GAM  detection,  which 
 could  be  explained  either  by  the  different  analytical  approach  the  method 
 applies  or  by  the  SNPs  selection  in  the  current  work  against  previous 
 works.  As  an  additional  reference  to  the  latter,  Border  et  al  .  released  their 
 work  confirming  that  when  only  selected  SNPs,  and  not  all  of  the 
 trait-related  ones,  are  included  in  the  heritability  analysis,  the  estimates 
 are  inflated.  24  They  focus  in  particular  on  the  height  heritability  inflation  in 
 the  UK  biobank  dataset,  which  turns  out  to  be  expanded  by  14%  to  23%.  24 

 Thus,  when  not  all  causal  variants  are  taken  into  account,  a  possible 
 assortative-mating-induced bias could persist. 
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 5.4.  What  drives  mate  choice  in  the  UK  and  Estonia? 
 And how? 

 As  similar  as  the  results  between  the  two  populations  seem  to  be  at  first 
 hand,  the  patterns  of  preference  they  reveal  are  much  different.  De  facto, 
 the  complex  traits  under  GAM  are  the  same  for  both  the  UK  and  Estonia. 
 However,  the  order  of  significance  is  different  with  depression  being  the 
 most  important  factor  in  mate  choice  in  the  UK,  while  BMI-adjusted 
 waist-hip  ratio  tends  to  be  the  more  serious  genetic  factor  in  Estonia.  Apart 
 from  the  mutual  tendency  for  PAM  expression  in  terms  of 
 psychopathologies  like  depression,  the  GAM  pattern  in  anthropometrics  is 
 completely  different  for  the  studied  populations.  While  a  distinctly  inclined 
 pattern  for  NAM  is  observed  in  the  UK,  a  much  more  conservative 
 approach  is  being  followed  in  Estonia  where  close  to  100%  of  the  detected 
 GAM  signals  indicated  PAM.  Thus  although  it  could  be  stated  that  the 
 same  features  play  key  roles  in  GAM  among  these  two  present-day 
 European  populations,  the  current  work  proved  the  selection  pattern  is 
 largely different. 

 It  does  come  as  a  surprise  that  some  of  the  so  much  cited  pillars  of 
 assortative  mating  in  Europe,  like  height  and  educational  attainment,  failed 
 to  pass  the  statistical  analyses  for  significance.  Polygenicity  is  unlikely  to 
 be  the  major  reason  for  this  finding  due  to  the  relatively  equal  number  of 
 SNPs  included  for  complex  traits  which  passed  the  statistical  filters  and 
 the  ones  which  did  not.  Thus,  further  investigations  might  be  necessary  to 
 fully  explore  the  resolution  of  the  method  and  the  statistical  significance  of 
 the results. 

 5.5. Future perspectives and caveats 

 In  order  to  gain  a  better  understanding  of  GAM  via  the  method  used  here, 
 future  improvements  in  terms  of  computation  and  theoretical  basis  are 
 necessary. 

 To  begin  with,  SNPs  selection  might  be  a  primary  and  foundational 
 improvement  on  the  way  to  gain  comparative  statistics.  Until  now  Yengo  12 

 and  Yamamoto  13  have  provided  convincing  results  on  the  basis  of  GPD  on 
 trait-increasing  alleles  only.  However,  from  a  theoretical  stand, 
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 trait-decreasing  alleles  could  also  be  subject  to  natural  selection  and  play 
 important  roles  in  adaptation.  On  the  other  hand,  a  last  year  study 
 revealed  not  including  all  causal  variants  might  lead  to  AN-induced  bias  24  . 
 Thus,  a  comparative  characteristic  of  results  obtained  through  this  method 
 on  different  theoretical  bases,  might  present  a  plausible  prospect  for 
 investigation on the topic of genetic assortative mating. 

 Secondly,  a  promising  direction  of  research  is  the  inclusion  of  other 
 European  countries  so  as  to  gain  a  more  comprehensive  picture  of  the 
 genetic  assortative  mating  bases  across  Europe.  Previous  research  based 
 on  phenotypic  markers  stated  that  “there  is  some  tendency  towards  higher 
 marital  associations  for  physical  characteristics  among  populations  in  the 
 Mediterranean  region  than  among  those  in  Northern  and  Western  Europe” 
 21  This  hypothesis  could  be  considered  and  looked  through  via  the  method 
 developed here as it requires genotype data for individuals only. 

 Thirdly,  having  in  mind  the  migrations  across  the  globe  in  the  last  several 
 generations,  a  crucial  optimisation  of  the  method  would  be  to  develop  it 
 mathematically  and  computationally  further  in  order  to  apply  it  to 
 individuals  with  heterogeneous  backgrounds  as  well,  who  have  reported 
 ancestry  admixture  in  their  family  trees  dating  up  to  a  few  generations 
 back.  This  prospective  direction  of  development  would  not  only  expand  the 
 available  dataset  for  analysis,  but  would  also  represent  an  investigation  of 
 which  traits  fall  under  genetic  assortative  mating  despite  and  because  of 
 different genetic ancestries. 

 Lastly,  a  computational  improvement  of  the  method  is  required  in  order  to 
 minimise  the  hardware  resources  necessary  for  each  cycle.  Additionally, 
 the  current  Python  scripts  available  in  Appendix  A  could  be  merged  into  a 
 common  pipeline  which  would  reduce  the  error  rate,  the  runtime  and  the 
 human resource necessary for processing the data. 
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 6. Appendix A 
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 6.1. Heterozygosity Calculation Script 

 #!/usr/bin/env python3 

 import  sys 
 import  io 
 import  os 
 import  pandas  as  pd 
 import  numpy  as  np 
 import  statistics 
 import  gzip 
 import  csv 
 import  allel 
 import  re 

 if len  (sys  .  argv)  == 1  : 
 print  (  'Syntax:'  +  sys  .  argv[  0  ]  +  'path to vcf'  +  'included  list' 

 +  'chrom'  +  'csv heterozygosity values'  +  'csv with  frame'  + 
 'window size'  +  'inclusion threshold for snps in a  window'  ) 

 if len  (sys  .  argv)  == 8  : 
 print  (  '  \n  Process initiated.'  ) 

 else  : 
 print  (  '  \n  Maybe you forgot an argument? Check command  line.'  ) 
 sys  .  exit() 

 file  =  str  (sys  .  argv[  1  ]) 
 chrom  =  int  (sys  .  argv[  3  ]) 
 het  =  str  (sys  .  argv[  4  ]) 
 frame  =  str  (sys  .  argv[  5  ]) 
 windowsize  =  int  (sys  .  argv[  6  ]) 
 threshold  =  float  (sys  .  argv[  7  ]) 
 output1  =  str  (  './{}_{}_{}.csv'  .  format(chrom,het,windowsize)) 
 output2  =  str  (  './{}_{}_{}.csv'  .  format(chrom,frame,windowsize)) 
 if  sys  .  argv[  2  ]  ==  'SKIP'  : 
 included_list  =  [] 

 else  : 
 included  =  open  (sys  .  argv[  2  ],  'r'  ) 
 pre_included_list  =  included  .  readlines() 
 included_list  =  [] 
 for  sample  in  pre_included_list: 
 sample  =  sample  .  replace(  '  \n  '  ,  ''  ) 
 included_list  .  append(sample) 

 chromoptions  =  [  0  ,  249000000  ,  243000000  , 
 199000000  ,  191000000  ,  182000000  ,  171000000  ,  160000000  ,  146000000  ,  139000000 

 ,  134000000  ,  136000000  ,  134000000  ,  1 

 chromlength  =  int  (chromoptions[chrom]) 
 windowranges  =  np  .  arange(  0  ,chromlength, windowsize) 
 windows  =  [] 
 for  i  in  range  (  0  ,(  len  (windowranges)  -1  )): 
 start  =  windowranges[i] 
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 end  =  windowranges[i  +1  ] 
 coordinate  =  str  (  '{}:{}-{}'  .  format(chrom, start, end)) 
 windows  .  append(coordinate) 

 if len  (included_list)  > 0  : 
 all_samples  =  included_list 

 else  : 
 header  =  allel  .  read_vcf_headers(  file  ) 
 all_samples  =  header[  4  ] 

 header_line  =  [] 
 for  i  in  all_samples: 
 header_line  .  append(i) 

 header_line  .  append(  'pop_het'  ) 

 def  estimate_het  (  file  , windows): 
 print  (  '  \n  Calculation of heterozygosity started...'  ) 
 windows_new  =  [] 
 with open  (output1,  'w'  )  as  out1: 
 out1wr  =  csv  .  writer(out1, delimiter  =  ','  ) 
 out1wr  .  writerow(header_line) 
 for  reg  in  windows: 
 data  =  allel  .  read_vcf(  file  , 
 region  =  reg, samples  = 
 all_samples)  if  data  is  None  : 
 continue 
 else  : 
 datarr  =  allel  .  GenotypeArray(data[  'calldata/GT'  ]) 
 datalst  =  datarr  .  tolist() 
 if len  (datalst)  <  threshold: 
 continue 

 else  : 
 windows_new  .  append(reg) 
 df  =  pd  .  DataFrame(datalst) 
 inds_het  =  [] 
 inds_het_updated  =  [] 
 for  col  in  df  .  columns: 
 ind_het  =  [] 
 slice  =  df[col]  .  tolist() 
 w  =  [] 
 for  i  in  slice  : 
 w  .  append(  str  (i)) 

 hom  =  w  .  count(  '[0, 0]'  or  '[1, 1]'  ) 
 het  =  w  .  count(  '[0, 1]'  or  '[1, 0]'  ) 
 if  het  == 0  : 
 ind_het  = 0 

 else  : 
 ind_het  =  het  /  (het  +  hom) 

 inds_het  .  append(ind_het) 
 pop_het  =  np  .  mean(inds_het) 
 for  i  in  inds_het: 
 k  =  i  /  (i  +  pop_het) 
 inds_het_updated  .  append(k) 

 inds_het_updated  .  append(pop_het) 
 out1wr  .  writerow(inds_het_updated) 
 data  =  [] 
 datarr  =  [] 
 datalst  =  [] 
 df  =  [] 

 with open  (output2,  'w'  )  as  out2: 
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 out2wr  =  csv  .  writer(out2) 
 out2wr  .  writerow([  'CHROM'  ,  'START'  ,  'END'  ]) 
 for  i  in  windows_new: 
 out2wr  .  writerow(re  .  split(  ':|-'  ,i)) 

 print  (  '  \n  Completed successfully.'  ) 
 return  output1, output2 

 almost_there  =  estimate_het(  file  ,windows) 
 print  (  'Done'  ) 
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 6.2. Primary Screening Script 

 #!/usr/bin/env python3 

 import  sys 
 import  numpy  as  np 
 import  pandas  as  pd 
 import  csv 

 if len  (sys  .  argv)  == 1  : 
 print  (  'Syntax:'  +  sys  .  argv[  0  ]  +  'frame csv path'  +  'het csv path'  + 
 'csv with snps of interest path'  +  'txt output'  ) 

 if len  (sys  .  argv)  == 5  : 
 print  (  '  \n  Process initiated.'  ) 
 else  : 
 print  (  '  \n  Maybe you forgot an argument? Check command  line.'  ) 
 sys  .  exit() 

 framefile  =  str  (sys  .  argv[  1  ]) 
 hetfile  =  str  (sys  .  argv[  2  ]) 
 snpslist  =  str  (sys  .  argv[  3  ]) 
 output  =  str  (sys  .  argv[  4  ]) 

 print  (  '  \n  Loading frame and SNPs data.'  ) 
 frame  =  pd  .  read_csv(framefile, compression  =  'gzip'  ) 
 frame  =  frame  .  reset_index() 
 frame  =  frame  .  drop_duplicates(keep  =  False  ) 
 for  col  in  frame  .  columns: 
 frame[col]  =  frame[col]  .  apply(pd  .  to_numeric) 

 snps  =  pd  .  read_csv(snpslist, compression  =  'gzip'  ) 
 snps  =  snps  .  reset_index() 
 snps  =  snps  .  drop([  'index'  ,  'Unnamed: 0'  ], axis  = 1  ) 

 print  (  '  \n  Estimating coordinates.'  ) 
 chrom  =  snps[  'CHR'  ]  .  tolist() 
 pos  =  snps[  'POS'  ]  .  tolist() 
 coordinates  =  [] 
 for  i  in  range  (  len  (chrom)): 
 coordinates  .  append([chrom[i],pos[i]]) 

 firstivs  =  [] 
 for  i  in  coordinates: 
 iv  =  frame[(frame[  'CHROM'  ]  ==  i[  0  ])  &  (frame[  'START'  ]  <=  i[  1  ])  & 

 (frame[  'END'  ]  >=  i[  1  ])]  .  index 
 if len  (iv)  > 0  : 
 firstivs  .  append(iv) 

 print  (  '  \n  Processing coordinates.'  ) 
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 secondivs  =  [] 
 for  i  in  firstivs: 
 if  i  not in  secondivs: 
 secondivs  .  append(i) 

 firsivs  =  [] 
 thirdivs  =  list  (secondivs) 
 secondivs  =  [] 
 allindexes  =  np  .  arange(  0  ,  len  (frame  .  index)) 

 traitindexes  =  [] 
 for  i  in  thirdivs: 
 traitindexes  .  append(i[  0  ]) 

 snps  =  [] 

 print  (  '  \n  Loading score data.'  ) 
 het  =  pd  .  read_csv(hetfile, compression  =  'gzip'  ) 
 het  =  het  .  reset_index() 
 for  col  in  het  .  columns: 
 het[col]  =  het[col]  .  apply(pd  .  to_numeric, 

 errors  =  'coerce'  ) het  =  het  .  drop(  'index'  , 
 axis  = 1  ) 
 ind_id  =  list  (het  .  columns) 
 print  (het  .  memory_usage(deep  =  True  )  .  sum()) 

 alltrait  =  [] 

 print  (  '  \n  Data extraction per individual.'  ) 
 for  col  in  het  .  columns: 
 trait  =  [] 
 df  =  het[col]  .  tolist() 
 for  i  in  traitindexes: 
 trait  .  append(df[i]) 

 alltrait  .  append(trait) 

 median_windows_of_interest  =  [] 
 for  i  in  alltrait: 
 value  =  np  .  median(i) 
 median_windows_of_interest  .  append(value) 

 print  (  '  \n  Writing output.'  ) 
 f  =  open  (  '{}'  .  format(output),  'w'  ) 
 for  i  in  median_windows_of_interest: 
 f  .  write(  str  (i)) 
 f  .  write(  '  \n  '  ) 

 f  .  close() 

 print  (  '  \n  Completed successfully.'  ) 
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 6.3. Mann-Whitney U-test Script 

 #!/usr/bin/env python3 

 import  sys 
 import  time 
 import  numpy  as  np 
 import  pandas  as  pd 
 import  scipy 
 from  scipy  import  stats 
 import  csv 

 if len  (sys  .  argv)  == 1  : 
 print  (  'Syntax:'  +  sys  .  argv[  0  ]  +  'frame csv path'  +  'het csv path'  + 
 'csv with snps of interest path'  +  'csv with p-values  and delta 
 median path'  +  'trait'  ) 

 if len  (sys  .  argv)  == 6  : 
 print  (  '  \n  Process initiated.'  ) 
 else  : 
 print  (  '  \n  Maybe you forgot an argument? Check command  line.'  ) 
 sys  .  exit() 

 start  =  time  .  time() 
 framefile  =  str  (sys  .  argv[  1  ]) 
 hetfile  =  str  (sys  .  argv[  2  ]) 
 snpslist  =  str  (sys  .  argv[  3  ]) 
 output  =  str  (sys  .  argv[  4  ]) 
 traitname  =  str  (sys  .  argv[  5  ]) 

 print  (  '  \n  Loading frame and SNPs data.'  ) 
 frame  =  pd  .  read_csv(framefile, compression  =  'gzip'  ) 
 frame  =  frame  .  reset_index() 
 frame  =  frame  .  drop_duplicates(keep  =  False  ) 
 for  col  in  frame  .  columns: 
 frame[col]  =  frame[col]  .  apply(pd  .  to_numeric) 

 frame  =  frame  .  drop([  'index'  ,  'Unnamed: 0'  ], axis  =  1  ) 
 snps  =  pd  .  read_csv(snpslist, compression  =  'gzip'  ) 
 snps  =  snps  .  reset_index() 
 snps  =  snps  .  drop([  'index'  ,  'Unnamed: 0'  ], axis  = 1  ) 

 print  (  '  \n  Estimating coordinates.'  ) 
 chrom  =  snps[  'CHR'  ]  .  tolist() 
 pos  =  snps[  'POS'  ]  .  tolist() 
 coordinates  =  [] 
 for  i  in  range  (  len  (chrom)): 
 coordinates  .  append([chrom[i],pos[i]]) 

 firstivs  =  [] 
 for  i  in  coordinates: 
 iv  =  frame[(frame[  'CHROM'  ]  ==  i[  0  ])  &  (frame[  'START'  ]  <=  i[  1  ])  & 

 (frame[  'END'  ]  >=  i[  1  ])]  .  index 
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 if len  (iv)  > 0  : 
 firstivs  .  append(iv) 

 print  (  '  \n  Processing coordinates.'  ) 
 secondivs  =  [] 
 for  i  in  firstivs: 
 if  i  not in  secondivs: 
 secondivs  .  append(i) 

 firsivs  =  [] 
 thirdivs  =  list  (secondivs) 
 secondivs  =  [] 
 allindexes  =  np  .  arange(  0  ,  len  (frame  .  index)) 

 traitindexes  =  [] 
 for  i  in  thirdivs: 
 traitindexes  .  append(i[  0  ]) 

 backgroundindexes  =  [] 
 for  i  in  allindexes: 
 if  i  not in  traitindexes: 
 backgroundindexes  .  append(i) 

 snps  =  [] 

 print  (  '  \n  Loading score data.'  ) 
 het  =  pd  .  read_csv(hetfile, compression  =  'gzip'  ) 
 het  =  het  .  reset_index() 
 for  col  in  het  .  columns: 
 het[col]  =  het[col]  .  apply(pd  .  to_numeric, 

 errors  =  'coerce'  ) het  =  het  .  drop(  'index'  , 
 axis  = 1  ) 
 ind_id  =  list  (het  .  columns) 
 print  (het  .  memory_usage(deep  =  True  )  .  sum()) 

 alltrait  =  [] 
 allbackground  =  [] 

 print  (  '  \n  Data extraction per individual.'  ) 
 for  col  in  het  .  columns: 
 trait  =  [] 
 background  =  [] 
 df  =  het[col]  .  tolist() 
 for  i  in  traitindexes: 
 trait  .  append(df[i]) 

 for  i  in  backgroundindexes: 
 background  .  append(df[i]) 
 alltrait  .  append(trait) 
 allbackground  .  append(background) 

 allresult  =  [] 
 all_delta  =  [  0  ]  *  len  (alltrait) 

 print  (  '  \n  Mann-Whitney.'  ) 
 for  i  in  range  (  len  (alltrait)): 
 a  = 
 scipy  .  stats  .  mannwhitneyu(alltrait[i],all 
 background[i]) allresult  .  append(a[  1  ]) 

 print  (  '  \n  Calculating median delta.'  ) 
 for  i  in  allresult: 
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 if  i  < 0.05  : 
 index  =  allresult  .  index(i) 
 delta  =  np  .  median(alltrait[index])  - 
 np  .  median(allbackground[index]) all_delta[index]  = 
 delta 

 print  (  '  \n  Writing output.'  ) 
 datafortherun  =  [ind_id, allresult, all_delta] 
 datafortherun  =  pd  .  DataFrame(datafortherun) 
 datafortherun  =  datafortherun  .  transpose() 
 datafortherun  .  columns  =  [  'ind_id'  , 
 traitname,  'delta_med'  ] 
 datafortherun  .  to_csv(output) 

 print  (  '  \n  Completed successfully.'  ) 
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