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Abstract

One of the most intriguing puzzle of modern Cosmology resides in the late time accelerated
expansion of our Universe. Our standard model of Cosmology, the ΛCDM model, based on
the General Relativity theory of gravity, explains this phenomenon in terms of a cosmological
constant added into the Einstein equations. Despite the successful agreement of the ΛCDM model
with cosmological data, some issues and internal inconsistencies are still without a satisfactory
explanation. This motivates the quest for alternative cosmological model and the necessity of
probing gravity at cosmic scales. This Master Thesis is about studying a specific modified gravity
model, dubbed as Generalized Brans-Dicke theory, employing the unified language offered by the
Effective Field Theory approach to dark energy. Implementing the Generalized Brans-Dicke theory
in the EFTCAMB cosmological code, we study the model from a phenomenological point of view.
We focus in particular on stability criteria, cosmological perturbations and we perform a Monte
Carlo Markov Chain likelihood analysis to estimate parameters using recent cosmological datasets.
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Introduction

The standard model of Cosmology predicts that almost 70% of the total energy budget of our Uni-
verse is accounted by a still unknown form of energy, dubbed as dark energy, which is responsible
for the late time accelerated expansion of our Universe. The discovery of this phenomenon was
achieved in 1998 by two groups that were investigating Supernovae redshift [1]-[2]. Supernovae,
known as standard candles of Cosmology because their absolute magnitude can be recovered, al-
lowed to put constraints on the theoretical expectations of the amount of matter and dark energy.
Thanks to this first discovery and to following measurements, today we know that our Universe
indeed is mostly filled by dark energy. On the other hand, a fully satisfactory explanation of what
is this dark energy, is still missing.

The theoretical landscape that tries to explain the phenomenon is really rich [19]. Our standard
model of Cosmology explains it in terms of a cosmological constant, that might be interpreted as
vacuum energy density. This leaves some unresolved issues that motivate the search of alternative
models that go beyond the standard model. In particular, this is achieved introducing some new
dynamical dark energy component in the Universe or trying to modify our underlying theory of
gravity. Given the big variety of models present in the literature, it is then crucial to prepare the
basis for a confrontation with cosmological data.

The Effective Field Theory (EFT) approach to dark energy [80] is a great candidate to help
creating a bridge between experimental data and theoretical models. Indeed, it offers a unified
language that gives the possibility to work in a model-independent framework using a parametrized
action. With the EFT formalism, it is possible to study not only specific viable models but also
perform agnostic tests of gravity. Indeed, most of the dark energy or modified gravity models of
interest can be mapped into the EFT language.
Moreover, another key point, that makes the EFT approach appealing, is the possibility to study
it through its implementation into the Einstein-Boltzmann solver CAMB [82]-[83] that allows to
study observables of interest in Cosmology, such as expansion history, growth of structure, grav-
itational lensing and Cosmic Microwave Background, in the frame of dark energy and modified
gravity models.

The purpose of this Thesis is to study and analyze a specific modified gravity model, called Gen-
eralized Brans-Dicke theory [89], using the Effective Field Theory approach to dark energy and
the EFTCAMB cosmological code. The Generalized Brans-Dicke theory is realized adding a scalar
degree of freedom which is non-minimally coupled to the metric and with a term in the action that
describes a non-linear self-interaction of the scalar field. This model is interesting for our scope
because it can provide deSitter solutions as late time attractor. Moreover, the presence of the
non-linear self-interaction term is crucial to satisfy the necessity of recovering General Relativity
in the regions of high density tested by solar system experiments.

The contents of this Thesis are organized as follows:
Chapter 1 : I will start from a general description of the standard model of Cosmology, the ΛCDM
model, in particular focusing on the background peculiarities. Moreover, I will introduce the dis-
covery of the late time accelerated expansion of the Universe as well as other cosmological evidences
of the dark energy existence. The interpretation of the cosmological constant in terms of vacuum
energy will also be exposed.
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4 CHAPTER 0. INTRODUCTION

Chapter 2 : I will talk about cosmological perturbations in the frame of General Relativity and
how to compare theoretical predictions and observations with the tool of the power spectrum. I
will also briefly introduce some observables that will be studied in the following part of the Thesis.
Chapter 3 : I will present some reasons that motivate the quest of models that go beyond the
ΛCDM model. Some theorems that can be used as a guidance in this search will also be pre-
sented. Finally, I will introduce some remarkable theories of dark energy and modified gravity.
Chapter 4 : I will discuss the viability conditions that have to be considered exploring new cosmo-
logical models. In particular, I will talk about screening mechanisms, instabilities and constraints
coming from the recent observations of gravitational waves.
Chapter 5 : I will introduce the Effective Field Theory approach to dark energy and its implemen-
tation in the EFTCAMB cosmological code.
Chapter 6 : I will present my work of studying the Generalized Brans-Dicke model employing the
EFT formalism and the EFTCAMB code. I will talk about how I implemented the model in the
code and how I exploited the code to study the viability conditions for the model and to perform
the cosmological perturbations analysis. Finally, I will conclude with a MCMC likelihood analysis
to study the theory in view of cosmological data.
Conclusions: I will summarize and discuss the contents of this Thesis.
Appendices: I will study in more details some topics mentioned in the main chapters. The choice
of the topics reflects also a personal interest. In particular, I will give more details about the
first-order gravitational perturbations and about conformal transformations of the metric. Then, I
will explain how f(R) theories can be seen as subclass of Brans-Dicke theories and how to go from
Jordan to Einstein frame, in the case of f(R) theories but as an example that can be generalized
to other models. Finally in the last appendix, I will further analyze the Chameleon mechanism
and in particular I will look for an explicit solution in the case of a spherical object.



Chapter 1

Introduction to Cosmology

1.1 ΛCDM

Through decades of increasingly accurate measurements of different observables, modern cosmol-
ogy has gradually led to the so called ΛCDM as the standard model of Cosmology. This model
describes a homogeneous and isotropic background, which is expanding, and small inhomogeneities
that grow, under gravitational instability, into the structure that we observe around us. The name
of the model remembers two fundamental components of our Universe: the dark energy which cor-
responds to the cosmological constant Λ and drives the late accelerated expansion of the Universe
and cold dark matter (CDM).
The dark matter is a still unknown component of the Universe, different from the ordinary baryonic
matter, since it interacts only gravitationally with the other fluids. It was introduced in the model
to explain observations such as the speed of rotation of the galaxies in our Universe, indeed if we
take into account only the gravity generated by their observable matter, then it is not enough to
hold them together. Similarly, for the galaxies in clusters. This makes cosmologists think that
something we have yet to detect is giving these galaxies extra mass, and thus it generates the extra
gravity they need to stay intact. This strange form of matter was therefore called dark matter
and it was labeled to be cold to highlight the fact that it decoupled from the other components of
the Universe when its velocity was much less than the speed of light i.e. when it was non-relativistic.

In this first Chapter we will focus mostly on the background peculiarities and on observational
evidences in support of dark energy. Cosmological perturbations and observables of interest in
Cosmology are instead discussed in the next Chapter.

The theory of gravity that rules the ΛCDM Universe is General Relativity. In the frame of
General Relativity in fact, it is possible to obtain the equations that describe the Universe and
its evolution. To do so, the basic foundation is the metric element, which carries the structure
of the desired spacetime. An expanding, isotropic and homogeneous Universe is described by the
Friedman-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin(θ)2dφ2)

)
, (1.1)

where a(t) is the scale factor and k the spatial curvature parameter. Assuming this geometry, we
then need to decide how to fill our Universe or, in other words, how to write the stress energy
tensor entering the equations. The perfect fluid approximation is usually employed:

Tµν = (P + ρ)uµuν + Pgµν , (1.2)

where uµ is the 4-velocity of the fluid while ρ and P respectively its energy density and pressure.
This approximation is realistic for example in a case such that the mean free path between particle
collisions is much smaller than the scales of physical interest [8]. Furthermore, the perfect fluid is
compatible with the Cosmological principle that prohibits anisotropic pressure.
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6 CHAPTER 1. INTRODUCTION TO COSMOLOGY

The equations that combine the geometrical structure with the energetic constituents, are the
Einstein equations; for a ΛCDM model they can be obtained from the following action:

S =

∫
d4x
√
−g

M2
pl

2
(R− 2Λ) +

∫
d4x
√
−gLM (gµν , ψM ). (1.3)

Varying the action with respect to the metric and assuming:

Tµν = − 2√
−g

δ(
√
−gLM )

δgµν
. (1.4)

We can find the Friedman equations that are the Einstein equations specialised to a FLRW space-
time:

H2 =
8πG

3
ρ− k

a2
+

Λ

3
,

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
,

ρ̇ = −3H(ρ+ P ).

(1.5)

The dot denotes a derivative with respect to the cosmic time. The equations above are not in-
dependent; in particular, the last one is the continuity equation that can be found combining the
first two.
All the main ingredients that we use to describe our Universe are contained inside these equations.
The Hubble parameter H = ȧ

a quantifies the expansion rate of the Universe. ρ and P are respec-
tively the total energy density and the total isotropic pressure considering all the different fluid
contributions. The cosmological constant Λ plays the role of dark energy, a still unknown form of
energy that drives the late time cosmic expansion of the Universe. And finally G that is obviously
the Newton constant of gravitation. It is worth to notice that the term proportional to the spatial
curvature parameter k is negligible: from an observational point of view, its contribution to the
total energy budget today is very low and its dependence to ∝ a−2 makes it safely negligible also
in the past.

It is easy to show that we can represent the cosmological constant as a perfect fluid with an
energy density equal to ρΛ = Λ

8πG and PΛ = −ρΛ. This allows us to reabsorb the cosmological
constant in the Friedman equation, recovering the form:

H2 =
8πG

3
(ρ+ ρΛ)− k

a2
,

ä

a
= −4πG

3
(ρ+ ρΛ + 3P + 3PΛ).

(1.6)

The fluids that we consider can be classified by providing a relation between ρ and P. In other
words, we need to specify an equation of state that characterises the fluid and we choose it to be
of the form:

P = wρ, (1.7)

where w is characteristic of the specific fluid.
Considering the case in which w is a constant, it is worth to substitute the equation of state inside
the continuity equation and integrate it:

ρ = ρ0

(
a

a0

)−3(1+w)

. (1.8)

This equation describes the evolution of the energy density for fluids such as dust and radiation.
We can indeed opt for w = 0 for pressureless material, that is a good approximation for any
form of non relativistic matter. On the opposite extreme, for relativistic radiation we usually use
w = 1

3 , as is can be derived from considerations of statistical mechanics and kinetic theory of gases.
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Furthermore, the cosmological constant can be properly described by a w = −1 equation of state.
Given this, it is possible to recover the energy density evolution of the fluids of the ΛCDM model:

ρ ∝


a−3 for dust
a−4 for radiation
a0 for the cosmological constant

(1.9)

Figure 1.1: Energy densities evolution

As we anticipated, ΛCDM , in accordance with observations, is built to describe an Universe
filled with radiation, matter and dark energy in terms of a cosmological constant. Defining the
density parameter of a fluid as:

Ω(t) =
ρ(t)

ρc(t)
=
ρ(t)8πG

3H(t)2
, (1.10)

where ρc is the total energy density of a flat Universe. Similarly we can define a parameter density
for the spatial curvature:

Ωk = − k

a2H2
. (1.11)

A good reference for their density parameters at present is [9]:

Ω0
m = 0.32, Ω0

r = 9.4 · 10−5, Ω0
Λ = 0.68, (1.12)

while we have strong observational bounds on the spatial curvature |Ω0k| < 0.01, so less than 1%
of the cosmic energy budget today.
In particular, the matter part can be divided between baryons and cold dark matter as:

Ω0
b = 0.05, Ω0

c = 0.27. (1.13)

It is then clear that, with the evolution of a(t), the main component of the Universe changes:
as we can see in Figure 1.1, firstly the Universe goes from being radiation to matter dominated,
this moment of the history of the Universe is known as matter-radiation equivalence. Writing the
redsfhit parameter as:

1 + z =
a0

a
, (1.14)

where a0 is the scale factor today, which is usually taken to be equal to 1. We can determine the
redshift zeq of the matter-radiation equivalence:

ρm(zeq) = ρr(zeq). (1.15)
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We therefore have:
ρ0
r(1 + zeq)

4 = ρ0
m(1 + zeq)

3. (1.16)

With the density parameters (1.12):

1 + zeq =
ρ0
m

ρ0
r

=
Ω0
m

Ω0
r

∼ 3000. (1.17)

Similarly we can find the moment in which a cosmological constant starts to dominate over the
matter:

ρm(zΛ) = ρΛ(zΛ), (1.18)

where zΛ is the redshift of the equivalence matter-cosmological constant. Straightforwardly:

ρ0
m(1 + zΛ)3 = ρ0

Λ =⇒ 1 + zΛ =

(
Ω0

Λ

Ω0
m

)1/3

, (1.19)

that, using again (1.12), gives zΛ ∼ 0.3.
Therefore, a cosmological constant should start to manifest only recently in our Universe history.

1.2 Dark energy
Historically, the cosmological constant was introduced by Einstein in the search for static solutions
of Friedman equations. The idea was then rapidly rejected because of the discovery that such solu-
tions were unstable and, above all, against cosmological observations. Indeed in the 1930’s Hubble,
looking at the galaxies redshift, realized that the Universe was not static but rather dynamic and
expanding.
Nowadays, the cosmological constant has been reintroduced in the equations to describe a phe-
nomenon discovered in the 1998: both Perlmutter et al. [Supernova Cosmology Project (SCP)]
[1] and Riess et al. [High-redshift Supernova Search Team (HSST)] [2] independently reported the
discovery of the accelerated expansion of the Universe from the observation of distant supernovae
of Type Ia. The origin of Type Ia supernovae is the explosion of a white dwarf in a binary system,
due to the fact that their mass exceeds a critical value known as Chandrasekhar mass by absorbing
gas from the other star of the system.
It was at that time that the term "dark energy" appeared to label all the possible physical sub-
stances capable to explain the accelerated expansion of the Universe and some other open issues,
such as the age of the Universe, as we will see in the next paragraph.
The equation of state of the dark energy is still unknown but, as we saw, in the ΛCDM frame, we
assume wDE = wΛ = −1, which is consistent with all observations. This is not the only possibility,
even if, thanks to data, we know that only small deviations from it are possible. In the most
general case, we can assume wDE to be a function of time so its continuity equation is:

ρ̇DE + 3HρDE(1 + wDE(a)) = 0, (1.20)

with the general solution:

ρDE =
3H2

0

8πG
Ω0
DE exp

[
− 3

∫ a

1

(1 + wDE(a))

a
da

]
. (1.21)

To see the direct link between the dark energy equation of state and the cosmological evolution,
we can rewrite the first Friedmann equation in terms of the density parameters of the different
fluids:

H(z) = H0

(
Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + Ω0
DEexp

[
− 3

∫ a

1

(1 + wDE(a))

a
da

]) 1
2

, (1.22)

where we used the approximation Ω0
k = 0.

Then defining the quantity:

E(z) =
H(z)

H0
, (1.23)
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we can rearrange the equation and differentiate it with respect to z in order to obtain a general
expression for the equation of state of the dark energy:

wDE(z) =
(E(z)2)′(1 + z)− 3E(z)2 − (1 + z)4Ω0

r

3[E(z)2 − Ω0
r(1 + z)4 − Ω0

m(1 + z)3]
, (1.24)

where the prime denotes a derivative with respect to z. This relation is useful to place observational
constraints on the equation of state of dark energy [10].
The request for dark energy to realize the accelerated expansion puts a strong constraint on the
possible values of wDE . Indeed exploiting the second Friedmann equation, it is easy to see:

ä > 0⇐⇒ w < −1

3
. (1.25)

On the other hand, there is the so called "phantom" regime where wDE < −1, here ρDE+PDE < 0
meaning that ρDE increases with time, we will explore this better in Chapter 3.

Finally, it is important to keep always in mind the observational bounds on the equation of
state of the dark energy. For example, the WMAP 5-years data combined with other observational
data, gives −1.097 < wDE < −0.858 at 95% confidence level [10].
If the dark energy is not a cosmological constant, then several parametrizations of its equation
of state can be exploited to fit the data. Assuming to have a time-dependent wDE we have for
example:

• Chevallier-Polarski-Linde (CPL) parametrization [15]:

wDE(a) = w0 + wa(1− a), (1.26)

which is the first-order Taylor expansion of wDE(a) around a0. w0 and wa are constants and
they are respectively the value and the first derivative of wDE today.

• Generalized Jassal-Bagla-Padmanabhan parametrization [16]:

wDE(a) = w0 + (1− a)n−1wa, (1.27)

that for n = 2 reduces to the CPL parametrization. Again, w0 and wa are respectively the
value and the first derivative of wDE today.

• Turning point parametrization [17]:

wDE(a) = w0 + wa(at − a)2, (1.28)

which is a second-order parabolic parametrization and it explores the possibility of a turning
point in wDE . Here, w0 and wa are the value and the first derivative of wDE at the turning
point at.

• Taylor expansion around a = 0 [18]:

wDE(a) = w0 + waa+
1

2
w2a

2 +
1

6
w3a

3, (1.29)

where w0, wa, w2 and w3 are respectively the value, and the time derivatives of wDE(a) at
a = 0.

1.2.1 Observational window on our Universe

In the following, it is interesting to highlight why a simpler "CDM" Universe is not enough.
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Supernovae evidences

As already said, in 1998 supernovae Type Ia observations provided the first evidence of the accel-
erated expansion of the Universe.
The supernovae classification is made according to the absorption lines of chemical elements: Type
I has a spectrum without an hydrogen line and, more in details, the spectrum of Type Ia contains
in addition an absorption line of ionized silicon.
Supernovae Type Ia have a crucial feature that makes them particularly interesting for cosmolog-
ical observations: they are named "standard candles" since their absolute magnitude at the peak
of the brightness is almost constant and known to be around M = −19.
Defining the luminosity distance as:

d2
L =

L

4πF
, (1.30)

where L is the intrinsic luminosity and F the observed flux of the supernovae. We can then use
the distance modulus (valid for distance expressed in Megaparsec):

µ = m−M = 5log10(dL) + 25, (1.31)

that links m, the apparent luminosity, to M , the absolute one (that corresponds to the apparent
luminosity of the source fixed at dL = 10pc). It is immediately clear that knowing the absolute
magnitude of the "standard candle" and measuring its apparent one, the luminosity distance of
the supernova can be obtained observationally.
Today, Supernovae Type Ia have little statistical power compared to other other observables such as
Baryonic Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) power spectra
(we will see better them in the next paragraphs). They remain useful in fixing the background
cosmology at low redshifts where other kind of measurements, like BAO, are less precise [3]. Indeed
as we see in Figure 1.2, they show an excellent agreement with Planck CMB power spectra, in
combination with CMB lensing reconstruction.

Figure 1.2: Distance modulus µ for supernovae in the Pantheon sample [50] with 1σ errors, com-
pared to the Planck power spectra + lensing ΛCDM best fit. Supernovae that were also in the
older Joint Lightcurve Analysis sample are shown in blue [51]. The lower panel shows the binned
errors, with equal numbers of supernovae per redshift bin (except for the two highest redshift bins).
Taken from [3].

To see how to extract information about dark energy from supernovae, we need to consider the
measurement of the wavelength λ of their light; it is then possible to compute the redshift of the
supernovae, for definition:

z =
λ0 − λe
λe

, (1.32)

where λ0 is the observed wavelength while λe is the emitted one.
Combining the experimental information, it is consequently possible to estimate the observed
dependence of the luminosity distance dL on the redshift of the supernova.
The observational data can then be compared with theoretical prediction provided by (case k = 0):

dL = r(1 + z)a0 = c(1 + z)

∫ z

0

dz

H(z)
, (1.33)
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which is found combining (1.30) with the theoretical prediction of the observed flux in an expanding
Universe and computing the comoving radius for a light like geodesic. As we can see, (1.33)
has a convenient dependence from the the Hubble parameter which is determined by the density
parameters of all the components of our Universe, as in (1.22). For example, considering Ω0

r ∼ 0
and choosing the equation of state for the dark energy wDE = −1, we can find the useful expression:

dL =
c(1 + z)

H0

∫ z

0

dz

[(1− Ω0
DE)(1 + z)3 + Ω0

DE ]1/2
, (1.34)

that can be evaluated numerically for different choices of Ω0
DE .

Perlmutter et al.[1] showed that the cosmological constant is present in our Universe at the 99%
confidence level.
Nowadays, many more accurate measurements were carried and, in the recent Planck 2018 release
[3], the density parameter at present of dark energy is constrained to be Ω0

Λ = 0.6889 ± 0.0056,
from Planck CMB power spectra, in combination with CMB lensing reconstruction and BAO.

Figure 1.3: From Permutter et al. [1]. On the left, Hubble diagram of the the effective apparent
luminosity mB versus the redshift z for 42 high-redshift Type Ia supernovae from the Supernova
Cosmology Project, and 18 low-redshift Type Ia supernovae from the Calán/Tololo Supernova
Survey. The solid curves are the theoretical predictions for a range of cosmological models with
zero cosmological constant. The dashed curves are for a range of flat cosmological models. On
the right, best-fit confidence regions in the ΩΛ − Ωm plane. The 68%, 90%, 95%, 99% statistical
confidence regions are shown.

Age of the Universe

Another key evidence of the existence of an additional component, apart from the standard ra-
diation and matter, was provided by the estimation of the age of the Universe. The age of the
Universe can be indeed calculated from:

t0 =

∫ t0

0

dt =

∫ a0

0

da

H(a)a
=

∫ ∞
0

dz

H(z)(1 + z)
, (1.35)

where, again, we are able to establish a dependence from the Hubble parameter which, in turn,
depends on the density parameters of the Universe components (1.22). Considering again a flat
Universe with Ω0

r ∼ 0 and wDE = −1:

t0 =

∫ ∞
0

dz

H0[(1− Ω0
DE)(1 + z)3 + Ω0

DE ]1/2(1 + z)
, (1.36)
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it can be analytically integrated:

t0 =
H−1

0

3
√

Ω0
DE

ln

(
1 +

√
Ω0
DE

1−
√

Ω0
DE

)
, (1.37)

for the the limit Ω0
DE → 0 (Einstein-DeSitter Universe) becomes:

t0 =
2

3H0
, (1.38)

that for H0 ∼ 70 km/Mpc · s, it is equal to ∼ 9.3 Gyrs. Oppositely, in the limit Ω0
DE → 1 we have

t0 →∞. Thus, t0 gets higher for increasing Ω0
DE .

In an Einstein-DeSitter Universe a paradox was found: the theoretical prediction of the cosmic
age was lower than the age of the oldest stars of our galaxy. This problem can be circumvented
by including a dark energy component in our Universe, roughly assuming Ω0

m ∼ 0.3, it is possible
to find the better range of ∼ 12 − 16 Gyrs. Today, the value confirmed by the last Planck data
release from CMB power spectra, in combination with CMB lensing reconstruction and BAO is
13.787± 0.020 Gyrs [3] so the dark energy is decisive to solve the age of the Universe issue.

Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is the radiation coming from the last scattering sur-
face, a space-like surface corresponding to the instant when the Universe became transparent to
radiation. Previously, photons were tightly coupled through Thomson and Coulomb scatterings
with matter in the so called photon-baryon fluid. As the Universe expanded, the temperature de-
creases, photons lose energy and they become no longer able to ionize hydrogen, that starts to form
during the recombination epoch at z ∼ 1100. In other words, the last scattering surface is the edge
of our observable Universe. When the photons starts to stream freely, the properties of the plasma
on this surface were directly imprinted in the spectrum of the CMB radiation that we can still
observe today. The primary observables in the CMB radiation are the temperature fluctuations
whose ratio, with respect to the mean temperature, is of the order of 10−5. These fluctuations are
extremely rich of physical information about our Universe, and they can be efficiently described
by the temperature power spectrum, as described in the following. Indeed, we can expand the
distribution of T measured on the sky as a sum over spherical harmonics:

Θ(θ, φ) =
∆T

T
(θ, φ) =

∞∑
l=0

+l∑
m=−l

almYlm(θ, φ), (1.39)

with:

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cosθ)eimφ. (1.40)

With Pml the associated Legendre polynomial. Using the orthonormality properties of the spherical
harmonics, we can obtain the coefficients:

alm =

∫
Θ(θ, φ)Y ∗lm(θ, φ)dΩ. (1.41)

In the usual convention, the angular power spectrum is defined as:

〈alma∗l′m′〉 = δll′δmm′Cl. (1.42)

The angular size θ in the sky is linked to the l multipole of the spherical harmonics thorough
θ = π/l.
From the theory point of view, the complete spectrum of temperature anisotropies can be derived
solving the Einstein and Bolzmann equations. This is quite challenging since the equations for
photons are coupled to the other matter components and it can be better achieved with the help
of a cosmological code, like CAMB, as we will see in the following part of this Thesis.
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Figure 1.4: Planck 2018 [3] temperature power spectrum, DTT
l = l(l + 1)CTTl /2π. The base-

ΛCDM theoretical spectrum best fit is plotted in light blue in the upper panel. Residuals with
respect to this model are shown in the lower panel.

The CMB spectrum can be used as a "standard ruler" (in comparison to the "standard candle"
in the supernovae observation), that means using an object of known dimensions to extract the
angular diameter distance:

dA =
D

∆θ
, (1.43)

where D is the size of the object, known in the case of a "standard ruler", while ∆θ is its measured
angular size. Assuming to have all the object at the same comoving distance r, in a FLRW metric
we have D = a(t)r∆θ. Then the angular diameter distance becomes:

dA = a(t)r = c
a

a0

∫ z

0

dz

H(z)
=

c

(1 + z)

∫ z

0

dz

H(z)
=

dL
(1 + z)2

, (1.44)

where, like before, we have found a dependence from the Hubble parameter which, in turns, de-
pends on the density parameters of the all the fluids.

The acoustic peaks in the CMB power spectrum are the snapshot at the surface of last scat-
tering of damped oscillations of the photon-baryon plasma under the competing effects of gravity
and radiation pressure. For overdense regions of space smaller than the Hubble horizon indeed,
matter contracted under self-gravity, heating up inside of them. On the contrary, radiation pressure
worked to damp out inhomogeneity. At the last scattering surface, the oscillations were freezed
out and encoded in the CMB power spectrum as maximum anisotropy (peaks), at specific scales.
The acoustic peaks in the power spectrum of CMB temperature fluctuations are considered a good
"standard ruler", therefore, for example, an effect we can look for, as a clue of dark energy ex-
istence, is the change of the position in the acoustic peaks due to modifications in the angular
diameter distance.
In particular, the first peak is the peak corresponding to the scale that had the time to oscillate
only once before recombination. Thus its angular scale θpeak is expected to correspond to the
scale of the sound horizon θs, which is defined as the distance that the sound could travel before
recombination. This means that:

lpeak =
π

θpeak
=

π

θs
=

π

rs
d

(c)
A (zric), (1.45)

where d(c)
A (zric) is the comoving angular diameter distance at recombination and rs is the comoving
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sound horizon that can be independently computed. Indeed, the latter is:

rs =

∫ ts

0

csdt

a(t)
, (1.46)

where t = 0 is the Big Bang time and ts the recombination time. Then we need the speed of sound
of the photon-baryon fluid:

cs =

√
δP

δρ
=

√
δPr

δρr + δρb
=

√
δρr

3(δρr + δρb)
=

1√
3(1 +R)

, (1.47)

with:
R =

δρb
δρr

=
3ρb
4ρr

=
3Ωb
4Ωr

, (1.48)

where in the second equality we exploited the continuity equations for the baryon and radiation
fluid: ρ̇ + 3H(ρ + P ) = 0 that can be rewritten as δρ

ρ(1+w) = −3Hδt. Finally, the sound horizon
can be expressed as:

rs =
c√
3

∫ ∞
zs

dz

H(z)
√

1 + 3Ωb(z)
4Ωr(z)

(1.49)

and it can be computed knowing the expansion history of the Universe at early time, with the dark
energy component still subdominant. From Planck 2018 [3] measurements of CMB power spectra,
in combination with CMB lensing reconstruction, we have rs = 144.43± 0.26 Mpc.
Coming back, the multipole l of the peak can be directly read from the CMB power spectrum, for
the first peak we have l ∼ 220. Finally we can compare the resulting angular diameter distance
from the theoretical one computed through (1.44).

The most important result of this reasoning is the possibility to strongly constrain the geometry
of the Universe to be flat. Furthermore, the CMB acoustic peaks provide valuable information
to constrain essentially all the cosmological parameters, since a modification of them translates
directly in a modification of the temperature power spectrum, as we can see in Figure 1.5.

Figure 1.5: Sensitivity of the CMB temperature power spectrum to the energy density of the
dark energy today in units of the critical density in a ΛCDM model and to the equation of state
parameter of the dark energy [4].

Finally, another important clue of the dark energy existence can be read at low multipoles,
where the power spectrum is dominated by the Integrated Sachs-Wolfe effect. This scales have
entered the horizon only recently so they did not undergo oscillations before recombination. The
CMB photons travels from the surface of last scattering to us, passing through the fluctuations that
were previously frozen. In a matter dominated Universe, the metric perturbations are constant.
In this frame, photons travelling through them would be blueshifted and then redshifted equally
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while entering and climbing out the potential well, so their net energy should remain constant.
However, in a dark energy dominated Universe, the metric perturbations are no longer constant
and they become a further source of anisotropy for the CMB photons.
The Integrated Sachs-Wolfe effect signal is ∼ 10% of the total CMB signal [5] and it is usually
investigated thought its correlation with the distribution of matter around us.

Figure 1.6: Schematic representation of the Integrated Sachs-Wolfe effect (ISW). On the left, a
photon travelling a constant potential well with no changing in its energy. On the right, a photon
travelling a time dependent potential with an energy change. Taken from [5].

Baryonic acoustic oscillations

Another dark energy probe is provided by the Baryonic Acoustic Oscillation (BAO), that refers to
the imprint left by the acoustic oscillation of the photon-baryon plasma in the late time clusterings
of matter and galaxies. Similarly to the CMB acoustic peaks, the standard ruler is the acoustic
length scale at recombination, rs as in (1.49), that can be computed with a good level of accuracy.
At recombination the sound waves froze, photons started to stream freely and the baryon part of
the waves was left in a spherical shell centered around the perturbation. Dark matter, which is
uncoupled by baryons and photons, did not undergo the oscillations and it remained concentrated
inside the potential wells. Both dark matter and baryons overdensities became the seeds of gravi-
tational instability that forms today structure of galaxies and matter. We therefore expect to find
galaxies both at the center of primordial potential wells and at the radius of the shell induced by
baryons.
As previously done for the acoustic peaks, knowing the comoving sound horizon rs at which the
clusterings of galaxies formed, the angular diameter distance (1.44) can be computed at a given
redshift and used to constrain the expansion history of the Universe. In particular, it is possible
to check the comoving distance ∆r between two galaxies both along our line of sight and perpen-
dicular to it. In the latter case, for galaxies seen under an angle ∆θ, we have that ∆θ = ∆r

d
(com)
A (z)

.

While for galaxies with redshift difference of ∆z, we can consider an average Hubble rate and
obtain: ∆r = ∆z

H . Combining the two information, it is possible to obtain an effective distance in
function of the redshift defined as [11]:

DV (z) =

[
(1 + z)2d2

A(z)
cz

H(z)

]1/3

, (1.50)

that can be constrained by the observational data.
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Figure 1.7: Simulation of the generation of the acoustic peak via linear-theory response to a point-
like overdensity at the origin, [6]. Each figure show the mass profile of the perturbations of dark
matter (black), baryons (blue), photons (red), and neutrinos (green) at different redshifts. From
left to right: photons and baryons were tightly coupled and they oscillated in an acoustic wave,
after recombination they decoupled and baryons were left to form a shell at specific scales. Galaxy
formation is favored near the origin and at this specific scale.
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Figure 1.8: Marginalized posterior distributions of the (w0, wa) parameters of (1.26) for different
data combinations [3]. The dashed lines indicate the point corresponding to ΛCDM .

Weak lensing

The gravitational bending of light can also be checked to find evidence of dark energy. The
phenomenon that we observe more often is the weak gravitational lensing which distorts the shape,
size and brightness of galaxies. As opposed to the strong gravitational lensing effect that causes
the production of multiple images of the same object due to the deflection of light of massive
structures.
Theoretically, the deformation of light due to gravitational lensing is described by two functions:
the convergence κ and the complex shear γ = γ1 + iγ2; they are both contained inside the so called
distortion matrix which is used to map the source plane to the image plane that we observe:

δxSi = Aijδx
I
j , (1.51)

where δx is the displacement vector in the two planes and A is the distortion matrix:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
. (1.52)

The convergence describes the isotropic magnification of the source while the shear quantify the
distortion of the shape of the object i.e. how a circular source is transformed into an elliptical one.
As previously for the CMB temperature, it is possible to build shear and convergence power spectra,
taking the Fourier transform of the two-points correlation function between galaxies. In the limit
of weak distortion the power spectra of the shear and convergence coincides. In particular, the
weak lensing tomography is used and it consists in slicing the shear signal in redshift bins. For
example, considering a galaxy in the redshift bin i and another one in the bin j, it is possible to
write the tomography cross-power spectrum at a given multipole l as [14]:

Pκij(l) =

∫ ∞
0

dz
Wi(z)Wj(z)

d
(c)
A (z)2H(z)

Pδ

(
l

d
(c)
A (z)

, z

)
, (1.53)

where W (z) is a weight function that estimates the efficiency of the lensing, d(c)
A (z) the comoving

angular diameter distance and Pδ is the mass density power spectrum. Experimentally, a large
number of galaxies are required to measure the cosmic shear signal [12], which is related to the
ellipticity of the observed galaxies.
The important feature, as we can see from (1.53), is that the shear power spectrum is dependent
on the dark energy via the expansion history.
Nowadays, cosmic shear measurements are available from several collaborations, including the Dark
Energy Survey (DES) [52] and KiDS [53]-[54].
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1.2.2 Vacuum Energy
Coming back to the ΛCDM frame, the obvious questions that we then need to answer is what the
cosmological constant Λ is physically.
Modern field theory associates this term with the vacuum energy density. This possibility is offered
by a characteristic feature of General Relativity: the fact that the source of gravity is the entire
stress-energy tensor and, as a consequence, the normalization of the energy is not arbitrary. In non
gravitational physics on the contrary, only differences in energy from one state to another matter:
for example, the shift of the potential energy of a particle by a constant term will not affect its
motion [13].
In General Relativity therefore, we have to consider the existence of the vacuum energy that is
the energy density of the empty spacetime. Clearly, we have to require the energy density not to
introduce any preferred directions: this means that the corresponding stress-energy tensor needs
to be Lorentz invariant in locally inertial coordinates. In Minkowski spacetime this implies the
form:

T (vac)
µν = −ρ(vac)ηµν , (1.54)

where ηµν is the flat metric. It can be straightforwardly generalized to curved spacetime as:

T (vac)
µν = −ρ(vac)gµν . (1.55)

Comparing this expression with the perfect fluid stress-energy tensor (1.2) we can easily see that
the vacuum energy density can behave as a perfect fluid with the equation of state:

ρ(vac) = −P(vac), (1.56)

that is exactly the equation of state of the cosmological constant present in the ΛCDM model,
meaning that, as we saw, the energy density can be expressed as:

ρ(vac) = ρΛ =
Λ

8πG
. (1.57)

In this framework therefore, the terms "cosmological constant" and "vacuum energy" are inter-
changeable.
So it is feasible to introduce a cosmological constant representing the vacuum energy in the equa-
tions; however this doesn’t help us in computing its expectation value, that should be a constant
of nature. To estimate its value, an important contribution that we first need to take into account
is the zero-point energy or the vacuum state energy of the quantum fields in our model.
Classically, the zero-point energy of a particle is the state in which the particle is motionless and
at the minimum of the potential. Considering a one-dimensional harmonic oscillator potential
V (x) = ω2x2

2 , the minimum of the potential is clearly at x = 0 where therefore we have a null
energy.
On the other hand, in quantum mechanics the uncertainty principle is established and it is possible
to show that the minimum energy state of an harmonic oscillator is E0 = ω~

2 . So quantum fluctu-
ations change the zero-point energy to a non zero value and, in presence of gravity, the addition
of a constant to the potential is not negligible.
In quantum field theory, we can decompose a field in an infinite number of harmonic oscillators in
Fourier space, each with a frequency ω =

√
k2 +m2 where m is the mass associated to the field

and k the module of the wave number of the mode. So we should add all the modes contribution
to find the total vacuum energy density. To avoid an infinite result, an ultraviolet cutoff kmax up
to which we trust our theory is chosen:

ρvac =

∫ kmax

0

d3k

(2π)3

~
√
k2 +m2

2
, (1.58)

the integral is dominated by high k modes (k >> m):

ρvac =

∫ kmax

0

4π~k3dk

2(2π)3
∼ ~k4

max, (1.59)
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where in the last passage we neglect the numerical factors. If we trust our quantum field theory
up to the Planck mass energy scale, we find (in natural units):

ρvac ∼ (Mpl)
4 ∼ (1018GeV )4, (1.60)

which is 120 order of magnitude more than the observed value of the cosmological constant. This
is the famous "cosmological constant problem", as we will see in the Chapter 3.
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Chapter 2

Cosmological perturbations

Until now, we have treated our Universe as perfectly homogeneous and isotropic; this is not com-
pletely the case, indeed, to explain both the formation and evolution of large scale structures and
the CMB power spectra, we have to introduce inhomogeneities.
For relatively small perturbations, we can exploit perturbation theory. In particular, Newtonian
gravity is still a good approximation of General Relativity on scales well inside the Hubble radius
and for non relativistic matter. On the other hand, when these conditions do not hold, we can
expand the Einstein equations order-by-order in perturbations. In full generality, we will directly
discuss perturbation theory within General Relativity. For more details about the Newtonian
approach, see [9].

Figure 2.1: The galaxy distribution in the Millennium Simulation Project on very large scales (the
width of the figure is ∼ 400Mpc/h). Taken from [55].

2.1 Relativistic perturbation theory

Einstein equations link together fields and the background geometry therefore, in the frame of per-
turbation theory, this implies not only the need of considering perturbations of the fields involved,
but also of the background metric.

2.1.1 The gauge issue

Before perturbing Einstein equations, we need to address an important subtlety: General Relativity
is invariant under diffeomorphisms, meaning that two solutions of Einstein’s equations, related by

21
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a diffeomorphism, are equivalent; this translates to the fact that perturbations are not uniquely
defined but they depend on the so called gauge choice. Indeed, considering a generic tensor T, the
perturbation of the physical quantity represented by the tensor is:

δT = T − T0, (2.1)

where T0 is the tensor in the unperturbed background while T is the same tensor in the physical,
and thus perturbed, spacetime. To quantify the difference of the tensor on the two space-time
we need to provide a map that realises a one-to-one correspondence between points on the two
spacetime; this map is called gauge choice. This choice is arbitrary and it will affect the value of
the tensor perturbations. A gauge transformation corresponds to keep fixed the coordinates on the
background spacetime and to vary the corresponding points on the physical one.
As we will see, two solutions are available to solve the gauge issue: to fix the gauge and and keep
track of all the perturbations defined in that gauge, or to work with gauge-invariant quantities,
that is to define particular combinations of the perturbations themselves which do not transform
under gauge transformations.

By varying the one-to-one map between physical and background spacetime, the gauge transfor-
mations entail the necessity of comparing tensors at different points in the background space-time.
However, the tensors comparisons is meaningful only if we evaluate them at the same spacetime
point. Therefore, following [56], to compare a tensor field at point P and Q, we need to provide
a transport law from P to Q. As we will see, this gives us two tensors at the same point P, one
the transported of the other, that can be directly compared. To build the transport law, we can
consider a manifold M covered by a coordinate system xµ and we suppose to have on it a vector
field defined as ξµ = dxµ

dλ , where λ is the parameter of the congruence of curves generated by ξ. We
take the point P to lie on one of this curves at λ = 0. Then a point Q, at a parametric distance λ
from P, will be, at first order in λ:

x̃µ(λ) = xµ + λξµ + ..., (2.2)

where x̃µ corresponds to the point Q and xµ to P, in the same coordinate system. This is usually
called "active coordinate transformations". It is now possible to introduce a new coordinate system
yµ on M, defined as:

yµ(Q) := xµ(P ) = xµ(Q)− λξµ(x(P )) + ...

' xµ(Q)− λξµ(x(Q)) + ...,
(2.3)

where in the second line we have substituted (2.2) and expanded keeping always the first order in
λ. This is instead the so called "passive coordinate transformation", that consists in the relabelling
of the point’s name.
We can now exploit them to find a transport law to compare tensor fields. We can indeed consider
a tensor field Z, with components Zµ in the xµ coordinates system. Similarly as before, we can
then define another tensor field Z̃, with component Z̃µ in the xµ coordinates system, such that:

Z̃µ(x(P )) = Z ′µ(y(Q)), (2.4)

thus, such that, the new field in the xµ coordinates at point P, is equal to the old field in a new
coordinate system yµ in the point Q. Applying an ordinary, passive coordinates transformation,
we obtain:

Z̃µ(x(P )) = Z ′µ(y(Q)) =
∂yµ

∂xν
Zν(x(Q))

=

(
δµν − λ

∂ξµ

∂xν

)
Zν(x(P ) + λξ(x(P ))),

(2.5)

where we have exploited (2.3) to compute the jacobian of the change of coordinate and to rewrite
Z in the same point P as Z̃. Finally, expanding about the point x(P ), up to the first order in λ:

Z̃µ(x(P )) = Zµ(x(P )) + λLξZ
µ(x(P )) + o(λ2), (2.6)

where LξZ
µ(x(P )) is the Lie derivative of Zµ in the point x(P ) along the vector field ξµ:

LξZ
µ = Zµ,νξ

ν − ξµ,νZν , (2.7)
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where ,µ = ∂µ. Thus, the Lie derivative allows to compare a field and its transformed at the same
point. This is exactly what is needed, when we want to see how a tensor field, and in particular its
perturbation with respect to the background space-time, changes under a gauge transformation:

δT̃ = δT + λLξT0, (2.8)

where δT̃ and δT are the differences between the tensor T0 in the background spacetime and,
respectively, the tensors T̃ and T in the physical spacetime connected to T0 with two different
one-to-one maps, i.e. two different gauge transformations.
In general, the Lie derivative of tensor with rank (p,q) is a new tensor with the same rank. For
example, we have [56]:

• for a scalar: LξS = S,λξ
λ,

• for a covariant vector: LξZµ = Zµ,λξ
λ + Zλξ

λ
,µ,

• (0,2)-tensor: LξTµν = Tµν,λξ
λ + ξλ + ξλ,µTλν + ξλ,νTµλ.

2.1.2 gµν and Tµν perturbations
Considering as the background space-time the FLRW metric, rewritten using the conformal time
dτ = dt

a(t) , we can now introduce the perturbations of the metric tensor, which are conventionally
written as [56]:

g00 = −a2(τ)

[
1 + 2

∞∑
r=1

Ψ(r)

r!

]
,

gi0 = g0i = a2(τ)

∞∑
r=1

ω
(r)
i

r!
,

gij = a2(τ)

[(
1− 2

∞∑
r=1

Φ(r)

r!

)
δij +

∞∑
r=1

χ
(r)
ij

r!

]
,

(2.9)

where the index r is the order of perturbations that we want to consider and χ
i (r)
i = 0. As we

have already done for the Lie derivative, in this work we will stop at first order in perturbation.
It is then possible to decompose the metric perturbations with respect to their behaviour under
local rotation of the spatial coordinates on hypersurfaces of constant time [57]. According to this,
we have:

• scalar perturbations

• vector perturbations

• tensor perturbations

Indeed for example, the shift functions ωi can be decomposed according to the Helmholtz theorem
as:

ωi = ∂iω
‖ + ω⊥i , (2.10)

where ω⊥i is a divergence-free vector, i.e. ∂iω⊥i = 0, and ω‖ is a proper scalar function. Similarly
the traceless part of the metric can be decomposed as:

χij = Dijχ
‖ + ∂iχ

⊥
j + ∂jχ

⊥
i + χTij , (2.11)

with Dij = ∂i∂j− 1
3δij∇

2, χ‖ a proper scalar function, χ⊥i a divergence-free vector and χTij a trace-
less, transverse and symmetric tensor. Therefore, this decomposition allows to identify the three
different kinds of perturbations that, at linear order, evolve independently and so it is possible to
analyze them separately.

Clearly, due to the structure of Einstein equations, metric perturbations will directly translate
in perturbations of the stress-energy tensor, which in turns will bring a back-reaction to the metric
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and so on. It is therefore necessary to see how we can perturb also the right hand side of Einstein
equations.
Considering the stress-energy tensor of a perfect fluid, it is possible to rewrite it in a more general
version, adding the anisotropic stress-energy tensor:

Tµν = ρuµuν + Phµν + πµν , (2.12)

where indeed πµν is the anisotropic stress-energy tensor and hµν = gµν + uµuν . Thus, we need to
perturb the quantities in (2.12):

• The energy density:

ρ(~x, τ) = ρ(0)(τ) +

∞∑
r=1

δρ(r)(~x, τ)

r!
, (2.13)

where ρ(0) indicates the energy density in the FLRW background.

• The pressure :

P (~x, τ) = P (0)(τ) +

∞∑
r=1

δP (r)(~x, τ)

r!
. (2.14)

Being P = P (ρ, S), where S is the entropy, in general it is true:

δP =

(
∂P

∂ρ

)
S

δρ+

(
∂P

∂S

)
ρ

δS = c2sδρ+ δPnon−adiab, (2.15)

where c2s is the adiabatic speed of sound of the perturbation of the fluid and δPnon−adiab is
the non adiabatic perturbation.

• The four-velocity of the fluid:

uµ =
1

a

(
δµ0 +

∞∑
r=1

vµ (r)

r!

)
, (2.16)

where vi is called the peculiar velocity of the fluid.

As we said, these perturbations are not uniquely defined but instead they transform under a
gauge transformation as in (2.8). To circumvent the problem, it is possible to fix the gauge, that
means to choose the vector field ξµ along with we compute the Lie derivative of the perturbation.
Indeed, according to Helmholtz theorem, we can decompose ξµ as:

ξµ = (ξ0, ξi) = (α, ∂iβ + di), (2.17)

thus to fix the gauge, we need to fix the two scalar functions α and β and the divergence-free vector
di.
In this work, we will explore better the Poisson gauge and the synchronous gauge, the latter is
used to treat perturbations in the Effective Field Theory approach to dark energy, as we will see
better in Chapter 5.

Poisson gauge

The Poisson gauge is obtained by imposing the following conditions:

ω‖ = 0, χ‖ = 0, χ⊥i = 0. (2.18)

In this gauge, it is possible to find an analog to the Poisson formula for the Ψ and Φ perturbations.
A particular subclass of the Poisson gauge is obtained by neglecting vector and tensor perturba-
tions. This dynamical choice leads to the so called Newtonian or longitudinal gauge, which is a
simple gauge with perturbed line element [62]:

ds2 = a(τ)(−(1 + 2Ψ)dτ2 + (1− 2Φ)δijdx
idxj). (2.19)

An advantage of working in the Newtonian gauge is the fact that the metric tensor remains diagonal
and computations are easier.
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Synchronous gauge

The synchronous gauge consists in choosing Ψ = 0. This means that the component g00 of the
metric tensor remains unchanged. Clearly, this does not fix completely the gauge, and, indeed,
we also choose to set ω⊥i = ω‖ = 0 which leaves unchanged also the component g0i of the metric
tensor. Thus the perturbed metric element in the synchronous gauge is usually written as [62]:

ds2 = a(τ)(−dτ2 + (δij + hij)dx
idxj), (2.20)

where in hij = h
3 δij +Dijh

‖ + ∂ih
⊥
j + ∂jh

⊥
i + hTij are contained all the perturbations of gij metric

component.

Gauge-invariant quantities

As we said, a different approach to the gauge problem can be to work with the so called gauge-
invariant quantities, which are quantities built in such a way that they do not transform under a
gauge transformation. An example of scalar gauge-invariant quantities are the Bardeen potentials,
that are defined as: {

ΨA = Ψ + (ω‖)′ +Hω‖ − 1
2 ((χ‖)′′ +H(χ‖)′)

ΦH = −Φ− 1
6∇

2χ‖ +Hω‖ − 1
2 (χ‖)′′

(2.21)

where H = 1
a
da
dτ . It is straightforward to check that the Bardeen potentials are invariant under

(2.8). Then, it is possible to rewrite the perturbed Einstein equation using (2.21) remaining
therefore in a gauge-invariant framework. More details of the calculations are in [57].

2.1.3 Perturbed Einstein equations

As we said, scalar, vector and tensor perturbations evolve independently at linear order. There-
fore, it is easier to perturb Einstein equation separately for each kind of perturbations. In this
work, we will focus on the evolution of scalar perturbation. Indeed, at linear order and for scalar
perturbation, the perturbed metric can be written as:

gµν = g(0)
µν + δgµν = a2(τ)

(
−(1 + 2Ψ) ∂iω

‖

∂iω
‖ (1− 2Φ)δij +Dijχ

‖

)
, (2.22)

where the apex (0) denotes the unperturbed quantity. The perturbed Einstein equation will be:

G(0)
µν + δGµν = 8πG(T (0)

µν + δTµν), (2.23)

where the Einstein tensor is Gµν = Rµν − 1
2gµνR. To obtain the perturbed equations, we need to

compute all the perturbed tensor necessary to obtain (2.23). These calculations are quite lengthy,
for more details see Appendix A. For completeness, we write here the results which are the equations
of motion for the scalar perturbations. From the (0− 0) component:

3

(
a′

a

)(
Φ̂′ +

a′

a
Ψ

)
−∇2

(
Φ̂ +

a′

a
σ

)
= −4πGa2δρ, (2.24)

with the shear perturbation is:

σ =
1

2
(χ‖)′ − ω‖ (2.25)

and
Φ̂ = Φ +

1

6
∇2χ‖. (2.26)

The (0− i) first-order equation is:

Φ̂′ +
a′

a
Ψ = −4πGa2(ρ(0) + P (0))(v‖ + ω‖). (2.27)
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Clearly, both (2.24) and (2.27) are not dynamical equations and they are respectively referred to
as energy and momentum constraint.
Then, defining the perturbed spatial stress-energy tensor as:

T ij = P (0)((1 + ΠL)δij + Πi
jT ), (2.28)

where ΠL = δP
P (0) and Πi

jT is the traceless part related to the anisotropic stress-energy tensor πµν .
It is possible to find from the trace part of the spatial perturbed Einstein equations:

Φ̂′′ + 2
a′

a
Φ̂′ +

a′

a
Ψ′ +

(
2

(
a′

a

)′
+

(
a′

a

)2)
Ψ = 4πGa2(ΠL +

2

3
∇2ΠT )P (0), (2.29)

while from the traceless part:

σ′ + 2

(
a′

a

)
σ + Φ̂−Ψ = 8πGa2ΠTP

(0). (2.30)

In particular, it is interesting to rewrite the last equation in the Newtonian gauge where σ = 0
and Φ̂ = Φ:

Φ−Ψ = 8πGa2ΠTP
(0), (2.31)

which, in the case of ΠT = 0, gives Φ = Ψ. This is a typical ΛCDM prediction that is not always
verified in theories that goes beyond ΛCDM .

2.2 Observables of interest

Einstein equation describes the interactions of the fluids perturbations with the metric one. This
is not enough, indeed, during the Universe history, the fluid components are coupled to each other:
for example, photons interacts both with gravity and with free electrons through Compton scat-
tering. Electrons, in turn, strongly interacts with protons and both of them interact with gravity.
Neutrinos and dark matter affect and are affected by gravity. To systematically deal with all these
couplings, the Boltzmann equation for each species of the Universe needs also to be solved. This is
quite a challenging task that, as we will see, can be achieved exploiting the computational power
of suitable codes, known as Einstein-Boltzmann solvers.
Once achieved this task, theoretical prediction and observations can be compared through the tool
of power spectrum. From the theory point of view, the power spectrum is, non trivially, com-
puted solving the Einstein-Boltzmann equations. Indeed, the ΛCDM model provides a complete
explanation for the production and evolution of photons anisotropies and matter inhomogeneities.
Thus, power spectra are a crucial tool to validate or rule out cosmological models. Here we will
briefly see some of these observables that, later in this work, we will compute with the cosmological
code CAMB [65].

2.2.1 About Boltzmann equation

Here, we briefly mention the basic notions concerning the Boltzmann equation, which can be
written in the general compact form:

L[f(xµ, pµ)] = C[f(xµ, pµ)], (2.32)

where L and C are respectively the Liouville and the Collision operators. f is the phase space
distribution function of a certain species of particles which depends on the point xµ and on the
momentum vector pµ = dxµ

dλ , where λ parametrized the particle path.
The Liouville operator is the total derivative along the trajectory of a particle in the phase space.
In the relativistic case, the operator takes into account also the role of gravity; its expression is:

L[f(xµ, pµ)] =
dxµ

dλ

∂f

∂xµ
+
dpµ

dλ

∂f

∂pµ
=

(
pµ

∂

∂xµ
− Γµρσp

ρpσ
∂

∂pµ

)
f, (2.33)
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it is possible to evaluate this expression on a FLRW spacetime, where the phase space distribution
function can depend only from the time and the modulus of the 4-momentum in order to respect
the requirements of homogeneity and isotropy. Indeed, it is straightforward to show that in this
framework the Boltzmann equation takes the form:

E
∂f

∂t
−Hp2 ∂f

∂E
= C[f(t, p)], (2.34)

where p2 = gijp
ipj . Exploiting the definition of the number density:

n(t) =
g

(2π)3

∫
d3pf(t, p) (2.35)

and after some algebras [63], (2.34) can be easily rewritten as:

ṅ(t) + 3Hn(t) =
g

(2π)3

∫
d3p

E
C[f(t, p)], (2.36)

where it is immediately clear that, in absence of collisions i.e. C = 0, the number density goes as
n ∝ a−3, thus it is only suppressed by the expansion of the Universe. The term on the right hand
side can be better understood considering a scattering process of the kind 1 + 2←→ 3 + 4. Indeed,
focusing on the evolution of the particle of specie 1, the right hand side of equation (2.36) can be
expressed as:

g1

(2π)3

∫
d3p1

E1
C[f(t, p)] =

∫
dΠ1dΠ2dΠ3dΠ4(2π)4δ(4)(p1 + p2 − p3 − p4)

[|M3+4→1+2|2f3f4(1± f1)(1± f2)− |M1+2→3+4|2f1f2(1± f3)(1± f4)],
(2.37)

where dΠi = gid
3pi

(2π)32Ei
, |M3+4→1+2| and |M1+2→3+4| are the amplitudes of the processes that create

and destroy the particle 1. The factors (1± fi) are the so called Fermi blocking term (-) and Bose
enhancement factor (+) that describes the tendency of production of the particle i.

As we have already underlined the FLRW is not our physical Universe but only its background
metric, in full generality the Bolzmann equation needs to be solved in a perturbed Universe such as
the one defined in (2.9). Indeed, for example, choosing to work in the Newtonian gauge (2.19) and
repeating the computations for this metric, it is possible to separate the unperturbed Bolzmann
equation from the first-order one which links together the metric perturbations to the perturba-
tions of the phase space distribution of a certain species.
For example, considering the photon distribution function, it is possible to expand it around the
Bose-Einstein distribution function which corresponds to the zero order approximation. This leads
to consider the function [63]:

f(~x, p, p̂, t) =

[
exp

(
p

T (t)(1 + Θ(~x, p̂, t))

)
− 1

]−1

, (2.38)

which is indeed the usual Bose-Einstein distribution function where we added the term Θ = δT
T

that describes temperature perturbations that depend on the position ~x and on the direction of
motion p̂ of the particle, thus breaking the homogeneity and isotropy of the FLRW Universe. As
usual, for a small perturbations Θ, the photon distribution function can be expanded around the
Bose-Einstein function f (0) as:

f ' f (0) − p∂f
(0)

∂p
Θ, (2.39)

this is the very first step to find the equation that describes the photon distribution perturbation;
as we said indeed the procedure consists in repeating the computation we have summarized for
the FLRW metric in a perturbed metric and accounting for the interactions between species. In
the case of photons the collision term is dominated by the contribution of the Compton scattering
between photons and free electrons. It is worth to highlight that a useful decomposition of the
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temperature perturbations is realized defining the the lth multipole moment of the temperature
field as:

Θl =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ), (2.40)

where µ =
~k·p̂
k , it is the cosine of the angle between the wavenumber ~k of the temperature pertur-

bations and the photon direction of propagation p̂. Pl is the Legendre polynomials of multipole l.
As a consequence of the structures of the Legendre polynomials, the higher moments describe the
small scale structure of the temperature field that can now be expressed as a whole hierarchy of
moments Θl(~x, t).
Similar computations need to be done for all the other fluids in the Universe, such as baryons,
dark matter and neutrinos. The result is a set of Boltzmann equations involving the perturbed
quantities of the distributions functions and the metric perturbations. Together with the perturbed
Einstein equations that we have already presented in the previous section, they constitute the so
called Einstein-Boltzmann equations. The initial conditions of this equations need to be search in
the inflationary paradigm when the seeds of all the perturbations were established from quantum
fluctuations of the inflaton field.
Solving the Einstein-Boltzmann equations is quite a challenging task and nowadays there are many
cosmological codes that perform such calculations. The ultimate goal is clearly to compare theory
and observations. This is realized computing the power spectra of the perturbations today which
are the most important cosmological observables.

2.2.2 Power spectra
To describe observables of interest in cosmology, such CMB temperature or polarization fluctua-
tions and large-scale structure, the more appropriate tool is the power spectrum. We have already
discuss about it in the case of CMB temperature anisotropies power spectrum; now we will present
the topic from a more general point of view. Indeed, the power spectrum is a suitable tool to
describe quantities such as the perturbations with respect to the mean density of galaxies or the
mean CMB temperature through a stochastic field that is Gaussian distributed around zero. Its
Fourier transform is:

δ(~x, t) =
1

(2π)3

∫
d3kei

~k·~xδk(t). (2.41)

Then the most important statistic is the so called two-point correlation function:

ξ(~r) = 〈δ(~x+ ~r, t)δ(~x, t)〉, (2.42)

where 〈...〉 denotes an ensemble average, thus interpreting the observed field as one of the infinite
possible realizations of a random process.

Then, the power spectrum is nothing else than the Fourier transform of the two-point correlation
function. Indeed, the power spectrum definition is:

〈δk(t)δk′(t)〉 = (2π)3P (|~k|)δ(3)(~k + ~k′). (2.43)

This can be easily seen exploiting the power spectrum definition:

〈δ(~x+ ~r, t)δ(~x, t)〉 =
1

(2π)6

∫
d3k

∫
d3k′ei

~k·~x+i~k′·(~x+~r)〈δk(t)δk′(t)〉

=
1

(2π)3

∫
d3kei

~k·~rP (|~k|).
(2.44)

Finally, computing the variance as σ2 = ξ(0), we find:

〈δ2(~x, t)〉 =
1

(2π)3

∫
d3kP (|~k|) =

∫
dk

k
∆(k), (2.45)

where:

∆(k) =
k3

2π2
P (|~k|). (2.46)
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(2.46) is the adimensional power spectrum, often used in Cosmology.
It is worth to notice that, from an observational point of view, the power spectrum definition brings
an obstacle: clearly, the ensemble average is experimentally not feasible because only one possible
realization of the considered random process can be observed i.e. we have access only to our own
observable Universe. Assuming to have statistical homogeneity and isotropy of the process, the
issue can be solved by performing a volume average instead of an ensemble average, taking the
V →∞ limit for the volume. A field that allows to do so, is said to be ergodic.

More on CMB power spectra

In Chapter 1 we have already introduced the Cosmic Microwave Background and its angular power
spectrum. It is worth to highlight that, from a theoretical point of view, the CMB power spectrum
can be uniquely recovered solving the Bolzmann-Einstein equations and choosing the cosmological
model. In particular, it is possible to derive the solution for the Θl multipoles, defined in (2.40),
at present time, that in Fourier space is [63]:

Θl(k, τ0) '[Θ0(k, τs) + Ψ(k, τs)]jl[k(τ0 − τs)]

+ 3Θ1(k, τs)

(
jl−1[k(τ0 − τs)]−

l(l + 1)jl[k(τ0 − τs)]
k(τ0 − τs)

)
+

∫ τ0

0

dτe−τD [Ψ̇(k, τ) + Φ̇(k, τ)]jl[k(τ0 − τ)],

(2.47)

where τD is the photon optical depth that is small if the photons travel freely and very large when
the mean free path of the photon is small. jl[kτ ] are the spherical Bessel functions that estimate
the contribution to the anisotropy due to a plane wave of wavenumber k on a scale l−1. The three
addends on the different lines are respectively identified as the Sachs-Wolfe, the Doppler and the
Integrated Sachs-Wolfe term. The first term requires to know the temperature monopole Θ0 and
the gravitational potential Ψ at recombination; this is due to the fact that, to reach us, photons at
the surface of last scattering had to climb out potential wells that redshifted their frequency. The
Doppler term, which required the temperature dipole at the surface of last scattering, accounts for
anisotropies produced by the Doppler effect due to the relative velocity that we have with respect
to the surface of last scattering. Finally the Integrated Sachs-Wolfe effect account for the time
dependence of the gravitational potential and indeed, unlike the first two terms that describe only
effects produced at the surface of last scattering, the last term takes into account all the photon
history until us.
The angular temperature power spectrum of the CMB can be found expanding over spherical
harmonics as already done in (1.39) and performing a Fourier transform to exploit the result of
the Boltzmann equation. Exploiting (1.42), the angular power spectrum can be then expressed as
[63]:

Cl =
2

π

∫ ∞
0

dkk2P (k)

∣∣∣∣Θl(k)

δ(k)

∣∣∣∣2, (2.48)

where δ(k) is the matter overdensity and P (k) the matter power spectrum that we will explore
better in the next paragraph. Thus, computing the Θl from (2.47) and solving the Boltzmann
equation for non-relativistic matter, the CMB temperature anisotropies spectrum can be predicted.

It is worth to notice that the temperature field is not the only observable provided by the CMB
radiation. Indeed, in more recent years, it was found that the CMB photons are polarized at a
level of 5% of the temperature anisotropies. An often used geometrical decomposition of the po-
larization field consists in splitting the polarization pattern into two parts called E- and B-modes.
Being only a fraction of the amplitude of the temperature anisotropies, polarization anisotropies
took longer to be detected. Nowadays, the Planck satellite realized an accurate CMB polarization
map [60], and it measured polarization power spectrum of E-modes and cross power spectrum of
temperature and E-modes. The B-modes are still undetected and they are particularly relevant
because of their link to primordial gravitational waves produced during inflation.
The polarization is the consequence of scattering processes that took place directly at the surface
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of last scattering thus it provide a complementary probe to uncover more properties of the Universe
at early stages [64]-[65] .

CMB lensing power spectrum

We have already discussed about the basis of weak lensing and its role to provide dark energy ev-
idences. Here, we will focus in particular on CMB photons lensing effect and its power spectrum.
Indeed, CMB photons travel almost the entire Universe before we detect them, thus, both temper-
ature and polarization power spectra are affected by gravitational lensing due to inhomogeneities
of the Universe.
Several effects can be read from the CMB pattern: the dominant effect consists in a smooth of the
acoustic peaks, followed by the changing of E-modes polarization into B-modes one. CMB lensing
is described also by higher-order statistics such as by 4-point correlation function [58], that, nowa-
days, can be measured with high precision in observations, such as Planck ones [59]. Therefore,
observations of the lensed sky allows us to gain a lot of information about large scale-structure and
and the Universe geometry between us and the recombination epoch.
Theoretically, the lensing deflection angle is written as the gradient of a lensing potential α =
~∇ψ(n̂), that in turn is defined as [61]:

ψ(n̂) = −2

∫ r∗

0

dr

(
r∗ − r
rr∗

)
ΨW (rn̂), (2.49)

where r∗ is the comoving distance at the surface of last scattering and ΨW is the Weyl potential
which probes the matter distribution. Indeed, in the Newtonian gauge, the Weyl potential reduce
to a simple function of the scalar metric perturbation Ψ and Φ defined in (2.9).

Figure 2.2: CMB lensing-potential power spectrum, measured by Planck. Taken from [60].

Matter power spectrum

The same physical mechanism that produced the CMB acoustic oscillations, that is the play be-
tween pressure and gravity, is also responsible for the non-relativistic matter power spectrum.
Indeed, as we said, matter contracted in initially overdense regions starting the process of gravita-
tional instability: as time evolves enough matter will fall in the region to form structures.
Knowing the evolution of the perturbations in the Universe history, it is therefore clear that it is
possible to build a power spectrum that describes the distribution of the matter around us. Indeed,
from the Fourier transform of the perturbed Einstein equations in Newtonian gauge, at late time
(considering a Universe filled only by non-relativistic matter) and at large scales, we can write [63]:

Φ = −4πGρma
2δ

k2
, (2.50)
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where δ is the non-relativistic matter overdensity. Exploiting the definition of matter density
parameter, we can extrapolate a useful expression for the matter overdensity:

δ(~k, a) = − k2Φ(~k, a)a

(3/2)ΩmH2
0

, (2.51)

that allows to link the matter overdensity at late time and the gravitational potential Φ at each
length scales. The gravitational potential at late time can be directly derived from its primordial
expression, set during inflation, through the transfer function that describes its evolution dur-
ing the horizon crossing and the radiation-matter equivalence and through the growth function
which describes the scale independent evolution at late time. As a consequence, the matter power
spectrum today can be recovered from the power spectrum of the gravitational potential during
inflation [63].
On large scales, the power spectrum is almost proportional to the wavenumber k while on small
scales it becomes a decreasing function of it, since small scale modes enter the horizon before
matter-radiation equality and they are more suppressed. Furthermore, it is worth to notice that,
below a certain scale, the linear perturbations theory is not valid anymore and non-linearities
cannot be ignored.

Figure 2.3: Linear-theory matter power spectrum (at z=0) from different cosmological probes.
The black line is the ΛCDM prediction while the dotted line shows the impact of non-linearities.
Taken from [60].
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Chapter 3

Beyond ΛCDM

3.1 Cosmological constant issues
As we started to observe in Chapter 1, the ΛCDM model presents still some open issues such as
the "cosmological constant problem" and the "coincidence problem". These may be seen as clues
of the need of going beyond the model. However, from the theory point of view, this might be a
challenging task since, as we saw, we already have strong observational constraints in favour of the
ΛCDM model.

Cosmological constant problem

The "Cosmological constant problem" refers to the disagreement about the expected value of Λ
from the theoretical and observational point of view.
Indeed, from observation, we expect the cosmological constant today to be of the order of H0 (in
natural units) [10]:

Λ(obs) ∼ H2
0 ∼ (2.13 · h · 10−42GeV )2, (3.1)

that in terms of energy density means:

ρ
(obs)
Λ =

Λ

8πG
∼ 10−123M4

pl. (3.2)

As we anticipated, if we compute the expected value of the cosmological constant as the vacuum
energy and we decide to trust quantum field theory up to the Planck mass energy scale, we find a
value about 120 times grater than the observed one.
A possible solution of the problem might consist in choosing, as cut off, some other energy scales
known in particle physics. For example, a more conservative choice is to take kmax ∼ 1 TeV that
corresponds to the weak energy scales; up to these energies indeed, the Standard Model has been
extremely well tested [20]. Plugging this value in (1.59), we can find the theoretical expectation:

ρ(th)
vac ∼ (1 TeV )4 ∼ 10−60M4

pl, (3.3)

which is still over than 60 order of magnitude different from the observed value.
It is straightforward to see that an appropriate scale for the cut-off would be kmax ∼ 10−3 eV
which is not explainable in the framework of existing particle physics theory.

It is important to notice that some other contributions can come from the physics beyond the
cut-off scale, meaning that the bare value of the cosmological constant Λ0 is given by the sum of
the energy density both below but also above, for example, the Planck mass scale [22]. It means
that:

Λ0 +M4
pl ∼ Λ(obs) (3.4)

but this would require to adjust Λ0 of almost 120 order of magnitude in order to restore the
observed value. Therefore, Λ0 should be fine-tuned with unimaginable precision. Given this, the
"Cosmological constant problem" is also known as "Fine-tuning problem".

33
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Coincidence problem

Another unlikely peculiarity of the dark energy is the fact that its density parameter today is of
the same order of magnitude of the matter one. As we saw in Chapter 1 indeed, the Universe goes
from being matter dominated to dark energy dominated only very recently in its history. From
(1.19) we calculated that the matter-dark energy equivalence took place at zΛ ' 0.3.

This is not a specific ΛCDM problem since the value of the density parameters today are
constrained by observational data. Indeed, all alternative cosmological models are required to
reproduce similar cosmological parameters at present, showing consequently a zΛ really close to
zero. What is required to solve the problem is a mechanism that naturally explains the coincidence.

Figure 3.1: dΩΛ

dN as a function of log10(a) with N = ln(a), assuming flat space with ΩDE = 0.7.
Taken from [10].

3.1.1 The anthropic principle
A possible solution of the two questions above might be the argument provided by the anthropic
principle. The anthropic principle was first formulated by Carter in 1973 and its basic idea is the
requirement for physical theories to take into account the existence of life on Earth.
Indeed, according to Barrow and Tipler formulations, the values of physical and cosmological
constants are not equally probable but they should assume values that allow the existence of
places in the Universe where the carbon-based life can evolve; furthermore the Universe needs to
be old enough for life to already exists [10].
A deeper study of this possibility was carried by Weinberg; in 1987 he was able to put the following
bounds on the vacuum energy density [10]:

− 10−123M4
pl . ρΛ . 3 · 10−121M4

pl, (3.5)

where the upper bound is due to the requirement that the cosmological constant energy density
did not dominate over the matter one for z & o(1) to allow the formation of large scale structure,
while the lower bound prevents the cosmological constant to lead the collapse of the Universe if it
became dominant before the present epoch.
Furthermore, Weinberg, explained that for this idea to make sense, it is necessary to allow multiple
realizations of the Universe with different values of the cosmological constant. A nice argument
that he carried in favour of his idea was an analogy with the radii of the planets in our solar system
[43]. Indeed, Newton’s theory of gravity failed to constrain these radii which were then explained
in terms of historical accidents. The radius of the Earth can be constrained by an anthropic
explanation: if it was not in the narrow range of distance from the sun to allow the existence of
liquid water on the surface, then we would not be here. According to Weinberg, this would not
be a satisfying explanation if the Earth was the only planet in the Universe. In such a case the
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Earth’s radius would be quite an amazing coincidence. The anthropic explanation works much
better knowing that in our Universe there is a huge number of planets, each at a different radius
from its star.
Similarly an anthropic explanation of the value of the cosmological constant is more plausible if
its value varies among a different members of an ensemble constrained by the fact that it should
be suitable for the evolution of intelligent life.
Recently, these anthropic ideas have been adopted in the context of String Theory; in this frame
indeed, the possibility is to have meta-stable deSitter vacua, each with a different value of the
cosmological constant [20]. The problems in this construction do not miss and, even if all the
needed ingredients can be established, it may nevertheless be difficult to proof that the anthropic
explanation is the correct one, since String Theory is not yet testable with observations.
Thus, having this possible path to address the cosmological constant problem, the theoretical
landscape is anyhow in search of other possible explanations for the cosmic acceleration, as we will
see in the next paragraphs.

3.2 Cosmological tensions

In addition to the issues linked to the cosmological constant, within the ΛCDM model some other
unresolved observational puzzles are known and currently under investigation.
In fact, the standard model of Cosmology shows a discrepancy, usually dubbed as "tension", on
the value of the Hubble constant measured with different probes. In particular, the tension resides
in the measurements obtained with high-redshift, model-dependent experiments and local observa-
tions which make use of the cosmic distance ladder method. The former, provided by Planck 2018
data of anisotropies of the CMB, measures the value of H0 = 67.36±0.54 km/s/Mpc [3], obtained
assuming a flat ΛCDM Universe, while the latter returns a value of H0 = 73.5 ± 1.4 km/s/Mpc
using Supernovae typeIa calibrated on Cepheid variable stars by the SH0ES collaboration [97].
The 4.2σ tension between these two measurements of the Hubble constant makes a statistical fluc-
tuation an unlikely explanation.
Moreover, another controversial issue within the ΛCDM model results in the tension showed by
the derived cosmological parameter:

S8 = σ8

√
Ωm
0.3

, (3.6)

where σ8 is defined as the amplitude of the linear matter power spectrum at scale of 8h−1Mpc. A
tension within the ΛCDM model exists on the value of S8 probed on small scales by Weak Lensing
experiments and on large scale CMB measurements. In particular, the tension was fixed at 3.2σ
level from the combination of KiDS dataset and DES 1 Year release in comparison to Planck 2018
data [98].
The root causes of both these tensions are still unknown and they are being investigated; the
explanation can be that these inconsistencies are just a statistical fluke or that they are due to
systematic errors in the experiments. Clearly, the most intriguing scenario would be that they are
signals of new physics beyond the standard model of Cosmology, in this sense therefore they offer
a good motivation in the quest of alternative cosmological models that go beyond ΛCDM .

3.3 Looking beyond ΛCDM

Although experimental data provide a great amount of evidence of the accelerating expansion of
the Universe, this does not directly mean that the source of the expansion is a cosmological con-
stant. Nowadays, the theoretical scenario is crowded of alternative theories to the cosmological
constant, that, as seen above, presents still some unsolved issues.
Therefore, from now on we will assume the cosmological constant to be zero, or at least unable
to account for the late accelerated expansion of the Universe, and we will explore which other
possible source may be in our Universe. Obviously, this last statement should be explained in the
framework of a new theory.
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At this point, we have two main paths to follow: to postulate a new dynamical component,
with the role of dark energy and its observed peculiarities, or to question about the theoretical
background that describes how the fluids in the Universe interact with the underlying spacetime,
that means to replace General Relativity with a Modified Gravity model. These two options are
conceptually quite different: the former consists in predicting a still unobserved component of the
Universe thanks to the consequences that we can already observe, while the latter, more drastic,
changes the theory of gravity ruling our Universe. However, it is important to highlight that this
division is not really fundamental within General Relativity: indeed, with a change of frame, it is
possible to reabsorb in Tµν all the gravity modifications that are conventionally operated to the
left hand side of the Einstein’s equation. On the other hand, within quantum field theory, the
equivalence between the two classes of models is not so direct given that Dark Energy/Modified
Gravity models can be distinguished by the different fields content.

As we will see with the Lovelock’s theorem, Einstein theory of gravity is remarkably robust. In four
dimensions, it is the only local theory of gravity having in its action just the degrees of freedom
carried by the metric tensor and returning second-order equations of motion. Furthermore, Ostro-
gradsky theorem shows that a theory with higher than second-order equations of motion brings
to an unstable system. As a consequence, the most common way to introduce new physics in the
gravitational sector consists in introducing new degrees of freedom, such as Lorentz scalar fields.
On the other side, a dynamical form of Dark Energy might also be a feasible solution: the cos-
mic acceleration indeed can be caused by the potential energy of a field. As in the inflationary
paradigm, this scenario naturally leads to a slow-rolling cosmological scalar field.

Finally, it is worth to notice that, since General Relativity has been tested to high precision
in the solar system and astrophysically, it is natural for Modified Gravity models to focus on the
cosmological scales. Indeed, a good candidate Dark Energy/Modified Gravity (DE/MG) model
should provide a so called screening mechanism, that suppresses deviations from General Relativity,
allowing the new degrees of freedom to not manifest in local tests of gravity.

Lovelock’s theorem

Going to the modified gravity field, it is important to know the limits that we have in the con-
struction of new gravity models. Lovelock’s Theorem, for example, puts stringent constraints on
the theories that can be built from the metric tensor alone. Indeed, assuming to have only the
gravitational field involved in the gravitational action:

S =

∫
d4x L(gµν) (3.7)

and being Eµν the Euler-Lagrange equations of the considered theory:

Eµν = 0, (3.8)

that can be obtained extrimising (3.7) with respect to the metric tensor.
The Lovelock’s theorem states [19]:

The only possible second-order Euler-Lagrange expression obtainable in four dimensions from the
scalar density Lagrangian (3.7) is:

Eµν = α
√
−g
[
Rµν − 1

2
gµνR

]
+ λ
√
−ggµν , (3.9)

with α and λ constants, Rµν the Ricci tensor and R the Ricci scalar.

This result, achieved by Lovelock in the 1971, was part of a wider work that consists in the
generalization of Einstein General Relativity to higher dimensions, known as Lovelock Theory of
Gravity. The crucial result that Lovelock found was that, in four dimensions and under the as-
sumptions of his theorem, only Einstein equations, with or without a cosmological constant, are
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allowed. This does not mean that we cannot further generalized the Einstein-Hilbert action to
another one built from gµν and that restores the Einstein equations.
Indeed, in four-dimensions Lovelock found the most general scalar density Lagrangian:

L = α
√
−gR− 2λ

√
−g + βεµνρλRαβµνRαβρλ + γ

√
−g(R2 − 4RµνR

ν
µ +RµνρλR

ρλ
µν), (3.10)

where β and γ are constants. It is possible to demonstrate that the third and fourth terms in
(3.10) do not contribute to the final Euler-Lagrange equations of motion in four dimensions [19].
This means that we obtained again the Einstein equations.

The direct consequence of the Lovelock’s theorem is that, to obtain a theory of gravity with equa-
tions of motion that differ from the Einstein ones, we need to renounce at some of the assumptions.
So the possibilities for a modified gravity theory are:

• Admit additional fields in the gravitational action other than the metric tensor.

• Build a spacetime with more than four dimensions.

• Accept equations of motion with higher than second-order derivatives of the metric.

• Build a non-local theory.

Ostrogradsky’s theorem

Ostrogradsky’s theorem excludes the possibility of having a theory with equations of motion con-
taining higher than second-order derivatives with respect to time. Indeed, considering a non-
degenerate Lagrangian with higher orders derivatives we will see that the corresponding Hamilto-
nian is unbounded and therefore unstable. Following [20], we will show the demonstration in the
context of classical mechanics of a single particle, knowing that the result can be generalized to
field theory.
Considering the non-degenerate Lagrangian of the form:

L(q; q̇; ...; q(N)), (3.11)

where q(t) is the particle position and its derivative with respect to time. Being the equation of
motion of the form:

N∑
i=0

(
− d

dt

)i
∂L

∂q(i)
= 0, (3.12)

it means that in the equation we will have terms up to q(2N), solvable with 2N initial conditions.
Being a non-degenerate Lagrangian, we can, for example, express q(2N) as a function of all the
other 2N − 1 coordinates.
Following Ostrogradsky, we can define the (2N) canonical coordinates as:

Qa = q(a−1), Pa =
δL

δq(a)
=

N∑
i=a

(
− d

dt

)i−a
∂L

∂q(i)
. (3.13)

Exploiting the non degeneracy, we can solve for q(N) in terms of the coordinates Qa and the N-th
momentum PN :

q(N) = QN+1 = F (Q1, ..., QN , PN ). (3.14)

Then, taking the Legendre transform, we can find the Hamiltonian of the system as:

H =

N∑
a=1

Pa · q(a)−L = P1Q2 +P2Q3 + ...+PN−1QN +PNF (Q1, ..., QN , PN )−L(Q1, ..., QN , F ),

(3.15)
therefore the Hamiltonian is linear with respect to P1, .., PN−1, only PN might show another de-
pendence. It is straightforward to check that only for an usual Lagrangian of the form L(q, q̇), the
corresponding Hamiltonian can be not pathological.
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As a final comment, we should check that the Hamiltonian (3.15) expressed in terms of the Ostro-
gradsky coordinate corresponds to the ordinary Hamiltonian, that posses the properties of physical
energy. To do so, we can consider the Hamilton equations for our system:

Q̇a =
∂H

∂Pa
, Ṗa = − ∂H

∂Qa
(3.16)

and we can apply them to Hamiltonian (3.15). Considering a = 0, .., N − 1, the trivial result is:

Q̇a = Qa+1 −→ Qa+1 = q(a), (3.17)

which is nothing more the definition in (3.13). Similarly, for a = N :

Q̇N = F + PN
∂F

∂PN
− ∂L

∂F

∂F

∂PN
= F = QN+1, (3.18)

where we have exploited the definition of PN .
On the other hand, for a = 2, ..., N :

Ṗa = −
(
Pa−1 + PN

∂F

∂Qa
− ∂L

∂Qa
− ∂L

∂F

∂F

∂Qa

)
= −Pa−1 +

∂L

∂Qa
, (3.19)

where again we have used the PN definition. It is easy to check that this result is the time derivative
of the definition of Pa. Finally for a = 1:

Ṗ1 = −
(
PN

∂F

∂Q1
− ∂L

∂F

∂F

∂Q1
− ∂L

∂Q1

)
=

∂L

∂Q1
=
∂L

∂q
, (3.20)

that, applying the definition of P1 and deriving it, becomes:

−
N∑
i=1

(
− d

dt

)i
∂L

∂q(i)
=
∂L

∂q
, (3.21)

which is the Euler-Lagrange equation (3.12). Hence, it is clear that the Hamiltonian (3.15) gener-
ates the time evolution of the Ostrogradisky coordinates (3.13).

Summarizing, Ostrogradsky’s result implies that the Hamiltonian of a non-degenerate higher
derivative theory is unbounded below, and therefore it generates instability, known as Ostrograd-
sky instability.
It is worth to underline that an important postulate of the Ostrogradsky theorem is that the La-
grangian is non-degenerate. If this is not the case, a healthy second-order system can be obtained
from a set of higher derivative equations of motion.

3.4 Dark energy/Modified gravity models
Nowadays, the theoretical landscape that tries to explain late time cosmic acceleration is very rich
[19], as shown is Figure 3.2. The main alternatives to the ΛCDM model are the DE/MG vast
classes of models, although the backreaction models might represent another possibility .
The backreaction class is a group of models that try to explain the cosmic acceleration through the
gravitational backreaction of cosmological fluctuations. Indeed, as it is known, Einstein equation
are second-order differential equations, so perturbations in the stress energy tensor contribute to
the change in the underlying geometry, which, in turn, translates back to the stress energy tensor.
It is possible to show that in the context of an inflationary background, an effective cosmological
constant can be realized, leading to a Universe completely dominated by it in the asymptotic future
[25]. In this work, we will not focus on these models.
On the other hand, in the frame of a dynamical dark energy model, the most simple choice might
be to introduce a new scalar degree of freedom but extra vectors, tensors, or even higher rank fields
might also be considered. In general, the new degrees of freedom can be either minimally coupled
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or non-minimally coupled to gravity. Quintessence is the simplest example of a minimally coupled
scalar field that represents a dynamical dark energy component.
Finally, in the modified gravity branch, some possibilities that have been explored are theories that
break Lorentz-invariance, that give mass to the Graviton or higher dimensions scenario. Instead,
remaining in the frame of a massless Graviton theory, scalar-tensor theories are the simplest kind
of modified gravity models; they rely on a scalar field to extend Einstein gravity. Examples of this
type are Brans-Dicke and f(R) theories; in particular, the specific Generalized Brans-Dicke theory
that we will explore in details in the Chapter 6.
Many more different models can be found in [19].

Figure 3.2: Theoretical Landscape of late time cosmic acceleration models.

3.4.1 Quintessence

As anticipated, Quintessence is probably one of the simplest dynamical dark energy model; the
idea is really close to the one of the inflationary paradigm: it consists in adding to the action a
canonical scalar field φ with a potential V (φ); φ interacts with the other fields through Einstein
gravity. This means that the action of Quintessence is:

S =

∫
d4x
√
−g
(
M2
pl

2
R+ Lφ

)
+ SM , (3.22)

where SM is the part of the action that gathers all the other field contents. The canonical La-
grangian of the scalar field is:

Lφ = −1

2
gµν∂µφ∂νφ− V (φ), (3.23)

varying the action and exploiting the definition (1.4), we can obtain the stress-energy tensor for
the field:

Tφµν = ∂µφ∂νφ+ gµν

[
− 1

2
gαβ∂αφ∂βφ− V (φ)

]
. (3.24)
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Assuming the stress-energy tensor of the perfect fluid (1.2), it is easy to find the associated pressure
and energy density:

T 0
0 = − φ̇

2

2
− V (φ) = −ρφ,

T ij =

[
φ̇2

2
− V (φ)

]
δij = Pφδ

i
j ,

(3.25)

where we have assumed a spatially constant field. It is now straightforward to find the equation
of state parameter:

wφ =
Pφ
ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (3.26)

to realize cosmic acceleration we need wφ < − 1
3 thus the necessary requirement for the kinetic

energy of the scalar field is to be sufficiently smaller compared to its potential. In other words,
the potential needs to be sufficiently flat. In particular, to obtain wφ ' −1, as constrained by
observation, we need to impose φ̇2 � V (φ), which is equivalent to the slow-roll inflationary case.
However, unlike inflation, we do not need to require the late time cosmic acceleration to end. In
the inflationary theory, the accelerated expansion is realized if the following slow-roll parameters
are small:

ε =
M2
pl

16π

(
1

V

∂V

∂φ

)2

,

ηV =
M2
pl

8π

1

V

∂2V

∂φ2
,

(3.27)

thus requiring ε � 1 and |ηV | � 1. However, dark energy acceleration takes place while the
density parameters of the other fluids are not completely negligible. Indeed, still nowadays the
dark matter component has Ω0

c ∼ 0, 27 of the total energy density. Thus for dark energy cosmic
acceleration, a better expression of the first slow-roll parameter is:

ε = − Ḣ

H2
. (3.28)

The first definition of (3.27) can be found from (3.28) by deriving with respect to time the first
Friedman equation and taking as the only source of energy density that of the Quintessence field.
During inflation the energy density is dominated by the inflaton field and the two expression are
equivalent. On the other hand for late time acceleration, we need to account for both dark energy
and dark matter contributions [26].
Indeed, in full generality, the Friedman equations (1.6) for a flat Universe became:

H2 =
8πG

3

(
ρM + ρr +

φ̇2

2
+ V (φ)

)
,

ä

a
= −4πG

3
(ρM + ρr + 3PM + 3Pr + 2(φ̇2 − V (φ))),

(3.29)

supposing to have a Universe filled by matter, radiation and the Quintessence scalar field. Thus
for example, during the matter domination epoch we need that the matter density dominates over
that of Quintessence: ρM � ρφ. Similarly, during the radiation dominated epoch, the condition
ρr � ρφ should be established. To do so for example, it is possible to require that ρφ tracks the
evolution of ρM so that the dark energy manifests only at late time. Indeed, tracker solutions
can bring to the scenario in which the Quintessence energy density approaches a fixed fraction of
that of the other fluids, almost regardless to the initial conditions. This is also seen as a possible
explanation of the cosmological constant coincidence problem. The tracking behaviour can be
realized by the form of the potential V (φ) [10].
Furthermore, the equation of motion of the field can be obtained by varying the action with respect
to the field:

�φ =
∂V (φ)

∂φ
, (3.30)
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which is the usual Klein-Gordon equation for the scalar field. In a FLRW metric and again,
considering a spatially constant field:

φ̈+ 3Hφ̇ = −V,φ (3.31)

where V,φ = ∂V (φ)
∂φ .

Two famous and well studied potentials for the Quintessence scalar field are [5]:

• Inverse power law potential:

V (φ) = M4

(
φ

Mpl

)−n
. (3.32)

• Exponential potential:

V (φ) = M4exp

(
− α φ

Mpl

)
, (3.33)

where M is a mass scale and α a dimensionless parameter. The former potential does not have a
minimum so the field rolls down the potential to infinity. They are both interesting because they
can display the already mentioned tracker solutions, promising to solve the coincidence problem.
On the other hand, the fine-tuning problem is not easily solved: to explain the tiny observed energy
scale that accounts for the late time cosmic acceleration, the scalar potential and in particular its
free parameters should have to be fine-tuned too. Indeed, as already explained, the field potential
needs to satisfy the slow-rolls conditions, in particular the condition |ηV | � 1, with ηV defined in
(3.27). This implies the condition:

∂2V

∂φ2
.

V

M2
pl

, (3.34)

therefore, if we express the Quintessence mass squared as m2
φ = ∂2V

∂φ2 , we obtain the following
constrain today:

m2
φ .

V0

M2
pl

' H2
0 , (3.35)

as it is required by observations of the accelerated expansion today. This means that:

mφ . 10−33eV, (3.36)

thus, to be compatible with observations the Quintessence scalar field needs to have an extremely
small mass. This leads to some problems: a nearly massless field should give rise to long-range
forces with ordinary matter, which should be observable; furthermore, it might be unstable against
radiative corrections [10]. Within particle physics, some solutions are present, for example a
possibility is constituted by the class of models where the Quintessence field is a Pseudo-Nambu-
Goldstone Boson (PNGB) of a spontaneously broken shift symmetry. More details can be found
in [41].

3.4.2 Phantom models
Energy Conditions

In General Relativity, it is sometimes useful to be able to understand the properties of Einstein’s
equations without the need of specifying the theory of matter from which Tµν is derived. The
properties that are studied in this context will then hold for different sources. In this frame, it is
usual to impose some energy conditions on the stress-energy tensor Tµν .
To impose energy conditions, we need to build scalars from Tµν , having therefore coordinate-
invariant bounds. To translate the energy conditions in physical terms, it is useful to consider the
stress-energy tensor of the perfect fluid (1.2).
The most common energy conditions are [13]:

• Weak Energy Condition (WEC):
Tµνt

µtν ≥ 0 with tµ time-like vector.
For a perfect fluid, it translates: ρ ≥ 0 and ρ+ P ≥ 0.
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• Null Energy Condition (NEC):
Tµν l

µlν ≥ 0 with lµ null vector.
For a perfect fluid, it translates: ρ + P ≥ 0. The energy density might now be negative, as
long as the pressure compensates.

• Dominant Energy Condition (DEC):
Tµνt

µtν ≥ 0 with tµ time-like vector and Tµνt
µ is a non space-like vector, that means

TµνT
ν
λ t
λtµ ≤ 0.

For a perfect fluid, it translates: ρ ≥ |P |.

• Null Dominant Energy Condition (NDEC):
Tµν l

µlν ≥ 0 with lµ null vector and Tµν lµ is a non space-like vector, that means TµνT νλ l
λlµ ≤

0. It is the DEC conditions specialised for null vectors.
For a perfect fluid, we have the same condition of the DEC and, in addition, the condition:
ρ = −P , under which also negative energy densities are allowed.

• Strong Energy Condition (SEC):
Tµνt

µtν ≥ 1
2T

λ
λ t
σ
σ with tµ time-like vector.

For a perfect fluid, it translates: ρ+ P ≥ 0 and ρ+ 3P ≥ 0.

Clearly, the energy conditions are helpful to identify non physical properties of a fluid; for example,
considering a perfect fluid with ρ ≥ 0, then all the energy conditions imply that the equation of
state parameter is w ≥ −1.

Figure 3.3: Energy conditions for the perfect fluid. Taken from [23].

On the other hand, the dark energy equation of state parameter is not constrained by ob-
servation to be grater than −1; therefore, from an observational point of view, the regime with
wDE < −1 is not excluded. Nevertheless, as we said before, for example the WMAP 5-years release
gives −1.097 < wDE < −0.858 at 95% confidence level, so the value is constrained to stay near
the bound −1.
From a theoretical point of view, it was therefore necessary to explore the so called phantom
regime. To do so, the phantom theories need to break the Null Dominant Energy Condition. The
simplest phantom model can be realized exploiting a scalar field χ with negative kinetic energy
(using the signature (−+ ++) for the metric tensor) [24]:

Lχ =
1

2
∂µχ∂

µχ− V (χ). (3.37)
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Similarly to the Quintessence case, we can obtain the stress energy tensor:

Tχµν = −∂µχ∂νχ+ gµν

[
1

2
gαβ∂αχ∂βχ− V (χ)

]
(3.38)

and then the associated pressure and energy density:

T 0
0 =

χ̇2

2
− V (χ) = −ρχ,

T ij = −
[
χ̇2

2
+ V (χ)

]
δij = Pχδ

i
j ,

(3.39)

where we have assumed again a spatially constant field. Finally the equation of state parameter:

wχ =
Pχ
ρχ

= −
χ̇2

2 + V (χ)

− χ̇2

2 + V (χ)
, (3.40)

which is clearly smaller than −1 for χ̇2

2 < V (χ).
Varying the action with respect to the field, now we obtain the following equation of motion:

�χ = −∂V (χ)

∂χ
, (3.41)

which is the usual Klein-Gordon equation for the scalar field, with a opposite sign in the right
hand side. In a FLRW metric:

χ̈+ 3Hχ̇ = V,χ , (3.42)

where V,χ = ∂V (χ)
∂χ . The equation of motion describes a field that tends to run up, not down, the

potential.
Finally, it is possible to study the perturbations of the phantom field, considering the following
perturbed FLRW metric in the synchronous gauge :

ds2 = −dt2 + a(t)2(δij + hij)d~x
2, (3.43)

where hij is the trace part of the metric perturbation that can be rewritten in terms of its trace
h as hij = h

3 δij . It is then possible to re-derive the equation of motion in the perturbed metric,
admitting a space dependence for the field χ:

χ̈+ 3Hχ̇+
1

2
ḣχ̇− ∇

2χ

a2

(
1− h

3

)
= V,χ , (3.44)

for a perturbation χ(t, ~x) = χ(t) + δχ(t, ~x), the first-order perturbed equation in Fourier space is:

δ̈χ+ 3H ˙δχ+

(
k2

a2
− V,χχ

)
δχ = − ḣχ̇

2
. (3.45)

In this equation the sign of the V,χχ is opposite with respect to the standard case, as a consequence
of the negative kinetic term in the field Lagrangian. It is possible to show that small scales

perturbations are suppressed, while, on larger scale and in the case
(
k2

a2 − V,χχ
)
< 0, the field

perturbation δχ develops a growing instability [24]. If the instability manifests on a timescale
shorter than the age of the Universe, then the phantom model is not a viable candidate for dark
energy.
It is worth to notice that a good option to recover an effective equation of state parameter less
than -1 might be realized with a non-minimally coupled dark energy model or with an alternative
theory of gravity [5].
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3.4.3 Brans-Dicke theories

Brans-Dicke (BD) theories are among the simplest examples of modified gravity theories with an
additional scalar degree of freedom. Being ϕ the BD scalar field, the general action is [40]:

S =

∫
d4x
√
−g
(

1

2
ϕR− ωBD

2ϕ
(∂µϕ∂

µϕ)− U(ϕ)

)
+

∫
d4x
√
−gLM (gµν , ψM ). (3.46)

It contains a non-minimal coupling between gravity and the scalar field, a non-canonical kinetic
term and the field potential. ωBD is called Brans-Dicke parameter. In the original formulation of
the theory in 1961 [41], the self interaction potential was not present, thus this case is known as
massless BD theory.
In BD theories the scalar field can take the role of a point-dependent gravitational coupling:

ϕ = M2
pl(x) =

1

8πG(x)
, (3.47)

therefore the BD scalar field sets the strength of the gravitational interaction at each point of the
space-time [40].
An extension of Brans-Dicke theories is called Generalized Brans-Dicke whose action is [67]:

S =

∫
d4x
√
−g
(
M2
pl

2
F (ϕ)R− 1

2
K(ϕ)(∂µϕ∂

µϕ)− U(ϕ)

)
+

∫
d4x
√
−gLM (gµν , ψM ), (3.48)

where now the first two terms in the action are multiplied for generic functions of the scalar field.
The freedom in choosing the F (ϕ) and K(ϕ) functions provides the possibility of choosing the
desired expansion history. In these theories the equation of state of the scalar field, that takes the
role of an effective dark energy fluid, depends on the function F (ϕ) and it can indeed change sign
going in the phantom regime.
A further generalization of (3.48) can be realize making the first term a free function of both
the scalar field and the Ricci scalar, these theories are also known as extended Quintessence, as
they propose a non-minimally coupled scalar field with a generalized kinetic term and the scalar
potential [68]-[69].
A particular kind of Brans-Dicke theories are f(R) theories, as we will see in more details in the
next paragraph.

3.4.4 f(R) theories

f(R) theories modify the Einstein-Hilbert action by adding to it a generic function of the Ricci
scalar R [35]:

S =

∫
d4x
√
−g

M2
pl

2
(R+ f(R)) +

∫
d4x
√
−gLM (gµν , ψM ). (3.49)

Some examples of this kind were already presented in the context of inflation in 1979 by Starobinsky.
Indeed, adding in the Lagrangian terms like

√
−gRn with n > 1, brings modifications of cosmology

at early times and in particular it leads to a deSitter phase. Subsequently, it was shown that, for
n < 0, these modifications become relevant in the late Universe [33]. Thus, they might be an
appropriate choice of the f(R) term in (3.49) to explain late time cosmic acceleration.
The modified field equation can be found varying the action with respect to the metric, similarly
to Einstein’s one, apart for the additional term:

δ
√
−gf(R)

δgµν
=
δ
√
−g

δgµν
f(R) +

√
−g δf(R)

δgµν

= −1

2

√
−ggµνf(R) + fR

(
δRαβ
δgµν

gαβ +Rµν

)
,

(3.50)

where fR = ∂f(R)
∂R . In General Relativity the second term of (3.50) vanishes since it can be

rewritten as a total derivative. Having a function of the Ricci scalar, in f(R) gravity, it is not
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possible to do the same, therefore it needs to be computed. To do so, we can exploit the following
relation [34]:

δRαβg
αβ = Dλ((gλαgνβ − gλνgαβ)Dνδgαβ), (3.51)

that applied to the second term of (3.50) gives:

(δRαβg
αβ)fR = fRDλ((gλαgνβ − gλνgαβ)Dνδgαβ)

= (DβDαfR − gαβDνD
νfR)δgαβ ,

(3.52)

where in the second line we have integrated per parts twice to free the metric variation. Then,
using:

δ(gανg
νµ) = 0 −→ δgαβ = −gµβgανδgµν , (3.53)

we obtain:
(δRαβg

αβ)fR = (gµν�fR −DµDνfR)δgµν . (3.54)

Therefore, the resulting f(R) field equation is:

(1 + fR)Rµν −
1

2
gµν(R+ f(R)) + (gµν�−DµDν)fR = 8πGTµν , (3.55)

that can be rewritten absorbing the non-GR terms in an effective stress energy tensor:

8πGT effµν = fRRµν −
1

2
gµνf(R) + (gµν�−DµDν)fR. (3.56)

Assuming as always the stress energy tensor of a perfect fluid and specifying (3.55) for a flat FLRW
background, it is possible to obtain the modified Friedman equations [5]:

H2 +
f(R)

6
− ä

a
fR +H ˙fR =

8πG

3
ρ,

ä

a
− fRH2 +

f(R)

6
+
f̈R
2

= −4πG

3
(ρ+ 3P ).

(3.57)

It is interesting to take the trace of equation (3.55):

RfR −R− 2f(R) + 3�fR = 8πGT. (3.58)

Ror a perfect fluid the trace of the stress energy tensor is T = gµνT
µν = −ρ + 3P , therefore, we

can rewrite (3.58) as:

�fR =
1

3
(R+ 2f(R)−RfR)− 8πG

3
(ρ+ 3P ) ≡ ∂Veff

∂fR
, (3.59)

which is clearly a dynamical equation for fR, making it a propagating scalar degree of freedom
of the theory. This scalar degree of freedom, called scalaron, obeys an equation of motion with a
standard kinetic term and an effective potential Veff . The mass of the scalar is:

m2
fR =

∂2Veff
∂f2

R

=
∂R

∂fR

∂

∂R

∂Veff
∂fR

=
1

3

(
1 + fR
fRR

−R
)
. (3.60)

To be consistent at high curvature, f(R) theories need to have fR → 0 and |RfRR| � 1 [5],
therefore:

m2
fR ∼

1

3fRR
, (3.61)

which then means that we also need to impose fRR > 0 to have a positive mass squared. These
are only some of the viability conditions for f(R) theories, indeed more bounds need to be impose
in order to avoid instabilities and to guarantee agreement with local tests of gravity [35], as we
will see better in the next chapter.
Finally, it can be shown that f(R) theories are a particular sub-class of the Brans-Dicke theories.
More on this topic and on f(R) theories in Jordan and Einstein frames can be found in the Appendix
C.



46 CHAPTER 3. BEYOND ΛCDM

3.4.5 Scalar-tensor theories

From a more general point of view, scalar-tensor theories are some of the most studied modified
gravity theories. Indeed, essentially all MG theories result in theories with additional degrees of
freedom; for example both Brans-Dicke and f(R) theories are sub-classes of scalar-tensor theories.
Moreover, thanks to the relatively simple structure of their field equations, analytic solutions can
be found.
The most general action for a four dimensional scalar-tensor theory with second-order field equa-
tions is [27]:

S =

∫
d4x
√
−g
[ 5∑
i=2

Li + LM (gµν , ψ)

]
, (3.62)

with:
L2 =K(φ,X),

L3 =−G3(φ,X)�φ,

L4 =G4(φ,X)R+G4,X [(�φ)2 − (DµDνφ)(DµDνφ)],

L5 =G5(φ,X)Gµν(DµDνφ)− 1

6
G5,X [(�φ)3 − 3(�φ)(DµDνφ)(DµDνφ)

+ 2(DµDαφ)(DαDβφ)(DβDµφ)],

(3.63)

whereK andGi (i = 3, 4, 5) are function of the scalar field φ and its kinetic termX = − 1
2gµν∂

µφ∂νφ,
R is the Ricci scalar, Gµν the Einstein tensor and Gi,X , Gi,φ the derivative of the function with
respect to X and φ.
It is worth to notice that, even if the action contains higher order terms, the equations of motion
are second order.
The above action is the so called Generalized Galileons action, that historically comes from the
Covariant Galileons theory [28]. Indeed, Galileons theories were first written as the the most
general action having second-order equations of motion and satisfying the so called Galilean sym-
metry in Minkowski spacetime. The Galileon in fact is a scalar field with a symmetry under the
transformation:

φ→ φ+ bµx
µ + c, (3.64)

that is called Galilean shift symmetry, from an analogy to the Galilei transformation in classi-
cal mechanics. Introducing gravity, the Galilean shift symmetry is broken, due to the necessity
of introducing non-minimal couplings of the scalar field to the curvature, and, in the Covariant
Galieons theories, only the requirement of second-order equations of motion survives. The Covari-
ant Galileons action is still a sub-class of the Generalized Galileons theories; it corresponds to the
following choice of the Generalized Galileons functions [27]:

K = c2X, G3 = − c3
M3

X, G4 =
M2
pl

2
− c4
M6

X2, G5 =
c5
M9

X2, (3.65)

where c2, c3, c4 and c5 are dimensionless constants while M is a constant with dimension of a mass.
Between the Covariant Galileon models, it is usual to distinguish the models with c2, c3 6= 0 and
c4 = c5 = 0 referred to as Cubic Galileons, while the cases with c4 6= 0 and c5 6= 0 are respectively
Quartic and Quintic Galileons.

Similarly, the Generalized Galileons Lagrangian is found starting from the most general action in
Minkowski spacetime with second-order field equations, requiring to have at most second deriva-
tives of φ and to be polynomial in ∂µ∂νφ.
The Generalized Galileons are also known as Hordenski theories, that, as already said, are the
most general scalar-tensor theories with second-order field equations in four dimension. Indeed,
the first at writing the action was Hordeski in 1974; in the context of Lovelock gravity, he worked
under different assumptions from that used to find the Generalized Galileons. As a consequence,
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the Hordenski Lagrangian presents in a very different, but equivalent, form [28]:

L = δαβγµνσ

[
κ1φ

,µ
,αR

νσ
βγ +

2

3
κ1Xφ

,µ
,αφ

,ν
,βφ

,σ
,γ + κ3φ,αφ

,µR νσ
βγ + 2κ3Xφ,αφ

,µφ,ν,βφ
,σ
,γ

]
+δαβµν [(F + 2W )R µν

αβ + 2FXφ
,µ
,αφ

,ν
,β + 2κ8φ,αφ

,µφ,ν,β ]

−6(Fφ + 2Wφ −Xκ8
)�φ+ κ9,

(3.66)

where δαα1α2...
µµ1µ2... = n!δ

[α
µ ...δ

αn]
µn is the generalized Kronecker delta, κ1, κ3, κ8 and κ9 are functions of

φ and its kinetic term X, F is a κi-dependent function of φ and X, and W is another φ function
that can be reabsorbed in F. Thus, like for the Generalized Galileons, the free functions are only
φ and X. It was indeed shown that the two theories can be mapped one in the other through [29]:

K = κ9 + 4X

∫ X

dX ′(κ8φ − 2κ3φφ),

G3 = 6Fφ − 2Xκ8 − 8Xκ3φ + 2

∫ X

dX ′(κ8 − 2κ3φ),

G4 = 2F − 4Xκ3,

G5 = −4κ1.

(3.67)

Beyond Hordenski

As we saw, Hordenski and Galileons theories were built with the indispensable request of describing
systems with second-order field equations. Thanks to it, the theories are clearly free of Ostrograd-
sky instabilities, which are due to higher order time derivatives.
Nevertheless, it is possible to show that healthy theories beyond Horndeski gravity can be con-
structed free from Ostrogradsky instabilities. To achieve it, we need to drop the crucial postulate
of Ostrogradsky theorem that asks for a non-degenerate Lagrangian of the system.
It is interesting to see this, in a simple toy model Lagrangian [30]:

L =
a

2
φ̈2 + bφ̈q̇ +

c

2
q̇2 +

1

2
φ̇2 − 1

2
φ2 − 1

2
q2. (3.68)

It is then easy to compute the Euler-Lagrange equations for the two fields, applying (3.12):

a
....
φ + b

...
q − φ̈− φ = 0, (3.69)

b
...
φ + cq̈ + q = 0, (3.70)

thus, clearly the system presents higher order time derivatives in both the fields. Therefore,
as Ostrogradsky predicts the system should be unstable and not viable for physical purposes. To
avoid this, we can choose a degenerate system. To clarify it, we can introduce the kinetic matrix,
which contains the coefficients of the highest order derivatives terms:

M =

(
a b
b c

)
, (3.71)

if it is degenerate det(M) = ac − b2 = 0, then the system contains only two healthy degrees of
freedom. Indeed, we can consider the combination of the field equations (c · (3.69))− (b · d(3.70)dt ),
that, for a degenerate system leads to:

φ̈+
b

c
q̇ + φ = 0, (3.72)

then multiplying (3.72) by b and subtracting it to (3.70), we can obtain:

q̈

(
b2

c2
− 1

)
+
b

c
φ̇− q

c
= 0. (3.73)
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Therefore, thanks to the degeneracy of the system, we have obtained two second-order equations
for φ and q, showing that the system is free from Ostrogradsky instabilities despite the higher
order Euler-Lagrange equations.

The Beyond Hordenski class of theories that exploits this mechanism are called Degenerate Higher-
Order Scalar-Tensor (DHOST) theories.
Examples are the Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories, where the covariant version
of the original Galileons Lagrangian is exploited [31]-[32].



Chapter 4

Viability conditions

4.1 Screening mechanism
As already anticipated, General Relativity is really well tested within the solar system and astro-
physical scale [47], therefore it is necessary for new physics to provide a mechanism to hide itself
from local observation. This mechanisms are known as screening mechanism.
To better understand how these mechanisms can work, it is useful to study the connection between
fields in the Lagrangian and the potential that introduce new long range forces.

Following [20], we can consider a general scalar field theory coupled to non-relativistic matter
through a coupling g(φ), which depends on the scalar field itself. We suppose to have a point-like
matter source, with a stress-energy tensor with trace Tµµ = −ρ = −Mδ3(x), M is the mass of the
matter source. Being Zµν a generic tensor built by derivatives of the field and expanding the field
φ around a background value φ̄ as φ = φ̄+ ϕ, it is possible to find the generic equation of motion
for the perturbation:

Zµν(ϕ̈− c2s(φ̄)∇2ϕ) +m2(φ̄)ϕ = g(φ̄)Mδ3(x), (4.1)

where cs is an effective sound speed. It is possible to show that the resulting static potential around
the point-like source is:

V (r) = − g2(φ̄)

Z(φ̄)c2s(φ̄)

e
− m(φ̄)r√

Z(φ̄)cs(φ̄)

4πr
M, (4.2)

thus, a light scalar fields mediates an attractive long-range force that goes as F ∝ 1/r2. This is
clearly forbidden by local tests of gravity, therefore we need a mechanism to suppress it on small
scales. From (4.2), it is straightforward to see how it can work:

• Weak coupling :
It consists in letting the coupling to matter g(φ̄) to depend on the background. This allows
to have a small coupling in high density regions and suppress the fifth force.

• Large mass:
Similarly, another possibility is to let the mass of the fluctuations m(φ̄) to depend on the
environment. For a large mass indeed the potential is exponentially suppressed; thus the mass
should be able to vary from large value in high density regions to small one on cosmological
scales. For example, the so called chameleon screening mechanisms exploits this idea, as we
will see.

• Large inertia:
Finally, another possibility is offered by the kinetic function Z(φ̄). Similarly to the mass, we
need the kinetic function to be large on solar system scales. The kind of mechanism that
relies on second-order derivatives is known as Vainshtein screening mechanism.

Clearly, also cs(φ̄) might be a candidate parameter to provide a screening mechanism. However,
screening mechanisms due to the effective sound speed are not really efficient so they are usually
excluded.

49
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4.1.1 Chameleon mechanism

Chameleon mechanism realizes the screening of many scalar-tensor theories such as Brans-Dicke
and f(R) theories. It describes a fifth force mediated by the additional scalar degree of freedom,
with the peculiarity of being so called environmental dependent. In particular, as we are going
to see, the range of the force decreases with increasing ambient matter density, thus providing a
mechanism to hide the new degree of freedom from local tests of gravity.
To explain the chameleon mechanism, we start from the following action:

S =

∫
d4x
√
−g
[
M2
pl

2
R− 1

2
(∂φ)2 − V (φ)

]
+

∫
d4xLM (g̃(i)

µν , ψ
(i)
M ), (4.3)

with:
g̃(i)
µν = e

2βiφ

Mpl gµν , (4.4)

where βi are dimensionless constants. This is nothing else than the action of a modified gravity
theory with an additional scalar field in the Einstein frame, i.e. in the frame where the gravity
sector of the action remains unchanged, while a non-minimal coupling between gravity and the
matter field is induced. Indeed (4.4) is a conformal transformation between the metric gµν in the
Einstein frame and its conformally related g̃(i)

µν (for more details about conformal transformations
and the procedure to go from Jordan to Einstein frame, see Appendix B and C).
Taking the variation of (4.3) with respect to the scalar field φ, it is easy to find:

δS

δφ
=
√
−g(�φ− V,φ) +

√
−g̃
∑
i

e
− 2βiφ

Mpl
βi
Mpl

T (i)
µν g

µν = 0, (4.5)

where the last term is due to the variation of the matter action and it is found using the definition
for the conformal stress energy tensor δLM

δgµν(i) = −
√
−g̃
2 T

(i)
µν . Then exploiting (B.2) and (B.3), we

find the field equation:

�φ = V,φ −
∑
i

βi
Mpl

e
4βiφ

Mpl T (i)
µν g̃

µν
(i) . (4.6)

Choosing, for simplicity, to have only one single component of non relativistic matter:

Tµν g̃
µν = −ρ̃ = −e

−3βφ
Mpl ρ, (4.7)

where ρ is the matter energy density in the Einstein frame and hence φ independent. Thus we
obtain the final expression, for a single matter component:

�φ = V,φ +
β

Mpl
e
βφ
Mpl ρ ≡ ∂Veff

∂φ
, (4.8)

so the dynamics of the chameleon scalar field is not affected by the potential V (φ) but rather by
the effective potential:

Veff (φ) = V (φ) + ρe
βφ
Mpl . (4.9)

In order to have a minimum of the effective potential, the scalar potential V (φ) is usually assumed
to have a runaway form, i.e. to be monotonically decreasing in φ. Then, to have a minimum of
the effective potential, we just need β > 0.

Indeed the minimum should satisfy the condition:

∂Veff
∂φ

∣∣∣
φmin

= V,φ|φmin +
β

Mpl
e
βφmin
Mpl ρ = 0, (4.10)

while for the mass of the fluctuations around the minimum:

m2|φmin =
∂2Veff
∂φ2

∣∣∣
φmin

=
∂2V

∂φ2

∣∣∣
φmin

+ ρ
β2

M2
pl

e
βφmin
Mpl . (4.11)
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Figure 4.1: The chameleon effective potential (solid curve) found as the sum of a scalar potential
(dashed curve) and the density-dependent term (dotted curve). Taken from [45].

A typical choice of the potential is the inverse power law potential, already considered for the
Quintessence field, that has the following analytic form:

V (φ) =
M4+n

φn
. (4.12)

Thus for the inverse power law potential, (4.10) and (4.11) give:

φmin =

(
nM4+n

ρβ
Mpl

) 1
n+1

(4.13)

and the effective mass:

m2|φmin = n(n+ 1)M4+n

(
ρβ

nM4+nMpl

)n+2
n+1

+ ρ
β2

M2
pl

, (4.14)

where we have exploited the fact that φ � Mpl for the relevant field range [44]. We have found
the so called environmental dependence: both φmin and the mass around this value depend on the
background matter energy density. In particular the mass is an increasing function of it, while the
minimum of the field shifts to smaller values for higher ρ .

Figure 4.2: Chameleon effective potential for large and small ρ. As ρ decreases, the minimum
shifts to larger values of ϕ (in our notation φ) and the mass of small fluctuations decreases. Taken
from [46].
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Chameleon fifth force

As we see from action (4.3), there is a coupling between the matter and the chameleon field due to
the conformal metric g̃(i)

µν . Indeed, free particles follow geodesic of the metric g̃(i)
µν rather than the

standard gµν [48]. Thus, a free test particle of mass M of the species i, has the following equation
of motion:

ẍρ + Γ̃ρµν ẋ
µẋν = 0, (4.15)

where Γ̃ρµν are the Christoffel symbols in the g̃µν metric. Then applying (B.4) for the conformal
transformation (4.4):

Γ̃ρµν =
1

2
g̃σρ(g̃µσ,ν + g̃νσ,µ − g̃µν,σ)

= Γρµν +
βi
Mpl

(gρµφ,ν + gρνφ,µ − gµνgσρφ,σ),
(4.16)

that, substituted in (4.15), gives:

ẍρ + Γρµν ẋ
µẋν +

βi
Mpl

(2φ,µẋ
µẋρ + gσρφ,σ) = 0, (4.17)

which is the standard geodesic equation plus an additional term ∝ βi/Mpl which is the Chameleon
force. Indeed, in the non relativistic limit and in presence of a static Chameleon field, the test
particle considered experiences the force:

~Fφ = −M βi
Mpl

~∇φ, (4.18)

thus φ can be identify as the potential of this "fifth" force [48].
As we describe in Appendix D, it is possible to show that under the condition of a "thin shell" ob-
ject, the Chameleon force will be successfully suppressed, thanks to the environmental dependence
of both the field and the mass of the fluctuations.

4.2 Instabilities

As we saw, the Ostrogradsky theorem is a powerful tool to predicts instabilities of some DE/MG
theories. These theories indeed, introduce new degrees of freedom to source cosmic acceleration in
a dynamical way. However, it might happen that the extra degrees of freedom lead to an unstable
system and thus not viable to describe our Universe.
It is then possible to study the dynamics of the perturbations of a specific action and perform a
diagnostic of it; this allows to identify conditions, for example on the viable values of the model
parameters, to avoid these instabilities.
These kinds of instabilities are typical of the Effective Field Theory (EFT) approach, which is a
framework often used to investigate new physics beyond ΛCDM , as we will see better in Chapter
5. EFTs are indeed an effective description of low-energy physics, thus they are valid up to an
energy scale Λ, called cutoff of the theory. Beyond the cutoff, the theory is not trustable, and some
more fundamental theory is needed. This high energy wider theory is called UV completion [20].
It is worth to notice that instabilities in EFTs can be ignored as long as their energy scales lie
above the cutoff of the theory. In this case indeed, we can interpret the unstable behaviour as due
to the truncation of the EFT expansion at finite order and appeal to the UV completion to cure
the instability.

4.2.1 Ghost instabilities

A possible pathology of MG/DE theories is called ghost; they are fields whose particles have
negative energy indicating an instability of the theory. They manifest mainly as fields with the
wrong kinetic sign. Indeed, an example is the phantom theory (3.37), where we saw that a possible
instability is present if, considering (3.37) as an Effective Field Theory, the instability timescale is
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smaller than the age of the Universe [49].
The Lagrangian of a ghost field is (always considering the signature (−+ ++)):

Lghost =
1

2
(∂χ)2 − 1

2
m2χ2, (4.19)

where (∂χ)2 = gµν∂
µχ∂νχ. The pathology of this theory might arise when the field couples to

another field with canonical kinetic term, for example [20]:

L =
1

2
(∂χ)2 − 1

2
m2
χχ

2 − 1

2
(∂φ)2 − 1

2
m2
φφ

2 + λφ2χ2. (4.20)

The vacuum of this theory is then unstable under the process 0→ φφ+χχ, indeed the two particles
have opposite sign energy thus the process might cost zero energy. The rate of the process will be
infinite and the theory will be not viable.

Figure 4.3: The vacuum of theory plagued by ghost is unstable to rapid pair production of ghost
particles and healthy particles. Taken from [20].

The divergence can be avoided if we consider our theory not as fundamental, i.e. valid up
to arbitrary high momenta, but rather as an effective theory valid below a cutoff scale Λ. For
example, [49] demonstrated that, under specific assumptions, a phantom theory is valid only for
energies below the cutoff of 100 MeV , which is uncomfortably low but still within the observed
energy range of late time cosmic acceleration that is ∼ 10−3eV for the vacuum energy today.

Furthermore, ghost instabilities might also arise in theories with higher order equations of mo-
tion, in this case ghost instabilities correspond to the Ostrograndsky instabilities that we have
already encountered in Chapter 3. Following [20], we can proof this considering the following
theory:

L = −1

2
(∂ψ)2 +

1

2Λ2
(�ψ)2 − V (ψ), (4.21)

where Λ is the cutoff of the effective theory, meaning that this theory is well defined as long as we
work with energies far below Λ.
By varying the Lagrangian with respect to the field ψ, we obtain the following equation of motion:

�ψ +
1

Λ2
�(�ψ) = V (ψ),ψ, (4.22)

therefore (4.21) has fourth order equation of motion. Therefore, Ostrogradsky theorem predicts
instability of the system. In particular, we can see that the instability is ghost-like. To do so, we
can introduce an auxiliary field χ and rewrite (4.21) as:

L = −1

2
(∂ψ)2 + χ�ψ − Λ2

2
χ2 − V (ψ). (4.23)

The equivalence between (4.21) and (4.23) can be easily checked computing the field equation for
χ:

χ =
1

Λ2
�ψ, (4.24)



54 CHAPTER 4. VIABILITY CONDITIONS

that substituted back in (4.23), return the Lagrangian (4.21). Finally, we can remove the kinetic
mixing in (4.23), through the field redefinition ψ = φ− χ, that applied to (4.23) gives:

L = −1

2
(∂φ)2 − 1

2
(∂χ)2 + ∂µφ∂

µχ+ χ�φ− χ�χ− Λ2

2
χ2 − V (χ, φ)

= −1

2
(∂φ)2 +

1

2
(∂χ)2 − Λ2

2
χ2 − V (χ, φ),

(4.25)

where in the second line we have integrated by parts the third and fifth terms of the first line.
Thus, we have found that (4.21) is equivalent to a theory with two scalar degrees of freedom, one
healthy and one ghost.

4.2.2 Gradient instabilities
Another possible pathology, that makes a theory non-predictive, is the gradient instability which
manifests in a wrong sign for the spatial gradient term. For example, a free scalar field theory
plagued by gradient instability can be written with the following Lagrangian [20]:

Lgradient =
1

2
χ̇2 +

1

2
(~∇χ)2, (4.26)

which is clearly non-Lorentz invariant. By varying the action with respect to the scalar field, it is
possible to find its equation of motion, that in Fourier space assumes the form:

χ̈− k2χ = 0. (4.27)

Differently from the standard case, (4.27) does not have the plane-waves solution but instead it
has solutions of the form:

χ ∼ e±kt, (4.28)

where in particular the growing mode increases exponentially without any bounds, making the
theory unstable on a timescale:

tinst ∼ k−1, (4.29)

thus, the higher the energy modes, the sooner their instability will manifest, so the major contri-
bution to the instability comes from high k.
It is also possible to show that considering such a Lagrangian, an EFT approach is not feasible:
introducing a cut off is not sufficient to circumvent the gradient instability [20].

4.2.3 Tachyonic instabilities
Another possible instability, that can plague a certain theory, is the so called tachyonic instability.
In an Effective Field Theory, a tachyonic instability is due to the fact that we are not perturbing
around the true vacuum of the theory, and indeed, it manifests as a field with negative mass
squared. Therefore, this kind of instability is not due to an intrinsic pathology of the theory but
instead, it is a signal that the system is unstable because the considered value of the field is a local
maximum of its potential energy, i.e. the false vacuum.
Following [20], it is possible to learn about the tachyonic instability from a toy example, considering
the Lagrangian:

Ltachyon = −1

2
(∂χ)2 +

m2

2
χ2. (4.30)

As before, by varying the action with respect to the field, it is easy to find the equation of motion
in Fourier space:

χ̈+ (k2 −m2)χ = 0, (4.31)

that admits solutions of the form:
χ ∼ e±

√
m2−k2t, (4.32)

which in the limit k → 0, becomes:
χ ∼ e±mt, (4.33)
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thus, we have found again the unstable growing mode solution. Unlike for the gradient instability,
the timescale of the instability is now dependent on the mass of the field:

τinst ∼ m−1. (4.34)

It is clear that, to avoid the instability, we can consider modes with k � m, where indeed everything
remains well defined. In particular, for an EFT with a cut off Λ, we can require that m� k � Λ.

4.3 Gravitational waves aftermath
A turning point for multi-messenger astrophysics is the famous, first measurement of gravitational
waves and electromagnetic radiation from the same astrophysical source, dated on August 17, 2017.
The gravitational signal was detected by the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [70]; approximately 1.7 s after the Fermi Gamma-ray Burst Monitor (GBM) triggered a
short Gamma-Ray Burst, GRB 170817A. In addition, the GRB signal was independently confirmed
by the INTernational Gamma-ray Astrophysics Laboratory (INTEGRAL) [71].
This measurement has had also a crucial impact on DE/MG models since it greatly improved our
understanding of gravity at a fundamental level. Indeed, the joint observations allowed to put
stringent bounds on the speed of propagation of the gravitational waves cT [71]:

− 3 · 10−5 <
cT
c
− 1 < 7 · 10−16. (4.35)

Such a constraint has brought very important consequences for the late time cosmic acceleration
theoretical landscape: additional degrees of freedom coupled to gravity, such that the ones in-
troduced in many DE/MG models, can effect the speed of propagation of standard gravitational
waves. As a consequence, models that predict an anomalous cT were immediately ruled out by
GW170817 [72]-[73]-[74].
Within General Relativity, the equation of motion of transerve-traceless tensor perturbations of
the metric, i.e. gravitational waves, can be obtained by perturbing the Einstein equations; at linear
order and in absence of sources, it is possible to find in Fourier space:

ḧTij + 3HḣTij + c2T k
2hTij = 0. (4.36)

In the frame of a general scalar-tensor theory, the equation of motion assumes a slightly different
form [73]:

ḧTij + (3 + αM )HḣTij + (1 + αT )k2hTij = 0, (4.37)

which depends on two functions of time: the tensor speed excess αT , that accounts for modifications
of the speed of gravitational waves (clearly in GR, αT = 0 thus cT = 1) and the running of the
effective Planck mass αM , that possibly modifies the friction term due to the expansion of the
Universe. These functions, whose explicit expressions are given by the specific Lagrangian, depend
on the dynamics of the additional scalar field and on the parameters of the theory, thus allowing
to establish constraints on the viable parameters space of a theory.
Indeed it was found that, excluding the possibility to accept a fine-tuning of the parameters space,
several interesting models are effectively ruled out as viable late time cosmic acceleration theories.
This class includes quartic and quintic Hordenski, as well as quartic and quintic GLPV and many
other beyond Hordenski theories [73].
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Chapter 5

EFT approach

The Effective Field Theory (EFT) approach for dark energy is the framework in which we will
work in the next Chapter. The advantage of this approach is the possibility of working in a model
independent framework using a parametrized action. Indeed, thanks to this unified approach, it is
possible to study not only specific viable models but also perform agnostic tests of gravity.
The EFT approach, firstly introduced in Cosmology to study inflation with a single inflaton field
[75], was later extended as a framework for the late time cosmic acceleration [77], where it allows
to have a model independent language testable by observations and that unifies single field models
of DE and MG.

5.1 Unified action in Unitary Gauge
The EFT Lagrangian is written in the Jordan frame and unitary gauge and it is expanded around
a Friedmann-Lemaitre-Robertson-Walker Universe. In this gauge, the spacetime is foliated by
constant time hypersurfaces that correspond to the constant scalar field ones: this makes the
scalar field not to appear explicitly in the EFT action but to be hidden inside the metric degrees of
freedom. Indeed, the spacetime slicing is realized by the time evolving scalar field φ0(t), meaning
that we are choosing the scalar field itself as the time coordinate, and its perturbations as vanishing,
i.e. δφ(~x, t) = 0. More in details, in the frame of Cosmological Perturbation Theory, applying (2.8),
the scalar field perturbations transform under a gauge transformation as:

δφ̃ = δφ+ φ̇0α, (5.1)

where α is the time component of the field along which we are computing the Lie derivative. With
a proper choice of α, it is therefore possible to work in the gauge where there are not perturbations
of the scalar field but only metric fluctuations. Thus, it is usually said that the scalar field
perturbation has been eaten by the metric.
In particular, we can define the unit vector perpendicular to the constant scalar field hypersurfaces
as:

nµ =
∂µφ√
−(∂φ)2

→
δ0
µ√
−g00

, (5.2)

where the last expression is valid in unitary gauge.
It is now possible to write down the most general Lagrangian in this gauge [76], the requirement
will be to use operators that are function of the metric gµν and that are invariant under time-
dependent spatial diffeomorphisms. It follows that, beside 4-dimensional covariant terms, such as
the Ricci scalar, in the dark energy action many other terms are allowed, due to the fact that time
diffeomorphisms have been fixed and therefore they are not a symmetry of the system anymore.
As a consequence, the action will contain terms proportional to tensors with free 0 upper indices,
such as g00 and R00, which are scalar under spatial diffeomorphisms. Furthermore, tensors built
from the contraction of the orthonormal vector nµ or its covariant derivative are also allowed and
they indeed described the preferred foliation of the spacetime. Finally, any term in the action can
be multiplied by a generic function of time.
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Under this assumptions, it is possible to show that the most generic Lagrangian can be written up
to quadratic order in perturbations as [78]:

SEFT =

∫
d4x
√
−g
(
M2
pl

2
(1 + Ω(t))R+ Λ(t)− c(t)δg00+

+
M4

2 (t)

2
(δg00)2 − M̄3

1 (t)

2
δg00δK − M̄2

2 (t)

2
(δK)2 − M̄2

3 (t)

2
δKµ

ν δK
ν
µ

+
M̂2(t)

2
δg00δR+m2

2(t)hµν∂µg
00∂νg

00 + ...

)
+ SM (gµν , ψM ),

(5.3)

where the dots are for terms of higher order in the perturbations. hµν = gµν + nµnν is the
spatial metric on constant-time hypersurfaces, Rµν is the three dimensional Ricci tensor and R its
trace, Kµν = hλµDλnν is the extrinsic curvature, K its trace. Then, δg00, δR, δKµν and δK are
respectively the perturbations of the zero-zero upper component of the metric, of the trace of the
three dimensional Ricci tensor, of the extrinsic curvature and of its trace.
Moreover, the functions {Ω,Λ, c,M4

2 , M̄
3
1 , M̄

2
2 , M̄

2
3 , M̂

2m2
2} are free functions of time, usually called

EFT functions and they are used to map any specif model into the EFT language. In particular,
as we will see, only the first three of them {Ω,Λ, c} enter in the equations for the background and
indeed they are usually called background EFT functions.
This EFT action, describing the most general single-scalar field model of dark energy, accounts for
most of the theories of cosmological interest; the four major subclasses of theories covered by the
EFT action are [80]:

• Scalar-tensor theories such as Brans-Dicke and f(R) theories which are described only by the
background EFT functions.

• Hordenski theories, for which the relation M̄2
2 = −M̄2

3 = 2M̂2 must be satisfied.

• GLPV theories which require M̄2
2 = −M̄2

3 .

• Lorentz violating theories, like Horava gravity [79].

5.1.1 Background evolution equations

As we said, the background evolution is completely determined by the first line of (5.3), that
corresponds to the action:

S
(0)
EFT =

∫
d4x
√
−g
(
M2
pl

2
(1 + Ω(t))R+ Λ(t)− c(t)δg00

)
+ SM (gµν , ψM ), (5.4)

from which it is possible to obtain the evolution equations for the background quantities. By
varying (5.4) with respect to the metric in a spatially flat FLRW metric, it is possible to obtain
[80]:

3M2
pl(Ω + 1)H2 + 3M2

plHΩ̇ =
∑
i

ρi − Λ + 2c,

3M2
plH

2(Ω + 1) + 2M2
plḢ(Ω + 1) +M2

plΩ̈ + 2M2
plHΩ̇ = −

∑
i

pi − Λ,
(5.5)

where ρi and pi are respectively the background energy density and pressure of the ith matter
component, that are usually assumed to be pressureless matter and radiation. They can be easily
rewritten as:

Λ = −
∑
i

pi −M2
pl[(3H

2 + 2Ḣ)(Ω + 1) + Ω̈ + 2HΩ̇],

c = −
∑
i(ρi + pi)

2
−
M2
pl

2
[2Ḣ(Ω + 1) + Ω̈−HΩ̇].

(5.6)
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It is worth to notice that, fixing the expansion history with H and assuming a form for one of the
three EFT background functions, usually Ω, the background evolution is fully determined from
(5.6) and solving the continuity equations for the matter components.
It is interesting to rewrite (5.5) in a more familiar form:

H2 =
1

3M2
pl(Ω + 1)

(∑
i

ρi + ρDE

)
,

Ḣ = − 1

2M2
pl(Ω + 1)

(∑
i

ρi + pi + ρDE + pDE

)
,

(5.7)

where:

ρDE = −Λ + 2c− 3M2
plHΩ̇,

pDE = Λ +M2
plΩ̈ + 2M2

plHΩ̇.
(5.8)

These equations preserve the structure of the Friedmann equations with the explicit dependence
on the function Ω linked to the non-minimal coupling between the scalar field and the metric.
Deriving with respect to the time the first equation of (5.7) and exploiting the second one, it is
possible to obtain a sort of continuity equation for the dark energy fluid:

ρ̇DE = −3H(ρDE + pDE) + 3M2
plΩ̇H

2, (5.9)

where the last term expresses a non-conservation of the dark energy fluid, regulated by the time
derivative of the EFT function Ω.

5.1.2 Stückelberg trick

As we have seen, in unitary gauge the scalar field does not appear explicitly in the action (5.3).
This is useful in order to identify the operators that enter in the action and to select and map many
DE/MG theories in the EFT language. On the other hand, the unitary gauge results unsuitable
for the study of the evolution of linear cosmological perturbations. Indeed, in order to obtain
the evolution equation for the scalar field, it is better to make it manifest through the so called
Stückelberg trick, which allows to restore non linearly the time diffeomorphism invariance [81].
The procedure consists in performing the following infinitesimal time coordinate transformation
[80]:

t→ t̃ = t+ π(xµ), xi → x̃i = xi, (5.10)

where π(x) represents the additional scalar degree of freedom that will appear explicitly in the
action. Indeed, under this procedure, time-dependent functions in (5.3) will transform as:

f(t)→ f(t+ π(x)) = f(t) + ḟ(t)π +
f̈(t)

2
π2 + ... (5.11)

since they are typically Taylor expanded in π. Furthermore, operators that are not 4-dimensional
covariant, transform under (5.10) with the tensor transformation law, providing terms with deriva-
tives of π. For example, the zero-zero component of the metric tensor:

g00 → g̃00 = g00 + 2∂µπg
0µ + ∂µπ∂νπg

µν , (5.12)

that can be used to find the transformation for the perturbation δg00. This brings the EFT action
in the following form:

S =

∫
d4x
√
−g
(
M2
pl

2
(1 + Ω(t+ π))R+ Λ(t+ π)− c(t+ π)[δg00

− 2π̇ + 2π̇δg00 + 2∂iπδg
0i − π̇2 + π̇2δg00 + 2π̇∂iπδg

0i + gij∂iπ∂jπ] + ...

)
+ SM (gµν , ψM ),

(5.13)
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where we have considered only the background EFT functions to show the mechanism. By varying
the action with respect to π, it is then possible to obtain the dynamical equation for the extra
scalar degree of freedom. Given that, the Stückelberg trick has taken us out from the unitary
gauge, it becomes then convenient to choose a gauge associated with the metric perturbations.
The typical choice that is adopted by the cosmological code CAMB [82] and its modified version
which we will use in following, is to work in the synchronous gauge, whose line element is defined
in (2.20). Considering only scalar metric perturbations, the spatial perturbation of the metric hij
contains two scalar degrees of freedom which are usually written in Fourier space as [83]:

hij(x, τ) =

∫
d3kei

~k·~x[kikjh(k, τ) + (kikj −
1

3
δij)6η(k, τ)], (5.14)

with h the trace of hij . Then, starting from the action in terms of the Stückelberg field it is
possible to derive the equations for the perturbations at linear order. It is worth to notice that,
while in the background equations only the Ω,Λ, c functions appear, in the perturbed equations
all the remaining functions in action (5.3) will also affect the dynamics at linear order.
In particular, by varying the action with respect to the π field it is possible to find the dynamical
equation for the additional scalar degree of freedom, which has the following form:

Aπ̈ +Bπ̇ + Cπ̇ + k2Dπ + E = 0, (5.15)

where A, B, C, D, E contains the contribution of the metric and matter perturbations and they
are functions of time and scale. Their explicit expressions can be found in [83].

5.2 Mapping in the EFT language

As previously said, the advantage of the EFT formalism is the possibility of employing it for two
different purposes. The first possible approach is to work in a model-independent framework where
we can perform agnostic test of gravity by studying the effect of the different operators in the EFT
action on the dynamics of linear perturbations. This use is usually called pure EFT approach.
On the other hand, the second possibility of applying the formalism is with the mapping EFT
approach. Indeed, an advantage of the EFT language is in its capability of encompassing dark
energy and modified gravity models with a single additional scalar field. This means that all these
models can be found as particular cases of the EFT action. In this framework, the EFT functions of
(5.3) can be expressed in terms of the functions appearing in the specific scalar-tensor theory and,
as a consequence, they can reproduce the phenomenology of the specific theory. An application of
this procedure will be shown in Chapter 6.
In order to map a specific theory in the EFT language, it is possible to start from the covariant
action and impose the unitary gauge. Then, the two actions can be compared to identify the terms
corresponding to the EFT ones. To exemplify, we can consider the simple case of the Quintessence
Lagrangian (3.23) and rewrite it in unitary gauge:

− 1

2
∂µφ∂νφg

µν − V (φ) −→ −1

2
φ̇2

0(t)g00 − V (φ0(t)). (5.16)

Writing the zero-zero component of the metric as g00 = −1+δg00 and comparing the Quintessence
action with (5.3), it is straightforward to see that the mapping can be written as:

Ω(t) = 0, Λ(t) =
1

2
φ̇2

0 − V (φ0), c(t) =
1

2
φ̇2

0, (5.17)

while all the other EFT functions are zero.
Despite the fact that the procedure appears easy here, for some more complicated theories finding
the mapping can be more cumbersome. It is then possible to work in a more general framework,
exploiting the ADM decomposition of spacetime. Thanks to it, a general mapping can be derived
and used to translate any model in the EFT language.
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5.2.1 ADM decomposition
A natural formalism that is usually employed when dealing with the EFT approach to dark energy
is the so called Arnowitt-Deser-Misner (ADM) decomposition of spacetime. The ADM formalism
indeed is often used as a convenient platform for finding mapping relations between specific dark
energy and modified gravity models into the EFT language. It offers a general procedure to map
specific scalar-tensor theories in the EFT formalism by providing a mapping between a general
Lagrangian in ADM formalism and unitary gauge and the EFT Lagrangian.
The line element in ADM coordinates is:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt), (5.18)

where N i is the shift function, N the lapse function and hij the three-dimensional spatial metric.
In this coordinate, the most general Lagrangian can be written as [87]:

L = L(N,R,S,K,Z,U ,Z1,Z2, α1, α2, α3, α4, α5, t), (5.19)

where in details we have:

S = KµνK
µν , Z = RµνRµν , U = RµνKµν ,

Z1 = DiRDiR, Z2 = DiRjkDiRjk, α1 = aiai,

α2 = aiDkD
kai, α3 = RDia

i, α4 = ai(DkD
k)2ai, α5 = DkD

kRDia
i,

(5.20)

where a = nµDµnν and nµ = Nδµ0 is the normal vector to the hypersurfaces of constant time.
This general action needs then be expanded up to quadratic order in perturbations while, on the
other side, the EFT action needs to be rewritten in ADM form. At this point a complete mapping
is naturally found comparing the two results. For more details [78].

5.3 Code implementation of the EFT formalism
A very useful application of the EFT approach to dark energy is its implementation in the Code for
Anisotropies in the Microwave Background (CAMB) [82], which is a publicly available cosmologi-
cal code that allows to study observables of interest in Cosmology such as the Cosmic Microwave
Background, growth of structure or gravitational lensing. The implementation of the EFT ap-
proach in the Einstein-Bolzmann solver CAMB is called EFTCAMB and it is a powerful tool to
study the evolution of scalar linear perturbations in the frame of dark energy and modified gravity
models [83]. Indeed, thanks to the fact that it is based on the EFT formalism, it can be used both
as a model-independent framework to test gravity by looking at possible modifications of linear
perturbations linked to the EFT operators, but also it allows to study specific dark energy and
modified gravity models that can be mapped in the EFT language.
A positive feature of the EFTCAMB code is the fact that it works without relying on any Quasi-
Static approximation, that means without neglecting the time variation of the gravitational poten-
tials and scalar field with respect to their spatial gradients. Therefore EFTCAMB is able to evolve
the full set of perturbed equations, inclusive of the Klein-Gordon equation for the Stückelberg
field, on all linear scales. Moreover it also checks if the considered theory is acceptable in view of
viability conditions such as the ones presented in Chapter 4.
It is worth to notice that some other Einstein-Boltzmann codes, that can treat scalar-tensor theo-
ries, are available today, such as hi-class [84] and COOP [85]. Thanks to them, it was possible to
check the compatibility of the their results with the ones of EFTCAMB for the overlapping regions
of working of the codes [86].

EFTCAMB is structured by an hierarchy of flags that control the behaviour of the code,
allowing to choose its preferred application. The main code flags called EFTflags are the starting
point of the computational process and they are [18]:

• Standard CAMB : the code evolves the standard set of Boltzmann-Einstein equations, as
predicted by General Relativity and excluding every EFT modification.
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• Pure EFT : it is necessary to specify the background expansion history by selecting a parametriza-
tion for the equation of state of the dark energy and to choose the functional forms of the
EFT functions.

• Alternative parametrizations: it allows to choose model-independent parametrizations present
in the literature written in terms of the EFT functions.

• Designer mapping EFT : the expansion history needs to be chosen by selecting a parametriza-
tion for the equation of state of the dark energy. Then, using the mapping for the model of
interest, the code computes the EFT functions evolution.

• Full EFT mapping : the model needs to be fully specified, in particular the background
expansion history is found solving the specific equations of the model.

It is worth to notice that the code works with the following second-order EFT functions,
redefined in order to be dimensionless:

γ1 =
M4

2

M2
plH

2
0

, γ2 =
M̄3

1

M2
plH0

, γ3 =
M̄2

2

M2
pl

,

γ4 =
M̄2

3

M2
pl

, γ5 =
M̂2

M2
pl

, γ6 =
m2

2

M2
pl

.

(5.21)

5.3.1 Full-mapping approach
In view of the following Chapter, it is interesting to explore in more details how to implement in
EFTCAMB a new model with the full-mapping approach.
In this framework, a fully specified model needs to be chosen and the background expansion history
is found solving the equations of the model. For the implementation in EFTCAMB, this translates
to some steps that provide to the code the right information.
Firstly, a complete mapping between the covariant action of the chosen model and the EFT action
needs to be derived, as explained in the previous paragraph. Then, one has to create a new module
of the code by means of which the cosmological and model parameters are fed to EFTCAMB, which
uses them to solve the specific background equations of the theory. Under these conditions, the
time evolution of the EFT functions can be derived and they can be used to evolve the full set of
perturbed Einstein-Boltzmann equations.
In the next Chapter, we will apply this procedure to study a specific MG model, called Generalized
Brans-Dicke theory.

Figure 5.1: Logical steps of the full-mapping implementation in EFTCAMB. Taken from [88].



Chapter 6

Generalized Brans-Dicke model

This last Chapter consists in the analysis of a specific modified gravity model, called Generalized
Brans-Dicke theory. This theory was firstly proposed and studied in the original paper [89]. In the
following, applying all the notions exposed in the previous part of this Thesis, I will outline my
work of studying the Generalized Brans-Dicke theory via the Effective Field Theory approach to
dark energy and the cosmological code EFTCAMB using a Full-Mapping procedure.

6.1 Generalized Brans-Dicke model

The action of the considered Generelized Brans-Dicke theory is [89]:

S =

∫
d4x
√
−g
(

1

2
F (φ)R− 1

2
B(φ)∂µφ∂

µφ+ ξ(φ)�φ∂µφ∂
µφ

)
+ SM (gµν , ψM ), (6.1)

in which we have an additional scalar degree of freedom φ, that is non-minimally coupled to the
metric via the term F (φ)R in the action and with the term ξ(φ)�φ∂µφ∂µφ which describes a
non-linear self-interaction of the scalar field. F (φ), B(φ) and ξ(φ) are functions of the scalar field.
Clearly, this theory is a further extension of the canonical Generalized Brans-Dicke theories present
in the literature with action (3.48). Indeed, (6.1) describes a theory without the field potential and
with the characterising term ξ(φ)�φ∂µφ∂µφ, which can be found in the Cubic Galileons action, in
(3.62).
It is known that this class of theories have screening mechanisms that allow to recover General
Relativity in high density regimes constrained by local tests of gravity in the solar system, as
explained in Chapter 4. Indeed, the mechanisms at work when considering the broad class of
Brans-Dicke theories are essentially two. The Chameleon mechanism usually provides the screening
for Brans-Dicke theories with the field potential, where it is possible to find the environmental
dependence for the effective mass of the field. Furthermore, in the presence of terms of non-linear
self-interaction of the scalar field, as ξ(φ)�φ∂µφ∂µφ, the Vainshtein mechanism can also come into
play allowing to recover General Relativity for scales smaller than the so called Vainshtein radius
[20].
By varying the action with respect to the metric and using (1.4) it is possible to find the covariant
equation:

− 1

2
gµν

(
1

2
F (φ)R− 1

2
B(φ)(gαβ∂αφ∂βφ)− ξ(φ)�φ(∂σφ∂

σφ)

)
+

1

2
F (φ)Rµν −

1

2
(DνDµF (φ)− F (φ)gµν)

− 1

2
B(φ)∂µφ∂νφ−Dµ(ξ(φ)∂νφ(∂σφ∂

σφ)) +
1

2
gµνDρ(ξ(φ)∂ρφ(∂σφ∂

σφ)) + ξ(φ)∂µφ∂νφ =
Tµν
2
,

(6.2)
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then, assuming a flat FLRW spacetime and perfect fluids of pressureless matter and radiation as
the matter components, it is possible to find the following equations:

3FH2 =
Bφ̇2

2
− 3HF,φφ̇+ (6Hξ − ξ,φφ̇)φ3 + ρm + ρr,

−2FḢ = (F,φ − 2ξφ̇2)φ̈+ [Bφ̇+ F,φφφ̇−HF,φ + φ̇2(6Hξ − 2ξ,φ)]φ̇+ ρm +
4ρr
3
,

(6.3)

were we consider the background value of the scalar field, therefore we have φ = φ(t). They are
respectively the (00) and the (ij) components of (6.2). Under the same assumptions, varying the
action with respect to the scalar field, it is possible to find:

(B − 4φ̇2ξ,φ + 12Hξφ̇)φ̈+ [3HB +
B,φφ̇

2
− ξ,φφφ̇3 + 6ξ(3H2 + Ḣφ̇)]φ̇− 3F,φ(2H2 + Ḣ) = 0, (6.4)

where we have adopted the notation ,φ = ∂
∂φ .

Following [89], we then restrict the three functions F (φ), B(φ) and ξ(φ) in action (6.1) to a
power-law form:

F (φ) = M2
pl

(
φ

Mpl

)3−n

, B(φ) = ω

(
φ

Mpl

)1−n

, ξ(φ) = (λ/µ3)

(
φ

Mpl

)−n
, (6.5)

where n, ω and λ are dimensionless constants while µ is a constant with dimension of a mass. It
is possible to see that, for the theory to be viable, we need to have λ > 0 [89]. The choice (6.5)
is due to the requirement of obtaining deSitter attractor solutions at late time, which is essential
in order to have an alternative theory that can explain the late time accelerated expansion of our
Universe discussed in Chapter 1.
Indeed, defining the dimensionless variable:

x =
φ̇

Hφ
, (6.6)

it is possible to solve (6.3) and (6.4) looking for deSitter solutions in which x and H are constant,
respectively with the value xds and Hds. Studying the algebraic equations at the deSitter fixed
point it is then possible to fix some of the constants of the model: the values of λ and of the mass
scale µ can be found as a function of xds and Hds, thus they can be fixed from the request of
having late time cosmic acceleration. In particular the mass scale µ can be fixed as:

µ = (MplH
2
ds)

1/3. (6.7)

Moreover it is worth to notice that, under the assumption (6.5), the choice n = 2 allows to recover
the original Brans-Dicke action [41] with ω = ωBD. Similarly for n = 3 the F (φ) function is
constant and (6.1) corresponds to a k-essence theory. Clearly, in both cases we have the additional
term ∝ ξ(φ).
In order to find a more familiar form for the constraint equation of (6.3), we can rewrite it in term
of the x variable defined in (6.6):

1 =
Bφ2

6F
x2 − φF,φ

F
x+

2ξφ3

F
H2x3

(
1− φξ,φ

6ξ
x

)
+

ρm
3FH2

+
ρr

3FH2
. (6.8)

It is now convenient to redefine the density parameters in the following way:

Ωr :=
ρr

3FH2
, Ωm :=

ρm
3FH2

(6.9)

and introducing another dimensionless variable:

y = λx2 H
2

H2
ds

, (6.10)

it is now possible to rewrite the constraint equation (6.8) as:

1 = ΩDE + Ωr + Ωm, (6.11)

with:

ΩDE =
ωx2

6
− (3− n)x+ 2xy

(
1 +

nx

6

)
. (6.12)
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6.2 Mapping into EFT language
As anticipated, our purpose is to study the cosmology of the Generalized Brans-Dicke model, in
particular cosmological perturbations, and we have decided to do so implementing the Generalized
Brans-Dicke theory in the cosmological code EFTCAMB, via the Full-Mapping approach. This
requires to find a mapping between the considered action and the EFT action (5.3).
To do so, we will need to rewrite (6.1) in unitary gauge and expand it up to second order in
perturbations. Having done this, finding the mapping between the two actions will simply consist
in the identification of functional form of the EFT functions in the Generalized Brans-Dicke action
by comparing the two Lagrangians.
Looking at (6.1), it is clear that for the first two terms the computations are straightforward. On
the other hand, the term ξ(φ)�φ∂µφ∂µφ will require some more calculations. In order to find a
more convenient form for this last term we have to consider some of the basic quantities in EFT
formalism. In particular, it is useful to compute the trace of the extrinsic curvature Kµν :

K = gµνKµν = hµνKµν = Dµn
µ, (6.13)

where we have exploited the definition of the spatial metric on constant-time hypersurfaces hµν =
gµν +nµnν and of the extrinsic curvature Kµν = hλµDλnν , with nµ the unit vector defined in (5.2)
and we have used the property nµKµν = 0 [87].
According to the EFT approach, we want to expand our quantities around a flat FLRW background.
It is then easy to check that:

K = −3H + δK. (6.14)

We can now rewrite the last term in the action in a more convenient form:

ξ(φ)�φ(∂φ)2 =− ∂µ(ξ(φ)(∂φ)2)∂µφ

=(−(∂φ)2)3/2ξ,φ(φ)∂µφ
∂µφ√
−(∂φ)2

+
2

3
ξ(φ)∂µ(−(∂φ)2)3/2 ∂µφ√

−(∂φ)2

=− ξ,φ(φ)(−(∂φ)2)2 − 2

3
(−(∂φ)2)3/2Dµ

(
ξ(φ)

∂µφ√
−(∂φ)2

)
=− ξ,φ(φ)(−(∂φ)2)2 − 2

3
(−(∂φ)2)3/2ξ,φ(φ)∂µφ

∂µφ√
−(∂φ)2

− 2

3
(−(∂φ)2)3/2ξ(φ)K

=− ξ,φ(φ)

3
(−(∂φ)2)2 − 2

3
ξ(φ)(−(∂φ)2)3/2K,

(6.15)

where we have integrated by parts twice and we have rearranged the term in order to obtain the
expression (6.13) for the trace of the extrinsic curvature.
Exploiting the last expression of (6.15), we can go in unitary gauge:

ξ�φ(∂φ)2 →− ξ,φ
3

(−g00)2φ̇4 − 2

3
[(−g00)3/2 − 1]φ̇3ξK − 2

3
φ̇3ξK

=− ξ,φ
3

(−g00)2φ̇4 − 2

3
[(−g00))3/2 − 1]φ̇3ξK − 2

3
ξ,φφ̇

4
√
−g00 − 2ξφ̇2φ̈

√
−g00

=− ξ,φ
3

(−g00)2φ̇4 + 2Hξφ̇3[(−g00)3/2 − 1]− 2

3
ξφ̇3[(−g00)3/2 − 1]δK

− 2

3
ξ,φφ̇

4
√
−g00 − 2ξφ̇2φ̈

√
−g00,

(6.16)

where in the second line we have integrated by parts the last term and in the third line we have
exploited (6.14).
Thus, writing the full action (6.1) in unitary gauge we get:

S =

∫
d4x
√
−g
(

1

2
FR− B

2
g00φ̇2 − ξ,φ

3
(−g00)2φ̇4 + 2Hξφ̇3[(−g00)3/2 − 1]

− 2

3
ξφ̇3[(−g00)3/2 − 1]δK − 2

3
ξ,φφ̇

4
√
−g00 − 2ξφ̇2φ̈

√
−g00

)
.

(6.17)
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Considering the metric perturbation δg00 = 1 + g00 and expanding up to second order, we can find
the final form:

S =

∫
d4x
√
−g
[

1

2
FR+

B

2
φ̇2 − ξ,φφ̇4 − 2ξφ̇2φ̈−

(
B

2
φ̇2 − ξ,φφ̇4 + 3Hξφ̇3 − ξ(t)φ̇2φ̈

)
δg00

+
1

2

(
− 1

2
ξ,φφ̇

4 +
3

2
Hξφ̇3 +

1

2
ξφ̇2φ̈

)
(δg00)2 − 1

2
(−2ξφ̇3)δg00δK + ...

]
.

(6.18)

Comparing (6.18) and (5.3), it is now trivial to find the following mapping for the Generalized
Brans-Dicke theory:

Ω(φ) =
F (φ)

M2
pl

− 1,

Λ(φ) =
1

2
B(φ)φ̇2 − ξφφ̇4 − 2φ̈φ̇2ξ(φ),

c(φ) =
1

2
B(φ)φ̇2 + φ̇2ξ(φ)(3Hφ̇− φ̈)− ξφφ̇4,

M̄3
1 (φ) = −2ξ(φ)φ̇3,

M4
2 (φ) =

1

2
ξ(φ)φ̇2(3Hφ̇+ φ̈)− 1

2
ξφφ̇4,

(6.19)

and all the other EFT functions are zero.
For a reason that will become clear in the next paragraph, it is useful to rewrite the mapping
relations (6.19) in terms of the dimensionless variable x and y defined in (6.6) and (6.10) and of
the function F :

Ω(t) =
F

M2
pl

− 1,

Λ(t) =

(
ωx2

2
− 2ẋy

H
− 2Ḣxy

H2
− 2x2y + nx2y

)
FH2,

c(t) =

(
ωx2

2
+ 3xy − ẋy

H
− Ḣxy

H2
− x2y + nx2y

)
FH2,

M̄3
1 (t) = −2xyFH,

M4
2 (t) =

(
3xy

2
+
ẋy

2H
+
Ḣxy

2H2
+
x2y

2
+
nx2y

2

)
FH2.

(6.20)

It is then clear that we can recover the time evolution of the EFT functions solving the background
equations of the theory for the x, y, F and H variables.

6.3 Background solution
As anticipated, the next step in our work is to find the time evolution of the x, y, F and H variables.
To do so we will have to solve three dynamical equations while the dynamics of the fourth variable
can be found thanks to the constraint equation (6.8).
Considering the assumption (6.5) for the F function and deriving it with respect to N = ln(a), it
is possible to find the following first-order differential equation for F:

F ′ = (3− n)Fx, (6.21)

where ′ = d
dN and we used that fact that d

dN = 1
H

d
dt .

Similarly, from (6.3) and (6.4) it is possible to find the following first-order differential equations
for x and y [89]:

x′ = −d2

d1
x− 9x

2ωd1
(3− n− 2y)

(
Ωm +

4

3
Ωr

)
+

6(3− n)x

ωd1
− x2 − xH

′

H
, (6.22)
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y′ = −2y

[
d2

d1
+

9

2ωd1
(3− n− 2y)

(
Ωm +

4

3
Ωr

)
− 6(3− n)

ωd1
+ x

]
, (6.23)

with:
d1 =

12

ω
y + x

[
1 +

4n

ω
y +

3

2ω
(3− n− 2y)2

]
, (6.24)

d2 =
18

ω
y + x

[
3 +

1− n
2

x− n(n+ 1)

ω
xy + 3(3− n− 2y)

(
x

2

+
(3− n)(2− n)

2ω
x− 3− n

2ω
+

3

ω
y

(
1 +

n

3
x

))] (6.25)

and

H ′

H
=

1

2
(3− n− 2y)

[
d2

d1
x+

9x

2ωd1
(3− n− 2y)

(
Ωm +

4

3
Ωr

)
− 6(3− n)

ωd1
x

]
− 1

2
x[ωx+ (3− n)(2− n)x− (3− n) + y(6 + 2nx)]− 3

2
Ωm − 2Ωr.

(6.26)

where (6.26) can be substituted in (6.22) and (6.23) to find the evolution of x and y. It is worth
to underline that Ωr and Ωm are the variables defined in (6.9).
Therefore, considering equations (6.21), (6.22) and (6.23), we have a dynamical system of first-order
coupled differential equations that can be solved numerically. Once the solution of the dynamical
system is obtained, it is possible to recover the evolution of the Hubble parameter exploiting the
constraint equation (6.11). Indeed, rearranging the equation and substituting (6.9), we get:

H =

√
ρm + ρr

3F (1− ΩDE)
, (6.27)

that can be easily solved knowing the evolution of x, y and F and using (6.12). Furthermore for
the matter and radiation fluids, we assume the standard continuity equations.
It is worth to notice that, in order to recover General Relativity in the early Universe, we have to
require that the initial value of the field φi is close to Mpl [89]. This constrains the initial value of
F to be Fi 'M2

pl, as we can see from (6.5).
In order to solve numerically the dynamical system of differential equations, we can now write a
Python script with the differential equations, in particular we have decided to use a fourth order
Runge-Kutta method [90].
As we can see from Figure 6.1, the x variable is very small during the radiation and matter epoch
meaning that the initial value of the field remains almost frozen. Only at recent times x grows to
the order of unity and the scalar field starts to evolve allowing the Universe to enter a period of
accelerated expansion.

Figure 6.1: Evolution of the x, y (left panel) and F (right panel) variables as a function of the
scale factor a for n = 2.5 and ω = −10. These solutions are obtained integrating (6.21), (6.22)
and (6.23) from ai = 3.7 · 10−9 to a0 = 1 and assuming xi ∼ 10−18 and yi ∼ 8 · 10−7.
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Figure 6.2: Time evolution of the densities parameters as defined in (6.9) and (6.12) obtained
solving the background equations with n = 2.5 and ω = −10. As before, we have integrated from
ai = 3.7 · 10−9 to a0 = 1 and assumed xi ∼ 10−18 and yi ∼ 8 · 10−7.

6.4 Generalized Brans-Dicke in EFTCAMB

To implement the Generalized Brans-Dicke theory (6.1) in EFTCAMB via the Full-Mapping ap-
proach, we have to write a new module of EFTCAMB that provides to the code all the information
needed to compute the time evolution of the EFT functions.
As before, the module has to solve the background equations of the specific model but, unlike
the python script, it has to be written in the proper way in order to interface with the whole
EFTCAMB code. Indeed, we have to use the Fortran programming language, and to specify some
subroutines that initialise and solve the background of the model by integrating the dynamical
system of differential equations. Moreover, the mapping relations (6.20) are also implemented in
the code to recover the time evolution of the EFT functions.
More in details, in the code we require the system of first-order differential equations to satisfy the
following boundary condition today:

Ω0
DE =

ωx2
0

6
− (3− n)x0 + 2x0y0

(
1 +

nx0

6

)
, (6.28)

that imposes to recover the observed dark energy parameter density today. This can be realized
tuning one of the two initial condition of the x or y variable with a bisection algorithm [90]. This
method consists in iteratively solving the background equation starting from different initial con-
ditions, for example for the x variable. At the end of each iteration the code will then compute the
tolerance between the expected and obtained dark energy density parameter. When the required
tolerance is met, the iterations stop and the code computes the time evolution of the EFT func-
tions. In this way, the code can reproduce the today values of the cosmological density parameters
exactly.
As a consequence, the free parameters of the theory reduce to be only two: the n parameter which
is linked to the exponent of the power-law shape assumed for the free-functions in action (6.1) and
the ω parameter that multiplies the kinetic term, as we can see from (6.5). The two model pa-
rameters together with all the cosmological parameters can be set with a parameter file. Changing
the values of the parameters in this file allows to use the code without having to touch its root
modules.
We validated the results using the Python script that solves the same set of equations and com-
puting quantities of interest with and without employing the mapping relations. Finding good
agreement for all the different checks of both the mapping and the background solver, we were able
to establish that our new module is properly working in EFTCAMB. Consequently, the computa-
tional power of the code can now be exploited to study the Generalized Brans-Dicke model and its
phenomenological peculiarities. For example, as we can see in Figure 6.3, a useful quantity that
we can plot using EFTCAMB is the ratio of the Hubble parameter of the Generalized Brans-Dicke
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theory and the ΛCDM theory.

Figure 6.3: Ratio of Hubble parameter of the Generalized Brans-Dicke model, with n = 2.5 and
ω = −10, and the ΛCDM model computed via EFTCAMB.

6.5 Viable parameter space
The first part in our analysis of the Generalized Brans-Dicke model consists in restricting the viable
region of the model parameter space with the requirement of avoiding unstable behaviour of the
theory.
To do so, we can exploit the viability priors, already implemented in EFTCAMB, which apply to
the EFT functions in order to ensure the stability of the considered theory. In particular, we can
use EFTCAMB to check for both mathematical and physical conditions. In the full set of physical
priors, ghost and gradient instabilities are considered for the full class of Horndeski models, which
includes also the Generalized Brans-Dicke theory. In addition, the code is also provided with a set
of mathematical, or classical, stability conditions that check the stability of the perturbations in
the dark sector. They can be recovered studying the equation (5.15) for the π Stückelberg field .
In particular, they require the π equation to be well-defined and to avoid exponential growth of π
perturbations.

For the Generalized Brans-Dicke model, we checked the stability at recent times between ai = 0.1
and a0, sampling the parameter space for different combinations of the two model parameters.
Indeed, as we saw in the previous section, the effect of the additional scalar field becomes relevant
only recently in the Universe expansion history.
We obtain that we have to restrict the viable parameter space to negative values of the ω parameter
and to n . 3. Then, we can notice that the lower bound on n decreases with the value of ω which
does not have a lower bound. In particular, as we can see from Figure 6.4, for ω > −3, the n
parameter is restricted in the interval 2 . n . 3. This interval quickly shrinks towards n ∼ 3 as ω
goes to zero. Our result is consistent with the conditions obtained via the dynamical analysis in
[89], that studies the viability conditions for the system of dynamical equations at the fixed points
correspondent to the matter and deSitter cosmological epochs.
Finally, we can find a second region where n . 2 and the background equations fail in reproducing
a viable expansion history. For example, we observe that for combinations of parameters in this
area, the dark energy density parameter always tends to negative values making the background
solutions unphysical.
The results obtained in this section will be used to set theoretical priors for the MCMC likelihood
analysis of the next section.
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Figure 6.4: Viable parameter space for the ω and n parameters of the Generalized Brans-Dicke
action, obtained imposing physical and mathematical theoretical priors.

6.6 Cosmological features

Once we have studied the effects of the theoretical priors on the parameter space, we can start
investigating the phenomenology of cosmological perturbations assuming the Generalized Brans-
Dicke model, looking at power spectra of interest that can be easily computed with EFTCAMB.
For example, in Figure 6.5 and in Figure 6.6 we plot the temperature anisotropies power spectrum,
the matter power spectrum and the CMB lensing power spectrum for the same choice of parame-
ters.
It is possible to notice that the Generalized Brans-Dicke model entails two kind of modifications
to the CMB temperature anisotropies power spectrum: the shift in positions of the acoustic peaks
and a modification of the Integrated Sachs-Wolfe (ISW) effect on large scales.
In particular, for lower values of n, the shape at low multipoles is substantially different from
that predicted by the ΛCDM model. Indeed, taking n = 2, which is close to the lower bound
of the viable range for the n parameter, the spectrum displays a bump on large scales, that in-
creases for bigger values of ω. On the contrary, considering values of n close to the upper bound
of the viable range, the anomaly is cured and the shape of ISW plateau tracks better the trend
of the ΛCDM model. This effect can be linked to a modification in the late time evolution of
the gravitational potentials, whose time derivatives directly impact the ISW tail. Moreover, we
already know that the internal consistency of the ΛCDM model shows a mild tension between
Planck CMB temperature anisotropies data and the ΛCDM fit at low multipoles, as noticed in
[3]. In particular, a conspicuous dip, not easily explainable in terms of instrumental systematic
or foreground, is observed for 20 . l . 30. Noticing that the Generalized Brans-Dicke model can
introduce modifications at large scale, we expect the data to prefer values of the model parameters
that produce a decrease in the amplitude at low multipoles. This is possible for values of n close
to 3.
On the other hand, the shift in the positions of the acoustic peaks might be understood in terms of
the modifications of the background expansion history, which can affect the distance to the surface
of last scattering. As we can see in Figure 6.3, while at early times the Hubble parameter of the
Generalized Brans-Dicke theory mimics the time evolution of the ΛCDM , at late time this is no
more true and H is smaller than HΛCDM featuring the late time dips in the ratio H/HΛCDM . A
smaller Hubble parameter can indeed affect, in particular increase, the angular diameter distance
to the surface of last scattering, producing the observed shift in the peaks positions.
Furthermore, considering the matter and the CMB lensing power spectra we can see that the
Generalized Brans-Dicke theory predicts an enhancement in both spectra with respect to ΛCDM .
Therefore, the result for the matter power spectrum indicates that the modification of gravity
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introduced by the Generalized Brans-Dicke model increases the formation of linear structures,
conclusion in agreement with other results in the literature regarding cubic Galileon theories [91]-
[92]. Moreover, especially for the lensing power spectrum we clearly observe that the enhancement
increases for smaller value of n. This, together with the feature already observed on the ISW effect,
are first hints that stringent constraints on the parameter space will come from the analysis with
cosmological data.

Figure 6.5: From top to bottom: temperature anisotropies and matter power spectra for different
choices of the model parameters within the viable parameter space, obtained from the theoretical
priors. The coloured lines are the Generalized Brans-Dicke theoretical predictions, the black dotted
line is the ΛCDM expectation.
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Figure 6.6: CMB lensing (right) power spectrum for different choices of the model parameters
within the viable parameter space, obtained from the theoretical priors. The coloured lines are the
Generalized Brans-Dicke theoretical predictions, the black dotted line is the ΛCDM expectation.

6.7 MCMC likelihood analysis

We now want to constraint the model parameters using recent cosmological dataset. Indeed, until
now our approach consisted in computing the expected distribution of data, assuming the param-
eters as known. Oppositely, we can change approach and use the data for parameter estimations,
that means to find the posterior probability distribution of the parameters given the data.
To do so, we can employ the Monte Carlo Markov Chain (MCMC) technique based on a Bayesian
analysis. Identifying with θ the set of parameters that we want to estimate and x the cosmological
data, the Bayes’s theorem states [93]:

p(θ|x) =
p(x|θ)p(θ)
p(x)

, (6.29)

where p(θ|x) is the posterior probability distribution of the set of parameters, p(x|θ) is the likeli-
hood, that is the probability distribution of data given the parameters, and p(θ) is the parameters
prior, that can be known from the theory or from previous experiment, in our case we have al-
ready seen some theoretical priors that constrain the model parameters. Finally, p(x) is called the
evidence and, for our purposes, it is just a normalisation factor.
Clearly, computing these quantities is a complicated task since we have to take into account a
multi-dimensional parameter space. To make this feasible, a useful approach is to sample the
parameter space with MCMC approach. With MCMC we can generate a set of points in the pa-
rameter space whose distribution function allows to recover the posterior probability. The MCMC
moves in the parameter space following a Markov process, this means that each step depends only
on the previous one, every new point is accepted or rejected in the chain with a probability that
depends on the ratio between the likelihood at the previous and at new point. One of the most
popular algorithm is the Metropolis-Hastings, which calculates the probability of transition from
an old to a new point randomly generated from a proposal distribution of steps.
Given that the Markov Chain starts from a random point, there will be an early part of the chain
in which a dependence on the starting point is still preserved, this is called burn-in phase and it
has to be ignored in the analysis.
Finally, in order to check the convergence of the theory it is crucial to use a proper convergence
test; in the CosmoMC software, on which the following work is based on, the Gelman-Rubin con-
vergence criterion is implemented. The basic idea under this criterion is the fact that, running
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different chains based on the same data, we expect that the mean of each chain should agree within
some tolerance with the mean of the combined chains as a single dataset.
A useful quantity that can be extrapolated is the marginal distribution of a single parameter and
it is obtained by integrating over all the other parameters with a process called marginalisation. A
result often used is the marginalisation of the parameters in pairs since it allows to explore more
complex results.
As anticipated, the MCMC technique is implemented in the CosmoMC software [94]-[95]. In par-
ticular, a modified version of the CosmoMC software has been created and it can interface with
the EFTCAMB code. This allows to explore and further constrain the parameter space of DE/MG
models implemented in EFTCAMB, performing a fit to cosmological data.

6.7.1 MCMC analysis of Generalized Brans-Dicke model

Datasets

For the likelihood analysis we considered mainly two datasetes: the JLA (’Joint Light-curve Anal-
ysis’) dataset [96], which allows to probe the background, and Planck 2018 data for CMB, as the
perturbations observable.
The JLA contains data of Type Ia SNe from SDSS-II (Sloan Digital Sky Suervey) and SNLS (Su-
pernova Legacy Survey) collaborations, gathering a total of 740 Type Ia SNe from low redshift
(z < 1) to high redshift (z ∼ 1). For the Planck data instead, we used the TEB Plik likelihood
which contains the temperature and polarization data at all multipoles [3].
For both the datasets we run simultaneously a total of 8 chains and we constrain the ω and n
parameter with the theoretical priors discussed in the previous paragraph.

Results

Figure 6.7: Two-dimensional observational bounds on the combinations of (ω, n) model parameters.
The colored regions correspond to the parameter space constrained by the Planck (blue) and Su-
pernovae (SN) (green) datasets at 68% (inside) and 95% (outside) CL limits. The one-dimensional
plots show the marginalized parameter constraints.

As we can see in Figure 6.7, the (ω, n) parameter space is strongly constrained by the data. In
particular, both the Planck and SNe data find as best fit for the n parameter values very close to 3,
which represents the upper bound of the allowed region for this parameter. As already mentioned,
thanks to the stability analysis, we know that theories with values of n greater than this upper
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SN best fit SN Planck best fit Planck

ω -0.3 −5.7± 2.6 -0.45 −3.02± 4.54
n 3.0 2.7± 0.2 2.995 2.989± 0.008

Table 6.1: Best fit values and marginalized means with standard deviation for the model parameters
ω and n from Supernovae (SN) dataset and Planck dataset.

bound are considered not viable because they are plagued by some instabilities. This result is
clearly consistent with what we have observed from the analysis of the power spectra. In fact, for
smaller values of n the deviations at low multipoles in the CMB temperature anisotropies power
spectrum increase, making these theories excluded by the data.
In Figure 6.8 we also plot the posterior distribution of the base ΛCDM parameters as found
fitting the Planck data with the Generalized Brans-Dicke theory and ΛCDM model. We have
h = H0/(100 km/s/Mpc), θMC is an approximation of the acoustic scale angle θs, τ is the optical
depth at reionization, AS is the initial super-horizon amplitude of curvature perturbations (at the
pivot scale k0 = 0.05Mpc−1) and ns the scalar spectral index.
It is worth to notice that the Generalized Brans-Dicke theory has (ω, n) as two more model pa-
rameters compared to ΛCDM ; this allows to have more freedom to fit the data.
We can notice that fitting the Planck temperature and polarization data with the Generalized
Brans-Dicke model we obtain slightly different, but still compatible, estimations for the base cos-
mological parameters with respect to the ΛCDM case, as we can see in Table 6.2, where all
parameters appear to be shifted between the two models. In particular, we can observe that the
Generalized Brans-Dicke model prefers smaller values for Ωch

2 parameter which accounts for most
of the matter in the Universe, thus leading to a decrease in the Ωmh

2 derived parameter. Further-
more, we can also observe some degeneracies between pairs of parameters in Figure 6.8 both for
the Generalized Brans-Dicke model and the ΛCDM case. In particular, the overall nature of the
correlations seems to be similar between the two models. For example, a large degeneracy between
the τ and AS parameters is present in both models, due to the fact that the observed amplitude
of the acoustic peaks, measured with high precision by Planck, is sensitive to a combination of
the two parameters. The degeneracy is expected to be significantly broken by CMB lensing data.
Moreover, mild degeneracies between the baryon and cold dark matter density parameters and the
scalar spectral index as well as between the scalar spectral index and the optical depth can also be
observed. This is due to the fact that these parameters affect the scale-dependence of the CMB
spectra in different ways.

GBD - Planck ΛCDM - Planck

Ωbh
2 0.02264± 0.00025 (0.02238) 0.02226± 0.00023 (0.02225)

Ωch
2 0.1163± 0.0023 (0.1180) 0.1195± 0.0022 (0.1203)

100θMC 1.04144± 0.00059 (1.04082) 1.04094± 0.00049 (1.04077)
τ 0.063± 0.020 (0.049) 0.077± 0.019 (0.069)

ln(1010AS) 3.053± 0.039 (3.026) 3.087± 0.038 (3.071)
ns 0.975± 0.007 (0.970) 0.9663± 0.0064 (0.9630)

Table 6.2: Marginalized mean and standard deviation for Generalized Brans-Dicke and ΛCDM
model with Planck dataset. In parenthesis, the maximum likelihood values for these parameters
are also displayed.
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Figure 6.8: Two-dimensional observational bounds of cosmological parameters. The Planck dataset
is used and the colored regions correspond to the parameter space constrained for the Generalized
Brans-Dicke model (red) and ΛCDM model (blue) with 68% (inside) and 95% (outside) CL limits.
The upper plots show the marginalized parameter constraints.
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Figure 6.9: Top pannel: temperature anisotropies power spectrum for the Generalized Brans-Dicke
best fit to Planck TEB dataset (green) and values of the ω and n parameters at 1σ (blue) and 2σ
(purple). Bottom panels: the temperature-polarization (TE) cross-spectrum (on the left), the E
mode of polarization (EE) power spectrum (on the right).

Figure 6.10: Ratio of the Hubble parameter for the Generalized Brans-Dicke best fit (green) and
the ΛCDM . The other curves correspond to values of the ω and n parameters at 1σ (blue) and
2σ (purple).
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In Figure 6.9, we plot the CMB temperature anisotropies power spectrum for the Generalized
Brans-Dicke best fit. We notice that for the best fit values of the cosmological and model param-
eters, the shift in the position of the peaks is not present anymore and we produce a decrease in
the amplitude at low multipoles which is preferred by the data; indeed, at these scales the ΛCDM
model displays some differences from the data and the error bars are larger due to cosmic variance.
For completeness, we report also the temperature-polarization and the E mode polarization CMB
power spectra.
Moreover, in Figure 6.10, we plot the ratio of the Hubble parameter for the Generalized Brans-
Dicke best fit and ΛCDM ; as we can observe, choosing the best fit cosmological parameters for the
Generalized Brans-Dicke theory, we obtain a larger expansion rate today. This can be explained
by the fit of the CMB peak positions: larger values of the Hubble parameter today can compensate
the intrinsically smaller values at late time in order to preserve the angular diameter distance to
the surface of last scattering and in turns the positions of the peaks.

Figure 6.11: Two-dimensional observational bounds on the combinations of H0 and S8 derived
parameters. The Planck dataset is used and the colored regions correspond to the parameter
space constrained for the Generalized Brans-Dicke model (red) and ΛCDM model (blue) with
68% (inside) and 95% (outside) CL limits. The upper plots show the marginalized parameter
constraints.

As a final part of this work, we check the effect of the Generalized Brans-Dicke theory (6.1) on
the cosmological tensions. Indeed, as we have mentioned in Chapter 3, these internal inconsisten-
cies of the ΛCDM model are often used to motivate the quest of DE/MG models.

It is therefore natural to verify the effect of the Generalized Brans-Dicke model in the estima-
tion of the H0 and S8 derived parameters. As we can see from Figure 6.11, the observational
bounds obtained from the Planck TEB dataset for the H0 and S8 parameters show interesting
results. The data constraint H0 to higher values and simultaneously S8 to smaller values with
respect to the ΛCDM case. This means that the values of these derived parameters move in
the right direction in order to alleviate both tensions. In particular, assuming the Generalized
Brans-Dicke model, from the Planck dataset we obtain the following marginalized mean values:{

H0 = (74.75± 1.98) km/s/Mpc

S8 = 0.818± 0.026
(6.30)

and the matter density parameter Ωm = 0.249± 0.016 which is a smaller value with respect to the
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ΛCDM case.
This result makes the Generalized Brans-Dicke model very interesting in view of understanding
the cosmological tensions. At this point, it will be crucial to understand which is the physics of
this model that produces these values for the H0 and S8 parameters: a better understanding of
the effect might shed light on possible new physics hidden behind these cosmological tensions.
Moreover, better constraints on these two parameters, as well as on all the other cosmological
and model parameters, can come from fitting different dataset with the Generalized Brans-Dicke
theory, such as data from BAO or CMB lensing. In particular, given the effect of the model on
lensing observable, we expect interesting results from the CMB lensing dataset. We might also
expect that other datasets help in breaking degeneracies between pairs of parameters.
This second and deeper part of the analisys of the model goes beyond the scope of this Thesis and
it is left for future work.



Conclusions

In this Thesis, we have studied one of the most remarkable unresolved puzzle in modern Cosmology,
that is the late time accelerated expansion of our Universe, due to a still unknown form of dark
energy. In particular, adopting a phenomenological point of view, we have learned about how to
create a bridge between theoretical models and cosmological data in order to shed light on possible
intriguing scenarios that go beyond ΛCDM , the standard model of Cosmology.

We have started from a general introduction about the ΛCDM model, which nowadays successfully
provides an accurate fit to the most recent cosmological data, such as the latest Planck 2018 release
[3]. Surprisingly, the spectacular agreement is obtained fixing only six cosmological parameters.
Within the ΛCDM model the source of the expansion resides in a cosmological constant which is
usually interpreted by modern field theory as the vacuum energy density.
Moreover, we have seen some observational evidences which reveal the fact that our Universe is
mostly filled with dark energy. Along the way, we have explored the characteristics of the cos-
mological probes which allow to open an observational window on our Universe. Looking at the
Universe with different probes we can test our understanding of both the background expansion
history and the evolution of cosmological perturbations. This is crucial in order to check the cosmic
concordance of observables of interest and identify internal inconsistencies of the theoretical model,
such as the cosmological tensions. These unresolved issues, together with the "Cosmological con-
stant problem" and the "Coincidence problem" motivate the quest for cosmological models that
go beyond the ΛCDM model. The theoretical landscape that explores alternatives to the ΛCDM
model is extremely rich and the already available cosmological data have the key role to survey
and verify all dark energy and modified gravity models. Furthermore, the upcoming generation of
cosmological missions, such as the EUCLID [99] and DESI [100] experiments, will allow us to test
gravity on cosmological scales with unprecedented precision.

On the other hand, when exploring the field of dark energy and modified gravity, some essential
guidance have to be taken into account. For example, Lovelock’s theorem assures the robustness
of General Relativity and puts stringent bounds on the way in which we can try to modify it on
cosmological scales. Solar system and astrophysical experiments of General Relativity require to
provide modified gravity theories with screening mechanisms that hide possible new physics from
local observations and allow to manifest it only on cosmic regimes. As an example to understand
better this matter, we have focused on the Chameleon mechanism which usually applies to stan-
dard Brans-Dicke theories and we have seen how it is able to provide a method to hide the effects
of an additional scalar field introduced to modify the usual General Relativity action.
Furthermore, important theoretical priors on alternative cosmological theories are set by the re-
quirement of satisfying stability criteria. We have indeed presented the Ostrogradsky theorem as
well as described some of the most relevant instabilities that can plague a theory, such as ghost,
gradient and tachyonic instabilities.
Finally, we have briefly outlined the aftermath of the recent gravitational waves observations on
dark energy and modified gravity models. The measurement of the speed of propagation of tensor
perturbations reveals itself as a crucial constraint that a viable cosmological model needs to satisfy.

In the second part of this Thesis, we have presented the Effective Field Theory (EFT) approach
to dark energy as a suitable formalism to compare theory and observations, keeping in mind
the needed theoretical priors. Its unified language is an excellent tool to prepare the basis for a
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confrontation of scalar-tensor theories with data. We have also seen its implementation in the
cosmological code EFTCAMB [83].
The application of the EFT formalism and of the EFTCAMB code has allowed to realize the
original part of this Thesis, which is about the study of a specific Generalized Brans-Dicke theory.
We have implemented the Generalized Brans-Dicke theory in EFTCAMB and we have checked
the effect of this cosmological model on the background quantities and on the evolution of cos-
mological perturbations. This has implied the necessity of mapping the Generalized Brans-Dicke
theory in the EFT language and of computing the background solution solving the equations of
motion of the theory. Furthermore, a deeper knowledge of computational methods in Cosmology
and of Fortran and Python programming languages have been necessary to successfully implement
the Generalized Brans-Dicke theory in the EFTCAMB code. The stability criteria have been also
applied to constrain the viable parameter space of the Generalized Brans-Dicke theory.

As a result of this work, we have presented power spectra of interest such as the CMB tem-
perature anisotropies, the matter and the CMB lensing power spectra and we have studied them
as functions of the two free parameters of the model. We have clearly noticed that the effect of the
additional scalar degree of freedom introduced by the Generalized Brans-Dicke theory on the CMB
temperature anisotropies power spectrum is mainly two-fold. Firstly, it introduces modifications
at low multipoles, linked to the Integrated Sachs-Wolfe effect which are due to a different evolution
of the gravitational potentials with respect to the ΛCDM case. As we have seen, looking at these
modifications at low multipoles we were able to forecast stringent constraints on the model param-
eter space from data that probe the cosmological perturbations. Secondly, we have noticed a shift
in the position of the acoustic peaks which we have linked to the different background expansion
history with respect to the ΛCDM one. Moreover, we have observed an enhancement in both the
matter and CMB lensing power spectra. This results are consistent with the ones present in the
literature for Cubic Galileons theory, of which the Generalized Brans-Dicke theory can be seen as
a subcase.
Finally, we have concluded with a parameter estimation analysis, carried with a Monte Carlo
Markov Chain approach and employing the CosmoMC software. Considering Supernovae and
CMB TEB Planck dataset, we have been able to further constrain the parameter space and to
check the conclusions obtained studying the power spectra. Indeed, we have seen that both the
dataset constrain the n model parameter to be very close to the value of 3, which corresponds
to the upper bound established by theoretical priors. It is worth to notice that in this limit the
Generalized Brans-Dicke theory loses the non-minimal coupling between the additional scalar field
and the metric and it becomes a k-essence theory with a higher derivative term for the scalar field.
Then, exploiting the Planck dataset best fit, we have plotted again the power spectra with the
best fit cosmological parameters. As a result, we have found that the modifications of the CMB
temperature power spectrum reduce mainly to the ones at low multipoles where differences be-
tween the ΛCDM best fit and the data are also known. We have also checked that the background
expansion history changes consistently.
We have reported the final and unexpected result of the MCMC likelihood analysis with the Planck
TEB dataset, which constrains the H0 and S8 parameters respectively to higher and smaller values
with respect to the ΛCDM case. As we have mentioned, this makes the Generalized Brans-Dicke
theory interesting in view of the cosmological tensions since both parameters move in the right
direction to alleviate them.
A better understanding of the physics of the Generalized Brans-Dicke model that produces this
result, as well as a complementary analysis with other cosmological probes, such as BAO and CMB
lensing data, is expected to render very interesting results and it is left for future work.
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Appendix A

First-order gravitational
perturbations

For completeness, we report here the covariant expressions of the scalar perturbed quantities of
the left hand side of Einstein equation.
Starting from the Christoffel symbols:

Γαµν =
1

2
gαρ(∂µgρν + ∂νgρµ − ∂ρgµν). (A.1)

Computing them in a FLRW background metric in conformal time, we find the following non null
unperturbed components:

Γ0
00 =

a′

a
, Γi0j =

a′

a
δij , Γ0

ij =
a′

a
δij . (A.2)

Then the first-order scalar perturbations of the Christoffel symbols are:

δΓ0
00 = Ψ′,

δΓ0
0i = ∂iΨ +

a′

a
∂iω
‖,

δΓi00 =
a′

a
∂iω‖ + ∂i(ω‖)′ + ∂iΨ,

δΓ0
ij = −2

a′

a
Ψδij − ∂i∂jω‖ − 2

a′

a
Φδij − Φ′δij −

a′

a
Dijχ

‖ +
1

2
Dij(χ

‖)′,

δΓi0j = −Φδij +
1

2
Di
j(χ
‖)′,

δΓijk = −∂jΦδik − ∂kΦδij + ∂iΦδjk −
a′

a
∂iω‖δjk +

1

2
∂jD

i
kχ
‖ +

1

2
∂kD

i
jχ
‖ − 1

2
∂iDjkχ

‖.

(A.3)

The Ricci tensor is defined as:

Rµν = ∂αΓαµν − ∂µΓανα + ΓασαΓσµν − ΓασνΓσµα (A.4)

and in the FLRW background it has the following non null components:

R00 = −3
a′′

a
+ 3

(
a′

a

)2

, Rij =

[
a′′

a
+

(
a′

a

)2]
δij (A.5)
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and the first-order perturbed components of the Ricci tensor are:

δR00 =
a′

a
∂i∂

iω‖ + ∂i∂
i(ω‖)′ + ∂i∂

iΨ + 3Φ′′ + 3
a′

a
Φ′ + 3

a′

a
Ψ′,

δR0i =
a′′

a
∂iω
‖ +

(
a′

a

)2

∂iω
‖ + 2∂iΦ

′ + 2
a′

a
∂iΨ +

1

2
∂kD

k
i (χ‖)′,

δRij =

[
− a′

a
Ψ′ − 5

a′

a
Φ′ − 2

a′′

a
Ψ− 2

(
a′

a

)2

Ψ− 2
a′′

a
Φ− 2

(
a′

a

)2

Φ− Φ′′ + ∂k∂
kΦ

− a′

a
∂k∂

kω‖
]
δij − ∂i∂j(ω‖)′ +

a′

a
Dij(χ

‖)′ +
a′′

a
Dijχ

‖ +

(
a′

a

)2

Dijχ
‖ +

1

2
Dij(χ

‖)′′

+ ∂i∂jΦ− ∂i∂jΨ− 2
a′

a
∂i∂jω

‖ +
1

2
∂k∂iD

k
j χ
‖ +

1

2
∂k∂jD

k
i χ
‖ − 1

2
∂k∂

kDijχ
‖.

(A.6)

Then, the Ricci scalar which is defined as:

R = Rµνg
µν . (A.7)

In a FLRW background:

R =
6

a2

a′′

a
(A.8)

and its first-order perturbation:

δR =
1

a2

(
− 6

a′

a
∂i∂

iω‖ − 2∂i∂
i(ω‖)′ − 2∂i∂

iΨ− 6Φ′′ − 6
a′

a
Ψ′ − 18

a′

a

)
. (A.9)

Finally, putting all together we can find the Einstein tensor:

Gµν = Rµν −
1

2
gµνR, (A.10)

that in FLRW has the following components:

G0
0 = − 3

a2

(
a′

a

)2

, Gij = − 1

a2

[
2
a′′

a
−
(
a′

a

)2]
δij (A.11)

and the first-order perturbations:
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(A.12)



Appendix B

Conformal transformation

Considering two manifolds M and M̃, respectively with metrics gµν and g̃µν and covered by the
same coordinate system xµ, they are said to be conformal to each other if they are related by the
following transformation [36]:

g̃µν(x) = Ω2(x)gµν(x) (B.1)

i.e. if they are related by a conformal transformation. Ω is called conformal function and it
needs to be a twice-differentiable function of the coordinates xµ and to assume values in the range
0 < Ω <∞.
Unlike a change of coordinates, which relabels the name of the points, a conformal transformation
changes the physics of the conformally related manifolds M and M̃. Indeed, it consists in the
shrink or stretch of the distance between two points described by the same coordinates system on
the two manifolds, while the angles between vectors are preserved. This means that, the casual
structure of the two manifolds is equivalent, since the angles between null vectors, which defines
light cones, remain unchanged. Indeed, conformal transformations are localized transformations
that, in the case Ω = const, become the so called scale transformations.
It is then possible to see that the following relations hold:

g̃µν(x) = Ω−2(x)gµν(x), (B.2)√
−g̃ = Ω4√−g, (B.3)

where g = det(gµν).
Then, applying the transformation to the Christoffel symbols, it is possible to find [37]:

Γ̃λµν = Γλµν +
1

Ω
(gλµΩ,ν + gλνΩ,µ − gµνgλκΩ,κ),

Γλµν = Γ̃λµν −
1

Ω
(g̃λµΩ,ν + g̃λνΩ,µ − g̃µν g̃λκΩ,κ).

(B.4)

Similarly, the Ricci tensors in the two conformal metrics are:

R̃µν = Rµν + Ω−2[4Ω,µΩ,ν − Ω,σΩ,σgµν ]− Ω−1[2Ω;µν +�Ωgµν ],

Rµν = R̃µν − 3Ω−2Ω,ρΩ
,ρg̃µν + Ω−1[2Ω;µν + g̃µν�̃Ω]

(B.5)

and the Ricci scalars:
R̃ = Ω−2

[
R− 6

�Ω

Ω

]
,

R = Ω2

[
R̃+ 6

�̃Ω

Ω
− 12g̃µν

Ω,µΩ,ν
Ω

]
,

(B.6)

where �̃ is the d’Alembertian operator taken with respect to the metric g̃µν , differently from � of
the conformally rescaled metric gµν .
The conformal transfomation preserves the Weyl curvature tensor, which in D dimensions is :

Cµνρσ = Rµνρσ +
2

D − 2
(gµ[σRρ]ν + gν[ρRσ]µ) +

2

(D − 1)(D − 2)
Rgµ[ρgσ]ν , (B.7)
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indeed, under a conformal transformation (B.1):

C̃µνρσ = Cµνρσ. (B.8)



Appendix C

More on f(R). Jordan and Einstein
frame

f(R) theories are also a sub-class of Brans-Dicke theories; to see this, we start from the action
(3.49) and we reabsorb the Ricci scalar inside the definition of f(R):

S =

∫
d4x
√
−g

M2
pl

2
f(R) +

∫
d4x
√
−gLM (gµν , ψM ), (C.1)

introducing an auxiliary field χ [38], we can rewrite this action in a dynamically equivalent form
[39]:

S =

∫
d4x
√
−g

M2
pl

2
[f(χ) + fχ(χ)(R− χ)] + SM (gµν , ψM ), (C.2)

where fχ(χ) = ∂f
∂χ . The equivalence between the two actions (C.1) and (C.2) is easy to see: varying

(C.2) with respect to the auxiliary field, we obtain the equation of motion of the field:

fχχ(χ−R) = 0, (C.3)

if fχχ 6= 0, the field equation gives χ = R, that recasts the original action. Then, following [38],
we can define another intermediate field as:

ϕ = fχ(χ) (C.4)

and rewriting (C.2), in terms of the new field ϕ:

S =

∫
d4x
√
−g

M2
pl

2
[ϕR− ϕχ(ϕ) + f(χ(ϕ))] + SM (gµν , ψM )

=

∫
d4x
√
−g
[
M2
pl

2
ϕR− U(ϕ)

]
+ SM (gµν , ψM ),

(C.5)

with:
U(ϕ) =

ϕχ(ϕ)− f(χ(ϕ))

2M−2
pl

. (C.6)

Thus, confronting (C.5) with the Brans-Dicke action (3.46) (and setting M2
pl = 1), it is clear that

f(R) theories are a sub-class of Brans-Dicke with ωBD = 0, that is without the kinetic term.

From Jordan to Einstein frame

Finally, it is worth to see that there is an equivalent frame in which f(R) theories and other MG
theories can be described, in this context, the additional scalar degree of freedom manifests even
more explicitly. Indeed, the action (3.49) is written in the so called Jordan frame, where the
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gravitational part of the action is modified. As we will see, there exists another possibility, called
Einstein frame, in which the gravitational part of the action remains the standard Einstein-Hilbert
action while a non-minimal coupling between the matter fields and gravity is introduced in the
matter action.
To go from Jordan to Einstein frame and viceversa, a conformal transformation of the metric is
needed. A conformal transformation consists in a local re-scale of units that leaves the angles
unchanged (see Appendix B). In particular, here we choose the following transformation [38]:

g̃µν = Ω2(x)gµν = e2ω(x)gµν , (C.7)

from (B.5), we find for the Ricci tensor:

R = Ω2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω). (C.8)

Starting again from (C.5), we apply the conformal transformation (C.7). Exploiting (B.3), the
result is:

S =

∫
d4x
√
−g̃
[
M2
pl

2
ϕΩ−2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω)− Ω−4U(ϕ)

]
+ SM (Ω−2g̃µν , ψM ). (C.9)

This is the result of a general conformal transformation. To go to the Einstein frame, we want to
recover the Einstein-Hilbert part of the action. As a consequence, a suitable choice is to consider:

Ω2 = ϕ, (C.10)

that allows to recover a linear term in R̃. Furthermore, we introduce a new field φ [38]:

φ

Mpl
=

√
3

2
ln(ϕ). (C.11)

Putting together (C.10) and (C.11), we can find:

ω =
1√
6

φ

Mpl
. (C.12)

Plugging all these choices in (C.9), we finally find the f(R) action in the Einstein frame:

S =

∫
d4x
√
−g̃

M2
pl

2
R̃+

∫
d4x
√
−g̃
[
− 1

2
g̃µν∂µφ∂νφ− V (φ)

]
+ SM

(
e
−
√

2
3

φ
Mpl g̃µν , ψM

)
, (C.13)

with:
V (φ) = e

−
√

8
3

φ
Mpl U(φ), (C.14)

where the term ∝ �̃ω does not contribute since it can easily rewritten as a four-divergence term,
exploiting the relation �ω = 1√

−g (
√
−ggµνω,ν),µ.

Thus, in the Einstein frame, the additional degree of freedom manifests explicitly as a canonical
scalar field with the density Lagrangian:

Lφ = −1

2
g̃µν∂µφ∂νφ− V (φ), (C.15)

where the potential under which φ evolves is determined by the original form of f(R). Clearly,
this additional degree of freedom can play the role of dynamical dark energy, and so it exemplifies
the equivalence between DE/MG models.
It is also important to underline that, through the matter action, the scalar field is coupled with
matter and the particles fall along geodesics of the conformally related metric gµν .



Appendix D

Chameleon mechanism: solution for
a compact object

To better understand the chameleon screening mechanism, it is useful to derive an approximate
solution for φ for a compact object. In particular, for simplicity, we will assume to have a spherically
symmetric body of radius RC and to be in the static case. Then the mass of the object is MC =
4π
3 ρCR

3
C . Following [46], we approximate the geometry to Minkowsky space-time gµν ' ηµν , thus

ignoring the back-reaction of the metric. Under this assumption, we can rewrite (4.8) as:

d2φ

dr2
+

2

r

dφ

dr
= V,φ + ρ(r)

β

Mpl
e
βφ
Mpl , (D.1)

that can be found computing the Christoffel symbols for Minkowsky space-time in spherical co-
ordinates: ds2 = −dt2 + dr2 + r2dΩ2. In particular, Γθθr = Γϕϕr = 1

r . The energy density ρ(r) is
assumed to have the following profile:

ρ =

{
ρC for r < RC

ρ∞ for r > RC
(D.2)

where ρ∞ is the homogeneous energy density of the background that surrounds the spherical body.
Indeed, considering for example solar system bodies, the surrounding background is not not empty
but rather filled by baryonic gas and dark matter with an approximately homogeneous energy
density of ρ∞ ∼ 10−24g/cm3.
Then, we denote with φC the value of the field that minimizes the effective potential for r < RC
and with mC the mass of the fluctuations associated with this minimum. Similarly, for r > RC
the minimum is for φ∞ with mass m∞.
Equation (D.1) is a second-order differential equation, thus to solve we need two boundary condi-
tions:

dφ

dr
= 0 at r = 0,

φ→ φ∞ at r →∞.
(D.3)

It is now possible to find the solution for (D.1). For sufficiently large objects, for r < RC , the field
should be indeed equal to φC ; this is true everywhere inside the object except for a shell ∆RC
below the surface. In particular, it is necessary that the shell is thin with respect to the radius of
the object.

Thus, considering to have a thin-shell, that is ∆RC
RC
� 1, we have that the field is nearly frozen

inside the object, till a critical radius Rroll when the field starts to roll. Indeed the friction term
∝ 1/r dominates for small radius, and the field starts to roll only when the friction becomes small
enough. Thus we have:

φ ' φC for 0 < r < Rroll. (D.4)

As soon as the value of the field displaces from the minimum φC , then we have that |V,φ| �
ρ(r) β

Mpl
e
βφ
Mpl . Furthermore, as we have already said, φ�Mpl in the range that we are considering;
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Figure D.1: Schematic representation of the spherical object of radius RC and of the thin shell
∆RC (shaded region). Taken from [46].

thus (D.1) becomes:
d2φ

dr2
+

2

r

dφ

dr
' ρC

β

Mpl
, (D.5)

that has the following solution [46]:

φ(r) =
βρC
3Mpl

(
r2

2
+
R2
roll

r

)
− βρCR

2
roll

2Mpl
+ φC for Rroll < r < RC . (D.6)

The separation of the solutions for the two regimes inside the object is valid thanks to the thin-shell
assumption.
At r = RC then ρ goes discontinuously from ρC to ρ∞. Therefore, the speed of the field is initially
large with respect to the curvature of the potential and (D.1) becomes:

d2φ

dr2
+

2

r

dφ

dr
' 0. (D.7)

By matching the solution at r = RC , we have [46]:

φ(r) = −
(

β

4πMpl

)(
3∆RC
RC

)
MCe

−m∞(r−RC)

r
+ φ∞ for r > RC , (D.8)

with:
∆RC
RC

=
φ∞ − φC
6βMplΦC

� 1, (D.9)

with ΦC = MC/8πM
2
plRC is the Newtonian potential at the surface of the object. Thus in the thin

shell case, the difference between the value of minimum of the field inside and outside the source
is much smaller than the Newtonian potential of the source. Clearly, the thin shell assumption is
satisfied better by massive objects. In this farme, the chameleon mechanism predicts a successful
screening of the "fifth" force from local tests of gravity.

On the other hand, the thick shell case is realized when ∆RC
RC

> 1. In this case, it is not possible
to separate two different regimes of solution inside the object because there is no clear separation
between regions for r < RC . Thus a solution valid for the entire range 0 < r < RC is needed.
In such solution there is no friction dominated regime and the field starts to roll as soon as it is
released from r = 0; in this case the screening mechanism is not successful and the source remains
unscreened.

Thus summarizing, if the source body has a thin shell, then the Chameleon field will settle to
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Figure D.2: On the left: Chameleon field solution with thin shell. On the right: Chameleon field
with thick shell. Taken from [45].

a minimum over most of the source. The Chameleon force, which is ∝ ~∇φ, will then be sup-
pressed, thanks to the fact that the field is almost constant inside the body. The environmental
dependence of the mass of the fluctuations makes the field massive and therefore, assuming that
the fifth force interaction is parametrized by a Yukawa potential V (r) ∝ e−mφr/r, the interaction
will be exponentially suppressed. The interpolation between outer and inner values of the field will
take place in the thin shell, further suppressing the intensity of the field also outside the source.
Indeed, in this scenario, the source will be successfully screened.
On the other hand, for a thick shell body the chameleon field will change throughout all the source.
This means that the Chameleon force will not be null inside the body and the field will not be
massive enough to suppress interactions inside the source. Thus the source will be unscreened and
the field will not be hidden from local tests of gravity.

The requirement of having a successful screening puts stringent bounds on the viable parameters
of a theory. For example, the request for the Earth to have a thin shell allows to put constraints
on the parameters of the inverse power law potential (4.12). Indeed, assuming to have β and n of
the order of unity, we need for the mass scale M to satisfy [45]:

M . 10−3eV, (D.10)

that, as we saw at the beginning of Chapter 3, coincides with the observed energy scale of dark
energy.
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