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Introduction

The accelerated expansion of the universe was first discovered by Edwin Hubble,
while observing the redshifts of distant galaxies. Since then, we have tried to
explain this expansion. One way to do it is using the ΛCDM cosmological model,
developed in the framework of general relativity. This model explains expansion
by introducing a new form of energy, called “dark energy”. Though ΛCDM
has achieved great success in explaining observations, the exact nature of dark
energy still remains a mystery. While it is widely believed it is in the form of a
cosmological constant, there are also models proposing that it is a time-evolving
scalar field, or quintessence.

There is, however, another way to describe the accelerated expansion. Modi-
fied gravity models, for example, explain it by making a modification to general
relativity on large scales. In this thesis, we will explore one class of these mod-
els, called f(R) models. Modifying gravity, of course, will have an impact on
the gravitational collapse of massive objects. Being the biggest gravitationally
bounded objects in the universe, galaxy clusters are the most suitable candi-
dates to detect small deviations from general relativity. We will in particular use
one of the late-time anisotropies observed in the cosmic microwave background,
the thermal Sunyaev-Zel’dovich effect. As it directly traces galaxy clusters, it
represents a good probe for the large scale structure.

We will specifically use the two- and three-point correlation functions of the
thermal Sunyaev-Zel’dovich effect — its power spectrum and bispectrum. Since
the evolution of large scale structure has made the matter distribution non-
Gaussian, we expect a lot of information to be contained in the bispectrum,
which is why it is the main focus of this thesis.

Our goal is, therefore, to calculate and analyze the power spectrum and bis-
pectrum of thermal Sunyaev-Zel’dovich effect, and to do a Fisher forecast for an
ideal, cosmic variance limited experiment. The forecast will enable us to see how
well we can constrain f(R) modified gravity models. In the future we hope to
compare our results to Planck data, and provide constraints on the f(R) param-
eter, fR0.

The thesis is structured as follows.

In Chapter 1 we give a brief overview of cosmology and introduce general
relativity as a framework for describing the universe. We also introduce the
expansion of the universe, as well as the current cosmological model used to
explain it, ΛCDM.

Chapter 2 describes the formation and evolution of large scale structure
using the halo model. Here we explain how dark matter halos are formed in the
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context of spherical collapse, and we study the halo mass function.
In Chapter 3 we introduce the CMB and take a quick look at the temper-

ature distribution and anisotropies present in it. We study some of the physical
mechanisms leading to these anisotropies, especially the main focus of this thesis
— the thermal Sunyaev-Zel’dovich effect.

Chapter 4 provides an alternative explanation for the accelerated expansion
of the universe in the form of modified gravity. Here we focus specifically on the
Hu-Sawicki f(R) model and how it modifies the halo model theory described in
Chapter 2.

Chapter 5 briefly introduces the notion of a Fisher forecast. It also looks
at spherical decomposition of observables on a sphere, specifically the power
spectrum and bispectrum, and their covariances.

In the final chapters we present our results.
Chapter 6 briefly describes the calculation of the power spectrum and the

bispectrum of the Sunyaev-Zel’dovich effect, using the halo model. Here we give
results for both general relativity and modified gravity.

In Chapter 7 we present the results of our Fisher forecast, using the Sunyaev-
Zel’dovich bispectrum. We give bispectrum derived constraints on some cosmo-
logical and intra-cluster medium parameters, as well as the modified gravity
parameter fR0. We note the potential to break the degeneracies between some
parameters by a combined analysis of the power spectrum and bispectrum.
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Chapter 1

Introduction to Cosmology

“There is a theory which states that if ever anyone discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.”

– Douglas Adams, The Restaurant at the End of the Universe

From the moment they became aware of the world surrounding them, humans
have had a desire to try and explain it. These attempts mark the first steps in
cosmology. Even today, millennia later, we are still working hard on this task.
Though our questions become more and more complicated and specific, the core
goal remains the same: understanding the universe.

The basis of our theories today is the Copernican principle which states that
the Earth is not in a very special place in the Universe. Expanding this view
into the cosmological principle, we say that we can expect the physics that
is at work in our cosmic backyard to be the same in other places in the universe
as well. If we were then to observe that the universe seems rather homogeneous
and isotropic from our point of view, we could safely assume that it is that way
everywhere.

It might seem strange to assume that the universe is indeed like this, after
all we see inhomogeneities every day. A cat, for example, is very different from
a rock, and they are both even more different from the center of the Sun, or the
cold vacuum of space. One look at the Cosmic Microwave Background, however,
tells us that on large enough scales the matter distribution in the universe really
is homogeneous and isotropic.

1.1 Distances in an Expanding Universe

An important piece in our understanding of the universe came with the discovery
that it is expanding. Unlike in static, flat space that we are used to, even the
simple task of measuring distances now required some finesse.

Consider the points on a square grid in Figure 1.1, with sides of unit length.
We define two measures of distance: a proper one, and a comoving one. The
comoving distance χ, as the name suggests, moves with the grid; if the grid
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Chapter 1. Introduction to Cosmology

Figure 1.1: Illustration of the expansion of the universe (Dodelson, 2003).

stretches in any way, the comoving distance between two points remains the
same, one unit length. On the other hand, the proper, physical distance d changes
depending on how much the grid stretches or shrinks. This is illustrated by the
time dependent scale factor a(t), a dimensionless quantity that is normalized
in such a way that it is unity at present time.

We can now relate the proper distance to the comoving one:

d(t) = a(t)χ . (1.1)

So what do we expect to see when we look out into the expanding universe
around us? Since space is expanding everywhere at once, while standing here
on Earth it seems that everyone in the universe is moving away from us! Since
light emitted from objects that are moving away is redshifted, we can define a
cosmological redshift z as:

1 + z =
λobs

λem
=

1

a(t)
, (1.2)

where λem is the initial wavelength emitted by some object, and λobs is the
redshifted wavelength we observe.

Observing redshifts of distant galaxies is exactly how Edwin Hubble first
noticed that these galaxies appear to be moving away (Hubble, 1929). Moreover,
they seemed to be moving away faster the more distant they were, a trend that
can be seen in the Hubble diagram, in Figure 1.2. This was the first direct
evidence that the universe is indeed expanding.

If we now assume the movement of the galaxies is only due to expansion, or
the Hubble flow, we can say that their velocity is:

υ = ḋ = ȧχ =
ȧ

a
d = Hd , (1.3)

where

H ≡ ȧ

a
(1.4)

is the Hubble constant, and represents the slope of the velocity-distance rela-
tion in the Hubble diagram.1

1Note that we have used Newton’s notation, where the overdot signifies a derivative with
respect to time.
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Chapter 1. Introduction to Cosmology

Figure 1.2: The Hubble diagram (Hubble, 1929). The units are km sec−1 for
velocity and Mpc for distance.

So how do we go about measuring distances? One way is to use an object of
known size, l, and compare it to its angular size as seen from Earth, θ. Knowing
that, in a flat universe, angle θ is given by the ratio of the size of the object
and its physical distance, and using eq. (1.1), we get the angular diameter
distance:

dA =
l

θ
= aχ =

χ

1 + z
. (1.5)

Another way to measure distance is using an object of known luminosity L
and observed flux F :

F =
L

4πdL
, (1.6)

where dL is the luminosity distance. In an expanding universe the observed
flux coming from the object is reduced thanks to two effects:

1. due to expansion, two photons passing through a unit area, δt time apart,
will, at a later time, pass a unit area (1 + z)δt time apart, thus reducing
the number of photons going through a unit area in unit time;

2. due to redshift, the energy of photons going through a unit area in unit
time is also reduced.

This results in the luminosity distance being:

dL = χ (1 + z) . (1.7)

1.2 General Relativity

A fundamental tool in our quest to describe the universe is Einstein’s theory of
General Relativity. Developed in the early 1900s, Einstein’s theory presented
an elegant, geometrical explanation for gravity, in which matter was directly
influenced by the spacetime upon which it was set. It states that gravity is only
an effect of curvature in spacetime, or as John Wheeler put it: “Spacetime tells
matter how to move; matter tells spacetime how to curve” (Wheeler and Ford,
1998).
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Chapter 1. Introduction to Cosmology

General relativity (GR) describes spacetime as a manifold. Simply put, an
n-dimensional manifold is used to describe a space that locally looks like an n-
dimensional Euclidean space. For example, on a small enough scale, the surface
of the Earth looks flat (Euclidean), but we already know that the Earth is a
sphere. The surface of a sphere is, therefore, an example of a 2-dimensional
manifold.2

Another thing we impose on our manifold is a metric. The metric tensor
describes the geometrical properties of a manifold and allows us to easily measure
distances. This might seem trivial in a flat Euclidean space but, as we saw in
the previous section, curvature in spacetime can complicate things.

To see how a metric looks like, we can take a simple metric for a flat spacetime,
the Minkowski metric. It has the following form:

gµν =


−1

1
1

1

 , (1.8)

so a line element is then:

ds2 = gµνdx
µdxν = −dt2 + dx2 + dy2 + dz2 . (1.9)

Before we continue, let us pause for a second to consider some conventions
that were used in the above equation. The fact that the time component here
has a negative sign shows that we have chosen the spacelike sign convention for
the metric, (−,+,+,+), common in cosmology. Additionally, we have omitted
a sum in the first part of the equation. This is following Einstein’s summation
convention which states that we assume a sum over any indices that are repeated
(in our case µ and ν). Finally, we are working in natural units, meaning we have
set ~ = c = kB = 1.

For a general metric, we can describe curvature starting with the Riemann
tensor, which is a function of the second derivative of the metric:

Rρσµν =
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ) (1.10)

From here we can get the trace of the Riemann tensor — the Ricci tensor:

Rµν = Rλµλν , (1.11)

and its trace — the Ricci scalar:

R = Rµµ . (1.12)

Now that we are a little more familiar with some mathematical concepts used
in GR, we can actually apply them to gravity. This is where Einstein’s equations
come in. One way to derive them would be to start from the Einstein-Hilbert
action:

S =

∫
d4x
√−g

(
R

16πG
+ Lm

)
, (1.13)

2This explanation of a manifold is greatly simplified, but serves well for the purpose of this
thesis.
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Chapter 1. Introduction to Cosmology

where g is the trace of the metric tensor, R is the Ricci scalar, G is the universal
gravitational constant, and Lm is the Lagrangian of the matter content of the
universe. Varying the action with respect to gµν , through the principle of least
action(Hilbert, 1915), we can get Einstein’s field equations:

Rµν −
1

2
Rgµν = 8πGTµν . (1.14)

The right hand side here describes the matter content of the universe, with the
energy-momentum tensor Tµν , while the left hand side describes the curvature
of spacetime, using the Ricci scalar and tensor.

Einstein himself tried to find a solution to these equations, that would give
a matter dominated static universe. Since matter self gravitates, however, the
solution resulted in a collapsing universe. To correct for this, Einstein added
an additional term to the left hand side – Λ gµν . The goal of this term was to
counteract the gravitational collapse, and the scalar quantity Λ was dubbed the
cosmological constant. Eventually, as the universe was proven not to be static
after all, Einstein once again took the cosmological constant out of the equa-
tion. This, however, only lasted until the late 1990s, as evidence of accelerated
expansion (Riess et al., 1998; Perlmutter et al., 1999) brought it back into the
picture.

1.3 FLRW Metric and the ΛCDM Model

If we want to use General Relativity to describe our universe, we must first choose
an appropriate metric. We’ve already stated that the universe is expanding and
that the matter distribution is homogeneous and isotropic.

A metric that describes this kind of a universe was first introduced by Alexan-
der Friedmann (Friedmann, 1922), and is now known by the name Friedmann-
Lemâıtre-Robertson-Walker metric, or FLRW for short. In spherical coordinates,
the line element has the following form:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
, (1.15)

where a(t) is the already mentioned scale factor, and κ describes the curvature
of space. For flat space κ = 0, and we will see later that this is indeed the case
for our universe. For now, however, we will keep κ and consider the general form
of the metric.

Using eq. (1.14), we can build the field equations for the FLRW metric. The
first ingredients are the Ricci scalar and Ricci tensor. From the definitions in
equations (1.10)–(1.12), we find that the only non-zero components of the Ricci
tensor are:

R00 =− 3
ä

a
, (1.16)

Rij =

(
ä

a
+ 2

ȧ2

a2
+ 2

κ

a2

)
gij , (1.17)

7



Chapter 1. Introduction to Cosmology

and the Ricci scalar is then:

R = 6

(
ä

a
+
ȧ2

a2
+

κ

a2

)
. (1.18)

Index 0 here signifies the time component, and the Latin letters signify spatial
components. Similarly, gµν represents the full spacetime metric, while gij is only
the spatial part.

Now we need to put some energy into our universe. Assuming we have some-
thing close to an ideal fluid, with energy density ρ, pressure p and four-velocity
uµ, we write the energy-momentum tensor as:

Tµν = (ρ+ p)uµuν + pgµν , (1.19)

Usually we assume a simple relation between p and ρ, and write the equation of
state as:

p = wρ , (1.20)

where w is a parameter that depends on the type of fluid we are considering.
Putting these definitions into eq. (1.14), and doing a little bit of math, we

get two differential equations:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (1.21)

ä

a
= − 4πG

3
ρ (1 + 3w) . (1.22)

These are the Friedmann equations and they describe the evolution of the
scale factor, relating it to the energy density in the universe. We see that in case
of a flat universe (κ = 0), the energy density would be:

ρc =
3H2

8πG
. (1.23)

We call this the critical density (hence the subscript) and use it to define a
dimensionless density parameter, Ω = ρ

ρc
. This way we can relate the energy

content of the universe to curvature.

Ω < 1→ κ < 0→ open universe (1.24)

Ω = 1→ κ = 0→ flat universe (1.25)

Ω > 1→ κ > 0→ closed universe (1.26)

Current observations of the CMB are consistent with a flat universe(Aghanim
et al., 2018), meaning that the energy density is close to the critical one and we
can set κ = 0.

So far we have not specified what exactly is the energy content of the universe.
Ω simply denotes the total density and is in fact a mixture of several components.
Currently, the best cosmological model is the ΛCDM model, and it states that
the universe is made up of:

8



Chapter 1. Introduction to Cosmology

Figure 1.3: Evolution of radiation, matter, and dark energy density parameters
with scale factor. The vertical line represents the value of the scale factor today.

1. a matter component (baryonic and cold dark matter), with density param-
eter Ωm;

2. a relativistic component (radiation and neutrinos), with density parameter
Ωr and

3. dark energy, with density parameter ΩΛ.

Now we can write the total density parameter Ω as:

Ω = Ωm + Ωr + ΩΛ (1.27)

All of these components have different equations of state, and thus behave
differently. To illustrate this, let us first use the two Friedmann equations to get
the energy conservation law for an expanding universe:

ρ̇+ 3
ȧ

a
ρ (1 + w) = 0 . (1.28)

Integrating, we get:
ρ ∝ a−3(1+w) . (1.29)

One thing we can immediately see is that for an equation of state parameter
w = −1, the density is constant in time. This is precisely the case for the
cosmological constant. For a pressureless fluid, such as matter, w = 0, and for
radiation it is w = 1

3 . This difference in energy density evolution means that
different components were dominant at different times in the universe’s history
(Figure 1.3).

Now that we know how the energy density of each of our components evolves,
we can divide and multiply eq. (1.21) by the critical density ρc,0, where subscript
“0” denotes that we are speaking about the value of a quantity today. For a flat
universe (κ = 0), we then get:

H2 = H2
0

[
Ω0,m a−3 + Ω0,r a

−4 + ΩΛ

]
, (1.30)

9



Chapter 1. Introduction to Cosmology

where H2
0 = 8πG/3 ρc,0 is the present day Hubble parameter.

Assuming that Λ is the dominant term, we can say Ω ≈ ΩΛ and just consider
H2 ≈ H2

0 ΩΛ. Bearing in mind the definition of the Hubble parameter, eq. (1.4),
we can solve this differential equation to get:

a(t) ∝ eHt . (1.31)

This result shows that dark energy really is the driving force behind the accel-
erated expansion of the universe that we observe today.

10



Chapter 2

Structure Formation

In the previous chapter we have mentioned that the universe appears homo-
geneous and isotropic on large enough scales, more specifically at scales above
∼ 200 Mpc. Below these scales, however, structure begins to emerge. Figure
2.1 shows a galaxy map from the Sloan Digital Sky Survey, in which every point
represents a galaxy. It is easy to see that galaxies cluster together and form the
large scale structure.

Figure 2.1: Galaxy map from the Sloan Digital Sky Survey (Blanton and SDSS).

Dark matter halos are hosts of galaxy clusters and they represent the largest
collapsed structures today. Since halos are observable up to high redshift, they
are a great probe of cosmology and we can use them by, for example, relating
cosmological parameters to halo abundance. First, however, we need a good
theoretical model for halo formation and evolution of abundances.

Since larger structures are the result of small matter density perturbations
that grow due to gravitational instability, we will first look at the evolution of
these perturbations.

11



Chapter 2. Structure Formation

2.1 Linear Perturbation Theory

Density perturbations in the universe can be expressed as fluctuations around
the mean density ρ̄:

δm(~x) =
ρ(~x)− ρ̄

ρ̄
, (2.1)

where we use the subscript “m” to signify that we are looking at density pertur-
bations of matter (both baryonic and dark). Assuming that the perturbations
are small (δm � 1), as is the case on the largest cosmological scales at early
times, we expect their evolution to be linear. This in turn allows us to use linear
perturbation theory (Bonnor, 1957; Lifshitz, 1946).

The equations describing the dynamics of a fluid in a gravitational field are:

1. The continuity equation, describing the conservation of mass,

2. Euler’s equation, describing the motion of a fluid with velocity ~u, and

3. Poisson’s equation, describing the gravitational potential φ due to a
density distribution ρ

Applying these to perturbations (in both density δm and velocity δ~u ) in an
expanding universe, we get:

Continuity equation:
∂δm
∂t

+
1

a
∇ · δ~u = 0 ; (2.2)

Euler equation:
∂δ~u

∂t
+H δ~u = − 1

a
∇φ ; (2.3)

Poisson equation: ∇2φ = 4πGa2 ρ̄ δm . (2.4)

Combining these, we get the differential equation that governs the linear
growth of perturbations:

∂2δm
∂t2

+ 2H
∂δm
∂t
− 4πG ρ̄ δm = 0 . (2.5)

As a second-order differential equation, it has two independent solutions, one
decaying and one growing in time:

δm(~x, t) = D+(t) δi(~x) + D−(t) δi(~x) , (2.6)

where “+” denotes the growing solution, and “−” is the decaying one. D+ is
called the linear growth function, while δi(~x) = δi(~x, ti) is the amplitude of the
initial perturbations at physical position ~x and initial time ti.

This solution, as we have stated, holds for the linear regime, while perturba-
tions are small. However, perturbations grow and once δm becomes comparable
to unity linear treatment is not valid anymore. Describing their evolution then
requires going to non-linear perturbation theory (Bernardeau et al., 2002) or
making some simplifications.

12



Chapter 2. Structure Formation

2.2 Spherical Collapse

The simplest way to describe non-linear evolution of perturbations is to assume
a spherically symmetric collapse. Consider a flat, matter dominated universe
(Ω = Ωm = 1) — an Einstein-de Sitter universe — with a small initial overdensity
δi � 1, in a region of comoving size R0. If we have a simple top-hat density
profile, the mass contained in this region is:

M0 =
4πR3

0

3
ρ̄ (1 + δi) ≈

4πR3
0

3
ρ̄ (2.7)

where ρ̄ is the comoving background density.
From Birkhoff’s theorem (Birkhoff, 1923) we know that we can treat this

region as a separate universe so that it’s evolution will be independent from the
background. The sub-universe then has a density slightly higher then the critical
one and evolves like a closed universe, eq. (1.26). The parametrized Friedmann
equations for such a universe are given by (Longair, 2008):

Rp = A ( 1− cos θ ) , (2.8)

t = B ( θ − cos θ ) , (2.9)

where Rp is the scale factor of the sub-universe, and A and B are:

A =
Ω0

2(Ω0 − 1)
, (2.10)

B =
Ω0

2H0(Ω0 − 1)3/2
. (2.11)

Parameters Ω0 and H0 are the density parameter and Hubble constant of the
sub-universe.

At some time t, the physical size of the overdense region is R(z) and the
parametric solution for it is given by (Cooray and Sheth, 2002):

R(z)

R0
=

(1 + z)

(5/3) |δ0|
(1− cos θ)

2
, (2.12)

(1 + z) =

(
4

3

)2/3
(5/3) |δ0|

(θ − sin θ)2/3
. (2.13)

Here we use δ0 to denote the value of the overdensity today (t = t0) extrapolated
from the initial overdensity δi using linear theory: δ0 = D(t0)+δi, from eq. (2.6).

The ratio of R0 and R(z) will then give us the density ratio of our sub-universe
with respect to the background. Defining the density contrast as ∆ = 1 + δ, we
write:

∆ =
ρ

ρ̄
=

[
R0

R(z)

]3

=
9

2

(θ − sin θ)2

(1− cos θ)3
. (2.14)

From equations (2.8) and (2.9), we see that the overdense region expands for
values θ ∈ [0, π], reaching a turnaround point at θ = π. From eq. (2.14) we then
know that, at turnaround, the average density is 5.55 times larger than that of
the background: [

R0

Rmax

]3

=

(
3π

4

)2

' 5.55 , (2.15)
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Chapter 2. Structure Formation

where we denote the maximum extension of the region with Rmax.
After turnaround, the region starts to collapse until θ = 2π, at which point

the density in the center will be infinite. Of course, in reality, this does not
happen; the gas will start to heat, and shocks and pressure gradients will halt
the collapse. After virialization, a halo will form with a finite physical radius
given by (Coles and Lucchin, 2002):

Rvir =
Rmax

2
. (2.16)

From turnover to virialization, the overdensity grows by a factor of 23 (from
eq. (2.16)). At the same time, the background universe expands and the mean
density falls off by a factor of 22 (using eq. (2.9) and the fact that during matter
domination ρ1/3 ∝ a ∝ t2/3). The result of this is that a virialized halo will have
an overdensity given by:

∆vir =
ρvir

ρ̄
' 5.55 · 8 · 4 = 178 . (2.17)

What is interesting about this result is that it does not depend on the mass
nor the formation history of the halo. This means that if we observe a halo with
overdensity δvir, assuming spherical collapse, we can deduce that it is virialized.

Let us try and determine what value for the overdensity we expect from linear
theory, at the time of virialization. We can write:

δlin(θ) =
3

5

(
3

2

)2/3

(θ − sin θ)2/3 , (2.18)

so at virialization, for θ = 2π, we have:

δc ' 1.69 . (2.19)

This is the critical overdensity needed for spherical collapse. If the linear
estimate δlin of some overdense region exceeds the critical one, it will collapse
into a halo with overdensity δvir.

It is worth noting that while the value of the critical overdensity is constant
for an Einstein-de Sitter universe, in other cosmologies it can depend weakly
on Ωm and ΩΛ (Eke et al., 1996). In fact, this is what we find when looking
at ΛCDM and f(R) models. For ΛCDM, the critical overdensity is given by
(Nakamura and Suto, 1997):

δΛ
c (z) ' 3(12π)2/3

20

(
1− 0.0123 log10

[
1 +

Ω−1
m − 1

(1 + z)3

])
. (2.20)

The modification in f(R) models will be explored in Chapter 4.

2.3 Halo Mass Function

Now that we have a theory of how halos form, we want to know what the number
density of halos is. If we assume that they all form from spherical collapse, we can
start by estimating the number density of overdense regions that have collapsed.
One way to do this is using Press-Schechter theory (Press and Schechter, 1974).

14



Chapter 2. Structure Formation

Figure 2.2: Density fluctuation field with indicated critical value (Dodelson,
2003). The dark curve represents the smoothed field.

We start with a Gaussian density fluctuation field δm(~x) (Figure 2.2). We
can smooth this field using a top-hat filter with a smoothing scale R to get:

δs(~x,R) =

∫
d3x′ WR(~x− ~x′) , (2.21)

where WR is the top-hat window function:

WR(~x− ~x′) =

{
1, |~x− ~x′| < R ;

0, otherwise .
(2.22)

The probability that our Gaussian field at some point exceeds the critical
value δc is then given by:

P>δc(M) =

∫ ∞
δc

2√
2π σ(R, z)

exp

[
− δ2

s

2σ2(R, z)

]
dδs , (2.23)

where we have somewhat artificially added a factor of two to account for un-
derdense regions and obtain the correct normalization. This is related to the
so called cloud-in-cloud problem (Peacock and Heavens, 1990; Bond et al., 1991;
Avelino and Viana, 2000). For more details on this problem, and a full derivation
of the Press-Schechter theory, see eg. Desjacques et al. (2018).

In eq. (2.23) σ(R, z) is the variance of the smoothed density field, obtained
with linear theory. It is defined as:

σ2
lin =

1

2π2

∫ ∞
0

P lin
m (k) Ŵ 2

R(k) k2dk , (2.24)

where ŴR(k) is the Fourier transform of the real space window function WR(x)
given by eq. (2.22). P lin

m (k) is the linear matter power spectrum and it is
the Fourier transform of the two-point correlation function of the linear matter
perturbation field:

〈δm(~x) δm(~x)〉 =
1

2π2

∫ ∞
0

P lin
m (k) k2dk , (2.25)

where k is the wavenumber and δm is defined by eq. (2.1).
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Figure 2.3: The halo mass function from numerical simulations (Jenkins et al.,
2001). Dashed line is the Press–Schechter mass function.

To get the number density of halos per mass interval, we differentiate the
probability in eq. (2.23) with respect to M , and multiply by the average number
density ρ̄/M . This is the Press-Schechter halo mass function, and it has the
following form:

dn(M, z)

dM
=

√
2

π

ρ̄ δc
3M2 σ

exp

[
− δ2

s

2σ2(R, z)

](
− R

σ

dσ

dR

)
. (2.26)

It is worth noting that, even though we assume the density field is Gaussian,
it is not necessarily so in reality. Looking at eq. (2.1), it is easy to see that the
minimum value of δm (when ρm = 0) is −1. As structures collapse, overdense
regions easily exceed δm = 1, thus skewing the distribution.

While giving significant insight into the physics behind the observed distri-
bution of halo mass in the universe, the Press-Schechter mass function does not
provide a sufficiently accurate fit to N-body simulations for precision cosmology
(Figure 2.3). Motivated by this, Bond et al. (1991) proposed a general form for
the mass function:

dn

dM
= f(σ)

ρ̄

M

d lnσ−1

dM
, (2.27)

where f(σ) is called the multiplicity or fitting function and it allows fitting of
the halo mass function to simulations. Unfortunately, in reality the multiplicity
function, and by extension the halo mass function, also have a slight dependency
on redshift, f(σ, z).

In this thesis, for GR, we will use the form of the multiplicity function given
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Figure 2.4: Tinker mass function fitted to simulations (Tinker et al., 2008). The
three sets of points show results for density contrast values ∆ = 200, 800 and
3200, from top to bottom.

by (Tinker et al., 2008):

f(σ, z) = A(z)

([
σ

b(z)

]−a(z)

+ 1

)
exp

[
−c(z)
σ2

]
(2.28)

where A(z), a(z), b(z) and c(z) are parameters that are obtained from simula-
tions. Parameter A sets the overall amplitude of the mass function, while a and
b set the slope and amplitude of the low-mass power law, respectively. Parame-
ter c determines the cutoff scale at which the mass function starts exponentially
decreasing (Figure 2.4).

These results are only valid for spherical collapse in a GR framework. As we
will see in Chapter 4, once we adopt an f(R) model of gravity, we will need to
modify our mass function.

2.4 Halo Structure

Now that we have a way to describe the formation and abundance of dark matter
halos, we will look at their internal structure. First we will focus on the distri-
bution of dark matter density inside the halo, and then the pressure profile of
the intra-cluster gas.

Since the Sunyaev-Zel’dovich effect, which is the focus of this thesis, does not
depend on the formation and distribution of galaxies, we will not examine their
structure nor distribution within halos.
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2.4.1 Matter density profile

Cold dark matter is the dominant matter component of the halo, whose distri-
bution dictates the gravitational potential. Assuming spherical symmetry of the
halo, this distribution can be described by a radial density profile. The most
common density profile used for dark matter halos is the NFW profile (Navarro
et al., 1997). It is based on the Press-Schechter theory, described in Section 2.2,
and assumes that halos are virialized.

The profile was obtained by fitting the output of N-body simulations and it
has the following form:

ρ(r) = ρc
δchar

r
rs

(
1 + r

rs

)2 , (2.29)

where rs is the scale radius and δchar is a dimensionless characteristic density
which is proportional to the mean density of the universe at the time of halo
formation. ρc is the critical density of the universe, defined by eq. (1.23).

It is useful to define here quantities relative to the density contrast ∆. For
example, we define R∆ as the radius in which the density contrast is ∆. Quanti-
ties defined with respect to this radius are then denoted with the same subscript.

If we now define a concentration parameter c200 = R200/rs, with R200 the
radius in which the density contrast is ∆ = 200, we can write the characteristic
overdensity as:1

δchar =
200

3

c3200

ln(1 + c200)− c200
1+c200

. (2.30)

With this parametrization, the density profile of an isolated halo can be
completely described by only two parameters: halo mass and the characteristic
overdensity.

2.4.2 Pressure profile

The intra-cluster medium (ICM) of a dark matter halo is filled with hot gas,
characterized by a pressure profile. Motivated by the fact that the gas pres-
sure distribution is primarily determined by the dark matter inside the cluster,
Nagai et al. (2007) developed a general NFW pressure profile. It is given in
dimensionless form as:

p(x) =
P0

(x c500)γ [1 + (x c500)α]
(β−γ)/α

, (2.31)

where P0, α, β and γ are free parameters, x = r/rs, and c500 is the concentration
parameter defined now at radius R500.

Arnaud et al. (2010) used a combination of simulations and observations from
a representative sample of 33 nearby (z < 0.2) clusters from the REFLEX catalog

1R200 is in literature commonly referred to as the virial radius. By definition they are not
strictly the same quantity, but were found to roughly coincide in a spherical collapse model
(Cole and Lacey, 1996).

18



Chapter 2. Structure Formation

to determine parameters (P0, α, β, γ). They found that the physical pressure is
then given by:

P (r) = P500

[
M500

3 · 1014 h−1
70 M�

]αP+α′
P(x)

p (x) , (2.32)

with a relation between αP and α′P:

α′P(x) = 0.10− (αP + 0.10)
(x/0.5)3

1.+ (x/0.5)3
. (2.33)

Parameter αP then defines the slope of the pressure profile.

Though we expect some modification of the pressure profile in case of modified
gravity, we will still use Arnaud’s universal pressure profile, eq. (2.32). We will
address the possible modification by marginalizing over the parameter αP.
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Chapter 3

Cosmic Microwave
Background

In 1965 two American scientists, Penzias and Wilson, made their first mea-
surements with the Holmdel Horn antenna. What they accidentally discovered
confirmed the Big Bang theory, earned them a Nobel prize, and ultimately ush-
ered the scientific community into an era of precision cosmology. They reported
measuring a temperature excess of (3.5± 1) K (Penzias and Wilson, 1965) com-
ing from all directions in the sky, thus confirming earlier theoretical predictions
of the existence of an isotropic radiation field permeating the universe (Alpher
et al., 1948; Dicke et al., 1965).

Figure 3.1: The first spectrum of the CMB obtained from FIRAS, an instru-
ment aboard the COBE satellite (Mather et al., 1990). At this point the CMB
temperature was estimated to be 2.735 K.

Measurements of the spectrum of this radiation were shown to fit a perfect
black body model to an incredible degree (Figure 3.1), and the temperature
estimated from this fit was 2.725 K (Mather et al., 1999). Seeing as how the
peak of the spectrum was in microwave, the radiation was dubbed the Cosmic
Microwave Background (CMB) radiation.
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3.1 Origin of the CMB

The existence of the CMB was predicted by the Hot Big Bang theory. We have
already stated that the universe is expanding, with the scale factor a getting
bigger. Reversing this picture, it becomes apparent that further back in the past
it had to have been smaller and smaller. In fact, if we go back enough, the scale
factor goes to zero, a singularity. This is what gave rise to the Big Bang theory.
In this theory the universe was hot and dense at early times, gradually expanding
and cooling as time went on. Though at first so hot that only elementary particles
existed, it eventually cooled down enough to allow the existence of baryons. At
that point space was filled with a hot mix of electrons, baryons and photons
which coupled together forming a photon-baryon fluid. The photons in this
dense mix frequently scattered off of the free electrons via Thomson scattering,
resulting in a very short mean free path of the photons — the light was trapped.
These frequent interactions also resulted in thermodynamic equilibrium between
matter and light.

Figure 3.2: The CMB temperature map from Planck (ESA and The Planck
Collaboration)

As the universe cooled off more, at a temperature around 3 000 K, it was
finally cold enough for protons and electrons to recombine and form atoms. As
the number of free electrons diminished, the photons were able to free-stream
away. As we look out into the universe, and thus into the past, we can see these
photons coming from the surface of a sphere centered around our position. This
is the “last scattering surface”.

A consequence of the thermodynamic equilibrium that was in place before
recombination, is that the radiation coming from the last scattering surface re-
tains a black body spectrum. The spectral energy density radiated by a black
body at temperature T and frequency ν, is given by Planck’s law (Planck, 1900):

uν(T )dν =
8πhν3

c3
dν

e
h ν
kBT − 1

. (3.1)

From here we can obtain the energy density by integrating eq. (3.1) over all
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frequencies:

u =
8π5 k4

B

15 c3 h3
T 4 , (3.2)

where h and kB are Planck’s and Boltzmann’s constant, respectively.1 Since the
equation of state parameter for radiation is w = 1/3, from eq. (1.29) follows that
u ∝ a−4. Combining this with eq. (3.2), we find how temperature evolves with
the scale factor:

T ∝ 1

a
. (3.3)

Knowing the photon temperature at recombination and the CMB tempera-
ture today, it is easy to get the scale factor at the time of recombination as
TCMB/Trec ≈ 0.0009. This gives a redshift value of zrec ≈ 1100.

3.2 Temperature Anisotropies

Though the CMB temperature field is incredibly isotropic (so much so that it
caused the “horizon problem” in cosmology), there are in fact small deviations
from this isotropy. They were first observed with COBE and were found to be
of order of 10−6 K (Smoot et al., 1992). Let us define such anisotropies in some
direction ~n in the sky:

Θ(~n) =
T (~n)− T̄

T̄
, (3.4)

where T (~n) is the temperature in that direction, and T̄ is the average CMB
temperature. Since the radiation is coming from the surface of a sphere, we
expand eq. (3.4) using spherical harmonics, to get:

Θ(~n) =

∞∑
`=2

∑̀
m=−l

a`m Y`m(~n) . (3.5)

In the above equation a`m are the harmonic coefficients, and Y`m are the spherical
harmonics, defined as:

Y`m(~n) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ , (3.6)

where P`(θ) are the associated Legendre polynomials.
Note that we start the sum in eq. (3.5) from multipole value ` = 2. This is

because the monopole (` = 0) and the dipole (` = 1) do not give us information
about intrinsic anisotropies. The monopole describes the mean value of the
temperature across the entire sky, while the dipole is the result of our movement
through space, relative to the CMB.

Assuming the fluctuations that gave rise to temperature anisotropies are
Gaussian, the harmonic coefficients will also have a Gaussian distribution with
zero mean value. The variance of the coefficients is then given by:

〈a`ma∗`′m′〉 = δ``′δmm′ C` , (3.7)

where C` is called the angular power spectrum.

1Here we use the usual notation for energy density, u, but note that this is the same quantity
as ρr.
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Figure 3.3: Planck 2015 results for the temperature power spectrum fitted with
the ΛCDM model (top panel) and residuals (bottom panel) (Aghanim et al.,
2018). DTT

` is defined as DTT
` = `(`+ 1)C` / (2π).2

The power spectrum is in fact the Fourier space equivalent of the two-point
correlation function, which is defined as:

C(θ) = 〈Θ(~n1) Θ(~n2) 〉 , (3.8)

where θ is the angle between vectors ~n1 and ~n2, and brackets indicate that
we average over the whole sky. In simple terms, if we measure a temperature
fluctuation Θ(~n1), the two-point correlation function tells us how probable it is
to measure fluctuation Θ(~n2) separated by an angular distance θ.

If we now plug in the definition for the temperature fluctuations, eq. (3.5),
into eq. (3.8), we get:

C(θ) =
∑
`

2`+ 1

4π
C`P`(θ) . (3.9)

After COBE, WMAP and Planck missions (Figure 3.3) gave increasingly
better measurements of the power spectrum. This allows us to better constrain
cosmological models by relating the parameters to the power spectrum. To do
this, however, we first need to know the physics of how the anisotropies formed.

3.2.1 Intrinsic anisotropies

Intrinsic anisotropies are ones that were formed due to effects that were happen-
ing immediately before or at the time of recombination. These effects include

2The superscript “TT” signifies that we are looking at the temperature power spectrum.
There are also polarization power spectra, but they are not relevant for the purpose of this
thesis.
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perturbations in the gravitational potential and adiabatic perturbations.

Gravitational perturbations will give two opposing contributions to the tem-
perature anisotropies. Firstly, a photon that was in a gravitational well during
recombination will lose energy climbing out — it is gravitationally redshifted.
At the same time, perturbations in the gravitational potential also cause time
dilation effects, so the same photon will look “younger” and lose less energy due
to subsequent expansion of the universe, eq. (3.3). The sum of these effects
is commonly known as the Sachs-Wolf effect (Sachs and Wolfe, 1967) and it
affects the power spectrum at large scales (low multipoles).

Adiabatic perturbations, on the other hand, happen because of fluid dynam-
ics. We already mentioned that baryons, photons and electrons were coupled
together before recombination, and acted as a perfect photon-baryon fluid. Grav-
itational perturbations then induced perturbations in the density distribution of
this fluid, eq. (2.4). At the same time, radiation pressure acts as a restor-
ing force against the density perturbations, resulting in oscillations through the
fluid. This effect causes the acoustic peaks, the most prominent feature of the
power spectrum (Figure 3.3).

3.2.2 Secondary anisotropies

Secondary anisotropies (also known as late-time anisotropies) are produced on
the photon’s journey from the last scattering surface to the observer. We will
cover only some of these effects, for a more comprehensive list see eg. Hu (1995)

The Integrated Sachs-Wolf effect is a consequence of the expansion of
the universe. Expansion drives the decay of large scale structures and their grav-
itational potentials. As a photon enters a potential well, it gains energy through
gravitational blueshift. Since the time it takes for it to pass through the potential
is larger than the rate of decay, it “sees” the potential as shallower and loses less
energy on its way out. This results in a net gain of energy (Sachs and Wolfe,
1967). The reverse is true in case of a gravitational “hill”.

Gravitational lensing is an effect that is simply a consequence of GR and
photons traveling along geodesics. As light passes by a massive object, it is de-
flected by the perturbed gravitational potential and bends around it. This also
happens to CMB photons as they pass massive galaxies and clusters, and we can
see it as a distortion in the CMB temperature and polarization maps (Blanchard
and Schneider, 1987).

The Sunyaev-Zel’dovich effect consists of two effects: thermal and kinetic
Sunyaev-Zel’dovich (SZ) effect. Both of these are a result of inverse Compton
scattering of low energy CMB photons off of hot electrons in galaxy clusters
(Sunyaev and Zeldovich, 1972). The kinetic SZ effect is essentially a Doppler
shift due to the motion of these electrons with respect to the CMB.

Since the thermal SZ effect is of particular interest for this thesis, we will
consider it in a separate section.

25



Chapter 3. Cosmic Microwave Background

3.3 Thermal Sunyaev-Zel’dovich effect

As we already mentioned in Section 2.4, the intra-cluster medium is filled with
hot gas. The high energy electrons in this gas emit X-ray radiation that can be
observed and used to study the structure of the cluster. Moreover, Sunyaev and
Zeldovich (1972) showed that these electrons also interact with the low energy
CMB radiation that passes through the cluster.

When CMB photons pass through the ICM, they interact with the hot elec-
trons via inverse Compton scattering. In this process, electrons transfer some
of their energy to the CMB photons, thus boosting them to higher energies.
Since the total number of photons is conserved, this results in a lower number
of low energy photons and an increase in the number of the higher energy ones,
distorting the shape of the initially black body spectrum.

Figure 3.4: The change in CMB intensity due to SZ effect in cluster Abell 2163
(LaRoque et al., 2002). The dashed and dotted line are the best fits for thermal
and kinetic SZ respectively, while the solid line is the combined effect.

Scattering in a cluster of mass M , at redshift z, results in a temperature
change ∆T at angular position ~θ with respect to the center of the cluster:

∆T (~θ,M, z)

TCMB
= gν(x) y (~θ,M, z) , (3.10)

where gν(x) is the SZ spectral function:

gν(x) =
[
x coth

(x
2

)
− 4
]

with x =
hν

kB TCMB
. (3.11)

From the roots of this equation we can obtain that, for CMB temperature of
2.725 K, at frequencies above 217 GHz the change in temperature is positive,
and for values below — it is negative (Figure 3.4).
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Figure 3.5: Reconstructed Planck all-sky y-Compton map (Aghanim et al., 2016)

The quantity y (~θ,M, z) is known as the Compton y-parameter and it is
defined as:

y(~θ,M, z) =
σT

mec2

∫
nekBTe dl =

σT

mec2

∫
Pe

(√
l2 + d2

A|~θ|2,M, z

)
dl , (3.12)

where σT is the Thomson cross section, and the integral runs along the line of
sight. me, Te, ne and Pe are the electron mass, temperature, number density
and pressure, respectively.

Since the thermal Sunyaev-Zel’dovich effect (tSZ) is a product of scattering
in clusters, it can trace the cluster distribution. This is why it is commonly used
to construct cluster catalogs (Ade et al., 2016; Bleem et al., 2015). However,
besides ICM pressure, the tSZ effect also depends on cosmological parameters
and can be used to constrain them (Ade et al., 2016).

The amplitude of the thermal SZ power spectrum, for example, depends on
Ωm and σ8 (Komatsu and Seljak, 2002). Parameter σ8 is defined as the variance
of density fluctuations, eq. (2.24), on a scale R = 8h−1Mpc. It essentially
represents amplitude of the linear matter fluctuations and provides a way to
normalize the matter power spectrum. It is an important parameter that can
be used to model the cluster mass function but attempts to constrain it using
cluster counts and weak lensing revealed that it is degenerate with Ωm (Huterer
and White, 2002). This degeneracy can be broken by eg. combining SZ cluster
counts to different datasets (Ade et al., 2016), or using higher order statistics,
such as the tSZ power spectrum (Komatsu and Seljak, 2002) or bispectrum
(Crawford et al., 2014).
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Chapter 4

Modified Gravity

As we have already established earlier in this thesis, the universe is currently
undergoing a phase of accelerated expansion. In the ΛCDM cosmological model,
this expansion is explained by introducing a new form of energy with negative
pressure — dark energy.

Though it is possible that this dark energy is in fact a cosmological constant,
a scalar term that Einstein himself initially added to the Einstein equations, its
exact nature remains unknown. Assuming that we are in fact dealing with the
cosmological constant, we are also faced with the “cosmological constant prob-
lem”, a discrepancy between its theoretical and observed value.1 Additionally,
there is evidence for an early epoch of accelerated expansion, called inflation,
that is usually explained by an additional scalar field (Guth, 1981), proof of
which has yet to be found.

All this led people to try and find an alternative explanation for accelerated
expansion that would account for both of these epochs (Nojiri and Odintsov,
2003). Instead of adding exotic new forms of energy to the universe, one could
try and modify the components that we already know. Attempts to modify
gravity on large scales, for example, gave birth to a plethora of new modified
gravity (MG) models. One such class of models are the ones we will explore in
this thesis, the so-called f(R) models.

4.1 f(R) Gravity

As we have already mentioned in Section 1.2, the evolution of spacetime is de-
scribed by the Einstein equations, which can be derived by varying the Einstein-
Hilbert (EH) action, eq. (1.13). For a universe with a cosmological constant Λ,
the EH action is given by:

S =

∫
d4x
√−g

(
R+ 2Λ

16πG
+ Lm

)
. (4.1)

As we see, the Lagrangian here is a linear function of the Ricci scalar R.

1for a review on the cosmological constant, see (Carroll, 2001)
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Buchdahl (1970) proposed modifying gravity by making the Lagrangian into
some general function of R, hence the name f(R). The action would then be:

S =

∫
d4x
√−g

(
f(R) +R

16πG
+ Lm

)
. (4.2)

By varying this action, we obtain the modified Einstein equations:

Gµν + fRRµν −
(
f(R)

2
−�fR

)
gµν −∇µ∇νfR = 8πGTµν , (4.3)

where Tµν is the energy-momentum tensor andGµν is the Einstein tensor, defined
as Gµν ≡ Rµν − 1/2Rgµν .

We see that the modification of the action also results in an additional scalar
field, fR, which is defined as:

fR ≡
df(R)

dR
. (4.4)

This field is coupled to matter and it is what drives the expansion. The trace of
equation 4.3 will give us evolution equation for the field:

3�fR −R+ fRR− 2f(R) = − 8πGρ , (4.5)

where ρ is the density of the energy content of the universe.

4.1.1 The Hu-Sawicki f(R) Model

We see from equations (4.1) and (4.2) that f(R) is essentially a more general
theory of gravity that, for f(R) = 2Λ, reduces to GR with a cosmological con-
stant. What we want, however, is to find some non-linear function of R that will
produce ΛCDM expansion history without the need for dark energy. One such
family of functions was proposed by Hu and Sawicki (2007). They define a set
of broken power law functions:

f(R) = −m2 c1(R/m2)n

c2(R/m2)n + 1
, (4.6)

parametrized by the slope n > 0, and two dimensionless normalization parame-
ters c1 and c2. The mass scale is given by:

m2 ≡ 8πGρ̄0

3
, (4.7)

where ρ̄0 is the average matter density today.
In the next section, where we focus on structure formation, we will be inter-

ested in regions where curvature is high compared to the mass scale. In this case
we can Taylor expand eq. (4.6) to get:

lim
m2/R→0

f(R) ≈ −c1
c2
m2 +

c1
c22
m2

(
m2

R

)n
. (4.8)

The scalar field then takes the form:

fR = −n c1
c22

(
m2

R

)n+1

. (4.9)
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The amplitude of the field c1/c
2
2 can be parametrized by the value of the field

today through (Hu and Sawicki, 2007):

fR0 =
df(R)

dR

∣∣∣∣
R=R0

≈ −n c1
c22

(
12

Ω̃m
− 9

)−n−1

, (4.10)

where R0 is the value of the Ricci scalar today and Ω̃m is the matter density
parameter.

The Hu-Sawicki form of the f(R) function allows us to tune our theory such
that we recover the observed expansion history and, at the same time, satisfy
local tests of gravity. Now we will explore how this is achieved with the help of
the chameleon mechanism.

4.1.2 Local tests of gravity

Since we have accurate tests of general relativity on solar system scales (Bertotti
et al., 2003), we have to make sure that our theory also passes these tests. The
scalar field that appears in our theory, eq. (4.4), is a light field that couples to
matter via Yukawa coupling, like gravity. It was shown (Chiba et al., 2007) that
this coupling produces a long range fifth force that results in a modified potential
around massive objects, like the Sun, and is inconsistent with solar system tests.

The range of Yukawa interaction is given by the Compton wavelength of the
field, which is the inverse of its mass: λfR ≡ m−1

fR
. We can rewrite eq. (4.5) as:

�fR =
∂Veff

∂fR
, (4.11)

where the effective potential Veff is given by:

∂Veff

∂fR
=

1

3

(
R− fRR+ 2f(R)− 8πGρ

)
. (4.12)

The mass of the scalar field is then given by the second derivative of the effective
potential:

m2
fR =

∂2Veff

∂f2
R

=
1

3

(
1 + fR
fRR

−R
)
, (4.13)

where fRR is:

fRR ≡
d2f(R)

dR2
. (4.14)

For a massive scalar field, the Compton wavelength, and by extension the in-
teraction range, is short and thus the field is “screened”. Since we still need the
fifth force to drive the expansion on cosmological scales, we need the field mass to
be dependent on curvature of the environment. This way the field can pass solar
system tests, where curvature is high, while still explaining expansion on cosmo-
logical scales, where the curvature is lower. Fields like these are called chameleon
fields, and the described screening mechanism is the chameleon mechanism
(Khoury and Weltman, 2004).

This ensures that our theory really agrees with observations in the low and
high curvature limits. Interesting deviations, however, start to emerge at inter-
mediate scales (Oyaizu, 2008). Here, f(R) gravity causes modifications to large
scale structure formation, something that we will explore in our work.
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4.2 Structure Formation in f(R)

On scales at which large scale structure formation takes place, the chameleon
mechanism is not yet fully in place, so the structure formation is modified with
respect to GR results. We will now see how this affects the halo mass function by
first modifying spherical collapse results, and subsequently taking into account
also ellipsoidal collapse.

4.2.1 Modifications to spherical collapse

In Section 2.2, we looked at the spherical collapse of overdensities. We showed
that there is a critical value for the overdensity which, once reached, results in
the formation of a halo. Now we will see how this critical overdensity is modified
in an f(R) framework.

There are two main problems that we face. One is that Birkhoff’s theorem is
no longer applicable, due to monopole gravitational radiation being allowed in
the f(R) model (Faraoni, 2010). The other problem is that the gravity, through
modification via the fifth force, now depends on the density of the environment.
Because of this, unlike the spherical collapse in GR where the initial top-hat
shape of the density profile was preserved, the density profiles in f(R) do not
retain their initial shape.

Figure 4.1: The critical overdensity obtained using eq. (4.15), for log |fR0| = −5
and log |fR0| = −7. The different lines signify halos formed at different redshift.

Kopp et al. (2013) solved the full modified field and fluid equations for the
high curvature limit of the Hu-Sawicki f(R) model, eq. (4.8), with n = 1. They
preformed over a 1000 runs of their code, varying the initial overdensity δi, the
present day value of the scalar field fR0 and the smoothing scale R. In the end
they obtained a fitting equation for the critical overdensity, given by:

δc(z,M, fR0) = δΛ
c (z)

[
1 + b2 (1 + z)−a3

(
mb −

√
m2
b + 1

)
+

+ b3 (tanhmb − 1)

]
(4.15)
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where the parameters are defined as:

mb(z,M, fR0) = (1 + z)a3
(
log10[M/(M�h

−1)]−m1(1 + z)−a4
)

;

m1(fR0) = 1.99 log10 |fR0|+ 26.21 ;

b2 = 0.0166 ; (4.16)

b3(fR0) = 0.0027 · (2.41− log10 |fR0|) ;

a3(fR0) = 1 + 0.99 exp
[
−2.08(log10 |fR0|+ 5.57)2

]
;

a4(fR0) = (tanh [0.69 · (log10 |fR0|+ 6.65)] + 1) 0.11 .

In eq. (4.15), δΛ
c (z) is the critical overdensity for ΛCDM, as defined in eq.

(2.20). In both the high-redshift and high-mass limit, the f(R) critical overden-
sity converges to the ΛCDM one. Additionally, as fR0 goes to zero (Figure 4.1),
it converges to the constant Einstein-de Sitter solution given by eq. (2.19).

4.2.2 Modifications to the halo mass function

As we have stated before, the halo mass function can be written as eq. (2.27),
with the cosmology dependence contained in the multiplicity function f(σ). In
the Press-Schechter approach we considered spherical collapse with the threshold
given by a constant barrier B = δc. For ellipsoidal collapse, however, the bar-
rier is not constant and can be modeled as a stochastic process with a Gaussian
distribution with mean B̄ and variance σ2DB . Here σ2 is given by eq. (2.24),
while the mean B̄ and the diffusion coefficient DB are free parameters and are
fitted to N-body simulations. Sheth et al. (2001) extend this model by defining
a barrier with a linearly drifting mean of the form:

B̄ = δc + βσ2 , (4.17)

with β being the drifting parameter.
In that case, the multiplicity function for ellipsoidal collapse is given by:

fsk(σ) =

√
2a

π
exp

[
−aB̄

2

2σ2

]
δc
σ
, (4.18)

where a = 1/(1+DB) (Kopp et al., 2013). The subscript “sk” here denotes that
this form of the function is valid only for an overdensity field smoothed with a
sharp-k filter, which is a top-hat filter in k space. 2

As the mass of our halos is enclosed in a sphere in real space, we want to
smooth our field with a real space top-hat filter (a sharp-x filter), like in Section
2.3. In this case we introduce a correction to the multiplicity function, with an
amplitude parameter κ (Maggiore and Riotto, 2010).

The multiplicity function for GR, given to first order in κ, is then (Corasaniti
and Achitouv, 2011):

fGR
sx (σ) = fGR

sk (σ) + fm−m1,β=0(σ) + fm−m
1,β(1) (σ) + fm−m

1,β(2) (σ) , (4.19)

2Note that this is a filter which has a top-hat shape in k space, as opposed to a Fourier
transform of a real space top-hat filter.
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Figure 4.2: The multiplicity function, eq. (4.24), for f(R) gravity with different
values of fR0.

with

fm−m1,β=0(σ) = −κ̃ δc
σ

√
2a

π

[
e−

aδ2c
2σ2 − 1

2
Γ

(
0,
aδ2
C

2σ2

)]
, (4.20)

fm−m
1,β(1) (σ) = −a δc β

[
κ̃ Erfc

(
δc

√
a

2σ2

)
+ fm−m1,β=0(σ)

]
, (4.21)

fm−m
1,β(2) (σ) = −a β

[
β

2
σ2fm−m1,β=0(σ) + δc f

m−m
1,β(1) (σ)

]
, (4.22)

and κ̃ defined as κ̃ = κ/(1 +DB).

Let us assume that in f(R) we can also write the sharp-x multiplicity function
as a correction of the sharp-k function. The ratio of the GR and f(R) multiplicity
functions is then:

fMG
sx (σ)

fGR
sx (σ)

=
fMG
sk (σ)

fGR
sk (σ)

+O(κ2) . (4.23)

Ignoring the higher order κ correction terms, the multiplicity function for
f(R) is:

fMG
sx (σ) ' fGR

sx (σ)
fMG
sk (σ)

fGR
sk (σ)

, (4.24)

with fsk(σ) calculated using eq. (4.18) and the corresponding critical overdensity
δc, given by eq. (2.20) for GR, and eq. (4.15) for f(R).
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Statistical Description

The goal of this thesis is to calculate the power spectrum and bispectrum of the
Sunyaev-Zel’dovich effect in f(R) gravity, and do a Fisher forecast to determine
how well these two observables can constrain modified gravity models. Though
we briefly mentioned the power spectrum in Section 3.2, we did not go into any
details. Here we will take a closer look at spherical decomposition, and at the
power spectrum, bispectrum, and their covariances. We will then use these to
construct a Fisher matrix for an ideal, cosmic variance limited experiment.

5.1 The Fisher Matrix

A Fisher forecast is used to estimate how well a particular experiment can con-
strain a parameter through some observed quantity. The forecast makes use of
the Fisher information matrix F , whose components are defined as (Heavens,
2009; Dodelson, 2003):

Fij =

〈
−∂

2(lnL)

∂pi ∂pj

〉
, (5.1)

where L is the likelihood function, and pi and pj are the parameters we want
to constrain. The Fisher matrix is therefore a n × n matrix, with n being the
number of parameters.

In simple terms, the likelihood describes the probability to obtain specific
data given a theory. If the likelihood has a well defined maximum centered
around the true value of the parameters, it can usually be locally approximated
by a Gaussian. The derivative in the Fisher matrix looks at the curvature of the
likelihood, with larger curvature corresponding to smaller variance.

In case of Gaussian distributed data and rotational invariance of the observ-
able (Verde, 2010), the Fisher matrix can also be written as:

Fij =
∂O
∂pi

T

Cov(O)−1 ∂O
∂pj

, (5.2)

where ∂O/∂pi is a gradient and Cov(O) is the covariance matrix of the observ-
ables.

Once the Fisher matrix is calculated, its inverse will then give us the covari-
ance matrix for the parameters. The diagonal elements of the covariance matrix
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are the uncertainties in the parameters, σ2
ii, while the off-diagonal elements σ2

ij

(for i 6= j) measure the covariance between parameters pi and pj .

5.2 Spherical Decomposition

Like the CMB temperature map in Section 3.2, any observable O on a sphere
in direction ~n(θ, φ), can be decomposed into spherical harmonics, since they
represent an orthonormal basis on the sphere:

O(~n) =

∞∑
`=0

∑̀
m=−l

a`m Y`m(~n) , (5.3)

with ` ∈ N being the multipole, and −` < m < ` being the azimuthal param-
eter. The spherical harmonics are given by eq. (3.6) and satisfy the following
orthonormality condition:∫

d2~n Y`m(~n)Y ∗`′m′(~n) = δ``′ δmm′ . (5.4)

It is useful at this point to also define a product of two spherical harmonics,
decomposed into the harmonic basis using the Gaunt coefficients G`1`2`3m1m2m3

:

Y`1m1 Y`2m2 =
∑
`3m3

G`1`2`3m1m2m3
Y ∗`3m3

. (5.5)

The Gaunt coefficients are given by:

Gm1m2m3

`1`2`3
=

∫
d2~n Y`1m1

Y`2m2
Y`3m3

=
√
N123

(
`1 `2 `3
m1 m2 m3

)
, (5.6)

with

√
N123 =

√
(2`1 + 1) + (2`2 + 1) + (2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
, (5.7)

where

(
`1 `2 `3
m1 m2 m3

)
are the Wigner 3j symbols. They are used to describe

quantum systems with coupled angular momenta and can be related to Clebsch-
Gordan coefficients (Wigner, 1959). An interesting property for the Wigner 3j
symbols is that they are zero unless the following conditions are satisfied:

`1 + `2 + `3 = 2n n ∈ N (5.8)

|`1 − `2| ≤ `3 ≤ `1 + `2 , (5.9)

m1 +m2 +m3 = 0 . (5.10)

This will soon become important in our definition of the bispectrum.
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5.3 Power Spectrum

Assuming statistical isotropy of the universe, the angular correlation functions
should be rotationally invariant (Hu, 2001). This means that we can build an
estimator by averaging over the whole sky. For the power spectrum we then
have:

C` =
1

2`+ 1

∑
m

a`ma
∗
`m , (5.11)

where the factor 2`+ 1 comes from the fact that for any given ` there are 2`+ 1
values of m. This is the optimal estimator for the power spectrum, meaning that
it has the smallest possible error bars. It is worth noting that this is true only
for full-sky coverage and high multipoles (` & 10), otherwise corrections need
to be made. However, since our aim is to do a Fisher forecast and not analyze
actual data, these technical issues are not important for us.

To construct the Fisher matrix, we will first need the covariances for our
observables. For an observable O the covariance is defined as:

Cov (O,O′) = 〈OO′〉 − 〈O〉 〈O′〉 (5.12)

For the power spectrum we have (Lacasa, 2013):

〈C` C`′〉 =
1

(2`+ 1)(2`′ + 1)

∑
mm′

〈a`m a∗`m a`′m′ a∗`′m′〉

=
1

(2`+ 1)(2`′ + 1)

∑
m,m′

[
〈a`m a∗`m〉 〈a`′m′ a∗`′m′〉+

+ 〈a`m a`′m′〉 〈a∗`m a∗`′m′〉+ 〈a`m a∗`′m′〉 〈a`′m′ a∗`m〉+ (5.13)

+ 〈a`m a∗`m a`′m′ a∗`′m′〉c
]

= 〈C`〉 〈C`′〉+ δ``′
2C` C`′

2`+ 1
+
P(4)(`, `, `′, `′, `d = 0)

4π
,

where δij is the Kronecker delta. In the last term P(4) is the trispectrum (related
to the connected four-point correlation function). If the four multipoles of the
trispectrum form a quadrilateral in phase space, `d is the diagonal.

Since the Planck 2015 results lack trispectrum and pentaspectrum measure-
ments (Aghanim et al., 2016), and our goal is to eventually make use of the
Planck y-maps, we will focus only on two-point and three-point statistics and
will not include higher order spectra.

The covariance is then given by:

Cov(C`, C`′) =
2C` C`′

2`+ 1
δ``′ . (5.14)

For Gaussian fields, most of the information is contained in the power spec-
trum. We are, however, interested the tSZ signal, which is produced by large
scale structure. As we mentioned previously, structure formation induces non-
Gaussianity in the matter density field, thus making the tSZ signal highly non-
Gaussian. This means that higher-order statistics, like the bispectrum, are worth
exploring as there is a lot of information contained in them.
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Figure 5.1: Diagrams corresponding to the different terms of the bispectrum
covariance. From left to right 2 × 2 × 2 (double-circulation triangle), 3 × 3
(parallel kite), 4× 2 (opposite kite) and 6 (butterfly) (Lacasa, 2013).

5.4 Bispectrum

The bispectrum is the harmonic transform of the real space three-point correla-
tion function. It is therefore a function of three multipoles, and it is given by:

Bm1m2m3

`1`2`3
≡ 〈a`1m1a`2m2a`3m3〉 . (5.15)

We can build an estimator for the bispectrum by averaging over the whole sky,
just like we did for the power spectrum. The angle averaged bispectrum is then
given by:

B`1`2`3 ≡
∑
m

(
`1 `2 `3
m1 m2 m3

)
a`1m1a`2m2a`3m3 . (5.16)

In this thesis we will be working with the reduced bispectrum which is
related to the angle averaged bispectrum by (Hu, 2000):

b`1`2`3 ≈
1√
N123

B`1`2`3

=
1√
N123

∑
m

(
`1 `2 `3
m1 m2 m3

)
a`1m1a`2m2a`3m3 . (5.17)

In eq. (5.17) and (5.16) we see that the bispectrum contains a Wigner 3j
symbol. From the previous section we know that the symbols, and therefore the
bispectrum, are zero unless conditions (5.8)–(5.10) are met. In the allowed con-
figurations, the three multipoles (`1, `2, `3) will then form triangles in Fourier
space. The rotational invariance of the bispectrum also demands that the bis-
pectrum remains the same no matter how this triangle is oriented. This means
that the bispectrum does not depend on the order of the multipoles, only on the
shape of the triangle (eg. b`1`2`3 = b`2`1`3).

Before we continue onto determining the covariance, let us define b123 ≡
b`1`2`3 and a1 ≡ a`1m1 , to shorten the notation. We then write the covariance of
the bispectrum as:

Cov(b123, b456) = 〈b123 b456〉 − 〈b123〉 〈b456〉 . (5.18)

Using Wick’s theorem (Wick, 1950), we can split 〈b123 b456〉 into four terms:

〈a1...6〉 = 〈a1...6〉(2×2×2) + 〈a1...6〉(3×3) + 〈a1...6〉(4×2) + 〈a1...6〉c , (5.19)
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with the subscript numbers specifying the n-point correlation function contribut-
ing to the term. We see that the last two terms have contributions from the
trispectrum and the pentaspectrum. As we did previously, we will ignore the
higher order spectra and focus only on the first two terms.

The first term has a power spectrum contribution and is diagonal:〈
b2123

〉
2×2×2

=
1

N123
C`1C`2C`3 δ`1`2`3 , (5.20)

where

δ`1`2`3 =

 6 if `1 = `2 = `3
1 if `1 6= `2 6= `3
2 else

(5.21)

This is also called the Gaussian term as it is the only non-vanishing term in case
of weak non-Gaussianity (Komatsu and Spergel, 2001).The second term depends
on the bispectrum itself:

〈b123, b456〉3×3 =
b156 b234

2`1 + 1
δ`1`4 +

b146 b235

2`1 + 1
δ`1`5 +

b145 b236

2`1 + 1
δ`1`6

+
b134 b256

2`2 + 1
δ`2`4 +

b135 b246

2`2 + 1
δ`2`5 +

b136 b245

2`2 + 1
δ`2`6 (5.22)

+
b124 b356

2`3 + 1
δ`3`4 +

b125 b346

2`3 + 1
δ`3`5 +

b126 b345

2`3 + 1
δ`3`6 + 〈b123〉 〈b456〉 ,

where δij is again the Kronecker delta. The last term, 〈b123〉 〈b456〉, cancels out
with the one in the definition of the covariance, eq. (5.18).

The covariance of the bispectrum, ignoring correlators of higher order, is
then:

Cov(b123, b456) =
1

N123
C`1C`2C`3 δ`1`2`3

+
b156 b234

2`1 + 1
δ`1`4 +

b146 b235

2`1 + 1
δ`1`5 +

b145 b236

2`1 + 1
δ`1`6

+
b134 b256

2`2 + 1
δ`2`4 +

b135 b246

2`2 + 1
δ`2`5 +

b136 b245

2`2 + 1
δ`2`6 (5.23)

+
b124 b356

2`3 + 1
δ`3`4 +

b125 b346

2`3 + 1
δ`3`5 +

b126 b345

2`3 + 1
δ`3`6

For a full expression of the bispectrum covariance, including higher orders,
we refer the reader to Chapter 2 of Lacasa (2013).

5.5 Displaying the Bispectrum

While the power spectrum is fairly easy to display as a plot of C`(`), the bis-
pectrum depends on a configuration of three multipoles. This leads to some
difficulties when trying to adequately display it.

Recall that the intensity of the bispectrum depends on the triangle config-
uration, rather than its orientation. We would therefore like a way to group
specific triangle configurations together. One way is to simply choose and plot
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Figure 5.2: Left: Bispectrum for ΛCDM cosmology (using Planck 2018 parame-
ters (Aghanim et al., 2018)), with four different types of triangles plotted sepa-
rately. Right: The same bispectrum plotted using the (P, F, S) parametrization,
for P = 2020, and with indicated positions of specific triangle configurations.

a couple of specific triangles, like all equilateral or all squeezed triangles (Figure
5.2, left). This means that we a priori choose which configurations to look at,
while possibly missing important data from different configurations.

While there have been several alternative ways proposed for visualizing the
bispectrum (Fergusson et al., 2012; Bucher et al., 2010), in this thesis we will
adopt a parametrization proposed by Lacasa et al. (2012). This will allow us to
visualize how the bispectrum changes for different triangle configurations.

We first define:

σ1 = `1 + `2 + `3 , (5.24)

σ2 = `1`2 + `1`3 + `2`3 and σ̃2 = 12
σ2

σ2
1

− 3 , (5.25)

σ3 = `1 `2 `3 and σ̃3 = 27
σ3

σ3
1

. (5.26)

The new parametrization will then be based on parameters (P , F , S), defined
using (σ1, σ̃2, σ̃3) as:

P = σ1 , (5.27)

F = 32
σ̃2 − σ̃3

3
+ 1 , (5.28)

S = σ̃3 . (5.29)

Parameter P represents the circumference of the triangle in phase space. Our
plots will be slices of constant P with the different triangle configurations then
clearly separated in the (F, S) plane (Figure 5.2, right).

40



Chapter 6

The Power Spectrum and
Bispectrum of the tSZ
Effect

Now that we have all the tools we need, we can move on to calculating the
power spectrum and bispectrum of the thermal Sunyaev-Zel’dovich effect. To do
this, we will make use of the halo model of the large scale structure described in
Chapter 2. In the halo model, we assume that all the matter in the universe is
contained inside halos. Furthermore, we assume that the structure of the halo
itself is independent of the distribution of halos. This means that we can split an
n-point correlation function into n terms, depending on where the contribution
is coming from.1

The two-point correlation function, for example, will be divided into two
terms:

1. The one-halo term, describing the correlation of points that sit inside the
same halo, and

2. The two-halo term, describing the correlation of two points belonging to
two different halos.

We can then write the power spectrum as a sum of these two terms:

C` = C1h
` + C2h

` . (6.1)

Equivalently, the bispectrum will have three terms:

b`1`2`3 = b1h
`1`2`3 + b2h

`1`2`3 + b3h
`1`2`3 , (6.2)

where the one-halo term now describes the correlation of three points that sit
inside the same halo, the two-halo term describes the correlation where one of
the points is in a different halo, and the three-halo term looks at the correlation
of three points in three different halos. In this thesis we will only focus on the one
halo term of the bispectrum, as it is the dominant component of the spectrum
(Aghanim et al., 2016).

1For a more complete review of the halo model, see Cooray and Sheth (2002).
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6.1 Halo Model for tSZ

In the flat sky limit, we can write the one- and two-halo terms of the tSZ power
spectrum as (Komatsu and Kitayama, 1999; Hill and Pajer, 2013):

C1h
` =

∫
dz

d2V

dzdΩ

∫
dM

dn(M, z)

dM

∣∣ỹ`(M, z)
∣∣2, (6.3)

C2h
` =

∫
dz

d2V

dzdΩ
P lin

m (k, z)

[∫
dM

dn(M, z)

dM
bh(M, z) ỹ`(M, z)

]2

, (6.4)

where d2V/dzdΩ is the comoving volume element per steradian, and b(M, z) is
the linear bias, defined as the ratio of the halo power spectrum to the matter
power spectrum Tinker et al. (2010):

b2h(M, z) =
P lin

h (k,M, z)

P lin
m (k, z)

. (6.5)

Additionally, ỹ`(M, z) is a Fourier transform of the projected y-Compton profile
of a cluster, with a scale radius rs. It is given by:

ỹ`(M, z) =
4πrs

l2s

∫
dxx2 y3D(z,M, x)

sin
[(
`+ 1

2

)
x
ls

]
(
`+ 1

2

)
x
ls

, (6.6)

where x and ls are defined as x = r/rs and ls = a(z)χ(z)/rs, and χ(z) is the
comoving distance. The radial 3D y-Compton profile, y3D(z,M, x), is given by
(Komatsu and Seljak, 2002):

y3D(z,M, x) = 1.04 · 10−4Mpc−1

[
Pgas(z,M, x)

50eV cm−3

]
. (6.7)

The one-halo term of the tSZ bispectrum is given by (Bhattacharya et al.,
2012; Hurier and Lacasa, 2017):

b1h
`1`2`3 =

∫
dz

d2V

dzdΩ

∫
dM

dn(M, z)

dM
ỹ`1(M, z) ỹ`2(M, z) ỹ`3(M, z) . (6.8)

6.2 Calculations

In the following, we will refer to results obtained for general relativity as “GR”,
and results for f(R) modified gravity as “MG” results. Since the f(R) MG model
is parametrized by the value of the scalar field today, fR0, we will also indicate
this parameter where needed.

The cosmological parameters we used for our fiducial cosmology are from the
Planck 2018 data release, and they are listed in Table 6.1. We are already famil-
iar with Ωm, ΩΛ, H0 and σ8 from previous chapters. Additionally, we have As,
which is the amplitude of scalar perturbations induced by inflation, and spectral
index ns, which gives the slope of the matter power spectrum.

For the calculations of the tSZ power spectrum and bispectrum, we use a code
developed by the Padova cosmology group, which makes use of the halo model
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Figure 6.1: The linear matter power spectrum at redshift z = 0, calculated using
CLASS. The vertical line shows the scales at which linear theory breaks down, the
part on the right of this limit is obtained by extending the use of linear theory
to smaller scales.

to calculate the spectra. I have modified this code and developed a pipeline for
calculating bispectrum configurations beyond the equilateral one.

The code takes the matter power spectrum at redshift z = 0 as input, and
evolves it using linear theory. For obtaining the input power spectrum in Figure
6.1, we make use of the Boltzmann code CLASS — the Cosmic Linear Anisotropy
Solving System (Lesgourgues, 2011).

Our code then outputs the power spectrum and the bispectrum of the tSZ
effect, calculated using equations (6.8) and (6.1), for multipole values from 2 and
up to `max = 1000.

parameters best-fit values with 1σ errors

Ωm 0.3111± 0.0056

ΩΛ 0.6889± 0.0056

H0 67.66± 0.420

σ8 0.8102± 0.0060

109As 2.105± 0.030

ns 0.9665± 0.0038

Table 6.1: Cosmological parameters from the Planck 2018 data release (Aghanim
et al., 2018).

To carry out the bispectrum calculation, we first need to calculate the al-
lowed triangle configurations formed by the three multipoles, (`1, `2, `3). For
the multipole range of 2 < ` < 1000, we found that the number of the allowed
configurations is O(107). Due to the long computational time required for these
calculations, we had to restrict ourselves only to certain configurations. Thus we
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Figure 6.2: Power spectrum and diagonal bispectrum for GR (left) and MG
(right)

decided to sample only some of the multipoles in our given range. Since both
the power spectrum and the bispectrum vary more at lower multipoles, as seen
in Figure 6.2, we choose a sampling that is more concentrated at these scales.
We thus construct 67 multipole bins (Figure 6.3) with values:

1. 2 – 10 with step 1,

2. 10 – 20 with step 2,

3. 20 – 100 with step 10 and

4. 100 – 1000 with step 20.

This way we reduce the number of allowed configurations to O(104).
Since the bispectrum is smooth and varies slowly, we can use nearest-neighbor

interpolation between these bins, without loosing much data.

Figure 6.3: Logarithmic plot of the MG power spectrum with indicated multipole
bins.
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6.3 Spectra

We now present the results of our spectrum calculations.
Looking at the power spectrum in Figure 6.4, it is evident that the one-halo

term is dominant, especially on small scales i.e. large multipoles. This is because,
on small scales, we mainly pick up on individual clusters, so it is more likely that
we look at correlation between points that belong to the same cluster.

Figure 6.4: Calculated tSZ power spectrum for f(R) gravity with log |fR0| = −5.
Shown are the one- and two-halo terms, as well as the total power spectrum,
C` = C1h

` + C2h
` .

By considering equilateral triangle configurations of the bispectrum, we can
compare it to the power spectrum. We see from Figure 6.5 that the amplitude of
the power spectrum is higher than that of the bispectrum, both for MG and GR.
However, while the power spectrum only has an `max number of contributions,
we have already stated that the number of configurations is much higher for the
bispectrum. This means that the total signal coming from the bispectrum can
be comparable to that of the power spectrum.

Figure 6.5: The bispectrum for different triangle configurations in case of GR
(left) and MG (right)
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b`1`2`3 for |fR0| = 10−4

b`1`2`3 for |fR0| = 10−5

bGR
`1`2`3

Figure 6.6: Calculated tSZ bispectrum for MG (top two panels) and GR (bottom
panel). The bispectrum looks almost constant across different configurations,
with the overall amplitude scaling with fR0.
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b`1`2`3 for |fR0| = 10−4

b`1`2`3 for |fR0| = 10−5

bGR
`1`2`3

Figure 6.7: Calculated tSZ bispectrum for MG (top two panels) and GR (bottom
panel). The variation of the bispectrum between different triangle configurations
is visible.
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Though the bispectrum can be plotted as it is in Figure 6.5, we will also plot
it using the parametrization introduced in Section 5.5, to better understand its
morphology. We remind the reader that parameter P represents the circumfer-
ence of the phase space triangle formed by multipoles (`1, `2, `3), and the color
represents the bispectrum amplitude.

In Figure 6.6 we have fixed the color scale between the different slices. Since
the the variation of the bispectrum on different values of P (roughly correspond-
ing to different scales) is much larger than any variation between different con-
figurations, the bispectrum looks flat.

If we however look at the slices individually, we will be able to see variations
of the bispectrum amplitude for different triangle configurations. We do this in
Figure 6.7, where the richer morphology of the bispectrum becomes apparent.
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Fisher Forecast

As mentioned in Chapter 5, the goal of a Fisher forecast is to determine how well
an experiment can constrain specific theories. In this thesis, we will be looking
at the tSZ effect and its ability to constrain modified gravity. Though we hope
to apply this procedure to Planck data, for now we will look at an ideal, cosmic
variance limited experiment. Since cosmic variance is a statistical uncertainty,
caused by the fact that we only have one Universe to observe this is the minimal
uncertainty possible. This is a reasonable approximation for Planck, given that
its data are signal-dominated up to multipole ` ≈ 2000, which is well within our
multipole range.

7.1 Fiducial Cosmology

We choose a fiducial MG model with |fR0| = 10−5. This is based on constraints
from weak lensing, that put the value of the field at |fR0| . 10−5 (Liu et al.,
2016). In the special case of fR0 = 0, we recover GR.

The intra-cluster medium (ICM) is modeled using Arnaud’s pressure profile,
described in Section 2.4, with a free parameter αP. In eq. (2.32) we saw that
αP gives the slope of the pressure–mass relation; however, it is more common to
look at the slope between mass and the total tSZ signal coming from a cluster,
YSZ. The total tSZ signal is obtained by integrating the gas pressure over the
whole cluster, and the YSZ–M500 relation is then given by:

YSZ(R)

Y500
∝
[

M500

3 · 1014 h−1
70 M�

]αP+ 5
3

(7.1)

where Y500 is the characteristic Compton parameter, obtained by integrating
over a sphere of radius R500.1 Following Arnaud et al. (2010), we set αP = 0.12.

Besides the slope αP, there is another free parameter coming from ICM
physics, the hydrostatic mass bias b. Since the mass observed through tSZ,
MSZ, is not the true mass of the cluster, it needs to be corrected using this
parameter.

1We remind the reader that R∆ is defined as a radius in which the density contrast is ∆
(Sec 2.4).
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Assuming hydrostatic equilibrium in the cluster, the mass estimated from
tSZ is:

MSZ = (1− b)M500 . (7.2)

Following Ade et al. (2016), we use a value for the mass bias b = 0.2.

7.2 Computational Difficulties

As mentioned in the previous section, the calculation of all possible triangle
configurations for `1, `2, `3 ∈ [2, 1000] would be numerically unfeasible. To cut
down on the number of calculations, we first remember that the bispectrum
depends only on the shape of the triangle, not the orientation. This means we
do not have to calculate all six permutations of (`1`2`3), but only one. Any sum
going across all triangle configurations will then be:∑

`1`2`3

= 6
∑

2≤`1≤`2≤`3

(7.3)

Additionally, as we mentioned, we also use a sort of binning to cut down on
the number of configurations we need to calculate. As we never calculate the full
bispectrum, this is not true binning, where the full data is obtained and then
divided into bins. Instead, we calculate values only for the bins, and then do a
nearest-neighbor interpolation. In the case of the bispectrum, this process
is not trivial since all the possible triangle configurations must be assigned to
their proper bins. This must be done while still respecting the triangle shape,
so the bins are assigned with all three multipoles in mind (eg. configuration
(50, 925, 973) will go into bin (50, 920, 960)).

With the binning in mind, we write the Fisher matrix of the bispectrum as:

Fij = 6
∑
∆123

∂b∆123

∂pi
Cov(b∆123, b∆123)−1 ∂b∆123

∂pj
Ξ∆123 , (7.4)

where bins are denoted as ∆`1∆`2∆`3 ≡ ∆123, and Ξ∆123 in the number of
triangle configurations belonging to bin ∆123.

Finally, as we see in equation (5.2), once we calculate the covariance matrix
of the bispectrum, we need to invert it. Even with the reduced amount of data,
this is a computationally heavy task, as it demands an inversion of an n × n
matrix, where n is the number of all possible triangle configurations. This is
why, for the purposes of this thesis, we will assume weak non-Gaussianity.
This means that the covariance of the bispectrum will be a diagonal matrix with
only a power spectrum contribution. The binned covariance is then given by:

Cov(b∆123, b∆123) ≈ 1

N∆123
C∆`1C∆`2C∆`3 δ∆123 , (7.5)

where, assuming weak non-Gaussianity, we took the term 〈b123〉 〈b456〉 to be zero.
Now our inverted matrix is simply:

Cov−1(b∆123, b∆123) ≈ N∆123

C∆`1C∆`2C∆`3 δ∆123
, (7.6)
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Note that, since N∆123 and δ∆123 both depend on the configuration of multi-
poles (`1, `2, `3), we should calculate all possible configurations and then properly
bin them. In the case of δ∆123, for example, we might have a bin with three dif-
ferent multipoles. In this case, we know from eq. 5.21 that δ∆123 = 1. However,
this bin might contain configurations where two of the multipoles are the same,
so that δ123 = 2. What we found, however, is that this does not effect the result
of the Fisher analysis and, therefore, we neglect the binning and only consider
the values of N∆123 and δ∆123 for the bin itself.

7.3 Results

7.3.1 Power spectrum

We start by doing a Fisher forecast considering only the power spectrum. By
varying parameters: fR0, Ωm, As,h, b and αP , we obtain the results presented
in Table 7.1, with the corresponding confidence ellipses shown in Figure 7.1.
As we see, the constraints in this case are very weak. In the table we also
give the improvements over the power spectrum results, first when using the
bispectrum, and then for the combined analysis of the two. The improvement
clearly illustrates the superior constraining power of the bispectrum.

parameters fiducial 1σ BS improvement PSBS improvement

105fR0 1 48 47, 830 % 47, 989 %

Ωm 0.3111 2.3 187, 690 % 188, 810 %

109As 2.105 48 57, 237 % 57, 539 %

h 0.6766 9.0 91, 133 % 91, 293 %

b 0.2 29 46, 397 % 46, 696 %

αP 0.12 8.3 103, 461 % 103, 537 %

Table 7.1: Fiducial values with the corresponding 1σ uncertainties obtained from
the Fisher analysis of the power spectrum. The last two columns show the gained
constraining power when using only the bispectrum (BS) and also the combined
analysis of power spectrum and bispectrum (PSBS).

7.3.2 Bispectrum

The tSZ bispectrum has been shown to provide stronger constraints on cosmology
and ICM physics than the power spectrum. Additionally, most of its signal
comes from well understood massive clusters at intermediate-redshift, so it is
less sensitive to astrophysical uncertainties (Bhattacharya et al., 2012). This
makes the bispectrum a good potential cosmological probe, and is the reason we
are considering it in this thesis.

Additionally, from equations (6.3) and (6.8), we see that the power spec-
trum and bispectrum have a different dependence on the y-Compton parameter,
and therefore ICM physics. This means that we could break some parameter
degeneracies by combining the two spectra.
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Figure 7.1: Confidence ellipses obtained from the power spectrum, with 1σ and
2σ confidence regions.
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Figure 7.2: Confidence ellipses obtained from the bispectrum, with 1σ and 2σ
confidence regions.
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parameters fiducial 1σ PSBS improvement

fR0 · 105 1.00 0.10 0.33 %

Ωm 0.3111 0.0013 0.60 %

As · 109 2.105 0.084 0.53 %

h 0.6766 0.0098 0.18 %

b 0.200 0.063 0.64 %

αP 0.1200 0.0081 0.074 %

Table 7.2: Fiducial values with the corresponding 1σ uncertainties obtained from
the Fisher analysis of the bispectrum.

We report our constraints from the bispectrum in Table 7.2, with the con-
fidence ellipses given in Figure 7.2. As expected, the constraining power of the
bispectrum far exceeds that of the power spectrum. However, we have to take
into account that the we have not included any higher order spectra into the
covariance.

In Figure 7.3, we also plot the derivatives of the bispectrum with respect
to some of the parameters. We see that the changes are different for different
triangle configurations, meaning that the bispectrum does not simply scale with
changing parameters, but instead changes shape. This shows that the bispec-
trum alone could help in breaking some parameter degeneracies.

7.3.3 Combined power spectrum and bispectrum results

When using the tSZ effect, a major contribution in the uncertainty comes from
the ICM physics. In particular, we see from Figure 7.2 that the mass bias
parameter, b, is highly degenerate with cosmological parameters, including fR0.
As we mentioned, the combined analysis of the power spectrum and bispectrum
could break those degeneracies.

parameters fiducial 1σ

105fR0 1.00 0.10

Ωm 0.3111 0.0012

109As 2.105 0.083

h 0.6766 0.0098

b 0.200 0.063

αP 0.120 0.008

Table 7.3: Fiducial values with the corresponding 1σ uncertainties obtained from
the combined Fisher analysis of both the power spectrum and the bispectrum.
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The change of bispectrum with b

The change of bispectrum with fR0

The change of bispectrum with Ωm

Figure 7.3: Derivative of the bispectrum with respect to mass bias b (top panel),
fR0 (middle) and Ωm (bottom). We see the mass bias has most effect on equilat-
eral configurations, while fR0 and Ωm mostly affect the squeezed ones. For the
positions of specific triangles in the plot, refer to Figure 5.2.
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Figure 7.4: Confidence ellipses obtained from the combined analysis of both the
power spectrum and the bispectrum (PSBS), with 1σ and 2σ confidence regions.
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We give the results of the combined analysis in Table 7.3, with the confi-
dence ellipses given in 7.4. We note that, as expected, the constraints are only
marginally better than the bispectrum, since it is the major contributor in the
Fisher matrix.

Note that the combined analysis was done by simply adding the Fisher matri-
ces, and has not taken into account the correlation between the power spectrum
and the bispectrum. This would again require inversion of a large covariance
matrix, a computationally expensive task. We do, however, hope to account for
this effect in the future.
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Conclusion

Modified gravity models present an alternative way of explaining the accelerated
expansion of the universe, without having to introduce dark energy. In this thesis
in particular, we take a look at a class of modified gravity models called f(R)
models.

We expect f(R) gravity to leave characteristic signatures in the formation of
large scale structure, which could be observed. We thus introduce the theoretical
tools needed to describe the formation and evolution of large scale structure in
a ΛCDM model, as well as the modifications introduced by f(R). We then
calculate the power spectrum and bispectrum of the thermal Sunyaev-Zel’dovich
effect in modified gravity, hoping to compare it to Planck data and thus constrain
the f(R) model.

To check how well we could constrain modified gravity, we first do a Fisher
forecast for an ideal, cosmic variance limited experiment. Our fiducial cosmology
is obtained using Planck 2018 cosmological parameters and modified gravity
parameter |fR0| = 10−5.

First we do the analysis separately for the power spectrum and the bispec-
trum, and find that the constraining power of the bispectrum far exceeds the
power spectrum. We also do a combined analysis using both power spectrum
and the bispectrum. Here, due to computational limitations, we neglect the cor-
relation between the two. The combined analysis then gives us a constraint on
|105fR0| = 1.0± 0.1.

As in this thesis we only included the power spectrum contribution while
calculating the covariances of the tSZ spectra, in the future we hope to include
higher order terms as well. Additionally, we also plan to adequately combine
the power spectrum and bispectrum, including the correlation between the two.
Due to the different dependence of the power spectrum and the bispectrum on
ICM physics, this might prove helpful in breaking degeneracies between some of
the ICM parameters, in particular the mass bias parameter b. This motivates
the further study of tSZ spectra, beyond constraining modified gravity.
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