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Abstract

The aim of this Thesis is assessing the feasibility and the accuracy achievable through
navigation systems for satellites aided with optical pulsars. Pulsar navigation sys-
tems can provide an autonomous method for the determination of position, velocity
and attitude of spacecraft for any interplanetary missions. To date, satellite nav-
igation is not done in an autonomous way. For this reason we are interested in
looking into an autonomous navigation system. The idea is to take advantage of
the extremely high precision of pulsar signals and to use them as natural naviga-
tion beacons. Using pulsars to navigate deep space has already been proposed and
already tested in orbit. However, no previous studies focussed on the idea of using
the optical emission of these types of sources. For this purpose, the available optical
sources, the usable navigation techniques and their accuracies have been studied.
We followed two directions. On one hand, accuracy analyses have been performed to
determine the main uncertainties that a�ect most the accuracy of the position de-
termination. On the other hand, an analysis on real ground data of the optical pulse
of the Crab nebula pulsar has been performed. The results of this preliminary study
are encouraging in the sense that it seems possible to navigate in space with the help
of optical pulsations of the pulsars with a better accuracy than that achieved using
X-ray pulsars. However, further studies are needed to de�ne the necessary tools and
useful software to navigate in space with the help of optical pulsars.
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1. Introduction

The idea that once again humankind needs to look up to the sky to navigate is really
fascinating, and the fact that this time men need to use stars for space �ight is even
more attractive.

An autonomous navigation system for the Solar System could be really interest-
ing for any kind of existing and future spacecraft missions. Currently navigation of
satellites is not possible in an autonomous way. Satellite navigation is largely done
by means of a large number of ground based radio telescopes that communicate with
the satellites in interplanetary space via telemetry. Therefore, satellites navigate in
space thanks to networks of radio telescopes (for example DSN the NASA deep
space network or ESTRACK, European Space Tracking, the ESA deep space net-
work ) that send signals from Earth; but if the number of spacecraft that navigate
in space increases in future, a bigger network will be needed, that means di�cult
and expensive work. A solution to this problem would be to allow spacecraft to
calculate its own position, hence autonomous navigation. Pulsar stars could be a
good aid to achieve autonomous navigation. These sources can be called lighthouses
in the sky because of their extremely stable and periodic signals. The idea of using
these sources as navigation beacons for an autonomous navigation system derives
from the particularities of their signals. In fact, they beam periodic signals that have
timing stabilities comparable to atomic clocks and provide characteristic temporal
signals that can be used as natural navigation beacons. Ideally, the position of the
spacecraft can be determined autonomously and with high accuracy everywhere in
the Solar System and beyond.

In order to investigate in the best possible way this interdisciplinary problem an
internship at the European Space Technology and Research Centre (ESTEC) has
been performed. The internship lasted two months during which the issue was in-
vestigated and the reasons of the interest in this topic were understood. The work
undertaken over these two months has been continued for additional months at
Padova University.
The aim of this thesis is the feasibility of an autonomous navigation system for
satellites with the help of pulsar stars. To investigate on this topic several steps
needed to be pursued. First of all the study of pulsar stars and of particular features
that make these sources interesting for satellite navigation has been done. Their
particular stable timing makes these sources possible natural navigation beacons for
an autonomous navigation system. However, these sources show timing noise that
can limit the accuracy of the process to determine the position. Furthermore, these
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sources emit very weak signals which make their detection di�cult considering the
small feasible dimensions of the telescope for a spacecraft. Chapter 2 describes these
sources and in particular it focuses on the physical properties useful to understand
why there is the idea of using pulsar stars as natural beacons. After the descrip-
tion of the functional characteristics of these sources, the current usable navigation
systems have been described. Chapter 3 focuses on this topic: the di�erent current
navigation techniques, which depend on the type of mission, are described. There
are two main types of navigation techniques: in the case of LEO (Low Earth Orbit)
satellites the position is determined by the usage of systems similar to those used to
determine the position on the ground, while in the case of satellites that navigate
in deep space there are networks of radio-telescopes for tracking the satellites from
Earth. Moreover, in this chapter a detailed introduction about the historical notes
of pulsar navigation system is reported. This introduction is useful to understand
why we choose to study feasibility of pulsar navigation systems using the optical
emission of these sources. To date all the studies carried out concerning satellite
navigation with pulsars have considered radio or X-ray pulsars. Our idea is to use
optical pulsars, instead of radio or X-ray ones, because of the improvements that a
greater number of photons can bring to the navigation system. Chapter 4 focuses on
the theory behind optical pulsar navigation. The basic concept of the pulsar naviga-
tion system is here described. Pulsars timing analysis is linked to the determination
of the Time of Arrival (ToA) of the pulsar photons at the detector. It is straightfor-
ward that the measurements of the ToA are closely linked with position and velocity
of the detector in space. In fact, a delay of the ToA of the photons is equivalent to
the light delay between the real position and the estimate position along the line
of sight of the pulsar. Moreover, the two di�erent possible usable pulsar navigation
methods are pointed out: the phase measurement and the signi�cance analysis. After
the description of the techniques and the problems with each technique, an analysis
on the available optical pulsars has been carried out. Chapter 5 reports all the avail-
able optical sources and the description of each of them. In detail, the description
is useful to understand which optical pulsars are the best candidates for the pulsars
navigation system. The pulsar of the Crab nebula has been identi�ed as the best
optical pulsar candidate. For a pulsar navigation system the distribution of pulsars
in the sky is important: in this chapter the distribution of optical pulsars has been
described. One of the navigation techniques needs to observe more than one pulsar
at a time: in order to determine if it is possible to do so, an example of visibility
analysis has been performed. Furthermore, it is reported here a �rst analysis about
the achievable accuracy on the position determination with the Crab pulsar consid-
ering di�erent telescope diameters. Only after the de�nition of the concept of pulsar
navigation, the di�erent methods that can be used to determine the spacecraft po-
sition, the description of the available optical pulsars, and the selection of the best
candidates for the purpose, it is possible to perform the accuracy analyses. Chapters
6 and 7 deal with the results of this thesis work. In order to reach the purpose of the
thesis we acted in two directions. Chapter 6 deals with the results of the accuracy
analyses of the phase measurement navigation method. They are done to analyse the
uncertainty which in�uence most the accuracy of the position determination process,
moreover they are also done to investigate the achievable accuracy on position and
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velocity determination of the spacecraft using optical pulsar as navigation beacons.
The covariance matrices of the system have been calculated using two di�erent es-
timate theories. The �rst method is an epoch-by-epoch approach which means that
the position of the spacecraft is determined using single observation of the pulsars.
The weighted least squares estimate theory allows this type of analysis. The best
result of this analysis is accuracy of 10 km obtained using 9 pulsars. In order to
verify that it was possible to obtain better accuracy another approach has been per-
formed. The second method is an iterated approach, which means that the position
of the spacecraft is continuously determined by observing pulsars continuously. The
extended Kalman �lter estimate theory permits this type of analysis. The best result
obtained with this estimation theory is ∼ 5×102 m after 20 days of iterated observa-
tion with a sampling time of 10 s. In both cases the main result is that the accuracy
of the position determination process is mainly due to the uncertainty of the pulse
pro�le which is due to the intrinsic timing noise of the pulsars. The intrinsic timing
noise of the pulsars is not easy to model and to predict. In order to verify and to try
to improve the results of the a-priori accuracy analyses, an analysis with real data of
the Crab pulsar has been performed. In Chapter 7 the results of this analysis have
been reported. The data utilized are ground data taken with the 182 cm Copernicus
telescope of the Asiago observatory of the Crab pulsar. The aim of this analysis was
to verify the a-priori accuracy analyses reported in Chapter 6 and to understand
what are the main problems with optical pulsar navigation systems. The analysis
performed deals with the phase measurement and the signi�cance analysis methods.
The obtained results con�rm those of the previous analysis: the main uncertainty
is due to timing noise of the pulsars. However, the obtained results show a better
accuracy in the position determination with the two methods with respect to the
a-priori accuracy analyses. The phase measurement method shows that it is possible
to measure a shift of the spacecraft from the real position even of only 3000 m. The
signi�cance analysis gives an uncertainty of 1335 m in the position determination.
However, to perform these analyses various assumptions have been made and fur-
ther analyses are needed. Chapter 8 summarizes the results reported in Chapters 6
and 7 and reports the important remarks of this work. Moreover it describes what
are the future analysis that can be done in order to continue research on this topic.
In detail, it can be said that the purpose of the thesis, which was the feasibility of
a satellite navigation system using optical pulsars, has been successfully achieved.
However, further studies are needed to de�ne the necessary tools and useful software
to navigate in space with the help of optical pulsars.
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2. Pulsars

Pulsars are the sources that are proposed to be adopted as natural navigation bea-
cons in a new satellite navigation system. In this chapter pulsars are introduced and
the properties, needed to understand the problem, are described in detail.

2.1 History and Discovery

The history of pulsars is quite recent, being the �rst pulsar discovered in 1967.
The idea of the existence of neutron stars was �rst proposed by Baade and Zwicky
[1934], soon after the discovery of the neutron by Chadwick in 1932. They suggested
that these stars would have a very high density, a small radius and be much more
gravitationally bound compared to ordinary stars. They pointed out that neutron
stars would be formed in supernova explosions and suggested that the extreme pres-
sure in the centre of the explosion would be su�cient to trigger an inverse beta decay,
during which electrons and protons are combined to form neutrons and neutrinos.
Later the scientists Oppenheimer and Volkov calculated the expected size and mass
of this kind of objects. The results were 10 km of radius and 1.5M�, where M�
stands for Solar masses [Shapiro and Teukolsky, 1983]. The �nal consideration was
that these sources were too small and their residual thermal radiation was too faint
to be detected at astronomical distances with optical telescopes. After the hypothesis
of Baade and Zwicky, it was necessary to wait until 1967 to discover the �rst pulsar
(PSR B1919+21) [Hewish et al., 1968]. The research group, that made the discovery,
wanted to study the scintillation of quasars in the radio band, window that had just
been opened to the astronomical exploration. In fact, the �rst astronomical object
emitting periodic pulses in the radio band was discovered by Jocelyn Bell. Anthony
Hewish, who was her supervisor and the head of a group of Cambridge astronomers,
earned the Nobel Prize for this discovery in 1974. At the beginning, because of the
small size of the emitting source and the periodicity of the signal, the possibility that
it could be a signal from an extraterrestrial civilization was considered; the source
was then called LGM1 (Little Green Man 1). Soon after, Professor Hewish and his
student Bell understood that it could not be an extraterrestrial source because sim-
ilar events were measured in di�erent parts of the sky and the orbital motion of the
emitting source was not detected. However, the identi�cation of this source with a
neutron star was not immediate. In fact, the �rst astrophysicist who pointed out
that the observed pulsars were rotating neutron stars was Gold [1968]. The actual
observational evidence dates to 1969 with the discovery of the association of the
Crab pulsar with the supernova remnant called Crab Nebula. Knowledge about op-
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tical emission properties of neutron stars has remarkably improved only after the
80′s. Prior to the beginning of the 80′s, only two among the ∼ 500 isolated neutron
stars at that time detected as radio pulsars had been identi�ed also at optical wave-
lengths [Mignani et al., 2000]. These two were the Crab pulsar (PRS B0531+21),
the �rst optical pulsar to be discovered in 1969 [Cocke et al., 1969], and the Vela
pulsar (PSR B0833-45), discovered in 1977 [Wallace et al., 1977].

2.2 Physical Properties

A pulsar is a highly magnetized fast rotating neutron star that emits beams of
broadband electromagnetic radiation out of its magnetic poles along narrow emission
cones, as can be seen in the representation in Figure 2.1. Radiation can be observed
only when a beam of emission is pointing toward our line of sight [Ghosh and Lamb,
1992].

Figure 2.1: Representation of a pulsar. It can be observed that the axis of rotation
and the magnetic dipole axis are not aligned. Credit: B. Saxton, NRAO\AUI\NSF.

Stars are stable as long as there is an equilibrium between the outward directed
thermal pressure, caused by the nuclear fusion that occurs in the inner region, and
the inward directed gravitational pressure. The stellar evolution depends mainly on
the mass of the progenitor star. Neutron stars are formed from the collapse of the
nucleus of a massive star at the end of its life, when its nuclear fuel is exhausted.
Stars with masses in the range of about 8 to 25 − 30 M� form neutron stars from
their collapse. The binding energy released from the collapse of the core produces a
supernova explosion during which the bulk of the progenitor star is expelled into the
interstellar medium. At the end of the gravitational collapse a very compact object
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with a radius of the order of 10km and a mass of the order of 1.4 M� remains [Becker
et al., 2013]. The star collapses so much that protons and electrons combine to form
neutrons; hence the name Neutron Star. The collapsed star, which has drastically
decreased its radius due to gravitational collapse, is born with an extremely high
rotation period thanks to the conservation of angular momentum. Therefore, pul-
sars are rapidly rotating neutron stars. They also have a strong magnetic �eld and
emit a collimated beam of radiation. The emission, that comes from the magnetic
poles of the star, is observed if this narrow radiation cone crosses the observer's
line of sight. The source behaves like a cosmic lighthouse and an observer will see
a sequence of regular pulses; hence the name pulsar standing for Pulsating Radio
Source. The properties that characterize isolated neutron stars are the spin and the
magnetic �eld. The magnetic �elds of these sources are very intense and can be of
the order of 108 to 1015G. Pulsars periods range from milliseconds to seconds and
increase very slowly. Pulsars behave as rotating magnetic dipoles that emit energy at
the expense of their rotational energy hence decelerating in time. Other mechanisms
contribute to the deceleration and the entire picture is not completely understood
yet. The breaking torque is modelled using a power-law relation between the fre-
quency of rotation and its derivative. The breaking index values can be determined
only with long term measurements. The period signals of pulsars have timing sta-
bilities comparable to atomic clocks mainly because of their isolated environments,
and very large and stable moments of inertia. However, some time irregularities have
been found upon long term monitoring of pulsars [Ghosh and Lamb, 1992]. There
exists di�erent types of irregularities in pulsars clocks. The period can decrease be-
cause of glitches, which are events that occur occasionally and are not predictable.
Glitches are unpredictable changes in the rotational period that can be interpreted
as changes in the pulsar environment or in the neutron star interior. When a glitch
occurs the rotation rate suddenly changes and a period of relaxation follows before
the braking index reaches a stable value [�adeº et al., 2016]. Hobbs et al. [2010]
made a comparison of a large number of pulsars to demonstrate that the evolution
of the rotational phase of young pulsars is dominated by long relaxation periods
following signi�cant glitches whereas older pulsars show a quasi-periodic behavior
with phase modulations on typical timescales between one and ten years. Another
type of timing irregularities in the pulsar timing is the timing noise which consists
of low-frequency structures in the phase residuals, more gradual deviations from
the regular spin-down compared to the glitches. The timing noise typically acts on
timescale of several days or weeks, and its cumulative e�ects on accurate measure-
ments of the pulse pro�les on such baselines should then be taken into account.

Pulsars can be distinguished into three di�erent classes [Ghosh and Lamb, 1992]

� Accretion powered pulsars : they are binary systems composed of a neutron
star and a normal star. The neutron star accretes matter from the companion,
gaining energy and angular momentum. These sources usually emit X-rays and
their spin behavior can be very complicated with an unpredictable evolution of
the rotation period. They can be very bright sources but often unsteady, with
a non-coherent timing behavior caused by the the interaction of the pulsar
magnetosphere with the accretion disk.

9



� Magnetars : they are isolated neutron stars. The magnetic �elds of these sources
are extremely high up to ∼ 1015G. The emission comes from the decay of the
strong magnetic �eld and they are mostly X and gamma rays emitters. Their
long-term timing behavior is not well determined yet.

� Rotation powered pulsars : they can be found in isolated or in binary systems.
The emission is broadband: from the radio band up to optical, X-ray and
gamma-ray band. The spin period increases, i.e. the pulsar spins down, as the
rotational energy is radiated away. The electromagnetic radiation originates
from the rotational energy. Two di�erent types of rotation powered pulsars
can be distinguished:

i. ordinary isolated pulsars: most of the pulsars are of this kind and they are
characterized by periods between tens of milliseconds to several seconds;

ii. millisecond pulsars: a fraction of pulsars is of this kind and they are
characterized by periods below tens of milliseconds. These pulsars have
a signi�cant timing stability and a low spin down rate. They are much
older than the other pulsars. Usually they are found in non-interactive
binary systems but this does not a�ect their stability.

Astronomers describe the life cycles and properties of the radio pulsars using the
P − Ṗ diagram (see Figure 2.2), where the Ṗ is the time derivative of the rotational
period P . The straight lines in the diagram represent values of constant age and

Figure 2.2: A P − Ṗ diagram. Credit: Jodrell Bank observatory
(http://www.jb.man.ac.uk/).

magnetic �eld. Pulsars are born with short periods and slow down fast when they
are young. This leads to a large Ṗ value. In the upper left part of the diagram we �nd
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pulsars that are still associated with their supernova remnants, hence the younger
ones. The older pulsars can be found in the centre of the diagram. The millisecond
pulsars, that are the most stable and the oldest, can be found in the bottom left
part of the diagram, with very small Ṗ values.

2.2.1 Emission Mechanism

The mechanism by which pulsars convert the rotational energy into the observed
pulses is still poorly understood [Ghosh and Lamb, 1992].
The �rst pulsars were discovered as radio pulsating sources. In the catalogues the
common abbreviation PSR stands for Pulsating Source of Radio. Soon after they
were also detected in other observational bands (see Figure 2.3).

Figure 2.3: A composite image of the Crab pulsar at opti-
cal, infrared and X-ray wavelengths. Credit: NASA's Chandra:
http://chandra.harvard.edu/photo/2018/crab/

Our interest is in the optical emission of pulsars. There are di�erent emission mech-
anisms depending on the age of the pulsar. For young pulsars the optical emission
is synchrotron radiation from relativistic particles which spiral around the mag-
netic �eld lines. For middle-aged pulsars there is the synchrotron radiation and the
thermal radiation from the cooling neutron star surface. It is known that the basic
energy source is the pulsar rotational energy, which is transferred into low-frequency
radiation and the acceleration of charged particles. The uncertainty concerns the ac-
celeration mechanism of the relativistic wind, in particular where the acceleration
occurs. To constrain the theories on the spatial distribution of the emission regions it
is fundamental to observe the pulsars in di�erent wave bands [Zampieri et al., 2011].
As a matter of fact, an arrival time delay between the measurements in di�erent
bands (optical, radio or X-ray) implies that the emission regions di�er in position.
Actually a delay between the radio and the optical measurements has been observed
in the Crab pulsar. In particular the optical pulse leads the radio one measured by
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e.g. Zampieri et al. [2014] and references therein. Also the pulse pro�les in the radio
and optical bands di�er.

2.2.2 Timing Analysis techniques

The evolution in time of the pulsar rotational period is studied using dedicated
timing techniques [Ghosh and Lamb, 1992]. They are very similar in the radio, op-
tical or higher energy bands. We will extensively use the epoch-folding technique
to reconstruct the pulse pro�le. The basic concept of the epoch-folding technique
is to average the pro�le over a number of intervals equal to the number of periods
contained in a given observation. Detectors for timing are designed to measure the

Figure 2.4: Epoch folding: the time tags photons are folded back into the �rst cycle
[t0, t0 + P ] (with P period of the pulsar) and it is divided into Nb number of equal
length bins (with size Tb = P/Nb). At the end the number of photons in each bin is
counted and normalized [Emadzadeh and Speyer, 2010].

Time of Arrival (ToA) of photons when they hit the detecting material. A single
photon counting detector permits to time tag the arrival time of each photon with
a high accuracy. Epoch-folding is then applied to sources of predetermined period
to determine their pulse shape. After all the time tags are collected during an ob-
servation, they are folded back into a single time interval [t0, t0 + P ] equal to one
pulse period P . The period duration is divided into Nb number of equal length bins
of size Tb and the number of photons in each bin is determined (see Figure 2.4). The
computed photon counts are normalized and the measured pulsar pro�le is derived.
There is the possibility to determine with high accuracy the period of a periodic
time series given an initial value of the period. The method consists in folding the
time series with slightly di�erent periods in order to �nd through the least squares
the value of the period that maximizes the quality of the �t.
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3. Satellite Navigation

In this chapter current navigation systems used by satellites and related problems
are investigated. In addition, the current state of art of navigation systems with the
help of pulsars are investigated.

3.1 Current Navigation Systems

The current various methods used to navigate in space are listed. The methods
depend on the duration and the altitude above Earth of the navigating spacecraft:

� LEO (Low Earth Orbit) is an Earth-centered orbit with an altitude of about
2000 km. Those satellites that are in such orbit can use the GPS (Global Posi-
tioning Satellite) system for determining the position and the velocity with 10
m and 0.01 mms−1 accuracy respectively [Bauer et al., 1998 IEEE]. Actually,
the precision of the position determination depends on various factor: if it is
done in real-time on-board or in post-processing, if it uses one or more frequen-
cies of observation of the GNSS (Global Navigation Satellite System) signals,
if it also uses the phase measurements or only those of pseudo-range [Giordano
et al., 2017]. To date the achievable accuracy of the position determination in
real-time on-board can ideally be of ∼ 10 cm. The USA's GPS, the European's
GNSS (Global Navigation Satellite System), the Russia's GLONASS (GLObal
NAvigation Satellite System) and the China's Beidou (which is the Chinese
for Big Dipper) are all satellite navigation systems that provide continuous
positioning over the globe. All these systems consist of di�erent constellations
of satellites orbiting in medium Earth orbit that provide time-stamped and
coded signals [Subirana et al., 2013]. Any satellites, in a maximum altitude or-
bit of 20000 km, which has suitable receiver can use these systems to navigate
the space. GNSS receiver consists in two parts: the antenna receives satel-
lite signals while the processing unit analyzes it. To determine the position of
the receiver satellite at least three satellites signal needs to be collected. This
method is not suitable for interplanetary trajectories, in fact the satellites for
the global navigation are at a maximum altitude of about 24000 km.

� For deep space missions there is one main method for navigation, the radiomet-
ric positioning. The spacecraft is tracked by a network of large radio telescopes
from Earth. For example, the NASA's Deep Space Network (DSN) is NASA's
international array of giant radio antennas that supports interplanetary space-
craft missions and for the same purpose there is the ESA's European Space
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Tracking (ESTRACK). The DSN is also used for radio astronomy observa-
tions. It is important that this array permits to constantly communicate with
spacecraft. To do so the DSN consists of three facilities spaced equidistant
from each other around the world, before a distant spacecraft sinks below the
horizon at one DSN site another site can pick up the signal. This method is
not an autonomous navigation system and although accurate, precision of the
determination of the position degrades according to the distance from Earth.
Furthermore, the signal delay between the ground network and the spacecraft
increases with distance, which therefore leads to long waiting times between
one communication and another. In addition it requires a large number of sys-
tems with multiple large radio antennas to interact with, and as the number
of interplanetary missions will increase so will the number of the required sys-
tems. The angular precision is of the order of 10 nrad which corresponds to a
position accuracy of about 1.5 km for a distance of 1 UA from Earth [Thornton
and Border, 2003].

� Using an INS (Inertial Navigation System), which is based on accelerometers
and gyroscopes, it is possible to estimate the spacecraft's position, velocity and
attitude starting from a set of initial time and position data. The instrumenta-
tion does not make use of any external information hence this is an autonomous
navigation system. An INS keeps track of the position by measuring accelera-
tion (accelerometers) and rotation (gyroscopes), from the input position and
by measuring the accelerations and rotations and integrating them into speed
and direction the position is tracked. The precision diminishes with time due
to small inaccuracies in the measurements hence the method is not suitable
for long missions [Lawrence, 1998].

3.2 Pulsar Navigation Systems

Pulsar navigation systems can provide an autonomous method for the determination
of the position, the velocity and the attitude of spacecraft. This kind of navigation
system sees pulsar stars as natural navigation beacons (see Figure 3.1).

3.2.1 Introduction

In this section a general introduction on the pulsar navigation system is reported.
The detail of the techniques are described later in the document. This introduction
is useful to understand the reasons why optical pulsars have been considered.

The idea of using pulsar stars as natural beacons to navigate in space dates back to
the 70′s, soon after their discovery, when Downs [1974] proposed for the �rst time
to use pulsating sources for interplanetary missions. The idea is to take advantage
of the extreme high precision of the pulsar signals. Downs proposed to use radio
sources and he showed that an accuracy of 1500 km could be obtained after 24 h of
observation time. Accuracy could be improved if better radio antennas were avail-
able. Because large antennas were required, Chester and Butman [1981] gave the

14



Figure 3.1: Representation of Rosetta satellite navigating if it navigated in deep
space using pulsars as navigation beacons [Becker et al., 2013].

idea of using X-ray pulsars. Using X-ray pulsars instead of the radio ones makes
it possible to reduce the collecting area. The determination of the position was es-
timated to be of about 150 km within 24 h of observation time using a detector
of 0.1 m2 collecting area. The estimation was not based on simulation or pulsar
timing analyses. These early studies were not seriously considered applicable as a
new autonomous navigation system. Later the improvements of knowledge of the
emission properties of the pulsars and the improvements of the technology rekindled
interest in the subject. Furthermore, the need for an autonomous navigation system
for future interplanetary missions makes this topic intriguing for the outlets it could
bring.
The basic concept for spacecraft navigation using pulsar was set out by Sala et al.
[2004], Sheikh et al. [2006], Sala et al. [2008], Emadzadeh and Speyer [2010]. A
large number of feasibility studies, researches, simulations and in-orbit demonstra-
tions have been carried out considering radio and X-ray pulsars. Pulsars are usually
discovered and observed using large ground-based radio telescopes, consequently
the �rst idea was a radio navigation system. The main problem with this naviga-
tion system is the dimensions of the antenna required in order to determine the
position within a reasonable observation time. For example, Becker et al. [2013] cal-
culated phased-array radio antennas of at least 150 m2 antenna area to make feasible
spacecraft navigation with pulsars. The conclusions of that paper show that X-ray
navigation system using millisecond pulsars is certainly better for the instrumenta-
tion dimensions and for the achievable accuracy. As soon as X-ray pulsar astronomy
became possible by means of space telescopes, using X-ray pulsars seemed to be
the solution for an autonomous system. X-ray millisecond pulsars, as described in
Chapter 2, are the most stable among all the types of pulsars. X-ray millisecond
pulsars, for their extremely high stability, could ideally lead to a higher accuracy
compared to normal pulsars. The possibility of spacecraft navigation using optical
observations of pulsars had not been considered in any studies. The only motivation
for this decision is the very low number of the pulsars for which the optical coun-
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terpart is known and actually seems not to be su�cient [Deng et al., 2013]. In this
thesis optical pulsars have been considered. The idea is that in the optical band the
number of photons is much higher than in the X-ray band. Moreover the optical
technology is much more tried and tested. Using optical pulsars, the telescope di-
mension and the observation time required by a pulsar navigation system would be
more a�ordable given the higher number of photons than in the X-ray. Furthermore,
there are di�erent pulsar navigation techniques that make use of only one pulsar to
correct the spacecraft position.

3.2.2 In Orbit Demonstrations

Currently, pulsars navigation systems have already been tested in orbit. In this
section there are some of the important details of the in-orbit demonstrations of
this system.

� ARGOS : was the �rst experiment in 1999 of the pulsar navigation, [Mitchell
et al., 2015]. The test explored a broader vision of X-ray navigation and it was
not limited to position determination using pulsars but also studying the use
of occultations, a technique useful for satellites in orbits near planets.

� POLAR: is a Gamma-Ray Bursts Polarimeter which was launched in 2016
and its aim was to measure the polarization of the gamma-ray bursts. Because
of its large e�ective area, of about 200 cm2, and FOV (Field of View), of
about 2π Sr, the instrument could be used to detect photons from pulsars
and it could be used for testing pulsar navigation, [Zheng et al., 2017]. The
instrument observed the Crab pulsar for 31 days and the orbit was determined
with an orbit deviation within 20 km, testing a new navigation method SEPO
(Signi�cance Enhancement of Pulse-pro�le).

� NICER: is composed of 56 identical X-ray telescopes (e�ective area of about
2000 cm2). The instrument was launched on the ISS in 2017. It measured the
signals of �ve millisecond pulsars determining the position within 5 km.

� Insight-HXMT : is a telescope satellite launched in 2017 and which is composed
of three X-ray telescopes (e�ective area of about 5000 cm2). Using �ve-day long
observation of the Crab pulsar and the SEPO method, the position and the
velocity of the satellite were determined within 10 km and 10 ms−1, respectively
[Zheng et al., 2019].

3.2.3 Problems with the Pulsar Navigation

The problems related to pulsar navigation are listed in this section. These can be
divided into two categories: on the one hand there are problems related to the nature
of the pulsars and on the other problems related to the instrumentation needed for
e�cient satellite navigation. In order to understand clearly the problems with each
pulsar navigation technique it is useful to know the di�erent methods that can be
used (the methods will be fully described later in the thesis).
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Pulsar stars emits radiation with very stable period, which steadily increases as the
pulsar releases its rotational energy. However, as seen in Chapter 2, these sources
show di�erent type of irregularities. The average pulse shape is stable and character-
istic of each pulsar, but the irregularities determine the accuracy of the navigation
system. For this reason it is essential to understand what are the consequences of
signal irregularities. Pulsars rotation is due to natural phenomena, this leads to ir-
regularities of the detected signal. As discussed in Section 2.2, pulsars present two
types of irregularities: glitches and timing noise.
Typically glitches are shown by the younger pulsars and they are di�cult to model,
hence to predict. To solve this problem the only thing to do is to update as much
as possible the ephemeris of each pulsar used in the navigation system. Another
way to partly bypass the problem is to use millisecond pulsars that are more stable
compared to normal pulsars.
The timing noise has a great in�uence on the accuracy of the position determination
of the spacecraft. This noise has two components: white noise and red noise. White
noise can be eliminated increasing the statistics, hence increasing the observation
time. Red noise is di�cult to eliminate but it can be reduced with an accurate study
of the prediction of the spin evolution of pulsars. Furthermore, the red noise is only
important in long-term observation of the pulsar.
The periodic nature of the pulsars signal leads to an ambiguity problem on the de-
termination of the spacecraft. The unknown is the integer number of pulses in the
detection between the pulsar and the spacecraft. The computational cost to solve
this problem is extremely high if the absolute position of the spacecraft needs to be
determined, but it is smaller if the initial guest on the position of the spacecraft is
close to the real position. In pulsar navigation there exists techniques that o�er the
possibility to navigate both with no a-priori position information and with a-priori
estimate of the position as will be discussed later in the thesis. However, di�erent
methods were suggested to improve the performance in the case of absolute position
determination constraining the integer number of pulses in the navigation solution.
Another problem with the pulsars navigation system is the fact that the system is
not completely autonomous. In fact to reconstruct the template of the signal in a
reference frame the ephemeris (frequency and �rst derivative of the frequency) are
necessary. As speci�ed previously in this section, it is useful to update the ephemeris
as much as possible, to compute the position determination with high accuracy. All
this means that observation time from ground and space telescopes is required. The
work that a navigation system would require is something like the Jodrell Bank
Observatory1 does for the Crab pulsar [Lyne et al., 1993]. The Jodrell Bank Obser-
vatory hosts a number of radio telescopes that are part of the Jodrell Bank Centre
for Astrophysics at the University of Manchester. The ephemeris are updated almost
monthly only for the Crab pulsar, but a navigation system that will use di�erent
pulsars will need, at least monthly ephemeris for all the pulsars used.
A practical problem is in the instrumentation that a spacecraft will need to have on
board. Some of the techniques involve the observation of 3 or 4 pulsars simultane-
ously. This implies the need for complex instrumentation, even with multiple mobile
telescopes. Furthermore, the dimensions of the telescopes need to be investigated.

1http://www.jb.man.ac.uk/ pulsar/crab.html
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The signal, specially for the optical band, is weak so in order to reach a high SNR
(Signal to Noise Ratio) a large telescope is required. Nevertheless the instrumenta-
tion should be able to be installed on the satellite.
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4. Pulsar Navigation Techniques

This chapter describes the theory behind optical pulsar navigation. The pulsar nav-
igation concept and the various possible navigation techniques with the related fea-
tures and problems are described. Pulsar navigation techniques can be divided ac-
cording to the di�erent types of observations that can be used. There are two main
types of measurements for pulsar navigation, namely the phase measurements [She-
mar et al., 2016], described in Section 4.2 and the technique that uses signi�cance
analysis of the pulse pro�le and orbit dynamics [Zheng et al., 2019], analyzed in
Section 4.3.
Actually, other techniques could ideally be used for satellite navigation but these
have not been considered because they are not suitable for pulsar navigation [Kaune,
2012]. These techniques and the reasons why they cannot be used in our system are
reported in the following points:

� Angle of Arrival (AoA): it is the measurement of the angle of arrival of the
signal which will be di�erent depending on the position of the receiver with
respect to the position of the signal source. The AoA measurement cannot be
used in our case. The distance from the spacecraft to the pulsar is so much
larger than the spacecraft's possible travel distance that the angle of arrival
of the pulsar signals is practically constant everywhere in the solar system. If
we take a typical distance of 1 kpc (kparsec)∼ 2 · 107 UA between the pulsar
and the SSB (Solar System Barycenter), this assumption is satis�ed in all the
solar system as ||x||/1kpc << 1→ ||x|| < 1kpc/100 ≈ 3∗1017 m≈ 2∗105 UA,
where x is the vector from the SSB to the spacecraft [Sala et al., 2004]. This
fact simpli�es the location algorithm based on the ToA measurements, which
will be described in Section 4.2.1.

� Frequency of Arrival (FoA): it is based on Doppler shift measurements in
the arrival signal. The measured Doppler shift will be di�erent depending
on the velocity of the spacecraft with respect to the signal source. The FoA
measurement cannot be used in our case. As already explained in Section 2,
pulsar radiation is synchrotron radiation which is a continuum and there are
not, to date, pulsars which show emission or absorption lines in their spectrum.
It is not possible without spectrum lines to measure the Doppler shift.

� Received Signal Strength (RSS): it is based on the fact that, depending on the
distance of the spacecraft from the signal's source, the received signal strength
would be di�erent. The RSS measurements cannot be used in our case, because
pulsars are at such a great distance that no instrument is able to measure the
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tiny di�erence in the strength of the received signal inside the solar system.
More in details, this di�erence is less than the shot noise thus probably the
measurement is physically impossible.

4.1 Pulsar Navigation Concept

The pulsar navigation technique is based on the use of pulsar timing information to
determine position and velocity of spacecraft. One of the most important require-
ments is a reliable timing model for the observed pulsar. The steps to reconstruct
the pulse shape from observational data have been already explained in Chapter
2. Due to the fact that the measure is the ToA of photons at the detector, it is
straightforward that the measurements are closely linked with position and velocity
of the detector in space. The pulse phase of a pulsar has to be modelled at an iner-
tial reference location, inertial in the sense that it does not accelerate with respect
to the pulsars. The common inertial reference system usually used is the one with
origin at the center of mass of the solar system the Solar System Barycentre (SSB)
and the barycentric dynamic time (TDB) as time coordinate. Actually, this refer-
ence system is quasi-inertial. Arrival times of detected photons need to be corrected

Figure 4.1: Pulsar pulse arrival times [Graven et al., 2008]. The �gure shows the
pulses from a pulsar as they arrive into the solar system relative to the SSB inertial
frame and a spacecraft orbiting Earth. n̂ is the unit vector from the SSB to the
pulsar.

to the SSB. The time conversion of the photons is usually done with the software,
Tempo21 [Hobbs et al., 2006]. Tempo2 is used for the analysis of pulsar pulse time
of arrival for ground observation. The software accounts for the e�ects of a binary
orbital motion, the secular motion of the pulsar or binary system, interstellar, Solar
system and ionospheric dispersion, observatory motion (including Earth rotation,
precession, nutation, polar motion and orbital motion), tropospheric propagation
delay, and gravitational time dilation due to binary companions and Solar system
bodies. The summarized transformation equation which Tempo2 software uses to
convert the measured ToA to the SSB is the following:

∆t = ∆C + ∆A+ ∆E� + ∆R� + ∆S� −D/f 2 + ∆V P + ∆B (4.1)

1http://www.atnf.csiro.au/research/pulsar/ppta/tempo2
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where ∆C contains the clock corrections, ∆A the atmospheric propagation delays,
∆E� the Solar System Einstein delay, ∆R� the Solar System Roemer delay, ∆S�
the Solar System Shapiro delay, D/f 2 models the dispersive component of the light
travel time, ∆V P describes the excess vacuum propagation delay due to secular
motion and ∆B contains terms which describe any orbital motion.
Usually clocks such as hydrogen masers used by ground observations have a good
short term stability, but on longer time scale these clocks deviate (the accuracy is
of the order of 10−9 second per day). On Earth, it is possible to remove these errors
down to the precision provided by the best terrestrial time scale. However, on a
satellite, the on-board clock will drift over time and errors in the clock will lead
to incorrect determination of the barycentric arrival times. The atmospheric delay
does not need to be considered for a satellite navigation. Einstein delay quanti�es
the change in times due to variation in clocks due to changes in the gravitational
potential of the Earth and the Earth's motion, hence this component does not need
to be considered for a pulsar navigation system. Roemer delay is the simple vacuum
delay between the arrival of the pulse at the observatory and the SSB. Shapiro delay
is due to Solar System objects which accounts for the time delay caused by the pas-
sage of the pulse through large gravitational �elds. A similar transformation needs
to be done for the measured photons at the spacecraft. The dispersive delays need to
be considered only for radio observations. The value of the delay is ∝ f−2 where f is
the observational frequency that in the radio case is extremely low. Shklovskii e�ect
and radial motion account for secular motions of the pulsar relative to the SSB. This
e�ect is important for long-term observation hence it is not important for satellite
navigation. Clearly, the software which will correct the arrival times of the photon
detected at the spacecraft will be less complex than Tempo2 software. In fact, this
software reaches 1 ns level of precision which is more than what is necessary for a
navigation system as will be shown later in the document. We remark that in this
thesis there is not the description of a possible navigation software. In fact, the aim
is only to study feasibility and achievable accuracies of a navigation system with
optical pulsars. In any case, in other studies a time conversion equation for a pulsar
navigation system has been proposed as the following:

tbk = tobsk+
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The barycentered time of k-th pulsar pulse, tbk , is converted from the receiver's
observed time, tobsk , considering the various corrections. The values are de�ned as
follows: n̂ is the unit vector from the SSB to the pulsar; rk is the spacecraft position
relative to the SSB; D0 is the distance to the pulsar at the zero-th pulse transmis-
sion; V is the pulsar's proper motion that is small and can be simpli�ed; ∆tk is the
di�erence in transmission time between the zero-th pulse and the k-th and bki

is
the Sun's centre relative to the SSB origin. Such equation considers Roemer delay,
Doppler e�ects and Shapiro delay and it was de�ned by Sheikh et al. [2006].
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However, the purpose is to correct all the e�ects which introduce delays at the
arrival time of the photons at the detector and return the pulse shape at the SSB.
This correction requires knowledge of the detector position and velocity as input pa-
rameters. The input parameters can be assumed or deduced from a previous position
determination. Another possibility is to require assistance from external sources, as
for example the DSN (Deep Space Network), or, if the spacecraft is close to Earth,
the GPS (Global Positioning System) or GNSS (Global Navigation Satellite System).
In any case, additional autonomy can be provided if an on-board orbit propagator
is implemented in the navigation system to provide a continuous estimate of the
spacecraft's dynamics during pulsar observations. The position determined by the
propagator can also be compared to the estimated position using pulsar navigation
techniques. Comparing the position determined with the orbit propagator or the
other on-board instruments, such as accelerometer or gyroscope, can be useful to
calibrate them. As described in Chapter 3, the INS (Inertial Navigation System) is
an autonomous navigation system in which precision diminishes with time. Errors
in the measurements can be eliminated comparing the measurements with a pulsars
navigation system.

The basic concept of pulsar navigation systems is the following. After the bari-
centrization of time of arrival of each photon the pulse pro�le can be reconstructed
using the techniques already described in Chapter 2. If in the baricentrization the
input position of the detector is a�ected by errors the measured pulse shape and
the template will not be identical. The way the di�erences between the measured
pulse shape and the template are measured gives origin to the di�erent navigation
techniques. By using one of all the possible navigation techniques the position of the
spacecraft can be determined.
It is possible to improve the estimated position using iterated approaches. Hence the
obtained pulse pro�le can continuously be improved during iterated observations.
If position and velocity of the spacecraft are assumed but the pulse pro�le is not
correct a better baricentrization has to be searched. The observational pro�le is per-
manently compared with a pulse pro�le template in order to observe and measure
di�erences between the two. The template at the epoch of observation can be easily
calculated thanks to the predictability of phase evolution of pulsars. The position
of the spacecraft can be estimated only after that the template and the observa-
tional pro�le are in the same reference system. The way observational pro�le and
the template are compared give rise to di�erent techniques. The two possible pulsar
navigation techniques are described in the following sections.

4.2 Phase Measurements

The basic concept of the phase measurement techniques is the comparison at the
SSB of the observed pulse phase at the spacecraft with the predicted one: if the input
position and velocity in the baricentrization are not correct a phase shift between
the observed pro�le and the model will be measured (see Figure 4.2).
As previously said in Section 2.2, the pulse evolution of pulsars is predictable
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Figure 4.2: The top pro�le is the pulse expected at the SSB. The bottom pro�le is
the pulse measured at the spacecraft. The assumed position is wrong if a phase shift
∆φ between the two is observed. The measure can be made considering the phase of
the peak at the SSB [Becker et al., 2013].

because of their high stabilities. The predicted pulsar signal phase at a future time
t is:

φSSB(t) = φSSB(T0) + f(t− T0) +
N∑
m=1

f (m+1)(t− T0)m

(m+ 1)!
(4.3)

where φSSB(t) is the predicted phase at the SSB reference, T0 is the epoch in which
the phase was known from the catalogues, f is the frequency of the pulsar and f (m)

are its derivatives, which represent the phase changes over the time. The order of
the derivative to be considered in the navigation system depends on the features
of the considered pulsar and on how updated the ephemeris are. To get a precise
phase evolution of the observed pulsars the ephemeris need to be updated as much
as possible. As already previously said in the document, a catalogue of the pulsars
ephemeris to use for possible pulsar navigation systems is needed. This catalogue
would be similar to the one the Jodrell Bank observatory has for the Crab pulsar.
The ephemeris of the Crab pulsar are updated almost every month. Furthermore, the
ephemeris need to be communicated at the spacecraft. In this sense the navigation
system is not properly an autonomous system. This fact leads to the problem that
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ground observatories have to continuously observe pulsars. However, for an optical
navigation system this is not a big issue because a very large telescope is not required
to detect, for example, the Crab signal. Moreover, even a radio telescope can be used
to get the ephemeris of the pulsars. As already mentioned in Chapter 2, radio and
optical observations show a delay in time of arrival and it can be corrected. While
in the case of the X-ray observation only space telescopes can be used to study the
pulse shape of the pulsars that are di�erent from optical and radio ones.
The methods which make use of phase measurements can be called Time of Arrival
(ToA). The ToA method uses the predictability of the pulsar pulses and compares
the detected pulses. The comparison between the two pulses is usually made at the
main peak phase (see Figure 4.2): because it corresponds to the point where there is
more signal and more statistics. There are two di�erent techniques which make use
of the phase measurements: delta correction and absolute navigation. Both these
techniques can be used with an iteratively approach.
Figure 4.3 summarizes the position determination process. To improve the accu-

Figure 4.3: Phase measurements methods permit to measure the position of a
spacecraft; they can be used with an iterative determination of position and velocity
[Becker et al., 2013].

racy of the position determination the process can be done iteratively. The �rst step
is the measure of the photons arrival times. In the baricentrization an assumption
of position and velocity is required. Then, the predicted pulse pro�le at the epoch
of observation has to be determined using the ephemeris of the used pulsar. Now
the two pulses can be compared and if a phase shift is measured the position and
velocity can be corrected and the process can restart implementing the new values
of position and velocity in the baricentrization. The process can be repeated until
no phase shift is measured.

There are di�erent phase measurement techniques depending on how many pul-
sars can be observed. Delta correction uses only one pulsar signal measured at the
spacecraft and compares it to the predicted one. The predicted pulsar pulse phase
at an epoch t is computed using equation 4.3. The measured signal is the time of
arrival (ToA) of the pulsar pulse. After the predicted pulse and the measured pulse
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Figure 4.4: Delta correction is a method that permits the measure of the position
of a spacecraft in the direction of the measured pulsar [Shemar et al., 2016].

are in the same reference frame, they can be compared and the di�erence gives the
timing residual. This timing residual is equivalent to the light time delay between
estimated and true position along the line of sight of the pulsar. Usually the measure
that can be considered is the phase shift of the pulse peak, see Figure 4.2. If the
input position of the spacecraft in the baricentrization is not the corrected one a
phase shift of the main peak is measured. On the contrary if the phase shift is nearly
zero the position and velocity used in the baricentrization are correct. In the case
of Delta correction technique, the phase shift corresponds to a range di�erence ∆x
along the line of sight toward the observed pulsar de�ned as follow:

∆x = cP (∆φ+ n) (4.4)

where c is the speed of light, P is the pulse period, ∆φ is the measured phase shift
and n = 0,±1,±2.. an integer number that takes into account the periodicity of the
observed pulses.
Delta correction uses only one pulsar to correct the assumed position of the space-
craft. The instrumentation needed for the system is not very complex. Considering
that, only one pulsar has to be observed at a time, one telescope is enough. The
dimension of the telescope need to be investigated depending on what the charac-
teristic emission of the selected pulsar is.
The achievable accuracy in the position determination of this method depends on
the accuracy of the determination of the phase peak. The determination of the peak
depends on the system clock errors and on pulsar timing errors. On-board clocks
are usually very stable but they can drift after a long time. If the clock drift cannot
be modelled it induces errors in the measurements of photons time of arrival. Pulsar
timing errors are di�cult to model, as previously said in Chapter 2, and they will
determine the achievable accuracy of the navigation system. Later in the document
this problem will be analyzed in detail.
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Delta correction can be used to correct the position in one direction. It is not pos-
sible to estimate the position in three dimensions, unless measurements of di�erent
pulsars are available. The o�set in three dimensions can be determined by combining
measurements from di�erent pulsars. For a three dimensions position determination
at least three pulsar pulses need to be measured. By observing more than three
pulsar, the clock drift of the on-board clock can be corrected. Moreover, it is pos-
sible to constrain the ambiguity problem or rather determine the integer number
of pulses between the pulsar and the spacecraft. The three dimension position de-

Figure 4.5: Three dimension position determination is possible observing at least
three pulsars. The arrows point along the pulsar's lines of sight and the straight
lines represent lines of constant pulse phase [Becker et al., 2013]. If a fourth pulsar
is available the ambiguity problem could be solved.

termination technique uses the signal of three or more pulsars and compares them
to the predicted ones. The method is useful when a full three dimension position
determination is required. As said above, only correcting the position along the line
of sight of the pulsar can be carried out by observing one pulsar and using phase
measurements.

It is already clear that an a-priori estimate of position and velocity of the spacecraft
is necessary. The transformation of the photon times of arrival needs the input of
these parameters. This problem exists in both delta correction in one dimension
and in three dimensions. This estimation can be pursued with the DSN, GPS if the
spacecraft is close to Earth or with an on-board orbit propagator.
Anyway it is possible to navigate in space with pulsars even without an a-priori
estimate of position and velocity. Absolute navigation is the method by which the
position of the spacecraft is determined with no a-priori position and velocity knowl-
edge. It can happen that the spacecraft computer needs to be reset. If this happens
a-priori knowledge of the position is no longer available. Anyway, it is possible to
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determine the position of the spacecraft only using simultaneous observation of pul-
sars. This method requires the simultaneous observation of three or four pulsars. If
the estimated spacecraft position is unknown it is impossible to transform the pho-
ton times of arrival at the SSB. In fact, it is necessary to have an input position and
velocity information for any timing analysis software. Hence, to determine absolute
position by using only pulsar signals, multiple simultaneous pulsar observations are
required. The absolute position determination requires the knowledge of which spe-
ci�c integer phase cycle is at a certain time. It is possible to determine the unique
set of cycles which satis�es the combined information of the integer phase cycle and
the line of sight of pulsar directions. In this way the absolute position relative to the
SSB can be computed.
The fact that more than one pulsar needs to be observed leads to the problem that
the estimated position depends on the relative position of the various sources in
space. The Geometric Dilution of Precision (GDOP) is an expression of the ac-
curacy of the estimated three dimensional position. If the navigation beacons are
orthogonal each beacon is contributing maximally to the two dimensions, while if the
beacons are close together the contribution to di�erent dimensions relative to the
observer are less. GDOP can in�uence the navigation solution. Usually, the GDOP
is calculated in the covariance matrix of the estimated errors of the position solution
and provides a measure on how well the set of pulsars are chosen. Considering that
in the optical band the sources are really a few, this technique could not be usable
for our system. Moreover, the instrumentation required for the navigation is more
complex compared to the one required for Delta correction or for SEPO methods,
which is described in the next section. In any case, the equations of this technique
are reported in Section 4.2.1; they are useful for understanding the accuracy analysis
reported in the following Chapter number 6.

4.2.1 Navigation Equations

In order to analyse the achievable accuracy in the determination of the position of an
optical pulsar navigation system, it is necessary to derive the navigation equations.
The accuracy analyses are reported in Chapter 6. The following analysis is similar to
that carried out by Sala et al. [2004], but adapted to the optical case. The study of
these equations has the sole purpose to determine the achievable accuracy of phase
measurement methods. Hence, these have been useful in determining in detail what
are the errors which a�ect the phase measurement. To determine the �nal navigation
equations it is mandatory to study the design of the instrument and consequently the
navigation method which can be utilized. In this analysis the following assumptions
have been made:

� simultaneous multiple pulsars observations are possible;

� at least three optical telescopes will be available on the spacecraft;

� the ephemeris of the various selected pulsars are de�ned in the radio band;

� selected pulsars are su�ciently stable so that only the �rst order of the fre-
quency derivative can be considered in the determination of the phase pulse
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template;

� all the contributing noises are zero-mean random Gaussian.

The phase evolution of the pulsar signals at the SSB, as seen above, is de�ned as

φSSBk (t) = [φSSBk (T0) + fk(t− T0) +
N∑
m=1

f
(m)
k (t− T0)m

m!
)]w, (4.5)

where k is the k-th pulsar and w is the phase wrapping operation de�ned as
0 ≤ [φ]w = φ + mφ < 1 and with φSSBk (t) phase at the observation time; φSSBk (T0)
phase at a reference time T0; fk = 1/Tk frequency of the k-th pulsar where Tk is the
period of the k-th pulsar and f (m)

k is the m-th derivative of the frequency.
The Phase Observation of the pulsar signals at position x is de�ned as

φ̃xk(t) = [φSSBk (t− τk) + wφk ]w = [φSSBk (T0) + fk(t− τk − T0) + wφk ]w, (4.6)

where τk is the phase delay with respect to the SSB and wφk is the additive Gaus-
sian noise sample associated with the estimate φ̃xk(t0). It has to be noted that only
two terms of the phase evolution have been used exploiting the vicinity of t to T0.
This is not a strong assumption as the rest of terms can only a�ect after several
months, Sala et al. [2008]. The unknown speci�c delay for the k-th phase estimate
τk depends linearly on the position of the spacecraft x and the direction of arrival
for the speci�c pulsar at the SSB and it can be determined in the following way:

τk =
ûT
k · x
c

, (4.7)

where ûk is the unitary vector from the SSB to the pulsar and c is the speed of
light. The delay with respect to the SSB can be understood as the projection of the
position vector x into the constant angle of arrival of the pulsar, see Figure 4.6. If we
substitute (4.7) in the equation (4.6) and exploit the wrapping operation we have:

φ̃xk(t) = φSSBk (T0) + fk(∆t0 −
ûT
k · x
c

) +mk + wφk , (4.8)

where ∆t0 = t − T0 and mk is an unknown integer related with the number of
wrapped phase cycles for each pulsar signal.
Rearranging the terms of the equation (4.8) we can get the relation between mea-
surements and unknown parameters, i.e. time, position and ambiguity:

yk = f−1
k (φ̃xk(t)− φSSBk (T0)) + T0 = t− ûT

k · x
c

+ f−1
k mk + f−1

k wk; (4.9)

where yk are the linear transformed initial phase delays of the k-th pulsar. We need
to add in this equation the correction for the dispersion measure ∆tDM , due to the
delay induced to the light from the interstellar medium, and the correction ∆tOR
for the delay we have when we compare the radio phase ephemeris and the optical
measures. Assuming these additional factors we get:

yk = f−1
k (φ̃xk(t)−φSSBk (T0))+T0−∆tDM−∆tOR = t− ûT

k · x
c

+f−1
k mk+f

−1
k wk; (4.10)
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Figure 4.6: Geometrical interpretation of the phase estimate. The x is the unknown
position of the spacecraft de�ned respect to the SSB. The source of ambiguity is
observed as the integer number of spatial pulsar periods Dp in the direction un [Sala
et al., 2004].

The dispersion measure (DM) is only important for radio observation of pulsars. In
fact, the time delay due to dispersion is:

∆tDM =
e2

2πmec

DM

f 2
(4.11)

where in the �rst fraction there are the constants e electron charge, c speed of light
and me electron mass. Then, it can be noticed that the dependence on the observa-
tion frequency is f−2, and in the case of radio observation this is very low compared
to the optical frequency. DM , dispersion measure, is the integrated column density
of free electrons between an observer and a pulsar DM ≡

∫ d
0
ne dl. Since radio band

has a very low frequency, in the presence of charged particles there is a strong elec-
trostatic interaction between the light and the charged particles. The interaction
causes a delay in the propagation of the light. As seen in equation 4.11, the delay is
a function of the radio frequency and the masses of the charged particles. The more
energetic the photons are the more they tend to push past the charged particles with
little e�ect on their speed, whereas lower frequency photons are more signi�cantly
delayed. ∆tOR correction has to be considered if the ephemeris are in the radio band.
As seen in Section 2.2, there is a delay in the time of arrival between optical and
radio band. If the ephemeris are known in optical wavelength this contribution does
not need to be counted.
Finally, we can express the equations for the ToA method in vector notation as
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follows:y1
...
yk

 =

1k
−

ûT
1

c
...
− ûT

k

c


[ t

x

]
+

f
−1
1 0 0

0
. . . 0

0 0 f−1
k


m1

...
mk

+

f
−1
1 0 0

0
. . . 0

0 0 f−1
k


wφ1...
wφk


(4.12)

We can rewrite the �nal model for the phase estimates as:

y =
[
1k −U

] [ t
x

]
+ Fm + wy; (4.13)

where U, F and w are de�ned as:

U =

−
ûT1
c
...
− ûTk

c

 ;F =

f
−1
1 0 0

0
. . . 0

0 0 f−1
k

 ;wy = F

wφ1...
wφk

 . (4.14)

Under the assumption that the noises are all zero-mean random Gaussian, e.g. wy ∼
N (0, Ry), we can write the covariance matrix Ry. This matrix will be the sum of
all the covariance matrices of all the noise contributions, e.g. the measured phase at
the position x , the variance of the determination of the model phase at the SSB,
the variance of the dilution measure and the variance due to comparing the optical
data with the radio ones. The covariance matrix of φx is de�ned as follows:

Rφx = E[wφxw
T
φx ] = FRφF

T =

f
−2
1 σ2

φx1
0 0

0
. . . 0

0 0 f−2
k σ2

φxk

 ; (4.15)

This component of the covariance matrix depends on the area of the on-board tele-
scope, the kind of detector and the noise of the background of the pulsar and the
dark counts of the detector. Moreover, we have to consider the uncertainties of the
spacecraft clock for the determination of the time of arrival of the pulsar's signal.
The covariance matrix of φSSB is de�ned as follows:

RφSSB = E[wφSSBwT
φSSB ] = FRφF

T =

f
−2
1 σ2

φSSB
1

0 0

0
. . . 0

0 0 f−2
k σ2

φSSB
k

 (4.16)

This component depends on how accurate the template is which we have for the k-th
pulsar. We can �nd this information on the catalogue "Jodrell Bank Crab pulsar
Ephemeris". Here, the ephemeris of the Crab Pulsar are reported monthly with the
RMS of the measure.
The covariance matrix of ∆tDM is de�ned as follows:

RDM =

σ
2
DM1

0 0

0
. . . 0

0 0 σ2
DMk

 (4.17)
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This component depends on how accurate the estimation of the dilution measure
due to the interstellar medium is. After propagating through the interstellar medium
the light experiences a frequency dependent time delay that we need to take into
account.
The covariance matrix of ∆tOR is de�ned as follows:

ROR =

σ
2
OR1

0 0

0
. . . 0

0 0 σ2
ORk

 (4.18)

This component is due to the fact that the ephemeris that we have are in the
radio band and there is a di�erence on the time of arrival between the two di�erent
observation bands. The optical peak leads the radio one and this can be caused by
a di�erent position of the two emitting regions.
At the end summing all these contributions we can derive the covariance matrix of
the measurements yk:

Ry = FRφxF
T + FRφSSBFT + RDM + ROR =

σ
2
y1

0 0

0
. . . 0

0 0 σ2
yk

 . (4.19)

The covariance matrix of the method is essential to determine the accuracy of the
determination of the position. In the next Chapter this matrix will be necessary for
the accuracy analysis.

The following equations show that there is a linear dependence between the phase
di�erence of the drift in the phase measure of two sequential observations and the
velocity of the spacecraft. This measure can be called Drift-ToA.
The derivative of the phase evolution equation, equation (4.5), of the k-pulsar at
the SSB is de�ned as

ϕSSBk (t) = φ̇SSBk (t) = [fk∆̇t0] (4.20)

The derivative of phase observation of the k-pulsar at position x is de�ned as

ϕ̃xk(t) = φ̇SSBk (t− τk) = [fk(∆̇t0 −
ûTk ẋ

c
)) + wyD−ToA,k

]. (4.21)

Similar to how it was carried out previously, by rearranging the terms of these two
equations (4.20) and (4.21) and applying the wrapping operation we can get the re-
lation between the Drift-ToA measurements and the unknown parameters or rather
the position derivative:

yD−ToA,k = f−1
k (ϕ̃x

k(t)− ϕSSBk (T0)) = − û
T
k ẋ

c
+ f−1

k wyD−ToA,k
. (4.22)

It must be noted that by making the derivative of the phase observation the depen-
dence on mk, number of phase-cycles unknown, is eliminated.
Finally, the vectors and the matrix involved can be de�ned as follows:

yD−ToA = −Uẋ + FwyD−ToA; (4.23)
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where U and F are already de�ned above, ẋ is the velocity vector of the spacecraft
that is the unknown parameter andwyD−ToA

= [wyD−ToA,1
, . . . , wyD−ToA,k

] is the vector
of the zero mean Gaussian noise associated with each k-th pulsar. The noise term
is considered component independent and its covariance matrix is:

RyD−ToA = E[wyD−ToA
wT

yD−ToA
] =

σ
2
yD−ToA,1

0 0

0
. . . 0

0 0 σ2
yD−ToA,k

 . (4.24)

The covariance matrix of the method is essential to determine the accuracy of the
determination of the velocity. In the next Chapter this matrix will be necessary for
the accuracy analysis.

4.3 Signi�cance Analysis

SEPO (Signi�cance Enhancement of Pulse-pro�le with Orbit-dynamics) is a pulsars
navigation method that can determine the orbital parameters of the spacecraft us-
ing only one pulsar. The basic concept of this method is very simple compared to
the idea of the phase measurement techniques. The observed pulse pro�le, obtained,
as described above, after the time conversion to the SSB will be deformed due to
the input orbit errors resulting in a decrease of the signi�cance of the pro�le signal,
see Figure 4.7. SEPO method, however, has not been proven mathematically. Zheng
et al. [2019] performed some simulations to show that the method works with dif-
ferent pulse pro�les.

The basic assumption with this technique is that an estimate position as input
before the position determination is mandatory. The process that allows to pass
from the measurement on the detector to the light curve is complex, as already said
above. The measurement is the time of arrival at the detector of the photons. Then,
the photons have to be converted at the SSB. The time correction at the SSB of
the time of arrival of each photon is closely related with the input position of the
spacecraft. If the orbit deviates from the correct position the calculated pro�le will
be deformed from the standard pro�le due to the wrong phase. In Figure 4.7, the
di�erences between the correct pulse shape and the calculated wrong pulse shape
are displayed.

Implementation of the signi�cance (or χ2 test analysis) is any statistical hypoth-
esis test where the sampling distribution of the test statistic in a χ2 distribution for
example can be used to test the goodness of �t. In our case the signi�cance of the
pulse pro�le is de�ned as:

χ2 =
N∑
i=1

(P (φi)− P̃ )2

P̃
(4.25)

where P (φi) is the counts of the pro�le at φi, P̃ is the mean counts of the pro�le and
N is the total bin number of the pro�le. The signi�cance of the calculated pro�le
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Figure 4.7: In the top �gure the distortion of the pulse pro�le induced by changes
of the initial elements can be observed. The red line ("ob0") represents the standard
pro�le, and the blue line represents the distorted pro�le. The distortion is generated
by errors in the input parameters. The bottom �gure shows di�erences between the
standard and distorted pro�le.

is expected to vary with spacecraft orbit deviation. The value of χ2 will reach the
maximum for the zero deviation, hence the true position and velocity. The more the
orbit deviates from the true orbit the more the pro�le will be deformed and the less
the value of signi�cance.
This method uses the observation of only one pulsar to adjust the orbit parameters.
The orbit elements are: eccentricity, semimajor axis, inclination angle, right ascen-
sion of the ascending node, argument of perigee and mean anomaly. Passing from
orbit elements to coordinates using transformation matrices is possible. The signi�-
cance analysis has to be used iteratively in order to determine the maximum value of
χ2. The processing �ow of the technique is reported in Figure 4.8. The orbit forecast
model is determined using orbit dynamics. The method to determine the orbital
parameters will depend on the conditions of the spacecraft and the mission. In this
thesis we do not go into details on this step. The orbit parameters will be a�ected
by errors, and this leads to the possibility of de�ning di�erent possible positions of
the spacecraft. After the determination of the predicted orbits, the photons arrival
times are corrected to the SSB and are folded to generate the predicted pro�les,
as previously explained. The pulsar pro�le template can be generated using phases
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Figure 4.8: Processing �ow of SEPO pulsar navigation method. The process can be
used with an iteratively approach, thanks to the long-term stability characteristics
of the pro�le, to continuously update the orbital parameters.

calculated with the phase evolution equation:

φSSB(t) = φSSB(T0) + f(t− T0) +
N∑
m=1

f (m+1)(t− T0)m

(m+ 1)!
. (4.26)

In this equation, already seen above, only the �rst order derivative can be considered
because the other orders become important only after several months (this fact will
be provided in the following chapters).
At this point it is possible to calculate all the signi�cance values for all the predicted
pro�les. The signi�cance analysis consists in determining which of the predicted
pro�les gives the maximum value of χ2. To determine the accuracy of the method
a Gaussian function can be used. The trend between the signi�cance of pro�les
and the orbit parameters is �tted with the Gaussian function and the optimal orbit
parameters and the related errors are obtained. The optimal values for the six orbital
parameters are determined separately. One parameter is free and the other �ve �xed.
The method has been used in Insight-HXMT satellite using X-ray data of the Crab
pulsar, as mentioned in Section 3.2.2. This method is new compared to the phase
measurement methods which have been proposed by di�erent papers. SEPO has
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been proposed for the �rst time by Zheng et al. [2017] considering X-ray pulsars.
The positive aspect of this technique is that one single pulsar needs to be observed to
determine the orbital elements correction. This means that the required navigation
system instrumentation is not complex, but only one telescope is required. However,
the main problem related with this technique is the long observation time required to
get high value of χ2. In this thesis we propose the same method of Zheng et al. [2019]
but considering optical pulsars. The details of our analysis will be described later
in the document. In any case, our idea is that we can be competitive by observing
in the optical band. In this sense, the required observation time to determine the
position using optical band compared to X-ray will be less, due to the large amount
of photons.
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5. Selection of Optical Pulsars

In addition to possible pulsar navigation techniques it is necessary to de�ne the
possible optical pulsars usable by navigation systems. In this chapter all the known
optical pulsars are reported with their light curves and features. The optical in-
strumentation used for studying optical timing of pulsars is described in order to
understand what a navigation system, which uses optical pulsars, needs to determine
its position in space. The real data used in this thesis are obtained with the Aqueye+
instrument, mounted at the Copernicus telescope in Asiago [Naletto et al., 2013],
[Zampieri et al., 2015]. Moreover, a preliminary study of the accuracy of the phase
measurement of the Crab pulsar, the optical pulsars distribution and an example of
visibility analysis are reported and commented.

5.1 Instrumentation for Optical Photometry

Pulsar navigation systems consider pulsars as natural navigation beacons. All the
studies to date performed on pulsar navigation systems focussed on X-ray pulsars
as the only usable type of pulsars. The reason for this choice is the low number of
pulsars in which optical pulsations are detected. The number of pulsars known to
date is approximately 2000 and of these only about 1% have a known optical coun-
terparts [Leeb et al., 2015]. There are about six rotation-powered pulsars which are
suitable for navigation systems [Mignani et al., 2000]. Other optical counterparts of
pulsars could still be discovered, as PSR J1023+0038 in which pulsations have been
recently detected by Ambrosino et al. [2017] and Zampieri et al. [2019a].

From a scienti�c point of view multi-wavelength observations are useful to under-
stand the physics of the emission processes of neutron stars. A particular kind of
instrumentation has been developed in order to perform very fast photometry in the
optical band. Aqueye+ and Iqueye1, the Asiago quantum eye and Italian quantum
eye, are very high speed photon counters with the capability of time tagging the de-
tected photons with sub-ns time accuracy, developed at the University of Padova and
the INAF Astronomical Observatory of Padova [Barbieri et al., 2009], [Naletto et al.,
2009] [Naletto et al., 2013]. The instruments are based on single photon avalanche
photo-diodes (SPADs). Aqueye+ is regularly mounted on the 1.8 m Copernicus tele-
scope in Asiago while Iqueye was mounted on the NTT telescope in Chile and on the
WHT and TNG telescopes on the Roque in La Palma. The instruments are mainly
used for optical timing of pulsars, the follow-up of optical transients, and lunar and

1https://web.oapd.inaf.it/zampieri/aqueye-iqueye/index.html
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Trans Neptunian objects occultations [Zampieri et al., 2019b].

In order to navigate in space with pulsars we need to get the pulse pro�le of the
pulsar as already explained in Chapter 2. In the following we will consider obser-
vations performed with accurate fast photon counters, namely Aqueye+. Aqueye+,
mounted on the Copernicus telescope, can record and store arrival times of all de-
tected photons with an absolute precision better than 500 ps for hour-long observing
sessions [Naletto et al., 2013]; [Zampieri et al., 2015]. To achieve high time accuracy
this instrumentation makes use of a speci�c type of detector that allows photon
counting with high absolute precision, a SPAD detector, (see Figure 5.1). This sin-

Figure 5.1: Picture of a MPD SPAD detector taken from: http://www.micro-
photon-devices.com.

gle photon-counter is based on avalanche photo-diodes operating in Geiger mode.
A satellite navigation system that will use optical pulsars as navigation beacons
will need a single photon counting detector like this. To our knowledge, there is
not, at this time, a space-quali�ed instrument of this type. Space-quali�cation is
the process of reliability which ensures space worthiness of each component of a
space instrument. The interest on space quali�cation of single photon counting de-
tectors exists for other purposes; for example for Lidar, quantum communication and
�ight formation. Several tests have already been carried out. For example, Marisaldi
et al. [2011], performed bulk damage and total dose radiation tests with protons and
gamma-rays in order to evaluate the radiation hardness properties and suitability
for space applications of a SPAD detector. In this sense, more e�ort will need to be
made to develop an optical navigation system based on SPAD detectors.

5.2 Optical Pulsars

In this section all the optical pulsars known to date are described and their properties
summarized.
The ATNF2 radio pulsars catalogue counts more than 2600 pulsars. The 3FGL
gamma-ray pulsars catalogue counts about one hundred pulsars. On the other hand,
only about ten pulsars have optical counterparts. They are listed in Table 5.1. The

2http://www.atnf.csiro.au/research/pulsar/psrcat
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possible candidate pulsars for a navigation system are the �rst six in Table 5.1, e.g.
those for which optical pulses have been detected. They are also those with brighter
counterparts. For all of them a timing solution is available. They are: Crab, Vela,
Geminga, PSR B0540−69, PSR B0656+14 and PSR J1023+0038. The magnitude
are reported in Table 5.1. The �rst six have higher magnitude compared to the last
ones.

Name
Period
(s)

Period
Derivative

V
(mag)

Galactic
Longitude
(deg)

Galactic
Latitude
(deg)

Distance
(kpc)

B0531+21
(Crab) 0.033 4.21E-13 16.6 184.558 -5.784 1.73

B0833-45
(Vela) 0.089 1.25E-13 23.6 263.552 -2.787 0.23

B0540-69 0.051 4.79E-13 22.0 279.717 -31.516 49.4
B0656+14 0.385 5.49E-14 25 201.108 8.258 0.29
J0633+1746
(Geminga) 0.237 1.09E-14 25.5 195.134 4.266 0.07

J1023+0038 0.002 6.93E-21 / 243.490 45.782 1.37
B1509-58 0.089 1.25E-13 25.7R 320.321 -1.162 4.18
B1133+16 1.188 3.73E-15 28 241.895 69.196 0.35
B1055-52 0.197 5.83E-15 24.9U 285.984 6.649 0.72
B1929+10 0.151 1.53E-12 25.6U 47.382 -3.884 0.33
B0950+08 0.226 1.16E-15 27.1 228.908 43.697 0.26
J0108-1431 0.807 7.70E-17 26.4U 140.930 -76.815 0.2
J0437-4715 0.006 5.73E-20 / -41.963 253.394 0.14

Table 5.1: List of pulsars with optical counterparts: the �rst six pulsars are the
ones with detected optical pulsations and for which timing data exist. The data are
taken from Mignani et al. [2000] and from ATNF catalogue.

Any of the possible pulsar navigation techniques needs the knowledge of the spin
frequency in order to de�ne the pulsar template at the SSB. In order to be able to
select the best candidates as natural navigation beacons it is important to under-
stand the properties of the single optical pulsars.
The most important property for a pulsar navigation system is detectability. Pul-
sars are the result of supernova explosions during which the bulk of their progenitor
star is expelled into the interstellar medium. The nebula of the pulsars gives an
important contribution to the emitted �ux, which is not negligible and it has to be
taken into account as nebular background. In fact, the pulsed radiation is only a
fraction of all the emitted radiation. One of the di�culties in the signal detection
of the pulsars is the presence of the nebula, which drastically reduces the contrast.
Not all the optical pulsars reported in table 5.1 have the nebula. The presence of
the nebula is important for example for the Vela pulsar while it is not so important
for PSR B0540-69.
In order to determine the shape of the pulsation it is necessary to sample it using
several bins. The bin duration is constrained by the time resolution of the instru-
ment. The second constraint comes from the fact that each bin should have enough
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counts for a signi�cant signal above the background, which implies that smaller bins
require longer exposure times. For the X-ray band this fact is more binding than for
the optical band in which photons are more numerous. Another important property
is the stability factor. As already explained, pulsars are like a very precise atomic
clock at �rst approximation, but actually they show timing noise. The best pulsars
for a pulsar navigation system would be the type of pulsars called millisecond pul-
sars. This kind of pulsars shows a small spin period, P < 20 ms, and high rotational
stability with dP/dt ' 10−18 − 10−21 s/s. Unfortunately, only one millisecond pul-
sar has detectable pulsations in the optical PSR J1023 + 0038 [Ambrosino et al.,
2017]; [Zampieri et al., 2019a]. Moreover, it is not the best candidate because it is
a recycled pulsar and it shows several irregularities which are di�cult to model. So,
for an optical pulsar navigation system no millisecond pulsars are suitable targets.
Instead, we can search among the available isolated optical pulsars for those with
a su�ciently high signal that a short observation time is enough to obtain a suf-
�ciently accurate pulse shape. If the observation time is su�ciently short, timing
irregularities would be low enough not to a�ect the measurement. In fact, timing
noise a�ects timing accuracy after several days [�adeº et al., 2016]. It is important
to emphasize that for the phase measurement method the important factor is the
accuracy of the peak phase determination. While for the SEPO method the most
important factor is the high statistics of the signal.

The relevant properties of the main optical pulsars are summarized below

� PSR B0531 + 21 (Crab): it is the brightest optical pulsar (V = 16.6 mag).
It shows a double peak pulse pro�le, see Figure 5.2. The pulsar in the Crab
nebula was the �rst pulsating source in the optical band to be detected [Cocke
et al., 1969]. It is one of the most targeted objects at all wavelengths from the
radio to very high energy gamma-rays. It is the test-bed for pulsars theories.
In the optical band many studies, including phase analysis, have been carried
out for this source. It has been found that the optical pulse leads the radio

Figure 5.2: Crab pulse shape. The light curve is shown over two cycles for clarity.
The vertical dashed line correspond to the position of the main peak in the radio
band [Germanà et al., 2012].

one by ∼ 150− 250µs [Zampieri et al., 2014]. The optical timing solution was
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derived with an accuracy of ∼ 30µs by Germanà et al. [2012] and Zampieri
et al. [2014].

� PRS J1023 + 0038: it is the only millisecond pulsar with detected optical
pulsations [Ambrosino et al., 2017]. This pulsar is a fast spinning, weakly
magnetized neutron star, called transitional millisecond pulsar (see Papitto
et al. [2019] and reference therein). At the beginning it was classi�ed as a Cat-
aclysmic Variable. Subsequent observations showed, instead, that the source
was a radio pulsar with a rotational period of 1.69 ms orbiting a ∼ 0.2M� com-
panion with a period of 4.75 hours. This kind of sources can swing between a
rotation-powered millisecond pulsar phase and an accretion phase. The neu-
tron stars in them are believed to be recycled pulsars: old, low magnetic �eld
pulsars re-accelerated through mass and angular momentum transfer from a
companion star. Zampieri et al. [2019a] observed the pulsar for a few nights
and night-to-night variations of the pulse shape were detected with the second
peak varying signi�cantly compared to the �rst peak. Figure 5.3 shows the
pulse shape of the pulsar. The rotational period is in agreement with the value

Figure 5.3: PSR J1023+0038: pulse shape. The light curve is shown over two cycles
for clarity. This is the overall Aqueye+ light curve of the 2018 January observations
[Zampieri et al., 2019a].

from the X-ray ephemeris, while the phase of the ascending node is shifted
by 11.55 ± 0.08s from the value predicted using the orbital period from the
X-rays. The optical timing solution was derived with an accuracy of ∼ 12µs
by Zampieri et al. [2019a].

� PSR B0540−69: it is the second brightest pulsar in the visible band (V = 22.0
mag) after the Crab pulsar [Gradari et al., 2010]. It is located in the Tarantula
nebula of the Large Magellanic Cloud. The optical light curve shows a double
structure in the main peak with a rising edge steeper than the trailing edge
(see Figure 5.4). The period of the pulsar is 50 ms. PSR B0540 − 69 is the
only extragalactic optical pulsar. In fact, it is located in the Large Magellanic
Cloud (the distance is 49.4 kpc, see Table 5.1).

� PSR B0833−45 (V ela): it is one of the most intense sources in the gamma-ray
and radio band, while it is much weaker in the optical band (V = 23.6 mag)

41



Figure 5.4: PSR B0540− 69: pulse shape. The light curve is shown over two cycles
for clarity and the optical pro�le corresponds to the one marked with letter C. This
is the overall Iqueye light curve of the 2009 January and December observations
obtained with NTT telescope [Fermi LAT Collaboration et al., 2015].

[Spolon et al., 2019]. It is located in the Vela nebula. The gamma and X-ray
pulse pro�les are very di�erent from those in the radio and optical bands. It
shows a period of 89 ms.

� PSR B0656+14: it is a faint optical pulsar (V = 25 mag) with a period of 385
ms. The �rst possible optical counterpart was detected by Caraveo et al. [1994],
then con�rmed in 1997 with HST (Hubble Space Telescope) observations. The
pulse pro�le is double peaked with a bridge of emission between the two peaks,
see Figure 5.6.

� PSR J0633 + 1746 (Geminga): it is one of the brightest gamma-ray sources
but shows a very weak optical emission (V = 25.5 mag) [Mignani et al., 1994].
It has a rotational period of 0.0002 s.

The description of the various main optical pulsars is useful to understand what are
the best candidates for an optical pulsar navigation system. As already mentioned,
for an X-ray navigation system the best type of pulsars are the millisecond pulsars,
because of their signi�cant stability. In the optical band the situation is di�erent. At
this wavelength the count rate is much higher. Our idea is that, in order to obtain
an accurate enough measurement of the pulse shape the integration time can be suf-
�ciently short that the timing noise cannot a�ect the measurement. Consequently,
it is possible to adopt a di�erent type of pulsar.
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Figure 5.5: V ela pulse shape. The top panel correspond to the optical light curve
which is shown over two cycles for clarity. The blue line shows two Gaussian functions
that �t the main optical peaks [Spolon et al., 2019].

Figure 5.6: PSR B0656 + 14: pulse shape. The light curve is shown over two cycles
for clarity. The error bars are 1σ errors [Kern et al., 2003].

In this respect, the best optical candidate is the Crab pulsar. The Crab pulsar
is the brightest in this band (V = 16.6 mag) and it has been studied in detail. By
using the phase measurement method the accuracy of the phase of the main peak
will in�uence the accuracy of the position determination. Later in the document, the
details of the accuracy analyses will demonstrate this fact. It is necessary to under-
stand what the long term stability and the sub-µs structure of the pulse shape are
in order to perform accurate optical timing of the main peak. To perform accurate
optical timing it is necessary to perform a phase analysis like the one performed by
Zampieri et al. [2014] or �adeº et al. [2016]. In the following section a preliminary
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study of the position measurement error for the Crab pulsar is reported. Another
possible candidate optical pulsar for a navigation system is PSR B0540− 69, which
is the second brightest pulsar (V = 22.0 mag)after the Crab pulsar.

5.3 Range measurement error for the Crab Pulsar

In the previous section the Crab nebula pulsar has been proposed as the best can-
didate among all the optical pulsars. In this section a preliminary estimation of the
achievable accuracy of the phase measurement method using the Crab pulsar is re-
ported. Phase measurement using one pulsar permits to estimate the error in the
position of the spacecraft along the line of sight of the pulsar.

As a preliminary study on the Crab pulsar, the range measurement as a function of
the observation time has been calculated and the result is reported in Figure 5.7.
Di�erent telescope diameters and a SPAD detector as instrument have been consid-
ered for the analysis. This analysis is similar to the one carried out by Sheikh et al.
[2006] but adapted to our case. The equations needed to make this calculation and
the values for the Crab pulsar were taken from Leeb et al. [2015].
In Sheikh et al. [2006] the range measurement error in meters is given by:

σrange = cσTOA (5.1)

where c is the vacuum speed of light. The σTOA is de�ned as:

σTOA =
HWHM

SNR
(5.2)

where the HWHM is the Half Width at Half Maximum of the main peak of the
pulse shape of the Crab pulsar. The HWHM value is 0.85× 10−3 and it was taken
from [Germanà et al., 2012]. The SNR is the Signal to Noise Ratio and it can be
de�ned as:

SNR =
Npnp√

(NNB +ND)npT +Npnp
(5.3)

where T is the period of the pulsar (0.0337s) and np is the number of observation
periods. For ND, which is the dark count rate, we considered 10 dark counts per
second considering a cold SPAD detector. Np is the number of photons from the
source and NNB is the number of photons of the nebular background. This last two
values are estimated using the following equation:

N = tr
D2πT

4h

∫ ν2

ν1

Fνην
ν

dν (5.4)

where h is the Planck's constant, ν is the observation frequency, ην is the quantum
e�ciency, D is the diameter of the telescope and T is the pulsar period. The value
tr is di�erent for the measurement of NNB (0.45) and of Np (0.9) [Leeb et al., 2015].
Fν is the �ux of the Crab pulsar. Fν and ην are taken from [Leeb et al., 2015]. They
considered a SPAD detector with lower and upper frequency limits corresponding to
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Figure 5.7: Range measurement accuracy for the Crab pulsar vs the number of
observation periods considering di�erent telescope diameters.

λ = 1050nm and λ = 400nm respectively. A navigation system pulsar aided should
be equipped with a small telescope. In our analysis we considered di�erent diameters
of the telescope to determine how the accuracy changes. The smaller the telescope
the smaller the number of acquired photons will be and therefore the longer the
observation time. The result of our analysis is an accuracy of the order of 102 m
after 106 observation periods, which means an observation time of the order of 10
hours.

5.4 Distribution of Pulsars

The distribution of optical pulsars in Galactic coordinates is shown in Figure 5.8.
By using the phase measurement technique, the distribution of the pulsars with
respect to the spacecraft is important in the process of position determination. As
described in Chapter 4, the distribution of pulsars a�ects the accuracy of the po-
sition determination. The technique permits to determine the adjustment of the
position along the line of sight of the pulsar. By using the phase measurements tech-
nique then, it is mandatory to observe at least three pulsars for a three dimensional
position determination. If the navigation beacons are orthogonal each beacon is con-
tributing maximally to the two dimensions, while if the beacons are close together
the contribution to di�erent dimensions relative to the observer is less signi�cant.
The estimate of how well distributed the pulsars are is the GDOP (Geometric Di-
lution of Precision).

45



Figure 5.8 shows the distribution of optical pulsars in the Galactic coordinate refer-
ence system. The galactic coordinate frame is the system in which the fundamental
plane is the galactic plane and the origin of longitude is toward the galactic center.
The pulsars reported in Figure 5.8 are the optical pulsars in Table 5.1.
It is clear that pulsars are mostly distributed along the Galactic plane. Further-

Figure 5.8: Distribution of optical pulsars in the galactic coordinates.

more, almost all pulsars are at Galactic distances. In fact, the known optical pulsars
are in our Galaxy a part from PSR B0540 − 69, which is in the Large Magellanic
Cloud, the closest dwarf galaxy to the Milky Way. Determination of the achievable
accuracy of the phase measurement method will depend on the fact that almost all
the known pulsars are along the Galactic plane.

5.5 Visibility Analysis

In this section a visibility analysis of the �rst six pulsars reported in Table 5.1 (those
with detected pulsations) is reported. The analysis of visibility of the pulsars makes
it possible to establish which sources can be observed from a satellite. In order to
implement the phase measurement method it is necessary to observe at least three
pulsars but, if the a-priori position of the spacecraft is unknown, at least four pulsars
need to be observed in order to solve the ambiguity problem. Given the low number
of optical pulsars, the question we asked was whether it is really possible to observe
at least three of these simultaneously. In order to answer this question a visibility
analysis has been performed.

The visibility analysis carried out is for a satellite in a circular lunar orbit (see
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Figure 5.9: Image of a satellite in a Moon circular orbit (from STK software).

Figure 5.9).

The software that has been used is Satellite Tool Kit (STK ). STK is a physics based
software package from Analytical Graphics, Inc. that allows to perform complex
analyses of ground, sea, air and space platforms. STK is a modular software which
allows to use speci�c functions. The tool used in this case is the access analysis.
This allows us to calculate the pulsars access from the satellite considering all the
solar system objects which could stand in the line of sight from the satellite to the
pulsars. Input data are the pulsars coordinates, the type of satellite orbit and the
time duration during which the analysis is performed. The ephemeris of the solar
system objects are already implemented in the software.
We chose a satellite in a Moon circular orbit of radius 4000 km from the Moon center.
The optical pulsars selected for the analysis are (Table 5.1): Crab, Vela, Geminga,
PSR B0540−69, PSR B0656+14 and PSR J1023+0038. No observable magnitude
limits have been implemented. The coordinates are taken from the ATNF catalogue
in J20003. The time duration of the visibility analysis is one year (from 11 September
2019 to 12 September 2020).
Table 5.2 and Figures 5.10 and 5.11 show the percentage of visibility of each pulsar
averaged over one year.
It is interesting to note that an occultation is possible for a satellite in a nearby lunar
orbit. In particular, a periodic occultation of pulsar PSR J1023− 0038 is produced
by the presence of the Moon along the light of sight.

3J2000 reference frame is de�ned by the mean Earth's equator and equinox of the J2000 epoch.
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Visiblity Analysis
Percentage of visibility over a year

Vela 100 %
J1023-0038 95%
Geminga 100%
Crab 100%
B0656-14 100%
B0540-69 100%

Table 5.2: Visibility analysis results. The percentage of visibility of each single
optical pulsar over a year is reported.

Figure 5.10: Visibility analysis results for six optical pulsars over one year (from
11 September 2019 to 12 September 2020).

Figure 5.11: Zoom in of image 5.10. It shows that the pulsar PSR J1023− 0038 is
periodically occulted by the Moon.
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6. Results: Theory

In this chapter the accuracy analyses that have been carried out in order to determine
the achievable accuracy of a pulsar navigation system are reported. The accuracy
analyses for the determination of positions and velocity with the ToA (Time of
Arrival) method and the Drift-ToA method, respectively, of the spacecraft have
been performed by using two mathematical techniques: weighted least squares and
extended Kalman �lter. The �rst allows to investigate the accuracy of the ToA
method in an Epoch-by-Epoch approach, which means that the estimate of the
accuracy in the position determination is made considering a single observation
at a de�ned epoch. The second allows to investigate the accuracy in an iterative
approach, thus the navigation solution is continuously searched during the motion of
the spacecraft by continuously observing the pulsars. This chapter is divided in two
main sections. In the �rst section the mathematical theories necessary to understand
the results are reported. In the second part the description of the performed accuracy
analyses and the discussion of the results are reported.

6.1 Mathematical Theory

The �rst step of our analysis was the estimate of the achievable accuracy of a pul-
sar navigation system in the spacecraft position and velocity determination process.
In particular the aim of the thesis is the determination of the achievable accuracy
using optical pulsars. To reach the proposed aim we acted in two directions: accu-
racy analyses and measurements using real data (see Chapter 7). In this chapter the
�rst investigation that has been pursued is reported: accuracy analyses considering
the errors involved in the ToA measurement and Drift-ToA for position, velocity
and clock error determination. This analysis does not need real ToA and Drift-ToA
measurements. The demonstration of this fact is reported in the following two sub-
sections. For our purpose, the interest is in the derivation of the covariance matrices
and not in the determination of the unknown parameters vector. Equations reported
in Chapter 4 are useful to understand what are the parameters that in�uence the
measurements for the determination of the unknown quantities. The theory here
explained is not complete, it focuses on the points of our interest and it is partly
taken from Subirana et al. [2013] and Teunissen et al. [2008].
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6.1.1 Weighted Least Square

Weighted least squares (WLS), or weighted linear regression, is a generalization of
ordinary least squares. WLS is an estimation method that permits to obtain the un-
known parameter vector x. A system of linear equations can be written for simplicity
as follow:

y = Gx + wy (6.1)

where y is the measurement vector, G is the geometry matrix of the system, x is
the unknown parameter vector and wy is the measurement error term. Because of
the error term, equation (6.1) has no exact solution ful�lling the system. To �nd the
best estimate, x̂, of x, where x̂ is the vector that minimises the discrepancy in the
equations system, we can write the equation:

ŷ = Gx̂. (6.2)

The least squares estimation method is de�ned by the following condition:

min‖y − ŷ‖2 = min[
n∑
i=1

(yi − ŷi)2]. (6.3)

Thus, the least squares estimator solution de�ned by equation (6.3) gives the vector
ŷ that minimises the residual quadratic norm ‖r‖2 = ‖y− ŷ‖2 = ‖y−Gx̂‖2, where
r is the post-�t residual. From linear algebra the solution that ful�ls the condition
(6.3) is given by:

x̂ = (GTG)−1GTy (6.4)

where the exponent T stands for transposed matrix.
By substituting equations (6.4) and (6.1) in r, the post-�t residual becomes:

r = [I−G(GTG)−1GT]y = Sy (6.5)

where I is the identity matrix and S is a symmetric and idempotent matrix:

S = I−G(GTG)−1GT,ST = S,S2 = S. (6.6)

If we assume that the pre-�t residuals have mean zero errors E[wy] = 0 and having
de�ned their covariance matrix as R, then the mean error m and the covariance
matrix P of the estimate are given by:

m = E[x̂− x] = (GTG)−1GTE[w] = 0

P = E[(x̂−x)(x̂−x)T ] = (GTG)−1GTGE[wyw
T
y ](GTG)−1 = (GTG)−1GTRG(GTG)−1

MSE = E[(x̂− x)T (x̂− x)] = tr(P). (6.7)

In the assumption of uncorrelated values with identical variance σ2 hence R =
E[wyw

T
y ] = σ2I, then the last two equations in (6.7) become:

P = σ2(GTG)−1,MSE = σ2tr[(GTG)−1]. (6.8)
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In this work all measurements have been treated in the same way. In a real sce-
nario not all the measurements have the same error. It is possible to introduce a
weighting matrixW, which is symmetric and positive de�nite, and rede�ne the least
squares conditions as:

min‖y − ŷ‖2
W (6.9)

where the norm of the residual vector is associated with scalar product de�ned by
the weighting matrix.
The estimator and its covariance matrix now become:

x̂W = (GTWG)−1GTWy (6.10)

PW = (GTWG)−1GTWRWG(GTWG)−1 (6.11)

It is important to notice that the covariance matrix in both cases does not depend
on the measurement vector y. This fact implies the possibility to perform covariance
analyses without the need of real data or simulated measurements. The aim is to
make an a-priori covariance analysis of the problem in order to de�ne the achievable
accuracy and determine which are the more important contributions to the mea-
surements error.
It is possible to simplify the last two equations taking the weighting matrix W as
the inverse of the covariance matrix R:

W = R−1. (6.12)

If we substitute (6.12) in equations (6.10) and (6.11) our �nal equations become:

x̂ = (GTR−1G)−1GTR−1y (6.13)

P = (GTR−1G)−1. (6.14)

This solution corresponds to the Best Linear Unbiased Minimum Variance Estimator
(BLUE) [Subirana et al., 2013]. It is possible, if the measurements are uncorrelated,
to de�ne the weighting matrix W as follow:

W =

1/σ2
y1

0 0

0
. . . 0

0 0 1/σ2
yn

 (6.15)

where σ2
yi
are the sum of uncertainties of the di�erent error sources (clock, timing

noise, etc.) and i stands for the i-th pulsar.

6.1.2 Extended Kalman Filter

The Extended Kalman Filter(EKF) is the non-linear version of the Kalman �lter
(KF) which linearizes the system equations. After the linearization, the EKF equa-
tions are identical to the KF ones. The linear equations of the system have already
been derived in Chapter 4. Kalman Filter is an estimation method, routinely used

51



in navigation systems. The name of this estimation theory comes from the primary
developer of the theory Rudolf E. Kalman.
The principle of the Kalman �lter (KF) can be roughly described as the WLS so-
lution of the linearised observation system augmented with a prediction of the esti-
mate as additional equations. KF is an algorithm that uses a series of measurements
observed over time and produces estimates of unknown variables that are more ac-
curate than those based on a single measurement. The algorithm works in a two step
process: prediction and update. In the prediction step, the estimates of the current
state variables and their uncertainties are produced. Once the next measurement
is observed the estimates are updated using a weighted average. The algorithm is
recursive. KF needs a system's dynamic model which means that it needs as input
physical laws of motion and multiple sequential measurements to form an estimate
of the system's varying quantities. This estimate would be better than the estimate
obtained by using a single measurement. KF produces the estimate of the state of
the system as an average of the system's predicted state and the new measurement
using a weighted average. The weights are calculated from the covariance, which is
the measure of the estimated uncertainty of the prediction of the system's state.
The results of the weighted average are a new state estimate that is between the
predicted and measured state. This process is repeated recursively, updating at each
iteration the new estimate and its covariance for the following iteration. KF does
not need the entire history to calculate the new state but only the last best estimate
state. An important term is the Kalman �lter's gain. The Kalman gain is the relative
weight given to the measurements and the current state estimate. With a high gain
the �lter places more weight on the most recent measurements and with a low gain
the �lter follows the model predictions more closely. In the actual implementation
of the �lter, the state estimate and covariances are matrices. These matrices repre-
sent a linear relationship between the state variables and the measurements. If the
relationship is not linear then the extended Kalman �lter (EKF) needs to be used.
In order to use the Kalman �lter the following matrices need to be de�ned:

� Ak is the state transition model matrix where the physical laws of the system
are;

� Gk is the observation model matrix (or geometry matrix);

� Qk is the covariance matrix of the process noise;

� Rk is the covariance matrix of the observation noise;

The Kalman �lter assumes that the true state xk is evolved from the previous state
x−k according to:

xk = Akx
−
k + wk (6.16)

where Ak is the state transition model applied to the previous state x−k and wk is
the process noise which can be assumed to be zero mean Gaussian with covariance
Qk (wk ∼ N(0, Qk)).
The measurement yk of the true state xk is made according to:

yk = Gkxk + vk (6.17)

52



where Gk is the geometry matrix that relates the measurements and the unknown
parameters, and vk is the observation noise which can be assumed to be zero mean
Gaussian with covariance Rk (vk ∼ N(0, Rk)). As explained above, the KF works in
two steps. The �rst step is the prediction measurement :

x̂−k = Akx̂k−1; (6.18)

P−k = AkPk−1A
T
k +WkQk−1W

T
k (6.19)

where x̂−k is the predicted state estimate and P−k is the predicted error covariance
with Wk a weighting matrix.
The second step is called update and the equations are the following. The measure-
ment pre-�t residual ỹk and its covariance, Sk, are:

ỹk = yk −Gkx̂
−
k ;

Sk = GkP
−
k G

T
k +Rk. (6.20)

The optimal Kalman gain is given by:

Kk = P−k G
T
k S
−1
k ; (6.21)

Only after determination of the above matrices is it possible to determine the up-
dated state estimate x̂k, its covariance, Pk, and the post-�t residual measurements,
ỹk:

x̂k = x̂−k +Kkỹk;

Pk = (1−KkGk)P
−
k ;

ỹk = zk −Gkx̂k. (6.22)

As already said above, the Kalman gain can be chosen depending on the system.
Here, the updated estimate covariance is valid for the optimal Kalman gain that
minimizes the residual error.

6.2 Results of the WLS

In this section the results of the accuracy analysis done using the WLS theory are
reported. The theory equations are reported in Section 6.1.1. The method consid-
ered is the phase measurement described in Section 4, where the equations of the
system are reported. The method permits to determine the achievable accuracy of
phase measurement in three dimension and the clock error.

Determination of the achievable accuracy is done by determining the covariance
matrix of the system, called P. The computing environment utilized to compute the
covariance matrices isMATLAB1, a language developed by MathWorks. As already

1https://www.mathworks.com/products/matlab.html
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demonstrated in Section 6.1.1, it is possible to determine the covariance matrix of
the system without simulation of the measurements. The input needed in the com-
putation is �rst of all the geometry matrix of the system. The geometry matrix of
the problem is (4.14) which depends on the coordinates of the selected pulsars:

G =

−
ûx1
c

− ûy1
c

− ûz1
c

1
...

...
− ûxk

c
− ûyk

c
− ûzk

c
1

 ; (6.23)

here k stands for the k-th pulsar, the �rst three columns are associated with the
spatial variables, while the last column is associated with the time variable.
ûxn, û

y
n, û

z
n are the unit vector components of each pulsar from the pulsar to the

SSB. Their values are calculated by using trigonometric equations and the input
coordinates are the right ascension (α) and the declination (δ) in J2000 reference
frame taken from ATFNcatalogue. Another input matrix required by the theory
is the initial covariance matrix of the measurement, previously called Ry. The co-
variance matrix, equation (4.19), is a diagonal matrix whose values correspond to
the sum of all the contributing errors in the measurement. There are two main as-
sumptions in this analysis. We assumed the possibility of observing more than one
pulsar at a time and we did not consider the unknown integer number of pulses in
the detection as one of the unknown parameters in the unknown parameter vector,
hence the ambiguity problem is assumed to be solved. The contributing errors to
the measurements and the values considered in the analysis are the following:

� σToA: it is the error in the determination of the phase of the pulse pro�le peak.
In this case we adopted the value given by Germanà et al. [2012]. The value,
∼ 30µs corresponding to ∼ 1/1000 of the period, is the small 1-σ uncertainty
on the position of the main peak of the Crab nebula pulsar determined using
the Aqueye instrument mounted on the Copernicus telescope in Asiago. We
used the same value for all the pulsars even if it is a strong assumption.

� σSSB: it is the error in the determination of the pulse shape template at the
SSB. The Jodrell Bank observatory gives the monthly ephemeris in the radio
band only of the Crab pulsar. The RMS (root mean square) timing residual
used in this analysis is 1.2 × 10−3 in milliperiods. The value is an average on
the RMS given by Jodrell Bank observatory for the Crab pulsar. We used the
same value for all the pulsars multiplying it for the di�erent pulsar periods,
even if it is a strong assumption.

� σOR: it is the error made in the comparison between the optical measurements
and the radio template. As already explained, a delay has been found between
radio and optical ToA measurements of the Crab pulsar. At the spacecraft
measurements are taken with an optical telescope while the ephemeris needed
for the reconstruction of the template at the epoch of observation are in the
radio band. The value, 6.0µs, is given by Germanà et al. [2012] for the Crab
nebula pulsar. We chose to adopt this value for all the pulsars even if it is a
strong assumption.
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� σDM : it is the error in the determination of the delay due to the interstellar
medium. As already explained, this delay a�ects only the radio photons. Even
though the measurements at the spacecraft are made in the optical band the
ephemeris needed for the template are in the radio band. The value, 5.0×10−2

cm−3pc, is taken from the ATNF pulsar database and it is valid for the Crab
pulsar. We used the same value for all the pulsars.

� σclock: it is the uncertainty due to the spacecraft clock drift. If the spacecraft
clock deviates, the measurement of the ToA will be a�ected. The chosen value
is 1.0× 10−9 s.

The equation implemented in the program for the determination of the covariance
matrix of the system is the following:

P = (GTR−1G)−1

where G is the geometry matrix, previously de�ned, and R is a diagonal matrix
whose values are the sum of the square of the uncertainties de�ned above.
The performed analysis considers di�erent pulsar sets:

� Pulsar Set 1: PSR B0531+21 (Crab), PSR B0833-45 (Vela), PSR B0540-69,
PSR B0656+14 ;

� Pulsar Set 2:PSR B0540-69, PSR B0656+14, PSR B1509-58, PSR J0633+1746
(Geminga);

� Pulsar Set 3: PSR B0531+21 (Crab), PSR B0833-45 (Vela), PSR B0540-69,
PSR B0656+14, PSR B1509-58, PSR J0633+1746 (Geminga);

� Pulsar Set 4: PSR B0531+21 (Crab), PSR B0833-45 (Vela), PSR B0540-69,
PSR B0656+14, PSR B1509-58, PSR J0633+1746 (Geminga), PSR B1055-
52, PSR B1929+10, PSR B0950+08, PSR J0108-1431, PSR J0437-4715, PSR
J1023+0038, PSR B1133+16.

The results of the analysis are reported in Table 6.1. Performing the analysis con-
sidering several pulsar sets gives the possibility to study the variation of the GDOP
(Geometry dilution of precision). The GDOP is a measure of how well the sets of
pulsars are chosen. The accuracy of the time variable is called TDOP, Time Dilution
of Precision, while the accuracy for the three dimension position determination is
called PDOP, Position Dilution of Precision. In this analysis di�erent pulsar sets
have been considered in order to verify that the accuracy of the position determina-
tion depends also on the distribution of the pulsars. The GDOP is calculated from
the covariance matrix, in detail it is the square-root of the sum of the values in the
diagonal of the covariance matrix. The TDOP value is the square-root of the last
value on the diagonal of the estimated covariance matrix divided by c, the vacuum
speed of light, in order to have the value in unit of s. The PDOP value is the square-
root of the sum of the three position value of the estimated covariance matrix.
The GDOP column in Table 6.1 shows the fact that a di�erent set of pulsars can
lead to di�erent accuracies. For example, pulsars sets number 1 and 2 consider the
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Accuracy Analysis with WLS

Pulsars Set TDOP [s] PDOP [m] GDOP [m]
1 1.86× 10−4 1.41× 10+5 1.52× 10+5

2 3.57× 10−4 5.61× 10+5 5.71× 10+5

3 1.72× 10−4 1.34× 10+5 1.44× 10+5

4 1.29× 10−4 8.38× 10+4 9.24× 10+4

Table 6.1: Results of the accuracy analysis with WLS estimation method using
di�erent pulsar sets. The TDOP indicates the achievable accuracy of the time variable
while the PDOP indicates the achievable accuracy for the three dimension position.
The GDOP provides a measure on how well the di�erent set of pulsars are chosen.

same number of pulsars, i.e. four pulsars, but di�erent pulsars are chosen for the
two di�erent sets. The GDOP and the PDOP values are di�erent, in particular the
�rst one is better than the second one. This can be considered as proof that the
accuracy in determining the spacecraft position is in�uenced by the position of the
pulsars in the sky. The best result is the one calculated considering pulsar set num-
ber 4. In this set the pulsars considered are nine. By considering observation of nine
pulsars means that the spacecraft is equipped with the useful instrumentation for
observation of nine sources. This instrumentation will be very complex and di�cult
to realize. However, the result in this case gives an accuracy on the position determi-
nation of the order of 10 km. The following consideration are useful to understand
this result. The dominant uncertainty for the determination of the pulsar navigation
system is the pulse peak phase determination (σToA). From the theory of the phase
measurement the phase shift corresponds to a range di�erence ∆x along the line of
sight toward the observed pulsar, as explained in Chapter 4. Consequently an error
in the phase peak determination leads to an error on the spacecraft position deter-
mination. It is clear that a timing residual of the order of 10µs leads to a position
error of about 3 km. The WLS analysis gives proof of this fact. The σToA considered
is 30µs which leads to a position error of ten km in the best case (pulsar selection
number 4). The assumed σToA value is valid for the Crab pulsar which is the more
studied among all the optical pulsars. Such large uncertainty is due to the timing
noise of the pulsar. The timing noise is more important if the observation time is
of several hours. We will go into the details of the timing noise in Chapter 7, where
the analysis on the Crab pulsar real data is reported.
The analysis reported here is weak due to the large assumptions made in the def-
inition of the uncertainties. We made strong assumptions because not all the data
we needed for this analysis are available in the literature. It is the �rst time that
an optical pulsars navigation system is proposed and the analyses carried out have
never been performed before. For this reason it has been di�cult to �nd the value
to carry out the analysis properly. However, the analysis gives an important result
which agrees with the theory. The achievable accuracy is �rstly dominated by the
phase peak determination uncertainty.
The results of WLS analysis show that single observations of di�erent pulsars lead to
an accuracy of kilometres at the most. The in-orbit demonstration of X-ray pulsars
navigation system carried out to date and described in Chapter 3, gives as result
an achievable accuracy of the spacecraft position determination of about 10 km.
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The results of this analysis agree with those in the literature. However, in order
to verify if it is possible to improve the accuracy another estimation technique has
been implemented. In the next section the reported accuracy analysis shows that it
is possible to improve the estimate position error using a di�erent approach. The
idea was to improve the results of this analysis using an iterated approach instead
of a single epoch approach like the one of the WLS.

6.3 Results of the EKF

In this section the results of the accuracy analysis done using the extended Kalman
�lter theory are reported. The theory equations, which allow calculation of the ac-
curacy, are reported in Section 6.1.2. The navigation method considered is phase
measurement described in Section 4, where the equations of the system are reported.
The method allows the determination of the achievable accuracy of phase measure-
ment in three dimension, the accuracy in the velocity determination and the clock
error. The computing environment utilized to compute the covariance matrices is
MATLAB, a language developed by MathWorks. As already demonstrated in Sec-
tion 6.1.2, it is possible to determine the covariance matrix of the system without
simulation of the measurements.

As reported in Section 6.1.2, for the implementation of the Kalman �lter the de�ni-
tion of various matrices is mandatory. The matrix Ak is the state transition model
matrix. The physical law of the motion of the satellite is described in this matrix.
The physical law considered in this analysis is the one of uniform straight motion:

A =

I3×3 TsI3×3 0
0 I3×3 0
0 0 1

 (6.24)

where Ts is the sampling time i.e. the observation time and I3×3 is the identity
matrix. Matrix Gk is the observation model matrix i.e. the geometry matrix. The
geometry matrix of the system has already been reported in the previous section, see
equation 6.23. In this matrix there are the unit vectors from the pulsars to the SSB.
Matrix Rk is the covariance matrix of the observation noise. The initial covariance
matrix has already been de�ned in the previous section. R is a diagonal matrix
whose values are the sum of the square of the uncertainties already de�ned in the
previous section: σToA, the uncertainty of the phase peak; σSSB, the uncertainty of
the determination of the template at the SSB; σOR the uncertainty of the comparison
between the radio template and the optical measure; σDM , the uncertainty of the
dilution measure; and σClock, the spacecraft clock error. Matrix Qk is the covariance
matrix of the process noise:

Q =

TsWvI3×3 03×3 0
03×3 TsWvI3×3 0

0 0 TsWe

 (6.25)

where Ts is the sampling time i.e. the observation time and I3×3 is the identity ma-
trix.Wv is an independent zero mean white noise of the process with a known power
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spectrum density related to velocity determination.We is an independent zero mean
white noise of the process with a known power spectrum density related to time de-
termination. Wv and We values are taken from Emadzadeh and Speyer [2010] and
they are: Wv = 10−12m2/s and We = 10−12s.
EKF needs an initial covariance matrix to initialize implementation. The initial co-
variance matrix is taken from the result of the WLS accuracy estimation. In detail,
in this method we used the results of the pulsar set number 1 of the WLS analysis.
We choose pulsar set number 1 (PSR B0531+21 (Crab), PSR B0833-45 (Vela), PSR
B0540-69, PSR B0656+14 ) because a system that can observe at most four pulsars
is more feasible for the required instrumentation, compared for example to pulsars
set number 4 which uses nine pulsars. Moreover, the result of the WLS accuracy
analysis carried out with pulsar set number 1 gives a higher GDOP value compared
to pulsar set number 2 in which four pulsars are used in this case as well. The results
of the Kalman �lter are reported in the following plots.
In our analysis we considered two di�erent sampling times: 500 s and 10 s. These
numbers, actually, are merely a supposition because the correct way to carry out
this analysis would require the knowledge of the suitable dimensions of the telescope.
The diameter of the telescope will in�uence the results. In fact, the sampling time
to be chosen depends on the number of photons which are needed for the recon-
struction of the pulse shape of the signal. The number of photons acquired would
depend on the area of the instrument.
Figures 6.1 and 6.2 show the achievable accuracy of the position estimate using the
two di�erent sampling times. The accuracy of determination of the position are

Figure 6.1: Position accuracy analysis results using EKF and 500 second of time
sampling.

plotted in the �gures of the position along x, y and z axis and the three dimension
together. The position determination along x axis is better compared to the z and y
axes in both cases. This fact could be connected with the distribution of the pulsars,
already discussed in Section 5. By considering a sampling time of 10 s the result is

58



Figure 6.2: Position accuracy analysis results using EKF and 10 second of time
sampling.

much better compared to the one with a sampling time of 500 s. However, a sampling
time of 10 s is quite short considering that pulsars are faint objects, consequently 10
s is a strong assumption. The achievable accuracy of the phase measurement method
is ∼ 5 × 102 m after 20 days of iterated observation with a sampling time of 10 s.
This results is de�nitely better than that achieved with the WLS method, which
used a single epoch approach.

Figures 6.3 and 6.3 show the achievable accuracy of the velocity estimate using
the two di�erent sampling times. The accuracy of determination of the velocity

Figure 6.3: Velocity accuracy analysis results using EKF and 500 second of time
sampling.
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Figure 6.4: Velocity accuracy analysis results using EKF and 10 second of time
sampling.

components are plotted in the �gures along the axis x, y, z and the three dimension
together. In this case the sampling time of 500 s and 10 s does not in�uence in an
important way as in the case of the determination of the position. The achievable
accuracy of the velocity determination is ∼ 10−3 m/s after 20 days in the case of
the sampling time equals to 10 s.

Figures 6.6 and 6.5 show the achievable accuracy of the time estimate using the
two di�erent sampling times. Even in this case, like in the case of the velocity esti-

Figure 6.5: Time accuracy analysis results using EKF and 10 second of time sam-
pling.

mate, the chosen sampling time does not seem to in�uence the accuracy to a great
extent as in the case of the position accuracy. The achievable accuracy of the clock
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Figure 6.6: Time accuracy analysis results using EKF and 500 second of time
sampling.

error estimate is ∼ 10−6 s after 20 days of observation.

The purpose of the EKF analysis was to verify that an iterated approach in the
position determination of the pulsars navigation system was better compared to an
epoch-by-epoch approach. It is possible to conclude that the results of the extended
Kalman �lter analysis are better than the results of the WLS analysis. By comparing
the results of the WLS analysis in the case of pulsars set number 1 and the results of
the EKF this conclusion is easily veri�able. The EKF analysis is similar to the one
carried out by Thameemunnisha and Ramachandran [2016] in which they considered
X-ray pulsars. The results of their analysis are similar to the ones reported in this
analysis. In detail, we can conclude that the iterated approach gives better results
of the epoch-by-epoch approach. An iterated approach is feasible considering any
type of mission. In any case, the results of the two analyses give the same important
result: the uncertainty of the determination of the phase of the pulse shape peak de-
�nes the accuracy limits of the method of the phase measurements. A further study
on the analysis here reported would be required in order to understand which is the
ideal sampling time for an optical pulsars navigation system. In order to understand
if it is possible to reach better accuracy on the spacecraft position determination
an analysis on real data has been carried out. Moreover, this analysis gives a better
explanation over the timing noise problem. In the next chapter an analysis on real
data of the Crab pulsar is reported. In this analysis both the phase measurement
and SEPO methods will be considered.
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7. Results: Measurements on the Crab

pulsar

In this chapter the results of the carried out analyses are reported considering real
data of the Crab nebula pulsar. The aim of this analysis is assessing the feasibility
of a pulsar navigation system considering the optical pulsations of the Crab pulsar.
In particular, the analysis deals with the ToA and the SEPO methods, reported in
Sections 7.2 and 7.3, respectively. The optical data were obtained using the 1.82 m
Copernicus telescope at the Asiago observatory. The description of the data reduc-
tion and the data analysis are reported in Section 7.1.

7.1 Data Reduction

The reported analysis has been performed with real data of the Crab pulsar. Only
twelve of all the known pulsars (∼ 2000) show optical emission at detectable levels
and among them only six show pulsations in the optical band. The choice of the
pulsar to analyse is made on the basis of the arguments reported in Chapter 5. In the
case of the visual band the best candidate for an optical pulsar navigation system is
the Crab nebula pulsar. Although this is not a millisecond pulsar, in fact it shows
a higher period derivative (dP/dt ∼ 4.21 · 10−13 s/s) compared to the millisecond
typical one, it is the brightest pulsar in the visual band (V ∼ 16.6 mag). Moreover,
it is the most studied among all the pulsars in the di�erent wavelengths. Its optical
light curve is characterized by a double peak pro�le and it is very stable. It has been
found that the pulse shape is stable at the level of ∼ 1% on a timescale of 14 years
[Zampieri et al., 2011]. Nevertheless, the pulsar spin-down has a complex behaviour:
signi�cant phase noises as glitches, jumps and random walks in frequency have been
observed. The comparison of the optical pulse shape of the Crab pulsar with the
Jodrell Bank radio ephemerides shows that the optical pulse leads the radio one by
hundreds of µs.

As previously demonstrated, in the spacecraft position determination process the
accuracy depends mainly on the uncertainty of the phase of the main peak of the
light curve. The uncertainty of the phase peak is due to the timing noise of the
pulsar. The pulsars' periodic signals have timing stabilities comparable to atomic
clocks, but there are some time irregularities. Among all the di�erent type of irregu-
larities the most important for our purpose is the red noise component of the pulsar
timing noise which is the component that cannot be easily suppressed or modelled.
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By making a complete long-term phase analysis it is possible to give a more accurate
prediction of the spin evolution of pulsars by reducing the impact of the timing noise.
In order to reduce the impact of the timing noise in the accuracy of the position
determination, an alternative to the determination of the phases, which is complex
and takes time, is to reduce the observation time. During long-term observations
the red noise component of the pulsars timing noise becomes more important. The
idea is that by observing the Crab pulsar with short observation times, it is possible
to reduce the impact of the timing noise. This can lead to greater accuracy of the
navigation solution.

The data of the Crab pulsar are those taken with the 1.82 m Copernicus telescope
in Asiago, which is much larger than a feasible satellite telescope. A further analysis
to determine the ideal dimensions of an optical pulsars navigation system telescope
would be required, but this was not the purpose of the thesis.
The Crab pulsar has been observed starting at 20:24 on January 19, 2018 with the
very fast optical photon counter Aqueye+ [Naletto et al., 2013], [Zampieri et al.,
2015], an instrument already described (see Chapter 5). Aqueye+ is equipped with
SPAD detectors and permits to record and store arrival times of all detected photons
with an absolute precision better than 500 ps for hour-long observing sessions. The
data used in the analysis cover 90 mins of observation time. The time tags of the de-
tected photons have been reduced to the SSB using Tempo2 software. The software,
already described in Chapter 5, needs the observatory position as input parameter.
We have exploited this fact in the following analysis, assuming the observatory in
Asiago as our satellite rotating around the Sun following the orbit of the Earth. The
baricentrization of the time of arrival of each detected photon is the fundamental
step to reconstruct the correct pulse pro�le of the pulsar. The correct baricentriza-
tion is performed if the input three dimension position of the observatory is correct.
If the input position is not correct the pulse shape of the pulsar shows di�erences
from the one obtained with the correct baricentrization. As already explained in
Chapter 4, the way the pulse pro�le di�erences are going to be measured gives rise
to the di�erent positioning methods. The ToA method measures the phase shift,
∆φ, of the main peak due to the light travel time delay between estimated and
true position, while the SEPO method measures the decrease of the signi�cance, χ2

value, due to the decrease of the sharpness of the pulse shape with respect to the
correct one. To carry out these measurements for the two methods we baricentered
each time-tagged photon �rst with the correct and then with a wrong position of
the observatory as input parameters of Tempo2 software.
The aim of this analysis is to check the feasibility of the two di�erent methods (ToA
and SEPO) and to estimate what could potentially be the positioning accuracy.
Considering that the Crab pulsar is the best candidate of an optical pulsar naviga-
tion system we used the available data to reach the purpose. In order to measure
the di�erences between the measured pulse shape and the template of the pulse
shape we needed to �nd the method to obtain the two pulse shapes, one correct
and one distorted. The idea was to use the baricentrization to create a di�erent
pulse shape. In order to obtain the pulse shape from the baricentrized photons of
the Crab pulsar it is necessary to perform the binning and the epoch-folding of the
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data, as already described in Chapter 2. Xronos1 is the timing analysis software
package used to carry out the analysis here reported. In detail, the used Xronos
tools are efsearch and efold. efsearch permits to �nd the period of a periodic
time series; it needs as input the time series of the observation, an initial period
trial value, the number of phase bin per period and the required resolution of the
period search. As output it gives the value of the period at the required resolution
and the plot of the χ2 versus the period. The search of the period can be pursued
several times changing the initial value of the period and the searched resolution of
the period determination. Ideally, the period can be searched with accuracy of ns or
even better. The problem is that at a certain point the χ2 plot starts to oscillate and
the determination of the centroid is no longer accurate, so de�ning the limiting time
resolution of the period determination. After the determination of the period using
efsearch, it is possible to determine the light curve of the pulsar using the Xronos
tool efold. efold permits to �nd the pulse pro�le of a periodic time series and it
needs as input the time series of the observation, the correct folding period which
is taken from the result of the efsearch task, and the chosen phase bin per period.
By folding the time series within the correct period, efold gives in output the pulse
pro�le of the pulsar and the relative error in counts per second. It is possible, if
necessary, to consider the �rst time derivative of the period of the pulsar in both the
routines (efsearch and efold) in order to consider the phase evolution of the pulsar.

After determining the correct and the distorted pulse shape of the pulsar it is possi-
ble to carry out the analysis using the two di�erent position determination methods.

7.2 Phase measurements

In this section the results of the ToA method are reported. By using one pulsar it is
possible to determine the delta correction along the line of sight of the pulsar. The
timing residual obtained by comparing the correct pulse pro�le and the distorted
pulse pro�le is equivalent to determining the light travel time delay between the
estimated and true position along the line of sight of the pulsar. The purpose of this
analysis was to verify if it is possible to reach accuracy better than 10 km by using
a short observation time.

The �rst step of this analysis is the determination of the position of the main peak in
the di�erent cases to make the comparison possible. In order to de�ne the phase of
the main peak it is necessary to �t the pulse pro�le. The analytic template calculated
with the sum of sixteen Lorentzians that �ts the pulse shape of the Crab pulsar is
taken from Zampieri et al. [2014] and it is given by the following equation

f(x) = p
16∑
i=1

di−1b
2
i

b2
i + (x− x1 + hi−1)2

+ q (7.1)

where p, q, x1 are free parameters and bi, di−1 and hi−1 are reported in Table 7.1
with i ranging from 1 to 16. The �tting parameters are the total amplitude p, the

1https://heasarc.gsfc.nasa.gov/docs/xanadu/xronos/xronos.html
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background level q and the phase of the main peak x1. Figure 7.1 shows the analytic
template obtained with equation (7.1). The �t of the analytic template with the data

Parameter Value Parameter Value Parameter Value

b1 0.0146996 d0 1 h0 0
b2 0.0146996 d1 0.217538 h1 0.0295389
b3 0.0146996 d2 0.120438 h2 0.0452724
b4 0.0146996 d3 0.343795 h3 0.0159706
b5 0.0146996 d4 0.0274555 h4 -0.0405742
b6 0.00390605 d5 0.104503 h5 -0.004064
b7 0.0131649 d6 0.0524991 h6 -0.408426
b8 0.0517911 d7 0.0462601 h7 -0.493455
b9 0.0386609 d8 0.250336 h8 -0.400741
b10 0.0377745 d9 0.063293 h9 -0.445372
b11 0.0156592 d10 -0.0323015 h10 0.0948912
b12 0.0325165 d11 -0.0176647 h11 0.133417
b13 0.0531056 d12 0.0128576 h12 0.355586
b14 0.209385 d13 0.00944315 h13 -0.0200141
b15 -0.0630249 d14 -0.00883256 h14 -0.261205
b16 0.0259154 d15 -0.00388652 h15 -0.153419

Table 7.1: Values for the analytic template adopted to �t the Crab pulse shape
from Zampieri et al. [2014].

has been carried out using a non-linear �tting tool Scipy.optimize.curve_�t2 which
is a package of the computational environment python3. This is a Scipy package
which uses the non-linear least squares to �t a function to data. In order to perform
the analysis, the data have been baricentrized considering the correct position of the
observatory and considering the position shifted in the three dimensions of 100, 1000
and 3000 metres with respect to the corrected one. They are all reported in Table
7.2. After baricentrization, the Crab period has been estimated using Xronos's task

Geocentric Coordinates

x [m] y[m] z[m]
4360966.0 892728.1 4554543.1

Table 7.2: Correct geocentric coordinates of the 182 cm Copernicus telescope in
Asiago; the uncertainty is 0.3 m (3σ) [Germanà et al., 2012].

efsearch with a resolution of 100 ps: Pini = 0.0337445820s. Then, using Xronos's
task efold, the light curve of the Crab pulsar has been calculated considering the
data baricentered with di�erent positions. In 30 mins of observation time the intrinsic
slow down behaviour of the pulsar is enough to hinder the measurement of the shift
among the di�erent positions of the observatory. In fact, the intrinsic phase shift due
to the slow down of the Crab after 30 mins is ∼ 0.001 (∆φ = 0.5ν̇∆t2) considering
the �rst period derivative of the Crab dP/dt = 4.2074026e−13 s/s, measured in the

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_�t.html
3https://www.python.org/
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Figure 7.1: Analytic template of the Crab pulse shape obtained with function (7.1).

radio band at the time of the optical observations and reported in the Jodrell Bank
monthly ephemeris. The intrinsic shift is not negligible compared to the expected
shift due to the position. As a result we had to consider also the �rst period derivative
to achieve the necessary accuracy to perform the analysis. The period derivative can
be determined by making a phase analysis which means calculating a phase coherent
timing solution in di�erent observing runs in order to determine the evolution of
the phase. Here we adopted a simpli�ed approximate approach using the value of
Ṗ reported in the Jodrell Bank radio ephemeris. Although it is derived from an
average of radio measurements taken on longer time intervals, variations of the �rst
time derivative over a few days are usually not very pronounced (on the second
decimal digit). This level of accuracy is su�cient for our purposes. The results of
the �t are reported in Tables 7.3, for 1000 phase bins, and 7.4, for 10000 phase bins.
In the two tables the �rst three values are the ones corresponding to 30 mins of
observation time while the last three values are the ones corresponding to 90 mins
of observation time. All three parameters of the �t are reported for completeness,
but actually we are interested only in the value of x1, the phase of the main peak.

The reported uncertainties are estimated from the square-root of the diagonal values
of the covariance matrices resulting from the �t. The errors for the pulse shape with
10000 phase bins per period are smaller than the error for the pulse pro�le with
1000 phase bins per period. The reason is that the pulse pro�le with 10000 phase
bins has better resolution in phase, while maintaining a good counting statistics per
bin.

In order to check that Xronos correctly takes into account the derivative of the
period, we made the comparison between the non-shifted baricentrized data ob-
tained with the 90 mins and the 30 mins of observation time. As it can be seen
from Table 7.5 the value of the phase di�erence ∆φ is consistent within 4σ in both
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Results of the �t for 1000 phase bins

30 mins p q x1

non shifted 1.2670 ± 0.0018 0.84420± 0.00033 0.317037± 0.000037
shifted 100m 1.2670± 0.0018 0.84420± 0.00033 0.317047± 0.000037
shifted 1000m 1.2670± 0.0018 0.84420± 0.00032 0.317130± 0.000036
shifted 3000m 1.2670± 0.0018 0.84420± 0.00032 0.317317± 0.000036

90 mins p q x1

non shifted 1.3038± 0.0013 0.83972± 0.00024 0.317200± 0.000026
shifted 100m 1.3038± 0.0013 0.83972±0.00024 0.317210± 0.000026
shifted 1000m 1.3038± 0.0013 0.83972± 0.00024 0.317289± 0.000026
shifted 3000m 1.3039± 0.0013 0.83971± 0.00024 0.317467± 0.000026

Table 7.3: Results of the �t of the pulse pro�le with 1000 phase bins. The non-shifted
values are intended the results of the �t considering the correct obtained using the
function reported in equation 7.1, while the other refer to a shift of 100, 1000 and
3000 m with respect to the correct position.

Results of the �t for 10000 phase bins

30 mins p q x1

non shifted 1.2670 ±0.0016 0.84363±0.00029 0.317037±0.000032
shifted 100m 1.2670±0.0016 0.84363±0.00029 0.317046±0.000032
shifted 1000m 1.2670±0.0016 0.84362±0.00029 0.317129±0.000032
shifted 3000m 1.2670±0.0016 0.84363±0.00029 0.317316±0.000036

90 mins p q x1

non shifted 1.30386 ± 0.00094 0.83952± 0.00017 0.317199± 0.000019
shifted 100m 1.30387± 0.00094 0.83953± 0.00017 0.317208± 0.000019
shifted 1000m 1.30287± 0.00094 0.83953± 0.00017 0.317288± 0.000019
shifted 3000m 1.30386± 0.00094 0.83953± 0.00017 0.317467± 0.000019

Table 7.4: Results of the �t of the pulse pro�le with 10000 phase bins. The non-
shifted values are intended the results of the �t considering the correct obtained using
the function reported in equation 7.1, while the other refer to a shift of 100, 1000
and 3000 m with respect to the correct position.

cases (1000 and 10000 phase bins per period). We do not consider the lack of the
agreement at the 3σ level particularly signi�cant because we did not consider the
correlation of the paramenters p, q and x1 in the covariance matrix. In any case,
only performing a full phase analysis we will be able to determine the phase of the
main peak with greater precision, by determining in a self-consistent way the pe-
riod derivative from the optical data. After this check we then measured the phase

Comparison between the non-shifted phase measurements

90 mins ∆φ 1σ 2σ 3σ 4σ
1000 phase bins 0.00016262 0.000045 0.000091 0.00014 0.00018

30 mins ∆φ 1σ 2σ 3σ 4σ
10000 phase bins 0.00016227 0.000038 0.000075 0.00011 0.00015

Table 7.5: Comparison of the values of x1 obtained from the �ts of the non-shifted
baricentered data. Here, ∆φ is intended as the di�erence of the phase measured in
90 mins and 30 mins of observation time.
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shift due to the incorrect input position of the observatory in the baricenterization.
The analysis reported in Chapter 6 showed that the achievable accuracy of the ToA
method is of 10 km at most considering the epoch-by-epoch approach. In this analy-
sis we have the possibility to verify this a-priori analysis result considering real data.
Tables 7.6 and 7.7 report the results of the phase measurement method. The results

Phase shift measurement (30 mins of observation time)

1000 bins ∆φ 1σ 2σ 3σ 4σ
100m 0.0000094 0.000052 0.00010 0.00016 0.00021
1000m 0.000093 0.000052 0.00010 0.00016 0.00021
3000m 0.00028 0.000052 0.00010 0.00016 0.00021
10000 bins ∆φ 1σ 2σ 3σ 4σ
100m 0.0000092 0.000046 0.000091 0.00014 0.00018
1000m 0.000089 0.000046 0.000092 0.00014 0.00018
3000m 0.00028 0.000046 0.000092 0.00014 0.00018

Table 7.6: Phase di�erence ∆φ between the shifted value and the non shifted one,
considering 30 mins of observation time.

Phase shift measurement (90 mins of observation time)

1000 bins ∆φ 1σ 2σ 3σ 4σ
100m 0.0000091 0.000037 0.000075 0.00011 0.00015
1000m 0.000089 0.000037 0.000074 0.00011 0.00015
3000m 0.00027 0.000037 0.000074 0.00011 0.00015
10000 bins ∆φ 1σ 2σ 3σ 4σ
100m 0.0000089 0.000027 0.000054 0.000080 0.00011
1000m 0.000089 0.000027 0.000054 0.000080 0.00011
3000m 0.00027 0.000027 0.000054 0.000080 0.00011

Table 7.7: Phase di�erence ∆φ between the shifted value and the non shifted one,
considering 90 mins of observation time.

obtained considering 90 and 30 mins of observation time and 1000 and 10000 phase
bins are consistent with each other within the errors. In the case of the shift from
the correct position of 3000 m the phase shift is measurable with a small relative
error. For the 100 m and 1000 m displacements the phase shift is not signi�cant
(smaller than the error). The error has been calculated summing in quadrature the
two error measurements. We can conclude that the real data analysis for the phase
measurement method gives results in line with the accuracy analysis performed in
Chapter 6, and that it is possible to measure the position of the spacecraft with
an accuracy of 3000 m. The two points to be improved in the present analysis are
the following. We considered observations obtained with a telescope with a diam-
eter of 182 cm, which is much larger than a telescope that a spacecraft can have
on board. The other point is the assumption concerning the period derivative. The
proper way to carry out this analysis would require the phase analysis to determine
the period derivative self-consistently. In this way the results reported in Table 7.5
would probably be consistent within 3σ.
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7.3 Signi�cance Analysis

SEPO (Signi�cance Enhancement of Pulse pro�le with Orbit-dynamics) method,
described in Section 4, permits to determine the orbital parameters of the space-
craft using only one pulsar. The basic concept of this method is that the observed
pulse pro�le will be slightly distorted for inaccurate input orbital parameters. The
deformation of the pulse pro�le is directly connected with a certain decrease of
the signi�cance of the pro�le signal. We carried out this analysis in a way similar
to what we have been done previously for the phase measurement method. The
baricenterization has been performed considering as input in Tempo2 the correct
coordinates of the observatory and various di�erent incorrect coordinates. The in-
correct coordinates are determined considering positive and negative shifts from the
correct position.
The aim of this analysis was to verify that with only 90 mins of observation of the
Crab pulsar it is possible to observe a detectable decrease of the χ2 value in the
various cases with respect to the case of the correct baricenterization.

There are several steps to perform in this analysis. The �rst is the determination
of the baricentered data considering the correct and incorrect position as input pa-
rameters in the Tempo2 software. The considered data are those obtained in 90
mins of observation, because the statistics of the data obtained within 30 mins of
observation was too low. The shifts considered in this analysis are: +100, −100,
+300, −300, +1000, −1000, +3000 and −3000 metres, with equal increments along
the three spatial directions. The second step is the determination of the χ2 for the
time series. The χ2 plot is an output of the efold Xronos's task. The value we are
interested in is the maximum centroid value of the χ2 curve for each dataset. The
folding has been performed considering 10000 phase bins per period. The maximum
values of the χ2 for the di�erent shifts are reported in Table 7.8. The maximum

Variation of the χ2

Shift [m] χ2

-3000 4.10928100E+06
-1000 4.10930075E+06
-300 4.10951200E+06
-100 4.10955675E+06
0 4.10961825E+06
+100 4.10961400E+06
+300 4.10958575E+06
+1000 4.10965700E+06
+3000 4.10958575E+06

Table 7.8: Maximum χ2 values for the di�erent shifts.

value of the χ2 tends to decrease gradually for larger shifts as expected. In order
to determine the accuracy of the method, a Gaussian �t to the data has been per-
formed. The �t of the Gaussian function with the data has been carried out using a
non-linear �t tool Scipy.optimize.curve_�t which is a package of the computational
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environment python. This package is a Scipy package which uses the non-linear least
squares to �t a function to data. The data values and the Gaussian �t are plotted in
Figure 7.2. The results show that there is an signi�cant statistical noise that makes

Figure 7.2: Variation of the χ2 versus the shift, ∆r, from the input position adopted
for the baricenterization of the data of the Crab pulsar. The value are obtained
considering 90 mins of observation time with the Aqueye+ mounted at the Copernicus
telescope of the Asiago observatory.

the obtained curve deviate from the expectations. For example, the χ2 value for the
+1000 m shift is larger than the unshifted one. This statistical noise can be reduced
by considering a longer observation time. By considering a longer observation time
the number of detected photons would be greater but probably the red noise of the
pulsar would become more important and consequently the solution to the problem
would be a complete analysis of the evolution of the phases.
The uncertainty of the method is conservatively approximated taking the dispersion
of the Gaussian distribution. In this analysis the dispersion of the distribution is
equal to 1335 m. The most important result of this analysis is the fact that with
only 90 mins of observation time it is possible to measure the decrease of the χ2

value due to the distorted pro�le. The only previous analysis of this type is the one
reported by Zheng et al. [2019]. It is not possible to directly compare the two results
because they used the orbital parameters to derive the position of the spacecraft
and the accuracy of the method while in our case we measured a deviation from the
correct position considering the Cartesian coordinates of an observatory on Earth.
However, by observing the X-ray emission of the Crab pulsar for a �ve-day period
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the accuracy they obtained for position and velocity of the spacecraft is 10 km (3σ)
and 10 m/s(3σ) respectively. In the case of the optical emission the statistics is much
larger compared to the X-ray emission. For this reason it is possible to obtain enough
counts with a shorter observation time and it is possible to measure the decrease of
the χ2 value due to the distorted pro�le even with only 90 mins of observation time.
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8. Conclusions

The aim of the thesis was assessing the feasibility of a satellite navigation system
which makes use of optical pulsars as natural navigation beacons. The main result
is that optical pulsar navigation is possible using two di�erent methods: phase mea-
surement and signi�cance analysis. The achievable accuracy has been determined
using two estimation theories. The two analyses show that the achievable accuracy
for the phase measurements methods is limited by the uncertainty of the peak phase
determination, which is ∼ 30µs. The WLS analysis allows to achieve an accuracy of
10 km for the position determination. By considering an iterative approach, using
the Kalman �lter, we obtained ∼ 5 ×102 m after 20 days of observation with a sam-
pling time of 10 s. The real data analyses use the Crab data obtained with Aqueye+
mounted at the 182 cm Copernicus telescope in Asiago. In this case both navigation
methods were considered. The results for the phase measurement method show that
it is possible to observe a shift of 3000 m with respect to the correct position. The
SEPO method suggests an accuracy of ∼1335 m in only 90 mins of observation time.
The limiting factor of this method is the statistics. A high statistic is needed to get
good results. The most important problem of navigation systems which use pulsar as
navigation beacons is the intrinsic timing noise of the pulsars. This intrinsic timing
noise can be reduced by observing the pulsar for less time or by performing a com-
plete phase analysis. The high statistics characteristic of the optical band is the key
to understand the proposal for satellite navigation using optical emission of pulsars.
This thesis work is only a �rst study on navigation with optical pulsars. Actually,
it would be necessary to perform a further study regarding the ideal dimension and
optical design of the navigation instrument. Furthermore, to determine if it is pos-
sible to obtain a better accuracy than that resulting from the analyses performed in
this study it will be necessary to do a complete study of the evolution of the pulsars
phases.
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