
Università degli Studi di Padova

dipartimento di ingegneria industriale

Laurea magistrale in ingegneria aerospaziale

Autonomous rendezvous and docking

maneuvers with Model Predictive Control

strategies

Relatore: Dott. Valmorbida Andrea

Correlatore: Prof. Lorenzini Enrico

Laureando: Dennis Mantovani

Matricola: 1242271

Anno Accademico 2021-2022





Abstract

Since the beginning of space era, rendezvous and docking maneuvers have been of great

importance for the success of numerous missions. The operation of meeting two or more

space vehicles in orbit is a need for many missions which require the assembly or supply

of orbital platforms, debris removal, or sample return for interplanetary missions. Such

maneuvers can be performed automatically in a feedback way, with numerous advantages

over manual control. The objective of this thesis is to present the Model Predictive Con-

trol (MPC), an advanced controller, for rendezvous and docking maneuvers between two

cooperative satellites in orbit and compare its behaviors and performances with those of a

classical PID controller. After the description of the operating principle of MPC and PID

control strategies and the dynamics equations of the relative motion between satellites

in orbit, a realistic rendezvous and docking scenario is considered. The scenario involves

a 3U CubeSat performing autonomously the final approach to a target orbiting station

along the V-bar direction, and includes some of the typical environmental disturbances

at LEO orbits (differential drag and J2). A software developed in Matlab has been used

to carry out the numerical simulations with the two kinds of controller. Once the opti-

mal parameters of the controllers have been found and verified, a 1000-run Montecarlo

simulation for both types of controller has been carried out and results have been com-

pared in terms of quality of the trajectory inside the approach cones, respect of docking

requirements, and use of delta-V.
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Chapter 1

Introduction

The process of rendezvous and docking (RVD) consists of a sequence of orbital maneuvers

realized to bring an active vehicle (also referred to as chaser) close to or attached to a

target vehicle. Rendezvous and docking comprise an important operation task for many

space missions involving multiple spacecraft. Its function is to accomplish operations such

as:

• assembly and supply of orbital platforms and stations;

• exchange of crew members in orbital stations;

• capture or retrieval of orbiting vehicles, such as for planetary return missions;

• debris removal.

Rendezvous and docking technologies arouse much interest during the 1960s, especially

by the US Apollo Program when these techniques were necessary to implement the Lunar

Orbit Rendezvous for the Moon landing missions.

The first-ever rendezvous maneuver was accomplished on December 15, 1965, by as-

tronauts Walter Schirra and Thomas Stafford aboard Gemini VI conducting manually a

series of orbital maneuvers to approach a distance of about 40 meters with zero relative

velocity from Gemini VII’s spacecraft. On March 16, 1966, the first docking between two

spacecraft took place when Neil Armstrong and David Scott docked their Gemini VIII

spacecraft with the Agena target vehicle.

1



The first automatic RVD was performed on October 30, 1967, between the Soviet

vehicles Kosmos 186 and 188. Since then, rendezvous and docking operations have been

performed in numerous programs, such as:

• US Apollo and Skylab programs;

• Soviet Salyut and Mir Space Station programs;

• US Space Shuttle missions to the space station Mir;

• assembly, crew exchange and re-supply of the International Space Station (ISS).

The ISS is one of the most important application of rendezvous and docking technologies

since the beginning of the century. Several unmanned cargo ships have been launched and

have successfully approached the ISS autonomously, to bring fuel and supplies. One of

these was the Automated Transfer Vehicle (ATV), an unmanned cargo spacecraft devel-

oped and operated by the European Space Agency for supplying space cargo autonomously

to the space station. Another example is the Russian Progress spacecraft, which versions

have been used since 1978 by the Soviet Union for the space stations Salyut 6, Salyut 7

and Mir.

1.1 Rendezvous and docking overview

Rendezvous and docking process is a complex series of operations, each of which requires

the fulfilment of numerous conditions and constraints. The whole process is characterized

by five main phases [1, 2]:

1. Launch and orbit injection;

2. Orbit phasing;

3. Far-range rendezvous operations;

4. Close-range rendezvous operations;

5. Mating.

2



Each phase is briefly described in the following sections.

1.1.1 Launch and orbit injection

Due to the Earth rotation, there exist two time instants per day at which each point on

the Earth surface intersects a given orbit plane. The launch window should be located

at one of those time instants; however, because of the convenience of eastern launch di-

rections and since only a limited sector of them are available at a launch site, there is

normally only one compatible launch window per day.

Perturbations do not have to be neglected. The oblateness of the Earth causes a drift

in the orbital plane, which rate depends on the orbital height. Therefore, the launch

window has to be planned accounting for the orbital plane drift, so that when the chaser

approaches the target, their orbital planes are as similar as possible and correction ma-

neuvers may be avoided. The initial orbit of the chaser spacecraft is usually lower than

the target’s one, and the chaser will be located at a certain phase angle behind the target.

1.1.2 Orbit phasing

The objective of the next phase is reducing the phase angle between the chaser and the

target. The insertion orbit may not be suitable to perform the orbit phasing, as its exact

altitude is not known in advance due to some uncertainties of the rocket launch. Phasing

depends also on the target’s orbital position at the time of launch, so different strategies

have to be employed for each rendezvous mission. Therefore, the chaser spacecraft needs

to be brought into an appropriate phasing orbit. This can be accomplished by performing

a Hohmann transfer or a Bielliptical maneuver.

Absolute navigation measurements are used during phasing maneuvers, which are

provided by sensors aboard the chaser, such as GPS, or by ground measurements.
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1.1.3 Far-range rendezvous operations

The main objective of this phase, also referred to as homing, is to reach the target’s orbit

and reduce approaching velocity. Typically, this phase starts when the chaser is located a

few tens of kilometers away from the target and ends when it reaches a preselected point

usually situated at a range of few kilometers.

In cases where the target is represented by a space station, safety concerns constrain

the chaser vehicle to hold on outside a special approach ellipsoid located in the vicinity of

the station. During this phase, relative navigation measurements, such as differential GPS

between chaser and target or RADAR systems, are used. In cases of manned chaser and

target vehicles, like a crewed spacecraft approaching a space station, a communication link

between the two vehicles is established prior to or shortly after the beginning of the far

rendezvous phase. This is necessary for safety considerations, as ground communication

is more subjected to disturbances and black-outs.

1.1.4 Close-range rendezvous operations

This phase can be divided into two subphases: a preliminary phase leading to the final

approach corridor (also called closing), and a final phase leading to the mating conditions.

The objective of the closing subphase is to further reduce the distance between the

two spacecraft, leading the chaser to the approach corridor. This can be accomplished

by a fly-around maneuver to acquire the approach axis, in case the direction of motion is

not the same as the approach corridor. At the end of this phase, the chaser spacecraft is

placed in the proper position with required attitude and velocity, ready to start the final

approach. Because of the level of criticality during this phase, the navigation accuracy

needs to be increased, and different types of sensors, such as Vision-Based-Navigation,

may be adopted.

The typical final approach consists of a straight line trajectory starting from a few

tens of meter from the docking port (or berthing box) lying within an approach-cone

for observability and safety reasons. Another possibility is to follow a quasi-straight

line trajectory realized by multiple hops, which is more convenient for man-controlled

approaches.
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An important issue which has not to be neglected during the final approach is the

plume impingement. Hot combustion products of the thrusters can impact the target

vehicle if the relative distance is short enough, with consequent negative effects on the

spacecraft. Some of these regard the contamination of surfaces and sensitive elements,

overheating of parts of the surface, and disturbance in attitude and position, depending

on the masses involved. With the aim of minimizing these effects, constraints on velocity

may be applied in the final approach.

1.1.5 Mating

Mating is the final phase, which ends with a stable connection of the two vehicles. Dif-

ferent tasks need to be fulfilled by the mating system during this operations, such as

the achievement of capture, the attenuation of residual relative motions between the two

vehicles, the achievement of rigid structural connection and others relating sealing and

connection of data and power interfaces. Mating can be distinguished between docking

and berthing. Docking operations consist of the realization of the connection between

the chaser capture interfaces and the target ones. Berthing refers to the operation of

approaching a determined box in space, where the spacecraft holds before being grappled

by a robotic arm, or vice versa. This type of operation is less subjected to plume im-

pingement effects, because the berthing box is usually placed at a proper distance from

the target vehicle.
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1.2 Motivation

Initially, rendezvous and proximity maneuvers have been performed manually, using open-

loop techniques and error corrections based on sight, requiring high-end optical devices

and professional training.

Space exploration has become a significant argument for many current and future mis-

sions, and autonomous RVD operations have turned into a growing necessity. In particu-

lar, several planned missions are conceived accounting for autonomous RVD operations in

various phases of the mission. For example, the Mars Sample Return (MSR) program has

been jointly studied by NASA and ESA for the next years, with the objective of acquire

and return to Earth martian soil samples to be analyzed in terrestrial laboratories. The

benefits of this program can lead to potential crucial discoveries in the history of Mars

and life on another planet.

Recently, most docking missions have been adopting autonomous control. There are

many advantages of using automated procedures, such as the introduction of feedback

into the system. A typical control technique is the Proportional-Integral-Derivative (PID)

controller, but advanced controllers like Linear Quadratic Regulators (LQR) or H-infinity

methods are also applied.

During the final approach of a RVD, several constraints need to be respected. Among

these there are safety constraints, such as the positioning of the spacecraft within the

Line-of-Sight (LoS) cone in case of approaching a target platform, or constraints on the

relative velocity and obstacle avoidance. A good controller should therefore be able to

take these constraints into account, along with physical constraints, such as the thrust

magnitude, to prevent saturation.

A solution to this matter could be adopting controllers based on Model Predictive

Control (MPC) technique [3], which is able to effectively deal with constraints. This

technology allows to achieve optimal trajectories for proximity maneuvering by solving

an online optimization problem based on the minimization of a prescribed cost function.

The application of the MPC for rendezvous and docking maneuvers, which is the main

argument of this work, will be tested with numerical simulations in a realistic scenario

and the results will be discussed in terms of robustness and efficiency.
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1.3 Thesis outline

The remaining part of this thesis can be divided into three main sections. At first, the

mathematical models and the principle of operation of Model Predictive Control and PID

control will be discussed (Chapter 2,3 and 4). Subsequently, the scenario of simulation

will be presented in Chapter 5, along with some preliminary numerical simulation results

used to prove the efficiency of the selected gains (Chapter 6). Finally, the results of a

Monte-Carlo simulation for either controllers are shown and compared (Chapter 7).
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Chapter 2

Spacecraft relative translational and

attitude dynamics

2.1 Introduction

In this chapter, the equations of relative motion between spacecraft and attitude dynam-

ics in unperturbed orbits are presented.

Relative motion is an important aspect to understand, in that several space missions

involve multiple spacecraft or satellites. Spacecraft formation flying missions, for example,

require maintenance of a desired relative separation among the vehicles, and rendezvous

and docking maneuvers require appropriate relative speed and position to be achieved

between the chaser and the target.

Equations of relative motion govern the relative dynamics of two orbiting objects, and

constitute the dynamical model on which all the simulations are based.

In the following paragraphs, fully nonlinear equations of relative motion (NERM) are

investigated, following which linear equations of relative motion (LERM) are described,

along with the Tchauner-Hempel (TH) equations. Solution to the TH equations is ob-

tained by a state-transition matrix as proposed by Yamanaka and Ankersen (YA) [4]. The

simple case of circular orbit, described by the Clohessy-Wiltshire (CW) equations, and

its solution are also presented.
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Finally, the spacecraft attitude dynamics are investigated, where Euler’s equations

and quaternions are outlined.

2.2 Reference frames

The following reference frames are defined and used in this thesis.

Inertial reference frame FI

The Earth-Centered-Inertial (ECI) coordinate system is centered at the Earth’s center of

mass and is defined by the triad of vectors [̂I, Ĵ, K̂], where Î is aligned with the vernal

point, K̂ is aligned with the Earth rotation axis and toward the North Pole, and Ĵ

completing the orthogonal triad. The inertial coordinates are herein defined as [X, Y, Z].

Hill’s reference frame FH

Hill’s coordinate system is an orbiting reference frame following the target orbital motion

with origin in the target’s center of mass. The unit vectors defining this system are

denoted as [̂i, ĵ, k̂] and the coordinates are expressed as [x, y, z]. The x-axis is oriented

along the radial axis, the z-axis is aligned with the angular momentum of the target’s

orbit, and the y-axis completes the right-handed orthogonal triad. Note that x and y lie

on the orbital plane, with y directed toward the trajectory of the target (and parallel to

its velocity only in circular orbits), whereas z corresponds to the out-of-plane direction.

Orbital reference frame FO

The spacecraft local orbital frame FO is a coordinate system with origin in the center of

mass of a spacecraft in circular orbit. This reference frame is also referred to as Local

Vertical - Local Horizontal (LVLH) frame, and is widely used in flight mechanics. Z-axis

points toward the center of the Earth, or Nadir, and for this reason it is often called R-

bar. Y-axis is aligned opposite the orbit angular momentum, and finally X completes the
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triad. The X-axis is also denoted as V-bar, as it points in the direction of the spacecraft’s

motion.

Body frame FB

The spacecraft body frame, or simply body frame, is a reference frame with origin at the

center of mass of the spacecraft and with axes fixed with the satellite. In this thesis, it is

assumed that the body axes are parallel to the principal axes of inertia.

2.3 Translational dynamics

The translational relative motion between two orbiting vehicles can be analyzed with

respect to the Hill’s frame of reference attached to the target satellite.

2.3.1 Nonlinear equations of relative motion

To derive the nonlinear equations of relative motion, the description of the relative dy-

namics is firstly analyzed with respect to an inertial reference frame, and then transformed

into the orbiting frame. The following definitions are given:

• rt is the inertial position vector of the target;

• rc is the inertial position vector of the chaser;

• ρ = rc − rt is the inertial relative position vector of the chaser w.r.t. the target.
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Figure 2.1: Coordinate frames in relative motion.

We want to express the relative acceleration ρ̈ in Hill’s coordinate system. To do so, we

first decompose the acceleration as:

ρ̈ = ρ̈rel + 2ω × ρ̇rel + ω̇ × ρ+ ω × (ω × ρ) (2.1)

where ρ̈rel = [ẍ ÿ z̈]T is the relative acceleration vector, and ω = [0 0 θ̇]T is the

angular velocity vector of FH as seen in Hill’s frame. Recalling that:

ρ̈ = r̈c − r̈t

= − µ

r3
rc +

µ

r3t
rt

(2.2)

and that rt = [rt 0 0]T , substituting Equation (2.2) into (2.1) yields the nonlinear

equations of relative motion (NERM):

ẍ = 2 θ̇ ẏ + θ̈ y + θ̇2x+
µ

r2t
−

µ ( x+ rt)

[ ( rt + x) 2 + y2 + z2]
3
2

ÿ = −2 θ̇ ẋ− θ̈ x+ θ̇2y −
µ y

[ ( rt + x) 2 + y2 + z2]
3
2

z̈ = −
µ z

[ ( rt + x) 2 + y2 + z2]
3
2

(2.3)
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2.3.2 Linear equations of relative motion

Assuming that the separation between the target and the chaser ρ is small if compared

to the distance from the center of the planet rt (from now on called r), the equations of

relative motion (2.3) can be linearized about the origin of Hill’s frame. The new equations

are called linear equations of relative motion (LERM):

ẍ = 2 θ̇ ẏ +
(
θ̇2 + 2

µ

r3

)
x+ θ̈ y

ÿ = −2 θ̇ ẋ− θ̈ x+
(
θ̇2 − µ

r3

)
y

z̈ = − µ

r3
z

(2.4)

It is important to note that the in-plane dynamics described by the linearized equations

are decoupled from the out-of-plane dynamics.

2.3.3 Tschauner-Hempel equations

The linearized equations can be written in state-space form, described by the state vector

x = [x, y, z, ẋ, ẏ, ż]T , obtaining a linear time-variant system:

ẋ = A(t)x =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

θ̇2 + 2

µ

r3


 θ̈ 0 0 2θ̇ 0

−θ̈


θ̇2 −

µ

r3


 0 −2θ̇ 0 0

0 0 −
µ

r3
0 0 0




x (2.5)

The state matrix A(t) is time-varying, as orbital radius r, the true anomaly θ, and their

derivatives vary with time for a general elliptical orbit. The time t is the independent
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variable, and θ is found by Kepler’s equation

n (t− t0) = E − e sinE

tan
θ

2
=

√
1 + e

1− e
tan

E

2

(2.6)

However, θ is a bijective function of time, and therefore it can be used instead of t as the

independent variable. It is useful to introduce the following definitions:

• k(θ) := 1 + e cos θ;

• x̄ := k(θ) x is a new variable scaled by the factor k;

• x̄′ =
dx̄

dθ
is the derivative of x̄ with respect to θ.

The change of variables can be summarized by a transformation matrix T (θ) such that:

x̄ = T (θ)x

where:

T (θ) =




k(θ) I3×3 03×3

−e sin θ I3×3

p2

hk(θ)
I3×3


 and T−1(θ) =




1

k(θ)
I3×3 03×3

he

p2
sin θ I3×3

h

p2
k(θ) I3×3




By applying this transformation to the LERM (2.4), they can be rewritten in the following

form known as the Tschauner-Hempel equations:

x̄′′ =
3

k
x̄+ 2ȳ′

ȳ′′ = −2x̄′

z̄′′ = −z̄

(2.7)

It is to be noted that as the true anomaly is the independent variable, it is not limited to

2π, but instead increases with time.

Solution to the TH equations

The solution presented in this section refers to the work carried out by Yamanaka and

Ankersen in [4] and also described by R. Sherrill et al. in [5]. The algorithm is showed in

Table 2.1.
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Table 2.1: Algorithm to solve the TH equations.

Solution algorithm to the TH equations

1. Given state vector at initial time x(t0)

2. Rescale initial state vector x̄0 = T (θ0)x(t0)

3. Build fundamental solution vectors ψ1, ψ2, ψ3, ψ4, ψ5, ψ6

4. Assemble solution matrix Ψ(θ) = [ψ1, ψ2, ψ3, ψ4, ψ5, ψ6]

5. Create state transition matrix Φ(θ, θ0) = Ψ(θ)Ψ−1(θ0)

6. Compute desired state vector x̄(θ) = Ψ(θ, θ0)x̄0

7. Return to time domain x(t) = T−1(θ)x̄(θ)

The fundamental solutions ψi, i = 1, . . . , 6, are:

ψ1 =




sin θk(θ)

2 cos θ − e sin2 θ

0

cos θ + e cos 2θ

−2 sin θk(θ)

0




, ψ2 =




cos θk(θ)

−2 sin θ − e sin θ cos θ

0

− sin θ − e sin 2θ

e− 2 cos θk(θ)

0




ψ3 =




1−
3e

2
J sin(θ)k(θ)

−
3

2
Jk(θ)2

0

−
3e

2
J (cos θ + e cos 2θ)−

3e sin θ

2k(θ)

3eJ sin θk(θ)−
3

2

0




, ψ4 =




0

1

0

0

0

0



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ψ5 =




0

0

sin θ

0

0

cos θ




, ψ6 =




0

0

cos θ

0

0

− sin θ




where J =
h

p2
(t− t0) and recall k(θ) = 1 + e cos θ.

This algorithm is particularly useful because it avoids the need of numerical integration

of the TH equations.

2.3.4 Clohessy-Wiltshire equations

The Clohessy-Wiltshire equations (CW), developed in the early 1960s, analyze spacecraft

relative motion when the target’s orbit is circular and the chaser is not too far from it.

These equation can be obtained as a simplification of TH Equations (2.7), setting e = 0,

and the result is a linear time-invariant system, for which a closed-form solution exists.

CW equations take the following form:

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(2.8)

or, is state space formulation:

ẋ(t) = Ax(t) =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0




x(t) (2.9)
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where n is the orbital angular velocity of the target spacecraft. The solution is easily

obtained in terms of the transition matrix eA(t−t0), that is (for t0 = 0):

ẋ(t) =




4− 3 cosnt 0 0
sinnt

n

2

n
(1− cosnt) 0

−6nt+ 6 sinnt 1 0 −
2

n
(1− cosnt)

4 sinnt

n
− 3t 0

0 0 cosnt 0 0
sinnt

n

3n sinnt 0 0 cosnt 2 sinnt 0

−6n (1− cosnt) 0 0 −2 sinnt −3 + 4 cosnt 0

0 0 −n sinnt 0 0 cosnt




x(0)

(2.10)

An important observation is that the motion along y is unstable, because it contains

secular terms which cause the spacecraft to drift along-track with time. Nevertheless, the

motion will remain stable if this particular initial condition is verified:

ẏ(0) = −2nx(0) (2.11)

In this case, the chaser relative motion describes a closed trajectory around the target

(fly-around) generated by a section of an elliptic cylinder.

The example provided below presents the comparison of the CW solution with the

TH solution, in two different cases. In case 1, the eccentricity of the target’s orbit is set

e = 0.001, whereas in case 2 it is e = 0.1. The initial position of the chaser with respect

to the target-fixed coordinate frame (Hill’s coordinate frame) is chosen such that ρ ≪ r,

thereby justifying the employment of these models.
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Table 2.2: Simulation parameters. Position and velocity are expressed in Hill’s frame.

Parameter Value

Eccentricity e = 0.001 and e = 0.1

Perigee height 450 km

Initial true anomaly 0°

Chaser initial position [10, −50, 20]m

Chaser initial velocity [0.1, −0.1, 0.1]m/s

Propagate duration Two orbit revolutions

Figure 2.2: Case 1: e = 0.001. Propagation of the chaser position in Hill’s frame with TH

solutions (blue) and CW solutions (light blue, dashed).
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(a) Plane X-Y.

(b) Plane Y-Z.

Figure 2.3: Case 1: e = 0.001.

Figure 2.4: Case 2: e = 0.1. Propagation of the chaser position in Hill’s frame with TH

solutions (blue) and CW solutions (light blue, dashed).
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(a) Plane X-Y.

(b) Plane Y-Z.

Figure 2.5: Case 2: e = 0.1.

Regarding case 1, we observe that the trajectory obtained by the CW solutions almost

coincides with the one computed with the TH equations, as depicted in Figures 2.2 and

2.3. Therefore, for a scenario with a target’s orbit eccentricity of e = 0.001 or less, the

CW solutions provide a good model for the description of the dynamics.

Figures 2.4 and 2.5 show results for case 2, where the eccentricity of the target orbit

is higher than case 1. In this second case, the CW solutions do not provide an accurate

representation of the chaser’s motion, as it deviates noticeably from the more accurate

solution provided by the TH equations.
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2.4 Spacecraft attitude dynamics

In this section, the mathematical models for the attitude dynamics and kinematics of

a rigid body are investigated. First, the rotational dynamics equations are presented,

along with the formulation that include reaction wheels for attitude control. Then the

kinematics is discussed, with an overview on Euler angles and quaternions employed as

attitude parameterization.

2.4.1 Euler angles

In order to fully describe the orientation of a rigid body with respect to an initial frame,

three parameters are required. The conventional approach consists of finding three angles

(Euler’s angles) that describe a sequence of three rotations necessary to take the initial

frame and make it coincide with the body frame. It should be noted that the initial frame

does not require to be inertial. Indeed, for our purpose it is appropriate to describe the

spacecraft attitude with respect to the local orbital frame.

There are many sequences of rotations; the one used in this work is the 3-2-1 sequence,

in which the three angles, also known as Bryan’s angles, correspond to yaw ψ, pitch θ,

and roll φ.

We define ω
BO
B as the angular velocity of the spacecraft body frame FB relative to

the local orbital frame FO and expressed in the body frame. The relation between the

derivatives of Euler’s angles and the angular velocity of the spacecraft is given by the

sequence of rotations 3-2-1 as follows:

ω
BO
B = R1(φ)




φ̇

0

0



+R1(φ)R2(θ)




0

θ̇

0



+R1(φ)R2(θ)R3(ψ)




0

0

ψ̇




(2.12)

where R1(φ), R2(θ), and R3(ψ) are respectively the rotation matrices about the first,

second and third axis resulting from intermediate transformations. Equations (2.12) can
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be rewritten in the following compact form representing the attitude kinematics equations:

ω
BO
B =




1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ







φ̇

θ̇

ψ̇




(2.13)

2.4.2 Quaternions

Euler’s angles constitute a practical representation of a spacecraft’s orientation, but they

are also characterized by an unpleasant feature. The explicit form of the evolution of

Euler angles as a function of the angular velocity, derived from equation (2.13), requires

the inversion of a matrix, which determinant is, in our case, cosφ. Therefore, there exist

particular situations which make the inversion impossible. These singularities can be

avoided with the use of quaternions or Euler’s parameters.

A quaternion q ∈ R
4 is a four-element entity which fully describes a rotation about an

axis. The attitude matrix describing the transformation from the local orbital frame to the

spacecraft body frame can thus be uniquely identified by a quaternion. The information

regarding the angle of rotation and the direction of the axis of rotation are all contained

in q. In this work, the Hamilton formulation for quaternions is used, i.e. the scalar

parameter q0 ∈ R takes the first entry of q:

q :=



q0

q̃


 (2.14)

where q̃ = [q1, q2, q3]
T ∈ R

3.

The four elements must satisfy the constraint that normalizes the quaternion:

q20 + q̃ · q̃ = 1 (2.15)

The time evolution of a quaternion can be expressed as

q̇ =
1

2
Ωq (2.16)
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where the matrix Ω can be obtained from the components of the spacecraft’s angular

velocity in the body frame:

Ω =




0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0




(2.17)

The expression (2.16) is the analogous of (2.13), as both relate the attitude informa-

tion with the angular velocity of the spacecraft, with the difference that the quaternion

formulation lacks singularities and is more easily integrable.

However, it is not intuitive to understand the spacecraft attitude through the quater-

nions, instead it is more natural to represent it in terms of Euler angles. Given a quater-

nion, it is possible to deduce the Euler angles from it. As mentioned above, the function

relating a quaternion with the corresponding rotation matrix is bijective, and therefore

the rotation matrix can be computed as:

RBO =
(
q0

2 − q̃ · q̃
)
I3×3 + 2q̃q̃T − 2q0Q (2.18)

where I3×3 is the 3× 3 unit matrix and Q is a 3× 3 matrix given by:

Q =




0 −q3 q2

q3 0 −q1

−q2 q1 0




(2.19)

Finally, Euler angles can be obtained from the entries of the attitude matrix RBO [6].

2.4.3 Rotational dynamics

The rotational dynamics of a rigid body are governed by the time-derivative of its angular

momentum H. If H is calculated with respect to the center of mass of the rigid body,

then the dynamics equation is given by:

dH

dt
= T (2.20)
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where T is the resultant of all external torques about the center of mass. Expressing H

in the body frame, the time derivative of the angular momentum becomes:

ḢB + ω
BI
B ×HB = TB (2.21)

Furthermore, we can express H as the inertia tensor JB of the rigid body multiplied by

the absolute angular velocity:

HB = JB ω
BI
B (2.22)

with

JB =




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz




(2.23)

Assuming that the body axes are parallel to the principal axes, the off-diagonal products

of inertia cancel out, yielding:

JB =




Ixx 0 0

0 Iyy 0

0 0 Izz




(2.24)

In the general case the inertia tensor will vary over time, specifically in the case of

a spacecraft losing mass, therefore its derivative should not be neglected. Substituting

(2.22) into (2.21) leads to the Euler’s equation of rotational motion:

JB ω̇
BI
B + ω

BI
B × JB ω

BI
B + J̇B ω

BI
B = TB (2.25)

where ω̇
BI
B is the inertial angular acceleration of the spacecraft and TB is the resultant

of all the external torques. Rearranging the terms, the equation of rotational motion can

be written in the way used for the integration, that is:

ω̇
BI
B = J−1

B

[
TB − ω

BI
B × JB ω

BI
B − J̇B ω

BI
B

]
(2.26)

For our purpose, it is better to consider the attitude angles as derived from the LVLH

frame instead of an inertial frame. Using the theorem of the relative velocities we can
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write:

ω
BI
B = ω

BO
B + ω

OI
B

ω
BI
B = ω

BO
B +RBO ω

OI
O

(2.27)

where ω
OI
O = [0 − n 0]T is the orbit angular velocity of the local orbital frame, and RBO

is the rotation matrix, derived from the sequence of rotations 3-2-1, which maps a generic

vector from the local orbital frame FO into the body frame FB.

2.4.4 Euler equations with reaction wheels

Reaction wheels are typical actuators used for the attitude control of micro-satellites.

They are flywheels used to exchange angular momentum to the spacecraft by the principle

of action and reaction in order to either rotate the spacecraft in a desired orientation or

to store angular momentum for compensating a disturbing torque acting on the system.

A single reaction wheel can control the rotation along one axis, so at least three reaction

wheels are necessary for a 3-axis attitude control. Sometimes, more than three wheels are

used for redundancy, since the failure of one wheel would cause the loss of control along

that axis, resulting in a potential failure of the mission.

We consider a spacecraft featuring three reaction wheels, each along an axis of the

body frame, here defined as ê1, ê2 and ê3. The angular momenta of the wheels are added

to the angular momentum of the spacecraft body, yielding the total angular momentum

of the system:

H = HB +
3∑

i=1

Iw ωi êi (2.28)

where Iw is the moment of inertia of each reaction wheel about its spinning axis, assumed

to be the same for the three reaction wheels, and ωi is its absolute rotation speed.

Inserting equations (2.22) into equation (2.28) and taking the time derivative, the new

Euler’s equation can be written as:

JB ω̇
BI
B + J̇B ω

BI
B + ω

BI
B ×

[
JB ω

BI
B +

3∑

i=1

Iw ωi êi

]
= TB −

3∑

i=1

Iw ω̇i (2.29)

with Iw ω̇i being the torque generated by the i-th reaction wheel and TB being the sum of

all the external torques acting on the system. This term can be seen as an input torque

commanded to compensate for disturbances or to redistribute the angular momentum of

the system for attitude maneuvers.
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Chapter 3

Model Predictive Control

3.1 Introduction

Model Predictive Control (MPC) is a modern control method developed in the 1970s

widely used in industrial control applications, such as in chemical plants, power electron-

ics and even agriculture.

This method solves an optimization problem by the minimization of a cost function

to generate the control action, while satisfying a set of constraints [7, 8]. Its main differ-

ence from a Linear Quadratic controller is the possibility to account for constraints while

computing the optimal control action, which makes it a powerful tool for aerospace appli-

cations, where limits on thrust magnitude of the actuators, as well as obstacle avoidance

are critical aspects to consider. When compared to classical control strategies, the main

advantages of the MPC are:

• ability to deal with MIMO problems naturally;

• use of a mathematical model of the system dynamics to predict and optimize its

behaviour over a future time horizon;

• ability to handle constraints;

• management of priorities by tuning the cost function.
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3.2 Basic formulation of Model Predictive Control

The objective of MPC is to provide at every time step the optimal control action computed

to minimize a chosen cost function. The term optimal refers to the preferences that were

made during the design of the MPC, which may regard the minimal usage of actuators

as well as the fastest achievement of the target states.

A mathematical model of the evolution of the system is used to predict the system

states over a finite prediction horizon. The more accurate the model, the more efficient

the control actions sequence.

At each time instant k, the predicted states build up the cost function Vk with a

sequence of control actions as unknown over a control horizon, and subject to a set of linear

constraints. This optimization problem takes the form of a Quadratic Programming1

problem which can be solved by numerous algorithms. The set of input actions that

minimize Vk is the optimal input sequence to be applied. However, only the first term of

the control sequence, i.e. the control action at the current time instant k, is applied to

the system, whereas the rest of the control sequence is discarded.

When the state at the next time step k + 1 is measured, a new optimization problem

based on the new information is solved, and a new control sequence is obtained. This

process is repeated on-line at every time step, thus receding the prediction horizon and

including feedback in the system. For this reason, this method is also referred to as

Receding Horizon Control. Figure 3.1 illustrates the work principle of the MPC. We

denote by p the length of the prediction horizon, over which anticipations of the system

state are calculated, and denote by m, with m < p, the length of the control horizon.

Consider the following linear time-invariant system in discrete time and assuming no

feed-through (i.e. D = 0):

xk+1|k = Axk|k +Buk|k

yk|k = Cxk|k

(3.1)

where x is an nx-dimensional state vector, u is an nu-dimensional input vector, and y is

an ny-dimensional vector of measured outputs. The subscript of xk+1|k indicates that the

1A Quadratic Program is an optimization problem in which the cost function is quadratic and the

constraint set is defined by linear inequalities.
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Figure 3.1: Receding horizon principle [9].

predicted value of the state vector at time k + 1 is based on the value of x known (or

observed) at instant k.

We denote by rk+j|k the reference output that the controlled variables yk+j|k are re-

quired to follow, such that ek+j|k = yk+j|k − rk+j|k is the tracking error vector. We also

define ∆uk+j|k = uk+j|k − uk|k as the increment of the control vectors between two time

steps. We can now define a cost function as:

Vk =

p−1∑

j=0

( eTk+j|kQek+j|k ) +
m−1∑

j=0

(∆uTk+j|k R∆uk+j|k ) + eTk+p|k P ek+p|k (3.2)

where Q and P are symmetric semi-positive definite matrices and R is a positive definite

matrix. These weight matrices allow us to penalize error in tracking and actuator usage

by choosing larger values for a matrix with respect to the other one. Sometimes, for

stability reasons, a different weight matrix P is considered for the last time step of the

prediction horizon.

The goal is to find an optimal input control sequence ∆U∗
k = [∆u∗Tk|k, ∆u

∗T
k+1|k, . . . , ∆u

∗T
k+m−1]

T

that minimizes the cost function Vk. It is an optimization problem, which can be formu-

lated as follows:
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V ∗
k = min

∆u∗

k

p−1∑

j=0

( eTk+j|kQek+j|k ) +
m−1∑

j=0

(∆uTk+j|k R∆uk+j|k ) + eTk+p|k P ek+p|k (3.3)

subject to

xk+j+1|k = Axk+j|k +Buk+j|k

yk+j|k = Cxk+j|k

uk+j+1|k = uk+j|k +∆uk+j|k (3.4)

∆uk+i|k = 0 , ∀i = m, . . . , p− 1 (3.5)

E



∆uk+j

1


 ≤ 0 , ∀j = 0, 1, . . . ,m− 1 (3.6)

F



uk+j

1


 ≤ 0 , ∀j = 0, 1, . . . ,m− 1 (3.7)

G



yk+j

1


 ≤ 0 , ∀j = 0, 1, . . . , p (3.8)

where the first two equations refer to the system model of the plant; Equation (3.5) states

that the input control value does not change after the control horizon, remaining constant

until the end of the prediction horizon; Equations (3.6), (3.7) and (3.8) are the constraints

applied to the system in terms of actuators slew rate, magnitude and output limitations

respectively.

Sometimes it is convenient to parameterize the model (3.1) using the increment vector

∆uk|k, as the cost function penalizes it, rather than uk|k. We may therefore augment the

state vector as follows:

x̃k =




xk

uk−1


 (3.9)

28



so that the input control values of the former time step is included in the state vector.

Substituting (3.9) into (3.1) we obtain a new model for the plant:



xk+1|k

uk|k


 =



A B

0 I






xk|k

uk−1


+



B

I


∆uk|k (3.10)

yk|k =

[
C 0

]


xk|k

uk−1


 (3.11)

3.3 Formulation as a QP problem

In order to solve the optimization problem, it is necessary to put it into the form of a

Quadratic Programming (QP) problem [7], defined as:

min
θ

1

2
θT H θ − θT G subject to Ω θ ≤ ω (3.12)

It is proper to make the following definitions:

• Yk =

[
yTk|k , yTk+1|k , . . . , yTk+p|k

]T
is the sequence of predicted output vectors;

• ∆Uk =

[
∆uTk|k , ∆uTk+1|k , . . . , ∆uTk+m−1|k

]T
is the sequence of input changes

within the control horizon;

• Uk =

[
uTk|k , uTk+1|k , . . . , uTk+m−1|k

]T
is the sequence of input values within the

control horizon;

• Tk =

[
rTk|k , rTk+1|k , . . . , rTk+m−1|k

]T
is the sequence of reference vectors within

the prediction horizon.

Prediction of the output vector yk+j|k at a future time k + j can be computed by

applying the predictive model (3.1) recursively. This vector depends upon the current

state xk|k at which the prediction is made and the assumed future input changes ∆Uk that
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will be applied (and that correspond to the degrees of freedom). Using these definitions

we can write:

Yk = Ψxk|k +Υuk−1 +Θ∆Uk (3.13)

where:

Ψ =




CA

...

CAm

CAm+1

...

CAp




, Γ =




CB

...

m−1∑
i=0

CAiB

m∑
i=0

CAiB

...

p−1∑
i=0

CAiB




, Θ =




CB . . . 0

CAB + CB . . . 0

...
. . .

...

m−1∑
i=0

CAiB . . . CB

m∑
i=0

CAiB . . . CAB + CB

...
...

...

p−1∑
i=0

CAiB . . .
p−m∑
i=0

CAiB




First, we want to express the cost function Vk in the form of (3.12). We see that Vk

can also be written with a different notation that emphasizes the quadratic problem:

Vk =

p∑

i=0

‖yk+i|k − rk+i|k‖2Q(i)
+

m−1∑

i=0

‖∆uk+i|k‖2R(i)
(3.14)

where the weight matrices Q(i) and R(i) refer to the time step i, so that they may penalize

the error and the input control variables in different ways over the prediction horizon.

Compacting this equation we get:

Vk = ‖Yk − Tk‖2Q + ‖∆Uk‖2R (3.15)

where

Q =




Q(0) 0 · · · 0

0 Q(1) · · · 0

...
...

. . .
...

0 · · · 0 Q(p)




, R =




R(0) 0 · · · 0

0 R(1) · · · 0

...
...

. . .
...

0 · · · 0 R(m−1)




Defining the vector:

Ek := Tk − Yk

∣∣∣∣
∆Uk=0

= Tk −Ψxk −Υuk−1 (3.16)
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as the tracking error vector in absence of a future control sequence, i.e., the error sequence

that will occur if ∆Uk = 0, it is now possible to write the cost function in the form:

Vk = ∆UT
k H∆Uk −∆UT

k G + const (3.17)

which is the standard formulation for a QP problem, where:

H = ΘT QΘ+R

G = 2ΘT QEk

At this point we need to put the constraint inequalities into the QP formulation (3.12).

To begin, we see that inequalities (3.6), (3.7) and (3.8) can be written as

E



∆Uk

1


 ≤ 0 (3.18)

F



Uk

1


 ≤ 0 (3.19)

G



Yk

1


 ≤ 0 (3.20)

It is necessary to express all of them as a function of ∆Uk in order to reach a more compact

form. The first inequality can be easily expressed as:

W ∆Uk ≤ w (3.21)

Under many circumstances the input changes are required not to exceed a maximum

absolute value expressed by the simple inequalities −∆umax,k+j ≤ ∆uk+j|k ≤ ∆umax,k+j.

In this special case, the matrix W and the vector w are simply:
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W =




I 0 · · · 0

0 I · · · 0

...
...

. . .
...

0 0 · · · I

−I 0 · · · 0

0 −I · · · 0

...
...

. . .
...

0 0 · · · −I




, w =




∆umax,k

...

∆umax,k+m−1

∆umax,k

...

∆umax,k+m−1




With regard to the second inequality (3.19), some more manipulations are necessary,

as it is not immediate to express it as a function of ∆Uk. Assuming that F has the form

F =

[
F1, F2, . . . , Fm, f

]
, where f is the last column vector, then inequality (3.19)

can be rewritten as:
m∑

i=1

Fi uk+i−1|k + f ≤ 0

It is convenient to make the following definitions:

Fi :=
m∑

j=i

Fj and F :=

[
F1, . . . , Fm

]

and (3.19) can finally be written in the form:

F ∆Uk ≤ −F1uk−1 − f (3.22)

Inequality (3.20) can be rearranged by substituting Equation (3.13) into it and, as-

suming G is in the form G =

[
Γ , g

]
so that the inequality becomes:

ΓΘ∆Uk ≤ −Γ
[
Ψxk|k +Υuk−1

]
− g (3.23)
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We have obtained three linear inequalities describing the constraints of the plant in

the variable ∆Uk, so it is now possible to assemble them and obtain a single inequality:



W

F

ΓΘ



∆Uk ≤




w

−F1uk−1 − f

−Γ
[
Ψxk|k +Υuk−1

]
− g




(3.24)

that is the same formulation as in the QP problem (3.12). This optimization problem can

be solved by several algorithms, as described in [7].

3.4 Observer-based MPC

In most practical systems it is impossible to measure the full state vector xk directly.

Indeed, it is only possible to measure the output vector yk of the plant using some sensors,

and an observer is employed to produce an estimation of the full state vector, x̂k. The

working principle of a state observer is shown in Figure 3.2.

Figure 3.2: Block diagram of a state observer.

The structure of the observer is identical to the plant, with the addiction of the gain

matrix L which is used as feedback to correct the state estimate x̂. The equation of the
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observer is:

x̂k+1|k = Ax̂k|k−1 +Buk + L
(
yk − ŷk|k−1

)
(3.25)

where the latter term is the correction due to the difference between the measured

output and its prediction. This difference may be caused by unknown disturbances af-

fecting the output of the plant.

In order to select an appropriate gain matrix L such that the state estimation con-

verges to the real state, we first define the state estimation error ek = xk − x̂k|k−1. After

some passages we get:

ek+1 = (A− LC) ek (3.26)

which shows that the estimation error will converge to zero if the eigenvalues of A− LC

lie inside the unit disk. If the pair (A,C) is observable, then a gain matrix L exists, such

that the eigenvalues can be placed in a desired location.

Once a state estimator has been defined, the state vector x presents in Equation

(3.1) can be substituted with its estimation x̂, and the formulation of the MPC remains

unchanged.

3.4.1 Kalman Filter

In this section a brief description of the working principle of the Kalman filter will be

presented [10].

It is quite often in control systems that not all critical states of a system can be

measured directly through sensors. In our case, for example, we have assumed that the

chaser spacecraft is equipped with vision-based sensors capable of measuring the relative

distance between the two satellites, but not the relative velocity. This is where a state

observer comes in, feeding back the missing states (velocities) from the measured ones

(distances). Moreover, measurements provided by sensors are in reality subjected to un-

certainties, which are caused by mis-calibration of the instruments or small imperfections.

In the former case, we have bias errors, whereas in the latter case we have random errors.

Assuming that all sensors are well calibrated, the bias error can be cancelled, but the

random noise will nevertheless be present.

A state observer should not only provide the lacking states, but also be able to distin-
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guish real data from the noise perturbations. In the general case, the system is influenced

by processing noise, which takes place as an additional input, and measurements noise,

which adds to the output variables. The discrete-time system is then given by:

xn+1 = Axn +Bun +Gwn

yn = Cxn +Dun +Hwn + vn

(3.27)

where wn and vn are the processing and measurement noise signals, respectively, assumed

to be Gaussian noise with zero mean. G and H are matrices of appropriate dimensions.

Usually H is zero, specifying that there is no feed-through of the processing noise to the

output. The noisy signals w and v satisfy the relations:

Q = E
{
wnw

T
n

}

R = E
{
vnv

T
n

}

N = E
{
wnv

T
n

}
(3.28)

where Q, R, and N are the process noise, measurement noise, and noise cross covari-

ance matrices, respectively. The Kalman estimator computes the state estimates x̂ that

minimizes the steady-state error covariances, given by:

P = lim
n→∞

E
{(

xn − x̂n|n−1

) (
xn − x̂n|n−1

)T}

Z = lim
n→∞

E
{(

xn − x̂n|n
) (

xn − x̂n|n
)T} (3.29)

by solving a discrete algebraic Riccati equation (DARE), thereby obtaining the filter gain

L and the optimal innovation matrices Mx, My.

The Kalman filter takes as inputs the vector u and the measured variables y, and

returns the estimates ŷ of the plant outputs and the state estimates x̂. The update

equations:

x̂n|n = x̂n|n−1 +Mx

(
yn − Cx̂n|n−1 −Dun

)

ŷn|n = Cx̂n|n−1 +Dun +My

(
yn − Cx̂n|n−1 −Dun

) (3.30)

correct the current state and output estimates by means of the innovation matrices Mx,

My, given knowledge of the a priori state estimates x̂n|n−1 and the current measurements

yn.

Subsequently, the state equation of the Kalman filter, given by:

x̂n+1|n = Ax̂n|n−1 +Bun + L
(
yn − Cx̂n|n−1 −Dun

)
(3.31)

is used to predict the state estimate for the next time step.
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3.5 Measured disturbances and feed-forward

As mentioned in Section 3.2, having an accurate predictive model is an ideal situation, in

that the MPC is capable of predicting with high fidelity the state of the system over the

prediction horizon. However, this is not feasible in reality because of many factors that

come in during the design of an MPC, as for instance linearization of the dynamic equa-

tions in the predictive model, unknown disturbances affecting the system, measurement

noise etc.

What can be done to improve the accuracy of the predictive model is take into account

the effect of those disturbances for which a model is known. If this is possible, then the

controller will be able to predict those effects in advance and compute a corrective control

action to approximately cancel them out. This action is called feedforward control and its

benefit is the ability to generate a suitable control action before the disturbance effects

affect the system, rather than wait for the disturbances to produce an error in the output

variables and take corrective actions thereafter, as in the feedback control scheme.

3.6 Explicit MPC

Solving an online optimization problem at every sample time may be very expensive for

what concerns computational cost, and potentially unfeasible. This might be a problem

for those low-end spacecraft (like Nanosatellites), which on-board computing capacity is

more limited than others. In fact, it is more convenient to possess solutions which require

the least computational effort and power consumption, as saved capacity can be used for

additional functions and services.

However, there exists the possibility to radically reduce the computational costs of an

MPC controller in cases where the plant can be approximated by a linear time-invariant

(LTI) model. This is the case of an explicit MPC: if the model and the constraints are

LTI and the quadratic cost is time invariant, a closed form solution to the optimization

problem exists and can be calculated off-line.

Bemporad et al. showed in [11] that the optimization problem is a multi-parametric

36



quadratic program (mp-QP) and proposes an algorithm for its solution. Once the mp-

QP problem has been solved off-line, the feedback control law is available explicitly and

assumes the form of a piecewise affine function, which can be easily stored in a look-up

table inside the memory of an on-board computer.

The choice of an explicit MPC is appropriate for systems featuring low computing

power, although the allocation of the solutions inside the on-board computer may require

significant storage. Therefore its selection over a traditional MPC must be a trade-off

between the two options.
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Chapter 4

PID control

The Proportional - Integral - Derivative (PID) controller is one of the most common

control strategies. Its simplicity and high reliability make it a good choice for many

applications and is therefore widely employed in industrial control systems. As the name

suggests, the PID control action u(t) is the sum of three distinct terms u(t) = P (t) +

I(t) +D(t), where P (t) is the proportional term, I(t) is the integral term and D(t) is the

derivative contribution. The following sections describes each contribution in details.

4.1 Proportional action

The proportional term is computed as the multiplication of the instantaneous error e(t)

between the reference state r(t) and the current state y(t) by a constant gain Kp. In

continuous-time domain it is given by:

P (t) = Kp [r(t)− y(t)] = Kp e(t)

whereas for discrete time, it can be computed as:

P (k) = Kp e(k)

In Laplace domain, the transfer function of a proportional controller is simply given by:

HP (s) = Kp
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Similarly, for the discrete controller:

HP (z) = Kp

The corrective action is therefore proportional to the amount of error at that instant.

A high value of Kp can lead to very high control actions, despite the limitations in the

actuators. A purely proportional controller is poor, because the step response shows a

steady-state error that cannot be removed. Moreover, high values of the proportional gain

can produce high oscillations and overshoot.

4.2 Derivative action

The derivative term is a control action proportional to the time derivative of the error:

D(t) = Kd

de(t)

dt
(4.1)

The transfer function is:

HD(s) = Kd s

In discrete-time formulation, the time derivative of the error can be approximated as:

de(t)

dt
=
e(k)− e(k − 1)

∆t
(4.2)

and substituting into Equation (4.1) we can formulate the derivative action for a discrete-

time controller as:

D(k) = Kd

e(k)− e(k − 1)

∆t
(4.3)

where ∆t is the sample time interval. It is possible to write the discrete transfer function

as:

HD(z) = Kd

1− z−1

∆t
(4.4)

The benefit of using a derivative correction consists of damping of oscillations; however,

non-zero steady state error will be present if no integral action is included.

Such derivative action can improve the performances of an ideal controller. In practice,

where measurements are affected by sensors noise, some precautions have to be taken
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into account. The measured variable ym can be written as the sum of the real controlled

variable and an error ε introduced by the sensors:

ym(t) = y(t) + ε(t)

Taking the time derivative of ym(t) may result in large values due to the high rate of change

of ε(t), especially if its spectrum presents high frequency components. This problem can

be overcome by using also a low-pass filter (LPF) instead of a pure derivative contribution.

The block diagram of the controller with a derivative term is visible in Figure 4.1, where

the LPF transfer function is given by

HLPF (s) =
1

Td

N
s+ 1

(4.5)

where Td =
Kd

Kp

and N is a parameter used to tune the filter.

Since the derivative term is proportional to the rate of change of the error, it may be

possible to reformulate it as an action proportional to the velocity error. This is possible

in our case, as the velocity reference and the current velocity of the chaser are both known,

thus allowing to compute a derivative control action proportional to their difference evel:

D(k) = Kd evel(k) (4.6)

In this case, the transfer function is simply given by the constantKd, as in the proportional

control.

4.3 Integral action

The integral term produces a control action proportional to the accumulated error over

time. It can thus be expressed as:

I(t) = KI

∫ t

0

e(τ) dτ (4.7)

or, in discrete-time domain:

I(k) = I(k − 1) +KI e(k)∆t (4.8)
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The transfer functions in Laplace and Z domains are respectively given by:

HI(s) =
KI

s

HI(z) =
∆t

1− z−1
KI

(4.9)

The integral action brings an important advantage to the system, as it is responsible for

the cancellation of the steady state error at a step response.

The drawback of an integral action is the problem known as windup, which occurs

when the integral term accumulates a large error after a significant rise of the setpoint,

and this may lead to the instability of the control. One possible solution to this problem

is given by the anti-reset windup scheme as in Figure 4.1.

Figure 4.1: Block diagram of a PID controller with low-pass filter in the derivative term and

anti-reset windup scheme in the integral term.

4.4 Closed-loop stability

When designing a controller it is important to analyze the stability of the closed-loop

system and verify that the outputs meet the desired requirements.

For continuous-time systems, the stability is analyzed by the study of the poles of the

closed-loop transfer function, which are the eigenvalues of the transition matrix of the

closed-loop state space system [12]. If the real part of each pole is negative or null, then

the closed-loop system is asymptotically stable or marginally stable, respectively; if the
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real part of each pole is positive, then the system is unstable. For discrete-time systems,

the left side of the real plane is mapped into a unit circle, and therefore the closed-loop

poles need to lie inside this unit disk to guarantee stability to the system, as shown in

Figure 4.2.

The block diagram of the translational dynamics with with a PID control is shown in

Figure 4.3. Note that the PID block is made up of three PID controllers, one for each

axis. Since the PID controllers present a discrete-time formulation, a discretization of the

CW equations is necessary by means of a zero-order-hold (ZOH) block, with sampling

time Ts. The sensor block represented by H has been considered unitary for simplicity in

the closed-loop stability check.

Figure 4.2: Stability region for a continuous-time system on the left, and a discrete-time

system on the right.

Figure 4.3: Block diagram of a closed-loop system with discrete-time PID.
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Chapter 5

Rendezvous and docking scenario

definition

In order to create a simulation representative of a realistic scenario for RVD operations,

several conditions have been reproduced from real space missions realized in the last years

or planned for the near future. The base idea of the simulation is to consider a CubeSat

with controller based on MPC technique, and to simulate RVD maneuvers with a target

station.

The following descriptions constitute examples of realistic scenarios which the numer-

ical simulations refer to.

5.1 Case studies

5.1.1 Optical Communications and Sensors Demonstration Pro-

gram

A mission of relevant interest for RVD operations involving CubeSats was the NASA

Optical Communications and Sensors Demonstration (OCSD) program [13]. One of the

goals of the mission was to realize proximity operations between AeroCube-OCSD-B and

AeroCube-OCSD-C, two 1.5U CubeSats of 2.31 kg deployed from the ISS on December
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7, 2017, into a circular orbit at an altitude of 450 km. Both CubeSats were equipped

with GPS receivers and a three-axis attitude control system featuring two-axis sun sen-

sors, Earth horizon sensors, an Earth nadir sensor, three-axis magnetometers, three-axis

rate gyros, magnetic torque rods, reaction wheels, and star trackers, allowing a point-

ing accuracy better than 0.15°. A steam thruster was mounted on each satellite, which

could generate a force of approximately 3mN. The first objective of OCSD proximity

operations was to insert AeroCube-OCSD-B into a co-orbital corkscrew orbit about the

AeroCube-OCSD-C CubeSat with little risk of collision. This was achieved in May 2018,

reaching a minimum range of 151m.

5.1.2 Automated Transfer Vehicle

Another suitable example for RVD is the Automated Transfer Vehicle (ATV), the Euro-

pean space cargo ship operated from 2008 until 2015 to resupply the ISS. With its 4 main

engines, 28 RCS thrusters and a mass of 19 600 kg, the ATV was designed to transport up

to 6900 kg of cargo [1]. The main engines where capable of generating a thrust of 490N,

whereas the RCS thruster produced a level of thrust of 220N. The ATV used to dock

to the V-bar port on the Service Module of the ISS with a nominal contact velocity of

0.05÷ 0.10 m/s.

5.1.3 CubeSat Proximity Operations Demonstration

The CubeSat Proximity Operations Demonstration (CPOD) mission is devised to demon-

strate relative station keeping, precise rendezvous, proximity, and docking technologies

between two identical 3U CubeSats [14]. The two spacecraft, each with a mass of roughly

5.5 kg, will be deployed into orbit together, and after a series of check-out procedures

the proximity operations will begin. Some of the key technologies include miniaturized

advanced avionics, miniaturized relative navigation sensors, and a multi-thruster cold

propulsion system capable of supporting a total impulse of approximately 30m/s. The

ADCS subsystem can provide an attitude estimation better than 0.15° and a pointing
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control better than 0.18° (3σ), featuring star trackers, MEMS IMU, reaction wheels, GPS

receiver, sun sensors, magnetometers, and torque coils.

5.2 Chaser spacecraft

The spacecraft considered for the RVD simulations in this thesis is a 3U CubeSat. The

reasons behind this choice are motivated by the increasing number of Nanosatellites put

into orbit over the last years and the evolution of technology that will grant cutting-edge

computational solutions even for small spacecraft.

Figure 5.1: Chaser: 3U CubeSat.

The mass of the spacecraft is assumed to be m = 4.0 kg and equally distributed, and

the three principal body axes oriented as in Figure 5.1, allowing an easy calculation of

the moments of inertia in the body frame by the formulas:

Ix =
1

12
m

(
w2 + d2

)

Iy =
1

12
m

(
w2 + h2

)

Iz =
1

12
m

(
d2 + h2

)
(5.1)

where w, d, and h for a 3U CubeSat are 10, 10, and 30 cm, respectively. The off-diagonal

products of inertia Ixy, Ixz, and Iyz are null due to the symmetry of the spacecraft, so the

45



inertia tensor of the 3U CubeSat is:

JB = 10−3




6.67 0 0

0 33.3 0

0 0 33.3



kgm2

5.2.1 Propulsion system

Typical propulsion systems employed on small satellites consist of cold gas thrusters,

plasma thrusters and resistojets. Their authority is generally in the order of mN [15, 16],

therefore a thrust of Fmax = 50mN enacting a cold gas propulsion system was considered

for the chaser thrust system. Specifically, the parameters listed in Table 5.1 was deemed

adequate for this scenario:

Table 5.1: Propulsion system of the chaser.

PROPULSION SYSTEM

Maximum thrust 50mN

Specific Impulse Isp 50 s

Minimum Impulse Bit (MIB) 0.1mN s

The minimum impulse bit translates into a minimum time of opening of the propul-

sion system solenoid valve, which for a thrust of 50mN corresponds to 2ms. This delay

was taken into account in the simulations presented in the following chapters, assuring

that every time the controller demanded a solenoid valve opening time shorter than the

minimum value, the solenoid valve would remain shut and no force would be exerted.

The actuators of the spacecraft, besides, are assumed to work in Pulse-Width-Modulation

(PWM) mode. This means that the thrusters cannot vary their thrust magnitude, which

is equal to the maximum force they can produce. In order to produce an equivalent im-

pulse, a duty cycle has to be derived at every time step to determine the fraction of time

in which the thrusters have to be activated, as illustrated in Figure 5.2.
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Figure 5.2: Illustration of PWM and PWC modes in a time interval.

This operating mode of the solenoid valves was accounted for in the integration of the

dynamic equations.

In order to simulate real thrusters, a Gaussian percentage error of 10% (3σ) of the

maximum authority was considered in the simulations.

5.2.2 Attitude control system

As for the attitude actuators, a 3-axis reaction wheel assembly seemed to be appropriate.

The actuators selected are three BCT Micro Reaction Wheels, each one mounted along a

principal body axis. Their characteristics are summarized in Table 5.2

Table 5.2: Characteristics of the reaction wheels.

REACTION WHEEL

Maximum Torque 6mNm

Maximum Speed 6500 rpm

Moment of Inertia 2.2036× 10−5 kgm2

Maximum Momentum 15mNms

Regarding the torque generated by each reaction wheel, a Gaussian error of up to

10% of the commanded magnitude was added to the control action in order to simulate
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small imperfections and uncertainties. In addition, a minimum torque was considered,

under which the actuator does not respond. This value of 2.3× 10−4 mNm was chosen

considering a wheel speed resolution of 0.1 rpm and multiplying it by its moment of inertia.

As done for the thrusters, the modeling of ideal reaction wheels may be approximated

by adding a Gaussian error of 10% (3σ) of the commanded torque.

All parameters of the chaser are summarized in Table 5.3.

Table 5.3: Characteristics of the chaser.

CHASER SPACECRAFT

Spacecraft type CubeSat 3U

Dimensions 10 cm× 10 cm× 30 cm

Mass 4.0 kg

Ix 6.67× 10−3 kgm2

Iy 3.33× 10−2 kgm2

Iz 3.33× 10−2 kgm2

Thrust 50.0mN

Torque 6.0mNm

5.2.3 Measurements

The measurements generated by the on-board sensors have been modeled by adding ap-

propriate Gaussian errors to the plant outputs. Specifically, it has been assumed that

the on-board sensors can only measure relative position, as it is often the case, whilst the

relative velocity needs to be estimated employing a Kalman filter.

During the first corridor, from S3 to S4, the relative position is altered with a noisy

signals as in [17], which express the estimation accuracy achieved by the ATV during this

transfer. These values are provided in Table 5.4.
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Table 5.4: Chaser’s state at the docking point.

Estimation error (3σ)

Range [m] x [m] y [m] z [m]

−250÷−100 11.31 3.89 4.21

−100÷−20 1.45 0.59 0.59

From point S4 the relative position measurements are obtained using the rule of thumb

of considering 1% of the range [1], i.e. ∼ 10 cm. From there on, the accuracy is increased

linearly up to the docking point, where it has been chosen to adopt an accuracy of one

order of magnitude better than the maximum misalignment allowed by the docking mech-

anism (which is discussed later in Section 5.5), as suggested by Fehse in [1].

Concerning the relative velocity between the two spacecraft, according to [1] a value

of a few mm/s has been considered adequate for the velocity accuracy at docking, being

the optimal relative speed of 2 cm/s. The Kalman filters used to estimate the relative

velocity from the relative position measurements have therefore been tuned such that a

similar accuracy is obtained.

Relative position measurements can be obtained by Vision Based Navigation, which

was used by the ATV, with various retroreflectors positioned on the ISS that were illu-

minated by LEDs on the chaser, and observed by a camera. This method is described in

[18] showing that it is also a feasible solution for CubeSats.

Regarding attitude measurements, the rule of thumb of an attitude estimate of one

order of magnitude better than the pointing accuracy has been applied, similarly to [18].

Therefore we have assumed that an ADCS subsystem like the one of the CPOD mission

is adopted. Unlike translational velocity, the angular rate is simply estimated adding

such an uncertainty to the actual value, thereby avoiding the use of an Extended Kalman

Filter, guaranteeing a pointing accuracy of 0.15°.
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5.3 Target station

In order to reproduce a well known orbiting station, the ISS parameters have been con-

sidered for the target spacecraft. The station is in circular orbit at an altitude of 450 km,

with inclination of 51.6°. Other relevant parameters, are given by [19]:

• CD = 2.2;

• A = 130m2;

• m = 419 455 kg

where CD is the drag coefficient, A is the frontal area in the direction of motion, m is the

mass.

The docking port in consideration for our scope is the MIT Universal Docking Port

which is suitable for CubeSats [20], and considered also in [18]. Along with other typical

docking requirements provided by [1], it has been possible to derive a list of requirements

for our scenario, as shown in the following table:

Table 5.5: Requirements of the relative states of the chaser at docking.

Docking requirements

Lateral misalignment < 1 cm

Longitudinal velocity 1÷ 3 cm/s

Lateral velocity < 1 cm/s

Angular misalignment < 2 deg

Angular rate 0.1 deg/s

The nominal docking velocity is set to 2 cm/s. Besides, the coordinates of the docking

port are assumed to be known and placed at the origin of the LVLH frame, since the

target is a cooperative station.
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5.4 V-bar approach strategy

The V-bar approach has been used for docking of the ATV to the -V-bar port on the

Service Module of the ISS [17]. The sequence of maneuvers and operations of the ATV

are shown in Figure 5.3, which includes the far-rendezvous operations starting from the

aim point S0, located nominally 3000m below the target’s orbit and 30 km behind. After

the homing (from S1 to S2) and closing (from S2 to S3) phases, the ATV is positioned

at hold point S3, at a distance of 250 ÷ 500m from the target docking port and inside

the Approach Ellipsoid (AE). Finally, the final transfer begins, and the ATV follows a

straight-line inside an approach cone through the Keep-Out-Sphere (KOS) up to the dock-

ing port, with a stop at hold point S4 located 20m behind the target.

In this thesis it was considered a scenario in which a CubeSat follows the same oper-

ations of the ATV beginning from the hold point S3 and ending to the docking. Clearly,

some adjustments must be done between the two scenarios, as different kinds of spacecraft

imply different requirements.

Figure 5.3: V-bar approach of the ATV.
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5.5 Velocity reference

In order to achieve its objectives, the controller needs to be provided with a reference to

follow. For this type of scenario, two different speed profiles have been adopted for the

two phases of the transfer. Regarding the first phase, from initial point S3 to S4, the

along-track velocity profile is composed of an accelerating phase, a coasting phase, and a

decelerating phase. As for the second phase of the transfer, from S4 to docking port, a

similar profile is provided, with an additional final coasting phase at the docking velocity

(see Figure 5.4).

(a)

(b)

Figure 5.4: (a) Along-track speed reference from S3 to S4; (b) Along-track velocity reference

from S4 to docking.

The magnitude of the acceleration and deceleration has been selected so as to be

smaller than the maximum acceleration provided by the multi-thruster system. As for

the coasting velocity, a value of 10 cm/s has been deemed appropriate for the first phase.

No cross-track and out-of-plane velocities are required for this RVD maneuver, therefore

their speed profiles are zero for the whole simulation.

Concerning the transition from S4 to the target’s docking port, a re-scaled velocity
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profile has been generated, requiring a coasting velocity of 5 cm/s. In addition, at the

hold point S4, a waiting time of 500 s has been set.

5.6 Constraints

The advantage of MPC is its capability of handling constraints. However, too many con-

straints can lead to infeasibility in solving the optimization problem 3.3. For example,

if the controlled variables have to be maintained within certain values and some distur-

bances move them outside the constraints, a large control action may be required, but

since it is generally restricted by physical limits, the output variables would consequently

violate the constraints, leading to infeasibility of the QP problem.

This issue can be overcome by the distinction between hard and soft constraints. Hard

constraints represent physical limitations, such as thrust magnitude, which cannot be vi-

olated in the optimization problem; conversely, soft constraints allow to be violated for a

short period because they are not representative of physical limitations of the system, or

because their violation does not involve risks for the safety or functionality of the maneu-

ver. To include constraint softening, the optimization problem needs to be reformulated

with the use of a slack variable ε and its weight ρ in the constraints and the cost function

[21].

Constraints on the control variables

Since the controller demands control actions expressed in the LVLH reference frame re-

gardless of the spacecraft orientation, the needed acceleration may exceed the maximum

value that a single thruster can actually generate. Specifically, the constraint on the

maximum thrust acceleration is formulated as:

u2x,k + u2y,k + u2z,k ≤ u2max

where umax is the maximum acceleration that each thruster can provide. As this expression

is nonlinear and the standard MPC requires linear constraint inequalities, a conservative
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approach can be followed [22] and the constraints on the control actions become:

umax√
3

≤ ux,k ≤
umax√

3
umax√

3
≤ uy,k ≤

umax√
3

umax√
3

≤ uz,k ≤
umax√

3

(5.2)

which is suitable for the MPC formulation.

Position constraints

Position constraints are necessary to keep the spacecraft inside a space region during the

maneuvers. Similarly to the ATV final approach, the chaser needs to remain inside two

truncated cones with different semi-amplitude angles for the two phases. However, both

region would be described by nonlinear inequalities, which are not suitable for the MPC

formulation. In order to impose linear inequalities, a truncated pyramid is considered

instead of the cone. The semi-amplitude angle of the pyramid is set to 10° (less than

that for the ATV), for the first phase; as for the second phase, the pyramid is obtained

by shrinking linearly the maximum lateral misalignment allowed from point S4 to the

docking point. This is done considering a tolerance of ±10 cm at hold point S4, and of

±1 cm at the docking port (Figure 5.5).

Figure 5.5: Position constraints (not in scale).
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Velocity constraints

Velocity is constrained for safety reasons. Lateral velocity (i.e. ẏ and ż) is bounded

between±2 cm/s during the whole operation. As for the longitudinal direction the velocity

is required to be at most 10 cm/s during the first phase, and 5 cm/s during the second

phase.

5.7 Disturbances

In this section we present the environmental perturbations that have been considered in

the plant of the system. In our scenario, the main disturbances considered are differential

drag and relative J2 effects, since the spacecraft is in LEO. Other effects due to solar

radiation pressure, third-body actions, magnetic torques or gravity gradient torques have

been considered negligible.

5.7.1 Differential drag

Aerodynamics effects are particularly important in LEO orbits. Reid and Misra proposed

in [23] a linear model of differential drag for orbits with small eccentricity, expressed in

the Hill’s reference. After a change of coordinates, the drag perturbation model in the

LVLH frame assumes the form:

fdrag = −1

2

(
1

βC
− 1

βT

)
rn2σ̃2




1

0

0



− 1

2

1
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
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0 0 −2

0 0 0
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1
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ẏ
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
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(5.3)
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where r is the orbital radius of the target, n is the target orbit angular velocity, and σ̃1,

σ̃2 are dimensionless quantities defined as:

σ̃1 = 1− ωE

n
cos i

σ̃2 = 1− 2
ωE

n
cos i

ωE = 86 164 s

(5.4)

βC and βT represent the dimensionless ballistic coefficients of the chaser and target space-

craft respectively, given by:

β =

(
ρ
CDA

m
r

)−1

(5.5)

where the atmospheric density ρ is assumed to be constant over the whole orbit. In gen-

eral, the atmospheric density profile for circular orbits is not constant because of several

factors such as solar and geomagnetic activity levels, but these variations are quite small

and are here neglected.

When the ballistic coefficients of the chaser and target are very different, the differ-

ential drag could introduce some perturbation effects. At the target’s altitude, 450 km,

the atmospheric density is ρ = 1.184× 10−12 kg/m3, according to the US Standard Atmo-

sphere [24], and considering the target’s characteristics (see Section 5.3) the dimensionless

ballistic coefficient of the target is:

βT = 1.841× 108

whereas for a CubeSat 3U, assuming the frontal area Ac = 1× 10−2 m2, CD = 2.2, and

m = 4kg, Equation (5.5) yields:

βC = 2.248× 107

It follows that the ballistic coefficient of the target is only one order of magnitude greater

than that of the chaser, therefore not high perturbations will be expected.

5.7.2 J2 perturbation effects

The approximation of the Earth gravity field to the first harmonic introduces higher order

errors, which are attributable to the non-spherical and unequal distribution of the Earth

mass. The J2 perturbation effect is the most significant term among the approximation
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errors that causes modifications in the orbital parameters. Specifically, prograde LEO

orbits are subjected to a regression of the right ascension of ascending node (RAAN) and

a variation in the argument of perigee.

In [23] a linear-time-variant model for the J2 perturbation in Hill’s coordinate frame

is described. Multiplying the gradient of the J2 potential field by the relative position

vector, it is possible to calculate the linear relative J2 disturbances:

fJ2 = ∇J2(r)x (5.6)

where the gradient of the J2 potential field expressed in Hill’s coordinate frame is given

by:

∇J2(r, θ, i) =
6µJ2R

2
E

r5




(
1− 3 sin2 i sin2 θ

)
sin2 i sin 2θ sin 2i sin θ

sin2 i sin 2θ −1
4 − sin2 i

(
1
2 − 7

4 sin
2 θ

)
− (sin 2i cos θ) /4

sin 2i sin θ − (sin 2i cos θ) /4 −3
4 + sin2 i

(
1
2 + 5

4 sin
2 θ

)




(5.7)

This expression was added to the plant dynamics of the simulator. However, since it is

a LTV model, it cannot be included in the MPC formulation, and a proper LTI model

should be defined. The approach followed is to take the average value of the J2 gradient

matrix over one orbit, and consider it in the prediction model of the controller. For

circular orbits the result is as follows:

1

2π

∫ 2π

0

∇J2dθ = n2




4s 0 0

0 −s 0

0 0 −3s




(5.8)

where s is a parameter defined as:

s =
3

8
J2

(
RE

r

)2

(1 + 3 cos 2i) (5.9)

Inserting Equation (5.8) into (5.6) we obtain the LTI model to be added to the prediction

model of the MPC. Observe that the order of magnitude of the J2 relative acceleration is

between 10−7 and 10−9 m/s2, therefore the perturbation effects are very small.
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Chapter 6

Controllers tuning and preliminary

simulations results

6.1 Software simulator

Numerical simulations of autonomous rendezvous and docking maneuvers have been run

on a software simulator developed in Matlab. A former version of the software, capable

of simulating maneuvers along two translational axes and one rotational axis, has been

upgraded to deal with six-degree-of-freedom maneuvers. The software, which is based

on object-oriented programming, was conceived to test and simulate different types of

controllers in various scenarios with the aim of validating the optimal strategies.

The analysis of the behaviour of the physical system under examination supplies im-

portant information that can be used as the basis for making design decisions such as to

adjust the controller parameters in order to achieve better performances.
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6.2 State space formulation

The translational state of the system contains position and velocity of the chaser in the

orbital local frame. These variables are grouped to form the state vector x as following:

x = [x, y, z, ẋ, ẏ, ż]T (6.1)

The control actions are the translational accelerations in the three directions and are

grouped in the vector u:

u = [ux, uy, uz]
T (6.2)

Since the target’s orbit is circular, or near-circular, and the range between the chaser

and the target is relatively small compared to the target’s orbital radius, the Clohessy-

Wiltshire equations can be used to define the prediction model of the MCP controller.

Note that the reference system used for the simulation is the LVLH system, whereas the

system used for the CW equations in (2.9) is the Hill’s frame. A change in coordinates

needs to be done through a rotation matrix given by:

RHO =




0 0 −1

1 0 0

0 −1 0




(6.3)

describing a generic transformation from FO to FH. In order to transform the transition

matrix (2.9) in FO frame, the following two rotations are necessary:

AO = RT
HOAHRHO

It is possible to write the state space formulation of the translational motion as:

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t)
(6.4)

where:

Ac =




03×3 I3×3

0 0 0 0 0 2n

0 −n2 0 0 0 0

0 0 3n2 −2n2 0 0




, Bc =



03×3

I3×3


 (6.5)
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and Cc = I6×6, so that the measured variables coincide with the state vector. The sub-

script “c” indicates that the matrices of the model describe the evolution of the system in

continuous time. To apply the MPC it is necessary to discretize these matrices considering

a sampling time Ts, and this is done by using the function c2d of Matlab.

6.3 Validation of MPC

This section presents the tuning and some preliminary results of the translational control

with MPC. The goal is also to show the characteristics of this modern control tool in

terms of efficiency and reliability when applied to a RVD scenario. The scenario considers

the final approach of the CubeSat from the hold point S3 to the docking port, as described

in Section 5.2, along V-bar, with the initial conditions listed in Table 6.1.

Table 6.1: Initial conditions.

Initial conditions Value

x −250m

y −10m

z 20m

ẋ 0m/s

ẏ 0m/s

ż 0m/s

The attitude dynamics are decoupled from the translational dynamics in our case, and

its control is not object of discussion in this section.

Disturbances and measurement noises have been excluded for these preliminary sim-

ulations, but they are taken into account in the next simulations. Furthermore, the

predictive model of the MPC has been set identical to the dynamics equations of the

plant.

As for the thursters model, no uncertainties have been included, and the action mode
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is set to Piece-Wise-Constant, as it is supposed to be in the MPC formulation.

The MPC parameters are given in the Table 6.2.

Table 6.2: MPC parameters.

MPC PARAMETERS

Sample Time 1 s

Prediction Horizon 60

Control Horizon 15

Tuning weights for the optimization problem have been chosen with the aim of penaliz-

ing fuel consumption more than reference tracking. The corresponding weighing matrices

are:

Q = diag ( 10, 10, 10, 1, 1, 1 )

Ru = diag
(
103, 103, 103

)

R∆u = diag
(
10−10, 10−10, 10−10

)
(6.6)

where the first three entries of Q refer to the position errors and the last three entries

refer to the velocity errors. As for the other two matrices, their entries correspond to

each of the control variables. The choice of a very small weight on the rate of change of

the control actions means that the controller may allow for large variations of thrust, if

necessary.

Figures 6.1 and 6.2 display the trajectory of the chaser from the initial point up to

docking.
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Figure 6.1: Trajectory of the chaser with MPC in red; approach truncated pyramid in black;

docking point starred.

(a) (b)

(c) (d)

Figure 6.2: Actual trajectory in solid blue line and reference trajectory in green dashed line.

(a) In-plane relative position; (b) In-plane relative position from hold point S4 to docking; (c)

Out-of-plane relative position; (d) Out-of-plane relative position from hold point S4 to docking.
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The initial lateral errors along Z and Y are cancelled out as the spacecraft smoothly

approaches the axis of the approach corridor, until it reaches the hold point S4. After five

hundred seconds of waiting time, the spacecraft enters the second approach corridor and

reaches the docking port well within the allowed ranges. The state of the system in these

two points is summarized in Tables 6.3 and 6.4.

Table 6.3: Chaser’s state at hold point S4 (MPC).

S4 hold point

x y z

Position [m] −20.005 −0.000 −0.001

Velocity [m/s] 0.002 −0.000 0.000

Table 6.4: Chaser’s state at the docking point (MPC).

Docking point

x y z

Position [m] −0.002 −0.000 0.000

Velocity [m/s] 0.020 0.000 0.000

With regard to the relative velocity, the profile and reference of the chaser’s velocity

are shown in Figure 6.3.
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Figure 6.3: Relative velocity of the chaser with MPC in blue; reference speed in green; speed

constraints dashed in red.

As we can see, the along-track velocity, in blue, barely shows any difference from the

reference profile, in green, over the whole simulation. As for the out-of-plane and radial

directions, the spacecraft needs to accelerate along both directions in order to close the

gap originated by the initial conditions. It is important to note that these accelerations

stop when the limit of lateral velocity is reached, which is possible thanks to the velocity

constraints of the MPC. In this way, a smooth approach through the corridor is obtained,

along with saving of fuel.

Concerning fuel consumption, results are expressed in terms of delta-V calculated by

integration of the accelerations in the body frame provided by the thrusters over the whole

simulation. The control actions are shown in Figure 6.4. Note that, as the attitude is

nominal for the whole time, the LVLH frame and body frame coincide, and the magnitude

of thrust is quite low compared to the maximum limit, which is a consequence of a high

weight on the control actions weighing matrix.
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Figure 6.4: Commanded accelerations in blue (MPC). Constraints dashed in red.

Table 6.5: Use of delta-V in the entire maneuver with MPC (in body axes).

Delta V [m/s]

∆Vx 0.289533

∆Vy 0.000000

∆Vz 0.559854

∆Vtotal 0.849386

Summarizing, the MPC translational controller has proven to guarantee a good per-

formance for this ideal scenario.

6.4 Translational control with PID

This section presents the numerical results of a PID controller used for the translational

control of the spacecraft during the RDV maneuver from point S3 to the docking port.

As for the validation of the MPC controller, the attitude motion has been excluded in the
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simulation. The initial conditions are shown in Table 6.6, while the PID controller gains

are listed in Table 6.7.

Table 6.6: Initial conditions.

Initial conditions Value

x −250m

y −10m

z 20m

ẋ 0m/s

ẏ 0m/s

ż 0m/s

Table 6.7: PID gains for the translational motion.

Translational PID Gains

x y z

Kp 3× 10−2 3× 10−2 3× 10−2

Ki 2× 10−4 2× 10−4 2× 10−4

Kd 5 5 5

Kt 1× 10−4 1× 10−4 1× 10−4

β 1 1 1

γ 1 1 1

The choice of the gains has been made by trial-and-error verifying the stability of the

closed-loop system as described before. The discretization time is Ts = 1 s, as in the MPC

control. A small value of Kt does not introduce much non-linearity to the system, and as

long as the integral term does not require anti-reset windup action, the overall system is

once again linear. Therefore, the check on the stability by observation of the closed-loop

poles location is valid. Figure 6.5 displays the location of these poles.
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Figure 6.5: Poles location. All points are inside the unit circle, thus ensuring stability.

Figures 6.6 and 6.7 illustrate the trajectory of the chaser from the initial point to

the docking point. Hold point S4 and docking point are reached with the states given in

Tables 6.8 and 6.9.

Figure 6.6: Trajectory of the chaser with PID in red; approach truncated pyramid in black;

docking point starred.
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(a) (b)

(c) (d)

Figure 6.7: Actual trajectory in solid blue line and reference trajectory in green dashed line.

(a) In-plane relative position; (b) In-plane relative position from hold point S4 to docking; (c)

Out-of-plane relative position; (d) Out-of-plane relative position from hold point S4 to docking.

Table 6.8: Chaser’s state at hold point S4 (PID).

S4 hold point

x y z

Position [m] −20.003 −0.003 0.002

Velocity [m/s] 0.011 0.000 0.000

Table 6.9: Chaser’s state at the docking point (PID).

Docking point

x y z

Position [m] −0.005 0.000 0.002

Velocity [m/s] 0.020 0.000 −0.000
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Figure 6.8: Relative velocity of the chaser with PID in blue; reference speed in green; speed

constraints dashed in red.

Figure 6.8 shows the velocity profile of the chaser during the maneuver. It can be

observed that the along-track velocity profile is well followed by the chaser, while the

velocities along y and z axes violate the limits imposed by the mission (0.02m/s) in the

first phase. This inefficiency highlights one of the limitations of a classic PID controller

with respect to a modern MPC. Regarding the usage of thrusters, the delta-V required is

shown in Table 6.10. To summarize, the translational PID controller tested turns out to

perform efficiently, despite not being capable of handling all constrained required.

Figure 6.9: Commanded accelerations in blue (PID). Constraints dashed in red.
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Table 6.10: Use of delta-V in the entire maneuver with PID (in body axes).

Delta V [m/s]

∆Vx 0.363530

∆Vy 0.157266

∆Vz 0.820215

∆Vtotal 1.341011

6.5 MPC with disturbances

In Section 6.3 we showed the results of the translational MPC controller in absence of

environment disturbances and sensor noise. Now, we present numerical results of a simu-

lation which accounts for such factors. The same initial conditions of section 6.3 are used

in order to give a comparison between the ideal case and the realistic one.

Some modeling errors have been considered in the MPC formulation as well. Re-

garding the atmospheric model, the knowledge of the atmospheric density is not usually

known with high precision, therefore an uncertainty of at most ±10% of the actual density

(which is the same as in Section 5.7.1) has been added to the value used by the MPC

predictive model. Furthermore, an error in the orbit angular rate n of at most ±1% has

been considered.

With regard to the actuators, a Gaussian percentage error of 10% (3σ) of the maxi-

mum authority has been applied, as anticipated.

In the first test, only one set of parameters for the MPC was used for the whole RDV

maneuver. However, this configuration raised a problem in terms of performance, as high

weights on the controlled variables were necessary in the most critical parts of the trans-

fer, such as when reaching the point S4 and the docking port, but not in the initial phase,

when the spacecraft is far enough to be controlled with less effort. The result was an

intense use of actuators at the beginning, with consequent violation of the lateral velocity

constraint. For this reason, it has been chosen to use different parameters of the MPC at

various stages along the transfer, which are shown in Table 6.11 for completeness.
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Table 6.11: Weights of the MPC.

MPC weights

Range [m] Q R R∆u

−500÷−100 1.5 7.5e-1 7.5e-1 1.5 7.5e-1 7.5e-1 6e+2 6e+2 6e+2 1e+4 1e+4 1e+4

−100÷−50 1e+1 1e+1 1e+1 1.5 1.5 1.5 1.8e+3 1.8e+3 1.8e+3 1e+5 1e+5 1e+5

−50÷−30 1e+2 1e+2 1e+2 1.5 1.5 1.5 1.8e+3 1.8e+3 1.8e+3 1e+5 1e+5 1e+5

−30÷−25 5e+2 2.5e+2 2.5e+2 1.5 7.5 7.5 1.4e+3 1.4e+3 1.4e+3 1e+4 1e+4 1e+4

−25÷−20 3e+3 3e+4 3e+4 9 9e+1 9e+1 1.4e+3 1.4e+3 1.4e+3 1e+4 1e+4 1e+4

−20÷−15 1e+3 1e+3 1e+3 2e+1 2e+1 2e+1 3.6e+2 3.6e+2 3.6e+2 1e+3 1e+3 1e+3

−15÷−10 4.5e+4 4.5e+5 4.5e+5 2.5e+3 2.5e+4 2.5e+4 1e+3 1e+3 1e+3 1e+4 1e+4 1e+4

−10÷−5 5.4e+5 5.4e+6 5.4e+6 3e+4 3e+5 3e+5 5e+2 5e+2 5e+2 1e+3 1e+3 1e+3

−5÷−3 7.2e+5 7.2e+6 7.2e+6 4e+4 4e+5 4e+5 1.5e+2 1.5e+2 1.5e+2 1e+3 1e+3 1e+3

−3÷−1.5 9e+5 9e+6 9e+6 5e+4 5e+5 5e+5 1e+2 1e+2 1e+2 1e+3 1e+3 1e+3

−1.5÷−0.5 1.08e+6 1.08e+7 1.08e+7 6e+4 6e+5 6e+5 8e+1 8e+1 8e+1 1e+3 1e+3 1e+3

−0.5÷ 0 1.35e+6 1.35e+7 1.35e+7 7.5e+4 7.5e+5 7.5e+5 6e+1 6e+1 6e+1 1e+3 1e+3 1e+3

The following Figures 6.10 and 6.11 show the trajectory of the spacecraft.

Figure 6.10: Trajectory of the chaser with MPC in red; approach truncated pyramid in

black; docking point starred.
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(a) (b)

(c) (d)

Figure 6.11: Actual trajectory in solid blue line and reference trajectory in green dashed line.

(a) In-plane relative position; (b) In-plane relative position from hold point S4 to docking; (c)

Out-of-plane relative position; (d) Out-of-plane relative position from hold point S4 to docking.

In order not to exceed the transversal boundaries especially in the critical phases such

as at docking, it has been chosen to set an approach cone inside the MPC formulation

slightly tighter than that specified by the mission. This is a conservative approach that

helps improve the meeting of the requirements.

Besides, since the docking mechanism of the spacecraft is located 15 cm in front of the

center of mass, the docking occurs when the chaser is in position [−0.15, 0, 0].

Table 6.12: Chaser’s state at hold point S4 (MPC).

S4 hold point

x y z

Position [m] −20.008 −0.054 −0.002

Velocity [m/s] 0.014 0.005 0.005
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Table 6.13: Chaser’s state at docking (MPC).

Docking point

x y z

Position [m] −0.150 −0.002 0.001

Velocity [m/s] 0.020 −0.000 0.000

Figure 6.12: Relative velocity of the chaser with MPC and disturbances in blue; reference

speed in green; speed constraints dashed in red.

Comparing the results given in Tables 6.12 and 6.13, and Figure 6.12, with those of

Section 6.3 it is possible to observe some small deviations due to the external disturbances

and measurement noise. The lateral velocity limits are still respected, despite very small

violations which are allowed by the fact that speed constraints have been softened in the

MPC formulation.
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Figure 6.13: Position estimation error (MPC).

Figure 6.14: Velocity estimation errors (MPC).

Regarding measurements, it is quite visible from Figure 6.13 the increasing position

estimation with decreasing range, as explained in Section 5.2.3. As for the velocity esti-

mation, estimates are obtained by the built-in Kalman filter of the MPC Toolbox, which

parameters were determined by trial and error verifying that the estimation accuracy was

similar to that expected for this spacecraft. Particularly, two different Kalman filters are

used during the maneuvers, one from the initial point to S4, and one from S4 to dock-
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ing. The reason for this choice was due to the different measurements accuracy that the

spacecraft experience in the maneuver, and hence different parameters for the filter.

Figure 6.15: Commanded accelerations in blue (MPC). Constraints dashed in red.

The commanded accelerations are quite different from the previous case. Indeed,

starting from point S4 a more intense use of thrusters occurs, as the weights on position

and velocity errors are more pronounced. As a result, the delta-Vs are larger than the

ideal case.

Table 6.14: Use of delta-V in the entire maneuver with MPC and disturbances.

Delta-V [m/s]

∆Vx 1.563638

∆Vy 1.562791

∆Vz 1.887996

∆Vtotal 5.014426

This simulation proved that the MPC with the current parameters turns out to be a

performing controller for these initial conditions. In the following chapter, a Montecarlo

approach is used to test the MPC with many other possible initial conditions.
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6.6 PID with disturbances

Similarly to what was done with the MPC test in the presence of disturbances and noise,

the same approach has been carried out with the PID. The same initial conditions and

disturbances used in the RDV scenario with MPC are applied. Moreover, the derivative

term has been configured to avoiding the use of a low-pass filter since the relative velocity

is estimated by a Kalman Filter and thus already filtered.

Since the MPC in Section 6.5 could use different parameters along the corridor, the

PID has been featured with varying gains as well. In particular, the best results were

obtained with the parameters shown in Table 6.15 found by trial and error.

Table 6.15: PID gains for the translational motion.

Translational PID Gains

Range [m]
Kp KI Kd

x y z x y z x y z

−500÷−100 0.1 0.1 0.1 1e-4 1e-4 1e-4 3.15 1.46 1.46

−100÷−50 2e-3 7.5e-3 7.5e-3 1e-4 1e-4 1e-4 3.5 1.7 1.7

−50÷−20 3e-3 9e-3 9e-3 2e-4 2e-4 2e-4 5 5 5

−20÷ 0 3e-2 3e-2 3e-2 2e-4 2e-4 2e-4 5 5 5

The gain for the anti wind-up correction is set to Kt = 0.1 for all controllers, and so

are β = 1 and γ = 1.
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Figure 6.16: Trajectory.

(a) (b)

(c) (d)

Figure 6.17: Actual trajectory in solid blue line and reference trajectory in green dashed line.

(a) In-plane relative position; (b) In-plane relative position from hold point S4 to docking; (c)

Out-of-plane relative position; (d) Out-of-plane relative position from hold point S4 to docking.
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Table 6.16: Chaser’s state at arrival at hold point S4.

S4 hold point

x y z

Position [m] −20.010 −0.031 0.084

Velocity [m/s] 0.017 −0.001 0.000

Table 6.17: Chaser’s state at docking.

Docking point

x y z

Position [m] −0.147 −0.002 0.000

Velocity [m/s] 0.020 −0.000 −0.000

Figure 6.18: Relative velocity of the chaser with PID and disturbances in blue; reference

speed in green; speed constraints dashed in red.

Relative position and velocity show a trend similar to Section 6.4, despite some more

oscillations. However, the requirements are satisfied, so this controller is worth to be

better analyzed.
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The position estimates are obtained in the same way as the previous simulation,

whereas velocity is estimated by two Kalman filters, one for each approach cone, designed

as in Subsection 3.4.1.

Figure 6.19: Position estimation error (PID).

Figure 6.20: Velocity estimation errors (PID).
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Figure 6.21: Commanded accelerations in blue (PID). Constraints dashed in red.

Table 6.18: Use of delta-V in the entire maneuver with PID and disturbances.

Delta V [m/s]

∆Vx 3.317521

∆Vy 3.933014

∆Vz 4.284259

∆Vtotal 11.534794

With regard to the control actions, a higher use of thrusters is commanded by the

PID. This is due to the measurement noise and disturbances, and therefore the delta-Vs

result in larger values.

6.7 Attitude control

With regard to the spacecraft attitude control, the linear quadratic MPC cannot be

adopted as the equations of dynamics are nonlinear, therefore the choice of another type

of controller is necessary. The options were to use a nonlinear MPC controller or a PID.
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The former had been used at the beginning, but high computational effort and thereby

too long simulation times led to the choice of a PID control. Indeed, when the chaser

is far away from the target, the attitude control accuracy is not as demanding as in the

closer phase, so a complex controller such as a nonlinear MPC would be unnecessary.

In this section we will present the result of a PID controller implemented in the software

simulator, in order to control the attitude of the chaser during the transfer maneuvers.

As mentioned before, the ADCS subsystem is assumed to guarantee an attitude esti-

mation better than 0.15° and this is simulated by adding a Gaussian noise of 0.15° and

0.15 °/s (3σ) respectively to the actual values. The following results are obtained running

a simulation with the objective of bringing the spacecraft to the null nominal conditions.

The initial conditions are listed in Table 6.19, while the PID parameters are shown in

Table 6.20. From Figure 6.22 to Figure 6.28 the performances of the attitude controller

are illustrated.

Table 6.19: Initial conditions and setpoints for the attitude control.

Initial Setpoint

Roll (φ) 8 deg 0 deg

Pitch (θ) 5 deg 0 deg

Yaw (ψ) −7 deg 0 deg

ωx 0.5 deg/s 0 deg/s

ωy −0.8 deg/s 0 deg/s

ωz 0.3 deg/s 0 deg/s
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Table 6.20: Gains of the attitude PID controller.

Attitude PID Gains

x y z

Kp 8× 10−4 8× 10−4 8× 10−4

Ki 1× 10−5 1× 10−5 1× 10−5

Kd 3.5× 10−3 3.5× 10−3 3.5× 10−3

Kt 1× 10−4 1× 10−4 1× 10−4

N 90 90 90

β 1 1 1

γ 1 1 1

Figure 6.22: Roll, pitch, and yaw angles.
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Figure 6.23: Quaternion components of the attitude state.

Figure 6.24: Angular velocity of the chaser w.r.t. the LVLH frame.
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Figure 6.25: Torques generated by the reaction wheels, acting on the body. Remember that

the motor torque of each wheel is opposite in sign.

Figure 6.26: Speed of the reaction wheels w.r.t. the body frame.
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Figure 6.27: Error of Euler angles.

Figure 6.28: Error of angular rates.

The results prove that the PID controller chosen is effective and able to provide control

accuracy within the range established at the beginning. After only 200 s, which is a short

time compared to that of the approaching maneuver, the steady state values are reached

and are all within the limits of the docking requirements, as shown in Table 6.21.
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Table 6.21: Attitude states after 200 s.

Performances

Roll −3.03× 10−2 deg

Pitch 6.90× 10−2 deg

Yaw 4.65× 10−2 deg

ωx 2.55× 10−3 deg/s

ωy 5.92× 10−2 deg/s

ωz 4.54× 10−3 deg/s
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Chapter 7

Montecarlo simulations

7.1 Introduction

In this chapter, the analysis of a 1000-run Montecarlo simulation for the MPC and PID

controllers is presented. The objective of the simulations is to verify whether the space-

craft can effectively reach the goals of the rendezvous and docking mission, independent

of its initial conditions at hold point S3.

These initial states are randomly picked from a determined range of values that en-

compass all possible conditions expected to happen at the beginning of the final approach

corridor at hold point S3. ATV’s accuracy requirements at point S3, described in [25]

and [26], have been used as an estimate of possible ranges for the initial conditions. To

be more conservative, the maximum and minimum values for the initial translational and

rotational states have been enlarged, so as to consider worst-case scenarios and verify

robustness of the controller. The range of the initial conditions are described in Tables

7.1 and 7.2.
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Table 7.1: Initial translational states at S3.

Translational initial state range

State Min. Max.

x [m] −500 −250

y [m] −30 30

z [m] −30 30

ẋ [m/s] −0.20 0.20

ẏ [m/s] −0.20 0.20

ż [m/s] −0.20 0.20

Table 7.2: Initial attitude states at S3.

Rotational initial state range

State Min. Max.

Roll [deg] −30 30

Pitch [deg] −30 30

Yaw [deg] −30 30

ω̇x [deg/s] −10 10

ω̇y [deg/s] −10 10

ω̇z [deg/s] −10 10

It should be noted that the translational and rotational dynamics are decoupled in

our case. Therefore, the results from the attitude PID controller will be presented only

once, since the same attitude controller is used for both Montecarlo simulations.
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7.2 MPC Montecarlo results

The results shown from Figure 7.1 to Figure 7.9 are valid for an MPC designed with the

same characteristics of Section 6.5.

Figure 7.1: Trajectories of 1000 runs with MPC.

Figure 7.2: In-plane trajectory, from S3 to docking.
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Figure 7.3: In-plane trajectory in the second approach cone, from S4 to docking.

Figure 7.4: Zoom in the in-plane station keeping at point S4.
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Figure 7.5: Out-of-plane trajectory from S3 to docking.

Figure 7.6: Out-of-plane trajectory in the second approach cone, from S4 to docking.
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Figure 7.7: Zoom in the out-of-plane station keeping at point S4.

Figure 7.8: Docking performances with MPC.
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Figure 7.9: Histogram of docking performances with MPC.

All 1000 trajectories reach the final point at docking respecting the docking port

constraints. At hold point S4, a few trajectories violate the boundaries of the corridors,

as shown by Figures 7.4 and 7.7, but this infringement is of only a few centimeters, which

may be tolerated.

To quantify the performance of the MPC, it has been computed the average values

of the misalignments and velocity errors at docking, along with their standard deviation.

The histograms in the Figures 7.10 and 7.11 are also a good interpretations of these

results.
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Table 7.3: Lateral misalignments and velocity errors at docking with MPC.

Lateral misalignment [m]

Avg. 3σ Min. Max. Limit

y 3.68e-4 7.71e-3 -8.06e-3 7.15e-3 1e-2

z -7.69e-4 7.65e-3 -8.53e-3 7.39e-3 1e-2

Velocity error [m/s]

vx -1.51e-5 3.66e-4 -4.09e-4 3.74e-4 1e-2

vy -6.82e-6 3.45e-4 -3.74e-4 3.50e-4 1e-2

vz -2.51e-5 3.69e-4 -5.18e-4 3.32e-4 1e-2

(a) (b)

(c) (d)

Figure 7.10: Lateral misalignments (y, z) and lateral velocity errors at docking with MPC.

All samples are within the limits.
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Figure 7.11: Longitudinal velocity error at docking with MPC.

The usage of thrusters depends clearly from the initial position and velocity of the

vehicle, which span over long ranges especially for the longitudinal direction. Hence, it

is expected that some simulations required more use of fuel than others. To give an idea

of the delta-Vs required, Table 7.4 shows the average, minimum, and maximum delta-V

obtained from the Montecarlo simulation.

Table 7.4: Delta-V used with MPC (in body frame).

Delta-V [m/s]

Avg. Min. Max.

x 1.986 1.521 4.021

y 1.911 1.484 4.786

z 2.476 1.947 5.115

Total 6.373 5.059 13.921
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(a) (b)

(c) (d)

Figure 7.12: Delta-Vs with MPC (in body frame). (a) X-direction; (b) Y-direction; (c)

Z-direction; (d) Sum of each axis’ delta-V.

7.3 PID Montecarlo results

In this section we present the results of the Montecarlo simulation carried out with the

PID control, as designed in Section 6.6. The results are illustrated from Figures 7.13 to

7.21.
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Figure 7.13: Trajectories of 1000 runs with PID.

Figure 7.14: In-plane trajectory, from S3 to docking.
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Figure 7.15: In-plane trajectory in the second approach cone, from S4 to docking.

Figure 7.16: Zoom in the in-plane station keeping at point S4.
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Figure 7.17: Out-of-plane trajectory from S3 to docking.

Figure 7.18: Out-of-plane trajectory in the second approach cone, from S4 to docking.
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Figure 7.19: Zoom in the out-of-plane station keeping at point S4.

Figure 7.20: Docking performances with PID.
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Figure 7.21: Histogram of docking performances with PID.

Unlike the previous simulation, this controller seems not to perform as well. In Figures

7.15 and 7.18 it is evident that the chaser violates the constraints of the second approach

cone in several instances, and so happens during the station-keeping at point S4. More-

over, high oscillations are present in the final part of the approach.

As a result, not all the trajectories reach the docking point within the limits, as de-

picted in Figures 7.20 and 7.21.

Table 7.5: Lateral misalignments and velocity errors at docking with PID.

Lateral misalignment [m]

Avg. 3σ Min. Max. Limit

y -3.48e-4 7.05e-3 -1.96e-2 1.36e-2 1e-2

z 3.26e-4 6.72e-3 -1.16e-2 1.36e-2 1e-2

Velocity error [m/s]

vx -6.04e-5 6.97e-4 -8.55e-4 7.87e-4 1e-2

vy -1.83e-7 8.13e-5 -1.60e-4 1.17e-4 1e-2

vz -8.56e-6 1.10e-4 -1.46e-4 1.18e-4 1e-2
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(a) (b)

(c) (d)

Figure 7.22: Lateral misalignments (y, z) and lateral velocity errors at docking with PID.

Not all samples respect the limits.

Figure 7.23: Longitudinal velocity error at docking with PID.

Concerning relative velocity, high accuracy is nevertheless reached at the docking

point, but the same cannot be said for the initial approach, when the velocity constraints
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cannot be respected by this kind of controller.

The delta-Vs are higher than in the MPC case, as shown in the Table 7.6 and Figure

7.24.

Table 7.6: Delta-V used with PID (in body frame).

Delta-V [m/s]

Avg. Min. Max.

x 4.781 2.866 6.770

y 6.610 3.596 13.137

z 7.060 3.885 12.937

Total 18.451 11.108 31.056

(a) (b)

(c) (d)

Figure 7.24: Delta-Vs with PID (in body frame). (a) X-direction; (b) Y-direction; (c)

Z-direction; (d) Sum of each axis’ delta-V.
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Figure 7.25 shows a comparison of the total delta-V histograms between MPC and

PID.

Figure 7.25: Comparison of the total delta-V distributions in the Montecarlo simulations for

the MPC (in blue) and the PID (in red).

The PID control is less performing than the MPC and is not suitable for a RDV

scenario. Indeed, during the tuning of the PID it has been noticed that the control

actions were very high and brought the thrusters to saturation many times during the

simulations. Trying to decrease the PID gains, not good results are obtained as well,

because a less use of thrusters produced divergence of the simulation.

7.4 Attitude controller Montecarlo results

The attitude controller of Section 6.7 is well designed since all setpoints of the simulations

are reached long before the arrival at the target point, and the usage of actuators is always

within the manufacturing limits. Figures 7.26, 7.27 and 7.28 show the performances of

the attitude controller and the torques applied.
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Figure 7.26: Roll, pitch, and yaw of the chaser.

Figure 7.27: Quaternions components of the chaser’s attitude.
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Figure 7.28: Torque generated by the reaction wheels on the spacecraft.

Quantitatively, in Table 7.7 and Figure 7.29 the angular misalignemnts and rate errors

with respect to the docking constraints are shown.

Table 7.7: Attitude misalignments and rate errors at docking.

Angular misalignment [deg]

Avg. 3σ Min. Max. Limit

Roll 4.68e-4 1.61e-1 -1.67e-1 1.81e-1 2.0

Pitch -1.20e-3 1.23e-1 -1.26e-1 1.38e-1 2.0

Yaw -4.68e-3 1.53e-1 -1.58e-1 1.52e-1 2.0

Angular rate error [deg/s]

ωx 4.86e-6 4.09e-2 -4.2e-2 5.1e-2 0.1

ωy -2.16e-6 1.84e-2 -3.74e-4 4.14e-4 0.1

ωz 5.56e-6 1.96e-2 -1.9e-2 2.0e-2 0.1
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(a) (b)

(c) (d)

(e) (f)

Figure 7.29: Angular misalignments ( (a), (c), (e) ) and angular rate errors ( (b), (d), (f) ) at

docking. All samples are within the limits.
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Table 7.8: Average, minimum, and maximum value of the maximum momenta accumulated

by the reaction wheels.

Reaction wheels max. momentum [mNm s]

Avg. Min. Max. Limit

x 3.153 0.098 7.088 0.02

y 4.311 0.178 11.117 0.02

z 4.243 0.242 10.985 0.02

(a) (b)

(c)

Figure 7.30: Maximum momenta accumulated by the reaction wheels. (a) X-axis; (b) Y-axis;

(c) Z-axis. All samples are within the limit for this kind of RW.
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Chapter 8

Conclusions

The aim of this thesis is to show the usage and the performances of Model Predictive

Control strategies in carrying out autonomous maneuvers of rendezvous and docking be-

tween a CubeSat and an orbiting station in circular orbit along V-bar, emphasizing also

its advantages and better performances with respect to a classical PID controller. Model

Predictive Control is a modern control strategy that is gaining popularity thanks to its

advantages over classical controllers for its predictive nature and optimal control. During

the work, several numerical simulations have been performed to validate the proposed

MPC controller.

In the first part of the work, the mathematical models of the relative dynamics be-

tween the chaser and target spacecraft have been investigated. The translational dynamics

model, in particular, is used by the MPC as predictive model of the system. After a thor-

ough understanding of the operating principle of the two types of controller, they have

been implemented in the software.

The software simulator has been developed in Matlab to emulate the 6-degree-of-

freedom relative motion between the two spacecraft, taking into account some external

perturbations, such as differential drag and J2, measurement noise and modeling errors,

and with the possibility to select the kind of controller to be employed. Some preliminary

tests have been carried out to tune the controllers efficiently in terms of trajectory, fuel

consumption (delta-Vs), and successful docking.

After a proper tuning of both MPC and PID parameters, a 1000-run Montecarlo sim-
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ulation for both controllers has been carried out. The analysis of the results showed that

the MPC is more performing than the PID controller in the scenario investigated. Regard-

ing the approach trajectory, the MPC results guaranteed good stability and robustness,

whereas the PID control proved not to be suitable for this scenario, since in various Mon-

tecarlo runs it was unable to fulfill the approach trajectory requirements. Moreover, the

MPC control could well respect the lateral velocity limits of 2 cm/s especially in the initial

approach, unlike the PID control. In terms of delta-Vs, the predictive and optimal control

nature of the MPC proved to require less actuation of thrusters, with an average use of

6.37m/s against 18.45m/s required for the PID control. As for the docking arrival, all

MPC simulations were capable of reaching the target within the constraint of 1 cm for

lateral misalignment, unlike the PID simulations, in which the docking requirements were

not always satisfied.

The work carried out in this thesis has proven that MPC strategies are a valid option

to perform rendezvous and docking satisfying all the constraints imposed by the approach

corridor for safety reasons and those at the docking point for the docking mechanism to

properly work. A possible future development on this topic could be to embed an MPC

controller on the on-board computer of a ground simulator in laboratory and perform

testing of docking maneuvers.
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