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Introduction

Back in 1905 Einstein published a famous paper [4] explaining the origin of the extremely ir-
regular motion showed by small particle immersed in a liquid, named Brownian motion after
Robert Brown, the botanist who first observed the phenomenon in 1827. Einstein was the
first to trace back the cause of such irregularities to collisions between the particle itself and
incessantly moving liquid molecules, as a result of thermal agitation. Its work describe the
particle position with Gaussian statistics, as we will see in depth in chapter 2 of this thesis.
In recent years many experiments in a variety of complex fields, show a similar motion, yet with
non-Gaussian statistics, arising the theoretical problem of developing suitable physical models
to explain and predict such anomalous motions. In this thesis one of this models is reviewed,
namely the di↵usion motion of the center of mass (CM) of a polymer which has been put in
contact with a chemostatted bath, allowing its size to vary. We show how this microscopic
prototype, described in chapter 3, displays a complex, non-Gaussian, phenomenology through
independent simulations of the process, which will be presented in chapter 4.
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Ordinary Brownian motion

In this section we summarize the most important results concerning Brownian motion of a
colloidal particle, introducing the mathematical framework that allows us to study and simulate
this particular stochastic process.
A colloidal particle is a solid particle suspended in a liquid phase, with size between 10 nm
and 1 � 10 µm. It is small enough that its dynamic is determined by exceedingly frequent
collisions with moving solvent molecules. Its position X(t) in 1-dimensional space is therefore a
stochastic process, whose study can be addressed in two di↵erent ways: the first one considers
pX(x, t), i.e. probability density function for the position X, which satisfies a deterministic
di↵erential equation, the second one follows the evolution in time of a single realization of the
process, with a stochastic di↵erential equation.

2.1 Di↵usion equation

Einstein work on Brownian motion follows the first approach and begins by considering a time
interval ⌧ , which is small compared to macroscopic observables typical time scales, but yet large
enough that the motion of the particle in two consecutive time intervals can be regarded as two
independent events, because of the huge number of collisions happening during ⌧ . Probability
of finding the particle in a position between x and x + dx at time t, i.e. PDF of the position
random variable X(t), is found to satisfy the one dimensional di↵usion equation 1

@pX(x, t)

@t
= D

@2pX(x, t)

@x2
(2.1)

where D, called di↵usion coe�cient, is defined as the mean-square displacement exhibit by the
particle in time ⌧ divided by 2⌧ .
Once set the initial condition pX(x, t = 0) = �(x�x0), meaning the motion starts with certainty
from the initial position x0, Eq. (2.1) is solved by

pX(x, t) =
1p

2⇡
p
2Dt

e�
(x�x0)

2

4Dt (2.2)

which is evidently a gaussian PDF with variance V ar[X(t)] = hX2(t)i � hX(t)i2 = 2Dt,
where hX(t)i is the expectation value for the variable X(t).

1
a brief account of Einstein work, including derivation of di↵usion equation, can be found in [5].
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2.2. CONTINUOUS MARKOV PROCESSCHAPTER 2. ORDINARY BROWNIAN MOTION

2.2 Continuous Markov process

The second approach involves continuous Markov process, that is a memoryless stochastic
process: increment in X from time t to t+dt depends only on t, dt and the value x taken by X
at t. In other words, knowledge of any previous state of X cannot sharpen the process pdf at
current time. This fundamental feature, together with the requirements of continuity of X and
di↵erentiability of X(t+ dt)�X(t) with respect to t, dt, x, leads [6] to the Langevin equation
for the process X

X(t+ dt) = X(t) + A(X(t), t)dt+
p

2D(X(t), t)N(t)
p
dt (2.3)

where N(t) = N(0, 1) is the temporally uncorrelated unit normal random variable, with zero
mean, unit variance and hN(t)N(t0)i = �(t � t0). A(x, t) and D(x, t) are smooth function that
specify each process.
To study Brownian motion we specifically rely on driftless Wiener process, which has A(x, t) = 0
and 2D(x, t) = c, with c > 0. Its Langevin equation reads:

X(t+ dt) = X(t) +N(t)
p
c dt (2.4)

Another common form of Eq. (2.4) is:

dX(t)

dt
=

p
c�(t) (2.5)

obtained from the definition of Gaussian white noise �(t)2

�(t) = lim
dt!0

N(0, 1/dt) = lim
dt!0

N(0, 1)

dt1/2

We stress that Eq. (2.5) can be accounted only as a formal equation because the function X(t)
is not, in fact, di↵erentiable with respect to time.

In the following lines we show that the stochastic processX(t), solution of the Langevin equation
with initial condition X(0) = �(x� x0) = N(x0, 0), is the normal variable

X(t) = N(x0, 2Dt). (2.6)

To begin with we note that X(0 + dt) is a linear combination of two statistically independent
normal variable, X(0) and N(0), therefore it is also normal. By induction we then infer that
X(t) is normal for all t > 0.
Averaging Eq. (2.4), thanks to hN(t)i = 0, we obtain a di↵erential equation for hX(t)i whose
straightforward solution is hX(t)i = x0.
Next we square Eq. (2.4) and average the result, finding out:

X2(t+ dt) = X2(t) + 2X(t)N(t)
p
c dt+N2(t) c dt

hX2(t+ dt)i = hX2(t)i+ c dt ! hX2(t+dt)i�hX2(t)i
dt = c

using the relations hX(t)N(t)i = hX(t)i hN(t)i = 0 and hN2(t)i = 1. We have deduced a
di↵erential equation for hX2(t)i with solution hX2(t)i = c t.
As a result we deduce that driftless Wiener process reproduces the exact results obtained by
Einstein if we set the constant c = 2D.

2
We recall that, for Normal random variables, a+ bN(µ,�2

) = N(a+ bµ, b2�2
).
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2.3. SIMULATION AND RESULTS CHAPTER 2. ORDINARY BROWNIAN MOTION

2.3 Simulation and results

Markov process approach o↵ers a simple way to simulate the process X applying Eq. (2.4)
wherein dt is a fixed time interval and N(t) is substituted by a sample value of the unit normal
random variable. The simulation algorithm basically implement this formula starting from
x(0) = 0, updating t and x(t) in consecutive dt steps until some tstop. Repeating the steps for
a number R of di↵erent realizations allows to collect a sample of R values from X(t) for each
time t, and therefore to reconstruct its PDF pX(x, t). In the next lines simulation results are
reported.

In the side graph we present a view of
R=3 realizations of the process, along
with lines representing the expected
xmean ± �x = 0 ±

p
2Dt. Data were ob-

tained with 2D = 1, dt/tstop = 10�3/6.
Two of the major features of the motion are
clearly visible: non-di↵erentiability of the path
and its great variability.

Figure 2.1: 3 realizations of Wiener process are pre-

sented, along with lines representing xmean ± �x.
Time t is in arbitrary simulation units, whereas

space X is defined in units of
p
2Dt.

Next we analyze first and second moment of the variable X(t), computing average and variance
over R values taken by X at each time t. The following plots show evolution in time of the two
moments for di↵erent values of R, versus the expected values computed from Eq. (2.6) where
x0 = 0, 2D = 1. Time t is in arbitrary simulation units, whereas space X is defined in units ofp
2Dt.

Figure 2.2: Time evolution of the mean of X(t)
computed over R realization of the process.

Figure 2.3: Time evolution of the mean of X(t)
computed over R realization of the process.

Obviously, the plots show that data agreement with the model (red line in plot) grows with R.
In conclusion, the expected behaviour is confirmed.
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2.3. SIMULATION AND RESULTS CHAPTER 2. ORDINARY BROWNIAN MOTION

At each simulation time t, the X(t) expected PDF can be compared with an histogram of the
sample values obtained by R simulations.

In the side graph we present his-
tograms for X at time t/dt = 3 and
t/dt = 50, along with the expected
PDF computed from Eq. (2.6).
Data were obtained with 2D = 1,
dt/tstop = 10�3/6, R = 104.
The e↵ect of Brownian di↵usion is
evident: the PDF of the particle
position spreads through space re-
maining Gaussian and centered in the
origin. Agreement between data and
expected values is satisfactory.

Figure 2.4: Histograms for X at time

t/dt = 3 and t/dt = 50, along with the

expected pdf. X is in units of
p
2Dt.
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Polymers

3.1 Introduction

Polymers are complex molecules playing a fundamental role in biology as well as in biophysics
and modern physics. Homopolymers are made up by a large number of identical building blocks,
i.e. monomers, that can be organized in di↵erent topological structures. We will only consider
polymers arranged in a linear chain of monomers, in which every one of them can make up to
two bonds.
The Rouse model is one of the simplest model to derive dynamical properties of polymer
immersed in a liquid because it neglects the hydrodynamic e↵ect induced by the moving fluid
to the polymer: the only interaction between consecutive monomers is then modeled with an
elastic attractive potential. We write 1-dimensional equation of motion for the i-th monomer,
with position Xi, out of n total monomers in the chain, adapting the 3-dimensional equations
found in [1]

dX1

dt
= �! (X1 �X2) + fx,1(t)

dXi

dt
= �! (Xi �Xi+1 +Xi �Xi�1) + fx,i(t)

= �! (2Xi �Xi+1 �Xi�1) + fx,i(t) if 1 < i < n, i 2 N
dXn

dt
= �! (Xn �Xn�1) + fx,n(t)

(3.7)

where ! denotes a coe�cient depending on temperature, length of the bond and drag coe�cient
of the single monomer, while fx,i(t) =

p
2D0�(t) is the x-component stochastic force exerted

on the i-th monomer, with di↵usion coe�cient D0.
Equations (3.7) allow to derive the center of mass equation of motion

dXCM

dt
=

1

n

nX

i=1

fx,i(t) ! XCM(t) = XCM(0) +

Z t

0

1

n

nX

i=1

fx,i(t
0)dt0 (3.8)

Using then the relations hfx,i(t)fx,j(t0)i = 2D0�i,j�(t � t0) and hXCM(t)�XCM(0)i = 0 it can
be obtained

V ar [XCM(t)�XCM(0)] =
⌦
(XCM(t)�XCM(0))2

↵
=

2D0

n
t (3.9)

The center of mass of a polymer made by n monomers is subject to standard Brownian motion
with a di↵usion coe�cient DCM = D0/n.
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3.2. BIRTH DEATH PROCESS CHAPTER 3. POLYMERS

3.2 Birth death process

When the polymer is in contact with a chemostatted bath, that is a liquid containing its
monomers, polymerization or depolymerization can occur, through respectively attachment or
detachment of a monomer to the chain, varying its size. We briefly overview birth-death process

as a suitable mathematical model describing this physical situation.
The discrete polymer size N(t) is a Markov Process that, during the time interval (t, t +�t),
starting from the value n, can increase by one with probability ��t + o(�t), or decrease by
one with probability µ�t + o(�t). � and µ are respectively called birth and death rates and
we consider them as being independent of n. When N takes on the minimum value, n = nmin,
which can vary depending on the model, the decreasing probability is zero.
Defining PN(n, t) the probability of the event N = n at time t, equations for evolution of
such probabilities, namely Master equations, can be deduced applying conservation of total
probability. In particular the state N(t + �t) = n can be achieved by either one of the
following situations: N(t) = n+1 and a death occurs during �t, N(t) = n and neither a death
nor a birth happen during �t or N(t) = n� 1 and a birth occurs in �t:

8
><

>:

PN(n, t+�t) = PN(n+ 1, t)µ�t+ PN(n, t)(1� �� µ)�t

+ PN(n� 1, t)��t+ o(�t) if n � nmin

PN(nmin, t+�t) = PN(nmin + 1, t)µ�t+ PN(nmin, t)(1� ��t) + o(�t)
(3.10)

taking the limit �t ! 0
(

dPN (n,t)
dt = µPN(n+ 1, t)� (�+ µ)PN(n, t) + �PN(n� 1, t) if n � nmin

dPN (nmin,t)
dt = µPN(nmin + 1, t)� �PN(nmin, t)

(3.11)

We now look for a stationary solution P ⇤
N(n) imposing the condition

dP ⇤
N (n)
dt = 0 8n, t in Eq.

(3.11). Defining the growth factor g = �/µ we obtain
(
P ⇤
N(n+ 1) = (1 + g)P ⇤

N(n)� gP ⇤
N(n� 1)

P ⇤
N(nmin + 1) = gP ⇤

N(nmin)
(3.12)

Using the first equation we note that, if P ⇤
N(n)/P

⇤
N(n� 1) = g, then also the relation

P ⇤
N(n+1)/P ⇤

N(n) = g stands. Since P ⇤
N(nmin+1)/P ⇤

N(nmin) = g we conclude by induction that

P ⇤
N(n+ 1)/P ⇤

N(n) = g 8n ! P ⇤
N(n) = gn�nminP ⇤

N(nmin) (3.13)

Normalizing probabilities leads to:

+1X

n=nmin

P ⇤
N(n) = 1

(3.13)! P ⇤
N(nmin) =

1
P+1

n=nmin
gn�nmin

= 1� g if g < 1

Finally the solution is then
(
P ⇤
N(n) = gn�nmin(1� g) if n � nmin, n 2 N

P ⇤
N(n) = 0 otherwise

(3.14)

A full, time-dependent solution of the master equation (3.11) can be found in [7]. From that,
it is possible to calculate the auto-correlation coe�cient N(t), reported in the following:

⇢(t) =
hN(t)N(0)i � (hNi)2

hN2i � (hNi)2
⇡ e�t/⌧ ⌧ =

1 + g

(1� g)2µ
(3.15)

7



3.3. CRITICAL POLYMERS CHAPTER 3. POLYMERS

3.3 Critical polymers

Applying Eq. (3.14) we calculate expectation value for the variable N , at equilibrium, and the
corresponding expected variance:

hni =
+1X

n=nmin

nP ⇤
N(n) =

+1X

n=nmin

ngn�nmin(1� g) =
g

1� g
+ nmin (3.16)

⌦
(n� hni)2

↵
=

+1X

n=nmin

(n�hni)2P ⇤
N(n) =

+1X

n=nmin

✓
n� nmin �

g

1� g

◆2

gn�nmin(1�g) =
g(4g + 1)

(1� g)2

(3.17)
It can be clearly observed that hni ! +1 and

⌦
(n� hni)2

↵
! +1 when g ! 1�. The di-

vergence in the polymer size proves the presence of the critical point g = 1, which divides a
thermodynamic region (g < 1) where the polymer has a finite size and is in a dilute phase,
from another thermodynamic region (g > 1) where the polymer is characterized by infinite size
and is called in a dense phase, because, when placed in a monomer bath, it tends to polymerize
and occupy all the available volume (e.g. [2]).
For a better understanding of the physical context, in the following lines we link the growth
factor g to concentration of monomers in the bath, and specifically to chemical potential µ
perceived by the polymer.
Dynamic of varying-size polymers is e↵ectively studied within the grand canonical ensemble,
thanks to grand canonical partition function, which, following our model, depends only on
chemical potential, or equivalently on monomer fugacity z = e�µ = eµ/kBT . As criticality is
approached it reads ([2], [3])

Zgc(z) =
X

n

✓
z

zc

◆n

n��1 (3.18)

where zc is the inverse of the connective constant µc, related to the typical number of bonds
established by a single monomer, while universal entropic exponent � is linked to the space
dimension of the polymer lattice, to its underlying topology and to equilibrium phase. We will
consider � = 1 in the following, according to the mean field limit.
Consequently, equilibrium probabilities of N taking a specific value n can be written:

P ⇤
N(n) =

(z/zc)n

Zgc(z)
(3.19)

Applying Eq. (3.13) we conclude

g =
P ⇤
N(n+ 1)

P ⇤
N(n)

=
(z/zc)n+1

Zgc(z)

Zgc(z)

(z/zc)n
=

z

zc

We therefore understand that criticality arises when z ! z�c .

8



Anomalous di↵usion

4.1 Theoretical framework

As we have seen above, the center of mass of a polymer di↵uses with a di↵usion coe�cient DCM

which depends on its size n. When in contact with a chemostatted bath the size n varies with
time, with a minimum nmin. Setting nmin = 3, as we do in the following, allows the minimum
size polymer to independently attach or detach a monomer at both ends of the chain with
size-independent birth and death rates �, µ. As a result of polymerization or depolymerization
even DCM undergoes variations throughout the motion. When n fluctuations are limited, the
anomalous e↵ects on di↵usion are hard to detect but when, instead, the system is close to its
critical point, n fluctuations diverge, as we have seen in Eq. (3.17), resulting in great variability
of DCM . The parameter controlling the divergence is g: as it approaches the value 1� criticality
arises. As an outcome, the motion of the polymer CM is Brownian yet non Gaussian. In the
next lines we outline theoretical results explaining the anomalous behaviour, all of which have
been originally developed in [8] and in references therein.
Considering the motion starting from the origin, XCM(t = 0) = 0, the di↵usion equation reads

@pXCM
(x, t| [n(t)])
@t

=
D0

n(t)

@2pXCM
(x, t| [n(t)])
@x2

(4.20)

depending on the full evolution of N stochastic process between 0 and t, denoted with [n(t)] =
{n(t0) 2 N|0  t0  t}. Defining the path random variable s, which corresponds to the realiza-
tion of the process:

S(t) =

Z t

0

2DCM(N(t0))dt0 (4.21)

Eq. (4.20) returns to be an ordinary di↵usion equation

@pXCM
(x, s)

@s
=

@2pXCM
(x, s)

@x2
(4.22)

Therefore, with respect to s, the solution is a normal probability function with variance s

pXCM
(x, s) =

1p
2⇡s

e�
x2

2s (4.23)

Returning to t variable, XCM(t) PDF for a process starting from N(0) = n0 and XCM(0) = 0
is then expressed in an integral form

pXCM
(x, t|n0) =

Z 1

0

e�
x2

2s

p
2⇡s

pS(s, t|n0)ds (4.24)

where pS(s, t|n0) is S(t) PDF. Equation (4.24) explicitly marks non-Gaussianity of the CM
motion: when pS(s, t|n0) is not a delta function, indeed, pXCM

is the continuous sum of gaussian
PDFs with di↵erent variances s, resulting in a leptokurtic distribution with fat tails.
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4.2. SIMULATION ALGORITHM CHAPTER 4. ANOMALOUS DIFFUSION

4.2 Simulation algorithm

In the present sections we explain the simulation procedure that has been extensively applied
to study the CM position stochastic process. The algorithm adds the simulation of birth death
process for the polymer size n on top of the algorithm for standard Brownian di↵usion. The
routine is summarized in what follows:

1. Birth and death rates are specified: µ = 1 and � = gµ, where g is set by user: the closer
it gets to 1, the higher critical e↵ects will be.

2. As we demonstrate in appendix 6.1.1 the average time interval between one birth/death
event and the next, called departure time, is T = 1/(�+ µ). The updating time interval,
dt, is therefore set to dt = 0.1/(�+µ). Next ⌧ is computed from (3.15) and tstop is declared
in units of ⌧ . We see that when g is closer to 1, for the time sampling to be e↵ective, dt
becomes smaller and ⌧ diverges to +1: in this way computational time explodes.

3. Simulations starts at time t = 0 when size n (n � 3) is initialised in two manner depending
on the need: to a fixed starting value n0 decided by user, or it is randomly generated
according to its equilibrium probability distribution, as will be explained in appendix 6.2.

4. Departure time is then randomly generated, according to his exponential PDF, using
Gillespie algorithm provided in appendix 6.1.1. t evolves in dt steps: while t < departure
time, standard algorithm for di↵usion updates the CM position x at each step with dif-
fusion coe�cient D = D0/n. When t becomes bigger than departure time, a birth/death
event has happened: Gillespie algorithm randomly generate if the event is a ”birth” or
a ”death” and n is accordingly increased or decreased by 1. DCM is therefore updated
with the new size n.

5. The routine described in 4. is repeated updating t, x every dt steps and n every time a
new departure time is reached.

6. The whole procedure starting from point (3) is replicated for the desired number of
realizations R.

4.3 Simulation results

First we look at the behaviour of the variable n when the simulations starts from a fixed initial
state n0, while g = 0.95. We provide analysis of data through the following plot.

In the side graph, average of n, computed over
R = 2·104 realizations, is plotted versus rescaled
time t/⌧ . We remind that ⌧ plays the role of
a ”decorrelation time”, as apparent from Eq.
(3.15). It is visible that the asymptotic value
corresponds to expected value for n, computed
in (3.16).

Figure 4.5: Average of n, computed over R = 2·104
realizations, versus time/⌧ , is plotted (g=0.95).

10



4.3. SIMULATION RESULTS CHAPTER 4. ANOMALOUS DIFFUSION

As expected, when initial conditions are out of equilibrium, size tends asymptotically in time
to average size hni = g

1�g + nmin

��
g=0.95

= 22. Obviously, the further n0 is from hni, the longer
the process takes to restore equilibrium size.

Next we analyze the CM position stochastic process via its variance. Defining PN(n, t|n0) as
the probability for the size to be n at time t, starting from size n0 at time t = 0, in [8] the
coming result for variance of processes starting from size n0 is derived3:

⌦
(XCM(t)�XCM(0))2 |n0

↵
= V ar [XCM(t)|n0] = hS(t)|n0i =

1X

n=3

2D0

n

Z t

0

PN(n, t
0|n0)dt

0

(4.25)
where we have used that XCM(0) = 0 and hXCM(t)i = 0 8t. Therefore variance is not,
in general, linear in t, as it it for ordinary Brownian di↵usion. Linearity is reestabilished if
PN(n, t|n0) ⇡ P ⇤

N(n), in which case:

V ar [XCM(t)|n0] = 2
1X

n=3

D0

n
P ⇤
N(n)t = 2Davt with Dav =

1X

n=3

D0

n
P ⇤
N(n) (4.26)

This condition is verified for fixed initial size and large time t � ⌧ or for equilibrium initial
condition, 8t.
We display time evolution of variance in the following graph, where V ar[X(t)]/2t is plotted
against t/⌧ . Processes start either from fixed initial size n0 or from equilibrium initial condition
(i.e. Equilibrium i.c.). Data are obtained for g = 0.95 and R = 5 · 104.

Figure 4.6: V ar[X(t)]/2t is plotted against t/⌧ , for di↵erent initial condition. g = 0.95 and R = 10
5
.

The process with equilibrium initial conditions confirms the expected linear di↵usion, whereas
fixed initial size processes show a variety of non-linear behaviour: for example the ones with
n0 � hni present superdi↵usion, visible from superlinearity of variance with respect to t. This
happens because n is decreasing towards hni and di↵usion coe�cient is consequently increasing.
On the contrary, processes with n0 ⌧ hni present subdi↵usion and sublinearity of variance with

3
Note that, here and in the following, we have adapted results from a 3-dimensional motion, as the one

studied in [8], to 1-dimensional motion, as the one simulated in this thesis.

11



4.3. SIMULATION RESULTS CHAPTER 4. ANOMALOUS DIFFUSION

respect to t.
However, no matter what initial size is, Brownian di↵usion is reached for t � ⌧ .

Hereafter we evaluate non-Gaussian anomalies of the random variable XCM through the study
of its kurtosis:

X =

⌦
(XCM(t)� hXCM(t)i)4

↵
�⌦
(XCM(t)� hXCM(t)i)2

↵�2 (4.27)

We recall that for gaussian random variable  = 3, so excess kurtosis is defined as  � 3. We
summarize theoretical results obtained in [8] to compare them with simulation data.
When initial size n0 is specified, time evolution of kurtosis starts from X(t = 0+|n0) = 3
signaling initial gaussian behaviour. As n PDF spreads,  increases until a maximum is reached,
then decreases, returning asymptotically to X(t � ⌧ |n0) ⇡ 3.
When instead, initial size is distributed according with equilibrium probability P ⇤

N(n0), initial
kurtosis is found to be greater than 3, then tending towards this value as t increases.
This behaviour is confirmed by simulation data, presented in the following figure, where (t)�3
is plotted against t/⌧ for di↵erent initial conditions: fixed initial size n0 or equilibrium i.c. Data
were obtained with g = 0.95 and R = 105.

Figure 4.7: (t) is plotted against t/⌧ for di↵erent initial conditions: fixed initial size n0 or equilibrium

i.c. g=0.95.

In particular, X(t = 0+) diverges to 1 when g ! 1�. To show dependence of  on g we
present its time evolution for di↵erent g value. Data sets have been simulated with R = 105.
We recall that simulations with higher g have lower dt, consequently data sets plotted in the
following graph starts from di↵erent points in time.

12
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Figure 4.8:  time evolution for di↵erent growth factors g and equilibrium initial conditions.

From the figure, it can be clearly observed that data set with higher g, corresponding to closer
to criticality polymers, present greater initial kurtosis.

In the next graphs, we compare two XCM histograms, computed over R = 104 realizations with
g = 0.95 of the anomalous process, for di↵erent time t, along with corresponding Gaussian
PDF.

Figure 4.9: XCM histogram, computed over

R = 10
4
realizations of the anomalous process

(g=0.95), for t/dt = 1. X is in units of
p
2Dt.

Figure 4.10: XCM histogram, computed over

R = 10
4
realizations of the anomalous process

(g=0.95), for t/dt = 3 · 105. X is in units ofp
2Dt.

The anomalous e↵ect is evident: XCM PDF for initial time is clearly non Gaussian, tending
towards normal PDF as time grows.

13



Conclusions and future perspective

5.4 External gravitational field

In this section we briefly tackle a new physical situation of an external field acting on the
di↵using polymer, such as a gravitational field positively oriented in the direction of motion.
The Langevin equation for particle velocity Vx will include this new term

m
dVx(t)

dt
= ��V (t) +

p
c�(t) +mg (5.28)

where � and m are respectively the polymer drag coe�cient and mass. Setting the overdamped
condition dVx(t)/dt = 0 and c = 2D�2 leads to the analogous of Eq. (2.4) and (2.5)

dX(t)

dt
= Vx(t) =

p
2D�(t) +

m

�
g (5.29)

X(t+ dt) = X(t) +
p
2DN(t)(dt)1/2 +

m

�
g dt (5.30)

Carrying out the same procedure as the one shown in section 2.2 we can solve the Langevin
equation under initial condition X(t = 0) = 0. First we note that X(t) is the sum of a normal
random variables and a deterministic coe�cient, then X(t) is normal 8t. Then averaging Eq.
(5.30) we find

hX(t)i = m

�
gt (5.31)

understanding that in an overdamped situation gravity induces a constant velocity drift. Next
we square and average Eq. (5.30), neglecting o(dt), to find:

⌦
X2(t+ dt)

↵
=

⌦
X2(t)

↵
+ 2Ddt+ 2

m

�
g hX(t)i dt

⌦
X2(t)

↵
= 2Dt+

✓
m

�
g

◆2

t2
(5.32)

X(t) is a normal random variable with quadratic variance with respect to time.

When instead the size n of the polymer can vary D, � and m depend parametrically on n.
Exploiting the well-known Einstein relation

�D = kBT (5.33)

and treating kBT as a constant we derive

D =
D0

n
� =

kBT

D0
n m = m0n (5.34)

14
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where we call D0 and m0 respectively the di↵usion coe�cient and the mass of a single monomer.
The Langevin equations (5.29) (5.30) then become

dX(t)

dt
=

s
2D0

n(t)
�(t) +

D0m0

kBT
g

X(t+ dt) = X(t) +

s
2D0

n(t)
N(t)(dt)1/2 +

D0m0

kBT
g dt

(5.35)

We see that, because of Eq. (5.34), the gravitational term does not depend on n.
The situation becomes more complex considering

D =
D0

n↵
(5.36)

Within the Rouse model we have considered ↵ = 1, however other polymer models set ↵ 6= 1,
in which case the Langevin equation reads:

X(t+ dt) = X(t) +

s
2D0

n(t)
N(t)(dt)1/2 +

D0m0

kBT
(n(t))1�↵ g dt (5.37)

where the subordinator process impacts both the di↵usion process and the gravitational motion.

5.5 Conclusions

In this thesis we have reviewed the microscopical model of the motion of a chemostatted poly-
mer center of mass as a Brownian, yet non-Gaussian, di↵usion. We have conducted numerical
simulations starting from two di↵erent initial scenarios: fixed polymer size or randomly gener-
ated polymer size according to equilibrium probability. We have displayed such an anomalous
behaviour in terms of non linearity of variance with respect to time, as well as in terms of
deviation of kurtosis from gaussian value of 3.
We have then begin the theoretical treatment of the relatively new physical situation of a dif-
fusing chemostatted polymer which is subjected to sedimentation because of a gravity field.
Further theoretical and numerical developments towards a complete understanding of this con-
dition would be very interesting.
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Appendix

6.1 Gillespie algorithm

In this section we describe Gillespie algorithm, which has been employed in birth death process
simulation. Using the already introduced notation we denote with � the birth rate and with µ
the death rate.

6.1.1 Distribution of departure time

We derive departure time PDF by first recalling that probability pd(dt) that the system starting
from size n will change its state in an infinitesimal time interval dt is the sum of probabilities
of birth occurrence and death occurrence in the same time interval. From definition of birth
and death rates (independent of n):

pd(dt) = (�+ µ)dt (6.38)

Consequently, since the process is Markovian, i.e. memoryless, probability p⇤d(t + dt) that the
system does not change state during the interval t+ dt is:

p⇤d(t+ dt) = p⇤d(t)p
⇤
d(dt) = p⇤d(t)(1� (�+ µ))dt ! dp⇤d(t)

dt
= �p⇤d(t)(�+ µ) (6.39)

concluding p⇤d(t) = e�(�+µ)t.
Probability of departure time T being exactly t is the compound probability that no jump
happens until t, and a jump occurs in (t, t+ dt). Its PDF is therefore exponential:

pT (t) = (�+ µ)e�(�+µ)t (6.40)

Average departure time is

hT i =
Z 1

0

t pT (t)dt =
1

�+ µ
(6.41)

To randomly generate a value for T , according to its exponential PDF, the following relation
can be employed:

T =
1

�+ µ
ln

✓
1

u

◆
(6.42)

where u is a sample from uniform random variable in (0, 1).

6.1.2 Event selection

Given that a particular event has happened, probabilities for it to a birth or a death are
respectively:

P (b|an event occurs) = �
�+µ P (d|an event occurs) = µ

�+µ

The simulation randomly generates u from uniform random variable in (0, 1). Then birth is
selected if u < �/(�+ µ), otherwise death is selected.
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6.2 Algorithm for exponential PMF sampling

At equilibrium conditions, starting size of the polymer is a random sample from the PMF (i.e.
probability mass function)

PN(n) = gn(g � 1) g < 1 (6.43)

A basic algorithm has been employed to generate a random value n according to this probability
function:

1. a sample u from uniform random variable between 0 and 1 is generated

2. in a loop cumulative probability C is computed: starting from i = 0, C = 0, at each
iteration i increases by 1 and PN(i) adds to the previous C. The loop ends when C > u.

3. the final sample n is set equal to i�1, the last natural number for which the loop condition
was verified. Then the actual size of the polymer will be n+ nmin.

We attach on the side a graph proving the cor-
rect functioning of the algorithm. It shows an
histogram of the computed sample values for
g = 0.95, versus the corresponding expected
PMF (6.43), which has been plot as continue
line for better graphic results.

Figure 6.11: Histogram of the computed sample

values for g = 0.95, versus the corresponding ex-

pected PMF.
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[7] J.L. Jain, G. Mohanty, and W. Böhm. A Course on Queueing Models. Statistics: A Series
of Textbooks and Monographs. CRC Press, 2016.

[8] Sankaran Nampoothiri, Enzo Orlandini, Flavio Seno, and Fulvio Baldovin. Brownian non-
gaussian polymer di↵usion and queing theory in the mean-field limit. New Journal of

Physics, 24, 02 2022.

18


