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Abstract

The development of mobile telecommunication systems is a constant process as the number
of users and the data traffic required to sustain them are growing exponentially. The
evolution will continue with the 5th generation (5G) radio technology, which will bring
tremendous improvements in data rates, reliability, energy efficiency and security. With
all these drastic improvements, one of the biggest challenges that arises is the interference
generated by the neighboring base stations (BSs), as they will be deployed independently.
Recent studies have shown that Time Division Duplexing (TDD) results a very good
approach to mitigate this type of interference if the switching points between Uplink and
Downlink are optimized in a proper way.

In the first part of this thesis, we deal with the problem of sum rate maximization of a
cellular system in which all the BSs serve their user equipments (UEs) by using the TDD
mechanism. Moreover, all BSs are allowed to choose their transmission directions between
Uplink or Downlink independently. In order to find its optimal solution, the Multi-start
algorithm has been used. In the second part of this thesis we exploited the theoretical
tools offered by game theory and formulated our problem of sum rate maximization as a
dynamic TDD assignment game. All the BSs are treated as players and various games are
formulated based on the quantity of knowledge possessed by each BS.
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Chapter 1

Introduction

In the last few decades, Mobile Wireless Communication Networks have experienced a
tremendous change. From the first communication devices to the latest cellular systems,
their complexity, number of users and the amount of data traffic sent and received have
experienced an exponential growth. Since early 1970, its creation, revolution and evolution
started and approximately every ten years new generations of mobile wireless communica-
tion systems have appeared to satisfy new network requirements and to sustain the data
traffic demands.

1.1 Evolution

The first generation (1G) of mobile wireless technology based on analog signals was
launched in the 1980s. The key idea was deployment of multiple cells and ability to
adapt when users travelled between cells during a conversation. The voice call modula-
tion for each mobile device was performed to a higher frequency of about 150 MHz and
then transmitted to a nearest Base Station (BS). Modulation was based on the so-called
Frequency Division Multiple Access (FDMA) technique. Various standards were estab-
lished for 1G wireless communication systems, among which the most important were:
Advanced Mobile phone service (AMPS), employed in the United States for the first time
ever and then adapted by many other countries, Total Access Communication System
(TACS), used by the United Kingdom, Malta, Singapore and by few Arabic countries and
Nordic Mobile Telephone (NMT)-450/900, employed firstly by Nordic countries and then
by few European countries [1]. In Italy, the Radio Telephone Mobile System (RTMS) was
employed, which operated in the band of 450 MHz with more than 200 radio channels.
Around the 1990s, technology improved and the second generation (2G) of mobile wire-
less technology was introduced. It differed from 1G systems in the use of digital radio
signals instead of analog signals and in the use of new digital multiple access technologies
like the Time Division Multiple Access (TDMA) and the Code Division Multiple Access
(CDMA). Firstly, 2G was based on the Global System for Mobile Communication (GSM)
standard [2], in which 125 allocations and eight time slots per channel were available,
providing a total of 1000 channels. GSM-based networks were circuit switched and their
data transfer rates were very low, around 30-35 Kbps. Later on, an alternative to GSM, a
new standard called the Interim Standard-95 (IS-95) was introduced. It was the first ever
CDMA-based digital cellular technology developed by Qualcomm, in which audio band
data signals were multiplied by a high rate spreading signal. IS-95-based systems can be
thought of as having layers of protection against interference which let many users co-exist
with minimal mutual interference. In these days, number of users started to grew very
fast as the use of 2G mobile systems became viral and the telecommunication industry
responded by improving further the existing 2G systems by introducing 2.5 G [3]. It was
based on the General Packet Radio Service (GPRS) technology, ratified in 1997 and able
to support a very large scale of users with higher data rates (from 56 kbps up to 115 kbps)
compared to the previous 2G based systems. For the first time ever, it offered services
like Short Message Service (SMS), Multimedia Messaging Service (MMS) and new type
of Internet communication services such as the Electronic mail (e-mail) and the World
Wide Web (WWW). After few years, a technological evolution of GSM standard called
the Enhanced Data Rates for GSM Evolution (EDGE) (2.75G) was introduced, which
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2 Introduction

pushed further the data transfer rates, improved the spectral efficiency, allowed the ex-
istence of new applications/services and increased the system capacity. As the use of
mobile systems became more widespread, demand of data traffic and services grew very
fastly and in 2001 the third generation (3G) of mobile wireless communication systems
was introduced to sustain these demands. This generation brought with itself very high
data transfer rates compared to its predecessors, video conferencing, wide area wireless
voice telephony and entertaining services like 3D gaming and mobile TV. The 3G based
mobile systems enabled network operators to offer users a wider range of more advanced
and sophisticated services while achieving great system capacity through improved spec-
tral efficiency [3]. These systems resulted much flexible than its predecessors, able to
support also the 5 main radio technologies which operate based on TDMA, CDMA and
FDMA techniques. After few years, the 3G evolved in the High Speed Downlink Packet
Access (HSDPA) as 3.5G and later in the High Speed Uplink Packet Access(HSUPA) as
3.75G. In the former one, Downlink performance was enhanced by exploiting techniques
like Adaptive Modulation and Coding (AMC), Multiple-Input-Multiple-output (MIMO),
Hybrid Automatic Request (HARQ), fast cell search and an advanced receiver design. The
achieved peak data transfer rates were around 10 Mbps. In the latter one, Uplink per-
formance has undergone an increase and the maximum data transfer rates achieved were
around 5.8 Mbps. HSUPA is directly related to HSDPA as they both are complimentary
to one another, which means HSUPA exploits same techniques mentioned above. Around
2010, the fourth generation (4G) was introduced, which indicates a change in the nature
of services, non-backward compatible transmission technology and new frequency bands,
which later evolved into the 4G-Long Term Evolution (4G-LTE). It can be seen as an
extension of the 3G with much more bandwidth and with a large variety of services to
offer. For pure extrapolation of history, the fifth generation (5G), which is the next major
phase of mobile telecommunications standards, is expected to be launch onto the market
around 2020.

1.2 Motivation

According to Cisco, the Internet is going to be flooded by up to 50 billions devices by 2020
and all these devices will need to access and share data, anywhere and anytime. With this
expected rapid increase in the number of connected devices to be served, the Internet will
face new challenges which will be responded by increasing the system capacity, a better
spectrum utilization, employing low power consumption and low cost technologies. The
total mobile broadband traffic will increase up to a factor of 1000. These figures assume
a 100 times higher data traffic per user and 10 times increase in the mobile broadband
subscribers, thus 5G will bring an improvement of 10x in data transfer rates compared to
4G-LTE Advanced [4]. An ideal 5G network will have to satisfy these requirements:

� Peak data rate of 10 Gbps.

� Latency of (0.1-1) ms.

� Spectral efficiency almost 2 times better than the 4G based systems.

� Very low power consumption (up to ten years battery life time for low power devices).

� Efficient support for machine type communication (MTC).

� Simple and low cost design.

� Self-optimization of ultra-densely deployed access points.
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� Flexible spectrum usage.

It is expected to become a cornerstone of many economic sectors and will benefit
tremendously the areas of home automation, smart transportation, healthcare, virtual and
augmented reality and wearable devices. Application of 5G based systems in these areas
will generate a huge amount of data traffic that will be analyzed in real time to infer useful
information. Apart form this, it has been also envisaged that everyone and everything will
be communicating to build a connected society under the shadow of Internet of Things
(IoT), where tens to hundred of devices will serve every person. It will also support
Big Data which will enable cities to be smart. Mobile communication will also play a
vital role in Machine-to-machine (M2M) type communication, e.g., it will enable efficient
and safe transportation, alert or help vehicle drivers if any road is congested and will
also improve autonomous self-driving. The Device to Device (D2D) communication will
also be integrated with much smaller latency, increased data transfer rates and very low
energy consumption, by letting two devices communicate correctly also in the case of
infrastructure damage. A widespread increase in the use of these applications will create a
demand of data transfer rates of the order of many Gbps. Therefore, 5G will have to face
new type of challenges and much more complex and efficient systems will be required. To
get an idea, an example of a general 5G cellular network architecture is shown in Fig. 1.1.

Figure 1.1: An example of the Fifth Generation (5G) cellular network architecture.

Increasing the total number of smart phones, devices with powerful multimedia ca-
pabilities, M2M and IoT are the main factors that will contribute in the expected data
traffic. As a first solution, the multiple-input-multiple-output (MIMO) technology was
proposed to improve the spectrum efficiency of 5G mobile communication systems. A
MIMO system consists of m transmitting and n receiving antennas. During an on going
communication between these multiple antennas, every receiving antenna receives not only
the direct components from the intended antenna but also the indirect components from
other antennas. By putting all the received signals into a vector y and all the transmitted
signals into a vector x, an equation that characterizes the transmission of a MIMO system
can be written as:

Y = H x + n
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where H is the transmission matrix that comprehend the direct and indirect paths and
n is the noise vector. The policy used to transmit the intended data is that of dividing
it into multiple independent data streams, where the number of data streams M has to
be always less or equal to the number of antennas. In this way the capacity of a MIMO
system is increased linearly with the number of independent streams :

C = M B log2(1 +
S

N
)

where S/N is the signal-to-noise ration and B is the bandwidth. Later, the millimeter-
wave (mm-wave) communication technology was proposed to increase the bandwidth of 5G
based systems. The mm-wave carrier frequency allows larger bandwidth allocations, which
directly increase the systems data transfer rates. The mm-wave spectrum will let service
providers to expand channel bandwidths far beyond the currently 20 MHz channels used by
4G systems. This major breakthrough in the communication systems’ bandwidth and new
capabilities offered by mm-wave will let backhaul links and BS-to-Device links to handle
much greater capacity. Recently, the ultra-densely deployed small cells solution has been
proposed, which tends to increase systems’ throughput and decrease power consumption
in a cellular scenario. The ultra-dense small cell deployments are considered to be a key
technology for 5G systems which will provide short range coverage areas. When densely
deploying multiple small cells, traffic demands per cell might variate significantly from one
cell to another. Beside that, telecommunication society is thinking about making these
small cells or group of small cells (called clusters) independent. In this way a malfunction
of a single cell will not affect other cells and independent decisions on the transmission
direction, i.e., between Uplink or Downlink, can be made to satisfy data traffic demands.
Making all these cells independent and adjusting dynamically their transmission directions
can generate interference due to an opposite transmission directions of neighbouring cells.
Since the amount of total Downlink and Uplink traffic per cell may also vary over space and
time drastically, it might not be easy to know what kind of interference will be generated
by neighbouring cells and to cope with these issues, new interference avoiding strategies
are also needed.

1.3 Time Divison Duplex

Recent studies [9]- [13] have shown that Time Division Duplexing (TDD) results a very
good approach to mitigate interference generated by an opposite transmission direction of
the neighbouring BSs. It can be shown, mitigation is possible only if switching points be-
tween Uplink and Downlink are selected cleverly. Most of the wide-band Internet Protocols
use TDD in which a common frequency carrier is shared between Uplink and Downlink
and allocation of different time slots is used to satisfy data traffic demands. User equip-
ments (UEs) can be allocated one or more time slots depending on their need. Well known
examples of already existing TDD systems are:

� Half-duplex packet mode networks based on carrier sense multiple access.

� TD-CDMA for indoor mobile telecommunications.

� IEEE 802.16 WiMAX.

� PACTOR (Radio Modulation Mode).

� Universal Mobile Telecommunications System 3G supplementary air interfaces.

� Digital Enhanced Cordless Telecommunication (DECT).
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� TDD W-CDMA (Wideband Code Division Multiple Access) systems.

� 4G TDD LTE

TDD-based systems presents numerous advantages compared to the Frequency Divi-
sion Duplex (FDD) systems. First of all, a complex duplexer can be substituted with a
simple low cost solid state switch at the both sides. The TDD systems use same frequency
for Uplink and Downlink and instantaneous propagation, fading characteristics other prop-
agation parameters strictly depend on the frequency used for transmission. Therefore, all
these parameters undergo a very slow variation and as a consequence the complexity of
equipments can be reduced significantly. The characteristics of Uplink and Downlink are
very similar, hence a channel equalization can also be allocated on the transmission side.
The use of adaptive channel equalization can be combined with transmitter predistortion
in order to improve resistance to multipath propagation. The TDD systems allow the
capacity of Downlink and Uplink transmission to be more flexible, on the contrary of
FDD systems, where the capacity of Downlink and Uplink is determined by the portion of
spectrum allocated to the respective sub-bands. Moreover, TDD systems are also able to
support voice, symmetrical and asymmetrical data traffics. The main advantage of TDD
is that it allows asymmetric traffic flow which is more suited for data transmission, the
reason why it’s an optimal candidate for 5G systems. Despite TDD systems have numer-
ous advantages over FDD, its efficiency still suffers as the cell size increases. A reduction
in efficiency comes from an unpredictable nature of delay times of transmission from the
BS over air channels to the UEs, and from the UEs over air channels back to the BS. This
unpredictable nature is caused by the fact that UEs can be fixed or move anywhere within
the radius of cell. A BS might not be able to know in advance how long a propagation
delay could be while communicating with a particular UE. By considering the worst case,
TDD makes use of round-trip guard time to ensure that communication will be completed
with the first UE before starting it with another. This round-trip guard time is present
in each slot independent of UEs’ positions and adds extra overhead. These overheads can
decrease the efficiency of TDD systems and limit the maximum numbers of UEs. A com-
parison between FDD and TDD is shown in Fig. 1.2, in which it can be clearly seen how
FDD uses different channels for Downlink and Uplink and TDD adjusts frames’ portions
to satisfy data traffic demands.

Figure 1.2: A comparison between TDD and FDD.
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In 4G-LTE(Long Term Evolution) seven configurations are available for a flexible
Downlink/Uplink reconfiguration to dynamically adapt to traffic demands, but these con-
figurations are not enough for 5G because each cell can face asymmetries of different levels.
The TDD is capable of handling traffic asymmetries in which resources between Downlink
and Uplink can be redistributed very easily by adjusting the frames’ portion durations
allocated for both communication direction. But dynamically adjusting the communica-
tion directions can also cause the so-called cross-link interference. Several techniques to
cope with cross-link interference problem have been already proposed. In [9], a procedure
for joint user scheduling, precoding design, and transmit direction selection in dynamic
TDD MIMO small cell networks has been studied, in which transmission directions are
optimized at every frame. In [8], a procedure to optimize the bi-directional schedule of
a MIMO two-way links that operate using TDD with a fixed switching times has been
proposed. The schemes used to reduce the cross-link interference can be classified into two
categories :

1. Centralized schemes.

2. Decentralized schemes.

In the former one, more cells can be grouped together to form a cluster and then a
cluster controller is applied, which takes all the decisions for its cells. A cluster controller
knows exactly what is going on between its cells and possesses all the knowledge to take
optimal decisions to mitigate the cross-link interference. In [10], the authors have studied
a centralized scheme, in which a novel resource allocation framework in dynamic TDD
systems for interference management and asymmetric traffic adaptation scheme has been
proposed. Firstly, a cluster specific cooperative dynamic Downlink/Uplink reconfigura-
tion approach for cross-link interference cancellation was explained and then an efficient
algorithm to eliminate the residual intra-cluster cross-link interference was proposed. In
the decentralized schemes, every BS takes decision by its own, relying on a certain princi-
ple, e.g., each BS can decide to minimizes his Uplink/Downlink delay, maintains its SINR
above a certain threshold or maximizes its cells throughput. To decide when to switch be-
tween the transmission directions, each cell can gain some knowledge about its neighbours
in order to take the best decision for himself, thus mitigating to minimum the cross-link
interference. In [11], a decentralized scheme for adapting the switching point positions
of TDD frames for small cell networks with strong interference has been proposed. This
decentralized scheme doesn’t require full knowledge of its network and relies solely on
low-rate signaling information exchange among the neighbouring BSs.



Chapter 2

Mathematical Formulation

Channel capacity is the most-used metric in information theory, which stands for the
maximum amount of traffic that can move over a particular infrastructure. The problem
of sum rate maximization of the cellular system when all parameters (channel gains and
noise power) are known, can be formulated as the maximization of channel capacity. The
problem can be written down by exploiting the mathematical tools offered by calculus
and then solved by using the optimization theory. Sum rate maximization under some
constraints is equivalent to maximizing so-called the Lagrangian function. This func-
tion consists of the objective function which we wish to maximize, together with all the
constraints added up by multiplying each of them with new variables. These variables are
called the Lagrange multipliers, which assure us the non violation of constraints. The
method offers us a very operational way by transforming the maximization problem with
constraints into a maximization problem without constraints. Our aim is to formulate the
maximization of sum rate problem for the most general case in which we have N base
stations (BSs) and M user equipments (UEs) and each BS serves his UEs by using the
Time Division Duplex (TDD) mechanism. Fig. 2.1 gives a graphical idea of the scenario
in the case of N = 5 and M = 6.

Figure 2.1: A general scenario with N = 5 BSs and M = 6 UEs.

Let N andM denote the sets which contain the indices of BSs and UEs in the system,
i.e.,

N 4
= {1, ....., N}, |N | = N, (2.0.1)

M 4
= {1, ......M}, |M| = M. (2.0.2)

Each BS n (n ∈ N ) has a set Un of associated UEs.

Un
4
= {un,1, ....., un,jn}, |Un| = Jn. (2.0.3)

For example, UE-BS association is done on the minimum distance criteria where each
UE is associated to its nearest BS. By creating the set Un for each n ∈ N , the total number

7
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of UEs in our cellular system can be obtained as M = |∪n∈N Un| =
∑

n∈N |Un|. We define
a N ×M matrix H called the channel matrix, which contains the channel gains among
all the BSs and UEs. All of its elements are real-valued and greater or equal to zero and
each element can be identified with two subscripts x and y as Hx,y, where x ∈ N identifies
the x-th BS and y ∈ M identifies the y-th UE. In this way, each row x ∈ N represents
all the channel gains between the BS x and all the other UEs. A further assumption that
we make is that element Hx,y of the channel matrix represents also the channel gain from
UE y ∈ M back to BS x ∈ N . To include the interference due to unwanted radiated
emission form adjacent BSs and UEs, we introduce two matrices which will represent the
interference channel gains. From now on, we will use the convention M\i to denote the
setM without its element i. Let a M ×M matrix U denotes the channel gains among all
the UEs ∈ M. The U’s elements can be identified with two subscripts h and s as Uh,s,
where h ∈ M identifies the UE which is being interfered and s ∈ M\h identifies the UE
which is generating interference. The matrix U is symmetric and all of its elements are
real-valued and greater than zero, which means that the interference channel gain from
any UE h ∈M to any UE s ∈M\h and from UE s ∈M\h back to UE h ∈M is the same.
The diagonal elements of this matrix are also zero as any UE cannot interfere with itself.
Also the off-diagonal elements can be zero if there is no interference relation between the
UEs identified with the subscripts of the elements which are zero. Let a N ×N matrix B
define the channel gains among all the BSs. All of its elements are real-valued and greater
than zero and its characterized by being symmetric. Each of its element can be identified
with two subscripts p and q as Bp,q where p, q ∈ N . In this way each row p represents the
interference channel gains among the BS p ∈ N and all the other BSs. Now we define the
variable Pn as the total power used by BS n ∈ N to communicate with all of his UEs ∈ Un
and let Qn be the total power used by all the UEs ∈ Un to communicate with their BS
n ∈ N . The power used by BS n ∈ N to communicate with his UE j ∈ Un can be denoted
as Pnj . Each UE j ∈ Un will use power Qnj to communicate with their BS n ∈ N . Note
that under the previous assumptions, the following equalities also hold:

∑
j∈Un

Qnj = Qn and∑
j∈Un

Pnj = Pn. Let Xn be a continuous variable within the interval [0, 1] which identifies a

fraction of the TDD’s frame allocated for Downlink and 1−Xn the fraction allocated for
Uplink. By exploiting all the previous notations and assumptions, we can write the sum
rate maximization problemas follows:

max
Pn,Qnj ,Xn

∑
n∈N

wn

(
Xn

( ∑
j∈Un

log2

(
1 +

Hn,j P
n
j

σ2
d +

∑
k 6=n
k∈N\n

Hk,j Pk +
∑
m∈N
m6=n

∑
x∈Um

Ux,jQmx

))

+ (1−Xn)

( ∑
j∈Un

log2

(
1 +

Hn,j Q
n
j

σ2
u +

∑
k 6=n
k∈N\n

Bk,nPk +
∑
m∈N

∑
y∈Um
y 6=j

Hn,yQmy

)))

(2.0.4)

where wn are the weights associated to each BS n ∈ N ,
∑
k 6=n
k∈N

Hk,j Pk is the Downlink-to-

Downlink interference at the UE j ∈ Un generated by the BSs k ∈ N\n ,
∑
m∈N
n 6=n

∑
x∈Um

Ux,jQ
m
x

is the Uplink-to-Downlink interference at the UE j ∈ Un generated by the UEs x ∈M\Un ,∑
k 6=n
k∈N\n

Bk,nPk is the Downlink-to-Uplink interference at the BS n ∈ N generated by the
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BS k ∈ N\n and
∑
m∈N

∑
y∈Um
y 6=j

Hn,yQ
m
y is the Uplink-to-Uplink interference at the BS n ∈ N

generated by all the UEs y ∈ M\j . The σ2
d is the received noise component in Downlink

and σ2
u is the received noise component in Uplink. The product Hn,jP

n
j is the useful

received signal power observed at the UE j ∈ Un in Downlink and the product Hn,jQ
n
j

is the useful received power observed at the BS n ∈ N in Uplink. The fraction term of
the first logarithm represents the Signal-To-Iterference Noise Ratio (SINR) observed at
the UE j ∈ Un in Downlink and the fraction term of the second logarithm is the SINR
observed at the BS n ∈ N in Uplink.

We are considering a practical scenario, thus we impose limits on the total amount of
power used by all the BSs and the UEs. In order to consider these limits, we simply restrict
the total power that can be used by each BS and each UE. Mathematically speaking, the
problem (2.0.4) can be rewritten as:

max
Pn,Qnj ,Xn

∑
n∈N

wn

(
Xn

( ∑
j∈Un

log2

(
1 +

Hn,j P
n
j

σ2
d +

∑
k 6=n
k∈N\n

Hk,j Pk +
∑
m∈N
m 6=n

∑
x∈Um

Ux,jQmx

))

+ (1−Xn)

( ∑
j∈Un

log2

(
1 +

Hn,j Q
n
j

σ2
u +

∑
k 6=n
k∈N\n

Bk,nPk +
∑
m∈N

∑
y∈Um
y 6=j

Hn,yQmy

)))

(2.0.5)

subject to constraints


Pn ≤ P, ∀n ∈ N and P ≥ 0

Qnj ≤ Q,∀j ∈ Un, ∀n ∈ N and Q ≥ 0

0 ≤ Xn ≤ 1, ∀n ∈ N .

We have specific constraints imposed on our objective function which takes into account
the behavior of these three variables. By looking at the (2.0.5), it can be easily noticed
that our objective function has a very tough structure and solving it is not a trivial task.
In order to proceed, we first write down our objective function’s Lagrangian function by
including all the constraints as:

L(Pn, Qn, Xn, ~λ) =

max
Pn,Qnj ,Xn

∑
n∈N

wn

(
Xn

( ∑
j∈Un

log2

(
1 +

Hn,j P
n
j

σ2
d +

∑
k 6=n
k∈N\n

Hk,j Pk +
∑
m∈N
m 6=n

∑
x∈Um

Ux,jQmx

))

+ (1−Xn)

( ∑
j∈Un

log2

(
1 +

Hn,j Q
n
j

σ2
u +

∑
k 6=n
k∈N\n

Bk,nPk +
∑
m∈N

∑
y∈Um
y 6=j

Hn,yQmy

)))

+
∑
n∈N

λPn(P − Pn) +
∑
n∈N

∑
j∈Un

λQj,n (Q−Qnj )+

∑
n∈N

λn(1−Xn) +
∑
n∈N

λN+n Xn

(2.0.6)

where the first and second terms are our objective function, the third and fourth terms take
into account the constraints stated under (2.0.5) by multiplying each constraint with their
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associated Lagrange multipliers λi and ~λ is a vector which contain all the multipliers. The
function (2.0.5) is constrained and by expressing it through its Lagrangian (2.0.6) it has
become a non-constrained function and the multipliers make sure that the constraints are
satisfied. Now, instead of looking for the optimum of (2.0.5), we will focus our search on
the optimum of (2.0.6). The solution can be found if and only if the so-called Stationarity
condition and the Complementarity conditions of (2.0.6) are satisfied. Both of the
conditions stated above are called the first order optimality conditions and can be expressed
as follows:

Stationarity condition

∇
Pn,Qnj ,Xn,

~λ
(L) = 0⇔


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n∈N wn ∇
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Xn
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j∈Un log2
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Hn,j P
n
j

σ2
d+
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k 6=n
k∈N\n

Hk,j Pk+
∑

m∈N
m 6=n

∑
x∈Um

Ux,jQmx

))

(1−Xn)

(∑
j∈Un log2

(
1 +

Hn,j Q
n
j

σ2
u+

∑
k 6=n
k∈N\n

Bk,nPk+
∑

m∈N

∑
y∈Um
y 6=j

Hn,yQmy

)))

+∇

(∑
n∈N λPn(P − Pn) +

∑
n∈N

∑
j∈Un λQj,n (Q−Qnj )+

∑
n∈N λn(1−Xn) +

∑
n∈N λN+n (Xn)

)
= 0

(2.0.7)

Complementarity conditions

λPn(P − Pn) = 0, ∀n ∈ N
λQj,n (Q−Qnj ) = 0,∀j ∈ Un and ∀n ∈ N
λn(1−Xn) = 0, ∀n ∈ N
λN+n (Xn), ∀n ∈ N

(2.0.8)

2.1 Discretization process

The objective function (2.0.5) is non-convex due to the interference terms present at the
denominator. This implies that it is characterized by having multiple local optimum.
Finding all of them by satisfying the conditions (2.0.7)-(2.0.8) is a very difficult task.
Notice that, the variables Pn, Q

n
j and Xn, ∀n ∈ N are continuous and finding their solution

can be very laborious. In order to reduce the complexity of the (2.0.6) we discretize the
continuous variable Xn to the values 0 and 1 corresponding to the case in which each BS
have always one or the other behavior, i.e.,

Xn =

{
1 BS n always transmits in Downlink

0 BS n always transmits in Uplink.

In this way, we are restricting the solution space to a subspace where Xn assumes only
two values. By discretizing Xn, we can assume its behavior like a switch which indicates
if the BS n ∈ N is transmitting in Downlink or Uplink for the whole duration of the
frame. It may be worth emphasizing that as we are in a TDD scenario, Xn assumes value
1 (Downlink) if and only if Pn is strictly positive and Qnj is zero ∀j ∈ Un, or assumes value
0 (Uplink) if and only if Qnj (∀j ∈ Un) is strictly positive and Pn is zero ∀n ∈ N . Notice
that the values Pn and Qnj are defined as greater or equal to zero, which means it may also
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present situations in which Pn and Qnj are zero and there is no exchange of data traffic.
Suppose we fix the values of Pnj and Qnj , one solution of our objective function is obtained
where Xn assumes values 0 or 1. It is easy to understand the previous statement, as the
values of Pnj and Qnj are fixed and the channel gains are known, it is easy to evaluate the
SINRs. As the values of Xn are not part of the argument of logarithms, it is easy to choose
the value of Xn which maximizes the sum rate. Which simply means that every BS can
choose if he should transmits in Uplink or Downlink by simply evaluating the SINRs. It
may be worth mentioning that by discretizing Xn we are reducing the solution space of our
objective function but in this way the complexity to find the solution reduces significantly
as the variable Xn is fixed to two particular values and only the value of Pn and Qnj are
continuous.

2.2 Discretized version and its solution

Now we consider the case in which Xn is being discretized and can assume only the values
0 or 1. We are sure that the solution space is reduced by discretizing Xn, however it
still yields a solution which is the optimum one. Now the original problem (2.0.5) can
be reformulated as a function of continuous variables Pn and Qnj and a discrete variable
Xn. Everything remain the same except for the constraint which takes into account the
behavior of the variable Xn. The objective function (2.0.5) can be rewritten with a slightly
modification of the constraints regarding Xn as:

max
Pn,Qnj ,Xn

∑
n∈N

wn

(
Xn

( ∑
j∈Un

log2

(
1 +

Hn,j P
n
j

σ2
d +

∑
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Hk,j Pk +
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))

+ (1−Xn)

( ∑
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log2

(
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σ2
u +

∑
k 6=n
k∈N\n

Bk,nPk +
∑
m∈N

∑
y∈Um
y 6=j

Hn,yQmy

)))
,

(2.2.1)

subject to constraints


Pn ≤ P, ∀n ∈ N and P ≥ 0

Qnj ≤ Q,∀j ∈ Un, ∀n ∈ N and Q ≥ 0

Xn = 0 or Xn = 1,∀n ∈ N .

The structure of the conditions (2.0.7)-(2.0.8) do not change and we simply keep treat-
ing everything as it is. The only thing that changes is the variable Xn, which has become
discrete and we cannot compute its gradient ∇Xn in the condition (2.0.7). Discretization
of Xn also restricts the possible values of multipliers λn and λN+n.

Now after the discretization of the variables Xn, ∀n ∈ N which reduced the complex-
ity of our objective function, let’s move towards it solution procedure. Let’s recall that
Lagrangian function (2.0.6) includes in itself all the constraints and can be treated as
a function which is non-constrained. It is non-convex because of the interference terms
present at the denominator, thus it is characterized by having multiple local optimum. We
will strive to find them all and the one which will make our objective function assumes
the highest value, will be declared as the global optimum. The solution can be found by
using the Multi-start algorithm offered by the optimization toolbox of Matlab. This
algorithm commits to find all the local minimums, thus we need to write our objective
function (2.2.1) as −(2.2.1) and by doing so, all the local minimums will correspond to our
local maximums. It also generate by itself the Lagrangian function by multiplying each
constraint with its multipliers. The local maximum which will make assume our objective
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function (2.2.1) the highest value, it is returned in a separate vector. In short words, the
Multi-start algorithm works as follows:

1. It requires in the input, number of different feasible starting points.

2. It starts moving from all the starting points towards the negative gradient direction
−∇f(~x), which is the direction of the fastest decrease, with a very small and de-
creasing step size ε and it stops when it reaches the condition of null gradient for all
the starting points.

3. When the algorithm terminates, it returns the vector called GlobalOptimumSolu-
tions vector which includes all the local optimum of the objective function. It also
return the local minimum which can be declared as the global minimum (our maxi-
mum).

To get an idea of how the multi-start algorithm works, its flowchart is shown in Fig.
2.2 and its behavior is shown in Fig. 2.3.

Figure 2.2: Flowchart of the Multi-start algorithm.

In order to exploit the Multi-start algorithm in Matlab, the objective function’s
structure (2.2.1) has to be well defined and the following steps have to be followed:

Procedure to define the objective funtion’s structure

1. Define the objective function (2.2.1) as a file or an anonymous function.

2. Create the constraints structure.

3. Define a feasible start point vector ~xo.

4. Create an options structure using optimoptions. For example,
options = optimoptions(@fmincon

”
’Algorithm’,’specify Algorithm’);

where @fmincon is a gradient based local solver and Algorithm is the algorithm
exploited by @fmincon to converge.

5. Create a problem structure which includes the objective function, constraints and op-
tions. For example, problem = createOptimProblem(’fmincon’,’xo’, ~xo,’objective’,...
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Figure 2.3: The Multi-start algorithm’s behavior when we have to deal with a simple
multivariate function, characterized by having three local optimum.

fun,’Aineq’,A,’bineq’,b,’Aeq’,Ae,’beq’,be, ’options’,opts); where fun is the objective
function (2.2.1), A is the inequality constraints’ matrix, b is the upper bounds’
vector for A, Ae is the equality constraints’ matrix and b is its equality bounds’.

Let’s recall that the local solver @fmincon finds the minimums of a constrained multi-
variate function f(~x), thus in our case the (2.2.1) has to be written as -(2.2.1) at step 1. By
doing so, all the local minimums found by @fmincon will match with the local maximums
of our objective function. At step 4, we need to specify the algorithm that we want that
the local solver @fmincon uses. The Matlab offers us four fundamental algorithms which
can be used by @fmincon to find the local minimums of any multivariate problems. All of
them use the first order optimality measure to declare the convergence. As briefly stated
before, all these algorithms move towards the direction of negative gradient until they
reach the local minimum. This is their principle of operation, however they distinguish
among them because of the different techniques they use to satisfy the non violation of
constraints and to reduce the complexity of any complex function.

Algorithms used by @fmincon

1. The Interior point optimization algorithm, which exploits the slack variables
and the barrier functions and try to solve a sequence of approximate minimization
(- maximization) problems.

2. The Active set optimization algorithm, which uses a sequential quadratic pro-
gramming (SQP) method. In this method, the algorithm tries to solve a quadratic
programming subproblem at each iteration. The @fmincon updates an estimate of
the Hessian of the Lagrangian function by using the BFGS formula. The BFGS
stands for Broyden–Fletcher–Goldfarb–Shanno formula which is widely used
for solving unconstrained non-linear problems.
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3. The SQP and SQP-legacy optimization algorithm, which is very similar to the
Active set algorithm with just few differences.

4. The Trust-Region-Reflective optimization algorithm, which is a subspace of
trust region method and based on the interior-reflective Newton method.

Once all the 5 steps mentioned before have been followed, to solve the optimization
problem we need to create a Multi-start object with the command ms = MultiStart; and
the Multi-start algorithm can be launched with the command run(ms,problem,k). The
ms is the Multi-start object, problem is the objective function’s structure created at step
5, and k is an integer for which the algorithm randomly generates k − 1 start points. It
solves the optimization problem for all the k points (k − 1 randomly generated + ~x0) by
moving in the direction of negative gradient for all the k points and it stops when it runs
out of starting points reaches the condition of gradient being zero for all the k points.
The conditions (2.0.7) and (2.0.8) are called the first order optimality conditions and the
local solver @fmincon verifies if they are satisfied with some tolerance. More precisely, it
verifies if:

Stationarity condition’s verification by @fmincon
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+
∑

n∈N ∇(λPn(P − Pn)) +
∑

n∈N
∑

j∈Un ∇(λQj,n (Q−Qnj ))

+
∑

n∈N ∇(λn(1−Xn)) +
∑

n∈N ∇(λ2n Xn)||≤ 1e−6

(2.2.2)

Complementarity conditions’ verified by @fmincon

||
−−−−−−−−−−−−→
∇(λPn(P − Pn))|| ≤ 1e−6, ∀n ∈ N

||
−−−−−−−−−−−−−→
∇(λQj,n (Q−Qnj ))|| ≤ 1e−6, ∀j ∈ Un and ∀n ∈ N

||
−−−−−−−−→
λn(1−Xn)|| ≤ 1e−6, ∀n ∈ N

||
−−−−−−−→
λN+n (Xn)|| ≤ 1e−6. ∀n ∈ N

(2.2.3)

The local solver uses the infinity norm of (2.0.7) and (2.0.8) to verify their validity
under the tolerance of 1e−6. It is also possible to choose smaller tolerance values but the
time to solve the problem increases rapidly. The algorithm works properly under the only
hypothesis that our multivariate objective function (2.2.1) is well defined and differentiable
in the neighborhood of the initial feasible point ~x0. For the other k − 1 random points, if
for any point the objective function is not differentiable in its neighborhood, this point is
automatically discarded.

2.3 Practical scenario

Now that we have understood how to find the solution of our optimization problem (2.2.1),
we consider a particular scenario made of 16 BSs and 16 UEs. More formally we can define
it as follows:
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Figure 2.4: Practical Scenario considered for the simulation made with 16 BSs and 16
UEs. Each BS has just one UE at distance d and distance among the BSs are of step D.

Let N and M be the BSs’ and UEs’ sets:

N = {1, 2, ...., 16}, |N | = 16, (2.3.1)

M = {1, 2, ...., 16}, |M| = 16. (2.3.2)

The UEs and BSs are positioned as shown in Fig. 2.4, where each UE is distant d from
its BS and the distance among the BSs is discretized to the step size D and the |Un| = 1.
We assume that UE i ∈M is associated to the BS i ∈ N . We want to simulate a practical
scenario in a free space, thus the FRIIS formula which takes into account the Free-space
path loss (FSPL) effect and the gains of transmission and receiving antennas, will also
be included. The formula is defined as follows:

Prx
Ptx

= Gtx Grx (
λ

4πd
)2 (2.3.3)

where the parameters have the following meaning:

1. Prx is the power received by the receiving antenna.

2. Ptx is the transmitted power.

3. Gtx is the transmitting antenna’s gain.

4. Grx is the receiving antenna’s gain.

5. λ is the wave length, calculated as λ = C
f , where C is the speed of light in a vacuum

and f is the frequency.

6. d is the distance between the transmission antenna and the reception point.

By looking at the (2.3.3), it can be clearly notice that the transmitted power decay as
the square of the distance. The FSPL is defined as:

FSPL = (
4πd

λ
)2 (2.3.4)

which is a loss in signal strength of an electromagnetic wave that would result from a
line-of-sight path through a free space with no obstacles nearby to cause reflection or
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diffraction. To take into account the FRIIS formula in our objective function, we will
include the (2.3.3) within the channel matrix H. For the sake of simplicity, we will model
the channel gains as Hn,j = C

d2n,j
, where C is a constant value which includes all the

constants terms which appear in (2.3.3) and d2
n,j is the distance between the BS n and its

solely UE j. As for the matrices B and U, their interference channel gains will be modeled
in the same way. In order to keep things simple, we will use the normalized version of
channel gains to the maximum distance and for simplicity we will assume the constant C
equal to 1. The maximum available powers for BSs and UEs allowed by the regulations
which deal with wireless communication standards are P = 46 dBm and Q=30 dBm,
respectively. We suppose that each BS and UE uses the maximum available power P and
Q to communicate. We normalize these values to the maximum available power P for the
BSs which yields P = 1 and Q = 2.5 10−2. We also assume the values noise powers in
Uplink and Downlink equal to 1.

To normalize the channel gains, we limit the maximum coverage area of each BS to
1 km. Consider for example the channel gain between the BS n and its solely UE j:

Hn,j(dmax) =
1

d2
max

= 1→ dmax = 1 km. (2.3.5)

In this way, we obtain the value of channel gain Hn,j at the maximum distance of 1 km,
which yields each of his UE a SNIR of 0 dB.

We assume that all the BSs can be accessed by their UE directly starting from the
minimum distance dmin which yields each of his UE an SNIR of 15 dB. By solving:

Hn,j(dmin) =
1

d2
min

= 10
15
10 → dmin =

√
10−1.5 = 0.178 km (2.3.6)

By adopting the previous criteria, we can rewrite the objective function (2.2.1) in this
particular scenario as follows:
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(2.3.7)

subject to constraints


Pn ≤ P, ∀n ∈ N and P ≥ 0

Qnj ≤ Q,∀j ∈ Un, ∀n ∈ N and Q ≥ 0

Xn = 0 or Xn = 1, ∀n ∈ N .
Where Pn = P and Qnj = Q and channel gains contain the path-loss term and P and

Q are limited to the values previously specified. Now we will search for it’s solution with
the Matlab code which implements the Multi-start algorithm. We will use the optimal
values of Pn, Qn and Xn found by the Multi-start algorithm and see how the mean rate
for each UE varies as the distance d between the BSs and their UEs increases.

In Table 2.1 we present the parameter values used for the scenario of our interest and
Table 2.2 shows the optimal values of Pn, Qnj , Xn found by the Multi-start algorithm for
each BS and each UE which maximize their sum rate. Finally, Fig. 2.5 shows how the
mean rate changes as a function of d, which is the distance between each BS and their
only associated UE.



2.3 Practical scenario 17

Table 2.1: Simulation parameters

Parameter symbol value

Maximum power for BSs P 1
Total power for UEs Q 2.5 10−2

Distance among the BSs D 0.20 km
UEs’ max distance from the BSs d 1 km
UEs’ min distance from the BSs d 0.178 km

Noise variance in Downlink σ2
d 1

Noise variance in Uplink σ2
u 1

BS/UE P Q Xn

1 1 0 1
2 0.89 0 1
3 0.93 0 1
4 0.93 0 1
5 0.93 0 1
6 0.92 0 1
7 0.89 0 1
8 1 0 1
9 1 0 1
10 0.89 0 1
11 0.92 0 1
12 0.93 0 1
13 0.92 0 1
14 0.89 0 1
15 1 0 1
16 1 0 1

Table 2.2: Decision table obtained from simulation results of multi-start algorithm.
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Figure 2.5: Mean rate as a function of distance between the BSs and their associated UEs.



Chapter 3

Game Formulation

The problem can also be formulated in the terms of a game and then solved with the
theoretical tools offered by the game theory. In this chapter, we will exploit these tools
to formulate our problem as a game in which each Base-Station (BS) will act as a player
and will have to choose among the strategies : Uplink or Downlink, in order to maximize
his own well-being (throughput). This chapter will be structured as follows: First of all,
a brief introduction to game theory will be given and then we will try to formulate our
problem as a game in different ways depending on its distinctive features. These games
will differ depending on the quantity of knowledge possessed by each player (BS) about
his or other players’ SINRs and the channel situated among his and other players’ User-
Equipments (UEs).

3.1 Brief introduction to the Game theory

Imagine yourself waking up in the morning and deciding what to eat for breakfast. You
may go to a nice cafeteria in your neighborhood, in which case you could have a large
variety of foods from which to choose or you just prefer to have a breakfast at home, so you
end up by choosing among just two or three types of cereals. This trivial yet ubiquitous
situation is an example of a decision problem. Decision problems confront us daily, as
individuals and also as groups. All these problems share a similar structure: an individual
(or a player) faces a situation in which he has to choose from one of the several alternatives
and every choice will result in some outcome. Every decision has a consequence which will
be borne by the player himself and might influence other individuals (players) too. Any
player who wants to take a decision regarding any decision problem in an intelligent way,
must be aware of three fundamental features of the problem: his possible choices, results
of each of those choices and the influence that every decision has on his will being. If a
player is able to understand these three things, he can make the best decision for himself or
for the whole group, depending on his interests. So, we can say that any decision problem
consists of these three main features:

1. Actions are all the alternatives from which the player can choose.

2. Outcomes are the possible consequences that can result from any of the actions.

3. Preferences describes how the player ranks the set of possible outcomes, from most
desired to least desired.

To express the player’s preference between any two possible outcomes, a preference
relation symbol % is used, e.g. a preference between two possible outcome x and y can be
expressed as x % y, which means ” x is at least good as y”, which is consistent with saying
that x is better than y or equally as good as y. To distinguish between these two scenarios,
a strict preference relation ” � ” can be used to state that ”x is better than y” and
indifference relation ” ∼ ” for ”x and y are equally good”. Lets denote with A the
actions set and with X the outcomes set.

A = {a1, ....., an}, ai ∈ A are the actions (3.1.1)

X = {x1, ..., xj}, xi ∈ X are the outcomes (3.1.2)

19
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Both of them may be finite or infinite and to be able to represent the player’s prefer-
ence over outcomes, two assumptions are needed which can help him to think through a
decision problem. First, the player must be able to rank any two possible outcomes from
X , which can be expressed more formally by the following axiom:

The Completeness Axiom := The preference relation % is complete, hence any two
outcomes x, y ∈ X can be ranked by the preference relation.

The completeness axiom imposes that the player can always decide between two possi-
ble outcomes. The second assumption imposes that the player is able to decide among
any number of possible outcomes and can be stated as follows:

The Transitivity Axiom := The preference relation % is transitive, hence more than
two outcomes can also be ranked, e.g. if x, y, z ∈ X and x % y and y % z then x % z.

These two assumptions make sure that when the player has to make a decision among
any number of outcomes, the completeness axiom guarantees that two outcomes can be
ranked and the transitivity axiom guarantees that there will be no contradictions in the
ranking, which could create an indecisive cycle. A preference relation which satisfies both
of the assumptions stated above is called a rational preference relation. When we
deal with players with rational preferences, we can replace with preference relation with a
much friendlier and more operational function, so called a payoff function:

Definition 1. A payoff function u : X → R represents the preference relation % if for
any pair x, y ∈ X , u(x) ≥ u(y) if and only if x % y.

In short words, the preference relation % is represented by the payoff function u which
assigns to each outcome in X a real number if and only if the function assigns a higher
value to higher-ranked outcomes. It might be useful to highlight that the payoff function is
convenient but the payoff values by themselves have no meaning, e.g. if x % y then we can
assign values to their payoff functions u(x) = 5 and u(y) = 1 or u(x) = 50 and u(y) = 10.
The reason of using payoff functions instead of preferences is that we can build a theory of
how decision makers with rational preferences ought to behave. They will choose actions
that maximize a payoff function that represents their preferences over the set X . The only
requisite to define a payoff function over the rational preferences is :

Proposition 1. If the set of outcomes X is finite then any rational preference relation
over X can be represented by a payoff function u.

We can now introduce the concept of Homo economicus or ”economic man”, which
is widely used in economics and game theory. A Homo economicus is rational in that
he chooses actions that maximize his well-being as defined by his payoff function over
the resulting outcomes. The assumption that the player is rational lies on a fundamen-
tal paradigm which is known as rational choice paradigm, which implies that when a
player is choosing among his actions, he will be guided by rationality to choose the best
action for himself. By adopting this paradigm, we are strictly imposing some assumptions
that can be listed as follows:

Rational choice assumptions The player completely understands the decision
problem by knowing :

1. All possible actions A.
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2. All possible outcomes X .

3. Exactly how each action affects the outcomes.

4. His rational preferences over outcomes.

All of these four conditions must be satisfied if we expect that the player makes rational
choices, thus he chooses an action that maximizes his well being. If we drop any of these
four assumptions, the player may not be able to decide which action to play or what
could be the consequences related to his chosen actions, e.g. if 1) is unknown then the
player could not be able to decide which action to play or if 2) or 3) are unknown then
he may not correctly foresee the actual consequences. Finally, if 4) is unknown then the
player may perceive incorrectly the effect of his choice’s consequences on his well-being.
To operationalize the paradigm of rationality the player must choose the best action from
the set A, yet the payoff function has been defined over outcomes. It would be more
useful if the payoff function is defined on the actions instead over the outcomes. To be
precise, let f : A → X be the function that maps actions into outcomes, and let u be the
payoff function over outcomes as defined above. We can define the composite function v as
v = u ◦ f : A → R,where v(a) = u(x(a)) and a is an action choosen from the set A. Now,
that we understood the concept of rational paradigm, the definition of Homo economicus
mentioned before, can be defined more formally as:

Definition 2. A player facing a decision problem with a payoff function v(·) over actions
is rational if he chooses an action a ∈ A that maximizes his payoff. That is, a* ∈ A is
chosen if and only if v(a*) ≥ v(a), ∀a ∈ A.

By this definition we are defining a player who has rational preferences and is rational
in that he understands all the aspects of the decision problem, the consequences of his
actions and will always choose an action a ∈ A that yields him the highest payoff.

Even if this structure can be very useful to analyze a wide variety of decision problems
(or games), it still lacking of one important element which is the probabilistic relationship
between actions and outcome, so called randomness. In order to understand it, consider
the following example: A division manager has to decide whether he should embark on a
new Research and Development (R&D) project or not. His actions can be denoted as g
for going ahead and n for not going ahead, so that A = {g, n}. Imagine that there are
only two possible outcomes: his new product line is successful which is equivalent to a
profit of 10, or his product line is obsolete which is equivalent to a profit of 0, so that
X = {0, 10}. His final outcome is influenced by so many other factors which are out of his
control, in addition to his choice. When he takes the decision, he has to take into account
many aspects, e.g., if he decides not to go ahead, overtime his main product could become
obsolete and outdated and his company would not be able to compete in the market or
maybe profits will still continue to flow in. And if he goes ahead, he could have a vast
improvement in his profits or perhaps the research could fail and no new products will
emerge. In this case he will be left with a long list of bills to pay for the expensive R&D
miserably failed. Imagine that a successful product line is more likely to be created if
the player chooses to go ahead with the R&D project, while it is less likely to be created
if he does not. More precisely, the odds are 3 to 1 that success happens if g is chosen,
while odds are 50-50 if s is chosen. By using the formal language of probabilities, we can
think of it as: If the player chooses g then the probability of a payoff of 10 is 0.75 and the
probability of a payoff of 0 is 0.25. If he chooses s then the probability of a payoff of 10
is 0.5 and the probability of a payoff of 0 is 0.5. We can think of the division manager as
the player choosing between two lotteries, which is exactly defined by a random payoff.
In our example, selecting g by the manager is like choosing a lottery that pays zero with
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probability 0.25 and pays 10 with probability 0.75. On the other hand, choosing n yields
him a payoff of 10 or 0 with probabilities 0.5 and 0.5, respectively. We can think of these
lotteries as choices made by another player that is often called the ”Nature”, which can
be seen as en external individual who makes decisions for the actual players of the game
and has no strategic interests in the outcomes. First of all, the player choose an action
from the set A and conditioned on this action, Nature chooses a probability distribution
over the outcomes X . Now that we have understood the meaning of lotteries and the
role played by the Nature, a formal definition of a lottery can be stated more formally as
follows:

Definition 3. A simple lottery over outcomes X = {x1, x2, ..., xn} is defined as a proba-
bility distribution p = (p(x1), p(x2), ..., p(xn)), where p(xk) ≥ 0 is the probability that xk
occurs and

∑n
k=1 p(xk) = 1.

To be precise, the lottery chosen by a Nature is conditional on the action taken by
a player. Hence, given any action a ∈ A, a conditional probability that xk ∈ X occurs
is given by p(xk|a), where p(xk|a) ≥ 0 and

∑n
k=1 p(xk|a) = 1. When a decision problem

contains randomness, the definition of payoff has to be rewritten in order include these
random events. The intuitive idea is about averages. Sometimes the actions chosen by the
player can make him gain some profit or make him loose some of his well being, but if on
average things turn to out on the positive side, then we can view the player’s actions as
pretty good because the gains will be more than the losses. To put this in a formal way,
an expected payoff can be defined as follows:

Definition 4. Let u(x) be the player’s payoff function over outcomes in X = {x1, x2, ...., xn}
and let p = (p1, p2, ..., pn) be a lottery over X such that pk = Pr{x = xk}. Then we define
the player’s expected payoff from the lottery p as

E[u(x)|p] =
n∑
k=1

pku(xk)

It is worth mentioning that this is the general definition of the expected payoff, and will
be restated from case to case when we will proceed with the classifications of our games
based on the quantity of information that each player will hold. As mentioned before,
a rational player chooses actions that maximize his payoff among the set of all possible
actions. When the outcomes are stochastic, the player must know that by choosing actions
he is choosing lotteries, and he knows exactly what the probability of each outcome is,
conditioned on the choice of an action. A natural way to define rationality for decision
problems with random outcomes is as follows:

Definition 5. A player facing a decision problem with a payoff function u(·) over outcomes
is rational if he chooses an action a ∈ A that maximizes his expected payoff. That is, a*
is chosen if and only if v(a*) = E[u(x)|a*] ≥ E[u(x)|a] = v(a) for all a ∈ A.

Notice the notation v(a) = E[u(x)|a], ∀a ∈ A ,∀x ∈ X defines the expected payoff of
an action given the distribution over outcomes. This is a convention that can be used, as
the case of concern is what a player should do, and this notation implies that his ranking
should be based on his actions. The definition 5 states that, the player that is rational
and understand the stochastic consequences of each of his actions, will choose an action
that offers him the highest expected payoff [5]- [6].

The framework is introduced in the world of decision problem in which outcomes that
determines the player’s well-being as consequences of actions played by him with some
randomness which is beyond his control. There might be some situations in which the
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player’s well-being can also be influenced by the choices made by other players which are
part of the same game. A classification can be made based on: the effect that each player’s
choice has on other players’ well being, the type of knowledge possessed by each of them
and the quantity of knowledge they each of them holds. From now on, the convention of
confusing the word decision problem with games will be adapted and followed for the rest
of the thesis. Now a brief introduction about the theory that explains us how the action of
one player is correlated to the outcomes of other players is outlined. This is exactly what
we need as the final payoffs of our players (BSs) will be strongly influenced by decisions
taken by other player.

3.2 Static game of complete information

We now consider a simplest case, which is very useful to capture simple strategic situations.
When one player is trying to obtain maximum profit to increase his well being, others
players are trying to do the same and each player is trying to guess what other players
are doing, and how to act accordingly. In this scenario, all players are engaged in a so
called strategic environment in which each of them must have a set of strategies from
which to choose depending on what others are doing. The essence of this type of games
can be captured by a framework called static games of complete information [6]. In
the static games, a set of players choose actions independently and once-and-for-all which
in turn cause the realization of an outcome. Hence, a static game can be thought of as a
game played in two steps:

1. Each player chooses an action simultaneously and independently.

2. Conditional on the players’ chosen actions, payoffs are distributed to each player.

In game theory, by simultaneously and independently we mean that each player must
take their actions without observing what actions their counterparts take and without
interacting among them. The second step captures the fact that, once the player have
made their choices, these choices will result in a particular outcome or a probabilistic
distributions over outcomes. Steps 1) and 2) defines what we called static. It remains
to specify the meaning of complete information. With this word, we want to emphasizes
that all the players understand the environment they are in, the game they are playing,
in every way [6]. This can be defined more formally as follows:
Games of complete information In a game of complete information all these four
component are of a common knowledge among all the players:

1. all the possible actions of all the players,

2. all the possible outcomes,

3. how each combination of actions affects the outcomes,

4. the preference of every player over the outcomes.

Now that we have understood the basic ingredients of a static game of complete infor-
mation, it is possible to develop a formal framework to represent it with a so called
normal-form game. This is the most common way used to represent a game and it
consists of :

1. A set of players.

2. A set of actions for each player.
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3. A set of payoff functions for each player that give a payoff value to each combina-
tion of the players’ chosen actions.

It is now time to introduce the concept of strategy, which can be defined as a plan of
action intended to accomplish a specific goal. We can think of this plan as a some kind of
list structured as: ”If someone asks me question q1 then i will respond with answer a1; if
I have been asked question q2, i will answer with a2 ” and so on. A formal definition can
be given for the case in which we consider only pure strategies as follows:

Definition 6. A pure strategy for a player i is a deterministic plan of action. The set of
all pure strategies is denoted by Si. A profile of pure strategies {s1, s2, ..., sn}, si ∈ Si
for all i = 1, 2, .., n describes a particular combination of pure strategies chosen by all n
players.

Here with pure we mean that all the actions chosen by all the players are deterministic
and there is no randomness involved. From now on, our focus will be on strategies instead
of actions as this will let us represent also the games in which there is a relevance to
conditioning one’s actions on events that may also fold over time. The definition of normal-
form game can be rewritten to comprehend the strategies as follows:

Definition 7. A normal-form game includes three components as follows:

1. A finite set of players, P = {1, 2, ..., n}.

2. A collection of sets of pure strategies, {S1, S2, ..., Sn}.

3. A set of payoff functions, V = {v1, v2, ...., vn}, each assigning a payoff value to
each combination of chosen strategies, which is a set of functions vi : S1× S2.....×
Sn → R, ∀i ∈ P.

This representation captures games in which every player chooses simultaneously strat-
egy si ∈ Si. A n-player game can be treated with the Decision tree [6]. When we are
dealing with a 2-player game, which is the simplest case, an alternative graphical method
can be used, which is called the Matrix representation. The first one gives us a very
intuitive and graphically simple tool to depict a game and capture the essence of play. It
includes two kind of nodes: decision nodes and terminal nodes, which are connected
among them through edges. Decision nodes corresponds to choices about strategies and
terminal nodes represent the final payoffs.

The second type of representation is very useful for a two players game. It can be
exploited very easily to find the Nash Equilibrium of a game, which is a profile of
strategies for which each player is choosing the best response to the strategies chosen by
all other players and nobody deviates from their choice. The Nash equilibrium is named
after his inventor, John Nash, an American mathematician. It is considered one of the
most important concepts of game theory, which attempts to determine mathematically
and logically the actions (or strategies) that each player should take to secure the best
payoff for themselves. It will be defined later more formally for our cases of interest as
its definition varies from game to game. In Fig. 3.1 and Table 3.2, an illustrative idea
of the two kinds of graphical representation is given. The game presented in both cases
is formed by two players who decide their strategy simultaneously. First of all, player 1
chooses his strategy from the set S1 = {x1, x2} and player 2 chooses his strategy from the
set S2 = {y1, y2}. The dotted line that connects the nodes at the second player’s level,
highlights the idea that player 2 has no idea about the strategy chosen by player 1. Thus,
player 2 can be in any of the nodes at his level. Here we are implying the definition of
simultaneous moves mentioned above.

If there is no randomness involved, all the theory presented above is sufficient to
formulate games with simultaneous moves.
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P1

(
1
1

)
y1

(
0
0

)
y2

x1

(
1
1

)
y1

(
0
0)

)
y2

x2

P2

Figure 3.1: Decision tree of a simultaneously played two player game where player 1
chooses strategies from set {x1, x2} and player 2 chooses from set {y1, y2}.

Player 2

y1 y2

Player 1
x1 1,1 0,0

x2 1,1 0,0

Figure 3.2: Matrix representation of a simultaneously played two player game where player
1 chooses strategies from set {x1, x2} and player 2 chooses from set {y1, y2}.

3.2.1 Static game of complete information with mixed
strategies

It is worth shedding some light on the framework we presented in the previous section,
its drawbacks and the necessity of its extension. Suppose that a static game of complete
information represents a practical scenario and is played many times (finite or infinite) over
time and there is just one strategy for each player that predicts the Nash Equilibrium.
Which clearly means that there is just one Nash equilibrium of the game. Once we have
discovered the strategy profile which assure us the equilibrium, all the players will be forced
to play the same strategy profile over and over again (finite or infinite times). Thus, in the
case of repeated game the previous framework does not result very useful. It could also
happen that when all the players use pure strategies, the equilibrium might not exists.
To illustrate the idea, an example of the famous child’s game called rock-paper-scissors is
given below.

Example 3.2.1. The child’s game named rock-paper-scissors is played as follows: rock
beats scissors, scissors beats paper and paper beats rock. If winning gives a payoff of 1
and losing the game yields a payoff -1, and if we assume that a tie is worth 0, then the
game can be described in the matrix form as shown in Fig. 3.3.

It is quite easy to write down the best response (deterministic strategies) correspon-
dence for player 1 when he believes that player 2 will play one of his pure strategies as:
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Player 2

Rock Paper Scissor

Player 1
Rock 0,0 -1,1 1,-1

Paper 1,-1 0,0 -1,1

Scissor -1,1 1,-1 0,0

Figure 3.3: Matrix representation of the rock-paper-scissors game.

s1(s2) =


P when s2 = R

S when s2 = P

R when s2 = S,

(3.2.1)

and a similar list of best responses can be written for the player 2 given his believes
that player 1 will play from one of his pure strategies:

s2(s1) =


P when s1 = R

S when s1 = P

R when s1 = S.

(3.2.2)

By examining the two best response correspondences, it implies that starting from any
pair of pure strategies there is no Nash equilibrium, as at least one player is not playing a
best response and will for sure want to change his strategy in response.

It can be shown that in the game rock-paper-scissors, if both players choose stochas-
tically among their strategies then the Nash equilibrium exists and if any player decides
to use only pure strategies, it doesn’t exists. The purpose of extending our framework
is to avoid the inconvenience of the non existence of Nash equilibrium in some particular
cases. Now, we proceed by extending the whole framework presented in the section 3.1 by
including mixed strategies and then we will proceed with our game formulation in which
players (BSs) will use probability distributions over their available pure strategies. At the
end, we will announce the theorem which states the conditions that every n-player game
must satisfy for the existence of Nash equilibrium [6].

Here we introduce the idea of players choosing stochastically among their available
strategies, which means that every player will play mixed strategies. By doing so, as we
are interested in a game which is repeated over time, our players will have more degree of
freedom in choosing among their strategies. After a brief theory introduction about the
mixed strategies, in which we will extend the definition of expected payoff, the definition
of the Nash equilibrium in the case of mixed strategies will be given. The main reason of
extending our framework by including mixed strategies is the following one: In the static
game of a complete information some times may occur that the Nash equilibrium doesn’t
exits. This may be occur due to the fact that players are forced to choose their strategies
deterministically. By letting them choose stochastically, players have much more degree
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of freedom and the possibility of the existence of the equilibrium increases. Notice also
that the pure strategy case is a particular case of the mixed strategies in which only one
strategy is chosen by each player with probability 1 and each player assigns null probability
to all the other strategies [7].

We start with the basic definition of random play in the case in which all the players
have finite strategies, which is exactly our case of interest, as the only strategies available
by the players are : Uplink or Downlink.

Definition 8. Let Si = {si,1, si,2, ..., si,m} be the player i’s finite set of pure strate-
gies. We define ∆Si as a simplex of Si, which is the set of all probability distribu-
tions over Si. A mixed strategy for player i is an element σi ∈ ∆Si so that σi =
{σi(si,1), σi(si,2), ...., σi(si,m)} is a probability distribution over Si, where σi(si) is the prob-
ability that player i plays si ∈ Si.

The definition states that a mixed strategy for player i is just a probability distribution
σi ∈ ∆Si over his pure strategies. As now we are dealing with probability distributions,
the following properties must also be satisfied :

1. σi(si) ≥ 0, for all si ∈ Si

2.
∑

si∈Si σi(si) = 1

The first property tell us that the probability of any event must be greater than or equal
to zero and the sum of the probabilities of all the possible events must add up to one.
The definition 4 of expected payoff can be rewritten more formally in the case of mixed
strategies. From now on, the convention of referring to all the mixed strategies chosen by
the i-th player’s opponents as ~σ\i will be used, which belong to the simplexes which will
be referred as ∆S\i, which allow us to write ~σ\i ∈ ∆S\i. We will also denote with S\i the
strategic profile of the i-th player’s opponents.

Definition 9. The expected payoff of player i when he chooses the mixed strategy σi ∈
∆Si and his opponents play the mixed strategies σ−i ∈ ∆S−i is

v1(σi, ~σ\i) =
∑
si∈Si

σi(si)vi(si, ~σ\i) =
∑
si∈Si

 ∑
s\i∈S\i

σi(si) ~σ\i( ~s\i)vi(si, ~S\i)

 (3.2.3)

Definition 9 can be stated also for players using pure strategies, but it will be omitted,
as we are strictly interested in players using only mixed strategies. Now we can state the
definition of Nash equilibrium in the case of players using only mixed strategies as follows:

Definition 10. The mixed strategy profile ~σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
n) is a Nash equilibrium if

for each player i, σ∗i is a best response to ~σ\i
∗. That is, ∀i ∈ P,

vi(σ
∗
i , ~σ\i

∗) ≥ vi(σi, ~σ\i∗) ∀ σi ∈ ∆Si

Definition 10 states that each player will be choosing a mixed strategy σ∗i ∈ ∆Si which
is the best choice he can make when his opponents are choosing some mixed strategy
profiles ~σ\i

∗ ∈ ∆S\i. In short words, each player i should choose the mixed strategy σ∗i
which yields him the highest expected payoff. Now we are ready to state the theorem
which is the cornerstone of the game theory and generalizes the condition under which it
is possible to find the Nash equilibrium of any n-player game [6]- [7].
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Theorem 1. Any n-player normal-form game with finite strategy sets Si for all players
has a Nash equilibrium in mixed strategies.

The proof of this theorem is omitted as this is not the primary focus of this thesis.
The theorem states sufficient conditions for the existence of the Nash equilibrium of any n-
player game when players use mixed strategies. Now we have come far enough to precisely
understand what the Nash equilibrium means in the case of mixed strategies. After gaining
all the theoretical basis necessary to formulate the game of our interest, we now proceed by
formulating our problem as a static game of complete information with mixed strategies.

3.2.2 Game formulation in the case of static game of complete informa-
tion using mixed strategies

Suppose we are in a strategic environment and let the BSs be the players who have
to choose between the Uplink or Downlink strategy in order to maximize their payoff
(throughput). As we are formulating a game of complete information, we assume that ev-
ery player knows exactly all the channels situated among their UEs and among all the other
BSs and their UEs. Suppose also that every base station transmits signal with maximum
available power P and all the user equipments transmits signal with maximum available
power Q. As everything is available to each player’s knowledge, assume also that every
player can compute his SINR and also the SINR values of his opponents, i.e. every player
possesses his payoff value and also the payoffs of other players. In this scenario, which is
quite unrealistic or hardly encountered, every player can determine which strategy to play
by mixing (randomizing) between their strategies in order to achieve the Nash equilibrium
of Definition 10. The reason why we wish to determine the Nash equilibrium of this game
is: Players may predict the best for themselves, but at the end they might end up by
getting a very little portion of it. To be more precise, as we are in a strategic environment
in which payoff of each player is correlated by the strategies chosen by other players, the
perfect strategy’s choice may not be trivial. For example, one player can simply select the
strategy that gives him the highest payoff. But as his final payoff is strongly influenced by
decisions made by other players, he may end up by getting a very small amount of payoff
that he predicted before choosing his strategy. The Nash equilibrium makes prediction
of the best strategic profile for which all the players are satisfied and nobody wants to
deviate from his strategy given the strategies chosen by other players. We strictly impose
the assumption that each player is interested in achieving the equilibrium. Otherwise, if
there is a possibility of having players not interested in achieving the equilibrium then
players who are interested in, may pay the price. Another important assumption required
by theorem 1 to allow the existence of Nash equilibrium is that the strategy sets Si for
each player i is finite. In our case, each player has only two strategies available: Uplink
and Downlink, which means the previous assumption is always satisfied. We also assume
that every player is willing to mix between his pure strategies, otherwise there may be
no existence of Nash equilibrium as in the case of rock-paper-scissors. Finally, under the
assumptions :

Assumptions

1. Each player transmits signal with power P .

2. Each UE transmit signal with power Q.

3. Every player knows the channels situated among their UEs and among all the other
players and their UEs.
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4. Every player is able to compute his SINR and the SINRs of other players, so the
payoffs.

5. Everyone involved in the game is rational.

This precisely state that every player knows everything about the game environment

and is able compute his and other players’ payoff. We can give the normal-form represen-

tation of our game in the case of n-player game as follows:

Normal-form representation of the dynamic TDD assignment n-player
game

1. Set of Players P = {1, ...., n} (the Base stations) and each player i has his own UEs
set Ui = {1i, ....ji}. Moreover, the total UEs belong to set M = {1, .....m}

2. A collection set of pure strategies {S1, ....., Sn}, where each Si = {Uplink,Downlink}

3. A set of payoff functions, {v1, ...., vn}, each assigning a payoff value to each combi-
nation of chosen strategies, that is vi : S1 × S2 × ...× Sn →

wi

(
Xi

(∑
j∈Ui

log2

(
1 +

Hi,j P

σ2
d +

∑
k 6=n
k∈N\i

Hk,j P +
∑
m∈N
m 6=i

∑
x∈Um

Ux,jQ

))

+ (1−Xi)

(∑
j∈Ui

log2

(
1 +

Hi,j Q

σ2
u +

∑
k 6=i
k∈N\i

Bk,iP +
∑
m∈N

∑
y∈Um
y 6=j

Hi,yQ

))) (3.2.4)

As we are dealing with mixed strategies, we also include the simplexes ∆Si for each
strategy set Si:

4. A collection set of simplexes {∆S1, .....,∆Sn}, where σ ∈ ∆Si is a mixed strategy,
σi = {σ(Uplink), σ(Downlink)} and σi(Uplink) + σi(Downlink) = 1.

Now we have a normal-form representation of our game static game of complete informa-
tion with mixed strategies. However, the solution of this game in the case of n-players
is not trivial. As the theorem 1 states: the Nash equilibrium exists if the strategy set of
each player is finite, but it doesn’t tell us how to find it. We can decrease the difficulty by
limiting ourself to case in which we have only 2 players and find its Nash equilibrium by
exploiting the theory presented before.

3.2.3 Solution of the 2-player dynamic TDD assignment game

We now consider the simplest case in which there are only 2 players with strategy sets
Si = {Uplink,Downlink}, i = 1, 2. First of all, we proceed by giving the normal-form
representation of this game under the assumption stated above. Then we will depict our
game by using both decision tree and Matrix representation methods. Finally, a method
to find the Nash equilibrium for our game will be proposed to predict the optimal behavior
of both players.
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Normal-Form representation of the dynamic TDD assignment 2-player game

1. Set of Players P = {1, 2} (the Base stations),

2. A collection set of pure strategies {S1, S2}, where Si = {Uplink,Downlink} for i =
1, 2.

3. A set of payoff functions, {v1, v2}, that is vi : S1 × S2 → (3.2.4).

4. A collection set of simplexes {∆S1,∆S2}, where σ1 = {q, 1− q}, for 0 ≤ q ≤ 1 is an
element of ∆S1 and σ2 = {p, 1− p}, for 0 ≤ p ≤ 1 is an element of ∆S2.

As there are many possible values of p and q, there are many σ1 and σ2 elements of the
simplexes. As it can be noticed, a normal-form representation of the 2-player game can
be easily depicted as the cardinalities of all the sets are very small. Below, we present the
2-player game by using the decision tree method first and then by exploiting the matrix
representation method. The convention of specifying player 1’s payoff as P 1

a,b and players

2’s payoff as P 2
a,b, where a ∈ S1 and b ∈ S2 will be used in the decision tree. The adoption

of this convention is justified by maintaining the structure of decision tree compacted and
the use of subscripts a and b allow us to emphasize the strategies chosen by both players.

P1

(
P 1
U,U

P 2
U,U

)

U

(
P 1
U,D

P 2
U,D

)

D

U

(
P 1
D,U

P 2
D,U

)

U

(
P 1
D,D

P 2
D,D)

)

D

D

P2

Figure 3.4: Decision tree of a 2-player game. The dotted line represents the idea of both
players making moves simultaneously and without observing moves made by other player.
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Figure 3.5: Matrix form representation of the 2 player TDD assignment game. Because
of the space related issues, the matrix is rived into two different pieces.

After getting graphically an idea of our 2-player game, its now time to move towards
the equilibrium condition. As stated by Definition 10, a mixed strategy profile is a Nash
equilibrium if it yields each player the highest expected payoff given the strategies played
by other players. The decision tree graphical method captures the essence of play but
the matrix representation can be easily used to find the equilibrium. Let’s recall that
searching for the Nash equilibrium, corresponds to looking for the mixed strategy profile
of σ∗1 = {q∗, 1− q∗} and σ∗2 = {p∗, 1− p∗}, which yields each player the highest expected
payoff. As we are playing a 2-player game of complete information, every player knows his
and his opponents payoffs. Suppose that player 1 chooses with probability q the strategy
s1 = Uplink, thus with probability 1 − q the strategy s1 = Downlink. On the other
hand, suppose that player chooses with probability p the strategy s2 = Uplink, hence
with probability 1− p the strategy s2 = Downlink. We suppose that the values of p and
q are of common knowledge. In order to proceed, we start first by writing the expected
payoffs from the point of view of each player.

From the point of view of player 1:

v1(U, s2) = p wn
∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +

∑
m=1,2

∑
y∈Um
y 6=j

H1,yQ

)

+ (1− p)w1

∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +B2,1P +

∑
y∈U1\j

H1,yQ

) (3.2.5)
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v1(D, s2) = p w1

∑
j∈U1

log2

(
1 +

H1,j P

σ2
d +

∑
x∈U2

Ux,jQ

)
+ (1− p)w1

∑
j∈U1

log2

(
1 +

H1,j P

σ2
d +H2,j P

)
(3.2.6)

The first equation represents player 1’s expected payoff when he chooses strategy
s1 = Uplink and in the second equation we have his expected payoff when he decides
to play s1 = Downlink. It must be noticed that in both cases the expected payoff of
player 1 is obtained as the weighted sum of the mixed strategy profile of player 2. We
know do the same from the point of view of player 2 as follows.

From the point of view of player 2:

v2(s1, U) = q w2

∑
j∈U2

log2

(
1 +

H2,j Q

σ2
u +

∑
m=1,2

∑
y∈Um
y 6=j

H2,yQ

)

+ (1− q)w2

∑
j∈U2

log2

(
1 +

H2,j Q

σ2
d +B1,2P +

∑
x∈U2\j

H2,xQ

) (3.2.7)

v2(s1, D) = q w2

∑
j∈U2

log2

(
1 +

H2,j P

σ2
d +

∑
x∈U1

Ux,jQ

)

+ (1− q) w2

∑
j∈U2

log2

(
1 +

H2,j P

σ2
d +H1,jP

) (3.2.8)

The first equation represents player 2’s expected payoff when he chooses the strategy
s2 = Uplink and the second equation shows his expected payoff when he decides to play
s2 = Downlink. It is worth recalling, as we are playing a game of complete information,
(3.2.5)-(3.2.8) are known by both players. If we observe (3.2.5)-(3.2.6), the task of player
2 is to choose the value of p such that the equality between these equations hold. Which
means, he should choose his optimal mixed strategy in such a way that his opponent is
indifferent of his choice. Otherwise player 1 could play the mixed strategy which yield him
a bigger payoff with higher probability and player 2 may loose the game. The same task
has to be computed by player 1 by looking at (3.2.7) - (3.2.8). He must choose the value
of q in order to render both expected payoffs of player 2 equal. To be more precise, player
2 should select the value p∗ and player 1 should choose the value q∗ which makes their
opponent indifferent of his choice. The optimal values p and q can be found by satisfying
the equalities:

v1(U, s2) = v1(D, s2), (3.2.9)

v2(s1, U) = v2(s1, D), (3.2.10)

and then by solving (3.2.9) for p and (3.2.10) for q, we can obtain the values p∗ and q∗. As
stated by Definition 10, the pair of values (p∗, q∗) are the one which assures us the Nash
equilibrium.

3.2.4 Solution of the 3-player dynamic TDD assignment game

In the previous subsection we learned how to solve the dynamic TDD assignment game
in the case of two players. Almost all the examples available in the literature (see [5], [6]
and [7]) take into account only the static game of complete information with two players.
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The reason could be the following one: by exploiting the matrix form representation of
any 2-player game we can easily find the Nash equilibrium in the case of pure strategies,
whose explanation has been omitted as we are strictly interested in the mixed strate-
gies case. While, by using the method explained in the previous, the Nash equilibrium
can be easily found also in the case of mixed strategies. However, our game represents
a practical scenario which can normally include more than 2 players. By following this
belief, we would like to build a method which allows us to play the dynamic TDD assign-
ment game with three players. So, now we consider the case in which we have 3 players
(BSs) and each of them has their own UEs’ set. Each player has his own strategy’s set
Si = {Uplink,Downlink}, for i = 1, 2, 3. We assume that all the players strictly play
mixed strategies and no one is willing to play any pure strategy. First of all, we proceed
by giving the normal-form representation of the game under the assumptions (5). Then
we will depict our game by using the decision tree method. It should be clear that as we
are considering a 3 players game, it won’t be possible to use the matrix representation
method to depict the game. Finally, a concept of finding the Nash equilibrium of the
3-player dynamic TDD assignment game will be proposed.

Normal-Form representation of the dynamic TDD assignment 3-player game

1. Set of Players P = {1, 2, 3} (the Base stations).

2. A collection set of pure strategies {S1, S2, S3}, where Si = {Uplink,Downlink} for i =
1, 2, 3.

3. A set of payoff functions, {v1, v2, v3},as from → (3.2.4).

4. A collection set of simplexes {∆S1,∆S2,∆S3} , where σ1 = {q, 1− q}, for 0 ≤ q ≤ 1
is an element of ∆S1, σ2 = {p, 1 − p}, for 0 ≤ p ≤ 1 is an element of ∆S2 and
σ3 = {r, 1− r}, for 0 ≤ r ≤ 1 is an element of ∆S3.

As there are many possible values of p,q and r, there are many σ1, σ2 and σ3 elements
of the simplexes ∆S1,∆S2 and ∆S3. The normal-form representation of the 3-player game
can be depicted with the decision tree method. For the sake of simplicity and compactness,
we will use again the notation of Section 3.2.3 with little extensions. To be precise, we
will use the notation P ia,b,c for i = 1, 2, 3 to specify player i’s payoff, which is dependent on
the strategy chosen by player i and by all the other player. The subscripts a, b, c denote
the strategies chosen by all the three player, i.e. a ∈ S1, b ∈ S2 and c ∈ S3. We will
also use the abbreviation of the strategy Uplink as U and the strategy Downlink as D in
the payoffs. This notion will be used used for being able represent the 3-player game’s
decision tree in a compact way. We will also use the notation U to denote the strategy
Uplink and D to denote the strategy Downlink on the edges of the decision tree. By using
this simplified notation the decision tree for the 3-player game is presented in Fig. 3.6.

As it can be clearly noticed by comparing the 3-players’ decision tree in the Fig. 3.6
with the 2-players’ in Fig. 3.4, the graphical complexity is increased considerably. Not
only, also the solution of the 3-players’ game is quite more difficult than the solution of
the 2-players’ game. The reason is because each player’s payoff is now dependent on the
strategies chosen by other two players and as the consequence, we will have to deal with
one more variable while searching for the Nash equilibrium. The expected payoff of each
player will strictly depend on the product of probabilities with which they choose their
strategy and we may end up solving non-linear equations. After all these observations,
we now proceed by looking at the solution of the 3-player’s game. The idea of making
each player indifferent of his choice will be followed again and we will look for its Nash
equilibrium. Let’s recall that searching for the equilibrium corresponds to looking for the
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Figure 3.6: Decision tree of the 3-player dynamic TDD assignment game. The dotted line
represents the idea of all the 3 players making moves simultaneously and without observing
moves made by other player. The abbreviation of D to D and U to U is used because of
space reasons.

mixed strategy profile σ1 = {q∗, 1 − q∗},σ2 = {p∗, 1 − p∗} and σ3 = {r∗, 1 − r∗}, where
σ1 ∈ ∆S1, σ2 = ∆S2 and σ3 ∈ ∆S3, which yields each player the highest expected payoff
according to the payoff function (3.2.4). Moreover, we are playing a static game of com-
plete information with all the payoffs and channel gains of common knowledge. As we did
in the 2-player’s game, we will look at the each player i’s payoff v(i,~i\i) from i’s point of
view and will try to search for the optimal values q∗, p∗, r∗ which will render their choice
of mixing among their strategies indifferent.
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From the point of view of player 1:

v1(U, s2, s3) =r

(
p w1

∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +

∑
m=1,2
,3

∑
y∈Um
y 6=j

H1,yQ

)

+ (1− p)w1

∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +

∑
k=2

Bk,1P +
∑

m=1,3

∑
y∈Um
m 6=j

H1,yQ

))

+ (1− r)

(
p w1

∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +

∑
k=3

Bk,1P +
∑

m=1,2

∑
y∈Um
y 6=j

H1,yQ

)

+ (1− p)w1

∑
j∈U1

log2

(
1 +

H1,j Q

σ2
u +

∑
k=2,3

Bk,1P +
∑
y∈U1
y 6=j

H1,yQ

))
,

(3.2.11)

v1(D, s2, s3) =r
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(3.2.12)

We will write the equations (3.2.5)-(3.2.6) in a more compact way, which will allow us
to manipulate them more easily. Note that, even if the structure of the equations seems
very difficult, in our static game of complete information all the quantities within the
brackets are of common knowledge. By specifying the payoffs of player one as a function
of strategies chosen by all the three players, we can write the payoffs of player one as:

v1(U, s2, s3) =r

(
p v1(U,U, U) + (1− p) v1(U,D,U)

)

+ (1− r)

(
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)
,

(3.2.13)

v1(D, s2, s3) =r
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)
.

(3.2.14)
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From the point of view of player 2:
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(3.2.15)

v2(s1, D, s3) =r
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(3.2.16)

and as we did for player 1, we can write these equations in a more compact way as:

v2(s1, U, s3) =r

(
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)
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)
,

(3.2.17)

v2(s1, D, s3) =r
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)
.

(3.2.18)
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From the point of view of player 3:
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(3.2.19)

v3(s1, s2, D) =p
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(3.2.20)

and again as we did for player 1 and player 2, we can write the strategy dependent payoff
of player 3 as:

v3(s1, s2, U) =p

(
q v3(U,U, U) + (1− q) v3(D,U,U)

)

+ (1− p)

(
q v3(U,D,U) + (1− q) v3(D,D,U)

)
,

(3.2.21)

v3(s1, s2, D) =p

(
q v3(U,U,D) + (1− q) v3(D,U,D)

)

+ (1− p)

(
q v3(U,D,D) + (1− q) v3(D,D,D)

)
.

(3.2.22)
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Let’s recall that we are looking for the Nash equilibrium such that each player is
indifferent between their strategies. Making all the players indifferent yield the following
conditions:

v1(U, s2, s3) = v1(D, s2, s3), (3.2.23a)

v2(s1, U, s3) = v2(s1, D, s3), (3.2.23b)

v3(s1, s2, U) = v3(s1, s2, D). (3.2.23c)

By satisfying all these three condition, the following equality holds:

r p

(
v1(U,U, U)− v1(D,U,U)− v1(U,D,U) + v1(D,D,U)

− v1(U,U,D) + v1(D,U,D) + v1(U,D,D)− v1(D,D,D)

)
+

p

(
v1(U,U,D)− v1(D,U,D)− v1(U,D,D) + v1(D,D,D)

)
−

r

(
v1(U,D,D)− v1(D,D,D)

)
= v1(D,D,U)− v1(U,D,U)

(3.2.24)

r q

(
v2(U,U, U)− v2(U,D,U)− v2(D,U,U) + v2(D,D,U)

− v2(U,U,D) + v2(U,D,D) + v2(D,U,D)− v2(D,D,D)

)
+

q

(
v2(U,U,D)− v2(U,D,D)− v2(D,U,D) + v2(D,D,D)

)
−

r

(
v2(D,U,D)− v2(D,D,D)

)
= v2(D,D,D)− v2(D,U,D)

(3.2.25)

p q

(
v3(U,U, U)− v3(U,U,D)− v3(D,U,U) + v3(D,U,D)

− v3(U,D,U) + v3(U,D,D) + v3(D,D,U)− v3(D,D,D)

)
+

q

(
v3(U,D,U)− v3(U,D,D)− v3(D,D,U) + v3(D,D,D)

)
−

p

(
v3(D,D,U)− v3(D,D,D)

)
= v3(D,D,D)− v3(D,D,U)

(3.2.26)

As it can be noticed, we have ended up with a system with three equations and three
unknowns, q, p and r. All the quantities that appear within the parenthesis are of common
knowledge, which means everyone posses its knowledge. Only the unknown variable p, q, r
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are need to be found and once we have solved the system, we would obtain q∗, p∗, r∗ which
specifies the probabilities with which each player should choose the strategy Uplink. On
the other hand, the strategy Downlink is chosen by player 1 with probability 1 − q∗, by
player 2 with with probability 1− p∗ and by player 3 with probability 1− r∗, respectively.
The strategy profile (q∗, p∗, r∗) is the Nash equilibrium of the 3-player dynamic TDD
assignment game and yields each player the highest expected payoff given the strategies
chosen by the other players.

3.3 Static game of incomplete information

In the previous section we analyzed the 2-player and the 3-player dynamic TDD assign-
ment game in which our BSs played the role of players. By exploiting the tools offered by
game theory we proceeded directly in the search of Nash equilibrium under one particu-
lar hypothesis: every one knows everything about every one. This means that the game
which is being played is common knowledge and players are aware of all the payoffs of
their opponents. This scenario is quite unrealistic or maybe hardly encountered in real-
ity. To formulate the game, we supposed that every player knows all the channel gains
among all the players and all the UEs and everyone is able to compute the SINR of their
opponents, which is not so realistic. Maybe it is more convincing that every player has
a reasonably good idea about their opponents’ payoffs, without knowing them precisely.
In this situation the theoretical toolbox developed in Section 3.1 is not adequate to ad-
dress such situations. When players have an idea of the characteristics of other players,
this situation is very similar to the case of simultaneous move game in which players do
not know what actions their opponents are taking, but they know what their action sets
are. In the mid-1960s John Harsanyi found the similarity between beliefs over strategies,
which is the probability distribution over players’ opponents’ strategies and beliefs over
their characteristics. Harsanyi introduced a new operational way to capture the idea that
beliefs (probability distribution) over the characteristics of other players can be embedded
into the framework that we presented before. From now, we will use the convention to
refer players having different characteristics as different types. Players having different
types can be classified based on the different kind of knowledge they posses, different type
of preferences over outcomes they have or how well each player knows his opponents’ pay-
offs. However, they all lead to the case in which players can have multiple type dependent
payoffs. This kind of games are called games of incomplete information, also known as
Bayesian games [5]- [6]. As we did before, we will proceed by giving a brief introduction
to the theory related to the games of incomplete information to find the Nash equilibrium
in the case of mixed strategies. To develop the concept, let’s assume that the set of players
P = {1, 2...., n} and the collection of sets of strategies {S1, ..., Sn} are still common knowl-
edge. The component which is being missing is the exact knowledge of the type dependent
payoff functions or the preference that each player has over the outcomes. To capture the
idea that players’ characteristics maybe unknown to other players, we introduce the idea
of having uncertainity over the preferences of players. The main requisite to solve these
kind of games is that every player has well-defined beliefs over the types of his opponents.
Harsanyi proposed the following framework: Imagine that before the game starts, Nature
chooses players’ types from their set of types, therefore Nature decides how to associate
players’ payoffs to the their types. Once every player has learned his type, which is his
private information, everyone can form a well defined beliefs about their opponents by
exploiting some kind of information which is common knowledge among all players. It
may be important to emphasize that two different types of same player may not differ in
his preferences, but they may differ in the knowledge they have about the types or the
preferences of other players or about the characteristics of the game. The choice made by
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Nature can be commented also in a different manner, where Nature is choosing a game
from a large set of games, with same players and strategies but with different payoff func-
tions. If Nature is choosing randomly among many possible games, then there must be a
well defined joint probability distribution over these different games which is exploited by
Nature to choose the player’ types. As we will see, this is the common knowledge infor-
mation cited in Harsanyi’s framework which will allow every player to form well defined
beliefs about their opponents.

Before moving toward the analysis of the game of incomplete information, an impor-
tant point that must be addressed is about the behavior of players depending on their
strategies. In order to impose their optimal behavior, we will let them choose the optimal
strategy to maximize their type dependent payoffs given their beliefs over their opponents’
strategies. This is the same approach we followed in the static game of complete infor-
mation of the previous section where we didn’t have to deal with type dependent payoffs.
In order to do so, we assume that players know their own preferences, which in turn will
allow us to analyze a player’s best response given his assumptions about the behavior of
his opponents. A last important issue that is still needed to answer is, even if the play-
ers know their own preferences and they do not know the preferences (or types) of other
players, what must each player know in order to allow them to have a well-defined best
response, to perform the Nash equilibrium analysis. This may not be a trivial question to
answer and as Harsanyi realized, players must form correct-beliefs about the preferences
and types of their opponents. This will allow players to form rational conjecture about the
way in which their opponents will play the game. Due to this reason, we assume that even
if players do not know the actual preferences of their opponents, they all know how Nature
chooses these types. Which means, each player knows the joint probability distribution
over players’ types and this is included in the common knowledge possessed by each player
of the game. This assumption is called the common prior assumption and it means that
all players agree on the way in which Nature chooses players’ types described by some
joint probability distribution. To define the framework of incomplete information, the
following steps will be followed: First of all, we will model the game of incomplete under
the assumption that players have uncertainty about the preferences of other players, thus
their types. Second, we will assume that players share same beliefs about this uncertainty,
which will allow us to formulate the game of our interest. Finally, its normal-form repre-
sentation will be given. After that, we will use all these theoretic tools to formulate the
dynamic TDD assignment game of incomplete information and we will try to perform the
equilibrium analysis.

3.3.1 Strategic representation of Bayesian Games

Now we extend the framework presented in Section 3.2, in which normal-form represen-
tation of a static game of complete information was given, for the case of static game of
incomplete information. Our aim of this section is to formulate the dynamic TDD assign-
ment static game of incomplete information and then be able to perform the equilibrium
analysis in the case in which players strictly play mixed strategies. The definition of mixed
strategy previously given, will be extend to our case of interest because now we will have
to deal with imperfect information. Before proceeding, let’s recall that the normal-form
representation of a game of complete information in given in Definition 7. We wish to
extend this framework in the scenario in which players know their own type dependent
payoffs from outcomes, but they do not know the type dependent payoffs of their oppo-
nents with certainty. More precisely, everyone knows theirs own type dependent payoffs
with certainty and of theirs opponents type dependent payoffs statistically, according to
their beliefs. This particular assumption is quite important, if it is not so, then players
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will not be able to act rationally and perform the equilibrium analysis. Regarding the
knowledge that players posse about their opponents, it can be of different types. For ex-
ample, in the dynamic TDD assignment game of incomplete information, which we will
define later in a formal way, if we fix the values of powers used by BSs and UEs, then the
following classification can be made to distinguish between the players’ types depending
on knowledge of channel gains that each player possesses as follows:

1. Players may know with certainty only the channel gains situated among their UEs
and statistically between other players and their UEs;

2. Players may possess the knowledge of all the channels gains among their UEs and
among the other players and their UEs in the neighborhood with certainty and only
statistically the channel gains among the players which are far.

3. Players may know the channel gains of half of the players of the game with certainty,
which is their private information and of other halfs statistically.

The classification can go on and for every point players will have different types, thus the
different type dependent payoffs. Notice that once Nature chooses the types of players,
there is one and only game of incomplete information which corresponds to the selected
types’ profile. It is like having multiple dynamic TDD assignment games of incomplete and
Nature decides which game will be played. The previous classification can be done under
the common prior assumption, i.e. nobody will question how Nature chooses among the
types of different players and this choice is common knowledge. It is now time to extend the
framework of Section 3.2 by including three tools which will allow us to represent our game
in the normal-form. First, a player’s preference will be associated with his type. If a player
is allowed to have many preferences over outcomes, each of them will be associated with
a different type. More generally information that the player has about his own payoffs, or
information he might have about other relevant attributes of the game, is also part of what
defines a player’s type. Second, the randomness over types is described by Nature choosing
players’ types profile. Hence, we introduce the type spaces for each player, which are
the sets from which Nature chooses the players’ types with some probability distribution.
Finally, there is a common knowledge how the Nature choose between profiles of types of
players. This is represented by a common prior, which is the probability distribution
over types that is common knowledge among all the players playing the game. Now we
can define a general normal-form representation of the n-player static game of incomplete
information, as follows:

Definition 11. The normal-form representation of n-player static Bayesian game of
incomplete information is:

1. Set of players P = {1, 2, ...., n},

2. A collection of sets of actions {A1, A2, ...., An}, where Ai is the action set of player
i.

3. A collection of sets of types spaces {Θ1,Θ2, .....,Θn}, where Θi = {θi,1, ....., θi,n} is
the type space of player i.

4. A collection of sets {vi(·; θi), θi ∈ Θi}ni=1, where vi : A×Θi → R is the type dependent
payoff function of player i and A ≡ A1 ×A2.....×An.

5. A set {φ1, ....., φn}, where φi describes the belief of player i with respect to the un-
certainty over the other players’ types.
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By looking at definition 11, aside from three basic components: players, actions and
payoffs, the addition of types, type dependent payoffs and beliefs about the types of other
players, captures the idea of a static game of incomplete information or so called the
Bayesian game. A Bayesian game can be thought of as a game played by following these
steps in order:

1. Nature chooses the players’ types profile (θ1, .....θn).

2. Each player i learns his own type θi, which is his private information and then he
can used his prior φi, to form posterior beliefs about all the other players.

3. All players choose simultaneously their actions ai ∈ Ai.

4. Given each player’s choice, the type-dependent payoffs vi(a; θi) are realized for each
player i ∈ P.

It is worth shedding some light on what ”posterior beliefs” means. We introduced
the concept of a common prior which is the information available to all the players and
describes how Nature chooses the players’ type profile. Once every player has learned his
type, all players are able to compute the posterior beliefs about their opponents. This can
be done very easily by exploiting the conditional probabilities. They allow each player to
update their prior believes, in the light of new evidence into posterior beliefs. In order
to show how this mathematical tool will be used throughout the game, it may be useful
to illustrate an example: Suppose that there are two players and each of them have two
possible type, θ1 ∈ {a, b} and θ2 ∈ {c, d}. Nature chooses these types according to common
prior over their four possible combinations, which can be represented as a joint distribution
2× 2 matrix as follows:

Player 2’s type

c d

Player 1’s type
a (1

6) (1
3)

b (1
3) (1

6)

The common prior assumption implies that every player takes as given Nature’s choice
made by using the joint distribution matrix. Now, imagine that player 1 learns his type
is a then he can use the conditional probabilities to update his prior beliefs into posterior
beliefs as follows:

φ1(θ2 = c|θ1 = a) =
Pr{θ1 = a ∩ θ2 = c}

Pr{θ1 = a}
=

1
6

1
6 + 1

3

=
1

3
(3.3.1)

φ1(θ2 = d|θ1 = a) =
Pr{θ1 = a ∩ θ2 = d}

Pr{θ1 = a}
=

1
3

1
6 + 1

3

=
2

3
(3.3.2)

The equation (3.3.1) shows the probability of player 2 being c and the equation (3.3.2)
shows the probability of player 2 being type d. In this way every player can update his
beliefs about the other players, once each of them has learned his type. Now, we can move
on and define the concept of pure strategies and mixed straetgies. Their formal definition
has to be stated more carefully compared to the case of a static game, as we have to deal
with players’ types.

Definition 12. Consider a static Bayesian game defined by following the definition 11.
A pure strategy for player i is a function si : Θi → Ai that specifies a pure action si(θi)
that player i will choose when his type is θi. A mixed strategy is a probability distribution
over a player’s pure strategies.
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Now that we have precisely defined what is a static Bayesian game and defined the
meaning of strategies for each player, we can state the solution concept that is derived
from the Nash equilibrium in Bayesian games when players uses pure strategies as follows:

Definition 13. In a Bayesian game defined under Definition 11. a strategy profile s∗ =
(s∗1, s

∗
2, ....., s

∗
N ) is a pure-strategy Bayesian Nash equilibrium, if for every player i,

for each of player i’s type θi ∈ Θi, and for every ai ∈ Ai, the strategy profile s∗ solves:

∑
θ\i∈Θ\i

φi(θ\i|θi)vi(s∗i (θi), s∗\i(θ\i); θi) ≥
∑

θ\i∈Θ\i

φi(θ\i|θi)vi(ai, s∗\i(θ\i); θi) (3.3.3)

Just for formality, the definition has been stated for the case in which players use
only pure strategies. The definition of our interest, which is when players use only mixed
strategies can be stated as follows:

Definition 14. In a Bayesian game defined under the definition 11, a strategy profile
σ∗ = (σ∗1, σ

∗
2, ....., σ

∗
N ) is a mixed-strategy Bayesian Nash equilibrium, if for every

player i, for each of player i’s type θi ∈ Θ, and for every ai ∈ Ai, the mixed strategy profile
σ∗ solves:

∑
θ\i∈Θ\i

φi(θ\i|θi)vi(σ∗i (θi), σ∗\i(θ\i); θi) ≥
∑

θ\i∈Θ\i

φi(θ\i|θi)vi(σi(θi), σ∗\i(θ\i); θi) (3.3.4)

As it can be clearly noticed, the definition of a mixed-strategy Nash equilibrium in the
case of a static game of incomplete information is an extension of Definition 13 in which,
instead of si(·) that maps types into pure actions, we are using σi that maps types into
probability distribution over actions.

3.3.2 Game formulation in the case of static game of incomplete infor-
mation using mixed strategies

Suppose we are in a strategic environment and let the BSs be the players of our game
and each BS can choose between the actions Uplink or Downlink. As we are formulating
a game of incomplete information, suppose also that each player does not possesses a
complete information about his opponents’ payoffs. More precisely, suppose that each
player knows what are the types of their opponents statistically and what are their type-
dependent payoffs but nobody knows for sure which is the type profile of their opponents
which is being selected by Nature. With this assumption we want to capture the idea
of incomplete information as there is an uncertainty about the players’ opponents’ type
dependent payoffs. The role of Nature in this game is to choose players’ types with
some joint probability distribution. We suppose that the joint probability distribution
exploited by Nature to chooses players’ types is common knowledge, which later will be
used by players to form posterior beliefs. This is the only element which is known by all
the players with certainty. By assuming this property being true, we are invoking the so-
called common prior assumption. Since each player may have different types, which means
everyone may have different type dependent payoffs which are function of the power used
by players, by UEs and depends also on the channel gains. We impose that the type of each
player are only a function of the channel gains and as for the other variables, we assume
that all the players and UEs use the maximum available power P and Q, respectively.
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Under the previous assumption, we can write each player’s type as a solely function of
his channel gains, thus what defines player’s types is his different channel gains which
yield him different payoffs. As there can be different channel gains depending on the
players’ types, we extend the notation of channel matrix H, UE-to-UE channel matrix U
and the BS-to-BS channel matrix B. The extension is required to include the possibility
that players having different types will have different channel matrices, therefore different
payoffs, as the other variables are fixed for each type. Let’s recall that as the dynamic
TDD assignment game of incomplete information starts, Nature chooses the players’ types
profile and each types profile will correspond to one and only one channel matrix, UE-to-
UE channel matrix and BS-to-BS channel matrix from the collection of sets of matrices:

H = {Hθ1,θ2...}, where θi ∈ Θi for i = 1, ..|N |. (3.3.5)

UE = {Uθ1,θ2...}, where θi ∈ Θi for i = 1, ..|N |. (3.3.6)

B = {Bθ1,θ2...}, where θi ∈ Θi for i = 1, ..|N |. (3.3.7)

where H,UE and B contain the type dependent matrices and have the same cardinal-
ity. After Nature’s move, there will be one and only matrix from each collection of sets
which will correspond to the actual matrix of the game. So now, we can think of Nature
choosing from different games as he is choosing among the collection of sets of matrices
which will result in different type dependent payoffs for each player. As the game which
is being played is of incomplete information, each player will have a statistical idea about
the opponents payoffs, thus about the channel gains, which will allow every player to com-
pute their opponents’ expected type dependent payoffs. Each player will also be able to
compute his own type-dependent payoff, as everyone can learn his own type. They will
know with some probability distribution the type-dependent payoffs of their opponents,
thus their channel gains. To be more precise, each player will know his own type and
his channel gains, i.e. if θi = {a, b} and Nature chooses θi = a then player i will be
able to learn that he is in the game H....,θi=a...,U....,θi=a...,B....,θi=a... and will just posses
the information about his opponents’ type profile statistically, thus about their payoffs.
Notice that, in the previous clarification we implicitly meant that all the type dependent
collection of sets are common knowledge among the players and each player have beliefs
over the other players’ types. It may be worth mentioning that the difficulty of our game
is strictly related to the cardinality of the previous collection of sets because if it is bigger
then also beliefs will be spread over bigger sets. As we mentioned in the previous Section,
our game represents a practical scenario in which BSs have to alternate among their strate-
gies to satisfy data traffic demands. Therefore, we suppose that nobody is willing to play
any pure strategy and everybody uses only mixed strategies. If we would allow players
to choose their strategy deterministically, we may end up in a situation in which Nash
equilibrium predicts only one pure strategy for each player. In this way, all the players
will be forced to play the only predicted pure strategy between Uplink or Downlink forever
and will never be able to meet the data traffic demands. Thus the only way to satisfy the
traffic requirements is to allow players to alternate between their strategies. The another
reason to impose the previous assumption is also justified by the Theorem 1 which states
sufficient conditions for the existence of the Nash Equilibrium. Notice that we are again
trying to formulate our game as the rock-paper-scissors game and the only difference is
that there can be many payoffs of each players, which means there can be many different
tables like the Table 3.3 for the same game and only one table will correspond to the actual
game, which strictly depends on Nature’s choice. Finally, under the following assumptions:

Assumptions
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1. Every player (BS) transmits signal with the maximum available power P ,

2. Every UE transmits his signal with the maximum available power Q,

3. All the players mix among their strategies,

4. Every player is rational,

5. Everyone posses the common prior distribution with which Nature chooses players’
types,

6. All types’ sets are common knowledge,

we can write the normal-form representation of the dynamic TDD assignment static game
of incomplete information by following the structure defined in Definition 11.

Normal-Form representation of dynamic TDD assignment game of incom-
plete information

1. Set of players P = {1, 2, ....N} (the Base station).

2. A collection of sets of actions {A1, A2, ...., AN} where Ai = {Uplink,Downlink} is
the action set of player i.

3. A collection of sets of types spaces {Θ1,Θ2, ....,ΘN}, where θi = {θi,1, θi,2, . . . } is
the type space of player i.

4. A collection of sets {vi(·; θi), θi ∈ Θi}Ni=1, where vi : A × Θi → (3.2.4) is a type
dependent payoff function of player i and A ≡ A1 ×A2.....×AN .

5. A set {φ1, ....., φN}, where φi describes the belief of player i with respect to the
uncertainty over other players’ types.

As we are playing a game of incomplete information where every player mixes be-
tween his actions, we extend the Definition 11 to include simplexes.

6. A collection set of type dependent simplexes {∆A1, ....,∆An}, where σ(i, ~θ) ∈ ∆Ai(~θ)
is a type-dependent mixed strategy, σ(i, ~θ) = {σ

i,~θ
(Uplink), σ

i,~θ
(Downlink)} and

σ
i,~θ

(Uplink) + σ
i,~θ

(Downlink) = 1, where ~θ is the type’ vector containing the types
profile of all players and i ∈ P.

Notice that elements 1, 2 and 3 are same of normal-form representation of the static
game of complete information, with only difference that at step 2 now we are dealing
with actions. The extension of this framework by including types spaces and set of beliefs,
together with the extension of the payoff functions being type dependent, captures the idea
of the static game of incomplete information. Now, we have normal-form representation of
the dynamic TDD assignment game of incomplete information in which all players choose
mixed strategies and we would like to find its Nash equilibrium. However, its solution
in the case of n-player game is not trivial. The Theorem 1 tells us which are sufficient
conditions under which the equilibrium exists and that is exactly our case. However,
the solution for n-player games would result very laborious and in order to proceed, we
consider the simplest 2-player case.
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3.3.3 Solution of the 2-player dynamic TDD assignment game of incom-
plete information

We now consider the simplest case in which there are only two players (BSs) and both of
them have the actions’ set Si = {Uplink,Downlink}, for i = 1, 2. In order to formulate
our game, first of all we will proceed by writing the normal-form representation of our game
under the assumptions stated before. As we are considering the 2-player game, we will
be able to represent it through the matrix and the decision tree representation. Finally,
a method to find the Nash equilibrium of dynamic TDD assignment game of incomplete
information in the case of 2 players will be proposed. Notice that, the complexity of the
2-player game is also strictly related to the number of types that each player may have. For
simplicity, we assume that both players can have only two different types, i.e, θ1 = {a, b}
and θ2 = {c, d}, which implies that the collection of sets of matrices are the following:

H = {Hθ1=a,θ2=c,Hθ2=a,θ2=d,Hθ1=b,θ2=c,Hθ1=b,θ2=d}, (3.3.8)

UE = {Uθ1=a,θ2=c,Uθ2=a,θ2=d,Uθ1=b,θ2=c,Uθ1=b,θ2=d}, (3.3.9)

B = {Bθ1=a,θ2=c,Bθ2=a,θ2=d,Bθ1=b,θ2=c,Bθ1=b,θ2=d}. (3.3.10)

As mentioned before, both players will learn their type once Nature has made his
move by exploiting some joint probability distribution. It will result in one and only one
matrix from each collection of set which will correspond to the actual game that is being
played. Remember, players having different types yield them different payoffs which can
be thought as having different games from which Nature chooses. In our case, as there are
only 2 players and each player can have only two different types, we will have a total of
four games. We will use the convention of identifying each player’s type dependent mixed
strategy profile as σ(n, θi), ∀n ∈ N and for i = 1, 2.

Normal-Form representation of the dynamic TDD assignment 2-player game
of incomplete information

1. Set of Players P = {1, 2} (the Base stations),

2. A collection of sets of actions {A1, A2} where Ai = {Uplink,Downlink} for i = 1, 2.

3. A collection of sets of type spaces {Θ1,Θ2} where Θi = {θi} is the type space of
player i for i = 1, 2 and θ1 = {a, b} and θ2 = {c, d}.

4. A collection of sets {vi(·, θi), θi ∈ Θi}2i=1, where vi : A × Θi → (3.2.4) is the type
dependent payoff function of player i and A ≡ A1 ×A2.

5. A set {φ1, φ2} of beliefs of each player.

6. A collection set of type dependent simplexes {∆A1,∆A2} where σ(i, ~θ) ∈ ∆Si and
σ(1, θ1 = a, θ2 = c) = {q, 1 − q}, σ(1, θ1 = a, θ2 = d) = {r, 1 − r}, σ(1, θ1 =
b, θ2 = c) = {s, 1 − s}, σ(1, θ1 = b, θ2 = d) = {p, 1 − p} are the elements of ∆S1,
σ(2, θ1 = a, θ2 = c) = {y, 1 − y}, σ(2, θ1 = a, θ2 = d) = {z, 1 − z}, σ(2, θ1 = b, θ2 =
c) = {x, 1 − x}, σ(2, θ1 = b, θ2 = d) = {t, 1 − t} are the elements of ∆S2 and
0 ≤ q, r, s, p ≤ 1 and 0 ≤ y, z, x, t ≤ 1 are the probabilities with which player 1 and
player 2 play the strategy Uplink, respectively.



3.3 Static game of incomplete information 47

Let’s recall that as there are many possible values of q, r, p, s, there are many possible
mixed strategies for both players. Finding the Nash equilibrium of our game consist in
search of the one optimal pair from the pairs (q∗, p∗), (q∗, s∗), (r∗, p∗), (r∗, s∗) and which
pair has to be found depends strictly on the players’ type profile which is being selected by
Nature. To represent our game in the matrix form, we will use four matrix representations
for the four possible type dependent games and then we will adopt the same methodology
that we used in the static game of complete information to find its Nash equilibrium. In
the matrix form representation we will use the notations Hθ1,θ2

n,j , Bθ1,θ2
k,n , Uθ1,θ2x,j , ∀n ∈ N , k ∈

N\n,∀x ∈ Uk and j ∈ Un, to represent the different type dependent channel gains. In order
to highlight the type dependent payoffs in the decision tree representation, we will use the
notation P i,s,tx,y , where x ∈ A1, y ∈ A2, i ∈ P, s ∈ θi and t ∈ θ2, to identify players’
type dependent payoffs. In this way we will be able to represent our game in the decision
tree representation in a compact way by taking into account the players’ type dependence.
The decision tree of our 2-player dynamic TDD assignment game is presented in Fig. 3.11,
which consists of 24 = 8 terminal nodes. Now, we proceed by analyzing our game:
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Figure 3.7: Matrix form representation of the 2-player TDD assignment game when the
player 1 is of type θ1 = a and player 2 is of type θ2 = c. We name this game as game AC.

Now we will use the same mechanism that we used in the dynamic TDD assignment
game of complete information in which we wrote the expected payoffs of each player from
their point of view. As this information was available to all the players, everyone could
choose the mixed strategy which make his opponents indifferent of their choice. But now
the things are different as we are in a game of incomplete information, the expression that
each player will write to make his opponent indifferent will not be common knowledge.
More precisely, every player will try to write the expected payoff of his opponent which
dependents on the combination of actions and types. In order to proceed, suppose that
Nature chooses players’ types by exploiting the joint probability matrix presented in Table
3.1, which is common knowledge between the players.

It may worth mentioning that the game of incomplete information is played by following
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Figure 3.8: Matrix form representation of the 2-player TDD assignment game when the
player 1 is of type θ1 = a and player 2 are of type θ1 = d. We name this game representation
as game AD.

Player 2’s type

c d

Player 1’s type
a (1

6) (1
3)

b (1
3) (1

6)

Table 3.1: The joint probability matrix used by Nature to select players’ type profile.

these steps in order:

1. Nature chooses the players’ type profile (θ1, .....θN ).

2. Each player i learns his own type θi, which is his private information and then he
can used his prior φi to form posterior beliefs about his opponents.

3. All players choose simultaneously their actions ai ∈ Ai.

4. Given each player’s choice, the type-dependent payoffs vi(a; θi) are realized for each
player i ∈ P.

Suppose that Nature makes his move and chooses types θ1 = a θ2 = c for player 1
and player 2, respectively. Now both players have learned their type and now by using
the common prior distribution of Table 3.1 and by using the conditional probability tool,
both of them can update their prior beliefs as follows:

Player 1’s Update

φ1(θ2 = c|θ1 = a) =
Pr{θ1 = a ∩ θ2 = c}

Pr{θ1 = a}
=

1
6

1
6 + 1

3

=
1

3
(3.3.11)
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Figure 3.9: Matrix form representation of the 2-player TDD assignment game when the
player 1 is of type θ1 = b and player 2 are of type θ2 = c. We name this game representation
as game BC.

φ1(θ2 = d|θ1 = a) =
Pr{θ1 = a ∩ θ2 = d}

Pr{θ1 = a}
=

1
3

1
6 + 1

3

=
2

3
(3.3.12)

Player 2’s Update

φ1(θ1 = a|θ2 = c) =
Pr{θ1 = a ∩ θ2 = c}

Pr{θ2 = c}
=

1
6

1
6 + 1

3

=
1

3
(3.3.13)

φ1(θ1 = b|θ2 = c) =
Pr{θ1 = b ∩ θ2 = c}

Pr{θ2 = c}
=

1
3

1
6 + 1

3

=
2

3
(3.3.14)

Note that players are able to compute the equation (3.3.11)-(3.3.14) because they have
statistical knowledge about their opponents’ type space. We now proceed by writing down
the expected payoffs for each player’s opponent from their point of view as a function of
their own mixed strategies. Player 1 knows that his type is θ1 = a and according to him,
he can be in game AC or game AD. On the other hand, player 2 knows his type being
θ2 = c and according to him he can be in the game AC or BC.
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Figure 3.10: Matrix form representation of the 2-player TDD assignment game when the
player 1 is of type θ1 = b and player 2 are of type θ2 = d. We name this game representation
as game BD.

From the point of view of player 1:
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Figure 3.11: Decision tree of the 2-player dynamic TDD assignment game of incomplete
information. The dotted line represents the idea of both players being unconscious of his
opponent’s move and type. The vector ~θ is the types’ profile vector.
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From the point of view of player 2:
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Now from the point of view of player 1, it can be clearly notice that once he has learned
his type θ1 = a, he knows that the possible games from which Nature could choose are
the game AC or AD. In order to choose his optimal type dependent mixed strategy to
make his opponent indifferent of his choice he can solve the sub-equations of the equations
(3.3.15)-(3.3.16) as follows:

1

3
[q(...) + (1− q)(...)]1 =

1

3
[q(...) + (1− q)(...)]3, (3.3.19)

2

3
[r(...) + (1− r)(...)]2 =

2

3
[r(...) + (1− r)(...)]4. (3.3.20)
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On the other hand, player 2 can do the same by solving the equations:

1

3
[y(...) + (1− y)(...)]5 =

1

3
[y(...) + (1− y)(...)]7, (3.3.21)

1

3
[x(...) + (1− x)(...)]6 =

1

3
[x(...) + (1− x)(...)]8. (3.3.22)

Which yields the Nash equilibrium (a∗, c∗) of our game AC which is the actual game that
has been selected by the Nature.

3.3.4 Solution of the 3-player dynamic TDD assignment game of incom-
plete information

As we saw in the previous section, each player can select his optimal mixed strategy by
using his private information based on the common prior knowledge. However, for the
case in which number of players increase, thus for |P| > 2, things do not work in the same
way. The reason lies in the degree of freedom that each player has in order to make his
opponents indifferent of their choice. As every player can choose just one optimal mixed
strategy, which means each of them has just one degree of freedom, it is not possible to
make more than one opponents indifferent of their choice. Therefore we introduce the
idea of an average game. For us, an average game is a game in which once each player
has learned his type, everyone can transform their common prior believes into posterior
believes which gives them a statistical idea of which game is being played. By exploiting
this statistical knowledge, everyone can create for himself an average game in which all the
payoffs are averaged over all the possible games. Before proceeding for its solution, we give
a formal representation by following the same guidelines that we used in the previous Sec-
tion. Then we will try to find its solution by developing a new mechanism which consider
the game as an average game, where all the type dependent payoffs of each player will be
reduced to an average payoff which will result type independent. In order to represent it
in a compact way, we will use the notation σ(i, θ1, θ2, θ3) to indicate the type dependent
mixed strategy of player i and the notation ~θ will be used to indicate players’ types profile.

Normal-Form representation of the dynamic TDD assignment 3-player dy-
namic game of incomplete information

1. Set of Players P = {1, 2, 3} (the Base stations),

2. A collection of sets of actions {A1, A2, A3} where Ai = {Uplink,Downlink} for
i = 1, 2, 3.

3. A collection of sets of type spaces {Θ1,Θ2,Θ3} where Θi = {θi} is the type space of
player i for i = 1, 2 and θ1 = {a, b},θ2 = {c, d} and θ3 = {e, f}.

4. A collection of sets of payoff functions {vi(·, θi), θi ∈ Θi}3i=1, where vi : A × Θi →
(3.2.4) is the type dependent payoff function of player i and A ≡ A1 ×A2 ×A3.

5. A set {φ1, φ2, φ3} of beliefs for each player.

6. A collection set of type dependent simplexes {∆A1,∆A2,∆A3} where σ(i, ~θ) ∈ ∆Si
and σ(1, a, c, e) = {q1, 1− q1}, σ(1, a, c, f) = {q2, 1− q2}, σ(1, a, d, e) = {q3, 1− q3},
σ(1, a, d, f) = {q4, 1 − q4},σ(1, b, c, e) = {q5, 1 − q5}, σ(1, b, c, f) = {q6, 1 − q6},
σ(1, b, d, e) = {q7, 1−q7}, σ(1, b, d, f) = {q8, 1−q8} are the mixed strategies of player
1, σ(2, a, c, e) = {p1, 1 − p1}, σ(2, a, c, f) = {p2, 1 − p2}, σ(2, a, d, e) = {p3, 1 − p3},
σ(2, a, d, f) = {p4, 1 − p4},σ(2, b, c, e) = {p5, 1 − p5}, σ(2, b, c, f) = {p6, 1 − p6},
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σ(2, b, d, e) = {p7, 1−p7}, σ(2, b, d, f) = {p8, 1−p8} are the mixed strategies of player
2, σ(3, a, c, e) = {r1, 1 − r1}, σ(3, a, c, f) = {r2, 1 − r2}, σ(3, a, d, e) = {r3, 1 − r3},
σ(3, a, d, f) = {r4, 1 − r4},σ(3, b, c, e) = {r5, 1 − r5}, σ(3, b, c, f) = {r6, 1 − r6},
σ(3, b, d, e) = {r7, 1 − r7}, σ(3, b, d, f) = {r8, 1 − r8} are the mixed strategies of
player 3 and all these variable are ranging from 0 to 1

Let’s recall that as there are many possible values that all these variables can assume,
there are many different possible mixed strategies and we are interested to find the opti-
mum ones which gives us the equilibrium condition.

Solution of the 3-player dynamic TDD assignment game of incomplete in-
formation

In order to look for its solution, suppose that Nature uses the following joint probability
distribution table to select the players’ types.

Players’ type profile(θ1, θ2, θ3) Probabilities

a, c, e 1/8
a, c, f 1/8
a, d, e 1/8
a, d, f 1/8
b, c, e 1/8
b, c, f 1/8
b, d, e 1/8
b, d, f 1/8

Now suppose that Nature chooses the type profile (θ1 = a, θ2 = c, θ3 = e). At this
point, each player can learn his own type and update his believes about his opponents as
follows:

Player 1’s Update

φ1(θ2 = c, θ3 = e|θ1 = a) =
Pr{θ1 = a ∩ θ2 = c ∩ θ3 = e}

Pr{θ1 = a}
=

1
8

(1
8)4

=
1

4
(3.3.23)

φ1(θ2 = c, θ3 = f |θ1 = a) =
Pr{θ1 = a ∩ θ2 = c ∩ θ3 = f}

Pr{θ1 = a}
=

1
8

(1
8)4

=
1

4
(3.3.24)

φ1(θ2 = d, θ3 = e|θ1 = a) =
Pr{θ1 = a ∩ θ2 = d ∩ θ3 = e}

Pr{θ1 = a}
=

1
8

(1
8)4

=
1

4
(3.3.25)

φ1(θ2 = d, θ3 = f |θ1 = a) =
Pr{θ1 = a ∩ θ2 = d ∩ θ3 = f}

Pr{θ1 = a}
=

1
8

(1
8)4

=
1

4
(3.3.26)

Player 2’s Update

φ2(θ1 = a, θ3 = e|θ2 = c) =
Pr{θ1 = a ∩ θ2 = c ∩ θ3 = e}

Pr{θ2 = c}
=

1
8

(1
8)4

=
1

4
(3.3.27)

φ2(θ1 = a, θ3 = f |θ2 = c) =
Pr{θ1 = a ∩ θ2 = c ∩ θ3 = f}

Pr{θ2 = c}
=

1
8

(1
8)4

=
1

4
(3.3.28)
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φ2(θ1 = b, θ3 = e|θ2 = c) =
Pr{θ1 = b ∩ θ2 = c ∩ θ3 = e}

Pr{θ2 = c}
=

1
8

(1
8)4

=
1

4
(3.3.29)

φ2(θ1 = b, θ3 = f |θ2 = c) =
Pr{θ1 = b ∩ θ2 = c ∩ θ3 = f}

Pr{θ2 = c}
=

1
8

(1
8)4

=
1

4
(3.3.30)

Player 3’s Update

φ3(θ1 = a, θ2 = c|θ3 = e) =
Pr{θ1 = a ∩ θ2 = c ∩ θ3 = e}

Pr{θ3 = e}
=

1
8

(1
8)4

=
1

4
(3.3.31)

φ3(θ1 = a, θ2 = d|θ3 = e) =
Pr{θ1 = a ∩ θ2 = d ∩ θ3 = e}

Pr{θ3 = e}
=

1
8

(1
8)4

=
1

4
(3.3.32)

φ3(θ1 = b, θ2 = c|θ3 = e) =
Pr{θ1 = b ∩ θ2 = c ∩ θ3 = e}

Pr{θ3 = e}
=

1
8

(1
8)4

=
1

4
(3.3.33)

φ3(θ1 = b, θ2 = d|θ3 = e) =
Pr{θ1 = b ∩ θ2 = d ∩ θ3 = e}

Pr{θ3 = e}
=

1
8

(1
8)4

=
1

4
(3.3.34)

As it can be seen from the previous computations, the values of believes result same.
This may be caused by the fact that Nature uses a joint probability distribution table with
uniform distribution. Once Nature has made his move, all players know for sure their type
and everyone has a statistical idea of which game is being played. Each player knows that
there are four possible games and only one game is actually being played. As we are in
a game of incomplete information, no player can know which is the actual game. As we
found the Nash equilibrium for the 2-player case, if we now proceed in the same way, we
will end up having two equations as function of just one variable for each players’ point of
view. This occur because each player cannot make two players indifferent of their choice
by selecting just one optimum mixed strategy. The only thing that can be done from now
on is that we can try to solve the average game for each player, where everyone has his
own game in which the payoffs as given as the average payoffs of all the four games from
each players’ point of view. In this way, we will end up having a game from which Nature’s
role will be removed and each player can solve his own average game in order to find the
average optimal mixed strategy which can give everyone on average satisfactory results.
It’s worth emphasizing that in the average game everyone plays mixed strategy which is
not type dependent as by averaging over types we are making players type independent.

As we have three players and each player can be of two different types, we have a total
of eight possible games from which Nature can choose, which means:

H = {Hθ1,θ2,θ3}, |H| = 8, (3.3.35)

UE = {Uθ1,θ2,θ3}, |U| = 8, (3.3.36)

B = {Bθ1,θ2,θ3}, |B| = 8. (3.3.37)
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As we said before, we are now trying to solve an average game, where everyone on
average chooses a mixed strategy which is optimum. In our case, if player i has learned his
type, his opponents’ possible types ~θ\i are four, and player i will solve a game which will
be an average of four games seen from his point of view. Now, we can write the average
payoffs, which will result type independent from each player’s point of view. For the sake
of simplicity and space, we will use the abbreviation U and D to denote the actions Uplink
and Downlink, respectively.

From the point of view of player 1:
Now player 1 knows that he is of type a, he can compute his and his opponents’ average
payoffs in Uplink and Downlink as follows:

E1[v1(U, a2, a3)] =φ1(a, c, e)v1(U, a2, a3; a, c, e) + φ1(a, c, f)v1(U, a2, a3; a, c, f)

+ φ1(a, d, e)v1(U, a2, a3; a, d, e) + φ1(a, d, f)v1(U, a2, a3; a, d, f)

(3.3.38)

E1[v1(D, a2, a3)] =φ1(a, c, e)v1(D, a2, a3; a, c, e) + φ1(a, c, f)v1(D, a2, a3; a, c, f)

+ φ1(a, d, e)v1(D, a2, a3; a, d, e) + φ1(a, d, f)v1(D, a2, a3; a, d, f)

(3.3.39)

E1[v2(a1, U, a3)] =φ1(a, c, e)v2(a1, U, a3; a, c, e) + φ1(a, c, f)v2(a1, U, a3; a, c, f)

+ φ1(a, d, e)v2(a1, U, a3; a, d, e) + φ1(a, d, f)v2(a1, U, a3; a, d, f)

(3.3.40)

E1[v2(a1, D, a3)] =φ1(a, c, e)v2(a1, D, a3; a, c, e) + φ1(a, c, f)v2(a1, D, a3; a, c, f)

+ φ1(a, d, e)v2(a1, D, a3; a, d, e) + φ1(a, d, f)v2(a1, D, a3; a, d, f)

(3.3.41)

E1[v3(a1, a2, U)] =φ1(a, c, e)v3(a1, a2, U ; a, c, e) + φ1(a, c, f)v3(a1, a2, U ; a, c, f)

+ φ1(a, d, e)v3(a1, a2, U ; a, d, e) + φ1(a, d, f)v3(a1, a2, U ; a, d, f)

(3.3.42)

E1[v3(a1, a2, D)] =φ1(a, c, e)v3(a1, a2, D; a, c, e) + φ1(a, c, f)v3(a1, a2, D; a, c, f)

+ φ1(a, d, e)v3(a1, a2, D; a, d, e) + φ1(a, d, f)v3(a1, a2, D; a, d, f)

(3.3.43)

Notice that we used the notation E1[P ia1,a2,a3 ], where a1, a2, a3 are the actions of player
1,2 and 3, to indicate the expected payoffs of all the player and the subscript indicated
that this knowledge is possessed only by player 1. These are the average payoffs which are
now type independent and their knowledge is only possessed by player 1. Naturally, the
final outcome depends on the choices made by other payers too and at the end we will end
up having a game which can be represented by the decision tree with eight end nodes as
we saw for the case of 3-player game of complete information. We using the notation for
the expected payoffs previously mentioned, the decision tree can be depicted as follows:
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Figure 3.12: Decision tree of the average 3-player dynamic TDD assignment game of
incomplete information from player 1’s point of view.

Now this is the idea of the average game that player 1 has and he cannot know more
than this. By following the previous steps, a similar decision tree can be created for player
2’s and player 3’s point of view, which would of course result their private knowledge.
Now, suppose that the type independent mixed strategies to play the average game are
σ1 = {q, 1 − q},σ2 = {p, 1 − p} and σ3 = {r, 1 − r} and player 1 possesses an estimate,
which could be totally wrong, about the optimum values of p∗ and r∗. The optimum
mixed strategy q is what he has to choose in order to obtain on average satisfactory
results by making his opponents indifferent of their choice. For here, player 1 possesses
all the information he needs to solve the average game, therefore, he sees the game of
incomplete information as a game of complete information and can solve it by following
the same procedure described in (3.2.23).
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From the point of view of player 1:

r∗ p∗

(
E[v1(U,U, U)]− E[v1(D,U,U)]− E[v1(U,D,U)] + E[v1(D,D,U)]

− E[v1(U,U,D)] + E[v1(D,U,D)] + E[v1(U,D,D)]− E[v1(D,D,D)]

)
+

p∗

(
E[v1(U,U,D)]− E[v1(D,U,D)]− E[v1(U,D,D)] + E[v1(D,D,D)]

)
−

r∗

(
E[v1(U,D,D)]− E[v1(D,D,D)]

)
= E[v1(D,D,U)]− E[v1(U,D,U)]

(3.3.44)

r∗ q

(
E[v2(U,U, U)]− E[v2(U,D,U)]− E[v2(D,U,U)] + E[v2(D,D,U)]

− E[v2(U,U,D)] + E[v2(U,D,D)] + E[v2(D,U,D)]− E[v2(D,D,D)]

)
+

q

(
E[v2(U,U,D)]− E[v2(U,D,D)]− E[v2(D,U,D)] + E[v2(D,D,D)]

)
−

r∗

(
E[v2(D,U,D)]− E[v2(D,D,D)]

)
= E[v2(D,D,D)]− E[v2(D,U,D)]

(3.3.45)

p∗ q

(
E[v3(U,U, U)]− E[v3(U,U,D)]− E[v3(D,U,U)] + E[v3(D,U,D)]

− E[v3(U,D,U)] + E[v3(U,D,D)] + E[v3(D,D,U)]− E[v3(D,D,D)]

)
+

q

(
E[v3(U,D,U)]− E[v3(U,D,D)]− E[v3(D,D,U)] + E[v3(D,D,D)]

)
−

p∗

(
E[v3(D,D,U)]− E[v3(D,D,D)]

)
= E[v3(D,D,D)]− E[v3(D,D,U)]

(3.3.46)

All the values within the parenthesis are known by player 1 and he also possesses an
estimate of what are the optimal values of p∗ and r∗, which could be totally wrong. In
order to obtain his optimal mixed strategy q∗, player 1 can directly discard the equation
(3.3.44) and solve the equation (3.3.45) or the (3.3.46) for q∗ which could give him on
average satisfactory results. The same procedure has to be followed by player 2 and player
3, where they use the joint probability distribution to know their and their opponents’
expected payoffs. Then, by using an estimate their opponents’ mixed strategies, they can
find their own optimal mixed strategy for the average game. It may be worth mentioning
again that nothing prevents that the estimate of players’ opponents mixed strategies being
wrong.
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3.4 Dynamic game of complete information

We analyzed in the previous Sections how to find the optimal mixed strategies with which
each player should choose their moves in order to achieve the Nash equilibrium. But, we
strictly restricted our attention to strategic scenarios in which all players were allowed
to choose among their strategies/actions only simultaneously. We can widen our study,
e.g., by extending the case of static game of complete information to the case of dynamic
game of complete information [5]. Therefore, in this Section we derive the most common
representation for games that unfold over time and in which some players can learn the
actions of other players. First of all, we need to extend the framework of normal-form
representation to the so-called extensive-form representation. As with the normal-form
game, three elements must be part of any extensive-form game’s representation:

1. Set of players, N = {..}.

2. A collection set of pure actions.

3. Players’ payoffs as a function of outcomes {vi(·)}i∈N .

To overcome the limitation of normal-form representation and capture sequential play,
we need to expand rather simplistic concept of pure and mixed strategy to a more complex
organization of actions. In order to do so, we comprehend in our representation the
elements which captures the idea of what players can do and when they can do:

4. Order of moves.

5. Actions of players when they can move.

Because some players move after choices made by other players, we need to be able to
describe the knowledge that players have about the history of game when it is their turn to
move. More precisely, what is relevant to players who move later is not the chronological
order of play, but the information they posses in order to make their decision. To represent
the way in which information and knowledge unfold and the players’ mixed strategies, we
add another two components to the description of an extensive-form game:

6. The knowledge that players have when they can move.

7. A collection set of simplexes which comprehend the players’ mixed strategies.

Finally, to be able to analyze these situations with the methods and concepts to which
we have already been introduced, we add a final and familiar requirement:

8. The structure of the extensive form-game represented by 1-7 is a common knowledge
among all the players.

Now all the elements mentioned above are what can allow us to represent a game which
unfolds over time. As it is very intuitive to understand, representing it in matrix form
might not be a good idea as it would not capture the essence of play and moreover, it
would be able to represent just the 2-player case. As a better choice, we will only use
the decision tree representation which perfectly captures the idea of a sequentially played
game, e.g, if a player has to make his move at i-th place, he will find himself at the level
i of decision tree. Once all the players have made their choices, a final outcome will be
realized, depending on the players’ action profile [7].

Until here, we extended the concepts developed in the previous sections to be able to
represent a game which unfolds over time. Now, we proceed by extending the notations
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and definitions which will allow us to describe our game in a precise manner. Let Ki be
the collection of all information sets at which player i plays, and let ki ∈ Ki be one of i′s
information sets. Let Ai(ki) be the action that player i can take at ki, and let Ai be the
set of all actions of player i, Ai =

⋃
ki∈Ki Ai(ki).

Definition 15. A pure strategy for player i is a mapping si : Ki → Ai that assigns an
action si(ki) ∈ Ai(ki) for every information set ki ∈ Hi. We denote by Si the set of all
pure strategy mapping si ∈ Si.

We again want to formulate a game where all the players choose only mixed strategies,
thus we define the mixed strategies in an extensive form game as follows:

Definition 16. A mixed strategy for player i is the probability distribution over his pure
strategies.

Now we can define what is called a sub-game, which will allow us to analyze our game
into smaller games by reducing the complexity. A sub-game’s decision tree consists of a
number of nodes less than the actual game’s decision tree and can be defined as follows:

Definition 17. A proper sub-game G of any extensive form game Γ consists of a single
node and all it’s successors.

The idea of a proper sub-game is simple and it will allow us to dissect an extensive-
form game into a sequence of smaller games, an approach that will allow us to apply the
concept of sequential rationality [6]. A player is said to be sequentially rational who plays
an optimal strategy based on the information he has. We also define a set which contains
the indices of the nodes at which players will find themselves to play their mixed strategies
as:

NO = {1, 2, ...d} (3.4.1)

where d is the cardinality of our decision tree.

Extensive-Form representation of the dynamic TDD assignment n-player game
of complete information

1. Set of players N = {1, ....n}.

2. A collection set of pure actions {A1, A2, ...An}

3. A set of payoff functions {vi(·)}ni=1, each assigning a payoff values to each combina-
tion of chosen actions, that is vi = A1 ×A2....×An → (3.2.4).

4. Orders of moveM = {Pit}ni,t=1, where i ∈ N and 1 ≤ t ≤ n specifies player i’s turn.

5. Actions of players when they can move Ai = {Uplink,Downlink}, for i = 1, ...., n.

6. A collection of information sets K = {K1, ...,Kn}, where Ki = {ki,j} for i ∈ N and
j ∈ NO specifies the node at which player i is playing.

7. A collection set of simplexes {∆A1,∆A2, ...,∆An} , where σ(i, ki,j) ∈ ∆Ai, for i ∈ N
and j ∈ NO is the information set dependent mixed strategy of player i, σ(i, ki,j) =
{σki,j (Uplink), σki,j (Downlink)} and σki,j (Uplink) + σki,j (Downlink) = 1.

As we did in the previous cases, we now proceed to look for its solution by starting
from a simple 2-player game.
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3.4.1 Solution of the 2-player dynamic TDD assignment game of com-
plete information which unfolds over time

We know consider the simplest case in which there are only 2 players and both of them
have a action set Ai = {Uplink,Downlink}, for i = 1, 2, and at each information set
where player 1 plays, he can mix by using the mixed strategies σ(1, k1,1) = {q1, 1 − q1}
and player 2 plays with σ(2, k2,2) = {p2, 1−p2} and σ(2, k2,3) = {p3, 1−p3}. By using the
previous notations we are imposing that player 1 plays at node 1 and player 2 at nodes
2 and 3, respectively. First of all, we proceed by giving its extensive-form representation
and then we will represent it by exploiting the decision tree representation. Finally, we
will develop a method to find its Nash equilibrium.

Extensive-Form representation of the dynamic TDD assignment 2-player game
of complete information

1. Set of players N = {1, 2}.

2. A collection set of pure actions {A1, A2}

3. A set of payoff functions {vi(·)}2i=1, each assigning a payoff values to each combina-
tion of chosen actions, that is vi = A1 ×A2 → (3.2.4).

4. Orders of moveM = {P11 , P22}, which means player 1 and player 2 find themselves
at level 1 and level 2 of the decision tree, respectively.

5. Actions of players when they can move Ai = {Uplink,Downlink}, for i = 1, 2.

6. A collection of information sets K = {K1,K2}, where K1 = {k1,1} and K2 =
{k2,2, k2,3}.

7. A collection set of simplexes {∆A1,∆A2} , where σ(1, k1,1) = {q1, 1 − q1} for 0 ≤
q ≤ 1 is an element of ∆A1 and σ(2, k2,2) = {p2, 1− p2} and σ(2, k2,3) = {p3, 1− p3}
for 0 ≤ p2, p3 ≤ 1 are the elements of ∆A2.

Note that ki,j ∈ Ki, for i ∈ N and j ∈ NO contains all the information which brought
player i at the node j. We again use the notation P ia1,a2 , where i = 1, 2, a1 ∈ A1 and
a2 ∈ A2 to indicates the player i’s action dependent payoff and its decision tree can be
represented as shown in Fig 3.13.

It may be worth mentioning that as we are playing a game of complete information,
the previous decision tree can be drawn by each player even before the game starts. This
is possible because everybody knows the moves and levels at which all the players are, as
everything is of common knowledge. Solving this kind game can be complicated, what can
be done is that every player can solve sub-games starting from their level for each node
that belongs to their level. The sub-games will be made with lesser nodes than the game
presented in the decision tree 3.13, thus their complexity will be definitely reduced. To
proceed, what can be used is the so called the backward induction method. It exploits the
fact that player 2 who immediately precede the terminal nodes, has all the information
available for himself. Therefore, he can directly choose the optimal action for himself
at both sub-games, starting from nodes 2 and 3, respectively. After that, player 1 finds
himself at node 1 and he has two actions from which to choose. Moreover, he also knows
what player 2 would do and the payoffs where he may end up. Therefore, he can also
make the best decision for himself as he knows perfectly what happens in the nodes that
succeed his level. In order to achieve the equilibrium, these kind of games require that at
each level players are sequentially rational. Let’s recall that we are strictly interested in
players playing only mixed strategies, σ(1, k1,1) = {q1, 1−q1} and σ(2, k2,2) = {p2, 1−p2},
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Figure 3.13: Decision tree of the 2-player game dynamic game of complete information.

σ(2, k2,3) = {p3, 1− p3} for player 1 and player 2, respectively. The way how our dynamic
game is solved, the values of q1 p2 and p3 assumes only the values 0 or 1. Therefore, we
have ended up in a case in which players’ mixed strategies tends to become pure strategies.
To get a graphical idea of how the game is solved, its solution is presented in Fig. 3.14-3.16.
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Figure 3.14: Step 1: player 2 solves two sub-games for himself starting from nodes 2 and
3, respectively.



3.4 Dynamic game of complete information 63

1

P1

2

(
P 1
U,U

P 2
U,U

)

U

(
P 1
U,D

P 2
U,D

)

D

U

3

(
P 1
D,U

P 2
D,U

)

U

(
P 1
D,D

P 2
D,D)

)

D

D

P2

Figure 3.15: Step 2: player 1 solves his sub-game starting from node 1, which also corre-
sponds to be the whole game.

1

P1

2

(
P 1∗
U,U

P 2∗
U,U

)

U

(
P 1
U,D

P 2
U,D

)

D

U

3

(
P 1
D,U

P 2
D,U

)

U

(
P 1
D,D

P 2
D,D)

)

D

D

P2

Figure 3.16: The decision which emphasize the Nash equilibrium of our 2-player game.

As it can be seen in Fig. 3.14, player 2 solves 2 sub-games starting from the nodes 2 and
3, respectively. Suppose that at node 2, he discovers that the payoff P 2

U,U is greater than

P 2
U,D and at node 3, P 2

D,U is greater than P 2
D,D. Therefore, player 2 chooses at the nodes

2 and 3 the mixed strategies p∗2 = 1 and p∗3 = 1, respectively. It is shown in Fig. 3.15, the
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only sub-game solved by player 1 at node 1 and solution of his sub-game corresponds also
to the actual solution of the game. Player 1 knows that at node 2 and 3 player 2 chooses
Uplink. Now, player 1 has to evaluate between the payoffs P 1

U,U and PD,U and he should

choose the move which gives him the highest payoff. Suppose that P 1
U,U is greater than

PD,U , then player 1 chooses the mixed strategy q∗1 = 1. It may also present the case at
step 1 or at step 2 in which players may not be able to decide which action to play if there
are payoffs which are equal. This question can be answered by the following proposition:

Proposition 2. Any finite game of perfect information has a backward induction solution
that is sequentially rational. Furthermore, if no two terminal nodes prescribe the same
payoffs to any player then the backward induction solution is unique.

Thus for a solution to be unique, there shouldn’t be equal payoffs. The decision
taken by player 1 and 2, shown in Fig. 3.14-3.15 are called the sub-game perfect Nash
equilibrium. The path which brings us to the end node which contains the payoffs P 1∗

U,U

and P 2∗
U,U are called the Nash equilibrium path.

3.4.2 Solution of the 3-player dynamic TDD assignment game of com-
plete information which unfolds over time

We now extend the previous game by considering the case of 3 players, where every-
one has a action set Ai = {Uplink,Downlink}, for i = 1, 2, 3 and their mixed strate-
gies are σ(1, k1,1) = {q1, 1 − q1}, σ(2, k2,2) = {p2, 1 − p2}, σ(2, k2,3) = {p3, 1 − p3},
σ(3, k3,4) = {r4, 1 − r4},σ(3, k3,5) = {r5, 1 − r5} and σ(3, k3,6) = {r6, 1 − r6}. As we
proceeded in the 2-player case, we start by giving its extensive form representation and
then we will represent it by using the decision tree representation. Finally, we will develop
a solution method to solve our game and achieve the equilibrium.

Extensive-Form representation of the dynamic TDD assignment 3-player game
of complete information

1. Set of players N = {1, 2, 3}.

2. A collection set of pure actions {A1, A2, A3}

3. A set of payoff functions {vi(·)}3i=1, each assigning a payoff values to each combina-
tion of chosen actions, that is vi = A1 ×A2 ×A3 → (3.2.4).

4. Orders of move M = {P11 , P22 , P33}, which specifically means player 1 is at level
one, player 2 is at level 2 and player 3 is at level 3.

5. Actions of players when they can move Ai = {Uplink,Downlink}, for i = 1, 2, 3.

6. A collection of information sets K = {K1,K2,K2}, where K1 = {k1,1} and K2 =
{k2,2, k2,3} and K3 = {k3,4, k3,5, k3,6}.

7. A collection set of simplexes {∆A1,∆A2,∆A3} , where σ(1, k1,1) = {q1, 1 − q1} for
0 ≤ q ≤ 1 is an element of ∆A1, σ(2, k2,2) = {p2, 1−p2} and σ(2, k2,3) = {p3, 1−p3}
for 0 ≤ p2, p3 ≤ 1 are the elements of ∆A2 and σ(3, k3,4) = {p4, 1− p4}, σ(3, k3,5) =
{p5, 1 − p5}, σ(3, k3,6) = {p6, 1 − p6} and σ(3, k3,7) = {p7, 1 − p7} are the elements
of ∆A3.

We can represent it in the decision tree form as shown in Fig. 3.17 and to find the Nash
equilibrium path we can adopt the same procedure we used in the 2-player case. Let’s
recall that as everything is of common knowledge, every player is able to draw the decision
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tree of this game and can analyze it in order to choose his best move. In order to solve the
game, again the backward induction procedure can be exploited under the hypothesis that
all the players are sequentially rational. To proceed, the first move is made by player 3 who
has all the information available for himself and can directly choose the optimum mixed
strategy for all the sub-games seen from his level at nodes the 4,5,6 and 7. These sub-games
are shown in Fig. 3.18. Suppose that by evaluating directly the payoffs, player 3 notices
that at node 4 P 3

U,U,U is greater than P 3
U,U,D, at node 5 P 3

U,D,U is greater than P 3
U,D,D, at

node 6 P 3
D,U,U is greater than P 3

D,U,D and at node 7 P 3
D,D,U is greater than P 3

D,D,D. At
this point, he will choose the mixed strategies r∗4 = 1, r∗5 = 1, r∗6 = 1 and r∗7 = 1. Now
by following the backward induction, player 2 finds himself at the nodes 2 and 4 and he
knows what player 3 will choose and the payoffs where he may end up. Suppose that
P 2
U,U,U is greater than P 2

U,D,U and at node 3 P 2
D,U,U is greater than P 2

D,D,U and at this
point player 2 will choose the mixed strategies p∗2 = 1 and p∗3 = 1. Now at node 1, player
1 has to choose his solely mixed strategy and his decision will yield the final outcome of
our game. Suppose that by evaluating he notices that P 1

U,U,U is greater than P 1
D,U,U , thus

he chooses the mixed strategy q∗1 = 1. All these equilibriums of our sub-games are called
the sub-game Nash equilibriums and the path which brings player to the end node which
contains the payoffs {P 1

U,U,U , P
2
U,U,U , P

3
U,U,U} is called the Nash equilibrium path which is

the actual equilibrium of our game.
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Figure 3.17: Decision tree of the 3-player dynamic TDD assignment game of complete
information which unfold over time.
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Figure 3.18: Step 1: Player 3 solves all the sub-games he sees from his level at the nodes
4,5,6 and 7.
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Figure 3.19: Step 2: Player 2 solves all the sub-games he sees from his level at the nodes
2 and 3.
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Figure 3.20: Step 3: Player 1 solves the only sub-games he sees from his level at the node
1.
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Figure 3.21: The Decision tree illustrate the Nash equilibrium for the 3-player case.



Chapter 4

Simulation Results

In the previous chapter we faced the problem of sum rate maximization from game the-
oretic point of view. We analyzed various cases by limiting our only to two and three
players’ scenarios. In this chapter we report the simulation results that we obtained to
evaluate the performances and the usefulness of the solution method we developed to
achieve the Nash equilibrium. All the simulation that have been done, we considered only
the 2-player scenario as this allowed us to write simple scripts in Matlab. All the scripts
can be easily extended also to the 3-player case.

As we limited ourself only to the case of 2-player, first of all we report in Fig. 4.1
how the mean rate per player varies as the distance between the BSs and their solely
associated UEs increase. The blue curve represents how the mean rate varies when both
players choose the optimal moves obtained by the Multi-start algorithm. As it has already
been said in Chapter 2, Multi-start commits to find all the possible optimums and returns
also a vector which contains the coordinates of a local optimum which can be declared
as the global optimum. If players are willing to choose pure strategies, then if any player
chooses a strategy different from the one found by Multi-start, then the mean rate can
not be bigger than the case in which everybody choose the optimum pure strategies found
with Multi-start. In our simulation, the optimum pure strategies found by our algorithm
were Uplink for both players. It can be clearly noticed by the red curve, when player 1
chooses Uplink and Player 2 chooses Downlink, that the mean rate is evidently lower from
the optimum case.

Figure 4.1: Mean rate as a function of distance between BSs and their UEs.

As we learned from the previous analysis, global optimum found by Multi-start are
the only pure strategies that players should choose in order to obtain the maximum mean
rate. When we considered the 2-player case in which all the players strictly choose only
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mixed strategies, thing didn’t work exactly how we imagined. We first considered the case
in which the standard values of P and Q were used. In the simulation, we considered
the normalized version in which P was normalized to 1 and Q to 0.025. By solving the
equations (3.2.5)-(3.2.8), we found that in this case the Nash equilibrium doesn’t exists as
the values of optimum mixed strategies don’t belong to the interval 0-1. The non existence
of equilibrium is due to the fact that when try to put equations (3.2.5)-(3.2.6) equal, which
would give use the optimum value of q which could make players 1 indifferent of his choice
results negative. This is because the terms one the left and the right hand side of the
equality sign are totally unbalanced and when we try to subtract and solve it for q, its
results −4.46. By analyzing in depth, we found that the equilibrium exists in two cases:
1) The value of P starts to be comparable to Q, 2) The SINR at the BSs in Uplink is
reduced of factor 100.

Figure 4.2: Mean rate as a function of distance between BSs and their UEs in the case in
which P is comparable to Q. We report the two different cases for the optimal values and
the non optimal values of mixed strategies.

In Fig. 4.2 we report the mean rate as function of distance for the first case in which
P is comparable to Q, for q and p which are the mixed strategies of player 1 and player 2,
respectively. In the upper plot, its is shown how the mean rate varies when both players
choose the optimal mixed strategies obtained by solving the equation (3.2.5)-(3.2.8). In
the lower plot, the behavior of mean rate for non optimum values of P and Q is reported.
It can be clearly seen that even if the players choose non optimum mixed strategies, the
mean rate results the same as on average the payoff is same because P is comparable to
Q. Which means, independent of players’ mixed strategy choice, the mean rate doesn’t
changes. For the second case, in which the SINR at the BSs in Uplink has been reduced
of factor 100, the results are reported in Fig. 4.3. It can be clearly noticed that when
the players choose the optimal mixed strategies, the mean rate results greater. As for
the decay, it is visible that even if the mean rate is greater in the case of optimal mixed
strategies, they both decay more or less in the same way.

As for the case in which P=1 and Q=0.025, we analyzed the behavior of mean rate for
different values of q and p. We know from the analysis of Fig. 4.1 that the mean rate is
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Figure 4.3: Mean rate as a function of distance between BSs and their UEs.

higher from any case when both players choose mixed strategy Uplink, which specifically
means q = 1 and p = 1. Thus we analyzed the case where q = 0.3 and p = 0.3 with the
case in which both variables assume value 1. The results are reported in Fig. 4.4, it is
evident from the red curve that in the case q, p = 0.3, mean rate is very far from the ideal
as the probability of choosing Downlink is strictly higher. In the case in which p, q = 1,
we tend to approach the ideal case found by the Multi-start algorithm and definitely the
mean rate is considerably higher.

Figure 4.4: Mean rate as a function of distance between BSs and their UEs.
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We also analyzed the case with standard values of P and Q in which player 1 used the
mixed strategy q = 0.5 and q = 1 while player 2 was fixed with mixed strategy Uplink.
The same thing has been done for player 2 and we concluded that for both cases the mean
rate tends to increase as the probability of choosing the mixed strategy Uplink increases.
The results are shown in Fig.

Figure 4.5: Mean rate of player 1 with different mixed strategies when player 2 plays
Uplink.

Figure 4.6: Mean rate of player 2 with different mixed strategies when player 1 plays
Uplink.
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We also analyzed the case in which we evaluated the mean rate for player 1 as a
function of different mixed strategies while his opponent was fixed in Uplink. Then we did
the same thing for player 2 and the results are reported in Fig. 4.7-4.8.

Figure 4.7: Mean rate of player 1 as a function of mixed strategies when player 2 is fixed
in Uplink.

Figure 4.8: Mean rate of player 2 as a function of mixed strategies when player 1 is fixed
in Uplink.

It is evident for both cases that the mean rate for both players tends to increase as the
probability of playing Uplink increases.





Chapter 5

Conclusions

This thesis examined the problem of sum rate maximization for a most general scenario
consisting of N BSs and M UEs, in which al the UEs were associated to their nearest BS.
First of all, after a brief introduction about 5G given in Chapter 1, we formulated our
problem of sum rate maximization in mathematical terms in Chapter 2. In order to solve
it, we discretized the continuous variable Xn to 0 and 1, which means instead of using a
fraction of TDD frame to transmit in Uplink or Downlink, we reserved the whole frame
just for one type of transmission. Then under some constraints regarding the variable
Xn and the maximum power that the BSs and UEs could used, we wrote the Lagrangian
function of our maximization problem. We looked up for its solution by exploiting the
so-called Multi-start algorithm.

The same problem then has been formulated by exploiting the mathematical tools
offered by the game theory, in which BSs acted as players of our game and to maximized
their sum rate theu choose optimal mixed strategies based on their knowledge and their
degree of freedom. As a first step, we formulated our dynamic TDD assignment game for
the case of 2 player as a game of complete information in which everything was of common
knowledge to everyone. The hypothesis of everything known by everyone is strong and it’s
hardly encountered in the reality. But, it allowed us to shift our sum rate maximization
game into simple equations like (3.2.9)-(3.2.10) that could be solved very easily to find the
optimal mixed strategies for both players. Then we extended our game to the case of 3
players, which led us to more difficult expressions like (3.2.24)-(3.2.26). The concept to
find the Nash equilibrium was the same but by analyzing these equations we noticed that
there are non linear. From which, it can be concluded that for the n-player case we end
up having n equation with degree n− 1. Which means to obtain the equilibrium we have
a system of n equations with each equation having degree n−1 and we will end up having
multiple solution from which only the ones which belongs to the interval 0-1 should be
considered.

As a subsequent step, we considered a more realistic scenario in which the information
about the game’s parameters were of private knowledge among the players and they could
be also of different types. In game terms, everyone was characterized by having multiple
characteristics thus different payoffs which information we translate into players having
different types. As a first step, everybody knew the joint probability distribution used by
Nature to select the players’ types and nobody knew which were the players’ actual types
profile. By exploiting the common knowledge and after learning their types, all the players
used the conditional probability to improve their knowledge about their opponents. For
the 2-player case the solution is rather simple and can be obtained by solving the equations
similar to the 2-player game of completer information as expressed in equations (3.3.19)-
(3.3.22). Things become more difficult when we try to solve the same game for the 3-player
case. The reason lies in the degree of freedom that every player has and the fact that
everything was of private knowledge. We were force to introduce the concept of average
game which can be used for any number of players in which every player try to build his
system of equations under the hypothesis of knowing an estimate of his opponents’ mixed
strategies and try to find his own optimal mixed strategy. In this step, nobody assures
that the players’ mixed strategy’s estimate is true, but this is all every player can do as
we were playing a game of incomplete information.

We analyzed the dynamic TDD assignment game of complete information and then
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the game of incomplete information in which we put our players’ in a strategic scenarios.
Which means all the players were obliged to make their moves simultaneously and nobody
was allowed to learn the moves of his opponents. In the final case, we also studied a
scenario consisting of players in which everybody was allowed to gather information from
his opponents who moved earlier. We called this type of game as dynamic game of complete
information.To solve these kind of games we used the so-called backward induction
method.

It may be worth mentioning that all the cases that we analyzed and the solution
methods we developed, everything can be extended to the n-player case. The theorem 1
gives us sufficient condition under which there can be the existence of the Nash equilibrium
but its doesn’t assure us if it always exists. During the simulations, also ended up having
a case in which there was no equilibrium and we found that it exists only when P was
comparable to Q or the SINR was reduced to factor 100 at the BSs in Uplink.
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