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Abstract

This thesis aims to verify the capabilities of a new algorithm for computing energetic levels. The
algorithm is based on the many body perturbation theory through the GW approximation. This allows
for ab-initio simulations through a two-step process. First, a calculation based on density functional
theory is performed, followed by a GW elaboration. These methods are available in the software
package Quantum ESPRESSO.

The student will apply the GW method to a series of small molecules known as GW100, for which the
HOMO energies (which correspond to the vertical ionization energies) computed through various codes
and approximations are reported.

First of all, the student will learn the basic theory of the DFT and GW methods and he will learn to
use the codes in the Quantum ESPRESSO package. The student will then obtain the parameters
required for the calculations in order to guarantee the convergence of the results.

Then, the student will interface with the GW code through AiiDA, which allows the automatic
execution of a computation, including the gathering of the data. This will lead to the development of
python code.

This will allow the student to obtain the energy levels for the reference set GW100.

The student will also have the opportunity to assemble and use a small cluster based on Raspberry Pi
4B+, to assess the scaling capabilities of the new method.
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Chapter 1

Introduction

1.1 The basics of ab initio simulations

Understanding the electronic structure of a system is a necessary step to consistently predict it’s
electrical, optical and magnetic properties. Some of the most ambitious and promising approaches for
this task are ab-initio calculations, which attempt to predict the behavior of matter solely on the basis
of quantum mechanics considerations, without the introduction of additional models or parameters. In
practice, this requires solving the many body Schrödinger equation, which, with the exception of a few
simple problems such as for Hydrogen-like atoms, necessitates the aid of modern computers. However,
given the complexity of the many body terms, even the most powerful calculators are often unable to
solve the problem without the aid of meaningful approximations.

Since the second half of the nineteenth century, numerous improvements in this regard have been
made. In particular, density functional theory (DFT) [1,2] is now able to accurately predict the energy
values for the ground state of small molecules in a few seconds, even while running on portable devices.
Section 1.1.1 introduces the theory and approximations on which density functional theory is based.

However, DFT fails to compute the energy of exited states, which is required to determine some
fundamental material properties such as electronic band gaps and optical responses. For this purpose,
more advanced techniques have been developed, such as the GW method [3] and the related G0W0

approximation [4], which are explained in Section 1.1.2. The downside of these new methods is their
much higher computational demand, and in recent years numerous steps forward have been made to
ease this problem. An example aimed at exploiting parallelism of modern supercomputers is briefly
shown in Section 1.1.2, while Section 3.2 tests its implementation [5] in the Quantum ESPRESSO [6]
package on a small cluster of Raspberry Pis.

Finally, Section 4.1 compares the result obtained withQuantum ESPRESSO with other well established
implementations of the G0W0 approximation, by analysing the HOMO energies of the 100 molecules
included in the GW100 database [7].

1.1.1 Density Functional Theory

The Hohenberg-Kohn Functional

The starting point for all first principle calculations is the many body Hamiltonian for a system of N
electrons and M nuclei. Using Hatree atomic units, the Hamiltonian can be written as

Ĥ = −1

2

∑︂
i

∇2
i⏞ ⏟⏟ ⏞

T̂ e

−
∑︂
i,I

ZI

|ri −RI |⏞ ⏟⏟ ⏞
V̂ ext

+
∑︂
i,j>i

1

|ri − rj |⏞ ⏟⏟ ⏞
V̂ int

−

T̂N⏟ ⏞⏞ ⏟∑︂
I

1

2MI
∇2

I +

V̂ II⏟ ⏞⏞ ⏟∑︂
I,J>I

ZIZJ

|RI −RJ |
(1.1)
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1.1. THE BASICS OF AB INITIO SIMULATIONS CHAPTER 1. INTRODUCTION

where the lower case subscripts refer to the electrons, while the upper case subscripts denote the nuclei
of charge ZI and mass MI . The first term T̂ e is the kinetic energy operator for the electrons, V̂ ext

is the interaction between the electrons in the field of the nuclei and V̂ int represents the interaction
between the electrons. Finally, the last two terms consist in the kinetic energy T̂N of the nuclei and the
Coulomb interaction between the nuclei V̂ II . Since atoms are much heavier than individual electrons
the problem can be split into two parts: first, the nuclear kinetic energy T̂N is neglected and the
Schrödinger equation is solved while considering the nuclei positions RI as parameters. This is known
as the Born-Oppenheimer or adiabatic approximation [8], and allows the interaction between the nuclei
to be treated as a classical addictive term. The nuclei part of the problem can be solved at a later
time by using the previously computed electronic eigenvalues. With this approximation the many-body
time-independent Schrödinger equation is reduced to the following expression:(︂

T̂ e + V̂ int + V̂ ext

)︂
ψ({ri}) = Eψ({ri}). (1.2)

Solving Equation 1.2 for ψ({ri}) is still an impossible task, mainly because the many body term V̂ int

requires the simultaneous knowledge of all the single electron wave functions ψi. Density functional
theory approaches the problem by considering as fundamental variable the ground state density

n({ri}) =
N∑︂
i=1

|ψi({ri})| (1.3)

rather than the wavefunction ψ({ri}). Indeed, it can be proven that for any system of interacting
particles in an external potential Vext, the external potential is uniquely determined1 by the ground
state particle density n0(r) [9]. This is the first Hohenberg-Kohn theorem and a direct consequence is
that, since the hamiltonian is fully determined, the wavefunctions for all states are determined. The
second Hohenberg-Kohn theorem states that a universal functional for the energy can be defined in
terms of the density n({ri}), valid for any external potential Vext. The exact ground state energy of
the system is the global minimum value of this functional and the density n(r) that minimizes this
functional is the exact ground state density n0(r). The many body problem can thus be reformulated
as the minimization of a single functional of the density

EHK[n] = T [n] + Eint[n] +

∫︂
d3rVext(r)n(r). (1.4)

The Kohn-Sham Functional

However, no exact functional is known for any system of more than one electron, and the practical
usefulness of density functional theory derives instead from the ansatz made by Kohn and Sham in
1965 [2]. Their idea was to replace the original interacting system with an easier to solve independent
particle system, with the same ground state density. All of the difficult many body terms are then
incorporated into an exchange-correlation functional Exc, and the accuracy of the solution of the
Kohn-Sham equations depends only on the accuracy of the approximation used for the exchange
correlation functional. The Hohenberg-Kohn functional can then be rewritten in the form

EKS = Ts[n] +

∫︂
d3rVext(r)n(r) + EH[n] + Exc[n] (1.5)

where the first term is the kinetic energy functional of the non interacting system with density n(r)
and EH represents the well defined Hartree energy

EH[n(r)] =
1

2

∫︂
n(r1)n(r2)

|r1 − r2|
dr1dr2. (1.6)

1except for a constant
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The minimization of the functional showed in Equation 1.5 leads to the Kohn-Sham Schrödinger-like
single particle self-consistent equations(︃

− 1

2
∇2 + Vext(r) +

δEH

δn(r)⏞ ⏟⏟ ⏞
VH

+
δExc

δn(r)

)︃
⏞ ⏟⏟ ⏞

Vxc

ψi(r) = εiψi(r) (1.7)

Solving Equation 1.7 numerically requires the expansion of the wave function in a basis set (such as
plane waves). This would require a summation over an infinite number of states, which is obviously
not practical. For this reason, it is convenient to truncate the sum to include only solutions with an
energy inferior to an arbitrary value. Choosing a small energy cutoff can lead to non converged results,
so caution must be taken when preparing a DFT calculation. To further simplify computations, it is
useful to observe that many properties of materials are not particularly dependent on the more tightly
bound core electrons, but rather they are determined by valence electrons. As a consequence, the
Coulomb potential of the nuclei and the effects of the core electrons can be replaced by an effective
potential (called pseudopotential) that can be computed once and reused in future calculations.

1.1.2 Many Body Perturbation Theory

The GW approach can be considered as a post-processing of a DFT calculation. This implies that the
accuracy of the final result will depend on the choices for the exchange and correlation functional used
in the DFT as well as the basis used for expanding the wavefunction.

Green’s Function

The starting point of the GW approach is the Green’s Function. In general, a Green’s Function is
defined as a solution of a linear differential equation with a Dirac delta inhomogeneous function. In
quantum mechanics, the differential linear equation we are interested in is the Schrödinger equation[︃

iℏ
∂

∂t
+

ℏ2

2m
∇2

]︃
Ψ(r, t) = V (r, t)Ψ(r, t) (1.8)

and a Green’s Function is a solution of the inhomogeneous problem[︃
iℏ
∂

∂t
+

ℏ2

2m
∇2

]︃
G(r, t; r′, t′) = δ(r− r′)δ(t− t′). (1.9)

A solution Ψ(r, t) of the original problem (Equation 1.8) can be written in terms of the solution
G(r, t; r′, t′) that satisfies Equation 1.9

Ψ(r, t; r′, t′) =

∫︂
G(r, t; r′, t′)Ψ(r′, t′)d3r′. (1.10)

By writing the wavefunction in terms of the time evolution operator U(t, t′) = e−
i
ℏH(t−t′) and using

the closure relation we get

Ψ(r, t) =

∫︂
⟨r|e−

i
ℏH(t−t′)|r′⟩ ⟨r′|Ψ(t′)⟩ d3r′. (1.11)

Comparing Equation 1.10 with Equation 1.11 reveals that the Green’s function can be seen as the
probability amplitude of finding a particle at position r′ at time t′ given that it started at r at time t.
In other words, the Green’s function is a propagator.

Switching to the second quantization formalism, the single particle electron Green’s function is defined
as

Gij(t, t
′) = −i⟨T [ci(t)c†j(t

′)]⟩ (1.12)

where T is the time-ordering operator

T [ci(t)c
†
j(t

′)] = θ(t− t′)ci(t)c
†
j(t

′)− θ(t′ − t)c†j(t
′)ci(t) (1.13)
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1.1. THE BASICS OF AB INITIO SIMULATIONS CHAPTER 1. INTRODUCTION

and ci and c
†
j are the creation and annihilation operators.

It can be proven that the frequency representation of the one particle green’s function can be written
as

G(r1, r2;ω) =
∑︂
i

Ai(r1)A
i∗(r2)

EN+1,i − EN,0 − ω − iηi
−
∑︂
j

Bj(r1)B
j∗(r2)

EN−1,i − EN,0 + ω − iηj
(1.14)

in which EN,i is the energy of the system with N electrons in its i-th quantum state and Ai, Bi are the
so called quasi-particle amplitudes. Equation 1.14 clearly shows that the Green’s function exhibits peaks
when the frequency ω equals the quasi-particle energies E = EN+1,i − EN,0 and E′ = EN−1,j − EN,0.
Finally, the terms ηi and ηj represent the inverse life-time of the i and j transitions.

The G0W0 approximation

To ease the computation of the Green’s function it is common to start from the one-particle Green’s
function of a non interacting system

G0(r1, r2;ω) =
∑︂
i

ϕi(r1)ϕ
∗
i (r2)

ω − ϵi − iη
−
∑︂
j

ϕj(r1)ϕ
∗
j (r2)

ω − ϵj + iη
(1.15)

where ϕi(r), ϕj(r) are the valence and conduction Kohn-Sham orbitals and ϵi, ϵj are their respective
energies. This new Green’s function is related to the interactive problem through Dyson’s equation

G(r1, r2;ω) = G0(r1, r2;ω) +

∫︂
dr′dr′′G0(r1, r

′;ω)Σ(r′, r′′;ω)G(r′′, r2;ω) (1.16)

where the self-energy operator Σ can be approximated as a frequency convolution of the Green’s
function G with the screened coulomb interaction W

Σ(r1, r2;ω) ∼
i

2π

∫︂
dω′eiω

′ηG(r1, r2;ω + ω′)W (r1, r2;ω
′) (1.17)

with η representing a positive infinitesimal. The screened coulomb interaction W can be written
as a set of self-consistent integrals of G0, G and the coulomb interaction v. These equations form
the so called GW method. However, its self-consistent nature combined with the large non-diagonal
matrices required for working with W necessitate the introduction of further approximations. A
common technique consists of entirely replacing G with the non interactive green’s function G0, which
greatly reduces the computational burden, while relying on the choice for the exchange and correlation
functional used in the DFT calculation. The new screened coulomb interaction is referred as W0 and
gives the name G0W0 to the approximation. In addition, the quasi-amplitudes can be approximated
with the Kohn and Sham orbitals which allow to work with diagonal matrices. Finally, the quasi-particle
energies can be obtained with the following self-consistent one-variable equation

Ei = ϵi − ⟨ϕi|Vxc|ϕi⟩+ ⟨ϕi|Σ(E)|ϕi⟩ (1.18)

Exploiting parallelisation

It is useful to split Σxc into the correlation part Σc and the exchange one Σx and to define the function

Si(r;ω) =
∑︂
ω′

∫︂
dr′ψ∗

i (r
′)Gr(r

′;ω − ω′)Wr(r
′;ω) (1.19)

where the notation Gr(r
′;ω) = ⟨r′|G0(ω)|r⟩ and Wr(r

′;ω) = ⟨r′|W0(ω)|r⟩ is used for a generic point r
in the simulation cell. The expectation value of Σc can then be written as

⟨ψi|Σc(ω)|ψi⟩ =
∫︂
drSi(r;ω)ψi(r) =

1

Nr,tot

∑︂
α=1,Nr,tot

Si(rα;ω)ψi(rα) (1.20)
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where the last member is the discretization of the integral on a grid of Nr,α equally spaced points,
labelled as rα. The computation can be simplified by observing that points for which ψ(rα) ∼ 0 can be
neglected. Thus, only points that satisfy the condition |ψi(rα)| > s are considered, with an opportune
threshold s. In addition, a coarser grid can be taken by choosing only one point every n. The total
number of grid points is therefore reduced to an integer Nn,s which depends on the chosen parameters.
The convergence of the expected value for the self energy operator ⟨ψi|Σc(ω)|ψi⟩n,s can be eased by
weighting each grid point according to ψi(rα)

⟨ψi|Σc(ω)|ψi⟩n,s =
∑︁Nn,s

α=1 Si(rα;ω)ψi(rα)∑︁Nn,s

α′=1 ψ
∗
i (rα′)ψi(rα′)

. (1.21)

Convergence can be achieved with justNn,s ∼ 100. Moreover, each point can be computed independently
from the other, allowing the algorithm to scale linearly with the number of nodes in a cluster.
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Chapter 2

Preparing an ab-initio calculation

2.1 Quantum ESPRESSO

Quantum ESPRESSO is a collection of open source software for electronic structure calculations. One
of the most important package included is PWscf, which performs various density functional theory
calculations using a plane waves basis set and pseudopotentials. In particular, the pw.x executable
requires an input file where parameters such as the simulation cell size must be set, and stores
the charge density and Kohn-Sham orbitals in the binary files charge-density.dat and wfcN.dat.
Additional information regarding the calculation is stored in the xml file data-file-schema.xml.
Excitations can then be studied using the GWL package: first, pw4gww.x performs the preparations
for the G0W0 approximation starting from a previously computed DFT calculation. Then, the gww.x
code computes the expectation values of the correlation part of the self-energy operator which are
used to calculate the quasi particle energies through analytical continuation. A development version
of Quantum ESPRESSO implements the G0W0 approximation using the technique described in
Section 1.1.2 to exploit parallelisation and requires a python script called easyanalyser.py to merge
each point of the grid in a single file that can be read from gww.x.

2.2 AiiDa

“AiiDA is an open-source Python infrastructure to help researchers with automating, managing,
persisting, sharing and reproducing the complex workflows associated with modern computational
science and all associated data”1. In practice, AiiDa allows to easily create complex and modular
workflows for multiple local and remote computers, while automatically recording inputs, outputs and
metadata in a database [10, 11]. To interface with external codes such as Quantum ESPRESSO,
AiiDa requires the installation of additional plugins, which inform AiiDa on how to actually prepare
the required input files, run the code with the correct parameters and parse the output.

Calculations

The rules for creating an input file, as well as the definition of the necessary parameters for executing
the code are specified in a Calculation. In particular, a Calculation is defined as a process that
creates new data, and can be implemented either as function (called calculation function) or as a class
derived from the base-class CalcJob, included in the AiiDa package. The latter is the most common
implementation thanks to its increased flexibility. A CalcJob must override the define class-method
of the parent-class and list the expected inputs and outputs of the calculation. In addition, a CalcJob

requires the prepare for submission method, where the calculation inputs are transformed in one or
more input files and AiiDA is informed on which files to retrieve after the calculation is finished.

1www.aiida.net Automated Interactive Infrastructure and Database for Computational Science
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2.2. AIIDA CHAPTER 2. PREPARING AN AB-INITIO CALCULATION

Parsers

The output data of a calculation can then be parsed by an optional class, derived from the Parser

base-class, where basic information can be extracted from the calculation. Usually, a parser at least
detects the exit status of job as well as the running time.

Workflows

A workflow is defined as a process that calls other workflows and calculations. Simple workflows
can be implemented in a function through the decorator @workfunction but a much more powerful
implementation can be created with a class which inherits from the WorkChain base-class. These type
of workflows are known as WorkChains and must override the define class-method, which lists the
required inputs, outputs and, most importantly, the outline of the calculation. This is a list of methods
that must be implemented inside the WorkChain class and each of them launches one or more CalcJobs
and WorkChains, using the output of a previous calculation as part of their inputs when needed.

aiida-quantumespresso

The Quantum ESPRESSO team provides an official AiiDa plugin2 for some of the codes included
in the package. For instance, the quantumespresso.pw CalcFunction allows to easily start a pw.x

calculation and, since everything is done in python, the results can be accessed and analysed with ease.
The plugin provides additional tools to further automate the execution of pw.x, such as auto-restarting
WorkChains, custom DataTypes to work with pseudopotentials and command line utilities. However,
the official plugin does not support the new version of pw4gww.x which exploits parallelisation. For
this reason, I created a fork3 of the plugin which adds a CalcJob and a Parser for launching the
pw4gww.x code, a CalcJob which wraps easyanalyser.py and a WorkChain to run pw.x, pw4gww.x
and easyanalyser.py one after another. The fork also provides a special WorkChain designed for
running pw4gww.x on N computers: each machine only computes 1/N of the total required points and
the results are merged in a single file.

2https://github.com/aiidateam/aiida-quantumespresso
3available at https://github.com/simonecig/aiida-quantumespresso
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Chapter 3

Running an ab-initio calculation

3.1 GW100

The GW100 set is a collection of ionization potentials and electron affinities of 100 different molecules,
computed using various GW techniques. It allows, for example, to quantitatively compare different
basis set, the effect of pseudopotentials and the handling of unoccupied states. With the goal of
comparing the new G0W0 approach with more established methods, I computed the HOMO energies
for each of the 100 molecules with the new version of pw4gww.x. Using AiiDa’s workflows, running the
same calculation multiple times while changing only some parameters is as easy as inserting the code
for running a WorkChain once inside a loop: at each step, AiiDa will automatically create the input
files, start the calculation and store everything in an internal database.

3.2 Calculation Parameters

After some initial testing with various pseudopotential families, I chose the PseudoDojo [12, 13] set
of norm conserving PBE pseudopotential, as they appeared to provide slightly better results overall.
As anticipated in Section 1.1.1, running a pw.x calculation requires setting a cutoff value for the
wavefunciton. PseudoDojo provides a recommended value for each element of the periodic table and I
assumed the cutoff for a given molecule to match the highest value of the constituent atoms (usually
around 82Ry).

With the goal of reducing computation times and memory requirements, the simulation cell was
restricted to 10.5 Å. However, with such a small cell, all energies must be corrected with a proper
offset to account for boundary conditions, as I will explain in Section 3.2.1.

A pw4gww.x calculation is mainly characterized by the parameters introduced in Section 1.1.2: the
grid spacing n and the threshold s. For each molecule I set the former to the arbitrary value of n = 8
and I wrote a simple script to ”bruteforce” the corresponding value for s such that the total number of
grid points is 90 ≤ Nn,s ≤ 110, which should lead to converged results.

3.2.1 Energy offset

To find the energy value far away from the molecule, I run multiple pw.x calculations while increasing
the cell size of 1 Å, from amin = 10.5 Å to amax = 14.5 Å, and recorded the resulting ionization energies.
Since the energy is expected to depend on the inverse of the volume of the molecule, the data was
fitted with the formula y(a) = C1a

−3 + C2 and the offset

q = C2 − y(10.5) (3.1)

was used to correct the energies obtained through G0W0. Different molecules obviously resulted in
different correction values. For instance, Figure 3.1a shows the fit for CH4, which resulted in an offset

8
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Figure 3.1

of q = −0.14 eV. For 17 out of the 100 molecules, however, the produced energies significantly deviate
from the inverse cubic formula, probably due the small cell which prevents the DFT calculation from
reaching full convergence. An example is shown in Figure 3.1b.

Overall, this is the limiting factor for the accuracy of the results which will be shown in Section 4.1.
Indeed, different choices for the cell size often lead to significantly different fit parameters. The only
way to completely eliminate this problem is to use a much bigger cell size, resulting in drastic increases
in computation times and memory requirements. With the hardware at disposal, however, this was not
possible.

3.3 Hardware

Depending on the hardware and the parameters of the calculation, a G0W0 simulation can take many
hours to finish. To speed things up, the job was split into two machines: a laptop and a cluster of
four Raspberry Pi 4B+ connected to a LAN switch. Some technical details on the hardware used are
presented in Table 3.1. Using AiiDa’s command line, a WorkChain can be run on any remote or local
computer, provided that an SSH connection can be established and the required code is installed on
the target machine.

Machine CPU Base Clock Overclock Ram Capacity

Huawei Matebook D AMD Ryzen 5 2500U 2.0GHz - 8GB

Raspberry Pi 4B+ (x4) Cortex A72 1.5GHz 2.0GHz 8GB

Table 3.1: Brief overview on the hardware used.

Performance and price Comparisons

The cluster is particularly important since it shows the advantages of parallel computing. In fact,
a single Raspberry requires 26 minutes and 33 seconds to compute a single point of a pw4gww.x

calculation for CH4, while a cluster of 4 Pis can complete 4 points in the same time.

Still, the laptop performs much better as it is able to complete the same calculation in just 2 minutes
and 40 seconds. Even taking into account price, this particular cluster is sub-optimal. Figure 3.2 shows
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Figure 3.2: Cost of a machine relative to the price of a single Raspberry Pi 4B+ (85 e) versus the inverse of the
computation time relative to the value for a single Raspberry (1/26.5min−1). In addition to the point (blue)
corresponding to the laptop used in this thesis, the Figure also shows the predicted line for a cluster (red) made
of up to 10 nodes, assuming a linear scaling.

the price versus the inverse of the computation times for a single point of a pw4gww.x calculation,
with both quantities expressed with respect to the values of a single Raspberry. Thus, a machine
that appears below the cluster line is able to extract more performance per money than a cluster of
Raspberry Pi. This is the case for the laptop that I used, which costs 8.2 times as much as a Raspberry
Pi 4B+, but is almost 9 times as powerful.

Finally, even considering the fact that ARM processors are more power efficient, the laptop still comes
ahead: in my testing a single Raspberry can draw up to 8.9W, while the laptop consumes 63.4W
under full load. Therefore, the 9 Pis required to match the laptop performance would consume ∼ 10%
more power.
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Chapter 4

Calculation results

4.1 Comparison with the GW100 database

The GW100 set consists of many ionization potentials obtained with different techniques. Here,
I focus on a subset which includes only energies obtained with algorithms similar to Quantum
ESPRESSO (i.e. PBE G0W0). It is important to observe that, for a given molecule, even energies
from this subset can differ significantly, with an average standard deviation of 0.2 eV. My results
for the ionization energies of the 83 molecules for which the energy offset could be computed, are
presented in Appendix A.1, together with the average values of the PBE subset. In addition, Table A.1
also reports the CCSD(T)1 data-set [14], which is a highly accurate yet computational expensive
Quantum Chemistry approach, as well as the experimental ionization energies [15] as a reference.
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Figure 4.1: Histograms of the differences of the
Quantum ESPRESSO (blue) and PBE aver-
age (red) sets, with respect to the CCSD(T)
values. The overlapping area of the two his-
tograms is portrayed in a darker shade of red.

The agreement of my results with the PBE average strongly
depends on the molecule. For instance, the absolute errors
for BF, CO and Cs2 are all significantly smaller than
0.02 eV, while many fluorine compounds such as FH, F2

and LiF have absolute errors of 1.0 eV. This is probably
caused by the strongly localized 3d and 2p orbitals of
fluorine, which are particularly difficult to treat with plane
wave approaches. Overall, the average absolute difference
with respect to the PBE subset is 0.4 eV, which is still
significantly higher than the average standard deviation
for the subset.

Surprisingly, the agreement of my data with respect to the
CCSD(T) data-set is substantially better: while the mean
absolute difference (MAD) is 0.3 eV, the mean difference
(MD) is only 0.16 eV. For reference, both the MAD and MD
between the PBE and CCSD(T) sets are 0.4 eV, as shown
in Table 4.1a. This suggests that the new pw4gww.x might
have more in common with the coupled cluster approach
than other PBE methods, given the smaller systematic
error. This is likely due to the fact that other codes
expand the screened coulomb interaction W within a basis
set which appears to be too limited. Figure 4.1 sums up

the previous considerations: while Quantum ESPRESSO’s histogram spans a wider area than the
PBE set, the latter is limited to positive values since CCSD(T) energies are systematically lower.

Comparisons with the experimental values provide a similar picture: looking at either Table 4.1b or
Figure 4.2, it is clear that CCSD(T) is the most compatible set with the experimental values and

1Coupled Cluster with Single, Double, and an estimate of Triple substitutions
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Figure 4.2: Histograms of the ionization energies differences for the CCSD(T) (left), Quantum ESPRESSO
(middle), and PBE average (right) sets, with respect to the experimental values.

Comparison with CCSD(T)

MD (eV) MAD (eV)
QE 0.16 0.3
PBE 0.4 0.4

(a) Mean difference (MD) and mean absolute difference
(MAD) for Quantum ESPRESSO and PBE average,
with respect to the CCSD(T) set.

Comparison with Experiments

MD (eV) MAD (eV)
CCSD(T) 0.06 0.3
QE 0.10 0.5
PBE 0.4 0.5

(b) Mean difference (MD) and mean absolute difference
(MAD) for Quantum ESPRESSO, PBE average and
CCSD(T), with respect to the experimental values.

Table 4.1

that the PBE set is affected by a systematic error. pw4gww.x, ranks between the two, with a mean
difference comparable to CCSD(T) and an absolute mean difference identical to the PBE set.

4.2 Conclusions

In this thesis, after a small overview on the theoretical basis on density functional theory and many
body perturbation theory, I have tested the the new version of Quantum ESPRESSO on a small
cluster. However, as shown in Section 3.3, to fully exploit its parallelisation capabilities, a cluster’s node
must be more powerful than a Raspberry Pi 4B+, which in my testing did not provide a meaningful
advantage over an average laptop. In Section 3.2 I have introduced the main parameters used for the
calculations, with a focus on the energy offset needed to compensate for the small simulation cell. The
technique explained in Section 3.2.1 proved to be somewhat inconsistent, but it was the only option
with the hardware at disposal. Overall, the results I have shown in Section 4.1 highlight the distinction
between the new version of pw4gww.x and other PBE G0W0 methods. Indeed, the latter uses a limited
basis for W , leading to slightly worse comparisons with the the coupled cluster set, as well as the
experimental values.

I believe that the accuracy of the results could be increased with a larger simulation cell, which should
lower the random error that derives from the energy fit, leading to histograms with higher peaks and
lower tails than the one shown in Figure 4.2. Consequently, to confidently assess the accuracy of
the new version of Quantum ESPRESSO, further tests with more powerful hardware are required.
It is worth noting that using the new AiiDa’s plugin I have developed for this thesis, repeating all
calculations on a super computer with a different cell size is extremely simple: after exchanging the SSH
keys needed to establish a safe connection to the remote machine, the user is only required to change
the variable related to the cell size, while AiiDa will take care of creating the input files, launching
pw.x, pw4gww.x and easyanalyser.py as well as retrieving the results.
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Appendix A

Numerical Results

A.1 Results Table

Molecule Quantum ESPRESSO (eV) PBE average (eV) CCSD (eV) Experimental (eV)

C8H10 -8.66 -8.59 ± 0.02 -8.85 -8.77
O3 -12.10 -11.69 ± 0.08 -12.55 -12.73
C4H10 -11.79 -11.46 ± 0.02 -11.57 -11.09
C7H8 -8.30 -8.65 ± 0.02 -8.90 -8.82
C6H5OH -8.27 -8.39 ± 0.03 -8.70 -8.75
C5H5N -9.75 -9.12 ± 0.03 -9.66 -9.66
C4 -11.09 -10.91 ± 0.07 -11.26 -12.54
P2 -10.57 -10.29 ± 0.03 -10.47 -10.62
Ag2 -7.31 -7.67 ± 0.08 -7.49 -7.66
CO2 -13.54 -13.31 ± 0.04 -13.71 -13.77
BeO -10.25 -9.14 ± 0.11 -9.94 -10.10
MgO -8.25 -6.94 ± 0.10 -7.49 -8.76
BH3 -13.20 -12.88 ± 0.04 -13.28 -12.03
H2 -16.43 -15.83 ± 0.03 -16.40 -15.43
BF -10.60 -10.62 ± 0.04 -11.09 -11.00
Si2H6 -10.48 -10.37 ± 0.03 -10.64 -10.53
OCSe -11.10 -10.25 ± 0.03 -10.78 -10.37
GaCl -10.17 -9.75 ± 0.06 -9.77 -10.07
PN -11.48 -11.24 ± 0.05 -11.74 -11.88
B2H6 -12.14 -11.87 ± 0.02 -12.26 -11.90
As2 -10.44 -9.50 ± 0.03 -9.78 -10.00
H2NNH2 -10.18 -9.29 ± 0.03 -9.72 -8.98
Na4 -4.79 -4.17 ± 0.01 -4.22 -4.27
OCS -11.09 -10.98 ± 0.04 -11.17 -11.19
H2CO -11.24 -10.40 ± 0.04 -10.84 -10.88
CI4 -8.59 -8.87 ± 0.07 -9.27 -9.10
C5H6 -8.25 -8.39 ± 0.02 -8.68 -8.53
CBr4 -9.77 -10.00 ± 0.05 -10.46 -10.54
CCl4 -11.56 -11.11 ± 0.05 -11.56 -11.69
CH4N2O -10.13 -9.39 ± 0.04 -10.05 -9.80
C2H3Br -8.78 -9.08 ± 0.06 -9.27 -9.90
C2H3I -8.84 -9.20 ± 0.06 -9.33 -9.35
C4H10O -10.20 -9.36 ± 0.03 -9.82 -9.61
C6H5NH2 -7.38 -7.69 ± 0.03 -7.99 -8.05
C8H8 -8.28 -8.1 ± 0.03 -8.35 -8.43
CO -13.54 -13.64 ± 0.03 -14.21 -14.01
C2H6O -11.32 -10.20 ± 0.03 -10.68 -10.64
CH2O2 -10.86 -10.81 ± 0.04 -11.42 -11.50
C5H6N2O2 -8.63 -8.76 ± 0.03 -9.08 -9.20
C4H4N2O2 -9.36 -9.27 ± 0.04 -10.12 -9.68
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CH4O -11.23 -10.60 ± 0.03 -11.04 -10.96
C4H5N3O -8.27 -8.35 ± 0.04 -9.51 -8.94
C6H6 -8.70 -9.02 ± 0.02 -9.29 -9.23
C5H5N5O -7.72 -8.03 ± 0.03 -8.33 -8.48
CH4 -14.42 -13.94 ± 0.02 -14.37 -13.60
C2H6 -12.87 -12.38 ± 0.02 -13.04 -11.99
C2H4 -10.25 -10.36 ± 0.02 -10.67 -10.68
C2H2 -10.97 -11.07 ± 0.02 -11.42 -11.49
NCH -13.65 -13.27 ± 0.03 -13.87 -13.61
C3H8 -12.13 -11.80 ± 0.02 -12.05 -11.51
Kr -13.66 -13.65 ± 0.05 -13.94 -14.00
Ne -20.15 -19.8 ± 0.4 -21.32 -21.56
Ar -15.65 -15.24 ± 0.04 -15.54 -15.76
Xe -11.59 -12.31 ± 0.10 nan -12.13
SO2 -12.46 -11.91 ± 0.04 -13.49 -12.50
C2H3Cl -9.89 -9.83 ± 0.03 -10.09 -10.20
C2H3F -10.27 -10.25 ± 0.03 -10.55 -10.63
C2H4O -9.63 -9.62 ± 0.04 -10.21 -10.24
CS2 -9.84 -9.85 ± 0.04 -9.98 -10.09
C3H6 -10.81 -10.59 ± 0.02 -10.86 -10.54
CF4 -16.26 -15.45 ± 0.04 -16.30 -16.20
I2 -8.95 -9.49 ± 0.09 -9.51 -9.36
ClH -12.60 -12.35 ± 0.04 -12.59 -12.79
NaCl -8.97 -8.35 ± 0.09 -9.03 -9.80
FH -16.33 -15.36 ± 0.04 -16.03 -16.12
NH3 -10.50 -10.34 ± 0.03 -10.81 -10.82
HOOH -11.63 -11.04 ± 0.04 -11.59 -11.70
Br2 -10.11 -10.29 ± 0.05 -10.54 -10.51
N2 -15.08 -14.95 ± 0.03 -15.57 -15.58
H2O -12.50 -12.00 ± 0.04 -12.56 -12.62
BrK -7.74 -7.53 ± 0.07 -8.13 -8.82
F2 -15.99 -15.02 ± 0.04 -15.71 -15.70
Cl2 -11.49 -11.21 ± 0.04 -11.41 -11.49
GeH4 -12.42 -12.07 ± 0.04 -12.50 -11.34
HN3 -10.24 -10.44 ± 0.03 -10.68 -10.72
SH2 -10.40 -10.11 ± 0.04 -10.31 -10.50
SF4 -11.80 -12.17 ± 0.04 -12.59 -11.69
TiF4 -14.60 -13.97 ± 0.05 -15.48 -13.30
AlI3 -9.09 -9.53 ± 0.08 -9.82 -9.66
AsH3 -11.00 -10.19 ± 0.03 -10.40 -10.58
MgCl2 -11.44 -11.15 ± 0.05 -11.66 -11.80
LiF -11.21 -10.16 ± 0.09 -11.32 -11.30
PH3 -10.70 -10.33 ± 0.03 -10.52 -10.59

Table A.1: Ionization potentials calculated with Quantum ESPRESSO, compared with the mean value for all
PBE G0W0 sets in GW100, the CCSD(T) set and the experimental values.
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