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Knowledge consists in the search for truth.But it is not the search for certainty. KARL POPPER
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AbstractInterference Alignment is one of the newest interference management tech-niques and it tries to align interference signals at the receiver side to achievein this way better performance in terms of throughput. At present, thereare only very few results about this technique in cooperative networks. Inliterature all the best results are achieved under ideal conditions, like fast fad-ing, completely uncorrelated channel, arbitrary long temporal slots, but weaim to analyze the scenario in normal and real conditions and we think thatnetwork cooperation can help to better approximate these ideal conditions.We aim to verify if, thanks to cooperation, better results in terms ofthroughput and convergence speed are reachable.At �rst we study and analyze various scenarios, extending the currentmodels in both temporal and space domain, that is to let the system work inmore than one temporal slot and with cooperative entities. Since results inclosed solution are di�cult to be achieved, we prefer to analyze these severalcooperative setups thanks to simulations exploiting iterative algorithms. Wetry to generalize the empirical results, in an analytical way when possible.From the results we obtain, we can not a�rm that an e�ective capacityimprovement is achievable, because in all the analyzed scenarios the cor-relation on channel, even exploiting cooperation, limits the performance.Anyway some results about capacity are obtained. If in cooperative sce-narios further hypothesis of mutual channel knowledge of the sources arestated, con�gurations over this kind of setup can reach better properties andso raise their throughput. We can �nally a�rm that cooperation is usefulto improve convergence speed of the Interference Alignment algorithms andthis is explained not only thanks to simulation results, but also thanks to aniii



analytical interpretation.We think that especially this �nal result could be exploited and be usefulas an improvement on applications using Interference Alignment.
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SommarioL'Interference Alignment è una delle più nuove tecniche di gestione dell' in-terferenza ed ha l'obiettivo di allineare al ricevitore i segnali interferenti,ottenendo così migliori prestazioni in termini di throughput. Al momentoci sono solo pochi studi riguardo questa tecnica in reti cooperative. In let-teratura tutti i migliori risultati sono ottenuti sotto condizioni ideali, comefast-fading, canali completamente incorrelati, slot temporali arbitrariamentelunghi. Noi intendiamo analizzare lo scenario in condizioni normali e reali,ritenendo che proprio la cooperazione permetta di approssimare meglio lecondizioni ideali.Il nostro intentento è di veri�care se, tramite la cooperazione, sono ot-tenibili migliori risultati in termini di throughput e velocità di convergenza.All'inizio del nostro lavoro, studiamo e analizzaiamo vari scenari, esten-dendo i modelli correnti sia da un punto di vista temporale che dal punto divista spaziale, il che signi�ca permettere al sistema di poter lavorare su piùdi uno slot, introducendo al contempo entità cooperative. Poichè è di�cileottenere risultati in forma chiusa, preferiamo analizzare diversi setup coop-erativi tramite simulazioni impieganti algoritmi iterativi. Quando possibile,cercheremo di generalizzare i risultati raggiunti empiricamente in manieraanalitica.Dai risultati ottenuti, è di�cile poter a�eramare che un miglioramentocapacitivo sia raggiungibile, perchè la correlazione di canale, anche in scenaricooperativi, limita irremidiabilmente le prestazioni. Tuttavia alcuni risultatirigurado la capacità sono comunque possibili. Nello speci�co, se in scenaricooperativi sono poste ulteriori ipotesi di mutua conoscenza del canale daparte delle sorgenti, le con�gurazioni in queste condizioni ottengono miglioriv



proprietà, riuscendo ad incrementare in questa maniera il proprio through-put. In�ne si può a�ermare che la cooperazione è utile per migliorare lavelocità di convergenza degli algoritmi di Interference Alignment e ciò è di-mostrato non solo empiricamente, tramite le simulazioni, ma anche attraversouna interpretazione analitica.Riteniamo che specialmente quest'ultimo risultato possa essere sfruttatoed essere utile come miglioramento di applicazioni che utilizzano InterferenceAlignment.
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ZusammenfassungInterference Alignment ist eine der neuesten Interferenz-Management-Techniken,die versucht, Interferenzsignale im Empfänger abzugleichen, um so einenbesseren Durchsatz zu erreichen. Momentan existieren von dieser Techniknur sehr wenige Ergebnisse im Bezug auf kooperative Netzwerke. In derLiteratur werden die besten Ergebnisse unter idealen Bedingungen erreicht,wie schnellem Fading, vollständig unkorrelierten Kanälen und beliebig langenZeitschlitzen. Wir aber versuchen, das Szenario unter normalen Bedingun-gen zu analysieren, und glauben, dass kooperative Netzwerke helfen können,diese idealen Bedingungen besser zu approximieren.Wir wollen zeigen, dass mit Hilfe der Kooperation bessere Ergebnissebezogen auf Durchsatz und Konvergenzgeschwindigkeit erreichbar sind.Zuerst analysieren wir verschiedene Szenarien und erweitern die aktuellenModelle sowohl im zeitlichen als auch im räumlichen Bereich, damit das Sys-tem mit mehr als einem Zeitschlitz und mit kooperativen Einheiten arbeitenkann. Da Ergebnisse in geschlossenen Lösungen schwierig zu erreichen sind,ziehen wir es vor, diese kooperativen Setups mit Simulationen zu analysieren,die iterative Algorithmen verwenden. Wir versuchen, die empirischen Ergeb-nisse auf eine analytische Weise zu verallgemeinern, sofern dies möglich ist.Anhand der Ergebnisse, die wir erhalten, können wir zwar nicht be-haupten, dass eine e�ektive Kapazitätssteigerung möglich ist, da in allenbetrachteten Szenarien die Korrelation in den Kanälen die Leistung begrenzt.Trotzdem werden einige Erkenntnisse zur Kapazität deutlich. Wenn in ko-operativen Szenarien weitere Annahmen über gegenseitige Kanalinformatio-nen gemacht werden, können Kon�gurationen mit dieser Art von Einstellungbessere Eigenschaften erhalten und so ihren Durchsatz steigern. Wir könnenvii



letztendlich behaupten, dass Kooperation nützlich ist, um die Konvergen-zgeschwindigkeit des Interference-Alignment-Algorithmus zu verbessern, unddas wird nicht nur anhand der Simulationsergebnisse erklärt, sondern auchdurch eine analytische Interpretation.Wir glauben, dass vor allem dieses letzte Ergebnis genutzt werden kannund als Verbesserung für Anwendungen, die Interference Alignment verwen-den, dienen kann.
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Chapter 1
Introduction and problemstatement
Interference Alignment (IA) is one of the newest interference management(IM) techniques. Traditionally interference has been regarded as a damagingelement in the design of telecommunications systems and it has been avoidedas much as possible, often by means of orthogonal access schemes like TDMAor FDMA. Some research trends have lately tried to exploit its structure tolimit its extent. One remarkable example is multiuser detection, but therea new approach (called IA) has been very recently proposed, which couldin principle increase the capacity of wireless networks to a far greater extentthan most other IM approaches but at present there are only very few resultsabout this technique in cooperative networks. This thesis aims to explorethis topic, analyzing several aspects of the theme in both a simulative andanalytical way.The work was performed at the Deutsches Zentrum für Luft- und Raum-fahrt (DLR) in Oberpfa�enhofen, Germany.In this chapter a brief introduction about MIMO, Interference Alignmentand cooperation is present. Finally the a subsection about the problemstatement describing what we aim to do in this theses concludes the chapter.1



1.1 MIMO overviewTo improve robustness or data rate over wireless communications, there ex-ist many techniques like OFDM or CDMA. On the following lines a shortintroduction over Multiple Input Multiple Output (MIMO) system is done,which constitutes the basis of the thesis.In conventional radio systems, transmitter and receiver have just oneantenna each, this is called Single Input Single Output (SISO) system.A MIMO system employs a number of transmit antennas Mt and receiveantenna Mr usually greater than one. These systems are said to achievediversity gain, power gain and space-multiplexing gain [1]. We will brie�yintroduce the �rst two ones, while we will focus more on the last one whichis the most important and it is mostly exploited in our work.MIMO systems are said to achieve diversity gain when the data is codedand transmitted through di�erent antennas, in such a way to increase thepower in the channel. The techniques that do an e�cient encoding are calledspace-time coding techniques and one of the most famous is called Alamouticode [1]. It is a space-time encoding scheme at �rst designed for two transmitantennas, but an extension to several antennas is possible. The encodingmatrix is the following:
X =

[
s1 −s∗2

s2 s∗1

] (1.1)where si are the transmitting symbols.In this way at the receiver side the two received signals are orthogonal,which leads to a simpler decoding. The result of these techniques is animprovement of Signal Noise Ratio (SNR) and increase on the reliability ofwireless link.Moreover receive antennas can also provide power gain. It is also calledarray gain and refers to the beamforming capability of a multiple antennaarray. The main idea is that it is possible to direct radiated energy towardthe receiver in a steered beam, improving channel performance and increasingthe throughput. One of the most important application [1] is on MultipleInput Single Output (MISO) systems on on which power gain is provided2



thanks to transmit beamforming. In this case Mr = 1 while Mt > 1 and thechannel H can be con�gured as a vector of dimensions 1 × Mt. The mainidea is to send all the transmit power in the direction of the channel vectorH, information sent in the orthoganl direction will be nulled out anyway. Inthis way calling the transmitting vector signal x we would like:
x =

H

||H|| x̃ (1.2)where x̃ is the so called pre-image vector and is the signals vector before themapping on the antennas (see System model). In this way the received signalis proportional to the norm of H and a power gain is obtained. Notice thatto do so, the trasmitter has to know the channel, that means that exploitsChannel-State-Information (CSI).We introduce now space-multiplexing gain. Each transmit antenna sendsits own independent signal (say t1, t2, ...tMt
) and all of them will be transmit-ted simultaneously in the same frequency band. As a consequence, sharingthe same channel, every antenna receives not only the direct component fromthe respective antenna, but also the indirect components intended for the oth-ers. By calling the received signal at each antenna as rj , the system couldbe represented in the following way, while a scheme is present in Fig. 1.1

r1 = h1,1t1 + h1,2t2 + . . .+ h1,Mt
tMt

r2 = h2,1x1 + h2,2x2 + . . .+ h2,Mt
tMt...

rMr
= h1,1x1 + h1,2x2 + . . .+ h1,Mt

tMtAs it can be seen from the above set of equations, in making theirway from the transmitter to the receiver, the independent set of signals
{t1, t2, ...tMt

} are all combined and traditionally this �combination� has beentreated as interference. Otherwise, by looking at the system in an another3



way, the channel can be represented as a matrix of dimension Mr ×Mt:
H =




h1,1 h1,2 ... h1,Mt

h2,1 h2,1 ... h2,Mt... ... . . . ...
hMr ,1 hMr,1 ... hMr,Mt




(1.3)
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MODULATORPSfrag replacements
1 : Mt

t1

t2

tMt

r1

r2

rMrFigure 1.1: Generic MIMO systemIn this way to recover the transmitted data ti from the received ones rj , itis necessary to estimate the individual channel weights hi,j and to reconstructH. Having estimated H, the multiplication of the vector y=[r1 r2 . . . rMr
] withthe pseudo-inverse of H produces vector x = [t1 t2 . . . tMt

]:
x = H†y (1.4)This is equivalent to solving a set of Mr equations in Mt unknowns.4



To be resolvable, the system has to contain more variables than equationsand so Mt = Mr, which means that the system must have the same or moretransmit than receive antennas. In this way the throughput increases linearlywith every pair of antennas added to the system without an increase of thebandwidth.The basic idea of MIMO is to exploit the so called �spatial diversity�to increase the throughput: to ensure H is invertible with high probability,a MIMO system requires an environment rich on multipath, so that thematrix could be as uncorrelated as possible. As a consequence MIMO is anexample of a system where line of sight invalidates performances while fadingis necessary.Another way to obtain �spatial diversity� [1] consists to use the angu-lar domain of the antennas used. Adaptive antenna arrays intensify spatialmultiplexing using narrow beams. De�ning the angular resolution as theminimum angle thanks to whom two signals that arrive with this angle canbe resolved; the angular resolution of a linear antenna array is dictated byits length: an array of length L provides a resolution of 1/L. Transmit andreceiver antenna arrays of length Lt and Lr partition the angular domaininto 2Lt × 2Lr bins of unresolvable multipaths as showed in Fig. 1.2 alsopicked from [1].In real application the types of antennas preferred are called �Smart An-tennas� and are usually divided into two groups as in Fig. 1.3:� Phased Array Systems (Switched Beamforming) with a number of �nitenumber of �xed prede�ned patterns� Adaptive Array Systems (Adaptive Beamforming) with an inde�nitenumber of patterns adjusted to the scenario in real timeThe second typology is often preferred because the beamformer is ad-justed in real-time as the moving of the terminal, while in the �rst case thebeams are �xed. Obviously the cost and the complexity in second case arehigher than the �rst one.MIMO analysis and performances are di�erent depending on the hypoth-esis made on channel. Usually it is assumed that the receiver knows the5



Figure 1.2: The MIMO channel in the angula domainchannel, while the the transmitter is devoid of such information. MIMO sys-tems where both the transmitter and receiver know the channel are calledMIMO with Channel state Information (CSI) at both communication ends.This hypothesis could be really strong, but it is often used depending onthe environment: if the channel is slowly time varying, for example like thesatellite channel the hypothesis can be realistic. In the case of MIMO withCSI more knowledge is introduced on the system and better performance(e.g. capacity) are achieved.1.1.1 System modelDelving more into the argument, a MIMO systems can be seen as in Fig.1.4 and described in [1]. The transmitter has a variable number of streamsor information �ows, shortly described by the vector x̃ of dimension S × 1.The number of streams could be greater than one but not more than the6



Figure 1.3: Examples of swiched and adaptive beamformingminimum between the number of transmit and receive antennas:
1 5 S 5 min {Mr, Mt} (1.5)Each stream is a sequence of modulated symbols and they are mapped,thanks to the precoding matrix V (dim(V ) =Mt × S), in the transmittedsignal, the vector x of dimensions Mt × 1. This is the signal sent fromthe antennas of the transmitter through the wireless channel. The channelbetween the transmitter and the receiver could be modeled by the matrix Hof dimensions Mr × Mt equal to the one represented in (1.3). The receivercaptures the received signal y of dimensions Mr × 1 which is the signal fromthe related transmitter corrupted by the thermal noise. At the receiver side,streams are reconstructed through the decoding matrix U (dim(U) =S ×

Mr), and the vector ỹ is obtained with dimensions S × 1. Each symbolat the receiver side passes through a normal decoder to detect the originaltransmitted one.Notice that no assumption on the channel distribution is done. The ma-trix H presented before is totally generic, but usually the channel will becharacterized with suitable distributions like Rayleigh, Loo, etc. In thiswork, we use a Rayleigh fading, even if the topology is motivated by satellitescenarios.It is possible to describe the system thanks to the following formulas:7



Figure 1.4: Architecture for MIMO communication
x = V x̃ (1.6)

y = H x+ w (1.7)
ỹ = UHy (1.8)Passing to analyze capacity, it is useful to remark �rst a fundamentaltheorem made by Shannon and Hartley stating that the capacity of a SISOsystem is

C = B log2(1 + SNR) (1.9)where B is the bandwidth and SNR is the signal to noise ratioIt is demonstrated that the ergodic capacity of a Mr × Mt i.i.d. fadingMIMO channel H with receiver CSI is
C(SNR) = E

[
log det

(
IMr

+
SNR

Mt
HHH

)] (1.10)At high SNR the capacity is approximately equal to min{Mt, Mr} ×
log(SNR) bit/s/Hz, while at low SNR Eq. (1.10) could be approximatedby Mr log(SNR) bit/s/Hz. Finally if Mr = Mt = M capacity could be8



approximately expressed by Mc∗(SNR) at both high and low SNR, where
c∗(SNR) = 2 log(1 + SNR − 1

4
F (SNR))− log e

4SNR
F (SNR)and

F (SNR) =
(√

4SNR + 1− 1
)2When Mr = Mt = M it is possible to state that the capacity increaseslinearly with the M for the entire SNR range.All the demonstrations are present in [1].Usually more than one MIMO transmitter and MIMO receiver are present.The starting point of this thesis is a special network called K network as in [2]which will be analyzed in next chapters. The network topology is such thatthere are K transmitter-receiver couples where the i-th transmitter wants tocommunicate only with the i-th receiver and both of them have the charac-teristics explained before. In this case the total system can be seen as:

xl = Vlx̃l (1.11)
yk =

K∑

k=1

Hk,lxl + wk (1.12)
ỹk = UH

k yk (1.13)where l is the subscript of transmitters, k the one for receivers and all theother symbols have been already introduced before and on here are onlypointed out for the particular transmitter/receiver. The big change is withEq. (1.12): the received signal is corrupted not only by noise but also byinterfering signals from other transmitters. These systems are often calledMulti-User MIMO, and, except for the multiple access and the broadcastchannel, a formula for the capacity region is di�cult to be obtained. Anyway approximations are present achievable thanks to the concept of degreesof freedom that will be introduced in next section.9



1.2 Introduction to Interference AlignmentThe main concept introduced and analysed in this work is the concept ofInterference Alignment (IA) signal processing technique.When a receiver has to decode its useful signal, one or more interferencesignals could be present. The basic idea of IA is to try to align an interferencesignal on another one as they could be �confused� and seen at the receiverside just as a single one. The consequence of IA is to achieve in this way ahigher throughput. In the further sections the concept of IA will be analyzedin more detail and it will be explained how cooperation and IA can operatetogether.1.2.1 IA: basic information theory considerationsIn order to fully appreciate the bene�ts of IA, it is �rst necessary to introducethe concept of Degree of Freedom (DoF). The DoF approach provides anapproximation of the channel capacity which is valid at asymptotically highsignal-to-noise ratio (SNR). A network has d degrees of freedom if and onlyif the sum capacity of the network can be expressed as:
C = d log(SNR) + o(log(SNR)) (1.14)Each interference-free signaling dimension yields log(SNR)+o(log(SNR))and so the degrees of freedom in a network could be seen as the number ofresolvable signal space dimensions.The task of IA, from an information theory point of view, is to maximizethe dimension of the useful signal, thanks to the alignment of interference.Cadambe and Jafar introduce in [2], the so-calledK user interference channel.It is made of of K transmitters and K receivers each of them can be equippedwith both a single or a multiple antenna and all the channel coe�cients pickedi.i.d. from a continuous distribution. In this network each transmitter wantsto communicate with its own receiver. In the case of a single antenna nodesand without any loss of generality, the assumption is that each transmitter 1,2,..., K has an independent message W1, W2, ..., WK intended for receiver 1,10



2, ... K. Respectively assuming that total power per transmitters is equal to
ρ and indicating the size of each message as |Wi(ρ)|, the authors say that therates Ri(ρ) =

log |Wi(ρ)|
t0

are achievable by choosing an appropriately large t0.In this way the capacity region C(ρ) of the K user interference channel is saidto be the set of all achievable rate tuples R(ρ) = (R1(ρ),R2(ρ)...,RK(ρ)).The authors demonstrate that the achievable DoF for the global system is
K/2.The converse of the previous statement follows the following lemma whichprovides an outer bound on the degrees of freedom:
max
D

di + dj ≤ lim sup
ρ→∞

sup
R(ρ)∈C(ρ)

Ri +Rj

log(ρ)
≤ 1, ∀ i, j ∈ {1, 2 ... K} , i 6= j(1.15)where D is the degree of freedom region. The previous lemma can be ex-tended in the following way:

max
D

∑

i, j∈{1, 2 ...K}, i 6=j

(di + dj) ≤
∑

i, j∈{1, 2 ...K}, i 6=j

1 (1.16)
⇒ max

D
d1 + d2 + ...+ dK ≤ K/2 (1.17)which demonstrate the statement. The demonstration of all lemmas arepresent in [2].For the same network topology and in the same conditions, but withMIMO nodes with Mr = Mt = M antennas, the authors demonstrate thatthe achievable DoFs are KM/2.In [3], the same authors introduce the so-called X -network (all transmit-ters have at least a packet for all receivers). This network has a number oftransmitters and receivers which is in general di�erent, i.e. Kr 6= Kt, where

Kr is the number of receivers Kt is the number of transmitters. They demon-strate that in presence of completely uncorrelated channel coe�cients, an up-per bound on the DoF of the system exists and it is MKrKt/(Kr +Kt − 1),where M is the number of antennas for each node. This result is achieved by11



the demonstration of the following theorem:
Dout = {[(dji)] : ∀(l, k) ∈ {1, 2, ..., Kt} × {1, 2, ..., Kr} , (1.18)

Kr∑

q=1

dql +
Kt∑

p=1

dkp − dkl ≤ max(Mr, Mt)}The theorem states that the number of degrees of freedom achieved by allmessages associated with transmitter l and receiver k called Dout, is upperbounded by max(Mr, Mt). To have an upper bound of the total number ofdegrees of freedom of the X channel with Kt transmitters, Kr receivers andone antenna each node, the authors use the following corollary:
max

[(dji)]∈D

∑

k∈{1, 2,...,Kr}, l∈{1, 2,...,Kt}

dkl ≤
KrKt

(Kr +Kt − 1)
(1.19)The demonstration of (1.19) is directly obtained by (1.18) by summingall the KrKt inequalities and setting Mr = Mt = 1 for all transmitters andreceivers. Demonstration of theorem (1.18) is present in the same paper [3].A second corollary is also present in [3] and it explicits the total numberof degrees of freedom of the X network, DΣ, when all the nodes have Mantennas. It is derived from previous equation and states the following:

MKrKt

(Kr +Kt − 1/M)
≤ DΣ ≤ MKrKt

(Kr +Kt − 1)
(1.20)Notice that all these results for the X network and K network are �only�upper bounds. The authors also show in the papers that in asymptotic condi-tions, that is to say when temporal slots are arbitrary long and fast-fading ispresent, there are interference alignment schemes which are able to approachwithin any ε > 0 these upper bounds.1.2.2 IA: a geometric interpretationAs written before, IA is a signal processing technique that seeks to aligninterference at the receiver side. In this way more interfering signals could12



be treated just as a single one. In order to better understand this concept,IA can be analyzed also from a geometric point of view. In this case it isnecessary to interpret the signals as elements of a suitable vector space. Forinstance each received signal could be seen as a vector on CMr . Simply if moreinterference signals are aligned together, they count as only one because theyoccupy just one dimension in the signal space. To better clarify the previousa�rmations, an example from [2], is proposed in the following lines. Justconsider a K network with K = 3, Mt = Mr = 1, S1, = 2, S2 = 1 , S3 = 1and fast-fading conditions,as in Fig. 1.5. As explained before the systemcould achieve at most 3/2 degrees of freedom. This is an asymptotic result,in fact the number of degrees of freedom of this example follows the law:
DoF =

3n+ 1

2n+ 1
(1.21)where the numerator is the total number of packet symbol decoded by allthe receivers, the denominator is the total number of symbol extension ortemporal slot and n is an integer number. When n → ∞ , DoF → 3/2,which con�rms what written before. Authors say that it is like to have auseful space and a �waste basket space for interference. When n is a �nitenumber, it is not possible to reach 1/2 degree of freedom per user. It is liketo say that we have an �over�ow� space where interference signal and usefulsignal are present. Fortunately this space dimensions become smaller as nincreases, that is to say that the upper bound is approximated within an

ε > 0 which becomes smaller as n increases or otherwise as the number ofslot increases.Here the system is studied after three temporal slot (n = 1) and so thereceiving space dimension is three. Let us de�ne V (j)
l as the precoding vectorof the j-th stream of the l-th transmitter (note that V (j)

l is the j-th columnvector of matrix Vl). If the stream index is not speci�ed it means that thetransmitter has only one stream. Let us choose V2 randomly. The �rstreceiver wants to decode V (1)
1 and V

(2)
1 and its useful space dimension will beequal to two, with only 1 dimension free for interference. It has to align the13



interference from transmitters 2 and 3:
H1,2V2 = H1,3V3 ⇒ V3 = (H1,3)

−1H1,2V2At receiver 2 there is only 1 useful signal, and the interference spacedimension is 2 with 3 interference signals and therefore it has to align atleast two of them:
H2,3V3 = H2,1V1 ⇒ V

(1)
1 = (H2,1)

−1H2,3(H1,3)
−1H1,2V2Similar to 2, receiver 3 has the same constraints:

H3,2V2 = H3,1V
(2)
1 ⇒ V

(2)
1 = (H3,1)

−1H3,2V
(2)
1Note that each receiver has a number of interference free dimensions equalto the number of streams that each one has to decode, thus the SIR relatedto each receiver is in�nite and IA is successful. In this way the decoding of 4useful signals with a 1 antenna system and 3 slots is possible while this datarate would not be achievable in usual systems without IA. In this case thesystem is said to have a total of 4/3 degrees of freedoms.The basic idea is to set precoding and decoding matrices such that ateach receiver the projection of all interference on the vectors Uk is null, whilethe projection of the useful signal is not.Other similar examples are covered in other papers like [3] and [4]. In[3] an example of X-network with single antenna nodes is reported. In thisscenario all the transmitters have a packet to all the receivers. As writtenbefore, in this case it is demonstrated that a total amount of KrKt/(Kr +

Kt − 1) degrees of freedom for the system is reachable and the alignmentis done over Kt+1 symbols. This means that for example, if Kt = 2 and
Kr = 2, IA can operate on this network and it is possible to decode 4 signalsin the total system, 2 signals each receiver over an extension of 3 symbols. Inthis case both the receiver have two information signals and two interferencesignals each while dimension of signal space is 3 due to the number of slotsand the number of receiving antennas.14
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Figure 1.5: Interference alignment on the three-user interference channel toachieve 4/3 degrees of freedomThe scheme is summarized in by Fig. 1.6.Let us focus �rst on the �rst receiver. It has to decode packets associatedto precoders V (1)
1 and V

(1)
2 . That means that the dimension for useful signalmust be equal to two. As a consequence interference signal dimension mustbe equal to one and so two interference signal V (2)

1 and V
(2)
2 , must be alignedtogether as the decode could be successful. As in previous example, let uspick V

(2)
1 randomly. The alignment is successful if:
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Figure 1.6: X-network with Kt = 2 and Kr = 2At the second receiver it is exactly the same: the alignment of the two in-terference signal is necessary. This operation is the described by the followingexpression:
H2,2V

(1)
2 = H2,1V

(1)
1 ⇒ V

(1)
2 = H

(−1)
1,2 H2,1V

(1)
1 (1.23)In this way a total throughput of four symbol packets over a three symbolextension is reached.Another paper on which IA is treated in a simple way with a great quan-tity of examples is [4].The main aspect that di�ers from the approaches ana-lyzed before deals with the possibility of receivers to communicate with eachother. In their work the authors imagine that receivers are MIMO accesspoint (AP) and they are linked each other through an Ethernet connection.As a consequence only the �rst transmitters use interference alignment, theydecode some of the packets, communicate them to the neighbors which cancelthese decoded ones and decode the others so that at the end all the receiverscan know all the packets. The algorithm presented here is called by the au-thors �Interference Alignment and Cancellation� (IAC). In the assumptionsof the authors and di�erently from the examples presented before, the system16



works in just one temporal slot but as written before the AP exploit MIMOand as a consequence, the signal space is equal to the number of receivingantennas. Another di�erence from previous works is that all receivers wantto know all packets as there are some packets to be received by only onereceiver and not the others.PSfrag replacements H1,1
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Figure 1.7: IAC with two receivers and two antennas equipmentOn the following lines we comment the example of Fig. 1.7 reported in[4]. There are two receivers equipped with 2 antennas and so each one has asignal space equal to two. The �rst receiver decides to decode x̃(1)
1 and so hasto align vectors associated to x̃

(2)
1 and x̃2. To do so, picked a random vectorfor V (2)

1 :
H1,2V2 = H1,1V

(2)
1 ⇒ V2 = H

(−1)
1,2 H1,1V

(2)
1 (1.24)In this way the decoding of x̃(1)

1 at the �rst receiver is successful. Thispacket is passed through the Ethernet cable to the second receiver which cancancel it, hence it has only two packets to decode and, being the receivingspace dimension exactly equal to two, the decoding is successful. These newdecode packets will be sent to the �rst receiver and in this way all the receiverwill know all the packets. Note that di�erently from [3, 2], the receivers have17



to wait the decoding of the others to make cancellation possible. As stressedby the authors, both IA and Cancellation are necessary to make the systemto work. In the example presented the throughput achievable could be evenmore. On the network presented in Fig. 1.8 there are three receivers and atotal amount of four packets. The �rst AP decides to decode packet x̃(1)
1 andso aligns vectors associated to x̃(2)

1 , x̃2 and x̃3. After decoding x̃(1)
1 is passed tothe second receiver which cancel it and decodes x̃(2)

1 thanks the alignment ofvectors associated to x̃2 and x̃3. x̃(1)
1 and x̃

(2)
1 are passed to the last receiver,which cancel them and performs the decoding of the last packets.PSfrag replacements
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Figure 1.8: IAC with three receivers and two antennas equipment18



The system in Fig. 1.8 may be explained through the following formulas:
H1,1V

(2)
1 = H1,2V2 = H1,3V3 (1.25)
H2,2V2 = H2,3V3 (1.26)On here the system is fully constrained because the system of equationsexpressed in the formula below is a system of two equations in two variables:




H1,2V2 = H1,3V3

H2,2V2 = H2,3V3

(1.27)From (1.27) V2 and V3 are uni-vocally determined and so:
V

(2)
1 = H

(−1)
1,1 H1,2V2 = H

(−1)
1,1 H1,3V3 (1.28)As written before the system is fully constrained and all the DoFs aresaturated such that with a two antenna equipment, no more packets can bedecoded. If the system has more than two antennas a the system behavesin a similar way but the throughput, obviously, grows. In this paper theauthor demonstrate, simply by induction starting from M = 2 (the examplein Fig. 1.8 and reported before), that the throughput achievable is equal to

2M , where M is the number of antennas of all the equipment.In all the illustrated examples IA alignment was possible. This is notalways true: if the system is too much constrained, such that there are toomany packets in the network or too many interfering transmitters etc., IA isnot reachable. Another important hypothesis on the system con�guration isthat all the channel matrices are known by all the receivers and transmittersor by other words, they have acquired Channel State Information (CSI).This could be a strong hypothesis, but it is often used: for example previousexamples make this assumption and may be realistic if the channel is slowlytime varying, for example like the satellite channel.19



1.2.3 Examples of implementations of IAHow to realize and implement IA? Usually solutions in a closed form are verydi�cult to �nd and numerical ones are necessary. In [5] a similar solutionis presented. It is an iterative algorithm that at each iteration optimizesprecoding and decoding vectors. This approach is also called Zero-Forcingand aims to minimize the function:
K∑

k=1

K∑

l 6=k

||Hk,lVl − CkC
H
k Hk,lVl||2 (1.29)where the matrix Ck is the so-called matrix of interference for the receiverk, which has dimension Mr − Sk × Mr , and it generates the orthogonalcomplement to the subspace spanned by Uk. The metrics to be minimizedcould be seen as the projection of the interference onto the subspace of theuseful signal (i.e. it is the residual interference) and so it could also berewritten as:

K∑

k=1

K∑

l 6=k

||UkU
H
k Hk,lVl||2 (1.30)At each step the matrices Ck are computed by choosing the Mr − Sdominant eigenvectors of the following matrices:

K∑

l 6=k

Hk,lVlV
H
l HH

k,l (1.31)while matrices Vl are computed by choosing the S least dominant eigenvectorsof :
K∑

k 6=l

HH
k,l(IMr

− CkC
H
k )Hk,l (1.32)These results are derived from two lemmas explained and demonstratedin [5]. The �rst establishes that given K arbitrary matrices Ak∈ CN×q, thep-dimensional subspace U, with minimum overall Euclidean distance to thecolumns of all the Ak, has orthonormal basis U where the columns of U20



are the eigenvectors associated with the p largest eigenvalues of ∑AkA
H
k .The second one states that given K arbitrary p-dimensional subspaces Ukwith respective orthonormal bases Uk and M Ö N matrix B, the matrix Vsuch that A = BV, V ∈ CN×q, that minimizes the squared Euclidean distancefrom the columns of A to the subspaces has columns equal to the eigenvectorscorresponding to the q minimum eigenvalues of ∑k B(I=UkUk)B.In the following lines an other example of iterative algorithm presented in[6] is reported. It is similar to the one presented in [5] but in the optimizationa new term is introduced. After a random initialization of precoder matrices

Vl, at each step the interference matrices Ck can be:
Ck = argmin

Ck

K∑

l=1, l 6=k

||Hk,lVl − CkC
H
k Hk,lVl||2 + w ||Hk,kVk − UkU

H
k Hk,kVk||2(1.33)where like before the �rst term is the residual interference in the signal spaceand the other is the residual useful signal in the interference space (as before

Uk = C⊥
k ). w is an empirical positive calculated weight and not furtherspeci�ed by the authors. The novelty with respect to the previous algorithmis obviously the second term which tries to lead to a C_k that yields abetter SINR than the previous algorithm computed. Recalling that UkU

H
k =

Ck(C
⊥
k )

H = I − CkC
⊥
k , Eq. (1.33) can be rewritten as

Ck = argmin
Ck

K∑

l=1, l 6=k

||Hk,lVl − CkC
H
k Hk,lVl||2 + w ||CkC

H
k Hk,kVk||2 (1.34)and then using the trace operator and its properties:

Ck = argmax
Ck

tr

{
CH

k

[
K∑

l=1, l 6=k

Hk,lVlH
H
k,lV

H
l − wHk,kVkH

H
k,kV

H
k

]
Ck

}(1.35)For the same reasons of the �rst algorithm, the solution to the aboveoptimization problem corresponds to choosing the columns of Ck to be the21



(Nk − Sk) dominant eigenvalues of:
K∑

l=1, l 6=k

Hk,lVlV
H
l HH

k,l − wHk,kVkV
H
k HH

k,k (1.36)Precoders optimization is absolutely analogous to decoders one and theresult corresponds to choosing the columns of Ck to be the Sk least dominanteigenvalues of:
K∑

l=1, l 6=k

HH
k,l(I − ClC

H
l )Hk,l + wHH

k,kCkC
H
k Hk,k (1.37)The authors prove also that their algorithm converges just saying thatthe overall optimization is the sum of two objective functions and so eachstep an improvement is done and so convergence is granted.The last algorithm presented in here is picked by [7] and constitutessomething new because for the �rst time aMax-SINR algorithm is presented,di�erently from the two above that were di�erent implementations of Zero-Forcing. First the authors introduce the de�nition of SINR for the kth receiverand its jth stream:

SINR
(j)
k =

(U
(j)
k )HHk,kV

(j)
k (V

(j)
k )HHH

k,kU
(j)
k

(U
(j)
k )HB

(j)
k U

(j)
k

(1.38)where
B

(j)
k =

K∑

l=1

∑

j=1

Hk,lV
(j)
l (V

(j)
l )HHH

k,l −Hk,kV
(j)
k (V

(j)
k )HHH

k,k +N0I (1.39)is the interference plus noise covariance matrix. The authors state that thevector U (j)
k that maximizes SINR

(j)
k is given by:

U
(j)
k =

(B
(j)
k )−1Hk,kV

(j)
k

||(B(j)
k )−1Hk,kV

(j)
k ||

(1.40)Notice that in the paper it is not really speci�ed the derivation of the22



previous formula. Describing the algorithm, the authors specify the followingsteps:� random �x the precoders Vk� begin iteration� compute B(j)
k as (1.39) for stream j of receiver k ∀k ∈ {1, 2, ..., K} , j ∈

{1, 2, ..., Sk}� calculate U (j)
k as (1.40) for stream j of receiver k ∀k ∈ {1, 2, ..., K} , j ∈

{1, 2, ..., Sk}� reverse communication direction and set precoding vectors equal todecoding ones: Vk = Uk ∀k ∈ {1, 2, ..., K}� recomputeB(j)
k as (1.39) for stream j of receiver k ∀k ∈ {1, 2, ..., K} , j ∈

{1, 2, ..., Sk}� recalculate U (j)
k as (1.40) for stream j of receiver k ∀k ∈ {1, 2, ..., K} , j ∈

{1, 2, ..., Sk}� reverse communication direction and set precoding vectors equal todecoding ones: Vk = Uk ∀k ∈ {1, 2, ..., K}� repeat until convergenceNotice that this algorithm requires channel reciprocity, which must be veri�edin the network of interest.1.3 Cooperative networksThe main idea of cooperative wireless networks is that wireless agents, calledusers, try to increase their quality of service in terms of bit error rates, blockerror rates or outage probability thanks to cooperation. In a cooperativecommunication system, there is a certain set of users (called relays or coop-erators) that may retransmit the tra�c of other terminals [9]. In satellite23



context relays are also called Complementary Ground Component (CGC) orAncillary Ground Component (AGC). In some cases they may also send traf-�c of their own. At �rst glance it might seem that such approach causes aloss of data rate in the system, however the spectral e�ciency of each userimproves because, thanks to cooperation diversity, the channel code rate canbe increased. What is important on cooperative communication is that foreach user there exist at least one partner providing di�erent data paths. Inthis way a trade o� is observed, but several studies give evidence that coop-eration is useful especially in high SNR channels. Following the survey [10],in the next subsections the main cooperation techniques are reviewed and asimple scheme is present in Fig. 1.9 picked from [10].1.3.1 Amplify-and-forwardIn this method each user receives a noisy version of the signal from its part-ner. The user than ampli�es the received signal, a�ected by the noise, andretransmit it to the base station. The receiver compares the two signals andit can make a better decision on the detection of information. In amplify-and-forward method is assumed that the base station knows the interuserchannel coe�cients to do an optimal decoding. This method is for sure thesimplest one and the computational capability required is the lowest of allthe typologies of cooperation, but it is not very e�cient.1.3.2 Decode-and-forwardIn this method each user receives the analog signal from the partner, decodesit and then retransmits the detected bits. To clarify this method an exam-ple from [11] is reported. A simple code-division-multiple access is imagined(CDMA) and two users are present, cooperating each others. We denotewith c1(t) and c2(t) the spreading codes of respectively the �rst and the sec-ond user, with b
(j)
i the bits of user i in the j-th period and b̂

(j)
i the partner'sestimate. The parameters {ai,j} user i in the j-th period denote signal ampli-tude and so represent power allocation. Finally X1(t) and X1(t) are the thesignals for each users. The decode-and-forward scheme can be represented24



as in Eq. (1.41)
X1(t) = a1,1b

(1)
1 c1(t), a1,2b

(2)
1 c1(t), a1,3b

(2)
1 c1(t) + a1,4b̂

(2)
1 c1(t)

X2(t) = a2,1b
(1)
2 c2(t),︸ ︷︷ ︸

Period1

a2,2b
(1)
2 c2(t),︸ ︷︷ ︸

Period2

a1,4b̂
(2)
1 c1(t) + a2,4b

(2)
2 c2(t)︸ ︷︷ ︸

Period3

(1.41)The �rst period is used to send information to the base station, the secondone is used to send information both to the base station and the cooperativepartner, �nally in the last period after the decoding of previous signal, a newcooperative signal is constructed and sent to the base station. In this schemeparameters {ai,j} can be tuned but always a mean power constraint is main-tained: when the interuser channel is favorable more power will be allocatedto cooperation, when is not cooperation is reduced achieving an adaptabilityto channel conditions. For optimal decoding also the base station needs toknow the error characteristics of the interuser channel.1.3.3 Coded cooperationCoded cooperation works by sending di�erent portions of users word viadi�erent fading paths. To describe this typology we follow [12] and [13]. Ina simple scheme users divide their source data into blocks, each one addedwith a CRC check. From these blocks a codeword of N bits is made. Eachcodeword is punctured into two segments, the �rst of length N1 < N insuch a way that this new segment is a new weaker codeword while the otheris the one of puncturing bits of length N2. In the �rst temporal slot eachsource trasmits its own segment of length N1, hears the interuser channel andattempt to decode the partner's codeword. If the attempt is successful ornot can be veri�ed by the users thanks to the CRC check. If it is successfulthe user can decode the codeword of the partner and send partner's secondcode partition of N2 bits to the basestation in the next frame, viceversa if itis not the user sends its own puncturing segment. In both the cases, alwaysN bits are sent and it is said that the level of cooperation between the twousers is N2/N1. Notice that various general codes can be used and strongerthe code better the performance. 25



Figure 1.9: Comparison of di�erent cooperative methods, with only user'scooperation 26



Relay(s)

Transmitters Receivers

Figure 1.10: Network scenario1.4 Problem statementHow could cooperation with relays improve the capacity and DoF of IAschemes? Imagine the presence in the network of a certain number of relayswhich have the aim of aiding the receivers to decode all the packets sent tothem by the transmitters (see Fig. 1.10).In [8] Cadambe and Jafar demonstrate that for a X -network aided byR relays with time-varying/frequency selective channel gains, the capacityimprovement due to of cooperation is only up to a o(log(SNR)). Any waythe hypothesis made in [8, 3, 2] are not always realistic: the authors alwaysspeak about uncorrelated channels, high SNR and arbitrarily long temporal27



slots.The underlying principle of this work is that relays could really be helpful,because it is possible that they could let the system better approximateCadambe and Jafar's hypothesis, and as a consequence, to raise the DoFsof the system. For example relays could let a channel that results somehowcorrelated to become uncorrelated, or they could raise the SNR etc.The basic idea is to understand whether scenarios, that can not reach per-fect IA conditions, i.e. in�nite SIR, could improve their performances thanksto the use of relays, raising their SIR or even better leading to an in�niteSIR. Another question to understand could be the possibilities of coopera-tion on improving the convergence speed of IA algorithms.The investigationof the necessary number of relays, how many packets shall be retransmittedby the relays and with which scheme, how the noise impacts the system per-formance, how much the channel propagation is important in such a systemetc. are all open problems that this work aims to solve.
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Chapter 2System models and algorithms
This chapter would like to give the reader all the foundations necessary tounderstand the work of this thesis. In the �rst section the aim is to introducethe scenarios on which the work is based on, explaining the topologies ofthe analyzed networks and the hypothesis on the system model. In thesecond section, all the algorithms of Interference Alignment, which have beenimplemented and used, are going to be listed and explained.
2.1 System modelAs written before, the target of the thesis is to understand how coopera-tion could be useful for Interference Alignment. At �rst the model of theK-network introduced in [2] has to be brie�y recalled. It is a network con-stituted of K transmitter-receiver couples where each transmitter wants tocommunicate only with its own receiver. Each transmitter could have severalstreams to transmit to its own receiver and so all the equipment is consti-tuted by MIMO nodes. In [14] Jafar et al. demonstrated that there are someparticular con�gurations on witch a perfect IA is achievable. These con�g-urations can be derived by a really important formula, that could be calledJafar's inequality:

Mr +Mt − (K + 1)S = 0 (2.1)29



where like in previous chapter Mt and Mr are the number of transmittingand receiving antennas, S is the number of streams and K is the numberof couples. If the left member is exactly zero it means that no more DoFsare available and so perfect IA is reached, with a throughput of K × Spackets/slot1.Note that this formula is only valid for the so called �symmetric con�gura-tions�, that is that type of con�gurations on which each couple has the samecharacteristics in number of receiving and transmitting antennas and numberof streams. Note also that the formula is designed for only one temporal slot.Starting from the K-network, in our job several network topologies areanalyzed. All of them are constituted of K sub-networks and on each ofthem always only one receiver and only one transmitter are present, whilea varying number of relays could be provided. Dealing with the hypothesisof [2], the transmitter and each relay belonging to one sub-network generatetra�c only for the receiver belonging to that sub-network. Note that withthis hypothesis, if no relay is present in all the network, a K-network isre-obtained.On the following lines all the scenarios utilized are presented, each ofthem con�gured with the hypothesis already listed.2.1.1 Scenario 1This scenario is used in the �rst part of our job, examining the possibilityof a capacity improvement in terms of throughput, in respect to the resultsalready acquired by Jafar and alii in [14]. Starting from one K-networkcon�guration (a synonym could be �standard con�guration�) we try to modifythe scenario adding relays. As an example pick the simplest con�guration,that in a short way could be called as (3c, 2a, 1sl, 1str) where c is the numberof couples, a the number of antennas, sl the number of slot, str the numberof stream, which identify the K-network with K = 3, Mr = Mt = 2, S = 1(later on this notation will be always used also referring to other topologies).1Pay attention that from here on the term �packet� is used to refer to each transmittedmodulated symbol belonging to a speci�c packet. The terms are voluntarily confused togive a simpler representation in reader's mind.30



We try to extend this topology from the point of view of the equipment used,adding relays, and from the temporal point of view, passing to a systemdesigned for more than one slot. Finally a new couple is added. This newone could let the system achieve a better throughput if possible.Delving more into the argument it is decided to add a �xed number ofrelays for the �rst K couples with a number of streams for each sub-networkthat is:
Sk = Nk + 1 k ∈ {1, 2, ..., K} (2.2)

SK+1 = 1 (2.3)where Nk is the number of relays and the subscript k identify the k-th sub-network.Each transmitter and all the relays belonging to one of the �rst K sub-network transmit one stream each. In this way relays behave more like othersources. The number of temporal slots of the whole system is equal to:
slot = Sk = Nk + 1 k ∈ {1, 2, ..., K} (2.4)Note that in our assumptions each source transmit the same frame in allthe slots on which the system is con�gured.The reader will understand that with this scenario, the topology of thenetwork is modi�ed: from the point of view of the single transmitter/relaythe system can not be viewed like a K-network because the receivers haveexactly a number of streams given by Eqs. (2.2), (2.3), while all the transmit-ters/relays have only one stream each. Moreover the system is not symmetricanymore because the last sub-system has di�erent conditions. We decide tocall each sub-network a nV-network where n is the number of relays. As anexample of this topology, we introduce the most similar con�guration to theprevious one ((3c, 2a, 1sl, 1str)), which will be used also later on. It is asystem with four sub-networks where the �rst three are nV-networks withone relay each, all the equipment has M = Mt = Mr = 2 antennas, thenumber of streams for the �rst three receivers is equal to two while for the31



last one is just one and �nally the system works in two temporal slots. Thisexample can be brie�y called (3+1c, 2a, 2sl, 2str_rx) 1 relay per node. Notethat in this scenario the number of streams per each transmitter/receiver isalways equal to one but the number of streams at the receiver side couldvary. Note also that the last sub-network (the one that let the system tohave the possibility to achieve the throughput) has always one transmitterone receiver and only one stream.Having described the system, we have also to imagine a model that couldcould e�ciently describe the new scenario with relays and more than oneslot. With the notation �rst introduced in Ch. 1, recalling the formulas andimagining the system working in just two slots, and so with only one relayper sub-network, we have that the received signal for the stream xl is:
y
(1)
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l x̃l + wk (2.5)
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l x̃l + wk (2.6)where y(1)k and y

(2)
k are the received signals of receiver k in the �rst and secondslot respectively.Since all streams are transmitted in both slots, it is possible to unify thestructures in this way:
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].Including in the system the relays, they must have their own precodingvectors for they own streams respectevly (in both the slots):32



xl =

[
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x̃l (2.8)All the relays and the transmitters must have their own precoding vectors(see Ch. 1) for each slot with dimensions:
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j ) = M × 1 (2.9)Conversely for the receivers' decoding matrices:
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K+1) = 1×M (2.11)Now putting all together, the system can be modeled by the formulasbelow:
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K+1 (2.14)where k ∈ {1, 2, ..., K} ,while for the last receiver:
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l ) (2.16)Obviously in case of more than one slot the matrices become greater. Inthis scenario we can say that the total dimensions of the uni�ed structurescan be written like:

dim(H̄k,l) = (slot ∗Mr)× (slot ∗Mt) (2.17)
dim(V̄l) = (slot ∗Mt)× 1 (2.18)
dim(Ūk) = Sk × (slot ∗Mr) (2.19)

dim(C̄k) = (slot ∗Mr − Sk)× (slot ∗Mr) (2.20)
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2.1.2 Scenario 2This new scenario is used to analyze convergence speed with cooperation. Itis exactly the same to the one analyzed before except that it does not providethe extra sub-network (the one that could increase the throughput). In thisway all sub-networks are nV-networks with the same characteristics in termsof antennas and streams. As before there is a transmitter, a receiver andsome relays for each sub-network and each source transmits a packet in allthe slots the system is con�gured. The equations that describe this model(in the case of a two slots system) are:
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2.1.3 Scenario 3This last scenario is used for the analysis of both convergence and capacityimprovement. The topology is the same as in Scenario 2: there are severalsub-networks with one transmitter, one receiver and a �xed number of relays.The di�erence is that in this scenario every source transmits the same packetin all the slots (and so in each sub-network there is only one stream). The veryimportant hypothesis made here is that all the sources have the knowledgeof all the channels of the same sub-network. Obviously this could be a hardhypothesis but might be veri�ed in a satellite context, because it is possiblethe receiver sends information to the sources about the channels.Focusing in just one slot the system could be seen as:
yk = Hk,kVkx̃k +

Nk∑

f=1

Hk,Rk
V
R

(f)
k

x̃k + intk + wk (2.23)where int is used as the sum of all the interference, such as:
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x̃l (2.24)This model can also be rewritten in a uni�ed manner: as the stream isthe same, the matrices of channels and the precoders can be merged in singlestructures for the same sub-network
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Notice that to do this it is necessary to exploit the important hypothesismade before on the mutual knowledge of the channel by all the sources.In this way Eq. (2.23) and Eq. (2.24) can be rewritten in the followingway:
yk = H̄k,kV̄kx̃k + intk + wk (2.27)
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H̄k,lV̄lx̃l (2.28)Trying to extend the system for more than one slot, we imagined a sce-nario in which there are sources transmitting the same packet in all the slotsin the same sub-network. As a consequence in the example of two slots themodel could be described in the following way:
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x̃l + intk + wk(2.29)So the channel matrices become:
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 (2.30)while precoders do not vary.In this model the precoders remain exactly the same for all the slots. Thisis an important di�erence with the previous scenarios. Focusing �nally onthe decoders, they have always just one stream.
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In order to complete the description, let us now have a look at the struc-ture dimensions in this scenario:
dim(Hk,l) = (slot ∗Mr)× ((Nk + 1) ∗Mt) (2.31)

dim(Vl) = ((Nk + 1) ∗Mt)× 1 (2.32)
dim(Uk) = 1× (slot ∗Mr) (2.33)

dim(Ck) = (slot ∗Mr − 1)× (slot ∗Mr) (2.34)
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2.2 Algorithms for cooperative IATo simulate the scenarios explained before, we create some Matlab scriptsthat exploit the �uni�ed system matrices� introduced in the last section.Obviously they di�ere depending on the scenario on which the system isworking.We try di�erent algorithms of IA adapted for a cooperative context. The�rst two of them are a review of some explained in Ch. 2, while the third isa new one.To compare the con�gurations and the algorithms we analyze three met-rics, that are listed here:� The residual interference on the subspace of useful signal, in formulas:
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||2(2.35)where the �rst term is produced by transmitters and the second one isproduced by relays.� The sum of SINR seen at each receiver where
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SINRk is the SINR at the k-th receiver. As a consequence our metric43



will be simply: ∑K
k=1 SINRk.� The spectral e�ciency calculated as: η = log2(1 + SINR).Finally, to better understand how each con�guration behaves, we introducetwo �diagnostic� parameters:� Failure Rate is the percentage of total realizations that cannot reachthe threshold of 80 dB SINR.� Fake Rate is the percentage of total realizations that can reach the 80dB SINR but then goes down. We say that a con�guration that has afake rate much grater than zero su�ers of instability.2.2.1 �Zero-Forcing� algorithmAdapting what explained in Ch. 2 and in [4], our the Zero Force Algorithmaims to minimize the function (2.35).As before Vl are computed by choosing the least dominant eigenvector of:
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(2.38)Notice that thanks to the hypothesis done, the number of streams of eachprecoders is always equal to one that is why we are always taking only theeigenvector associated to the least dominant eigenvalue.Matrices Ck are computed by choosing the dimcol(Ck) − Sk dominanteigenvectors of the following matrix:
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As written in previous chapter the matrices Ck are the orthogonal com-plement of matrices Uk. In this way, having calculated all the Ck matricesand aiming to pass to the Uk matrices, we perform the subsequent steps:1. Qk = qr (Ck), performing a QR decomposition of matrices Ck2. �x the Uk matrices as the last Sk columns of QkIn the Appendix, the reader can �nd a better explanation of the passagesbefore.2.2.2 �Max-SINR� algorithmThis algorithm exploits the same idea of the one presented in Ch. 1 but itmakes no assumption of reciprocity.It generates the precoders in the same way of the previous algorithm,and so precoding matrices at each step are the same as the one before, whiledecoders are di�erent.Rewriting SINRk of Eq. (2.36) in the following way:
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The solution of this problem is well known in linear algebra: Uk is com-posed by the Sk dominant generalised eigenvectors of this problem: AkUk =

λMkUk.In this way both precoders and decoders are optimized at each iteration.2.2.3 Gradient descend algorithmLooking at our target just as a minimization or a maximization problem, weunderstand that a gradient descend technique could be used.Suppose f(x) is a function of the real-value column vector x. Gradientdescend is an iterative algorithm which aims to �nd the optimum value of x,that minimizes the function f, in the following way:
xn+1 = xn − α∇f(xn) (2.44)where xn+1 is vector x at iteration n+1, xn is vector x at step n and operator

∇ is the gradient operator.Picking Eq. (2.35), we try to minimize it using this technique. Note thatthe residual interference can be seen as:
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)](2.45)where tr is the trace operator. As a consequence INTres is our f while ourx is made by the union of all the precoders (for both the transmitters andthe relay) and the decoders. Notice that our x is composed of matrices ofcomplex values. The derivation is possible thanks to the complex gradientand the trace operator (cfr. Appendix) and the result is the following:
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(2.46)After having found the new value of each matrix, we need to perform an-other step which is not directly correlated to the gradient descend algorithmbut to the nature of our problem and object function. All the matrices mustbe unitary, but the passages before do not imply this condition. That is whywe have to force it by �normalizing� the matrices. To do so, we perform thesubsequent steps for every precoding and decoding matrix generically called

Bk:1. Qk = qr (Bk), performing a QR decomposition of matrices Bk2. �x the Bk matrices as the �rst l columns of Qk where l depends on thematrix analyzed.If it is true that the matrices are obviously di�erent from the ones found bygradient descend, it is also true that we are looking at solutions that stay inthe Grassman's manifold (not in Stein's manifols). In other words with thetwo steps performed before, we are picking another solution, di�erent fromthe one found by gradient descend, but which stays on the same vector spaceand this enables the algorithm to �nd the solution anyway. This the conceptof Grassman's manifold which di�ers from the one of Stein's manifold onwhich the correct solution is only the peculiar solution.47



Notice that these steps were not necessary in the algorithms presented inthe last two subsections, because matrices at each step were built thanks toeigenvectors and so they resulted unitary.We suppose the gradient step α is �xed at a heuristic value that will beempirically found. A derivation of the optimum �xed step is done in [15],but can not be applied to our case because the process of normalization ateach steps invalidates this derivation.Any way α can also be optimized and changed at each iteration as itcould reach the convergence faster. On this we will focus during the nextchapters.
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Chapter 3
Capacity improvement analysis
As a �rst topic of our work we try to improve the capacity of the systemexploiting cooperation. Is it possible to achieve an increment of throughputthanks to the use of cooperation? To answer this question, after a �rstanalysis in various network topologies, Scenario 1 and Scenario 3 are exploitedand the the results are given in next sections.
3.1 First analysisAt �rst, we try to imagine a network topology with four couples transmitter-receiver, with only one relay is associated to the last one. The system workson two temporal slots and the decoding is performed after the second one. Inthis context, there are no uni�ed structures and so the �rst three transmittershave two di�erent precoders, one for the �rst slot Vi,1 and one for the secondslot Vi,2. The last transmitter has only one precoder, used in the �rst slot,while in the second slot the relay is exploited using its own precoder VR. The�rst three transmitters send two di�erent packets during the slots, while thelast couple retransmits thanks to the relay that acts in a decode-and-forwardway. All the receivers have their own two di�erent decoders Ui,1, Ui,2. Thecalculation of the SINR is done imagining to have seven di�erent receivers in49



the following way:
SINRi,1 =

||UH
i,1Hi,iVi,1||2∑4

j 6=i ||UH
i,1Hi,iVj,1||2

(3.1)
SINRi,2 =

||UH
i,2Hi,iVi,2||2∑4

j 6=i ||UH
i,2Hi,iVj,2||2

(3.2)
SINR4 =

||UH
4,1H4,4V4,1||2 + ||UH

4,2H4,RVR||2∑3
j=1 ||UH

i,1Hi,iVj,1||2 +
∑3

j=1 ||UH
i,2Hi,iVj,2||2

(3.3)where SINRi,1 and SINRi,2 are the SINR of the �rst three receiver respec-tively in the �rst and second slot, while SINR4 is the SINR for the last one.Empirical results show that perfect IA is not reachable.We try an another scenario with uni�ed structures. The topology isthe same, more than one relay can be present in the network but only oneassociated to each sub-network. Each packet is transmitted or retransmittedin both the slots. The �rst three sub-networks have two packets each, whilethe last one has only one stream. Channel matrices have the form:
H̄i,j =



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
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
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0 Hi,RJ


 subnetwork with relay

(3.4)while overall precoders can be �gured as follows:
V̄i =
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
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

 V
(1)
i

V
(2)
Ri



 subnetwork with relay

(3.5)
Also in this way perfect IA can not be achieved.50



3.2 Scenario 1 analysisWe exploit Scenario 1 (cfr. Ch. 2) focusing at �rst on two con�gurations:(3+1c, 2a, 2sl, 2str_rx) 3V-network, 1 relay per transmission node and(5+1c, 2a, 2sl, 2str_rx) 5V-network, 1 relay per transmission node. Thesecon�gurations are listed in Table 3.1. As introduced in the last chapter,each V-sub-network is equipped with one relay: the transmitter sends a �rststream while the relay sends the second one. Both entities transmit theirown frame in both the slots. In the extra couple, the transmitter just sendsits own frame in both the slots. The �rst K receivers have two streams todecode, while the last receiver just one.To simulate these con�gurations, we exploit at the beginning only the�rst two algorithms (Zero-Forcing and Max-SINR).Unfortunately our results are not so easy to interpret. We simulate manychannel realizations, but not always the same behavior is obtained. The fol-lowing Table lists the results obtained thanks toMax-SINR and it can clarifywhat stated above:Table 3.1: Analysis on capacity improvementon Scenario 1con�guration SINR ResidualInterf. FailureRate FakeRate N 1 SpectralE�-ciency((3+1)c, 2a, 2sl,2str_rx)3V-network 80dB 1 22% 50% // 15((3+1)c, 4a, 1sl,2str_rx)3V-network inf 0 0% 0% 1600 122
1N is the number of iterations to reach 80 dB SINR51



((5+1)c, 4a, 1sl,2str_rx)5V-network 72dB 10 77% 14% // 65((5+1)c, 4a, 1sl,2str_rx)5V-network inf 0 0% 0% 6000 160
It is said that this sort of con�gurations, listed in the odd rows of theTable 3.1, su�ers of instability problems: an high fake-Rate and fail-Rate forthese two con�gurations are detected while only few realizations present aperfect IA behavior.Moreover on these con�gurations the graphs of the algorithms used donot coincide anymore (Zero-Forcing algorithm seems to give always perfectIA) and so we cannot infer that these two con�gurations give perfect IA.To better understand this kind of con�gurations we exploit the Gradient-Descend algorithm. It is less e�cient because it takes a really high numberof iterations (the step is not optimized), but it leads to results that are verysimilar to the ones obtained thanks to the Max-SINR and listed in Table 3.1.As a consequence, this analysis is taken into account.2From all these considerations, we are obliged to say that these two con-�gurations can not give perfect IA. To have a deeper insight of the problem,we try to analyze con�gurations that are similar from a computational pointof view, not from a logic one. These con�gurations are presented in the evenrows of Table 3.1 and they have the same matricial structures of the onesanalyzed, thanks to the double number of antennas and the half number ofslots, with the only di�erence that the channel matrix is not block diagonal,like in the con�gurations of interest, but they are full matrices. Modifying2We think that these results are more reliable also because a great simulation campaignis done and Max-SINR algorithm seems to be more stable than Zero-Forcing algorithm insome critical con�guration as the ones reported here.52



the example of Eq. (2.12) we obtain:
yk =

[
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C D
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+intk + wk (3.6)where sub-matrices A, B, C, D and A', B', C', D' are completely stochasticmatrices.On this kind of con�gurations perfect IA is reached, but with a very highnumber of iterations, which demonstrates that DoFs are most of all saturated.It is our opinion that the structures of channel matrices in the cases ofinterest cannot lead to results that could be achievable thanks to completelyfull random matrices, because the correlation of those matrices in the �rstcase can not be null as in the second one and this depends on the scenario andthe topology of the network chosen. Notice otherwise that the con�gurationslisted in the even rows can not lead to a capacity improvement because theyexploit a double number of antennas which increases the degrees of freedom.To conclude, the results described for con�gurations exploiting Scenario 1can not allow us to say anything about the possibility to achieve a throughputincrement.In Fig. 3.2 the performances of SINR and residual interference in thespace of useful signal are reported for the con�guration with K = 3+1 listedin the �rst row of Table 3.1: reader can observe how the SINR for the block-channel con�guration cannot reach the 80 dB and how much the residualinterference is di�erent from 0.Analyzing similar con�gurations with higher K and higher number ofrelays for each sub-network, similar results are obtained and anything newcan been added.
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Figure 3.1: Di�erences between block-channel matrices and full-channel ma-trices on capacity improvement
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3.3 Scenario 3 analysisAware of the results listed before, we try di�erent ways. In the speci�c, wewould like to understand if exploiting Scenario 3 a throughput increment isachievable.3.3.1 One slot analysisWe choose con�gurations which are similar to the �classic� critical con�gura-tion (3c, 2a, 1sl, 1str) trying to see if a throughput of more than 3 pck/slotis achievable. In the speci�c all the con�gurations reported in Table 3.2 dealwith Scenario 3 and all the three algorithms lead to same results:Table 3.2: Analysis on capacity improvementon Scenario 3con�guration SINR ResidualInterf. FailureRate FakeRate(3c, 2a, 1sl,1str_rx)3V-network-1rlyeach inf 0 0% 0%
(3c, 2a, 1sl,1str_rx)3V-network-2rlyeach inf 0 0% 0%
(4c, 2a, 1sl,1str_rx)4V-network-1rlyeach inf 0 0% 0%
(4c, 2a, 1sl,1str_rx)4V-network-2rlyeach inf 0 0% 0%

55



(5c, 2a, 1sl,1str_rx)5V-network-1rlyeach inf 0 0% 0%
(5c, 2a, 1sl,1str_rx)5V-network-2rlyeach inf 0 0% 0%
(6c, 2a, 1sl,1str_rx)6V-network-1rlyeach 30dB 1 100% 0%
(6c, 2a, 1sl,1str_rx)6V-network-2rlyeach inf 0 0% 0%

As the reader can see, all the con�gurations except one give a perfect IAwith a throughput equal or higher than 3 pck/slot (performed by the criticalcon�guration). At �rst glance the results can induce the reader to thinkthat an e�ective capacity improvement can be realized. Nevertheless a moreglobal view of the system is necessary. At �rst Jafar's inequality, presentedin [14] and which gives the feasibility of IA in symmetric systems, has to berecalled:
Mr +Mt − (K + 1)Sk = 0 (3.7)We look at Scenario 3 trying to apply the inequality to the model. Ac-tually this is possible because all the entities, belonging to the same sub-network, transmit the same stream and thanks to the important hypothesismade on mutual knowledge of the sources, the model can be interpreted asat the transmitter side a unique entity would be present with

M̄t = (Nk + 1) ∗M (3.8)56



antennas, while at the receiver side the only one entity is just the receiverwhich has only M antennas. This is also perfectly comprehensible from themathematical model of Scenario 3 presented in the last chapter.In this way the scenario could be viewed in an uni�ed manner and aK-network is re-obtained where the (global) transmitter has M̄ t antennas,while the receiver has just M̄r = M antennas. As written above the streamis just one for each sub-network and K is the number of sub-networks. Look-ing at the system in this simpli�ed way, Jafar's inequality can be reusedand the results listed in the Table deal with this view becoming now morecomprehensible.Finally we can say that thanks to the hypothesis made for this scenario acapacity improvement of at most 5 pck/slot with one relay each sub-networkis achievable because we reach conditions that can lead our system to havemore degrees of freedom than the �classic� con�guration, but this new con-�guration is well-known in literature.3.3.2 More slots analysisEmpirical results and correlation problemsNow the question could be: aware of these conditions and the hypothesesmade, is it possible to have an higher increment of throughput just decodingafter more than one slot? To answer this question it is useful to exemplify�rst. Let us focus on the con�guration (3+1c, 2a, 2sl, [2, 2, 2, 1]str) 4V-network, similar to the con�guration presented in the previous subsectionbut with a di�erent scenario. Each sub-network has its own relay associatedto the transmitter and the two sources transmit di�erent packets but thesame frame in both the slots. The system model of this con�guration hasthe following feature:
yk = H̄k,kV̄
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As a consequence we see that the received signal is made of two partsone for each slot and has dimensions 2Mr × 1. The precoder vector hasdimensions (Nk + 1)Mt × 1 and the channel has dimensions 2Mr × (Nk +

1)Mt. Empirical results made thanks to our simulator and exploiting all thealgorithms presented in the last chapter show that this kind of con�gurationscan not achieve perfect IA. Aware of the conclusions found before in lastsubsection, we understand that correlation of the channel (y(1)k and y
(2)
k arethe same) is the reason that can not lead to good results. This is not agreat problem because we �nd that just modifying channel matrices f.e. byinserting some zero blocks (do not letting some device to transmit for somestream), it is possible to reach the convergence of the system.In this way not all channel matrices will be like H̄k,k but some of themwill have, for example, the subsequent form:

Ĥk,k =

[
Hk,k 0

Hk,k Hk,Rk

] (3.10)Other con�gurations that can be analyzed are low rate networks. Let'schoose as an example a con�guration (7c, 2a, 2sl, 1str) 7V-network, with onerelay associated to each transmitter. The model for this con�guration canbe:
yk = H̄k,kV̄
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]In this way all the channel matrices are now di�erent one from the others,but as in previous solutions, an �intra-matricial� channel correlation is presentand the solution can not lead to perfect IA. We need to have di�erent rows todi�erentiate the output on the two slots. To do this as before, we do not letsome device to transmit in some slot, in this way respective uni�ed channelmatrices are modi�ed having at least one zero-block and �nally perfect IA isreached.33We prefer not to exactly explain the con�gurations that can lead to a perfect IAbut simply let the reader understand how to overcome the problem of correlation in thisscenario. The why of this decision will be clear reading throughput analysis.58



In both the con�gurations presented, modifying a little bit the system,perfect IA is reachable, which con�rms somehow the results achieved in pre-vious subsection: correlation on channel matrices goes against the possibilityto achieve perfect IA.Throughput analysisLet us analyze the throughput. In both the con�gurations presented aboveit is just of 3.5 pck/slot and less than 5 pck/slot. So it does not seem itis possible to have a throughput increment increasing the number of slots.Is this a general result? We try to generalize starting again from Jafar'sinequality to have a more complete description of the overall situation. Astold before we understand it is possible to unify transmitters with their relaysas unique transmitters, what is new is that the receivers can be unify inthe time domain as they would be unique receivers in just one slot. As aconsequence the number of transmitting and receiving antennas can be seenrespectively as M̄t = (Nk + 1) ∗Mt and M̄r = slot ∗Mr. So Equation (3.7)develops in
slot ∗Mr + (Nk + 1) ∗Mt − (K + 1)Sk = 0 (3.12)where we used the equal sign to stress the maximum capability achievableby the system. From previous equation we have:

(K + 1)Sk = (slot +Nk + 1) ∗M (3.13)where M = Mt = Mr as usual in our examples is the number of antennas andthe �rst member is the term to be maximized which expresses the numberof packets sent in all the slots. To have the throughput from equation abovewe do a normalization for the number of slots:
Thr =

(slot +Nk + 1) ∗M
slot

(3.14)This equation states that is not useful to work with con�gurations ex-ploiting more than one slot. This result seems to be a little bit strange: frominformation theory we know that decoding in more than one slot is more59



useful than just in one. Anyway anything wrong is found in the analysis andas a conclusion of this subsection we can say that a real capacity improve-ment is not found, we can say only to have found cooperative solutions thatcan reach well-known con�gurations with more degrees of freedom exploitingparticular hypothesis.
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Chapter 4Convergence speed analysisAnother topic of our work is the exploration of how cooperation can be usefulto improve the system convergence speed. The iterative algorithms when IAis perfect, i.e. when the degrees of freedom (DoFs) are enough to reach atheoretically in�nite SIR, have a convergence speed which depends on thespeci�c analyzed con�guration. In many cases when most of the DoFs aresaturated, the algorithms could take a really high number of iterations toconverge. This is why it could be reasonable to see if equivalent con�gu-rations in terms of throughput (number of packets per slot), but exploitingcooperation through relays, could improve this performance.4.1 Scenario 3First we analyze Scenario 3, where several nV-network, with only one re-lay associated to each transmission node, are present. Recalling brie�y thesystem model, it could be seen as follows:
yk = H̄k,kV̄kx̃k + int (4.1)where H̄k,k =

[
Hk,k Hk,Rk

] and V̄k =

[
Vk

VRk

], and the system could berepresented as a K-network con�guration with a total number of trasmissionantennas that is now the number of transmission antennas plus the number61



of relay antennas. On the following table the results of this approach:Table 4.1: Analysis on con�gurations transmitting thesame packet at the same timecon�guration SINR ResidualInterf. FailureRate FakeRate N 1 SpectralE�-ciency(3c, 2a, 1sl,1str_rx)3V-network inf 0 0% 0% 2 86(4c, 3a, 1sl,1str_rx)4V-network inf 0 0% 0% 2 116(5c, 3a, 1sl,1str_rx)5V-network inf 0 0% 0% 2 146(6c, 4a, 1sl,1str_rx)6V-network inf 0 0% 0% 2 175(7c, 4a, 1sl,1str_rx)7V-network inf 0 0% 0% 2 205
What can be noticed is that this system works very well: in just twoiterations 80 dB SINR is reached and throughput (1 packet per slot per user)is not changed from critical con�gurations. The explanation of the results isthe same of the one of section 3.2 and it has to be researched on the hypothesismade on the scenario, especially the one of mutual channel knowledge of thesources belonging to the same sub-network: in these conditions more DoFsare achievable allowing the system to see a total amount of transmission1N is the number of iterations to reach 80 dB SINR62



antennas which is
M̄t = M(Nk + 1) (4.2)where, for con�gurations of Table 4.1, Nk is always equal to 1.Aware of these results we tried to verify if, in the case of con�gurationswith relays not associated to each sub-network (for example con�gurationswith only one relay in the whole network), convergence speed could be im-proved with respect to the base case of the K-network. It means that thesecon�gurations have only few �V-networks�, because the total number of re-lays is less than the number of couples. Jafar's formula is not useful in thiscase because the network is not symmetric anymore. On Fig. 4.1 the plotof SINR for these con�gurations in the case of K = 3 and K = 5 is present,where R in the �gure refers to the number of relays.In Table 4.2 the relative simulative campaign of these con�gurations isreported, con�rming the results presented in Fig. 4.1.Table 4.2: Convergence speed in Scenario 3 with a vari-able number of 1V-networkcon�guration SINR ResidualInt failureRate fakeRate N 2 SpectralE�-ciency(3c, 2a, 1sl,1str), K-net inf 0 0% 0% 105 85(3c, 2a, 1sl,1str_rx)3V-net(1 relayper V) inf 0 0% 0% 2 87

(3c, 2a, 1sl,1str_rx)2V-net(1 relayper V) inf 0 0% 0% 2.385 87
2N is the number of iterations to reach 80 db SINR63



(3c, 2a, 1sl,1str_rx)1V-net(1 relayper V) inf 0 0% 0% 16.57 87
(4c, 3a, 1sl,1str), K-net inf 0 0% 0% 22 116(4c, 3a, 1sl,1str_rx)4V-net(1 relayper V) inf 0 0% 0% 2 116
(4c, 3a, 1sl,1str_rx)3V-net(1 relayper V) inf 0 0% 0% 2.312 116
(4c, 3a, 1sl,1str_rx)2V-net(1 relayper V) inf 0 0% 0% 6.46 116
(4c, 3a, 1sl,1str_rx)1V-net(1 relayper V) inf 0 0% 0% 10.37 116
(5c, 3a, 1sl,1str), K-net inf 0 0% 0% 500 137(5c, 3a, 1sl,1str_rx)5V-net(1 relayper V) inf 0 0% 0% 2 146
(5c, 3a, 1sl,1str_rx)4V-net(1 relayper V) inf 0 0% 0% 2.62 145
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(5c, 3a, 1sl,1str_rx)3V-net(1 relayper V) inf 0 0% 0% 15.32 145
(5c, 3a, 1sl,1str_rx)2V-net(1 relayper V) inf 0 0% 0% 34.15 145
(5c, 3a, 1sl,1str_rx)1V-net(1 relayper V) inf 0 0% 0% 95 145
(6c, 4a, 1sl,1str), K-net inf 0 0% 0% 62 175(6c, 4a, 1sl,1str_rx)6V-net(1 relayper V) inf 0 0% 0% 2 175
(6c, 4a, 1sl,1str_rx)5V-net(1 relayper V) inf 0 0% 0% 2.34 175
(6c, 4a, 1sl,1str_rx)4V-net(1 relayper V) inf 0 0% 0% 9.39 175
(6c, 4a, 1sl,1str_rx)3V-net(1 relayper V) inf 0 0% 0% 13.36 175
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(6c, 4a, 1sl,1str_rx)2V-net(1 relayper V) inf 0 0% 0% 20.28 175
(6c, 4a, 1sl,1str_rx)1V-net(1 relayper V) inf 0 0% 0% 34.15 175
(7c, 4a, 1sl,1str), K-net inf 0 0% 0% 1520 150(7c, 4a, 1sl,1str_rx)7V-net(1 relayper V) inf 0 0% 0% 2 205
(7c, 4a, 1sl,1str_rx)6V-net(1 relayper V) inf 0 0% 0% 2.61 205
(7c, 4a, 1sl,1str_rx)5V-net(1 relayper V) inf 0 0% 0% 14.96 205
(7c, 4a, 1sl,1str_rx)4V-net(1 relayper V) inf 0 0% 0% 24.89 205
(7c, 4a, 1sl,1str_rx)3V-net(1 relayper V) inf 0 0% 0% 43.81 205
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(7c, 4a, 1sl,1str_rx)2V-net(1 relayper V) inf 0 0% 0% 90 203
(7c, 4a, 1sl,1str_rx)1V-net(1 relayper V) inf 0 0% 0% 236 202

As the reader infers, performance in these con�gurations is better thanstandard K-networks, convergence speed is faster also with a few number ofrelays. With only one relay present in the network a real great improvementis achieved and the throughput in the network remains the same as in thebase case (K-network).
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Figure 4.1: Convergence speed in Scenario 3 varing the relay number
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4.2 Scenario 2We move now to the analysis of convergence speed in various Scenario 2con�gurations. To do so, as always, we choose some perfect IA K-networkcon�gurations, trying to understand if, switching to some corresponding nV-networks dealing to Scenario 2, an increment of convergence speed is reach-able.4.2.1 Experimental resultsAt the beginning, another simulative campaign is done, aiming to investigatewhat stated above. Zero-Force and Max-SINR algorithms are used and theylead to the same results, while Gradient descend algorithm is too slow andso it is not used for this analysis. The results are reported in Table 4.3 forcon�gurations having K = {3, 4, 5, 6, 7, 9, 11}.
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Table 4.3: Convergence speed analysis on Scenario 2con�guration SINR ResidualInt FailureRate fakeRate N 3 SpectralE�-ciency(3c, 2a, 1sl,1str), K-net inf 0 0% 0% 105 85(3c, 2a, 2sl,2str_rx),3V-net1 relay pertx-node inf 0 0% 0% 105 90(3c, 2a, 3sl,3str_rx),3V-net2 relay pertx-node inf 0 0% 0% 90 93(3c, 2a, 4sl,4str_rx),3V-net3 relay pertx-node inf 0 0% 0% 70 96(3c, 2a, 5sl,5str_rx),3V-net4 relay pertx-node inf 0 0% 0% 57 97
3N is the number of iterations to reach 80 db SINR70



(3c, 2a, 6sl,6str_rx),3V-net5 relay pertx-node inf 0 0% 0% 47 98(3c, 2a, 7sl,7str_rx),3V-net6 relay pertx-node inf 0 0% 0% 44 98(4c, 3a, 1sl,1str), K-net inf 0 0% 0% 22 116(4c, 3a, 2sl,2str_rx),4V-net1 relay pertx-node inf 0 0% 0% 18 123(4c, 3a, 3sl,3str_rx),4V-net2 relay pertx-node inf 0 0% 0% 14 127(4c, 3a, 4sl,4str_rx),4V-net3 relay pertx-node inf 0 0% 0% 13 129(4c, 3a, 5sl,5str_rx),4V-net4 relay pertx-node inf 0 0% 0% 11 131
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(5c, 3a, 1sl,1str), K-net inf 0 0% 0% 500 137(5c, 3a, 2sl,2str_rx),5V-net1 relay pertx-node inf 0 0% 0% 324 152(5c, 3a, 3sl,3str_rx),5V-net2 relay pertx-node inf 0 0% 0% 216 158(5c, 3a, 4sl,4str_rx),5V-net3 relay pertx-node inf 0 0% 0% 171 160(5c, 3a, 5sl,5str_rx),5V-net4 relay pertx-node inf 0 0% 0% 150 162(5c, 3a, 6sl,6str_rx),6V-net5 relay pertx-node inf 0 0% 0% 136 164(5c, 3a, 7sl,7str_rx),6V-net6 relay pertx-node inf 0 0% 0% 127 165
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(6c, 4a, 1sl,1str), K-net inf 0 0% 0% 62 175(6c, 4a, 2sl,2str_rx),6V-net1 relay pertx-node inf 0 0% 0% 47 187(6c, 4a, 3sl,3str_rx),6V-net2 relay pertx-node inf 0 0% 0% 40 192(6c, 4a, 4sl,4str_rx),6V-net3 relay pertx-node inf 0 0% 0% 37 195(6c, 4a, 5sl,5str_rx),6V-net4 relay pertx-node inf 0 0% 0% 35 197(7c, 4a, 1sl,1str), K-net inf 0 0% 0% 1520 150(7c, 4a, 2sl,2str_rx),7V-net1 relay pertx-node inf 0 0% 0% 530 209
73



(7c, 4a, 3sl,3str_rx),7V-net2 relay pertx-node inf 0 0% 0% 358 221(7c, 4a, 4sl,4str_rx),7V-net3 relay pertx-node inf 0 0% 0% 291 225(7c, 4a, 5sl,5str_rx),7V-net4 relay pertx-node inf 0 0% 0% 257 228(7c, 4a, 6sl,6str_rx),7V-net5 relay pertx-node inf 0 0% 0% 237 230(7c, 4a, 7sl,7str_rx),7V-net6 relay pertx-node inf 0 0% 0% 223 232(9c, 5a, 1sl,1str), K-net inf 0 0% 0% 3300 250(9c, 5a, 2sl,2str_rx),9V-net1 relay pertx-node inf 0 0% 0% 773 280
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(9c, 5a, 3sl,3str_rx),9V-net2 relay pertx-node inf 0 0% 0% 513 287(9c, 5a, 4sl,4str_rx),9V-net3 relay pertx-node inf 0 0% 0% 425 291(9c, 5a, 5sl,5str_rx),9V-net4 relay pertx-node inf 0 0% 0% 379 295(9c, 5a, 6sl,6str_rx),9V-net5 relay pertx-node inf 0 0% 0% 349.5 298(11c, 6a, 1sl,1str), K-net inf 0 0% 0% 5750 280(11c, 6a, 2sl,2str),11V-net1 relay pertx-node inf 0 0% 0% 1059 344(11c, 6a, 3sl,3str), 11V-net2 relay pertx-node inf 0 0% 0% 693 352
75



(11c, 6a, 4sl,4str), 11V-net3 relay pertx-node inf 0 0% 0% 571.5 358(11c, 6a, 5sl,5str), 11V-net4 relay pertx-node inf 0 0% 0% 513 362Looking at Table 4.3 it can be inferred that cooperation is useful to im-prove the convergence speed: by adding relays in the network (passing froma K-network to a nV-network) the speed improves (the number N to reachconvergence decreases incrementing relays). Cooperation helps convergencespeed in every con�guration but in di�erent ways depending on the con�gu-ration analyzed. We decide to focus only on critical con�gurations (the oneswith an odd number of sub-networks) because they are the most important,having the best throughput with minimum hardware, but they take a highnumber of iterations, as all the DoFs are saturated. To let the reader havea more visual view of the evolution of convergence speed through con�gura-tions, Fig. 4.2 is presented.Looking at Fig. 4.2, starting from each K-network con�guration andafter adding a certain number of relays, it could seem that the improvementtends to zero, i.e. that number of iterations needed saturates to a valuegreater than zero. This is not true because simulations with a high numberof relays con�rm that convergence speed slowly increases also for high Nk.Obviously a good result is achieved when just by adding one relay to eachsub-network, a great improvement is reached (for example a reduction of 50%in the number of iterations needed). We remark that the larger the networkmore this particular feature seems to be achieved: for instance we obtainthat for a 7 couples IA-perfect con�guration, the reduction adding just arelay per node is over 65% compared with the standard 7 couples K-networkcon�guration, while, choosing the 3 couples network in the same conditions,there is no reduction at all. 76
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Figure 4.2: Convergence speed varying relay number on Scenario 2
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4.2.2 Theoretical explanationModel and approximationsWhile in the last section an explanation about the improvement of con-vergence speed was found, the reason is not clear in this scenario. As aconsequence we decide to investigate it.As both algorithms used lead to the same results, we examine deeperthe Zero-Forcing algorithm. Both lemmas, that are exploited to performthe double minimization in Zero-Forcing algorithm, can be interpreted as agradient algorithm as presented in [16]. Globally, we think that this algorithmworks as a steepest descend on which at each iteration the perfect step α isfound performing a line search: the α chosen is that one that minimizes theobject function along a line as written in [17].As a consequence we can say that our algorithm works in the followingway:
xn+1 = xn − αn∇f(xn) (4.3)If the object function is a quadratic function, that is
f(x) =

1

2
xTAx− bTx+ c (4.4)where x is a real vector, it is demonstrated in [17] that the norm of the errorto reach the solution is inversely exponential with the number of iterations:

||eit||
||e0||

= wit (4.5)The error can be expressed as eit = xit − x̂, where x̂ is the �nal solutionand xit is the solution at iteration it.w is the base of the exponential. w is always less than 1 and the smallerthis parameter, the faster the convergence. As written [17] w depends onthe matrix A: as A is better conditioned (cfr. Appendix) as the parameterw will be smaller.In our case the object function is obviously the residual interference:78
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] (4.7)From the formula above it is easy to �nd that
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) (4.8)where the complex vector x is
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(4.9)
P is a block diagonal matrix on which in the �rst K blocks, depending79



on transmitters, there are the following matrices:
∑

k 6=l

HH
k,lUkU

H
k Hk,l (4.10)in the subsequent K ∗ Nk blocks there are the matrices depending on therelays: ∑
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(4.11)�nally in the last K blocks the matrices depending on the receivers arepresent:
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) (4.12)In this analysis three important things have to be noticed:� Our object function in Eq. (4.8) is not quadratic, but it is the trace ofa simpli�ed quadratic function: it is not a great problem because theanalysis of the error behavior in [17] depends more on the gradient ofthe function than on the function itself and in our case (cfr. Appendix):
∇x

(
tr
(
xHPx

))
= ∇x

(
xHPx

) (4.13)� P depends on x, but an approximation can be done saying that P is�xed starting from a certain point on. This is true because after the�rst iterations IA becomes e�ective and P is very slowly variant (thegradient becomes smaller going on with iterations)� It is written above that our complex vector x is the concatenation ofall the precoders and decoders. This can be done only in the case of norelays present in the network (the basic case of a K-network), becausein Scenario 2 the number of streams (and so the number of columns) ofdecoders is di�erent from the one of precoders (which is always equal to1 for every con�guration on this scenario). The problem can be solvedimagining to have two di�erent gradient algorithms: the �rst optimizesprecoders and the second optimizes decoders with two di�erent object80
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Figure 4.3: Inverse exponential behavior of error for K=7 con�guration varingthe relay number Rfunctions, having both the form of Eq. (4.8). Despite P, in the �rstalgorithm there would be P' formed by the �rst K(Nk + 1) columnsand rows of P and in the second P� formed by the last K columnsand rows of P. With an abuse of notations we will continue using theuni�ed model for simplicity and because only the optimization of theprecoders will have consequences on the analysis as it will be explainedon the following lines.P matrix behaviorStarting from this model, does the error to reach the solution have an e�ectiveexponential behavior in our case?From Fig. 4.3, it is possible to see that a similar behavior is con�rmed.In the �rst iterations, reader can observe there is a transient phase on whichthe error decreases quickly without a comprehensible behavior. This dependson the nature of our matrix P that contains the variables. At the beginningP can be assumed to be random and so full-rank and that is why the mini-mization is faster. In the �rst iterations P varies but when the IA procedure81



computes a �rst order approximation of the beamformers, that is when theeigenvalues of the matrix P approximate quite well their �nal values, theexponential behavior is obtained. Finally a saturation zone is present whichis simply due to the numerical noise of Matlab. We remark that, as writtenin Table 4.2, it is in the �rst iterations that IA is really performed, only afterthis step, the exponential behavior of the error is obtained.It is observed in Fig. 4.3 that e�ectively, adding relays, w gets smallerwhich con�rms that the convergence is faster. As said before going on withIA technique, eigenvalues of P approximate the �nal ones, but when per-fect IA is reachable, as in the cases of interest, P must always have somezero eigenvalues, that means perfect IA always implies a bad-conditioned Pmatrix. Let us try to better explain this critical step.Matrix P is always block-diagonal (for the hypotheses made on the sce-nario) and the eigenvalues of a block-diagonal matrix are the eigenvalues ofthe single blocks. As written before P is formed by blocks as in Eq. (4.10),(4.11), (4.12).� Each block of type (4.12) can be interpreted as the interference sub-space of each receiver. Simulation results demonstrate that these blockshave always Nk + 1 zero eigenvalues. This is perfectly correct: the di-mension of interference sub-space (given by the number of non-vanishingeigenvalues of its matrix) must be lower than the dimension of the over-all signal space to ensure the decoding of useful received signals. Sincethe number of useful signals is exactly Nk + 1, equal to the numberof streams for each sub-network, the same number of zero-eigenvaluescon�rms that IA is successful.� The blocks of type (4.10), (4.11) do not have a physical explanationas the others, but they can be interpreted as the interference matricesimagining an inverse communication, where the sources become thereceivers and viceversa. In this way each new receiver (the old source)has only one useful signal to decode and as a consequence this type ofmatrices has only one zero eigenvalue. The explanation is the same ofthe one above. 82



What is really important now is to understand how the rank of the matrixP varies adding relays. To do so, we analyze the ratio between the totalnumber of zero eigenvalues in matrix P and its total dimensions:
#zerosP

dim
=

[K(Nk + 1) +K(Nk + 1)]

[K +K (Nk + 1)]M(Nk + 1)
=

2

M(Nk + 2)
(4.14)where the �rst term of the numerator refers to the total number of zeroeigenvalues for the blocks of type (4.12), the second one refers to the totalnumber of zero eigenvalues for the blocks of type (4.10) and (4.10), while the�rst term of the denominator refers to the total number of blocks and thesecond to the dimensions of each matrix.From Eq. (4.14) the reader can understand that adding relays the per-centage of all zero eigenvalues becomes lower, which implies that addingrelays matrix P is �less ill-conditioned� and, as a consequence of the theoryexplained in the last subsection, it is demonstrated that w decreases.Asymptotically with the number of relays

lim
Nk→∞

#zerosP
dim

→ 0 (4.15)the reader can infer that P becomes a full rank matrix.From Fig. 4.4, 4.5, 4.6, 4.7 the reader can verify that the distribution ofzero eigenvalues decreases adding relays: the value of the �rst bin follows therule
2

M(Nk + 2)4.2.3 Further consequencesFrom this analysis the reader understands that with a Zero-Forcing algorithmthe norm of the error ||eit|| follows an inversely exponential behavior after atransient phase. Empirical results demonstrate that also the interference hasa similar behavior:
Iit = It0w

it−t0 (4.16)as in Fig. 4.8. 83
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Figure 4.8: Exponential behavior of interference varying the relay numberNotice that the base of the exponential is exactly the same to the one ofthe error w. The SINRdB can be expressed in the following way:
(SINRit)dB = (Sit)dB −NdB −

(
1 +

Iit
N

)

dB

(4.17)As a consequence:
(SINRit)dB =




10 log(Si/N)− 10 log(I0/N)− (it− t0)10 log(w)

10 log(Si/N)− 10
ln(10)

I0
N
wit−t0

(4.18)where the �rst behavior is obtained when (SINRit)dB < 10 log( 1
N
) and theother one when (SINRit)dB = 10 log( 1

N
). As 10 log(Si/N) can be consideredconstant, the �rst behavior is linear, while the second can be viewed asan exponential. Our simulations demonstrate this analytical step and theresults are reported in Figs 4.9, 4.10. In this way we can also say to havefound several ways to have an empirical estimate of w.
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4.2.4 Other resultsIn 4.2.1 and 4.2.2 we did an empirical and a theoretical study of the con-vergence speed �xing the con�guration and adding the relays. Anyway weanalyzed the problem from another point of view. Studying with more at-tention the results we understood that �xing the relay number and let thecon�guration vary, an approximation similar to both an inverse power andan inverse exponential is obtained. We decided to do a least square �t tounderstand which of them yields the better approximation.As it could be inferred by Figs. 4.11, 4.12 and 4.13 the normalized con-vergence speed decreases as the con�guration grows and the inverse powergives a better approximation especially when K is bigger. It is possible thatalso this behavior can be demonstrated thanks to an analysis similar to theone exploited in the last subsection, but this part is left as future work.
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Figure 4.11: Least square approximation with inverse power and inverseexponential with Nk=4 con�guration
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Figure 4.12: Least square approximation with inverse power and inverseexponential with Nk=5 con�guration
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Figure 4.13: Least square approximation with inverse power and inverseexponential with Nk=6 con�guration89
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Chapter 5Conclusions and future workIn this chapter we summarize our work, we list the results obtained and�nally we propose some future works.5.1 ConclusionsAfter a study of what is currently present in literature about InterferenceAlignment, we extended the current model for the cooperative case, addingrelays, and in the temporal domain letting the system to work in more thanone temporal slot. To do this, we analyzed several cooperative scenarios,each of them made up of some hypothesis on the topology of the network, onthe knowledge of sources, on the parameters of the system etc. We studied,generalized or idealized and �nally implemented in Matlab some IA algo-rithms for the cooperative case. Finally we exploited all this background tostudy both the possibilities of a capacity improvement and an improvementof the convergence speed of algorithms.Looking �rst at the capacity improvement, we analyzed several scenariosbut due to several reasons the original goal could not be achieved. Nev-ertheless we understood how correlation of the channel can impact on theperformances. Our cooperative scenarios are not able to eliminate it and inscenarios on which correlation was less it was no possible to achieve betterresults. Anyway we understood also how, exploiting cooperation and hy-91



pothesis on mutual channel knowledge of the sources, con�gurations withmore degrees of freedom are achievable and this result is useful for both thecapacity improvement and the convergence speed.The results in terms of convergence speed are more attractive: we dis-covered that cooperation is truly useful for the improvement of this metricbecause, adding relays on the sub-networks while keeping the same totalthroughput, a great improvement on the speed of algorithms is reached. Inthis case a demonstration through the gradient algorithm properties is pro-vided without exploiting particular hypothesis on channel knowledge. Wethink this is an interesting result which can shed more light into the proper-ties of IA.As a consequence of this demonstration, we could deepen the under-standing on the behavior of the residual interference and SINR with theZero-Forcing algorithm.5.2 Future workIn this subsection we suggest some directions for future work, to continuethe exploration of IA through cooperation:� Are there any possibilities to achieve a capacity improvement thanks tocooperation? An analysis of other scenarios could be performed tryingto eliminate correlation on channel matrices.� If no capacity improvement can be achieved in any scenario, a demon-stration that cooperation is not useful for this topic could be provided.� Thanks to the analysis we performed, it is possible to verify if particularlocations of the relays can increase the capacity. As we demonstratedempirically, some channel realizations could actually let the systemachieve a capacity increase. A future work could be a deeper analysisto understand why some realizations (and as a consequence the relativerelay positions) work and other not.92



� With respect to our demonstration of convergence speed, does a generallaw describing how it varies adding relays exist? This is currently underinvestigation and a �rst analysis can suggest that a law as
1

(logNk)α
(5.1)could be the right one, but further experimental evidence and theoret-ical analysis is necessary for more conclusive observations.� As anticipated in the last chapter, a proof of the empirical relationshipthat describes the convergence speed against important design param-eters could be derived.
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Appendix AUseful mathematical conceptsIn the following lines all the mathematical subjects exploited in the thesiswill be brie�y reminded.Proprieties of matrices [18]� A matrix A is said to be hermitian if A = AH .� A matrix A is said to be normal if AHA = AAH and it is constitutedof a set of eigenvectors.� A complex matrix U is said to be unitary if UHU = I.� An hermitian matrix A is said to be positive de�nite (pd) if xHAx >

0 for all non-zero x ∈ Cn. If xHAx ≥ 0, A is said to be positivesemide�nite (psd). If A is pd (spd) all the eigenvalues are positive(nonnegative).Eigenvalues and eigenvectors [18] If λ ∈ C and x 6= 0 satisfy theequation Ax = λx they are considered eigenvalue and eigenvector of matrix
A. The eigenvalue spectrum σ(A) of A is the set of all the eigenvalues.� The eigenvalues of AH are the complex conjugates of the eigenvaluesof A 95



� The eigenvalues of a diagonal matrix M are the set of all the elementspresent in the diagonal of M� The eigenvalues of a block diagonal matrix M are the eigenvalues ofeach single block of MSingular value decomposition [18] Every rank-k matrix A may be writ-ten as A = UΣV H where U and V are unitary matrices. The diagonal matrix
Σ contains the k non-zero entries σ1, ..., σk in non-increasing order and zeroselsewhere� The real singular values σ1 are the nonnegative square roots of theeigenvalues of AAH .� The columns of U are the eigenvectors AAH , the columns of V are theeigenvectors of AHA.QR decomposition [18] A rectangular matrix A with dimensions M ×

M − S can be written as A =
[
Q1 Q2

] [ R1

0

] where Q1 (dim(Q1) =

M × M − S) and Q2 (dim(Q2) = M × S) are both normal and R1 withdimensions M − S × M − S is upper triangular matrix. Q1 constitutes anorthonormal base of A while Q2 constitutes an orthonormal base of A⊥.Pseudoinverse [18] The pseudoinverse matrix A† of A, where A is a rect-angular matrix of dimensions m× n, is de�ned as
A† =




(AHA)−1AH m > n

AH(AHA)−1 m < n� If A = UΣV H ⇒ A† = V Σ†UH where Σ† is ΣT in which the positivesingular values are replaced by their reciprocals.96



Trace operator [18] Given a matrix A with elements ai,j, dimensions
m× n and eigenvalues λi:

tr(A) =

n∑

i=1

aii =

n∑

i=1

λi� tr(αA) = αtr(A)� tr(A+B) = tr(A) + tr(B)� tr(AB) = tr(BA)Matrix norms [19] Given a matrix A with elements ai,j, dimensions m×
n, eigenvalues λi and single values σi, the norm p of A ||A||p with p =

{1, 2, ∞, F} is de�ned as follows:� ||A||∞ = max||x||∞=1 ||Ax||∞ = maxi
∑

j |ai,j|� ||A||1 = max||x||1=1 ||Ax||1 = maxj
∑

i |ai,j|� ||A||2 =
√

ρ (AHA), ρ(A) = maxi |λi| = σi� ||A||F =
(∑m

i=1

∑n
j=1 |ai,j|2

)1/2
=
(
tr
(
AHA

))1/2
= (
∑q

i=1 σ
2
i )

1/2 with
q = min {m, n}Condition numbers [19] The condition number of a matrix A is de�nedas follows:

k(A) = ||A||p||A−1||p p = {1, 2, ∞, F}If A is singular k(A) = ∞Complex gradient operator [19], [20] Given z =
[
z1 z2 . . . zN

]Twhere zi = xi + iyi (xi, yi ∈ R, i ∈ {1, 2, . . . , N}), the complex operator ofthe function f(z) is de�ned as follows
∇zf =

[
∂f/∂z1 ∂f/∂z2 . . . ∂f/∂zN

]T97



or
∇z∗f =

[
∂f/∂z∗1 ∂f/∂z∗2 . . . ∂f/∂z∗N

]Twhere ∂f/∂zi =
1
2
(∂f/∂xi − ∂f/∂yi) and ∂f/∂z∗i = 1

2
(∂f/∂xi + ∂f/∂yi).Let f : CN → R a real-valued function of two complex vector variables.where f(z) = g(z, z∗), where g : CN × CN → R is a real-valued functionof two complex vector variables and g is analytic with respect to each zkand z∗k. Then either of the conditions ∇zg = 0 or ∇z∗g = 0 is necessary andsu�cient to determine a stationary point of f. In the following table somemain results for the complex gradient are present.Table A.1: Main results for complex gradient

∇ = ∇z∗ ∇ = ∇z

∇(aHz) = 0 ∇(aHz) = a∗

∇(zHa) = a ∇(zHa) = 0

∇(zHRz) = Rz ∇(zHRz) = RT z∗ = (RHz)∗The results can be extended for the complex gradient of matrices. Let
f(A) be a function of the matrix A with elements ai,j. The gradient of f(A)is a matrix with elements:

(
∂f

∂A∗

)

i,j

=
∂f

∂a∗i,jSome important results we have exploited in this thesis are:
∂tr(AHA)

∂A∗
= A

∂tr(AHRA)

∂A∗
= RA
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Least square problem [19] Given the vectors x and x̂ = Ac, the leastsquare problem is to determine {c : Ac + e = x̂+ e = x}. In this way theproblem can be written as min ||e||22 = min ||x−Ac||22 ⇒ AHAc = AHx. Theoptimum c can be found as:
c = (AHA)−1AHx = A†x
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Table of symbolsK number of couples transmitter-receiver
Mr number of receiving antennas
Mt number of transmitting antennasl transmitter indexk receiver indexj stream index
V

(j,s)
l precoder vector for the l-th transmitter for the j-th stream and for the s-th slots slot index

U
(j,s)
k postcoder vector for the k-th receiver for the j-th stream and for the s-th slot

Hk,l channel matrix from the l-th transmitter to the k-th receiver
R

(f)
l index of the f-th relay associated to the l-th transmitterf relay indexn number of transmitters which have associated one or more relays

Si number of stream for the i-th transmitter/receiver
x̃
(j)
l j-th stream of the l-th transmitter

ỹ
(j)
k j-th stream of the k-th receiver
yk k-th receiver received signal
xl l-th trasmitter transmitted signal
Nk, R Number of relays associated at the k-th transmitter
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