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Abstract
Index tracking is a well-known passive portfolio management strategy that aims to replicate
the performance, the holdings and the behavior of a designated index. In this dissertation, we
show how, by applying a `q-norm regularization to the index tracking optimization problem, it
is possible to closely replicate the performances of the benchmark and concurrently promote
portfolio sparsity. This permits to reduce transaction costs and avoid illiquid positions using
only a small fraction of the index constituents. The empirical analysis on real-world financial
data, performed considering the Standard and Poor’s 100 Global Index, allows to highlight the
validity of the approach both in terms of low transaction costs, but also and above all in terms
of tracking accuracy.

KEY WORDS: Sparse Index Tracking, `q-norm regularization, Passive portfolio management
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Introduction

Introduction

Since the classical mean-variance model was introduced by Hanry Markowitz in 1952, the asset
allocation problem receives considerable interest both from practitioners and academics. This
topic has been widely studied in the financial literature not only in its classical formulation, but
more recently it has been extended and adapted in order to reach other alternative goals as, for
example, establishing an optimal portfolio allocation in order to replicate the performances of a
benchmark index, so-called "Index tracking".

Index tracking can be defined as a type of passive management strategy which consists in
designing a portfolio (tracking portfolio or index fund) that replicates the performance and the
behavior of a broad market index. The popularity of index funds, as mentioned in Chavez-
Bedoya and Bridge (2014), relies on both theoretical and empirical aspects. If the market is
supposed to follow the Efficient Market Hypothesis (EMH), stock prices, at any time, reflect
all the available information about securities. In this way, theoretically, neither technical nor
fundamental analysis can allow active portfolios to produce excess returns with respect to the
market. For instance, since the market portfolio captures the efficiency of the market through
diversification, it is a reasonable strategy to invest in an index fund. Moreover, many empirical
studies have shown how, on average, active portfolio managers do not outperform the major
indexes: active management generally incurs in costly research activities and compensation to
the fund managers that might be avoided by relying on an index tracking strategy.

In recent years, two main ways to achieve this objective have been developed: full replication
and partial replication (Strub & Baumann, 2018). The full replication strategy offers the most
intuitive and straightforward solution to the weights selection problem. Indeed, by using this
method the initial wealth is invested in all index constituents in the exact proportions as they
appear in the index composition. In this way, the constructed portfolio perfectly reflects the
trend of the index, having the exact same returns over time. Even if this is the strategy that more
than any other minimize the deviation (tracking error) with respect to the benchmark; however,
when an index with a large number of securities is taken into consideration, transaction costs
dramatically increase and liquidity problems arise if some of the assets to be included cannot
be easily bought in the market (Beasley & Meade, 2003).

On the other hand, in the partial replication strategy, also called "sparse index tracking",
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Introduction

instead of creating a tracking portfolio containing the same number of securities included in the
benchmark, a portfolio with a lower number of assets is constructed. The wealth is allocated
only on the securities that provide the most representative sample of the index based on corre-
lations, exposure and risks. In this way, the tracking error will increase on one side (imperfect
tracking), but on the other transaction costs are reduced and illiquid positions are avoided.

Usually, the sparse index tracking problem is formulated simply imposing a cardinality con-
straint to restrict the number of assets (Fastrich, Paterlini, & Winker, 2014), so that it is possible
to retrieve a tracking portfolio selecting an optimal subset of benchmark constituents. However,
recently, statistical regularization methods have found strong application in the mean-variance
portfolio settings (Brodie, Daubechies, De Mol, Giannone, & Loris, 2009; DeMiguel & Gar-
lappi, 2009) in order to promote the construction of sparse portfolios with good out-of-sample
properties and restricted turnover.

The aforementioned approaches rely on imposing bounds on the `2-norm or on the `1-
norm of the vector of the portfolio weights as suggested by the Ridge regression (Hoerl and
Kennard, 1970) and the LASSO (Tibshirani, 1996) approach, respectively. Empirical results
in a mean-variance framework support the use of the LASSO method when short selling is
allowed. However, the latter results to be unable in promoting sparsity when the budget and the
no short-selling constraint are imposed (typical in index tracking), since the 1-norm of the asset
weights will have a constant value of one.

One valid alternative could be to consider a constraint on the q-norm with 0 < q < 1. The
lower the upper bound on the `q-norm is, the sparser and less diversified (with larger weights)
the portfolios will result. Indeed, in the implementation of the `q-norm constraint, the latter
should be considered as a measure of diversity of the portfolio. When the no-short selling lim-
itation is imposed, this measure has maximum value for the equally weighted portfolio and
minimum value for a portfolio totally invested in a single asset (Fernholz, Garvy, & Hannon,
1998). Therefore, by imposing an upper bound on the q-norm, we might be able to identify the
tracking portfolio with the desirable maximum number of assets, but some difficulties might
be preliminarily addressed. Because of the presence of a non-convex constraint, the problem is
very challenging from an optimization point of view (NP-hard).

In this dissertation, starting from the seminal contribution of Fan (2012) that recast the risk
minimization problem as a regression model, we propose a sparse index tracking strategy that
allows to minimize a given tracking error measure, namely the TEV, by imposing a `q-norm
constraint on the portfolio weights. This strategy allows to determine in one single step the num-
ber of active positions and their optimal weights. Moreover, considering the S&P 100 Global,
we highlight the validity of the approach in providing portfolio sparsity, reducing transaction
costs and guaranteeing high tracking accuracy with respect to the main index.

The remainder of the paper is organized as follows. In Chapter 1, we present an overview

2



Introduction

of the Markowitz Portfolio Theory deepening in its functioning, analytical formulation and
some issues arising from its implementation. In Chapter 2, we describe the use of penalized
regression models (Ridge, Lasso, Elastic Net and `q-norm) as a remedy for the error estimation
and variables selection problems. In Chapter 3, we introduce the general concepts of passive
portfolio management and index tracking, focusing on the benefits that the implementation of
a penalized regression in this particular context might produce. In Chapter 4, we present the
experimental set-up for implementation of the empirical analysis. In Chapter 5, we present the
empirical results for the S&P 100 Global considering different types of constraints.

3





Chapter 1. The Modern Portfolio Theory

Chapter 1

The Modern Portfolio Theory

In this Chapter, a brief introduction and overview of the Markowitz Portfolio Theory are going
to be provided; underlying its functioning, analytical formulation, but also some problematics
arising from its implementation.

1.1 Mean-Variance analysis

In 1952 Hanry Markowitz, professor of finance the University of California, published an article
in "The Journal of Finance", titled "Portfolio Selection", that would have introduced probably
the most influential theory in the practice of portfolio management. This theory, better known
as Modern Portfolio Theory (MPT) or Markowitz Mean-Variance Model (MV), has been widely
used, from its development, as a framework for optimal portfolio selection in active asset allo-
cation.

This classical model has the aim to determine, analyze and evaluate the optimal investment
decision of a rational agent1, willing to allocate his wealth across N financial assets under a
basic assumption: return distribution can be completely characterized by its first two moments.
Therefore, the model seeks a portfolio weight vector which allows obtaining the highest ex-
pected return at a given level of portfolio risk, defined as the variance of the portfolio return.
Similarly, for a given level of expected return, the investor would choose the portfolio with the
lowest risk. In other words, the MV model characterizes a series of efficient portfolios (MV
Efficient), that minimize the portfolio risk for each level of portfolio return, ruling out all the
others with higher volatility.

Suppose an investor desires to allocate his wealth in a portfolio that contains N assets, having

• r = (r1, ...,rN) the vector of asset returns where ri is the return of ith asset

1In economics, game theory, decision theory, a rational agent is an agent that has clear preferences and always
chooses to perform the action with the optimal expected outcome for itself from among all feasible actions.
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1.1. Mean-Variance analysis

• w = (w1, ...,wN) the vector of weights of portfolio where wi, is the weight of ith asset

• µ(w) = E[rw] the vector of the expected returns of assets

The portfolio expected return µp can be defined as the weighted average of its individual asset
expected returns:

µp =
N

∑
i=1

µiwi = w′µ (1.1)

and the portfolio variance results to be:

σ
2(w) = E[(r(w)−µ(w))(r(w)−µ(w))′]

= E[(w′r−w′µ)(w′r−w′µ)′]

= E[(w′(r−µ)(r−µ)w′]

= w′E[(r−µ)(r−µ)]w′

= w′Σw .

(1.2)

Σ represents a N-by-N positive semi-definite matrix containing variance and covariance of in-
dividual assets,

Σ =


σ(1,1) · · · σ(1,N)

... . . . ...
σ(N,1) · · · σ(N,N)



with σii being the variance on the return of asset i, and σ i j being the covariance between the
returns of asset i and j. Equation (1.2) just represents the objective function that has to be
minimized in order to obtain the set of portfolios with the minimum level of risk for given
levels of expected returns.

In minimizing this function two important constraints must hold. First, as already men-
tioned, the expected return has to be fixed and given. On the other hand, the admissibility of
the portfolio must be guaranteed; meaning that it is not possible to invest more or less than
the available total wealth (Budget Constraint). These two constraints could be easily expressed
mathematically as:

w′µ = µp and w′1N = 1

6



Chapter 1. The Modern Portfolio Theory

and the MV optimization problem, can at this point be defined as follow2:

min
w

w′Σw

s.t. w′µ = µp

w′1N = 1 .

(1.3)

After some mathematical steps, shown in Appendix A, Equation 1.3 is solved and the expression
for the so-called “Efficient frontier” is obtained:

σ
2 =

1
ac−b2 (cµ

2
p−2bµp +a) (1.4)

The Efficient frontier, introduced again for the first time by Markovitz, is defined as the set
of all efficient portfolios. Any rational investor, using mean-variance analysis, would choose
a portfolio on the efficient frontier that suits its risk preference (Markowitz, 1952). For any
level of risk/return, the corresponding point on the efficient frontier denotes the portfolio which
has the maximum return at specified risk, or minimum volatility at given expected return. The
Efficient frontier is shaped in the plane (µp,σ

2
p) as a parabola, but following standard practices,

it is usually represented the space (σ2
p ,µp) by the portion of the right branch of the hyperbola

lying above the vertex, as shown in Figure 1.1.
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Figure 1.1: The Markovitz efficient frontier3.

The area below and to the right of efficient frontier represents the feasible area including

21N is an N-dimensional vector of ones.
3The Figure represents the no short-selling MV efficient frontier constructed taking, as investment universe, 30

random assets of the S&P 500 picked.
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1.2. Mean-Variance approach instability

all portfolios that can be constructed yet not efficient, while portfolios above and to the left are
impossible by construction.

Even if the MV model acts as a powerful tool to transform the views of the portfolio manager
into investment decisions, it has suffered during the years a lot of criticism from both academics
and practitioners.

1.2 Mean-Variance approach instability

The first bundle of criticism moved against the MV approach refers to the strong assumptions
on which it relies, but that do not properly represent the reality. In particular, asset returns
are supposed to follow a Normal distribution. In reality, instead, empirical evidence proves
that asset returns follow a leptokurtic distribution or heavy-tailed distribution (Sheikh & Qiao,
2009)4. In this way, in order to describe the distribution of assets returns, is not enough to know
their means and the variances.

Furthermore, Markowitz’s theory assumes that investors are rational and avoid risk when
possible, that there are not large enough investors to influence market prices, and that investors
have unlimited access in borrowing and lending money at the risk-free interest rate. In reality,
though, many professional investors and academics have observed that:

• investors habitually fail to consider and correctly interpret all the relevant information
that might drive their investment decisions;

• institutional barriers prevent them from acting on certain information;

• even with all the relevant information at disposal, they persist in making irrational choices.

Another clue point that has been largely criticized by academics (Michaud, 1989; Jorion, 1992;
Broadie, 1993; Ledoit & Wolf, 2003) or more recently (DeMiguel, Martin-Utrera, & Nogales,
2013), is that the estimation procedure for the input parameters of the optimization program
necessarily introduces sources of estimation error and instability in the optimal solution. On
this topic Dickinson (1974), Jobson and Korkie (1980), and Frost and Savarino (1988) already
provided strong empirical evidence that testifies the unreliability of the estimates of expected
returns and variances.

For this reasons, all investors involved into the Mean-Variance approach need to carefully
evaluate not only the market risk caused by fluctuations in macroeconomic factors but also the
estimation risk depending both on the allocation method used and on the number of parameters
taken into consideration. On the whole, it has been proved that the largest source of estimation

4More information available on: htt ps : //am. jpmorgan.com/blobcontent/1383169198442/83456/11_438.pd f
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Chapter 1. The Modern Portfolio Theory

error comes from the estimation of expected returns, while the estimation of covariance is more
stable and causes fewer concerns in term of accuracy (Merton, 1980).

In order to clarify which is the impact of a small perturbation of input parameters on the
mean-variance portfolio, the following example is proposed.

Example 1

Consider, for simplicity, an investment universe of four assets. The expected returns, randomly
chosen, are µ1 = 4%, µ2 = 5%, µ3 = 6%, µ4 = 7%, the variances of the assets are equal to
σ2

1 = 13%, σ2
2 = 15%, σ2

3 = 16%, σ2
4 = 17%, and suppose that the correlations between them

are ρi, j = 60% (constant for all the assets). Using these input parameters, the unconstrained
Mean-Variance problem is solved (Appendix C.1) and the following optimal portfolio weights
are retrieved5:

w1 =−12.86%; w2 = 12.83%; w3 = 38.61%; w4 = 62.12%

Now, in order to show the sensitivity of the optimal solution with respect to a small perturbation
in the input parameters, the same problem is solved by including, one at the time, variations
(increase) of 1% in the values of expected returns. The variation of weights, with respect to the
starting Max Sharpe portfolio, is at this point calculated.

Table 1.1 clearly shows how, even a small change in the estimation of asset expected re-
turns, induces a dramatic change in the portfolio weights, that, however, is not accompanied
by an equal variation of portfolio returns. In fact, despite the changes in portfolio weights, the
expected performance of the portfolio remains almost stable.

∆w1 ∆w2 ∆w3 ∆w4 ∆wTotal ∆Port.Ret

Case 1 -231% -68% -26% -19% 343% 7%
Case 2 54% 207% -22% -15% 298% 2%
Case 3 54% -60% 59% -14% 187% 11%
Case 4 53% -58% 20% 35% 165% 19%

Table 1.1: Sensitivity of portfolio Weights to perturbation in asset expected returns6.

5The values are the ones referred to the Max Sharpe portfolio defined as the portfolio, on the efficient frontier,
settled at the point in which th line drawn from the point [0, risk-free rate] is tangent to the efficient frontier.

6The first column represents the different iteration in which time by time the return of one assets is modified
by 1%. For example in "Case 3" the return of the third asset is increased by 1% and so on.
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1.2. Mean-Variance approach instability

At this point, in order to investigate which is the sensibility of the same portfolio to a pertur-
bation of the variance of assets, a similar analysis is conducted, considering this time variations
(increase) of 1% in the assets volatility (Table 1.2).

∆w1 ∆w2 ∆w3 ∆w4 ∆wTotal

Case 1 31% 10% 3% 2% 47%
Case 2 -9% -37% 4% 3% 52%
Case 3 -9% 12% -13% 4% 38%
Case 4 -9% 14% 6% -8% 37%

Table 1.2: Sensitivity of portfolio weights to perturbation in asset variances.

The results, reported in Table 1.1 and Table 1.2, confirm on one hand what has been already
obtained by Merton: the covariance estimation is more stable and causes fewer problems in term
of portfolio weights variation. On the other side, they prove how the stability of the allocation
is actually a real problem, justifying in some sense the hypothesis, proposed by Michaud, that
Mean-Variance maximization is, indeed, an "error maximization" model:

“MV optimization significantly overweights (underweights) those securities that

have large (small) estimated returns, negative (positive) correlations and small

(large) variances. These securities are, of course, the ones most likely to have large

estimation errors” (Michaud, 1989, pp. 33).

Exploiting the former evidence, that the estimation of input returns has a much greater impact
on the variation of portfolio weights (Figure 1.2), expertises came up with a simple but clever
methodology to reduce the estimation risk, consisting in completely avoid the estimation of
expected returns.

Figure 1.2: Sensibility of portfolio weights to variation in inputs estimation.
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Chapter 1. The Modern Portfolio Theory

1.3 GMV Portfolio as a solution for the estimation errors
problem

Expected stock returns are hard to estimate and lead to estimation errors that might result in
the selection of non-optimal portfolios. In fact, after estimating the input parameters, the op-
timization is performed as if these quantities were perfectly certain, without considering that
estimation errors are introduced into the allocation process.

A quite large group of researchers have suggested to neglect the estimation of expected
returns, by relying only on the covariance structure and assuming that all stocks have equal
expected returns (Chan, Karceski, & Lakonishok, 1999; Jagannathan & Ma, 2003; Ledoit &
Wolf, 2003; DeMiguel & Nogales, 2009; Fan et al., 2012; Fernandes, Rocha, & Souza, 2012;
Behr, Guettler, & Truebenbach, 2012). Under this assumption, all the assets differ only in term
of their risk and, therefore, the only possible efficient portfolio is the one having the smallest
risk: the so-called global minimum variance portfolio. The global minimum variance portfolio
(GMV) is the only portfolio, located on the efficient frontier, that does not depend on any as-
sumptions about expected returns, but its composition just depends on the covariance matrix of
the assets. Graphically the GMV corresponds to the portfolio on the efficient frontier with the
lowest volatility and, thus, is located at the vertex of the hyperbola as shown in Figure 1.3:
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Figure 1.3: Markovitz efficient frontier with GMV portfolio.

Since the covariance matrix can be estimated much more precisely, compared to the ex-
pected returns, the estimation risk of the investor is expected to be strongly reduced. The GMV
portfolio can be calculated by minimizing the portfolio variance, this time considering only the
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"Budget Constraint". The optimization problem in this case becomes:

min
w

w′Σw

s.t. w′1N = 1
(1.5)

and its solution end to be

wGMV =
Σ−11N

1′NΣ−11N
(1.6)

It is important to notice that the choice of using the GMV portfolio is not a limiting one.
Past literature has already shown how this portfolio is characterized by an out-of-sample Sharpe
ratio7 which is as good as that of other efficient portfolios (Ingersoll, 1987; Jorion, 1985).

Despite the use of the GMV portfolio is widely spread as a remedy for the estimation error
problem, in reality, it is still not able to sufficiently reduce the former issue (Chan et al., 1999;
Jagannathan & Ma, 2003; Ledoit & Wolf, 2003).

1.4 Other solutions for the estimation errors problem

Although the introduction of the GMV portfolio had represented a first step in solving the
problem of estimation errors, however, many academics and practitioners continued to look for
other more sophisticated and more effective solutions.

Some of them consist in reducing the estimation errors of the input parameters by using
econometric methods. For instance, Michaud (1989) propose the uses of the so-called "Resam-

pling approach", that consists in averaging many realizations of optimized MV solutions, with
the aim to improve out-of-sample performance thanks to statistical diversification. Unfortu-
nately, this procedure has no economic justification on its behind and the Resampled efficient
portfolio is not mean-variance efficient anymore, by definition. Alongside, Black and Litter-
man propose to overcome the problem of unintuitive, highly-concentrated and input-sensitive
portfolios, using the Black-Litterman asset allocation model (Black & Litterman, 1992). This
equilibrium model8 uses a Bayesian approach to combine the subjective views of investors, re-
garding the expected returns, with the market equilibrium vector of expected return; forming a
new, mixed estimate of expected returns.

7It represent a key portfolio performance measure. It is defined as the ratio between the portfolio return and its
standard deviation.

8Equilibrium ,according to Litterman ("Modern Investment Management- An Equilibrium Approach", Litter-
man et.al.2003), is an idealized state in which supply equals demand. The market is not assumed to be in equilib-
rium, but equilibrium is viewed as a "center of gravity": the market deviates from this state, but there are forces
pushing it towards the equilibrium.
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More recently, instead of using econometric methods, some other approaches aimed to di-
rectly shrink the portfolio weights using weight bounds, penalization of the objective function
or regularization of input parameters. Jagannathan and Ma (2003) have shown that imposing
constraints on the mean-variance optimization can be interpreted as a modification of the co-
variance matrix. In particular, lower bounds (upper bounds) decrease (increase) asset return
volatilities. Constraints on weights reduce the degree of freedom of the optimization and the
allocation is forced to remain in certain intervals.

Despite all these solutions have been elaborated during the years, the correction of estima-
tion errors is such a difficult task that several studies still promote the use of heuristic9 allo-
cation strategy, since they perform better than the MV allocation in terms of Sharpe Ratio. In
this respect, investing in the "Equally Weighted portfolio" (EW) might represent a much more
appealing alternative (DeMiguel & Nogales, 2009).

9It defined heuristic, any approach to problem solving that employs a practical method, not guaranteed to be
optimal, perfect, logical, or rational, but instead sufficient for reaching an immediate goal.
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Chapter 2

Portfolio Optimization with Penalized
Regression

In this Chapter, the use of penalized regressions as a remedy for error estimation and variable
selection problem is presented. Starting from the seminal contribution of Fan, the reformulation
of the MV optimization problem in the form of linear regression is described, proposing, in
addition, a deepening on the most used penalized regression models.

2.1 The benefits of using penalized regressions

As already shown in the previous Chapter, financial literature has largely proved how the use
of sample estimates can hardly provide reliable out-of-sample performances in asset allocation
for practical implementation. In addition to that, in the actual financial environment, portfolio
managers are very interested in having the opportunity to select the portfolio constituents among
a large bulk of alternatives. This, in fact, would allow them to not preliminarily restrict their
investment opportunities and, moreover, it would guarantee the possibility to diversify the risk
exposure among different assets.

Unfortunately, exploiting this potential is very difficult, since historical data provide a noisy
estimation of the future. As already observed by Shrerer (2002), this noise dramatically rises
when the number of securities included in the investment universe N increases, relative to the
number of observations T , causing a worsening in the out of the sample performance of the
portfolio. Thus, if, as it often happens, the number of assets N is large compared to T , only
an insufficient amount of data is available to precisely estimate the parameters needed for the
implementation of the MV optimization. In this sense, Ledoit and Wolf (2003) remark that rel-
evant problems in covariance matrix estimation, such as severe estimation errors and numerical
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instability, may occur whenever T is not at least ten times larger than N1.
Just to give an idea, if the universe of assets considered is composed of n risky assets, then n

expected returns, n volatilities, and 1
2(n−1) correlations are needed to be known. For example,

with 100 assets in the investment universe, 5150 parameters have to be estimated, as shown in
Figure 2.1, and so an enormous number of observations is requested.

Figure 2.1: Number of inputs needed in the MVO model

In order to simultaneously solve the problem of estimation errors, guarantee a better out-of-
sample performances and allow managers to choose from a large universe of assets and obtain,
in this way, the benefits of diversification, one research stream has recently focused on shrinking
optimal portfolio weights by using regularization methods2. These methods have already been
largely used in statistics when, dealing with regression models, standard linear models perform
poorly in the presence of large multivariate datasets containing a number of variables superior
to the number of observation. In these contexts, "penalized regressions", might represent advan-
tageous alternatives: they give the opportunity, through the use of specific constraints, to create
linear regression problems that are penalized for having too many explanatory variables (James,
Witten, Hastie, & Tibshirani, 2013; Bruce & Bruce, 2017).

The consequence of imposing this penalty is to reduce (i.e. shrink) the coefficient values
towards zero, pushing the less contributive variables to have coefficients close or equal to zero.
This constraint or penalty on the size of the regression coefficients induces, on one side, an
increase in the bias of the model, but on the other side it also reduces the overall prediction

1Note that sample covariance matrix estimates are singular when T < N.
2In mathematics, statistics, and computer science, particularly in the fields of machine learning, regularization

is a process of introducing additional information in order to solve an ill-posed problem or to prevent over-fitting.
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error and the variance of the estimated coefficients. This property, called Bias-Variance trade-
off, result to be crucial in understanding the sense of using penalized regressions.

Suppose to have a statistical modeling problem with many possible predictors and your goal
is to find a simple model that has also good predictive performance. In this case, a model with
fewer predictor variables is desirable: it is easy to interpret and gives the opportunity to better
understand the underlying process that generates the data.

2.2 Linear regression model

A linear regression model is a linear approach allowing to shape the relationship between a re-
sponse (dependent) variable Y and one or more explanatory (independent) variables X1,X2, ...,Xp,
plus a random noise.

Yi = β0 +β1X1 +β2X2 + ...+βpXp + ε

where β0,β1, ...,βp are the regression parameters and ε is the error term.

Usually, linear models are preferred to more complicated statistical models, since it is pos-
sible to fit them relatively easily and, in many practical situations, they provide simpler models
with good predictive performance (Friedman, Hastie, & Tibshirani, 2001). Moreover, linear-
ity with respect to fixed functions of the predictors is often an adequate first approximation to
more complex behaviors. Other methods, such as nonlinear or nonparametric models, often fail
as the number of variables increase, becoming very complicated in term of computation and
interpretability.

The most common method used to estimate regression coefficients for a linear model is the
Least Squares estimation. It finds the coefficients β that minimize the Residual Sum of Squares
(RSS):

RSS = E[Y −β0−β1X1− ...−βpXp]
2

According to the Gauss-Markov theorem, the least squares estimate has the smallest variance
among all linear unbiased estimates under certain assumptions3. However, if there are correlated
predictor variables and their number is quite large, some of these assumptions are violated.
As result, least squares estimates become highly variable (unstable) and the resulting model
exhibits poor predictive performance.

Therefore, the least squares estimation does not necessarily lead to a simple model that
identifies the parameter of interest when there are many predictors. In these cases, the use of
penalized regressions might be preferable.

3The Gauss-Markov theorem states that in a linear regression model in which the errors have expectation equals
to zero, are uncorrelated and have equal variances (Homoskedasticity), the best linear unbiased estimator (BLUE)
of the coefficients is given by the ordinary least squares (OLS) estimator, provided it exists.

17



2.3. The Bias-Variance trade-off

2.3 The Bias-Variance trade-off

The bias-variance trade-off is the property of a set of predictive models whereby models with
lower bias in parameter estimation, have higher variance in the estimated parameter across
samples, and vice versa. Thus, the bias-variance dilemma constitutes a real problem for who
is trying to simultaneously minimize these two sources of error, that differently affect the total
estimation error of the regression problem.

The error due to bias is taken as the difference between, the expected (or average) prediction
obtained by the model and the correct value which we are trying to predict. If the model building
process is repeated more than once, a range of predictor will be obtained. The bias measures how
far these predictions are from the correct value. On the other side, the error due to variance is
taken as the variability of a model prediction for a given data point. Again imagine it is possible
to repeat the entire model building process multiple times. The variance indicates how much
the predictions for each given point vary between different realizations of the model.

In order to give a more clear idea of what this two sources of error are, Figure 2.2 proposes a
graphical visualization of bias and variance using bulls-eye diagrams. Imagine that the center of
the target represents the model that perfectly predicts the correct values and that, moving away
from the bulls-eye, the predictions get worse and worse. Sometimes it is possible to have a good
distribution of the data so that the prediction power is high and the points are located close to
the center, while sometimes the data might be full of outliers or non-standard values, resulting
in poorer predictive performances with high variance. In this case, different realizations are
scattered among the target (High Bias and High Variance).

Figure 2.2: Graphical illustration of bias and variance4.

4Source: Understanding the Bias-Variance trade-off, http://scott.fortmann-roe.com/docs/BiasVariance.html
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The bias-variance trade-off can be also described through the use of a mathematical formu-
lation, since, as aforementioned, summing these two quantities the total estimation error of the
model, usually expressed by the mean square error (MSE)5, is obtained:

MSE(x) = E
[
(Y − f̂ (x))2

]
MSE(x) =

(
E[ f̂ (x)]− f (x)

)2
+E
[

f̂ (x)−E[ f̂ (x)]
]2
+σ

2
e

MSE(x) = Bias2 +Variance+ Irreducible Error.

In this case, f̂ (x) is the estimated model of f (x) and the third term σ2
e represents the noise term

in the true relationship, that fundamentally cannot be reduced by any model.

In the case in which unbiased estimators are used, the MSE and variance are equivalent
(Bias = 0). Instead, if penalized regression methods are considered, the bias grows on one side,
since distortion in coefficient estimation is introduced by continuously shrinking the regression
coefficients, and on the other side the variance is reduced in relation to model complexity. As
more and more parameters are shrunk toward zero, the complexity and the variance of the model
fall and so the bias becomes the primary concern (Figure 2.3).

Figure 2.3: Bias and Variance contribution to total error6.

Often, when using penalized regressions, the increase in bias is lower than the decrease in
variance; hence the resulting model would have a smaller MSE than the unbiased Least Squared
estimator. Therefore, penalized regression methods can produce models that have stronger pre-
dictive performances than standard linear regression models (Gunes, 2015).

5The MSE or mean squared deviation of an estimator measures the average squared difference between the
estimated values and observed value. The MSE is a measure of the quality of an estimator, it is always non-
negative, and the smaller its value is, the more precise its estimation will be.

6Source: Understanding the Bias-Variance trade-off, http://scott.fortmann-roe.com/docs/BiasVariance.html

19

http://scott.fortmann-roe.com/docs/BiasVariance.html


2.4. Portfolio optimization as a linear regression model

2.4 Portfolio optimization as a linear regression model

The introduction of the concepts of linear regressions and penalized regressions might, at first,
appear curious and inappropriate in an elaborated that is trying to deal with the problematics
arising from the Modern Portfolio Theory. However, in reality, past literature has already shown
how a link between these two topics exists. In fact, the risk minimization problem can be easily
recast as a regression problem in which the estimated coefficients correspond to the optimal
portfolio weights (Efron, Hastie, Johnstone, Tibshirani, et al., 2004).

Suppose to have the opportunity to invest in n assets with returns R1, ...,Rn. Let R be the
row vector of asset returns, Σ be their covariance matrix and w the portfolio allocation vector
satisfying the budget constraint w′1 = 1. As shown by Fan, Zhang and Yu in the article "Vast

Portfolio Selection With Gross-Exposure Constraints" 7 the risk minimization problem

minVar(Rp) = minVar(w′R) = min
w

w′Σw

s.t. w′1 = 1
(2.1)

can be assimilated to a regression problem that implicitly includes the budget constraint.

Starting from the definition of portfolio return

Rp = w′R = w1R1 +w2R2 + ...+wn−1Rn−1 +wnRn (2.2)

if the quantity t =w1Rn+w2Rn+ ...+wn−1Rn is subtracted and added, and the portfolio weights
w are collected, it is possible to obtain that

Rp = w1(R1−Rn)+w2(R2−Rn)+ ...+wn−1(Rn−1−Rn)+Rn(w1 +w2 + ...+wn−1 +wn).

Considering that portfolio weights must sum to one, in order to respect the budget constraint, a
companion representation is derived

Rp = w1(R1−Rn)+w2(R2−Rn)+ ...+wn−1(Rn−1−Rn)+Rn

Rp = Rn−w1(Rn−R1)+w2(Rn−R2)+ ...+wn−1(Rn−Rn−1)
(2.3)

and, by replacing R∗ = Rn−R1
8, it is possible to show that the portfolio return can be reformu-

7Source: Fan, J., Zhang, J. & Yu, K.(2012). Vast portfolio selection with gross-exposure constraints.Journal of
the American Statistical Association, 107(498), 592-606.

8The vector R∗ represents the deviation in returns for each asset with respect to the numeraire security.

20



Chapter 2. Portfolio Optimization with Penalized Regression

lated as
Rp = w1R∗1 +w2R∗2 + ...+wn−1Rn−1∗+Rn

Rp = Rn−w1R∗1 +w2R∗2 + ...+wn−1R∗n−1

Rp = Rn−w′R∗
(2.4)

where Rn represents a randomly picked numeraire asset and R∗ indicates the vector of the n−1
asset returns deviations.

At this point, coming back to the formulation of the risk minimization problem, it is possible
to substitute the portfolio return (2.4) in (2.1), obtaining

min
w∈Rn

w′Σw = min
w−n∈Rn

Var(Rn−w′R∗) = min
w−n∈Rn

E[Rn−w′R∗]2 (2.5)

where w−n denotes the vector of weights excluding wn. The weight of the last asset, taken as
numeraire, could be easily determined by imposing that the budget constraint is satisfied

wn = 1−
n−1

∑
i=1

wi. (2.6)

In Equation (2.5), E[Rn−w′R∗]2 corresponds to the variance of the errors for the linear re-
gression of the return of asset n (Rn) with respect to R∗, without taking into account the effect
due to the intercept that, from a risk minimization point of view, have to be managed by using
centered returns9. Furthermore, estimating the coefficients w1, ...,wn, is equivalent of finding
the GMV portfolio weights (Fan et al., 2012) and even if the numeraire asset (response vari-
able of the model) is randomly chosen, this does not affect the resulting estimated coefficients
(Bonaccolto, Caporin, & Paterlini, 2018).

Therefore, to conclude, it is possible to minimize the quantity w′Σw by minimizing the
residual sum of squared of a linear regression model, with response variable Rn and covariates
R∗i , ...,R

∗
n−1. However, since the MV optimization framework could present a large number of

assets (regressors), that strongly correlates one to each other, the benefits of using one of the
different type of penalized regressions, already introduced by past literature, might be exploited.

9In fact, the proper equation for the variance of errors should be E[Rn−w′R∗−b]2. However, since it is prefer-
able to have a model being independent of the mean of the Y vector, all the variables are centered with respect to
their mean.
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2.5 Shrinking weights using penalized regressions

2.5.1 The Ridge

The Ridge regression, introduced by Hoerl and Kennard (1988) as a more stable alternative to
the standard least squares estimator, is a remedial measure widely used in literature to alleviate
the multicollinearity problem amongst regression predictor variables in a model. When mul-
ticollinearity occurs, even if least squares estimates are considered to be still unbiased, their
variances result to be very large and the estimated parameters might be far from the true values.
In fact, since the regression variables used in a model might be sometimes highly correlated, the
regression coefficient of any variable strongly depends on which other predictor variables are
included into the model, and which ones are left out. In this way, the prediction variables are not
able to reflect any inherent effect of that particular predictor on the response variable, but only
a partial or marginal effect. For example, a wildly large positive coefficient on one variable can
be canceled out by a similarly large negative coefficient on its correlated cousin (Trevor, Robert,
& JH, 2009). This creates a model with high variance, that becomes an increasingly unrealistic
model as the correlation increases.

Ridge regression produces models with lower variance and shrinks the regression coeffi-
cients by adding a positive constant (penalty), proportional to the squared values of w, to the
usual linear regression problem10. The Ridge coefficients minimize the penalized residual sum
of squares,

ŵRidge = min
w

N

∑
i=1

(yi−w0−
p

∑
j=1

w jxi j)
2 +λ

p

∑
j=

w2
j . (2.7)

In equation (2.7), λ ≥ 0 represents the complexity parameter that controls the amount of shrink-
age: the larger the value of λ , the greater is the amount of shrinkage imposed on the regression
parameters.

While in the latter equation the Ridge regression is expressed in its Lagrangian form, with
λ as the tuning parameter, another equivalent and interesting way to formulate the problem, is
by explicating the size constraint:

ŵRidge = min
w

N

∑
i=1

(yi−w0−
p

∑
j=1

w jxi j)
2.

s.t. ‖w‖2
2 ≤ t2

(2.8)

where ‖w‖2 = (∑
p
j=1 w2

j)
1
2 is the Euclidean norm11 of the vector of weights. Notice that there is

a one-to-one correspondence between the parameters λ in (2.7) and t in (2.8).

10This is the reason why the ridge regression is also referred to as `-2 regularization.
11It is a function that assigns to each vector in a vector space, excluding the zero vector, a strictly positive length.
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In both cases, the coefficients are shrunk toward zero, but they never reach the null value (no
variable selection is performed). In order to clarify why this happens, a geometrical represen-
tation and an example might be used. Let f (w) be the objective function in (2.8) and consider
the counter plot of this function in the bi-dimensional space (w1,w2)

12, as shown in red in
Figure 2.4.

Figure 2.4: Estimation picture for the Ridge regression. Shown are contours of the error and constraint
functions. The solid blue area is the constraint region w2

1 +w2
2 ≤ t .While the red ellipse is the contour

of the least squares error function. 13

The center of the contour represents the minimum of the objective function, given by the
non-penalized solution of f (x) obtained imposing no constraint on the parameters (λ = 0).
Suppose now to add a different objective g(w) = λ (w2

1 +w2
2), representing the `-2 constraint

imposed, which contour plot is given in blue. This contour plot shows all the admissible com-
binations of w1 and w2, with a distance from the center that is no more than the parameter t

chosen in (2.5). So the larger t is, the greater the admissible area will be or, considering the
Lagrangian form, the larger λ is, the faster g(x) will grow and narrower the contour plot will
result. At this point, the whole problem in (2.8) can be recast as the minimization of the sum
of this two objectives: f (w)+g(w). The solution to this problem is achieved, graphically, when
the two contour plots meet each other. In fact, even if the final objective is to minimize the error
function, only the values of w included in the blue area are allowed to be accepted. In some
sense, by not allowing the w of getting too big, it is possible to keep the variance under control.

12In order to have a simple graphical representation an example with only two explanatory variable is considered.
13Source: Hastie T, Tibshirani R., Friedman J. (2009). "The Elements of Statistical Learning Data Mining,

Inference, and Prediction", New York, NY: Springer, https://web.stanford.edu/ hastie/ElemStatLearn/printings/ES-
LII_print12.pdf, pp. 71.
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The larger the penalty, the narrower the blue contour is, and so the plots meet each other at
a point closer to zero. Vice-versa the smaller the penalty, the more contour expands, and the
intersection of blue and red plots comes closer to the center of the red circle (non-penalized
solution). In the specific case of Ridge regression, the two contour will difficulty meet where
the corner of regularizers will be w1 = 0 or w2 = 0, due to the shape of the function g(x) and
this is the reason why no parameters are reduced exactly to zero.

In solving equation (2.7) or (2.8), it is important to specify that the quantity w0 is not penal-
ized. In fact, it is preferable to have a model being independent from the mean of the Y vector.
Moreover, since the solutions are not equivariant under scaling of the inputs, usually a stan-
dardization of the parameters is needed. So the data used in the regression are usually centered
by replacing each xi j by xi j− x̄ j and finally, the quantity w0 is estimated by ȳ = 1

N ∑
N
j=1 yi .

The remaining coefficients are retrieved by the implementation of the Ridge regression without
intercept, using the centered xi j.

Henceforth it is assumed that this centering has been done, in such a way that it is possible
to write the equation in (2.7) in matrix form,

RSS(λ ) = (y−w′X)′(y−w′X)+λw′w (2.9)

and its solution can be retrieved as follow:

ŵRidge = (X ′X +λ I)−1X ′y (2.10)

where I is the pxp identity matrix. Notice that choosing the quadratic penalty w′w, the Ridge
regression solution is again a linear function of y.

The main motivation for the Ridge regression to be used, when it was first introduced in
statistics, was that the solution adds a positive constant to the diagonal of X ′X before the inver-
sion take place. This makes the problem nonsingular14, even if X ′X is not of full rank. In ad-
dition, this form of regularization has some other intuitive advantages (Boyd & Vandenberghe,
2004):

• in terms of prediction, avoiding large values of w, allows eliminating large variations in
the estimated parameters and also to achieve higher predictive performance;

• in terms of optimization, it gives a compromise between solving the risk minimization
problem and have small values for w.

14A matrix is not invertible (also singular) iff its determinant is 0. In this case does not exist an n-by-n square
matrix B such that AB = BA = In where In denotes the n-by-n identity matrix and the multiplication used is
ordinary matrix multiplication.
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2.5.2 The Lasso

Even if the Ridge regression brings important benefits and improvements to the usual least
squares regression, it is not able to address the issue of variable selection, affecting the Markowitz
optimization problem when a great number of assets are taken into consideration. For this rea-
son recent studies (Brodie et al., 2009, DeMiguel et al., 2009b, Yen, 2010, Yen and Yen, 2011,
Carrasco and Noumon, 2011, Fan et al., 2012, Fernandes et al., 2012) give considerable atten-
tion to another penalization approach in the portfolio optimization context: the so-called Least
Absolute Shrinkage and Selection Operator (LASSO). In fact, while the `-2 regularization is
an effective means of achieving numerical stability and increasing predictive performances, it
does not address another two problems affecting Least Squares estimates: parsimony15 of the
model and interpretability of the coefficient values16. While the size of the coefficient values
is bounded, minimizing the variance of a regression with a penalty on the `-2 norm does not
encourage sparsity17, inducing the resulting models to typically have all non-zero values asso-
ciated with the regression coefficients.

With the purpose of resolving these issues, Robert Tibshirani in 1996 in the paper "Regres-

sion Shrinkage and Selection via the LASSO" (Tibshirani, 1996), proposed to replace the `-2
norm with an `-1 norm. The latter preserves many of the beneficial properties of Ridge regu-
larization, but it generates sparse models that are more easy to interpret and often outperform
those produced with an `-2 penalty (Trevor et al., 2009). The LASSO estimate can be simply
defined by

ŵLASSO = min
w

N

∑
i=1

(yi−w0−
p

∑
j=1

w jxi j)
2.

s.t.
p

∑
j=1
|w j| ≤ t.

(2.11)

As done for the Ridge regression in Section 2.5.1, it is possible to re-parameterize the constant
w0 by standardizing the predictors. In this way, again, the solution for ŵ0 is ȳ, and thereafter it
is possible to fit a model without an intercept and rewrite the LASSO problem in the equivalent
Lagrangian form

ŵLASSO = min
w

N

∑
i=1

(yi−
p

∑
j=1

w jxi j)
2 +λ

p

∑
j=
|w j|. (2.12)

This time the `-2 penalty ∑
p
j=1 w2

j , is replaced by the `-1 penalty ∑
p
j= |w j| and differently from

15Parsimonious models are simple models with great explanatory predictive power. They explain data with a
minimum number of parameters, or predictor variables.

16Interpretability is closely connected with the ability of users to understand the model.
17A sparse statistical model is one having only a small number of nonzero parameters or weights. It represents

a classic case of “less is more”: a sparse model can be much easier to estimate and interpret than a dense model
(Hastie, Tibshirani, & Wainwright, 2015).
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the previous case, where the linearity of the function is preserved, the latter constraint makes the
solutions nonlinear in yi, so that computing the LASSO solution could be considered a quadratic
programming problem18.

The fundamental characteristic that convinced lots of researchers and portfolio managers
to use the LASSO, is that making t sufficiently small (λ sufficiently large) will cause some
of the coefficients to be exactly zero. This ability to generate a sparse model is due to the
particular shape that `-1 constraint have. In fact, if the constraint region for the Ridge regression
is represented by a disk (Figure 2.4), that for LASSO is represented by a diamond given by the
constraint |w1|+ |w2| ≤ t (Figure 2.5).

Figure 2.5: Estimation picture for the LASSO regression. Shown are contours of the error and constraint
functions. The solid blue area is the constraint region |w1|+ |w2 ≤ t. While the red ellipse is the

contour of the least squares error function19.

As explained in the previous section, also in the case of the LASSO regression the solution
is found in the first point where the elliptical contour hits the constraint region. Unlike the disk,
the diamond has corners, so if the solution occurs there, then it is possible to have one parameter
w j set equal to zero. When the number of predictors is more than p > 2, the diamond becomes
a rhomboid. So in this case, there are many more opportunities for the estimated parameters to
be set to zero.

Empirical results in a mean-variance framework (DeMiguel et al., (2009); Brodie et al.,
(2009)) strongly support the use of the LASSO method when short selling is allowed. However,

18Quadratic programming (QP) is a particular type of nonlinear programming, that allows to optimize (minimize
or maximize) a quadratic function of several variables subject to linear constraints.

19Source: Hastie T, Tibshirani R., Friedman J. (2009). "The Elements of Statistical Learning Data Mining,
Inference, and Prediction", New York, NY: Springer, https://web.stanford.edu/ hastie/ElemStatLearn/printings/ES-
LII_print12.pdf, pp. 71.
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Chapter 2. Portfolio Optimization with Penalized Regression

in presence of no-short selling constraints, it shows some difficulties related to potentially biased
estimates of large absolute coefficients and ineffectiveness in promoting sparsity (Fan & Li,
2001). In fact, the `-1 norm of the asset weights will have a constant value of one and so, usually,
a large number of very small position on assets are going to be included in the optimal portfolio.
This could have a positive impact in term of portfolio diversification, but could be detrimental
if the high transaction and administrative costs of keeping such small and sometimes illiquid
positions are taken into consideration.

2.5.3 The Elastic Net

For what has been mentioned until now, the LASSO regression might seem to be a better alter-
native, compared to Ridge, in order to perform the variable selection. Although, in some specific
situations, it exhibits some important limitations:

1. in the case in which the number of variables is greater than the number of observation
(p > n), the LASSO is able to select at most n variables before it saturates20;

2. if there is a group of variables among which the pairwise correlations are very high,
then the LASSO tends to randomly select only one variable from the group, without
considering all the others (Zou & Hastie, 2005);

3. in the common n > p scenarios, if there are high correlations between predictors, the pre-
diction performance of the LASSO is dominated by Ridge regression (Tibshirani, 1996).

Among the solution proposed, in order to overcome these limitations of LASSO, great atten-
tion was given to the one elaborated by Zou and Hastie in (2005). They, in fact, proposed a
new regularization method that simultaneously performs an automatic variable selection and a
continuous shrinkage, including also groups of correlated variables between the selected ones
("grouped selection")21.

This method takes the name of "Elastic net", and it is expressed in the form

ŵ = min
w

N

∑
i=1

(yi−
p

∑
j=1

xi jw j)
2.

s.t.
p

∑
j=1

(
α|w j|+(1−α)w2

j

)
≤ t.

(2.13)

20A model is saturated when there are as many estimated parameters as data points. By definition, this will often
lead to a perfect fit, but also to extremely high-variance predictors.

21A regression method exhibits the grouping effect if the regression coefficients of a group of highly correlated
variables tend to be equal, apart from the case in which they are negatively correlated. Identical coefficients must
be assign in the extreme case in which the variable are identical too.
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As highlighted above, the penalization term is a convex combination of the LASSO and Ridge
penalties. The `-1 part of the penalty term encourages a sparse solution in the coefficients.
The quadratic part, instead, induce highly correlated features to be averaged, stabilizing the `-1
regularization path.

The parameter α determines the mix of the penalties: when α = 1, the elastic net can be
simply considered as Ridge regression, if its value is 0 < α < 1, the elastic net penalty function
is singular22 at the origin and strictly convex, gathering in this way the characteristics of both
the LASSO and Ridge (Figure 2.6).

Figure 2.6: Two-dimensional contour plots for Ridge, LASSO and Elastic net penalty with α = 0.523.

2.5.4 The q-norm constraint and the non-convex optimization problem

Another method, introduced in order to overcome the problematics arising from the LASSO,
was the one proposed by Gasso et al. in 2009. In this respect, they suggested to add some
penalties that are singular at the origin, just like the `-1 penalty, in order to promote sparsity,
but non-convex, in order to countervail biases (Gasso, Rakotomamonjy, & Canu, 2009).

In fact, the Ridge and the LASSO regressions that have been analyzed until now can be
considered as specific versions of the more general (B)ridge regression approach introduced
by Frank and Friendman (1993), where an upper bound is imposed on the q-norm considering
0 < q < ∞24. Thus the previous equations with `-1 and `-2 constraints, might be generalize in

22A singularity is a point at which a function does not possess a derivative. In other words, a singularity function
is discontinuous at its singular points.

23Source: Hui Zou and Trevor Hastie, Department of Statistics Stanford University. "Regularization and Variable
Selection via the Elastic Net" https://web.stanford.edu/~hastie/TALKS/enet_talk.pdf.

24As in all other works in this field, in this paper is maintained the common practice to refer to a norm despite
the fact that for cases with 0 < q < 1 it does not define a norm but a quasi-norm, since the triangle inequality is not
respected.
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the form

ŵ = min
w

N

∑
i=1

(yi−
p

∑
j=1

w jxi j)
2.

s.t. ‖w j‖q ≤ t.

(2.14)

or in Lagrangian form

ŵ = min
w

N

∑
i=1

(yi−
p

∑
j=1

w jxi j)
2 +λ‖w‖q (2.15)

where ‖w‖q = (∑
p
j=1 wq

j)
1
q represents the q-norm of the vector of assets weight25.

As has been done for all the other types of penalized regressions, the contours of constant
value of ‖w‖q for some values of q, are shown in Figure 2.7, considering the case of two inputs
w1 and w2.

Figure 2.7: Contours of ‖w‖q for given values of q 26.

Notice that q = 1 corresponds to the LASSO, while q = 2 to the Ridge regression. In addi-
tion, it is interesting to underline the fact that for q≤ 1, the contours are not uniform in direction,
but concentrates more mass on the coordinates, allowing to obtain a higher number of inputs
to be set to zero. The lower the upper bound on the q-norm is (e.i q = 0.1), the more sparse
and less diversified (with larger weights) the portfolios are. In fact, in the implementation of
the q-norm constraint, the latter should be considered as a measure of diversity of the portfo-
lio. When the no-short selling limitation is imposed, this measure has maximum value for the
equally weighted portfolio and minimum value for a portfolio totally invested in a single asset
(Fernholz et al., 1998).

Gasso et al. (2009) have already shown the goodness of considering norms with q < 1 when
the number of predictors in the model and their levels of correlation are high. The basic idea
behind this class is to heavily penalize gains in small (absolute) portfolio weights on one side,
and on the other to set a weak penalization in large (absolute) weights. This causes the invested
wealth to be concentrated in more extreme positions than in the LASSO penalty, allowing a

25Notice that, in this case q < 1, there is no qth root on the right, which is the correct form of the `q.
26Source: Hastie T., Tibshirani R., Wainwright M.(2015). "Statistical learning with sparsity: the lasso and gen-

eralizations", pp. 22.
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reduction of the estimation risk without increasing too much the value of the penalty term. Thus,
the q-penalty provides a particularly strong incentive to avoid small and presumably dispensable
positions in favor of a small subset of presumably indispensable assets (Fastrich, Paterlini, &
Winker, 2015)27, allowing the construction of sparse and less diversified portfolios that, as
already said, are preferable in term of transaction costs.

Even though the `-q penalization provide all the benefits just cited, it poses some difficul-
ties and complications in term of optimization. In fact, if Equations (2.8) and (2.12) represent
convex optimization problems and, thus, are easy to solve by using linear programming in the
first case and quadratic programming in the second; Equation (2.14) represents a non-convex
optimization problem, that is very challenging from an optimization viewpoint (called for this
reason NP-Hard problem)28. Basically, convex optimization is a subfield of optimization that
studies the problem of minimizing convex functions over convex sets. A function is said to be
convex if the line segment between any two points lies above or on the graph of the function, in
a space of at least two dimensions; and if, for a twice differentiable function of a single variable,
the second derivative is always greater than or equal to zero in its entire domain. On the other
side a set is said convex if, for any couple of points considered, it is possible to draw a line
segment in between, that also entirely lies within the set (Figure 2.8).

Figure 2.8: Representation of convex (a) and non-convex (b) sets in an optimization problem.

The convexity makes optimization much easier compared to the general case, since local
minimum must be for sure a global minimum, and first-order conditions are sufficient for op-
timality. Instead, non-convex optimization29 might have multiple locally optimal points and so
might be difficult, or sometimes impossible, to obtain an identification. The difference in the
two types of optimization problems can be graphically seen in Figure 2.9. The point Z is a local
minimum but clearly, it does not represent a global minimum. This creates some complexities
in the optimization procedure.

27Source: https://link.springer.com/content/pdf/10.1007%2Fs10287-014-0227-5.pdf
28NP-hard problems are problems for which there is no known polynomial algorithm, so that the time to find

a solution grows exponentially with problem size. An algorithm is said to be solvable in polynomial time if the
number of steps required to complete the algorithm for a given input is known.

29A function is defined to be non-convex when taking its Hessian, at least one of its Eigenvalues is negative.
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Figure 2.9: Representation of convex and non-convex optimization problem30.

30Source: Reza Zadeh, November 16 2016, https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning
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Chapter 3. Index Tracking: a Passive Portfolio Management Strategy

Chapter 3

Index Tracking: a Passive Portfolio
Management Strategy

The statistical regularization methods just explained (Appendix B.1), have recently found nu-
merous applications in the mean-variance portfolio setting, due to their ability to promote the
identification of sparse (with a small number of constituents) portfolios with good out-of-sample
properties and low turnover. Specifically, this chapter will introduce the general concepts of
passive management and index tracking strategy, showing how the advantages guaranteed by
regularization, could be crucial also in this particular context.

3.1 Active vs passive investing

Since the existence of passive investment strategies, investors and managers have tried to un-
derstand, whether is better to allocate their wealth by using an active or a passive management
strategy. Passive fund management was first introduced in 1970 as an academic concept when
Burton Malkiel published his book, "A Random Walk Down Wall Street"1, but it did not re-
ally gain traction until Vanguard entered into the market scene with low-cost indexed funds. In
the 21st century, however, probably due to poor returns of active management in the previous
years and to the recommendation of some influential financiers, passive funds had become very
popular, so that a huge amount of resources has flooded into them.

The dilemma of choosing between an active or passive strategy, can shortly be reduced
to one fateful question: does the manager/investor believe in the Efficient Market Hypothesis
or not? The Efficient Market Hypothesis (EMH), elaborated by Eugene Fama, professor of
economics at the University of Chicago in 1960s, is an investment theory whereby stock prices,

1In this book was argued that prices typically exhibit signs of random walk and that it is not possible to consis-
tently outperform market averages, challenging active managers’ profitability over time.
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at any time, reflect all available information about securities2. In this way theoretically, neither
technical nor fundamental analysis can allow active portfolios to produce excess returns with
respect to the market. According to this theory, stocks always trade at their fair value on stock
exchanges, making impossible for investors to systematically identify and trade stocks that are
mispriced. Stock price movements are largely random and are primarily driven by unpredictable
events. In the light of these hypotheses, it seems clear that no active investor will consistently
beat the market over long periods of time, meaning that active management strategies cannot
add enough value to outperform passive management strategies.

On the other side instead, investors who do not follow the EMH, but are convinced that
markets are not able to immediately reflect all available past and future information about the
stocks, believe that it is possible to profit from the stock market through the use of strategies that
aim to identify mispriced securities. The investors belonging to this category, are more prone
to active investing. They will rely on the human element to actively manage a portfolio, on
analytical research, on forecasts, and on their own judgment in making investment decisions.

Even nowadays, the endless debate between these two sides appears to be still bitter and
broad. On one side, some expertises sustain the merits of passive versus active management,
underlining that active investment managers are not able to pick enough winners to justify
their high fees, in particular during bull market periods. On the other, the supporters of active
investing enact the flexibility and the possibility of obtaining extra profit, given by an accurate
active management strategy. In this elaborate empirical evidence and characteristics of both
strategies are going to be described, without feeding in any way the debate and without taking
any of the two sides.

3.1.1 Advantages of passive investing

As explained above, the underlying assumption of passive investment strategy is that it is not
possible to beat the market in the long run (EMH). Passive investing, given that markets usually
have positive returns and grow over time, has the goal to replicate market performances by
constructing well-diversified portfolios of single stocks and, in this way, build wealth gradually
(long-term investment horizon), seeking to avoid the fees and limited performance that may
occur with frequent trading. In this view, perhaps, the most solid advantage provided by passive
investing is the reduction of costs. As noted in some empirical researchers as “Vanguard’s

Principles for Investing Success”, lower cost funds tend to outperform their higher cost peers
(Figure 3.1).

2The EMH exists in various degree: weak, semi-strong and strong, depending on the inclusion or not of
non-public information in market prices
Source: Morningstar http://www.morningstar.com/InvGlossary/efficient_market_hypothesis_definition_what_is.aspx
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Figure 3.1: Ten-year annualized returns for funds in the lowest-cost and highest-cost quartiles. Returns
are net of expenses, excluding loads and taxes. Both actively managed and indexed funds are included3

Since most often passive funds have had the lowest Average Expense Ration between all
other types of funds (Table 3.1), it is possible to conclude that consequently, they are indeed
those who guaranteed the best Average Annual return and outperformed all other peers, at least
until 2013.

Investment Type Actively Managed Funds Index Funds ETFs

U.S.Stocks
Large-Cap 0.80% 0.11% 0.14%
Mid-Cap 0.97 0.18 0.25
Small-Cap 1.04 0.19 0.23

U.S. Sectors
Industry Sector 0.94 0.44 0.37
Real Estate 0.92 0.13 0.20

International Stocks
Developed Market 0.91 0.17 0.29
Emerging Market 1.16 0.21 0.42

Table 3.1: Average expense ratio of different funds until December 2013 4.

This evidence is in general supported by Kent Smetters, professor of business economics
at Wharton University, who assures that: "On an after-tax basis, managers of stock funds for

large- and mid-sized companies produced lower returns than their index-style competitors 97%

3Source: Morningstar and Vanguard,12/31/13. Vanguard calculations, using data from Morningstar. All Mu-
tual funds in each Morningstar category were ranked by their expense ratios as of 12/31/13. They were then
divided into four equal groups. http://clients0.brinkercapital.com/wp-content/uploads/2015/03/WP_ACT_PASS-
Active-Vs.-Passive-FINAL.pdf, pp.2.

4Source: Data taken from Morningstar and Vanguard, 12/31/13. Vanguard calculations, using data from Morn-
ingstar.
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of the time, while managers of small-cap stocks trailed 77% of the time"5. The reason why
this happens is very clear. It results to be difficult for an active manager to outperforms the
market by such an amount that can compensate the fees charged for the research and stock
picking operations. On the other side fees for passive managers are very low, 0.2% or 0.3%,
guaranteeing a huge competitive advantage in term of costs.

In addition to cost advantages, passive investing bring benefits to investors by giving the
opportunity to avoid the well-known phenomenon of "cash drag". Indeed, in order to be able
to quickly catch new investments opportunities and provide a boost during a down market envi-
ronment; active managers tend to hold more cash within the investment when compared to their
passive counterparts, that instead are mandated to stay fully invested. However, since empirical
evidence shows that the S&P 5006 has been positive for 23 of the last 30 years (Figure 3.2),
cash holding often represents a performance drag on active managers and not an advantage7.
So even if cash could have helped boosting active funds performances in the seven years of
negative returns, that would have represented a load and a missed gain in the remaining years.

Figure 3.2: Annual percentage change of the S&P 500 index from 1988 to 2017, calculated from the last
trading day of each year to the last trading day of the previous year8

5Source: https://executiveeducation.wharton.upenn.edu/thought-leadership/wharton-wealth-management-
initiative/wmi-thought-leadership/active-vs-passive-investing-which-approach-offers-better-returns

6The S&P 500, has been used,in this case, as a benchmarks for the whole stock market.
7Source: http://clients0.brinkercapital.com/wp-content/uploads/2015/03/WP_ACT_PASS-Active-Vs.-Passive-

FINAL.pdf
8Source: Macrotrends, https://www.macrotrends.net/2526/sp-500-historical-annual-returns
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Other two important advantages, related to the use of a passive management strategy, are
with no doubt transparency9, because investors at all times know what stocks or bonds an in-
dexed investment contains, and tax efficiency. In fact, since the passive funds are used as buy-
and-hold strategies, the amount of executed trades will yield lower portfolio turnover and less
concentrated realized gains, triggering a small annual capital taxation.

3.1.2 Advantages of active investing

At this point, the debate would seem to have no reason to exist and active management already
seems to have lost the battle, given the enormous advantages of passive management. However,
in reality, even the active one reserves very important advantages in some particular situations,
that could induce some investors to prefer it to the former.

Indeed, active investing might be extremely advantageous, when the market is characterized
by high sector dispersions. In other words, when sectors are not performing at about the same
level, it is much easier for expert managers to add value by picking sectors that are meaningfully
better than the average.

An additional circumstance where active managers could be considered preferable is during
bear markets. In fact, just during bull markets, it is almost impossible to beat passive investing
because market returns are extremely high and hedging usually hurts performance, as do trans-
action fees on switching stocks. However, during bear markets, active managers and hedgers
nearly always beat passive investing. This tendency is clearly well known by both investors and
managers, such that it is possible to identify a sort of cyclical path in the cash allocation between
active and passive investing. As shown in Figure 3.3, large flows of cash into passive funds have
been registered during periods of good market performances.

Figure 3.3: Cash flow exchanges between passive and active managed funds10.

9It represents a huge advantage in order to avoid the principal agent problem". The problem arises when two
parties have different interests and asymmetric information, such that the principal cannot directly ensure that the
agent is always acting in their best interest
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This cyclical shifts between active versus passive investing might be observed also from
an informational point of view11. In fact, when a great number of highly skilled analysts and
market operators compete to obtain relevant information on a stock before everyone else, it is
difficult to beat the peers and obtain information before others. So, when a lot of resources are
allocated through active investing, the competition leads to have no advantages to keep working
and spending resources, to obtaining information that are already incorporated into the prices.
In this environment, passive investing might appear to be a good alternative: cash increasingly
flows towards index funds. However, if lots of participants become discouraged from the lack of
return and retract from active funds, the gain from information edge start increasing again, due
to the lack of analysts and information included into the market prices. At this point, wealth will
move back to active funds, thanks to higher profit opportunities. In this way, the cycle continues
over and over.

Other interesting characteristics of active investing are flexibility, managers are usually free
in the stock selection process without being constrained to a specific index, and risk mitigation
opportunities. In fact, active portfolio managers might use short selling and derivatives to protect
portfolios.

After this quick description of the advantages of both passive and active investing, it is
possible to conclude that there is not a clear right choice. Both of the strategies have their
reasons to be applied and thus, when considering the choice between the two, an investor has to
be open to both alternatives, not just one.

3.2 Index tracking

As already specified in Section 3.1.1 the aim of passive investing is to replicate a market index
performance over time, but in practice, it is not possible to directly trade a financial index. In
order to get access to it, investors must rely on different financial instruments such as options
and futures, that, however, do not track the value of an index explicitly, reflecting only its value;
or on exchange-traded funds (ETFs) that on the other side explicitly track the benchmark perfor-
mances. Nonetheless, not all indexes or sectors have an associated ETF that could be purchased
and so, in these cases, would be impossible to enact a passive strategy that explicitly reflects the
benchmark. If this situation arises, the only possible alternative is to explicitly track the value
of an index by constructing from scratch a portfolio of assets, so-called "tracking portfolio",
whose value follows the value of the given index (Benidis, Feng, Palomar, et al., 2018).

10Source: http://clients0.brinkercapital.com/wp-content/uploads/2015/03/WP_ACT_PASS-Active-Vs.-Passive-
FINAL.pdf, pp.2.

11Source: https://www.forbes.com/sites/investor/2015/03/30/active-versus-passive-management-which-is-
better/#1fe424327025
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Index tracking (or benchmark replication) consists in designing a portfolio that replicates
the behavior, the holdings and the performance of a designated index. The popularity of index
funds relies on its ability to allow investors to be exposed to an entire index at a low cost12.

Consider for example a general market index composed by a weighted collection of N assets,
with a vector of weights b, representing the portion of wealth allocated in each security. The aim
of index tracking is to retrieve the optimal tracking portfolio weights w, that minimizes a given
function, expressing the distance between the index returns and those of the tracking portfolio
(tracking error). Two main ways to achieve this objective has been developed in recent years:
full replication and partial replication (Strub & Baumann, 2018).

The full replication strategy offers a straightforward solution to the weights selection prob-
lem. In fact, by using full replication the weights assigned to the tracking portfolio are perfectly
equal to the weights of the benchmark index. In this way, the constructed portfolio perfectly re-
flects the trend of the index, having the exact same returns over time. Even if this is the strategy
that more than any other minimize the deviation (tracking error) with respect to the benchmark;
however, when an index with a large number of securities is taken into consideration, transac-
tion costs dramatically increase and liquidity problems arise if some of the assets to be included
cannot be easily bought in the market13.

A possible solution to overcome these limitations is the implementation of a partial replica-
tion strategy, also called "sparse index tracking". Instead of creating a tracking portfolio contain-
ing the same number of securities included in the benchmark, a portfolio with a lower number of
assets is constructed, holding securities that provide the most representative sample of the index
based on correlations, exposure and risks. In this way, the tracking error will increase on one
side (imperfect tracking), but on the other transaction costs are reduced and illiquid positions
are avoided.

This second approach, however, is not as simple as in the case of full replication, since
two main challenges have to be addressed: primarily, it has to be chosen which of the N assets
should be included into the tracking portfolio; secondly has to be determined which should
be their relative weights. In order to solve these issues, usually, a two-step approach method
is followed14. The first stage is the so-called "Stock selection", in which the securities to be
included are chosen, selecting assets with higher market capitalization, or higher correlation to
the index, or both. In the second stage, called "Capital allocation", the effective weights of the
tracking portfolio are determined, or by using a "Naive allocation", meaning that the weights are
proportional to the original weights in the benchmark portfolio; or by an "Optimized allocation".
The latter consists in solving a convex minimization problem, having as objective function a

12This guarantees great advantages in term of portfolio diversification.
13Source: http://www.ece.ust.hk/ palomar/ELEC5470_lectures/14/slides_index_tracking.pdf
14Source: http://www.ece.ust.hk/ palomar/ELEC5470_lectures/14/slides_index_tracking.pdf
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3.3. Index tracking using penalized regression

tracking error measure f (w)

wopt = min
w

f (w). (3.1)

Some of tracking error measures most commonly used in the literature are: the average Tracking
Error (3.2), Tracking Error Volatility (3.3), the Root Mean Squared Error (3.4) and the Empirical
Tracking Error (3.5).

T E = E
[
Y −wX

]
(3.2)

T EV = V
[
Y −wX

]
(3.3)

RMSE =

√
(Y −wX)′(Y −wX)

T
(3.4)

ET E =
1
T
||Y −wX ||22 (3.5)

In these equations: Y represents the vector of centered return of the benchmark index, w is
the variable of interest representing the vector of weights of the tracking error portfolio and X

represents the matrix of centered returns of the securities contained into the index.

3.3 Index tracking using penalized regression

Despite the standard two-steps approach for sparse index tracking, commonly used in practical
implementations, offers the possibility to create acceptable portfolios with low tracking error,

Indeed, the first step of "Stock selection", almost arbitrarily eliminates possible interesting
candidates for the portfolio construction, without including them into the optimization proce-
dure. Furthermore, even if tracking error represents an optimal indicator to describe the devia-
tion between index and tracking portfolio performances, however, it does not explain the whole
story. In fact, past literature (Frino & Gallagher, 2001)15, already underline the fact that tracking
error measures do not take into account the transaction costs associated with trading securities,
that strongly influence the ability of the tracking portfolio to provide identical returns with re-
spect to the benchmark index. The index is calculated as a "paper"16 portfolio that assumes
transactions can occur instantaneously, in unlimited quantities and without cost (Frino & Gal-
lagher, 2001). On the other side, an index fund, when dealing with portfolio construction and
rebalancing, undoubtedly produce transaction costs that reduce the final return for investors.
Additional transaction costs may be registered, when index composition change: usually com-

15Source: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.199.4563&rep=rep1&type=pdf
16Considered as an imaginary portfolio that could never be implemented in reality.
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Chapter 3. Index Tracking: a Passive Portfolio Management Strategy

panies are added and deleted from the market index. In this way, passive funds are forced to
trade in order to realign their portfolio.

For these reasons, in order to improve the wealth allocation among all the assets contained
into the benchmark, to streamline the selection procedure in one single step and to minimize the
tracking error, while having transaction costs and number of assets included under control; the
tracking error problem in Equation (3.1) could be reformulated by including a penalty constraint
(`q-norm constraint), as follow

wopt = min
w

f (w)+λ ||w||q. (3.6)

Again, λ represents the tuning parameter that regulates the intensity of the penalty, and
||w||q = ∑

p
j |w

q
j | represents the q-norm of the weights vector w with 0 < q < 1.

As already described in Chapter 2, the inclusion of a penalization term, abundantly used
in other fields of statistics and portfolio management, guarantees enormous advantages for the
assets selection procedure. In a single step, it allows to reduce toward zero the weights of assets
that less correlates with the main index17, and at the same time to optimally allocate the wealth
among the selected assets. Moreover, it guarantees a reduction in portfolio turnover and so
in transaction cost, giving the opportunity to increase the probability of obtaining higher final
returns. The higher is the tuning parameter λ , the higher is the penalization imposed (more
weights collapse to zero), the lower is the norm index q, the faster the portfolio increase its
sparsity and reduce diversification. In some sense, the tracking error problem, reformulated in
this way, coincide with the usual problem in Equation 3.1, but including a cardinality constraint
that limits the number of admissible assets in the tracking portfolio (Fastrich et al., 2014).

17The less contributive securities are completely excluded from the tracking portfolio.
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Chapter 4

Experimental Set-up

In this Chapter, the data and the methodology used for the implementation of the project are
described. Starting from the dataset and the tools (software and hardware) used, an overview
on how the project has been carried on is provided, focusing also on the performance measures
considered in order to evaluate the goodness of the different strategies proposed.

4.1 Data description

The dataset used for the implementation of the sparse index tracking procedure, is composed
by the time series of weekly prices for the past 10 years, starting from the 2nd of January 2008
to the 20th of December 2017, for a total of 521 observations. In particular, the weekly prices
of the Standard and Poors’ 100 Global and of its constituents in each period have been taken
into account: since the composition of the index changes over time, it has been worked on the
weekly prices for all 134 assets, that at least for once have been included into it1.

The choice of considering weekly returns has been actually driven by two important consid-
eration: on one side, since we are working with a large investment universe, we need a frequency
of data providing us with enough amount of observation, at least equals to the number of assets;
on the other side practitioners and researchers argue that the use of daily prices might introduce
in the optimization framework the “noise” and volatility typical of the day-to-day fluctuations,
creating huge distortions if we want to focus on the predominant longer-term trend.

All the data have been retrieved from DataStream - Thomson Reuters and each stock price
corresponds exactly to the dividend adjusted, market closing price.

1The list of the components of the index over time has been obtained in a two-step procedure: first the reference
codes for the stocks included monthly within the index has been retrieved. Once that has been done, each code is
isolated and so the stock price is at this point downloaded.
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Starting from these prices and using the standard formula in 4.1

Rt =
Pt−Pt−1

Pt−1
=

Pt

Pt−1
−1, (4.1)

where Pt represents the price of a given stock at time t, the 520 weekly historical percentage
returns have been calculated, both for the benchmark index and for its constituents. They are
going to be the inputs for our penalized regression model.

Table 4.1 reports some summary statistics for the weekly returns of the benchmark index.

Mean Median StDev Min Max Skew Kurt

S&P 100 Global 0.07 0.16 2.67 -14.54 13.90 -0.22 7.70

Table 4.1: Summary statistics for S&P 100 Global.

As shown, the time series of the index returns exhibits the typical patterns of financial time
series: mean values around zeros, light asymmetry and fat tails.

Moreover, in order to give an idea of which is the relationship between the index return and
the return of each constituent, the correlation between them has been considered.
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Figure 4.1: Correlation between S&P 100 Global Index and its constituents.

As explained in Chapter 2, it is likely to believe that the assets which are going to be included
into the tracking portfolios, would be the ones that exhibit the highest correlations with respect
to the benchmark.
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In Appendix B.3 some other descriptive figures about price evolution, cumulated returns
and summary statistics for the index and for all the stocks grouped for Sector and Geography
are reported.

4.2 Working environment

The entire project implementation has been run in a Lenovo ideapad 320-15ABR with AMD
A12-9720P RADEON R7 2.70GHz, and 8 GB RAM. All the codes used are written in Matlab
R2017a and, in particular, the solution of the non-convex minimization problem, allowing us
to retrieve the optimal portfolio weights, has been performed using a function included in the
Matlab Global Optimization Toolbox called "GlobalSearch"

It consists in an algorithm that permits to find the global minimum of a given objective
function, by repeatedly running a local solver (fmincon in this case) and generating a "Glob-
alOptimSolution" object. When run, the solver attempts to locate the solution that exhibits the
lowest objective function value, starting from a given initial point x0. The function permits the
inclusion of linear equality constraints, linear inequality constraints and also of a set of lower
and upper bounds on the design variables x, in such a way that the obtained solution is always
included in the range lb ≤ x ≤ ub. More information about the GlobalSearch algorithm are
available on the MathWork Website2.

4.3 Methodology

After the dataset has been downloaded and managed3, excluding all the stocks for which the
time series of returns contain only few observations, it has been supposed to play the part of a
passive portfolio manager who has the objective to build a mid-long term sparse index tracker
being able to track the behavior of a benchmark index, in this case the S&P 100 Global, and
to closely replicate its returns, by keeping the transaction costs under control and by avoiding
illiquid positions.

In order to implement such a strategy, the first step consists in finding, among the all feasi-
ble portfolios that might be constructed using the index constituents, the set having minimum
Tracking Error Volatility (Eq. 3.3) with respect to the benchmark. In fact, let’s suppose we want
to verify whether a portfolio closely replicates the benchmark to which it refers. To do so, it is
enough to measure how much the tracker time series deviates with respect to the index one: the

2GlobalSearch algorithm description: https://it.mathworks.com/help/gads/how-globalsearch-and-multistart-
work.html

3The constituents prices were expressed in different currencies. Considering the weekly time series of exchange
rates, all values has been converted into US dollars.
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4.3. Methodology

logic is to subtract the benchmark return to the return of the aforementioned portfolio for each
period of the time series and then calculate the variance of the sum of these deviations. The
lowest the variance results, the better the index is tracked.

Thus, the project implementation starts by modifying the approach proposed by Fan (2012)
in order to perform, instead of the minimization of the portfolio risk (variance), as shown in
Section 2.4, the minimization of the TEV. Indeed, if we consider the minimization problem,

wopt = min
w

T EV = min
w

Var
[
Rp−RB

]
(4.2)

where Rp is the tracker return and RB is the return of the benchmark, it is possible to rewrite it
as

min
w

Var
[
w′Rp−RB

]
= min

w
Var
[
w′Rp−w′1RB

]
=

min
w

Var
[
w′(Rp−1RB)

]
= min

w
Var
[
w′P
] (4.3)

where P corresponds exactly to the matrix containing the weekly deviations in returns between
each constituent and the benchmark. The latter equation can be in this way assimilated to the
one in 2.1 with R being substituted with P.

At this point, without repeating all the passages, but only keeping in mind what has been
proposed by Fan, the minimization of the TEV can be rewritten as:

min
w−n∈Zn

Var(Zn−w′Z∗) = min
w−n∈Rn

E[Zn−w′Z∗]2 . (4.4)

In this case, Zn represents the vector of deviations between a randomly chosen numeraire asset
and the benchmark returns, while Z∗ constitutes the matrix containing the difference between
the n−1 deviations from the benchmark returns and the deviation for the numeraire asset (Z).
The solution of this regression problem provides the optimal portfolio weights that minimize
the Tracking Error Volatility, except for the one of the numeraire asset. The optimal allocation
for the latter is then obtained by imposing the satisfaction of the budget constraint:

wn = 1−
n−1

∑
i=1

wi. (4.5)

Once this optimization problem has been formulated, keeping in mind that we want to re-
duce transaction costs and avoid illiquid positions, Equation 4.4 has to be adapted in order to
perform a sparse index tracking strategy. On the lights of what has been described in Section
3.3, this objective can be easily reached using a penalized regression model.

Finally, the weights of the sparse portfolio that minimize the Tracking Error Volatility are
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obtained by solving the following minimization problem:

(i) wn−1 = min
w−n∈Rn

E
[
Zn−w′Z∗

]2
+k||w||q

s.t 0 < wn−1 < ub
(4.6)

(ii) wn = 1−
n−1

∑
i=1

wi (4.7)

where k represents the tuning parameter that regulates the degree of penalization of the model
and ||w||q = ∑

n−1
i=1 wq + |1−∑

n−1
i=1 wq| identify the `-q norm constraint. Notice that Equation 4.7

guarantees the satisfaction of the budget constraint and that the portfolio weights are forced
to be both positive, in such a way to avoid short-selling, and lower than a fixed threshold ub,
in order to prevent them to be concentrated in only one or few assets, ensuring in this way an
acceptable degree of diversification.

The problem proposed above is solved multiple times using the Matlab code available in
Appendix C.2, iterating the GlobalSearch function for different values of q and k. This proce-
dure allows us to retrieve a wide spectrum of possible optimal solutions with different degrees
of diversification and sparsity4.

Figure 4.2: Number of assets in the tracking portfolios across q and k. Each bar represents one specific
optimal tracking portfolio retrieved after the minimization procedure.

4In particular we solve the minimization problem for q that goes from 0 to 1 with a step of 0.1 and for k that
goes from 0.25 to 2.5 with a step of 0.25. At the end of the cited procedure, the solutions were represented by a 3
dimensional array 104x10x10.
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As shown in Figure 4.2, solving Equation 4.6 for low values of q and high values of k,
provides portfolios having almost all assets weights set to zero, since the regression problem
results to be strongly penalized and its parameters rapidly converge to zero (Figure 2.7). In
the opposite case, instead, the wealth allocation for the tracking portfolio is distributed more
homogeneously among the assets.

In particular, in the example proposed, for all the values of k with q lower than 0.5, the initial
endowment is concentrated in a single asset (blue bars), because of the high magnitude of the k

parameter. If a more smooth path wants to be observed, it is enough to consider smaller values
of k (e.i in the order of 10−3). In this case, however, too many iterations have to be repeated and
this will dramatically increase the computational time.

After the optimization problem has been solved, we are stuck with a 3-dimensional array
containing the weights of a set of portfolios that minimize the Tracking Error Volatility for
different values of q and k, but we have no conditions on the value of the portfolio returns.
Indeed, it is possible that a portfolio with very low TEV, in reality, has much greater returns
than the benchmark portfolio. In order to solve this issue, since the aim of this dissertation is to
replicate the returns of the index, we need to select, among all the optimal portfolios, the one
that exhibits a return that is almost equal to the one of the benchmark.

For doing so, after the array containing the solution path has been restricted, excluding
the tracking portfolios that allocate the wealth on too many assets (high transaction cost) and
the ones which include very few concentrated positions (low diversification), we use a relative
performance indicator, called Information Ratio, to select the portfolio that more accurately
reproduces the returns of the benchmark.

The Information Ratio (IR), calculated as the Tracking Error over Tracking Error Volatility,

IR =
T E

T EV
=

E
[
Rp−RB

]
σ [Rp−RB]

(4.8)

indicates the extra return generated or disrupted by the constructed portfolio, relatively to the
benchmark, for each additional unit of risk. In the case in which its value is positive, it represents
the extra return generated on average with respect to the benchmark. In the case it is negative,
it represents the value disrupted on average by the investment strategy.

In our specific case, as shown in Figure 4.3, we calculate the IR for each portfolio that
minimizes the TEV and among all portfolios at our disposal, since the objective is again to
closely replicate the benchmark, we select the one having the IR closer to zero5. Indeed, if
IR = 0, then E[Rp] = E[RB], meaning that the return of the tracking portfolio in on average
equals to the benchmark return.

5If otherwise we want to consider the portfolio that guarantees the higher level of extra return, we just have to
consider the portfolio that maximize the Information Ratio.
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Figure 4.3: Distribution of the portfolio IRs across q and k. Each bar represents one specific optimal
tracking portfolio retrieved after the minimization procedure. 6

Following the procedure described until now, it has been possible to implement some Buy
and Hold investment strategies that replicate the S&P 100 Global Index from January 2008 until
December 20177. However, even if these strategies permit to obtain acceptable performances
over time and simultaneously contain transaction costs, since the portfolio allocation has been
performed only at the beginning of the investment period, they seem to be not feasible in real
applications. Indeed, the implementation of a Buy an Hold strategy does not take into account
two main problems that usually a portfolio manager have to address:

1. first, the benchmark composition changes over time. In fact, periodically some assets are
excluded and some others are included in the financial index. For this reason, if a Buy and
Hold strategy is carried out, we have to deal with the high probability of having periods in
which the tracking portfolio is not able to closely replicate the target benchmark returns.
This phenomenon is due to the exclusion from the initial investment universe of some
assets that have been subsequently included within the index constituents;

2. second, the manager of a passive fund have to deal with client capital flows. Indeed, dur-
ing a long investment period, like the one we are considering, might happen that some
investors decide to cash out or cash in from the investment fund. In these cases, the port-
folio has to be properly rebalanced to compensate for the withdrawal of funds or to make
use of the newly available resources.

7Namely the procedure has been repeated 3 times considering different levels of upper bound for each portfolio
weights. In particular we consider 1, 0.2 and 0.1 as upper bounds.
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With the purpose of solving these issues, in the second part of the project, we decide to
implement a dynamic approach, that allows the portfolio manager to periodically reallocate the
wealth at its disposal and modify the portfolio weights. In order to do so, we consider January
2013 as our starting point, with a rolling time windows of 260 observation (5 years). That stated
we determine, exploiting the same procedure used in the static approach, the optimal portfolio
weights for that specific period, considering as inputs the weekly returns of the index con-
stituents for the prior 5 years. From that point onward, we update the portfolio on a periodical
basis until the end of the investment period set at December 2017.

The dynamic approach is performed considering two different reallocation strategies. The
first one plans to readjust the portfolio weights when the benchmark constituents change, leav-
ing otherwise the portfolio weights unaltered. This type of strategy permits to obtain more
reliable and accurate replication of the benchmark index and, in addition, to hold in check
transaction costs.

The second one, instead, executes the reallocations of portfolio weights on a monthly basis,
in such a way to simulate the behavior of a passive portfolio manager that is forced to deal also
with the problem of capital inflows and outflows. Each month the minimization is repeated: if
the index composition at time t is equal to the one at time t− 1, then the value of q calibrated
in the previous period is considered, iterating the minimization only for different values of k;
otherwise, if the benchmark composition changes between the two periods, the minimization is
again performed from the beginning8. This type of strategy is the one that, presumably, better
simulates the condition in which a portfolio manager operates, but also the one that produces
higher transaction costs.

4.4 Performance indicators

Once the strategies have been implemented, both following the Buy and Hold and the dynamic
approaches, we proceed with an evaluation of the portfolios performances. In fact, after we
obtain various results, setting different constraints on weights as No-Short selling, upper bound
at 0.2 and upper bound at 0.1; we want to retrieve which is the strategy that guarantees the
best tracking of the benchmark index. Thus, that said, our aim it is not to evaluate the tracking
portfolio performances in absolute terms, but relative to the main index.

In order to do so, the first indicator we consider is the cumulative return of the portfolio.
Once the optimal portfolio weights for each strategy are obtained from the GlobalSearch al-
gorithm9, we calculate the weekly realized returns of the portfolios by multiplying the vector

8This procedure allow us to avoid unnecessary iteration that slow down the computation.
9At a given end of month t, we have to determine the optimal allocation for time t + 1 considering only the

information available up to time t
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of the assets weights w for the vector of assets returns r. Then from the realized returns of the
tracking portfolios Ri we calculate their cumulated returns as:

Cum. Rett =
[ t

∏
i=1

(1+Ri)
]
−1 (4.9)

The cumulated return of each strategy represents the aggregate amount an investment has gained
or lost over time, without considering the time period involved. In our specific case, we graph-
ically analyze the cumulated returns of the constructed portfolios, comparing them with the
benchmark cumulated return. The closer and the more similar the cumulated return paths are,
the better the strategy replicates the benchmark.

The second indicator that we use in order to identify the best tracking portfolio, is the annu-
alized standard deviation of the weekly portfolio realized returns

Ann. Volatilityt =
52

∑
i=1

(Ri−Rt)
∗√52 (4.10)

where Rt is simply the mean of the weekly returns of year t:

Rt =
1

52

52

∑
i=1

Ri (4.11)

This quantity refers to the amount of uncertainty or risk assigned to a given portfolio. A high
level of volatility (standard deviation of portfolio returns) indicates that the price of the security
can change dramatically within the considered time period in either directions. A low level
of volatility, instead, testify that the value of the fund does not fluctuate too much, tending to
be steady. For our purpose, considering portfolios with the same returns or similar cumulated
returns, the one with lower volatility is preferable.

Concentrating now on the dynamic approach, the first relevant piece of information for
strategies comparison is offered by the analysis of the portfolio weights. Indeed, we are imme-
diately able to investigate their evolution over time by simply looking at the area plots of their
values. We can state whether the wealth is too much concentrated in a specific asset, making the
portfolio greatly exposed to single stock risk, or if the portfolio composition variates too much
between subsequent periods. Thereafter, the latter investigation can be intensively analyzed by
having a look at the so-called Approximated Turnover10, representing the sum of the deviations

10The term Approximated is used because the weights assigned to a specific asset class at the beginning of each
period, are not the same weights we observe at the end of the month just before the implementation of the allocation
for the following month
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in weight over two subsequent periods in absolute terms, divided by 2:

Appr. Turnover =
1
2
|wt−1−wt |. (4.12)

This indicator offers a more complete understanding of which is the portfolio rotation over
time and of the trading activity the portfolio manager has to be involved in, in order to adjust
the portfolio composition. In the formulation above, the turnover has always a value included
between 0 (in case of no stock’s sale or purchase) and 1 (in the special case the portfolio com-
pletely changes) and it is able to monitor the changing in portfolio weights over time. However,
another interesting formulation of the approximated turnover might be obtain if we drop the
division by two, retrieving in this way the amount of trades executed: in this second form, the
approximated turnover can be utilize to directly calculate the transaction cost in which the man-
ager incurs while implementing a strategy. To do so, we simply have to multiply the turnover
of each period for a fixed quantity representing the “fees” applied for the weekly change in the
portfolio weights, in our case set at 20 bps11:

Transaction Costt = |wt−1−wt |∗0.0020. (4.13)

Subtracting this quantity to the realized portfolio return we can then obtain the cost adjusted
returns12

Ad justed Ret.= Rt−Transaction Costt . (4.14)

Since the purpose of the dissertation is again the one of creating a tracking portfolio that keeps
under control transaction costs, this is a key indicator we should carefully take into considera-
tion.

Finally, in order to have a more complete overview of the results we obtained, the IR and
Semi-IR for the constructed portfolios are computed. In fact, if in the static case the calculation
of IR is obtained straightforwardly from the solution of the TEV minimization problem, in the
former case it has to be calculated once the final portfolio returns are obtained. Each time the
reallocation is performed, the portfolio tends to have a different IR due to portfolio rotation.

Spending few words also on the Semi-IR indicator, it is nothing more than the Information

11This amount covers transaction costs to execute and process the trades (include brokerage commissions and
bid-ask spreads).

12It has to be specified that in this case the transaction costs are inputed at the end of each month in which the
reallocation takes place. Since the returns Rt are instead calculated on weekly basis, the transaction costs are going
to be converted and subtracted to the return of the last week of each month.
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ratio, but computed using a TEV calculated only on downside deviations:

Semi− IR =
T E

Semi−T EV
=

E
[
Rp−RB

]
σ

[
Rp−RB| (Rp−RB < 0)

] . (4.15)

Indeed, the standard deviation has the great drawback of treating all deviations from the mean
in the same way (positive and negative). However, investors are generally more concerned with
negative divergences than with positive ones: using downside deviation we can solve this issue
by focusing only on downside risk.
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Chapter 5

Empirical Evidence

In this Chapter, the empirical results are going to be presented and analyzed, considering both
the Buy and Hold strategies and the dynamic approaches. Comparison of cumulated returns,
volatilities, weights composition over time and performance indicators between different strate-
gies are examined, in order to determine which is the portfolio that most closely tracks the S&P

100 Global Index.

5.1 Results for the static approach

As already anticipated, the first approach we propose consists in the implementation of some
Buy and Hold strategies considering, for instance, the No-Short selling constraint and two dif-
ferent type of upper bound constraints (UB) fixed, respectively, at 2% and 1% of the total port-
folio weights. This first simple approach, even if we already know it is not implementable in the
real world, gives us some important remarks and hints about what we are going to obtain when
the working environment becomes more complicated.

The first important piece of information we get from the minimization procedure refers to
the number of selected assets included in the portfolios. As already specified, the GlobalSearch
has been run without setting any bounds on the maximum number of assets acceptable in each
portfolio, however, in all three cases, the maximum number of stocks converges to 20. This
result underlines the goodness of penalized regression in inducing sparsity within the portfo-
lio weights and in cutting transaction costs: a portfolio composed by 20 active positions at
maximum is much more convenient and manageable compared to one portfolio containing 100
assets.

Focusing again on the distribution of the number of assets across different values of q and
k, in particular comparing the No-Short selling and the 0.2 upper bound cases shown in Figure
5.1.a and Figure 5.2.a, we can appreciate how they appear to be quite similar at first sight. In

55



5.1. Results for the static approach

reality, the distributions of the weights are dramatically different: considering two portfolios
with the same number of open positions, in the case of No-Short selling we have the possibility
of observing high concentration in some assets (up to 67% of the total wealth) and negligible
weights is some others (e.i 0.012%). In the 0.2 upper bound case, instead, even if the selected
assets are approximately the same, the amount of wealth is smoothly distributed among different
stocks.

Figure 5.1: Number of assets and IR distributions for portfolios minimizing the TEV with No-Short
selling constraint.

Figure 5.2: Number of assets and IR distributions for portfolios minimizing the TEV with 0.2 upper
bound.

The differences in composition between the two portfolios, can be better emphasized by
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looking at the distribution of the IR. Indeed, observing Figures 5.1.b and 5.2.b, we can appre-
ciate how, basically for all q and k, the values for the 0.2 UB exhibits a much lower IR with
respect to the No-Short selling case.

Moving now to the case of 0.1 UB (Figure 5.3), we can see how the number of assets
included in the portfolios are slightly different with respect to the other two cases, most of
all for values of q lower than 0.6. In fact, in this circumstance we do not have any portfolio
concentrated in one single asset, but the less diversified portfolio is composed by at minimum 5
stocks. Moreover, considering that the Information Ratios are actually lower than in the previous
two cases, we might expect that this will be the strategy providing us with the portfolio that
better replicates the benchmark index.

Figure 5.3: Number of assets and IR distributions for portfolios minimizing the TEV with 0.1 upper
bound.

Even if, the distribution of the Information Ratios and the number of active positions give
us a first general idea of what we obtained, other important factors have to be taken into account
in order to determine which is the preferable portfolio. Indeed, if on one side we have already
remarked the ability of penalized regression and sparse index tracking to reduce transaction
costs, on the other side the inclusion of only 20 assets within the tracking portfolios might
raise serious questions about their reliability in term of diversification. In order to remove these
doubts, after the portfolio with minimum IR has been chosen for each of the three strategies, a
much more detailed analysis about portfolio weights is carried out.

Table 5.1 lists the name of the stocks included in the portfolio with minimum IR for each
strategy and their respective weights. As you can notice, the selected securities are for the most
part the same: 11 assets appear in all the portfolios with almost the same weights, 5 appear
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in two of the three strategies and only 5 exclusively characterize one of them. Indeed, this
evidence proves the consistency of the GlobalSearch in picking the assets that better describe
the benchmark index since, changing the imposed constraints, we induce some notable changing
in the weights allocation, but not in the selected stocks.

Tracking No-Short selling Tracking with 0.2 upper bound Tracking with 0.1 upper bound

BHP BILLITON 0.12 BHP BILLITON 0.13 ALPHABET ’C’ 0.07
BP 0.05 BP 0.05 BANCO SANTANDER 0.01
BRISTOL MYERS SQUIBB 0.04 BRISTOL MYERS SQUIBB 0.04 BHP BILLITON 0.10
CITIGROUP 0.00 DEUTSCHE TELEKOM 0.06 BP 0.07
DEUTSCHE TELEKOM 0.06 DOWDUPONT 0.20 BRISTOL MYERS SQUIBB 0.07
DOWDUPONT 0.31 ENGIE 0.03 DEUTSCHE TELEKOM 0.07
ENGIE 0.03 GLAXOSMITHKLINE 0.01 DOWDUPONT 0.10
LINDE 0.14 KIMBERLY-CLARK 0.01 KIMBERLY-CLARK 0.04
L’OREAL 0.03 LINDE 0.20 LINDE 0.10
NATIONAL GRID 0.02 L’OREAL 0.03 L’OREAL 0.06
PROCTER & GAMBLE 0.02 NATIONAL GRID 0.03 NATIONAL GRID 0.04
TEXAS INSTRUMENTS 0.08 PROCTER & GAMBLE 0.03 PROCTER & GAMBLE 0.09
VIVENDI 0.03 SCHNEIDER ELECTRIC SE 0.00 SCHNEIDER ELECTRIC SE 0.04
VODAFONE GROUP 0.03 TEXAS INSTRUMENTS 0.08 VODAFONE GROUP 0.05
WALMART 0.02 UNILEVER DUTCH CERT. 0.01 WALMART 0.08

VIVENDI 0.04
VODAFONE GROUP 0.04
WALMART 0.03

Table 5.1: Summary table for optimal portfolio weights considering the Buy and Hold strategies across
different upper bounds settings. The weights are expressed in percentage and sum to one for each

strategy.

At first glance, if we would like to select among the three allocations the one exhibiting the
higher diversification, the choice will for sure fall to the 0.2 UB strategy because it contains
more stocks, 18 assets, compared to the 15 of the others. However, diversification is not only a
matter of how many assets are included in the portfolio, but also the nature of these securities
has to be taken into account. For example, a portfolio containing 30 stocks coming from the
same industry or the same geographical area, might result to be less diversified compared to a
portfolio containing only 15 assets, but uniformly spread among different industries and nations.

Thus, in order to clarify this point, we retrieve for each stock some information about their
industry and their geographical area, using the classification again provided by DataStream-

Thomson Reuters. What we obtain is that the portfolio containing 18 stocks, in reality, does not
add anything in term of diversification with respect to the other two. Quite the opposite, if we
consider the classification by sectors, the 0.2 UB is for the 83% concentrated in the Industrial
Sector against the 67% of the others (Appendix B.4). On the other hand, if we consider the
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classification of stocks across geographical areas, all the portfolios exhibit approximately the
same level of diversification with almost 40% of the wealth concentrated in US stocks.

This particular distribution of portfolio weights, for instance, reflects the one observed from
the beginning in the benchmark index. In fact, the S&P 100 Global is, per se, highly concen-
trated in Industrial USA companies and, since we are trying to replicate this index, we can
expect nothing but a proportional diversification for the constructed portfolios.

Moving forward in our analysis, probably the most important and glaring indicator of each
tracker performance, considered relatively to the benchmark index, is the cumulated return.
Indeed, looking at the trends of the cumulated returns within the considered investment period
(Figure 5.4), we can notice how not only all the constructed portfolios closely follow the path
of the S&P 100 Global, but they also guarantee slightly better cumulated returns in all the 10
years horizon. Thus, a double accomplishment has been reached: selecting less than 20 stocks
we have been able not only to closely replicate the benchmark but also to obtain a small extra
return.

Comparing the trends for the tracking portfolios, we can appreciate how, initially, they are
basically the same for all the three of them and only after January 2012, the tracker with No-
short selling exhibits a higher cumulated return, with a consequently lower tracking ability.

Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan 2016 Jan 2018

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Cumulated Returns with Different Buy and Hold Strategies

S&P 100

Tracker No-Short

Tracker01

Tracker02

Figure 5.4: Graphical representation of the trackers cumulated returns with No-Short selling constraint,
0.2 upper bound and 0.1 upper bound.

Another phenomenon that we want to underline, is the fact that, visually, the three cumulated
returns tend to get closer and closer with respect to the benchmark, when reaching the end of
the period. We might suppose this behavior is strongly linked to the fact that approaching the
end of the investment period, the assets included into the benchmark entirely matched the 104
stocks we considered for the implementation of the Buy and Hold strategy (Index composition
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at December 2017). Instead, for periods far from the cited date, some other constituents, that
in the past has been included in the S&P 100 Global and that we exclude from our investment
universe, lead to unavoidable discrepancies in cumulated returns.

Both the 0.2 and 0.1 UB strategies guarantee almost the same cumulated returns provided
by the benchmark index and, in addition, they do it presenting a much lower level of volatility.
Indeed, analyzing the annualized volatility in Figure 5.5 we can appreciate how the constructed
portfolios generate much lower risk for a hypothetical investor, in particular in the first part of
the investment period.
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Figure 5.5: Graphical representation of the annualized volatility for the trackers with No-Short Selling
constraint, 0.2 upper bound and 0.1 upper bound.

So, we can conclude that the constructed sparse index trackers are able not only to closely
replicate the benchmark index and provide superior cumulated returns, but they indeed do so
also reducing the risk at which the investor is exposed. Moreover, if we were to choose one
single portfolio among the three proposed, considering the reflection discussed above on diver-
sification and number of active positions and, in addition, looking the summary statistics shows
in Table 5.2, we might finally conclude that the better alternative is represented by the track-
ing portfolio with 0.1 UB. It, indeed, guarantees the best TE, equals to 0.004, a positive IR of
0.0054 and a degree of diversification that is in line with the one delivered by the benchmark
index.

Mean Median q1 q5 q95 q99 StDev Min Max IR Cum. Ret.

S&P 100 0,071 0.16 -8.18 -4.13 4.07 7.25 2.67 -14.54 13.90 0 1.200
TrackerNS 0,052 0.09 -3.84 -2.27 2.37 3.40 1.37 -5.98 5.03 0,0080 1,249
Tracker02 0,058 0.10 -3.95 -2.38 2.41 3.51 1.42 -6.27 5.28 0,0054 1,284
Tracker01 0,075 0.08 -4.27 -2.52 2.60 4.17 1.53 -6.80 5.34 0,0018 1.390

Table 5.2: Summary table containing some performance indicators enabling to identify the best strategy
among the ones proposed.
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5.2 Results for the dynamic approaches

As already mentioned, even if the Buy and Hold approach guarantees good performances, it is
not implementable in the real world since it considers the allocation procedure from a backward
viewpoint, it does not take into account the variation in the benchmark index constituents and
it does not consider the possible client capital flow during the investment period. Hence, using
two different dynamic approaches, we try to overtake these issues by simulating the behavior of
a portfolio manager that on a periodical basis, for example at time t, have to determine, knowing
all the information about stocks returns up to time t-1, the optimal portfolio weights.

5.2.1 Portfolio reallocation at index constituents variation

In the first case, we decide to repeat the optimization procedure and reallocate the wealth among
the portfolio weights each time the index composition varies. Since, in this circumstance, the
analysis of the weights is much more complicated, due to their changing over time, for sick of
simplicity we graphically present the portfolio rotation using area plots.

Figure 5.6 shows the legends of all the area plots provided below, in order to guarantee a
more clear understanding of which assets are included in the various portfolios. As you can see,
as in the Buy and Hold case, the three approaches are characterized by high robustness in term
of selected stocks and in term of diversification: all the portfolios are mainly concentrated in
the industrial sector. Furthermore, the No-Short selling portfolio is the one that in the five years
has wield the higher number of assets, 34 to be exact, against the 32 of the 0.2 UB and the 31
of the 0.1 case.

Figure 5.6: Legends of the area plots containing the portfolio rotations over the investment horizon.
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Portfolio weights over time with No-Short Selling Constraint
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Figure 5.7: Rotation of portfolio weights with No-Short selling constraint

Portfolio weights over time with 0.2 Upper Bound
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Figure 5.8: Rotation of portfolio weights with 0.2 upper bound

Portfolio weights over time with 0.1 Upper Bound
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Figure 5.9: Rotation of portfolio weights with 0.1 upper bound
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Moving to the graphical representations of the portfolio weights over time (Figure 5.7, Fig-
ure 5.8 and Figure 5.9) we have, first of all, to analyze the particular and very similar trends
followed by the three portfolios. These paths, by construction, present constant weights for
fairly long periods and spikes concurrently with the variation of the index constituents. Indeed,
especially in Figure 5.7 and Figure 5.8, great spikes might be observed around April 2014,
September 2015 and July 2017. Only to give an example, in the first case, 7 assets vary in total:
some stocks have been removed from the index, namely FUJIFILM HOLDINGS, NOKIA and
WESTFIELD GROUP; and some others as ALPHABET A, ALPHABET C, APPLE and WEST-

FIELD has been added. This variation induces, mainly in the No-Short selling case, a great
level of turnover due to the fact that the portfolio weights have to be adapted considering the
new index composition. Furthermore, the new allocation for April 2014 exhibits almost 50% of
the invested wealth concentrated into the just included ALPHABET C. The high concentration
in one specific asset is, perhaps, a source of impracticality for the aforementioned portfolio that,
however, might be easily overtaken by imposing the satisfaction of upper bound constraints.

Another important point we want to stress, considering the strategies with upper bounds,
regards the weights assigned to the numeraire assets, randomly chosen during the set-up of the
minimization problem. In fact, since the weight for these particular stocks have been retrieved
subtracting to 1 the sum of the other n-1 assets, in order to respect the budget constraint, both
in Figure 5.8 and Figure 5.9 they do not satisfy the upper bound constraints: WESTFIELD and
WALMART have weights greater than the 20% of the total portfolio.

As done for the Buy and Hold case, Figure 5.10 shows the path of the portfolio cumulated
returns.
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Figure 5.10: Graphical representation of the trackers cumulated returns with No-Short selling
constraint, 0.2 upper bound and 0.1 upper bound when the reallocation is performed at index variation.

As expected, the tracking portfolios are able to replicate the benchmark index even better,
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compared to the previous case. Besides, differently from what we can observe in Figure 5.4,
they are not able to guarantee superior cumulated returns neither during the whole period nor at
the end of it, apart for the case with No-Short selling. Even though the latter portfolio provides
advantages in term of cumulated returns, however it poorly replicates the benchmark index and
it forces the investors to be exposed to highly concentrated positions.

Looking at the Annualized Volatilities in Figure 5.11, we can undoubtedly appreciate how
the Buy and Hold strategies guarantee a much lower level of risk. Indeed, the volatilities of the
trackers considered in this section are much more in line with the one of the benchmark index,
apart from the 0.1 UB case that, in the first period, presents a slightly greater standard deviation.
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Figure 5.11: Graphical representation of the annualized volatility for the trackers with No-Short selling
constraint, 0.2 upper bound and 0.1 upper bound when reallocation is performed at index variation.

As final remarks, to reinforce what has been shown from a graphical viewpoint, we look at
some numerical values presented in Table 5.3, containing the summary statistics for both the
tracking and the benchmark portfolios. In this case, only the tracker with No-Short selling con-
straint provides, on average, a superior return compared to the benchmark. Instead, considering
both the IR and the Semi-IR the tracker with 0.2 UB guarantees the best performances, closely
replicating the benchmark with an IR of 0.0041 and a cumulated return at the end of the period
that is 0,0789 lower than the one generated by the S&P 100 Global.

Mean Median q1 q5 q95 q99 StDev Min Max IR SemiIR Cum.Ret

S&P 100 0,16209 0,31584 -5,27394 -3,01053 2,68516 4,27131 1,71568 -9,28902 5,85810 0 0 1,4597
TrackerNS 0,19758 0,19949 -4,15697 -3,03246 2,98226 5,33730 1,92270 -9,39407 8,25371 0,00564 0,01912 1,5842
Tracker02 0,14031 0,17521 -3,89735 -2,68165 2,86988 4,27434 1,73078 -8,86516 6,70975 -0,00412 -0,01261 1,3798
Tracker01 0,13932 0,10018 -4,13437 -2,82683 2,88152 4,20227 1,69616 -8,30595 5,76603 -0,00450 -0,01358 1,3783

Table 5.3: Summary table containing performance indicators gross of transaction costs, enabling to
identify the best strategy among the ones proposed.
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The results proposed until now, are the ones obtained without taking into account the impact
of transaction costs on the portfolios realized returns. In order to give a more faithful picture
of the reality, we should indeed include in the analysis the costs at which the portfolio man-
agement is exposed during the implementation of the strategies. In doing so, we consider the
approximated turnovers plotted in Figure 5.12.

As you can see, the portfolio variation are quite rare and highly concentrated in the point in
time in which the index composition changes. The paths for the three strategies are, obviously
very similar, with extremely high turnover concurrently in April 2014, November 2015 and July
2017.
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Figure 5.12: Approximated turnover considering reallocation at index variation for the three strategies
proposed.

From these values, considering a cost of 20 bps for each portfolio weight adjustment, we
calculate the adjusted returns and retrieve again all the summary statics, subtracting the transac-
tion costs to the portfolio realized returns. The values obtained, reported in Table 5.4, are quite
the same of the ones observed in the previous case. In fact, the impact that transaction costs
have on tracking portfolios are very tiny and homogeneous for all the strategies: at the end of
the period they account only for 0.010% of the initial investment.

Mean Median q1 q5 q95 q99 StDev Min Max IR SemiIR Cum.Ret Costs

S&P 100 0,16209 0,31584 -5,27394 -3,01053 2,68516 4,27131 1,71568 -9,28902 5,85810 0 0 1,4597 0
TrackerNS 0,19754 0,19949 -4,15697 -3,03246 2,98226 5,33730 1,92268 -9,39407 8,25371 0,00564 0,01910 1,5840 0,010
Tracker02 0,14027 0,17521 -3,89735 -2,68165 2,86988 4,27434 1,73077 -8,86516 6,70975 -0,00413 -0,01263 1,3797 0,010
Tracker01 0,13927 0,10018 -4,13437 -2,82683 2,88152 4,20227 1,69616 -8,30595 5,76603 -0,00451 -0,01361 1,3782 0,011

Table 5.4: Summary table containing some performance indicators calculated using returns including
transaction costs.
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5.2.2 Portfolio reallocation on a monthly basis

In the second case, differently from what has been previously done, we repeat the optimization
procedure and reallocate the constructed portfolios on a monthly basis, in order to be able to
improve the replication ability of the trackers and to adjust their weights consequently to the
hypothetical client capital flow.

Figure 5.13 shows all the stocks that, at least for once, have been included in the tracking
portfolios. Considering the various strategies, we can still appreciate great similarities among
the selected stocks, but also observe, considering them relatively to the ones coming from the
previous dynamic approach, how they exhibit higher portfolio rotation. Indeed, reallocating
weights distributions on a monthly basis, a much larger number of stocks is included at least
once in the trackers. In particular, the No-Short selling portfolio contains 46 stocks against the
34 of the previous case, the 0.1 UB portfolio include 17 securities more with respect to the 31
considered above and the 0.2 UB tracker rotate 62 assets against the 32 analyzed earlier.

This evidence clearly indicate how the last approach is the one that wields the higher number
of stocks among the 134 taken as inputs of the minimization problem and, thus, let us strongly
believe that it will also be the best in term of replication power.

Figure 5.13: Legends of the area plots containing the monthly portfolio rotations.
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Portfolio weights over time with No-Short Selling Constraint

Jan 2013 May 2013 Oct 2013 Mar 2014 Aug 2014 Jan 2015 Jun 2015 Set 2015 Apr 2016 Nov 2016 Feb 2017 Jul 2017 Nov 2017
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.14: Monthly rotation of portfolio weights with No-Short selling.

Portfolio weights over time with 0.2 Upper Bound
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Figure 5.15: Monthly rotation of portfolio weights with 0.2 upper bound.

Portfolio weights over time with 0.1 Upper Bound
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Figure 5.16: Monthly rotation of portfolio weights with 0.1 upper bound.
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Looking at the graphical representations of portfolio weights over time, presented in the
area plots in Figure 5.14, Figure 5.15 and Figure 5.16, we can appreciate how the results are
partially different compared to the ones obtained in the dynamic approach with reallocation
at index variation. In fact, in the latter figures, the volatilities of the weights are much higher
because of the more frequent portfolio reallocation, but at the same time their paths appear to be
smoother over time. The weights, in this case, slightly change time by time at a monthly basis,
but they still adjust the most concurrently with the variation of index constituents.

For instance, if we individually analyze the portfolio rotations, we can observe how in the
No-Short selling case the huge concentration in ALPHABET C still persists in the period fol-
lowing April 2014. Although, if the evidence in Figure 5.7 shows a sudden drop from 0.5 to 0.1
of its weight, in the latter case we can appreciate a gradual reduction and stabilization of it.

On the other hand, considering the 0.2 and 0.1 UB cases, we have to remark how they
homogeneously distribute the wealth among an acceptable number of assets, thus enabling to
diversify the risk among different securities. In the case of 0.2 UB the active positions registered
go from a minimum of 9 in January 2013 to a maximum of 31 in May 2014, with an average
of 14 open positions in each period. On the other hand, in the 0.1 UB case, the tracker contains
from a minimum of 9 assets in the periods May-June 2014 and August-September 2016 up
to a maximum of 24 securities in March-April 2016 with a slightly higher mean of 16 open
positions.

Deepening now into the analysis of cumulated returns, we want to stress the fact that, as
expected, proceeding with a monthly reallocation, we are able to obtain the best performances
for what concerns the benchmark replication.
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Figure 5.17: Graphical representation of the trackers cumulated returns with No-Short selling
constraint, 0.2 upper bound and 0.1 upper bound when the reallocation is performed on a monthly basis.

As shown in Figure 5.17, the 0.1 UB strategy provides, from July 2015, superior cumulated
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returns with respect to the benchmark and at December 2017, it guarantees a cumulated return
equals to 1,543, 0.0083 higher than the one of the index, while exhibiting also a good level of
diversification. Considering, instead, the tracking portfolios with 0.2 UB and No-Short selling
constraint, they are characterized by almost identical patterns, apart from the months between
April 2014 to November 2014: the period in which the No-Short selling portfolio was highly
concentrated in ALPHABET C. The performances of the two strategies appear to be very close
to the one of the index, so as to provide, at the end of the period, a cumulated return of 1,453
and 1,441 respectively. These two, at the of the story, represent the tracking portfolios that most
closely replicate the returns of the S&P 100 Global: they guarantee cumulated returns that are
only 0.0118 and 0.0069 lower than the benchmark one, indeed maintaining for the greatest part
of the period a slightly lower annualized volatility (Figure 5.18)

Jan 2013 Mar 2013 Oct 2013 Feb 2014 Jul 2014 Nov 2014 Apr 2015 Sep 2015 Jan 2016 Jun 2016 Nov 2016
0

5

10

15

20

25

30
Portfolios Annualized Volatility

S&P 100

Tracker No-Short

Tracker 01

Tracker 02

Figure 5.18: Graphical representation of the trackers annualized volatility with No-Short selling
constraint, 0.2 upper bound and 0.1 upper bound when the reallocation is performed on a monthly basis.

These conclusions, reached through a graphical analysis of the results, are confirmed and
reinforced if we look at the numerical values in Table 5.5. Looking at the values for the mean
and the cumulated returns, we can appreciate how, as already visually noticed, only the tracker
with No-Short selling is able to guarantee superior average returns compared to the benchmark.

Mean Median q1 q5 q95 q99 StDev Min Max IR SemiIR Cum.Ret

S&P 100 0,16209 0,31584 -5,27394 -3,01053 2,68516 4,27131 1,71568 -9,28902 5,85810 0 0 1.4597
TrackerNS 0,16006 0,15741 -3,98840 -2,73932 2,77436 4,83406 1,71024 -8,90282 4,98092 -0,00038 -0,00115 1,4528
Tracker02 0,15581 0,16139 -3,64431 -2,72945 2,43528 4,51733 1,64637 -8,96708 5,02749 -0,00126 -0,00370 1,4410
Tracker01 0,18211 0,21336 -3,56997 -2,65214 2,59906 4,42746 1,62478 -9,07260 5,31109 0,00418 0,01176 1,5429

Table 5.5: Summary table containing some performance indicators for the monthly adjusted portfolios.
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Moreover, considering the values assigned to the Median, we have to underline a crucial dif-
ference between the behavior of the benchmark and the ones of the tracking portfolios. Indeed,
if the values of the second quartile are very similar to the ones of the mean for the constructed
portfolios, that is not the case if we consider the benchmark index, for which the mean has a
value that is almost half of the median. So, in general, this testify the presence of some outliers
in the very low end of the distribution: half of it is concentrated around 0,31, but there are some
very low returns that drag down the average performance of the entire period. For the trackers
instead, as shown also in Figure 5.18, the volatility of the returns is reduced simultaneously
with the presence of outliers in the left tale, guaranteeing a much more stable and centered dis-
tribution of returns. This evidence can be also appreciated considering the values for the q1 and
q5 quantiles: they are indeed much lower with respect to the ones of the benchmark.

Spending few words on the Information Ratio and Semi-IR, yet they confirm what has been
said during graphical analysis of the cumulated returns: the monthly reallocation allows us to
obtain the trackers that most closely replicate the returns of the S&P 100 Global with IRs of
-0.00038 and -0.00126.

As we already said before, the results exposed until now do not take into account the impact
that the transaction costs have on the realized returns of the tracking portfolios. Differently from
what we observed using the previous approach, their effect on trackers performances are way
more important: the approximated turnovers are higher and, most of all, more frequent (Figure
5.19). For the first two strategies the trends of the approximated turnovers are basically the same
but with a small difference in April 2014, where the turnover of the No-Short selling portfolio
is slightly higher. On the other side, the 0.1 UB case presents higher spikes toward the end of
the period and so presumingly a higher level of transaction costs.
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Figure 5.19: Approximated turnover for strategies with monthly reallocation.

Thus, in the monthly reallocation case, the transaction costs have a much greater impact on
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the performance of the trackers as appreciable in Table 5.6. In the case of No-Short selling and
0.2 UB, the transaction costs are more than doubled, accounting respectively for 0.0024% and
0.0026% of the amount initially invested. In the 0.1 UB case, they are even higher, reaching an
amount of 0.0034%.

Mean Median q1 q5 q95 q99 StDev Min Max IR SemiIR Cum. Ret. Costs

S&P 100 0,16209 0,31584 -5,27394 -3,01053 2,68516 4,27131 1,71568 -9,28902 5,85810 0 0 1.4597 0
TrackerNS 0,15997 0,15741 -3,98860 -2,73975 2,77429 4,83406 1,71021 -8,90344 4,98066 -0,00040 -0,00120 1,4524 0,024
Tracker02 0,15571 0,16139 -3,64431 -2,73000 2,43528 4,51710 1,64636 -8,96763 5,02749 -0,00128 -0,00376 1,4406 0,026
Tracker01 0,18198 0,21306 -3,56997 -2,65214 2,59906 4,42678 1,62476 -9,07299 5,31109 0,00415 0,01168 1,5424 0,034

Table 5.6: Summary table containing some performance indicators for the monthly adjusted portfolios
net of transaction cost.

Despite of the impact of transaction costs, the 0.2 UB strategy still exhibit the best per-
formances among all the constructed portfolios, with excellent values for both IR, equals to
-0.00128, and a Semi-IR equals to -0.00376.
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Conclusions and future works

Sparse index tracking is a passive portfolio management strategy that aims to replicate the
performance of an index by using only a small fraction of its constituents, in such a way to
reduce transaction costs and avoid illiquid positions. The problem is usually formulated as an
optimization problem with the objective to minimize a given distance measure between the
tracking portfolio and a benchmark index.

In this dissertation, starting from the seminal contribution of Fan et al. (2012) that illustrates
the connection between the risk minimization problem and a penalized least-square problem,
we propose a methodology that allows to minimize a given tracking error measure by imposing
a constraint on the q-norm (0 < q < 1) of the portfolio weights. Such penalized regression
model, well-established in the statistical community as a way for performing a simultaneous
model selection, permits to promote sparsity and, therefore, to select and estimate only few
non-zero coefficients of explanatory variables, controlling indeed the degree of diversification
in the tracking portfolio.

Considering as distance measure the Tracking Error Volatility, we solve the minimization
problem working on the S&P 100 Global and implementing three different approaches: a Buy
and Hold strategy, a dynamic approach involving portfolio reallocations at index variation and
a dynamic approach in which the weights have been adjusted on a monthly basis.

From the empirical evidence obtained, we have analyzed, for each of the cited approaches,
the performance of the tracking portfolio with minimum IR imposing, one at the time, the
No-Short selling constraint, the 0.2 UB and the 0.1 UB constraints. In particular, we obtain
in all cases fairly good performances both in term of tracking ability, the worst portfolio is
characterized by an IR of 0.008, and in terms of diversification. In fact, even if the latter is not
excellent in absolute terms, due to the fact that from the beginning the S&P 100 Global is highly
concentrated in USA Industrial stocks, however it preserves in all cases a strong proportionality
in the sectoral and geographical distribution of the stocks with respect to the benchmark.

Considering the trends of cumulated returns, we observe how all the strategies closely follow
the path of the benchmark index, showing or slightly higher or slightly lower cumulated returns
at the end of the investment period, but always guaranteeing a relatively lower level of volatility.
Despite everything, the approach involving the monthly reallocation ended to be not only the
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one that better simulates the conditions in which portfolio managers operate in the real world,
considering the periodical variation of the index constituents and the possible clients capital
flow, but also the one providing the best results, even taking into account the impact that the
transaction costs have on the final return.

Thus, in this dissertation, some important results have been obtained. First, we have shown
how posing the q-norm constraint allows to regularize the index tracking problem, determining
in one single step the number of active weights and their optimal values. Nevertheless, repeating
the optimization procedure for different values of the tuning parameter k and different values of
the q-norm, we have been able to retrieve a wide set of portfolios giving us the opportunity to
choose among various allocation strategies with different characteristics in term of concentra-
tion and number of open positions.

Second, we have highlighted the extraordinary results obtained solving the minimization
problem through the GlobalSearch function, both in term of transaction costs, but also and above
all in terms of tracking accuracy. Indeed, in the proposed cases, we have been able to closely
replicate the performance of the S&P 100 Global by using only approximately one third of the
total index constituents. In particular, from the empirical evidence, one portfolio could be picked
as potential “winner”: the portfolio with 0.2 upper bound in the case of monthly reallocation.
Indeed, it guarantees in each moment a homogeneous distribution of weight across different
assets, it delivers a more than acceptable level of turnover, exposing the portfolio manager to
restraint transaction costs, and it generates a return that is in mean and net of transaction costs
lower but very close to the one of the benchmark index.

Even if the results coming from the empirical evidence are good in term of tracking accuracy
and low transaction costs, the proposed approach evaluates the latter only after the minimiza-
tion procedure has been implemented, without setting in advance any bounds on the level of
approximated turnover. In order to take into consideration also this aspect, in future works we
might consider not only the possibility of implementing the discussed approach referring to
other financial market indexes, but also the one of including a turnover constraint within the
GlobalSearch settings. In order to do so, since the constraints have to be expressed in a linear
form, the minimization problem should be reformulated using a pairwise representation of port-
folio weights. For instance, at time t the portfolio weights might be expressed as the weights at
time t-1 plus the stocks we bought (b) and minus the stocks we sold (s) within the two periods.
In this case, setting some bounds on the absolute value of the difference between b and s, we
might be able to keep under control from the beginning the variation of portfolio weights and,
thus, the transaction costs.
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Appendix A

Markovitz Optimization

Markovitz optimization problem:

min
w

w′Σw

s.t. w′µ = µp

w′1N = 1

(A.1)

In order to solve this problem, the method of Lagrange multipliers to convex optimization (min-
imization) problem subjected to linear constrained is applied.

• Define the Lagrangian:

L(w,λ1,λ2) = w′Σw+λ1(µp−w′µ)+λ2(1−w′1N) (A.2)

• Derive the First Order Condition:
δL
δw = 0 → Σw−λ1µ−λ21N = 0
δL
δλ1

= 0 → µp−w′µ = 0
δL
δλ2

= 0 → 1−w′1N = 0

• Solving for w in term of λ1 and λ2 from the first equation in the system gives:

w = λ1Σ
−1

µ +λ2Σ
−11N (A.3)

• Solving for λ1 and λ2 by substituting (9) in the second and third equations of the system
above the following is obtained:

µp = w′µ = λ1(µ
′
Σ
−1

µ)+λ2(µ
′
Σ
−11N)

1 = w′1N = λ1(µ
′
Σ
−11N)+λ2(1′NΣ

−11N)
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that written is matrix form become:[
µ p

1

]
=

[
a b

b c

][
λ1
λ2

]
(A.4)

where a = (µ ′Σ−1µ), b = (µ ′Σ−11N) and c = (1′NΣ−11N)

With given values of lambda1 and λ2, the solution portfolio has minimum variance equals
to:

σ
2 = w′Σw = λ

2
1 (µ

′
Σ
−1

µ)+2λ1λ2(µ
′
Σ
−11N)+λ

2
2 (1
′
NΣ
−11N) (A.5)

or in Matrix form:

σ2 =

[
λ1

λ2

]′[
a b

b c

]−1[
λ1

λ2

]
(A.6)

• At this point if λ1and λ2 are isolated from (11) and substituted in (12), the expression for
the Efficient Frontier can be retrieved:

σ2 =

[
µ p

1

]′[
a b

b c

]
−1

[
µ p

1

]
=

1
ac−b2 (cµ

2
p−2bµp +a)
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Appendix B

Figures and Tabels

B.1 Summary table for regularization methods

B.2 Data descriptive analysis
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B.3 Summary statistics for all stocks

In order to give an brief overview about the behavior of the constituents composing the
Benchmark, since their number is too large, a split by Sector and Nation has been per-
formed. This has been done simply grouping all the securities appertaining to a given
super-sector or geographical area and then averaging them out without considering their
market capitalization. In such a way the mean return over time for each category is ob-
tained.

B.3.1 Grouped by super-sector

Mean Median StDev Min Max Skew Kurt

Industrial 0.15 0.28 2.42 -10.58 12.72 -0.27 6.64
Utilities -0.08 0.03 2.97 -11.70 17.96 0.12 6.05
Banking 0.06 0.02 5.05 -28.40 29.70 0.24 9.69

Insurance 0.10 0.06 4.72 -21.03 35.87 0.68 12.62
Others 0.06 0.06 4.04 -18.70 20.06 -0.05 8.48
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The figure above shows the trends of the realized cumulated returns in the investment pe-
riod considered. Notice that apart from the Industrial sector, containing the vast majority
of the stocks included in the index (93 out of 134), all other sectors have shown poor
performances that presumably drag down the overall performance of the benchmark.
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B.3.2 Grouped by geographical area

Mean Median StDev Min Max Skew Kurt

UK 0.06 0.06 3.48 -14.43 21.65 0.23 7.14
USA 0.19 0.35 2.35 -12.45 12.34 -0.66 8.17
JAP 0.14 0.24 3.33 -17.40 19.05 -0.34 7.15
AUS 0.02 0.05 3.36 -21.90 17.81 -0.22 8.59
SK 0.36 0.14 4.29 -16.30 12.70 -0.06 3.81

CAN 0.12 0.34 4.15 -23.66 17.91 -0.31 6.81
EU 0.01 0.09 3.63 -12.31 23.27 0.29 7.18
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Analyzing the realized cumulated returns split by Geographical area, it has to be under-
lined that almost all the groups follow the same trend with respect to the Benchmark.
The only strange behaviors is showed in the case of South Korea. Indeed, the only stock
included in this group is the one of Samsung Eletronics and probably this explain the
outstanding performance during last two year considered.
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B.4 Buy and Hold portfolios composition

Industrial Utility Savings

Tracker UC 66,67% 26,67% 6,67%
Tracker 0.2 83% 17% 0
Tracker 0.1 73% 20% 7%

UK USA AUSTRALIA FRANCE GERMANY NETHERLANDS SPAIN

Tracker UC 20% 40% 6.67% 29% 13.33% 0 0
Tracker 0.2 17% 33% 6% 22% 17% 6% 0
Tracker 0.1 20% 40% 7% 13% 13% 0 7%
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Appendix C

Matlab Codes

C.1 Example 1

1 clear;
2 clc;
3 % matrix that contains the average returns of assets
4 MM= [0.04 0.05 0.06 0.07; 0.05 0.05 0.06 0.07; 0.04 0.06 0.06 0.07;

0.04 0.05 0.07 0.07; 0.04 0.05 0.06 0.08];
5 % vector containing assets variances
6 Var= [0.13 0.15 0.16 0.17];
7 stdev= sqrt(Var);
8 corr= 0.6;
9 % covariance matrix

10 for j=1:4
11 for i=1:4
12 MV(i,j)=stdev(1,i)’*corr*stdev(1,j);
13 if i==j
14 MV(i,j)=Var(i)
15 end
16 end
17 end
18 % VARIATION IN MEAN OF ASSETS
19 % Maximum trade -off portfolios: weights , mean
20 wTAN=zeros (5,4);
21 rTAN=zeros (5,1);
22

23 for i=1:5
24 wTAN(i,:)=((MV)\MM(i,:) ’)/sum((MV)\MM(i,:) ’);
25 rTAN(i,:)=wTAN(i,:)*MM(i,:) ’;
26 end
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27 % VARIATION IN VARIANCE OF ASSETS
28 Var1= [0.14 0.15 0.16 0.17];
29 stdev1=sqrt(Var1);
30 for j=1:4
31 for i=1:4
32 MV1(i,j)=stdev1(1,i)’*corr*stdev1(1,j);
33 if i==j
34 MV1(i,j)=Var1(i)
35 end
36 end
37 end
38

39 Var2= [0.13 0.16 0.16 0.17];
40 stdev2=sqrt(Var2);
41 for j=1:4
42 for i=1:4
43 MV2(i,j)=stdev2(1,i)’*corr*stdev2(1,j);
44 if i==j
45 MV2(i,j)=Var2(i)
46 end
47 end
48 end
49

50 Var3= [0.13 0.15 0.17 0.17];
51 stdev3=sqrt(Var3);
52 for j=1:4
53 for i=1:4
54 MV3(i,j)=stdev3(1,i)’*corr*stdev3(1,j);
55 if i==j
56 MV3(i,j)=Var3(i)
57 end
58 end
59 end
60

61 Var4= [0.13 0.15 0.16 0.18];
62 stdev4=sqrt(Var4);
63 for j=1:4
64 for i=1:4
65 MV4(i,j)=stdev4(1,i)’*corr*stdev4(1,j);
66 if i==j
67 MV4(i,j)=Var4(i)
68 end
69 end
70 end
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71 % Maximum trade -off portfolios with different variance: weights ,
mean

72 wTAN1 =(( MV1)\MM(1,:) ’)/sum((MV1)\MM(1,:) ’);
73 rTAN1=sum(MM(1,:)*wTAN1 (1,:) ’);
74

75 wTAN2 =(( MV2)\MM(1,:) ’)/sum((MV2)\MM(1,:) ’);
76 rTAN2=sum(MM(1,:)*wTAN2);
77

78 wTAN3 =(( MV3)\MM(1,:) ’)/sum((MV3)\MM(1,:) ’);
79 rTAN3=sum(MM(1,:)*wTAN3 (1,:));
80

81 wTAN4 =(( MV4)\MM(1,:) ’)/sum((MV4)\MM(1,:) ’);
82 rTAN4=sum(MM(1,:)*wTAN4 (1,:));
83

84 wTANvar =[wTAN (1,:); wTAN1 ’; wTAN2 ’; wTAN3 ’; wTAN4 ’];
85 rTANvar =[rTAN (1,:); rTAN1 ’; rTAN2 ’; rTAN3 ’; rTAN4 ’];
86 %Variation of Weights in percentage due to Mean Variation
87 for a= 2:5
88 VariationWeMean(a-1,:)= ((wTAN(a,:)- wTAN (1,:))./wTAN (1,:));
89 end
90 TotVarWeMean= sum(abs(VariationWeMean ’));
91 %Variation of Weights in percentage due to Variance Variation
92 for a= 2:5
93 VariationWeCov(a-1,:)= (wTANvar(a,:)- wTANvar (1,:))./wTAN (1,:);
94 end
95 TotVarWeCov= sum(abs(VariationWeCov ’));
96

97 figure
98 bar (1:4,[ TotVarWeMean ’ TotVarWeCov ’]);
99 title(’ Figure 4: Sensibility of Portfolio Weights to Variation in

Inputs Estimation ’);
100 legend(’Variation of Mean’,’Variation of Variance ’);

C.2 GlobalSearch with static approach

1 %The aim of this code is to produce an optimization using the
2 %GLOBALSEARCH
3 clear
4 clc
5

6 [data ,text]= xlsread(’S&P 100. xlsx’,’S&P 100 Weekly Mono $’);
7 Dnum=text (4:end ,1);
8 DailyPrices=data (2:end ,:);
9 R=(( DailyPrices (2:( size(DailyPrices ,1)) ,:)./ DailyPrices (1:( size(
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DailyPrices ,1) -1) ,:)) -1)*100;
10 R(isnan(R))=0;
11 Y=R(:,end);
12 R=R(:,1:end -1);
13 Stocks=text (1,2:end -1);
14 %GLOBALSEARCH IMPLEMENTATION
15 %initialization of GLOBALSEARCH
16 q=(0.1:0.1:1);
17 k=(0.25:0.25:2.5);
18 w0=ones(size(R,2) -1,1)/(size(R,2) -1);
19 %pre -allocation
20 wfminTEV=zeros(size(R,2),length(k));
21 wpenTEV_tot=zeros(size(R,2),length(k),length(q));
22 %iterate GLOBALSEARCH for all values of q and k
23 for i=1: length(q)
24 for j=1: length(k)
25 problem = createOptimProblem(’fmincon ’,’objective ’,@(w)

fminsearchTEVGS_q(Y,R,w,k(j),q(i)),’x0’,w0,’options ’ ,...
26 optimoptions(@fmincon ,’Algorithm ’,’sqp’,’Display ’,’off’));
27

28 problem.lb= -ones(size(R,2) -1,1);
29 problem.ub= zeros(size(R,2) -1,1);
30

31 out= fmincon(problem);
32 gs = GlobalSearch(’Display ’,’iter’,’NumTrialPoints ’ ,600);
33 rng(14,’twister ’) % for reproducibility
34 out = run(gs,problem);
35 out=-out;
36 wReg=[out; 1-sum(out)];
37 wpenTEV_q(:,j)=wReg;
38 end
39 wpenTEV_tot (:,:,i)=wpenTEV_q;
40 end
41 % At this point , starting from the whole array constructed , we want

to restrict the working sample in order to consider only the
portfolios with an acceptable level of diversification. At that
those portfolios have not to contain too many assets in order to
reduce transaction costs and illiquid positions. The assets

weights different from zero for each k and q are collected in a
matrix representing the number of assets in which we are
investing

42 for i=1: length(q)
43 Nassets=sum(wpenTEV_tot (:,:,i)~=0);
44 NAssets(i,:)=Nassets;
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45 end
46 %In order to select the assets we consider only the portfolio

containing only a given range of assets. A logical operator 1 is
used in order to indicate the accettable portfolio.

47 %pre -allocation
48 Filter= NAssets >10 & NAssets <50;
49

50 Filter2=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2));
51 Filter3=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2), size(

wpenTEV_tot ,3));
52

53 for j=1: size(Filter ,1)
54 for i=1: size(Filter ,2)
55 Filter1=Filter(j,i)*ones(size(wpenTEV_tot ,1) ,1);
56 Filter2(:,i)=Filter1;
57 end
58 Filter3(:,:,j)=Filter2; %create an Array with the same size of the

solution of fminserach
59 end
60 %Exclude the portfolios not contained in the selected range
61 w_fminRestricted=wpenTEV_tot .* Filter3;
62

63 P=R-Y*ones(1,size(R,2));
64

65 %calculation of the IR for each portfolio
66 %pre -allocation
67 IR2=zeros(1,length(k));
68 IR3=zeros(length(q),length(k));
69 %iteration for all portfolios where P*w_fminRestricted=Portfolio

Return
70 for i=1: length(q)
71 for j=1: length(k)
72 TE=mean(P*( w_fminRestricted (:,j,i)));
73 TEV=sqrt(var(P*( w_fminRestricted (:,j,i))));
74 IR=TE/TEV;
75 IR2(:,j)=IR;
76 end
77 IR3(i,:)=IR2;
78 end
79 IR3=abs(IR3);
80 %At this point , starting from the matrix with the IR for all

selected portfolios , we pick the one with the maximum IR saving
its coordinates

81 [min_IR_posit ,posmin_IRposit ]=min(IR3 (:));
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82 [rowmin_IR_posit ,colmin_IR_posit ]= ind2sub(size(IR3),posmin_IRposit)
83

84 w_optmin_posit=w_fminRestricted (:,colmin_IR_posit ,rowmin_IR_posit);

C.3 GlobalSearch with dynamic approach: index varia-
tion.

1 %load Data
2 %The aim of this code is to produce an optimization using the

GlobalSearch
3 clear
4 clc
5

6 [data ,text]= xlsread(’S&P 100. xlsx’,’AllCost Weekly Prices $’);
7 [Filter ,text2 ]= xlsread(’S&P 100. xlsx’,’Filter ’);
8 Prices=data (2:end ,1: end);
9 R=(( Prices (2:( size(Prices ,1)) ,:)./ Prices (1:( size(Prices ,1) -1) ,:))

-1)*100;
10 WeeklyDates=text (3:end -1,1);
11 DMonth=datenum(text2 (3:end ,1),’dd/mm/yyyy’);
12 R(isnan(R))=0;
13

14 Y=R(:,end);
15 R=R(:,1:end -1);
16

17 % window size for estimation/allocation
18 w=60; % 5 years
19 Ww=260;
20 DWeek=datenum(WeeklyDates (1:end ,1),’dd/mm/yyyy’);
21 DWeek=datestr(DWeek ,’mm/yy’);
22 Dweek1=datenum(DWeek);
23 DMonth=datestr(DMonth ,’mm/yy’);
24 DMonth1=datenum(DMonth);
25

26 for j=w+1: length(DMonth1)
27 k = find(DMonth1(j,1)==Dweek1 ,1);
28 k1(j,1)=k;
29 end
30 k1=k1(w+1:end -1,1);
31

32 for s=w:(size(Filter ,1) -1)
33 PresenceIndicator=Filter(s,:);
34 PresenceIndicatorTot(s,:)=PresenceIndicator;
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35 end
36 PresenceIndicatorTot=PresenceIndicatorTot(w+1:end ,:);
37

38 y=zeros((size(Filter ,1)-w) ,1);
39 r=zeros((size(Filter ,1)-w),size(Filter ,2));
40 for n=1: size(PresenceIndicatorTot ,1) % r-1 as we

use data up to r-1 to allocate 1-step -ahead
41 r=R(k1(n)-Ww -1:k1(n) -1,:).* PresenceIndicatorTot(n,:);
42 rTot(:,:,n)=r;
43 y=Y(k1(n)-Ww -1:k1(n) -1,:);
44 yTot(:,:,n)=y;
45 end
46 %GLOBALSEARCH IMPLEMENTATION
47 %initialization of GlobalSearch for each slice of the array
48 q=(0:0.1:1);
49 k=(0.25:0.25:2.5);
50 wopt_UNC=zeros(size(rTot ,2) ,(size(k1 ,1)));
51

52 %Calibration of optimal q and k for the first allocation
53 s=1
54 R=rTot(:,:,s);
55 R(:,all (~(R) ,1))=NaN;
56 R( :, all( isnan( R ), 1 ) ) = [];
57 Y=yTot(:,:,s);
58 Presence=PresenceIndicatorTot(s,:);
59

60 wfminTEV=zeros(size(R,2),length(k));
61 wpenTEV_tot=zeros(size(R,2),length(k),length(q));
62 IRtot=zeros(length(q),length(k));
63 w0=ones(size(R,2) -1,1)/(size(R,2) -1);
64

65 for i=1: length(q)
66 for j=1: length(k)
67 problem = createOptimProblem(’fmincon ’,’objective ’,@(w)

fminsearchTEVGS_q(Y,R,w,k(j),q(i)),’x0’,w0,’options ’ ,...
68 optimoptions(@fmincon ,’Algorithm ’,’sqp’,’Display ’,’off’));
69

70 problem.lb= -ones(size(R,2) -1,1);
71 problem.ub= zeros(size(R,2) -1,1);
72

73 out= fmincon(problem);
74 gs = GlobalSearch(’Display ’,’iter’,’NumTrialPoints ’ ,600);
75 rng(14,’twister ’) % for reproducibility
76 out = run(gs,problem);

87



C.3. GlobalSearch with dynamic approach: index variation.

77 out=-out;
78 wpenTEV_q =[out; 1-sum(out)];
79 wfminTEV(:,j)=wpenTEV_q;
80 end
81 wpenTEV_tot (:,:,i)=wfminTEV;
82 end
83 % At this point , starting from the whole array constructed , we want

to restrict the working sample in order to consider only the
portfolios with an acceptable level of diversification.At that
those portfolios have not to contain too many assets in order to
reduce transaction costs and illiquid positions The assets

weights different from zero for each k and q are collected in a
matrix representing the number of assets in which we are
investing

84 for i=1: length(q)
85 Nassets=sum(wpenTEV_tot (:,:,i)~=0);
86 NAssets(i,:)=Nassets;
87 end
88 %In order to select the assets we consider only the portfolio

containing only a given range of assets. A logical operator 1 is
used in order to indicate the acceptable portfolio.

89 %pre -allocation
90 Filter= NAssets >8 & NAssets <60;
91

92 Filter2=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2));
93 Filter3=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2), size(

wpenTEV_tot ,3));
94

95 for j=1: size(Filter ,1)
96 for i=1: size(Filter ,2)
97 Filter1=Filter(j,i)*ones(size(wpenTEV_tot ,1) ,1);
98 Filter2(:,i)=Filter1;
99 end

100 Filter3(:,:,j)=Filter2; %create an Array with the same size of the
solution of fminserach

101 end
102

103 %Exclude the portfolios not contained in the selected range
104 w_fminRestricted=wpenTEV_tot .* Filter3;
105

106 P=R(:,:,1)-Y(:,:,1)*ones(1,size(R,2));
107

108 %calculation of the IR for each portfolio
109 %pre -allocation
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110 IR2=zeros(1,length(k));
111 IR3=zeros(length(q),length(k));
112

113 %iteration for all portfolios where P*w_fminRestricted=Portfolio
Return

114 for i=1: length(q)
115 for j=1: length(k)
116 TE=mean(P*( w_fminRestricted (:,j,i)));
117 TEV=var(P*( w_fminRestricted (:,j,i)));
118 IR=TE/TEV;
119 IR2(:,j)=IR;
120 end
121 IR3(i,:)=IR2;
122 end
123 IR4=abs(IR3);
124 %At this point , starting from the matrix with the IR for all

selected portfolios , we pick the one with the maximum IR saving
its coordinates

125 [min_IR ,pos_IR ]=min(IR4(:));
126 [row_IR ,col_IR ]= ind2sub(size(IR4),pos_IR);
127

128 h=1;
129 Wopt=zeros(size(Presence ,2) ,1);
130 Ropt=zeros(size(R,1),size(Presence ,2));
131 h2=1;
132 for n=1: size(Presence ,2)
133 if Presence(1,n)==1
134 Ropt(:,h2)=R(:,h);
135 Wopt(h2 ,1)=w_fminRestricted(h,col_IR ,row_IR);
136 h=h+1;
137 end
138 h2=h2+1;
139 end
140 wopt_UNC(:,s)=Wopt;
141 ropt(:,:,s)=Ropt;
142

143 clearvars Wopt Ropt
144 %We want now to modify the port weights when the index composition

changes. In order to do so we consider the variation of index
composition with respect to the previous period. So if the
composition is unchanged we keep the portfolio weights unaltered
from previous allocation. Otherwise we restart all the process

repeating the calibration for q and k.
145 for s=2: size(rTot ,3)
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146 Wopt=zeros(size(Presence ,2) ,1);
147 Ropt=zeros(size(R,1),size(Presence ,2));
148

149 R=rTot(:,:,s);
150 R(:,all (~(R) ,1))=NaN;
151 R( :, all( isnan( R ), 1 ) ) = [];
152 Y=yTot(:,:,s);
153 Presence=PresenceIndicatorTot(s,:);
154 q=(0:0.1:1);
155 k=(0.25:0.25:2.5);
156

157 if PresenceIndicatorTot(s-1,:)== PresenceIndicatorTot(s,:)
158 q=q(1,row_IR);
159 k=k(1,col_IR);
160 wopt_UNC(:,s)=wopt_UNC(:,s-1);
161 ropt(:,:,s)=ropt(:,:,s-1);
162 else
163 q=(0:0.1:1);
164 k=(0.25:0.25:2.5);
165 wfminTEV=zeros(size(R,2),length(k));
166 wpenTEV_tot=zeros(size(R,2),length(k),length(q));
167 w0=ones(size(R,2) -1,1)/(size(R,2) -1);
168 for i=1: length(q)
169 for j=1: length(k)
170 problem = createOptimProblem(’fmincon ’,’objective ’,@(

w) fminsearchTEVGS_q(Y,R,w,k(j),q(i)),’x0’,w0 ,’
options ’ ,...

171 optimoptions(@fmincon ,’Algorithm ’,’sqp’,’Display ’,’
off’));

172

173 problem.lb= -ones(size(R,2) -1,1);
174 problem.ub= zeros(size(R,2) -1,1);
175

176 out= fmincon(problem);
177 gs = GlobalSearch(’Display ’,’iter’,’NumTrialPoints ’

,600);
178 rng(14,’twister ’) % for reproducibility
179 out = run(gs,problem);
180 out=-out;
181 wpenTEV_q =[out; 1-sum(out)];
182 wfminTEV(:,j)=wpenTEV_q;
183 end
184 wpenTEV_tot (:,:,i)=wfminTEV;
185 end
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186

187 for i=1: length(q)
188 Nassets=sum(wpenTEV_tot (:,:,i)~=0);
189 NAssets(i,:)=Nassets;
190 end
191

192 %In order to select the assets we consider only the
portfolio containing only a given range of assets. A
logical operator 1 is used in order to indicate the
accettable portfolio.

193 %pre -allocation
194 Filter= NAssets >8 & NAssets <60;
195

196 Filter2=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2));
197 Filter3=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2),

size(wpenTEV_tot ,3));
198

199 for j=1: size(Filter ,1)
200 for i=1: size(Filter ,2)
201 Filter1=Filter(j,i)*ones(size(wpenTEV_tot ,1) ,1);
202 Filter2(:,i)=Filter1;
203 end
204 Filter3(:,:,j)=Filter2; %create an Array with the

same size of the solution of fminserach
205 end
206

207 %Exclude the portfolios not contained in the selected
range

208 w_fminRestricted=wpenTEV_tot .* Filter3;
209

210 P=R(:,:,1)-Y(:,:,1)*ones(1,size(R,2));
211

212 %calculation of the IR for each portfolio
213 %pre -allocation
214 IR2=zeros(1,length(k));
215 IR3=zeros(length(q),length(k));
216 %iteration for all portfolios where P*w_fminRestricted=

Portfolio Return
217 for i=1: length(q)
218 for j=1: length(k)
219 TE=mean(P*( w_fminRestricted (:,j,i)));
220 TEV=sqrt(var(P*( w_fminRestricted (:,j,i))));
221 IR=TE/TEV;
222 IR2(:,j)=IR;
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223 end
224 IR3(i,:)=IR2;
225 end
226 IR4=abs(IR3);
227 %At this point , starting from the matrix with the IR for

all selected
228 %portfolios , we pick the one with the maximum IR saving

its coordinates
229 [min_IR ,pos_IR ]=min(IR4(:));
230 [row_IR ,col_IR ]= ind2sub(size(IR4),pos_IR);
231

232 h=1;
233 Wopt=zeros(size(Presence ,2) ,1);
234 Ropt=zeros(size(R,1),size(Presence ,2));
235 h2=1;
236 for n=1: size(Presence ,2)
237 if Presence(1,n)==1
238 Ropt(:,h2)=R(:,h);
239 Wopt(h2 ,1)=w_fminRestricted(h,col_IR ,row_IR);
240 h=h+1;
241 end
242 h2=h2+1;
243 end
244 wopt_UNC(:,s)=Wopt;
245 ropt(:,:,s)=Ropt;
246 end
247

248 clearvars h h2 Wopt wpenTEV_q wpenTEV_tot wfminTEV
249 ss=s+1
250 end

C.4 GlobalSearch with dynamic approach: monthly re-
allocation.

The beginning of the code is the same to the previous one until line 156 . From that point
onward the code change, since this time the reallocation is performed each month.

1 %Impose the condition that index composition at time t is equal
to the one at t-1

2 if PresenceIndicatorTot(s-1,:)== PresenceIndicatorTot(s,:)
3

4 q=q(1, row_IR_posit);
5 k=(0.25:0.25:2.5);
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6 w0=ones(size(R,2) -1,1)/(size(R,2) -1);
7 wfminTEV=zeros(size(R,2),length(k));
8 wpenTEV_tot=zeros(size(R,2),length(k),length(q));
9 for i=1: length(q)

10 for j=1: length(k)
11 problem = createOptimProblem(’fmincon ’,’objective ’,@(

w) fminsearchTEVGS_q(Y,R,w,k(j),q(i)),’x0’,w0 ,’
options ’ ,...

12 optimoptions(@fmincon ,’Algorithm ’,’sqp’,’Display ’,’
off’));

13

14 problem.lb= -ones(size(R,2) -1,1);
15 problem.ub= zeros(size(R,2) -1,1);
16

17 out= fmincon(problem);
18 gs = GlobalSearch(’Display ’,’iter’,’NumTrialPoints ’

,600);
19 rng(14,’twister ’) % for reproducibility
20 out = run(gs,problem);
21 out=-out;
22 wpenTEV_q =[out; 1-sum(out)];
23 wfminTEV(:,j)=wpenTEV_q;
24 end
25 wpenTEV_tot (:,:,i)=wfminTEV;
26 end
27

28 %The assets weights different from zero for each k and q
are collected in a

29 %matrix representing the number of assets in which we are
investing

30 for i=1: length(q)
31 Nassets=sum(wpenTEV_tot (:,:,i)~=0);
32 NAssets(i,:)=Nassets;
33 end
34

35 %In order to select the assets we consider only the
portfolio containing only a given range of assets. A
logical operator 1 is used in order to indicate the
acceptable portfolio.

36 %pre -allocation
37 Filter= NAssets >10 & NAssets <60;
38

39 Filter2=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2));
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40 Filter3=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2),
size(wpenTEV_tot ,3));

41

42 for j=1: size(Filter ,1)
43 for i=1: size(Filter ,2)
44 Filter1=Filter(j,i)*ones(size(wpenTEV_tot ,1) ,1);
45 Filter2(:,i)=Filter1;
46 end
47 Filter3(:,:,j)=Filter2; %create an Array with the

same size of the solution of fminserach
48 end
49

50 %Exclude the portfolios not contained in the selected
range

51 w_fminRestricted=wpenTEV_tot .* Filter3;
52

53 P=R(:,:,1)-Y(:,:,1)*ones(1,size(R,2));
54

55 %calculation of the IR for each portfolio
56 %pre -allocation
57 IR2=zeros(1,length(k));
58 IR3=zeros(length(q),length(k));
59 %iteration for all portfolios where P*w_fminRestricted=

Portfolio Return
60 for i=1: length(q)
61 for j=1: length(k)
62 TE=mean(P*( w_fminRestricted (:,j,i)));
63 TEV=sqrt(var(P*( w_fminRestricted (:,j,i))));
64 IR=TE/TEV;
65 IR2(:,j)=IR;
66 end
67 IR3(i,:)=IR2;
68 end
69 IR4=abs(IR3);
70 %At this point , starting from the matrix with the IR for

all selected
71 %portfolios , we pick the one with the maximum IR saving

its coordinates
72 [min_IR_posit ,pos_IR_posit ]=min(IR4 (:));
73 [row_IR_posit ,col_IR_posit ]= ind2sub(size(IR4),

pos_IR_posit);
74

75 h=1;
76 h2=1;
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77 for n=1: size(Presence ,2)
78 if Presence(1,n)==1
79 Ropt(:,h2)=R(:,h);
80 Wopt(h2 ,1)=w_fminRestricted(h,col_IR_posit ,row_IR_posit);
81 h=h+1;
82 end
83 h2=h2+1;
84 end
85

86 wopt_posit (:,s)=Wopt;
87 ropt_posit (:,:,s)=Ropt;
88 else
89 %Recalibration of q and k with selection of optimal weights
90 q=(0:0.1:1);
91 k=(0.25:0.25:2.5);
92 w0=ones(size(R,2) -1,1)/(size(R,2) -1);
93 wfminTEV=zeros(size(R,2),length(k));
94 wpenTEV_tot=zeros(size(R,2),length(k),length(q));
95 for i=1: length(q)
96 for j=1: length(k)
97 problem = createOptimProblem(’fmincon ’,’objective ’,@(

w) fminsearchTEVGS_q(Y,R,w,k(j),q(i)),’x0’,w0 ,’
options ’ ,...

98 optimoptions(@fmincon ,’Algorithm ’,’sqp’,’Display ’,’
off’));

99

100 problem.lb= -ones(size(R,2) -1,1);
101 problem.ub= zeros(size(R,2) -1,1);
102

103 out= fmincon(problem);
104 gs = GlobalSearch(’Display ’,’iter’,’NumTrialPoints ’

,600);
105 rng(14,’twister ’) % for reproducibility
106 out = run(gs,problem);
107 out=-out;
108 wpenTEV_q =[out; 1-sum(out)];
109 wfminTEV(:,j)=wpenTEV_q;
110 end
111 wpenTEV_tot (:,:,i)=wfminTEV;
112 end
113

114 for i=1: length(q)
115 Nassets=sum(wpenTEV_tot (:,:,i)~=0);
116 NAssets(i,:)=Nassets;
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117 end
118

119 Filter= NAssets >10 & NAssets <60;
120 Filter2=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2));
121 Filter3=zeros(size(wpenTEV_tot ,1),size(wpenTEV_tot ,2),

size(wpenTEV_tot ,3));
122

123 for j=1: size(Filter ,1)
124 for i=1: size(Filter ,2)
125 Filter1=Filter(j,i)*ones(size(wpenTEV_tot ,1) ,1);
126 Filter2(:,i)=Filter1;
127 end
128 Filter3(:,:,j)=Filter2; %create an Array with the

same size of the solution of fminserach
129 end
130

131 %Exclude the portfolios not contained in the selected
range

132 w_fminRestricted=wpenTEV_tot .* Filter3;
133

134 P=R(:,:,1)-Y(:,:,1)*ones(1,size(R,2));
135

136 %calculation of the IR for each portfolio
137 %pre -allocation
138 IR2=zeros(1,length(k));
139 IR3=zeros(length(q),length(k));
140 %iteration for all portfolios where P*w_fminRestricted=

Portfolio Return
141 for i=1: length(q)
142 for j=1: length(k)
143 TE=mean(P*( w_fminRestricted (:,j,i)));
144 TEV=sqrt(var(P*( w_fminRestricted (:,j,i))));
145 IR=TE/TEV;
146 IR2(:,j)=IR;
147 end
148 IR3(i,:)=IR2;
149 end
150 IR4=abs(IR3);
151 %At this point , starting from the matrix with the IR for

all selected portfolios , we pick the one with the
maximum IR saving its coordinates

152 [min_IR_posit ,pos_IR_posit ]=min(IR4 (:));
153 [row_IR_posit ,col_IR_posit ]= ind2sub(size(IR4),

pos_IR_posit);

96



Appendix C. Matlab Codes

154

155 h=1;
156 Wopt=zeros(size(Presence ,2) ,1);
157 Ropt=zeros(size(R,1),size(Presence ,2));
158 h2=1;
159 for n=1: size(Presence ,2)
160 if Presence(1,n)==1
161 Ropt(:,h2)=R(:,h);
162 Wopt(h2 ,1)=w_fminRestricted(h,col_IR_posit ,

row_IR_posit);
163 h=h+1;
164 end
165 h2=h2+1;
166 end
167 wopt_posit (:,s)=Wopt;
168 ropt_posit (:,:,s)=Ropt;
169 end
170

171 clearvars h h2 Wopt wpenTEV_q wpenTEV_tot wfminTEV NAssets IR1
IR2 IR3 IR4

172 ss=s+1
173 end
174

175 wopt_posit=wopt_posit ’;
176 woptP_posit=wopt_posit .*( wopt_posit >0);
177 woptN_posit=wopt_posit .*( wopt_posit <0);
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