
Università degli Studi di Padova
Dipartimento di Ingegneria Industriale	
 	

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Tesi di Laurea Magistrale in Ingegneria
Aerospaziale

Design	 of	 a	 Robotic	 Arm	 for	 Laboratory	
Simulations	 of	 Spacecraft	 Proximity	

Navigation	 and	 Docking

Relatore : Prof. Alessandro Francesconi

Laureando : Andrea Antonello

ANNO ACCADEMICO 2012-2013

To my families, in Italy and California.

To you, Silvia.

Contents

1 Introduction 1

1.1 A long journey . 1

1.2 Motivation and state of the art 3

1.3 Robot preliminary design . 12

1.3.1 Overview . 12

1.3.2 Mechanical structure 12

1.3.3 End-effector configuration 17

1.4 Outline . 19

2 Kinematics 21

2.1 Introduction . 21

2.2 Denavit-Hartenberg convention 22

2.3 Direct Kinematics . 27

2.4 Inverse Kinematics . 27

2.4.1 Pieper’s solution . 28

2.4.2 Alternate algebraic solution 32

2.4.3 Methods comparison 34

2.5 Differential kinematics . 35

2.5.1 Geometric approach 36

2.5.2 Inverse differential kinematics 39

2.5.3 Singularities . 41

2.6 Simulation . 44

2.6.1 Rectilinear trajectory 44

2.6.2 Circular trajectory . 47

2.7 Model verification: Simulink’s SimMechanics toolbox. 51

3 Trajectory definition 57

3.1 Introduction . 57

3.2 Main approaches . 57

3.3 Joint space planning . 58

3.3.1 Point-to-point motion with intermediate via points . . 61

3.4 Operational space planning 62

3.4.1 Predefined analytical path 63

3.4.2 Corrected on the go . 69

4 Dynamics 71

4.1 Introduction . 71

4.2 Euler-Lagrange method . 71

4.3 Euler-Newton method . 73

4.3.1 The Euler-Newton routine 73

4.4 Simulation . 77

4.4.1 Rectilinear trajectory 78

4.4.2 Circular trajectory . 83

4.5 Model verification: Simulink’s SimMechanics toolbox. 87

5 Linear Feedback Control 93

5.1 Joint space control . 93

5.1.1 Decentralized control 94

5.1.2 Design of the PD compensator 99

5.1.3 Design of the PID compensator 105

5.1.4 Extension to a multibody system 109

5.2 Operational space control . 110

5.2.1 An overview . 111

6 Space trajectory analyis 115

6.1 Orbital mechanics review . 116

6.1.1 Relative motion in orbit 116

6.2 CW equations: main applications 121

6.2.1 Relative free motion simulation 121

6.2.2 Relative motion with quasi-constant disturbances . . . 122

6.2.3 Relative motion with impulsive disturbances 123

6.2.4 Relative motion with ADCS control 126

6.3 Force sensor . 127

6.4 Matlab simulation . 131

6.4.1 Rendezvous maneuver 131

6.4.2 Rendez-vous maneuver with impulsive disturbance . . . 134

6.4.3 Rendezvous approach with on the go corrections 138

7 Sizing 143

7.1 Introduction . 143

7.2 Link design . 144

7.2.1 Material choice . 145

7.2.2 Load analysis . 146

7.2.3 Buckling analysis . 155

7.3 Motor choice . 162

7.3.1 Motor types . 162

7.3.2 Requirements . 164

7.3.3 Hardware selection . 170

7.4 Final data . 172

7.5 SolidWorks renders . 174

CAD Drawings . 181

Assembly 1 . 181

Assembly 2 . 182

Assembly 3 . 184

Assembly 4 . 186

Assembly 5 . 188

8 Conclusions and future work 191

Appendices 205

A Matlab Scripts 207

Matlab Scripts . 207

B Jacobian expression 229

C Datasheets 231

EC 90 datsheet . 232

EC 45 datsheet . 234

ATI Nano 17 datsheet . 236

Abstract

The increasing number of human objects in space has laid the foundation of a novel class

of orbital missions for servicing and maintenance. The main goal of this thesis is the de-

velopment of a robot manipulator for the simulation of close approach orbital maneuvers,

with particular attention to docking and capture. There are currently very few facilities

able to simulate relative motion between orbiting objects: DLR’s EPOS experiment is

the leading edge of European research on RvD ground simulations. The 25 m long test-

ing site consists in two industrial anthropomorphic robots that can reproduce docking

and berthing scenarios, taking into account dynamic contacts, gravity and even sunlight

illumination for utmost realistic simulations. This project tries to propose a viable alter-

native to these huge and costly RvD structures; the addition of force sensing transducers

and the possibility to dynamically scale the simulations makes the manipulator a cheap

and portable hardware-in-the-loop testing bench for orbital phenomena. After selecting

the most dexterous robotic configuration, the kinematic and dynamic problems were ana-

lyzed; a basic PID controller was then implemented and its stability to step response and

disturbances successfully verified. An extended simulation campaign, comprising Matlab

and SimMechanics environments, confirmed the theoretical models and allowed to repro-

duce typical rendezvous and docking maneuvers (providing useful data for the sizing). By

integrating a force sensor, it was possible to impose and simulate orbital motion and to

account for any force disturbance. With information deriving on structural analyses and

dynamics extrapolations, a preliminary design was carried out, and led to the translation

of the theoretical requirements into the sizing and selection of the structure, the hardware

and the actuators. The final robot is able to simulate RvDs inside a spherical working

space of 1.3 m radius, with a total mass of just 7.5 kg. This thesis sets the foundations

for the physical realization of the arm, which will serve as an innovative platform for a

multidisciplinary satellite testing facility.

Chapter 1
Introduction

1.1 A long journey

Even though robotics started to become an important field of nowadays tech-

nology during the course of the last decades of the 20th century, it has always

been an interesting field of research throughout the history of mankind. Hu-

mans have always tried to seek substitutes that would be capable to mimic

their actions and behavior. The history of robots has in fact its roots as far

back as ancient myths and legends: one of man’s greatest goals has been to

instill life in their artifacts.

In the Iliad, god Hephaestus created talking mechanical servants out of

gold. Heron of Alexandria (10–70 AD) created some mechanical devices at

the end of the 1st century AD, including one that reportedly could speak [13];

records show that Aristotle, in his book Politics, speculated that automatons

might someday substitute humans in manual labor, thus calling a halt to

slavery.

In the 10th century BC, the Cosmic Engine (a 10 m clock tower) had

been built in China, featuring bell ringing mannequins and automatic ringing

gongs. During the Artuqid dynasty, Al Jazari invented several automatic

machines, among which it’s noteworthy the first programmable humanoid

robot, dated 1206: using a combination of cams and levers, it was capable of

moving and playing drums.

It is only with Leonardo da Vinci, however, that we have the first recorded

1

2 Chapter 1. Introduction

design of a humanoid robot (1505): a moving mechanical knight, able to move

its head and arms, stand up and sit down.

With the advent of the Industrial revolution, the idea of a robot started

to be applied: by the 19th century, cloth production was totally automated.

In the literature, it’s worth mentioning Mary Shelley’s Frankestein, which

condenses the dramatic struggle of man in the search for a mechanic replace-

ment of his capabilities.

It is only in the 1920s that the term robot was first introduced in the

english vocabulary by Czech playwright Karel Capek. The image of the robot

as a mechanical artifact starts in the 1940s when fiction writer Isaac Asimov

conceived the robot as an automaton of human look but lacking of emotions.

Asimov identified the term robotics as the science committed to the study

of robots, which was founded on three fundamental laws [33]:

1. A robot may not injure a human being or, through inaction, allow a

human being to come to harm.

2. A robot must obey the orders given by human beings, except when

such orders would conflict with the first law.

3. A robot must protect its own existence, as long as such protection does

not conflict with the first or second law.

Use of the industrial robot as a viable manufacturing device started in the

1960s, along with CAD/CAM systems, and characterizes the latest trends

in the automation. The principal milestones of modern robot technology are

presented below [29]:

1947 - first servoed electric powered teleoperator is developed

1948 - a teleoperator is developed including force feedback

1954 - George Devol designs the first programmable robot

1956 - Josh Engelberger buys the rights to Devol’s robot and founds

the Unimation Company

1961 - the first Unimate robot is installed in New Jersey plant of Gen-

eral Motors

1.2 Motivation and state of the art 3

1963 - the first robot vision system is developed

1973 - the first Stanford Arm is developed at Stanford University

1974 - Milacrom introduces the T3 computer controlled robot

1978 - Unimation develops the PUMA robot

1979 - the SCARA robot design is introduced in Japan

1981 - the first direct drive robot is created at Mellon University

1989- chess playing robot HiTech defeats chess master Arnold Denker

1996 - Honda’s P2 humanoid robot was first shown

1997 - Sojourner rover performed semi-autonomous operations on Mars

2001 - Canadarm2 was launched into orbit and attached to the ISS

2004 - Cornell University revealed a robot capable of self-replication

1.2 Motivation and state of the art

In the aerospace industry, the applications of robotics have their maximum

development. The two main macroares of interest are the Orbital Robotics

and the Planetary Rovers [28].

Orbital Robotics comprises the implementation of manipulation and mo-

bility for scenarios such as ISS tasks and satellite servicing. Planetary Rovers

address scenarios such as planetary exploration from mobile robot on the sur-

face.

Orbital robotics, due to space environment (radiation, micro-gravity, ther-

mal stresses, etc.) poses unique challenges to robot and robot algorithms,

and sets the need for new and innovative autonomous systems.

The design of servicing operations and devices is probably one of the most

important research field in space robotics. Servicing operations range from

simple inspection to upgrade of components and refuelling [16]. Historical

4 Chapter 1. Introduction

Figure 1.1: Timeline of average GEO satellite design life.

analysis indicates that the combination of the 5% failure rate of launch ve-

hicles coupled with 9% failure rate of satellites during their operational lives

will cause the failing of 1/7 of the satellites before the expected end of life

(EOL) [31]. Nowadays, the usual approach in trying to avoid these failures

is to use proven (usually a synonymous for obsolete) technology and to in-

corporate massive redundancy. Although the use of proven technology helps

to mitigate mission risk, it also has the negative effect of limiting satellite

performances.

The increase of costs associated with growing complexity of payloads have

led to the need of augmenting satellite design lifetimes in order to obtain a

sufficient investment return (Fig 1.1).

One downside of this increased lifetime is the inability to update the

hardware and software with modern avionics, in an era governed by “Moore’s

law”1. This slowdown limits the agility of satellite operators in capturing

emergent terrestrial markets [21].

All these limitations and the substantial absence of a maniteinance in-

dustry for satellites (which is a fundamental part of ground systems such as

1Moore law’s affirms that there’s a doubling of the processing speed of new computer

chips every 18÷24 months

1.2 Motivation and state of the art 5

automation and aviation industries), are pushing hard for the development

of on-orbit servicing (OOS). Among the main operations of OOS, the most

important are:

• Inspecting : the observation of a space ojected in order to gather in-

formation about its status and physical condition are usually the first

operations before other OSS activities can take place.

• Relocating : this is suitable when the target object has attitude prob-

lems and the on-board systems are not able to put the satellite into

the correct operational configuration. The relocating of Milstar 3 in its

GEO slot, for example, is thought to have saved $1.2 bilion of taxpayers

dollars in 1999 [30].

• Augmenting : if a satellite has been designed with a modular approach,

it is possible to upgrade the hardware to state of art technology as

years go by. An astonishing example is the WFPC camera onboard of

the Hubble telescope, whose efficiency has been increades by a factor

of 180 during four servicing operations (a comparison of the techologies

is presented in Fig 1.2).

• Assembling : this consists in the merging of mating modules to con-

struct space systems that wouldn’t be possible otherwise. This is the

procedure that was followed in the case of the International Space Sta-

tion: the overall structure weighs 200000 kg, whereas the maximum

payload capacity is 18300 kg [15].

• Restoring : these operations include refueling, docking, station keep-

ing providing, repairing and replacing hardware. In 1984, a refueling

operation was successfully carried out, transferring 60 kg of hydrazine

between two tanks [7].

The possibility of fixing and refurbishing an out-of-order satelite with

unmanned vessels might give rise to a multi millionaire business. NASA

estimated the costs for a single Hubble servicing mission at $2 billion. If a

robotic servicing satellite was to be sent instead, the economic savings would

be enormous, not to mention the avoidance of human losses (which is not an

6 Chapter 1. Introduction

Figure 1.2: Resolution comparison of WFPC camera from Hubble telescope

unlikely scenario in a manned mission). Nowadays, a lot of space agencies

and private companies are pushing in this direction.

The Canadian aerospace firm MacDonald, Dettwiler and Associates, for

example, is developing the Space Infrastructure Servicing (SIS), a space-

fracraft for refueling of communication satellites in GEO orbits [27]. SIS is

being designed to carry a toolkit able to open most of the ∼40 types of on-

orbit fuelling systems. A conceptual design of the system is presented in

Fig 1.3 (a).

Intelsat, which owns a 52 communications satellites fleet as of March

2011 [24], has shown a keen interest on the project, founding and sponsoring

the inaugural mission with an investment of $280 millions [25].

NASA, on the other hand, has already developed and launched a demon-

stration technology named Robotic Refuelling Mission (RRM). The servicing

satellite, Fig 1.3 (b), successfully performed an extensive series of robotically

actuated fuel transfer on the ISS (2011) with the aid of the Canadarm ma-

nipulator. The long term goal of NASA for this project is to transfer this

technology to the commercial market.

Importance of relative attitude operations

It is immediate to notice that, in all the above mentioned operations, the suc-

cess is strictly linked to the way in which the chaser and the target satellites

1.2 Motivation and state of the art 7

(a)

(b)

Figure 1.3: MDA’s Space Infrastucture Servicing concept design (a) and

NASA’s Robotic Refuelling Mission satellite (b).

8 Chapter 1. Introduction

(a) (b)

Figure 1.4: Gemini 6’s first successfull rendezvous (a) and Gemini 8’s first

successfull docking (b).

move and interact with respect to each other.

Regardless of the operation to be carried out (a refulling rather than an

assembly), it is mandatory to being able to model and control the relative

motion.

All the close-approach operations fall under the name of space-rendezvous :

it follows quite obviously that a precise match of the spacecrafts’ orbital

velocities is needed, allowing them to remain at a constant distance through

orbital station-keeping. Rendezvous may or may not be followed by docking

or berthing, which allow a physical contact and create a link between the

objects.

The problem of knowning the orbital mechanics of the phenomena hasn’t

always been obvious. The first rendezvous attemp, for example, was carried

out on June 3, 1965, when a Gemini 4 spacecraft was supposed to dock with

a spent Titan II upper stage [12]. Astronaut Jim McDivitt tried to manually

approach the target, but both him and the ground station engineers had yet

to learn the orbital mechanics involved in the process: simply pointing at the

target and fire the thrusters won’t result in a successfull approach, but will

lead to a progressive drift from the target’s orbit.

Only on December 15, 1965, Wally Shirra, on board of Gemini 6, suc-

1.2 Motivation and state of the art 9

cessfully completed a rendezvous towards Gemini 7, maintaining a station

keeping within 30 cm for more than 20 minutes (Fig 1.4 (a)). With Gemini

8, in 1966, Neil Armstrong (now aware of the physical laws involved), was

able to perform the first docking with the unmanned Agena Vehicle (Fig 1.4

(b)).

Hardware in the loop (HIL) testing facilities: state of the art

The importance of relative motion for rendezvous and docking operations,

calls for an approriate laboratory facility able to reproduce on orbit condi-

tions.

This can be achieved only with a robotic structure that simulates the

target and chaser’s kinematics and dynamics. There are very few facilities

that enable such experiments. One the most important is probably DLR’s

European Proximity Operations Simulator (EPOS) [11].

The original EPOS was designed as a joint-venture between DLR and

ESA in the late 1980s, as the need for a rendezvous and docking (RvD)

testing facility arised. In that period, in fact, there was a keen interest for

an own unmanned vessel for supply and service flights to the ISS. In 1991,

the facility started its first tests, and was constituted by three subsystems: a

6 DOF gantry, able to host a 100 kg payload at the end effector, a structure

carrying the target object, and an auxiliary illumination system to achieve

realistic lighting conditions.

This system served for testing for almost 20 years and was renewed due

to the demand for better RvD simulation accuracy. The current facility

was built in 2009 and it’s a joint effort between the DLR’s GSOC, which

provided the overall design as well as the orbital mechanics background, and

DLR’s Robotics and Mechatronics Institute, which contributed to the robotic

technology, on behalf of their solid background on the subject.

The approaching vehicles are simulated via two anthropomorphic indus-

trial robots, with the target fixed on the ground and the chaser mounted on

a 25 m rail for extra mobility.

An application PC feeds in synchronous trajectories via a Matlab/Simulink

interface, and the control and measuring systems allow for a position and an-

10 Chapter 1. Introduction

(a)

(b)

(c)

Figure 1.5: EPOS RvD simulation facility: laboratory configurations (a), (b)

and conceptual operating diagram

1.2 Motivation and state of the art 11

gular accuracy of respectively 2 mm and 0.2◦. All the trajectory simulation

are carried out via an implementation of Clohessy-Wiltshire coordinate sys-

tem.

Thesis motivation

This thesis focuses on the development and design of a robotic manipulator

and its kinematic and dynamic modelling for the reproduction of orbiting

operations. The innovative aspect of this structure will be the integration

of a force sensing device that will take into account both disturbances and

contact forces between the objects. Through a dedicated algorithm, the

system is able to compute in real time the consequences of these inputs in

terms of trajectory modifications, which are then fed to the hardware in the

loop (HIL) control system.

Moreover, the software governing the manipulator can be commanded

to perform active maneuvers and relocation: as a consequence, this struc-

ture can be used as the testing bench for any attitude modification system,

providing a faithful, real time simulation of the orbital scenario.

Furthermore, with the aid of dynamic scaling laws, the potentialities of

the facility can be exponentially increased: the simulation environment is

not longer bounded to be as big as the robot workspace, but could be sev-

eral orders of magnitude bigger, allowing for the reproduction of otherwise

preposterous scenarios in a laboratory environment.

Finally, the robot itself can be used as part of the simulated maneuvers.

Berthing operations and uncooperative target docking, for example, can be

performed. This latter research field, uncooperative docking, as long with

RvD rendezvous and docking operations, are under study at CISAS research

center (Padua, Italy) [6]: the manipulator presented in this paper could serve

as the main testing facility for the reproduction and the verification of theo-

retical and numerical analysis.

12 Chapter 1. Introduction

1.3 Robot preliminary design

1.3.1 Overview

Before embarking in the kinematic and dynamic analysis, it is necessary

to identify the main components of a robotic system. Even for a complex

architecture, it is always possible to identify a general block diagram [23]:

Figure 1.6: Robotic system components.

The core component is the mechanical system, made up of a manipula-

tion apparatus (arms, links, end effectors, artificial hands) and a movement

apparatus (wheels, crawlers, legs).

The capability to execute a task is made possible by the actuators block,

which provides motion to the manipulation and movement apparatus.

The connection with the outside world is made possible by the presence

of sensors, enabling the acquirement of data on the internal status (propri-

oceptive sensors, such as encoders) and on the external status (exteroceptive

sensors, such as force sensors or vision system)

Finally, the control block permits to make the whole system an harmo-

nious working machine, reading data from the sensors and commanding the

actuators with well-tuned control laws.

1.3.2 Mechanical structure

The main distinction between different robots concerns their mechanical

structure. That is, the way in which the links are connected and the way

in which they move with respect to each other. A robot manipulator is a

sequence of rigid bodies (called links) which are connected by joints. The

1.3 Robot preliminary design 13

Figure 1.7: Joint configuration types

configuration is most of the times that of an open kinematic chain; usually,

at the end of the maniuplator, there is the end-effector, providing the needed

dexterity for the execution of tasks.

The mobility is ensured by the presence of joints, which can be of different

type and can introduce one or multiples degrees of freedom2.

Mechanical design considerations when building robots have narrowed

the joint choices to two main types: revolute or prismatic. In a revolute

joint, the connected bodies rotate with respect to a common axis, whereas

in a prismatic joint they slide without rotation. Both of these configurations

have a single degree of freedom. When more than one degree of freedom is

needed, other less used joint options are available (Fig 1.7).

For simplicity, industrial robots have usually single degree of freedom

links. The number of DOF characterizes the mobility of the robot in the

operational space: in order to arbitrarily position the end effector in 3D

space, 6 DOF are required (excluding for the moment the singularities), 3

being translational and 3 rotational.

When a robot has less than 6 DOF, it will have some limitations on the

2Note that, in the special case of singularity, they do not provide any contribution to

the overall number of degrees of freedom.

14 Chapter 1. Introduction

end effector orientation in his working space; when, on the other hand, there

are more than 6 DOF, the robot is kinematically redundant, and the same

position in space can be obtained via several configurations.

Among the main choices of robot configurations, we will describe the

following: cartesian, cylindrical, spherical, SCARA, anthropomorphic [23].

Then, according to our requirements, the most approriate arrangement will

be chosen.

Cartesian: This geometry is characterized by three prismatic joints

whose axes are reciprocally perpendicular. It is an extremely simple

solution and allows to execution of straight motions in the cartesian

workspace (which is a rectangular parallelepided). The main drawback

is the limited dexterity of the end effector, which has a fixed approach-

ing orientation, Fig 1.8 (a). It is industrially used for handling and

assembly of materials and goods.

Cylindrical : In the cylindrical configuration, the first joint is replaced

with a revolute connection. Similarly to the cartesian type, here every

DOF corresponds to a cartesian variable expressed in cylindrical coor-

dinates; the workspace is a cylinder, Fig 1.8 (b). It has again limited

dexterity at the end effector. Commonly used for carrying goods of

large dimensions.

Spherical : The cylindrical type is a further modification of the carte-

sian structure, in which the first two joints have been substituted with

revolute joints. Each degree of freedom corresponds to a cartesian vari-

able, here expressed in spherical coordinates. Referring to Fig 1.8 (c),

the workspace is a sphere. The main industrial use of these robots is

for machining operations.

SCARA: The SCARA (Selective Compliance Assembly Robot Arm) ge-

ometry is realized by using two revolute and one prismatic joint in a

way in which all the joint axes are parallel. The workspace area is

pictured in Fig 1.8 (d) and usually depends on the link parameters. It

is industrially suitable for vertical assembly.

1.3 Robot preliminary design 15

Anthropomorphic: In this case, all the three joints are revolute, and

since the first joint’s axis is perpendicular to the ground, it resem-

bles the shape of a human arm (hence its name). This is by far the

most dexterous configuration, since it has all revolute joints. The main

drawback is that correspondence between cartesian variables and joint

variables is lost. The workspace, from Fig 1.8 (e), is approximately a

sphere and its industrial application has an extremely wide range.

According to 2012 report of the International Federation of Robotics

(Fig 1.9), 63% of worldwide installed manipulators are anthropomorphic,

15% are cartesian, 12% are SCARA and 10% are cylindrical type.

Figure 1.9: Worldwide robot distribution of robots by kinematic configura-

tion type.

From the previous analysis, it follows quite clearly that in our case, since

we are looking for the maximum dexterity, the anthropomorphic manipulator

seems to be the best choice.

Among the requirements that need to be satisfied in this project, there is

the workspace: the manipulator, in fact, has to have sufficient dexterity in

a cube whose volume is at least 0.5 m×0.5 m×0.5 m. In the sizing analysis

(Chapter 7), the link lengths will be chosen in order to fulfill this requirement.

16 Chapter 1. Introduction

(a) Cartesian (b) Cylindrical

(c) Spherical (d) SCARA

(e) Anthropomorphic

Figure 1.8: Main kinematic configurations for manipulators

1.3 Robot preliminary design 17

Figure 1.10: End effector custom design.

1.3.3 End-effector configuration

Stantis rebus, the manipulator has now only 3 DOF. In order to simulate

the motion of an object in 3D space, 3 more degrees of freedom are needed.

This is accomplished by adding a compact structure at the end of the last

link of the actual kinematic chain. This structure is called end-effector and

there exist many choices for its design and configuration.

The need for compactnees usually pose some complications in its design.

Moreover, Chapter 2 will explain how some particular end-effector designs

may affect positively the kinematic and dynamic analysis: if the axes of the

last three joints, in fact, intersect in a point, then Pieper’s simplified solution

to the kinematic problem can be applied. Such a configuration is commonly

known as spherical wrist.

However, spherical wrists come in several fashions, and various designs

have been proposed along the years. The main filter when choosing a design

is the analysis of the singular configurations and the angular ranges of the

joints.

A custom made end effector was designed for our application, keeping in

mind the avoidance of singular configurations and the maximization of the

18 Chapter 1. Introduction

Figure 1.11: Typical industrial end-effector design.

angular range. From Fig 1.10 it can be seen that the first joint (joint 4) has

theorically3 no limitations on its angular range. The same thing stands for

the second and the third joints (joint 5 and 6), which can span all the angles

from 0◦ to 360◦.

Notice the particular shape of the second link, which was designed in

order to avoid any interference when the axis of joint 6 is collinear with joint

4 ’s axis; in addition, an adequate gap is present in this configuration to allow

the presence of a small object (or a force sensor) at the end of the kinematic

chain.

This configuration differs from commonly used industrial end effectors.

This is due to the fact that a commercial robot has usually some kind of

tool or object at his tip, and a configuration like the one pictured in Fig 1.10

won’t allow the presence of voluminous attachments due to the geometrical

interferences. Hence, in industrial applications, design configurations like

the one in Fig 1.11 [1] are encouraged: a wide mobility of the tip is obtained,

though jeopardizing the angular range of the second joint.

3For the moment, we ignore the presence of any wire or harness attached to the system,

which usually limit the movements.

1.4 Outline 19

1.4 Outline

The thesis will cover the main aspects of a manipulator design process; a

concise summary of the chapters is provided here below:

• Chapter 2 - Kinematics : This chapter sets the foundations of all the

further analyses, providing the tools for the description of the manipu-

lator. Several techniques for relating operational space and joint space

variables are presented and compared. This section focuses on the dif-

ferential kinematics approach, which ultimately leads to the calculation

of the Jacobian matrix, one of the most important tool for the anal-

ysis of a manipulator. The theoretical description is combined with

numerical analyses and trajectory simulations of the different solution

approaches.

• Chapter 3 - Trajectory definition: A general overview on the main

trajectory techniques is presented, with analyses and numerical simu-

lations of the most common approaches. Specifically, particular care

was given to the study of cartesian operational space trajectory plan-

ning, and some reference trajectory are implemented with the aid of

the kinematic model obtained in the previous chapter.

• Chapter 4 - Dynamics : With the solid background gained from the

kinematics chapter, the manipulator analysis is extended to the inves-

tigation of dynamic effects. Two approaches are presented, and their

advantages/disadvanteges are carefully discussed. After the accurate

selection of one of these approaches, in-depth simulations are carried

out, combined with critical surveys on the results obtained.

• Chapter 5 - Linear feedback control : In this chapter, a general overview

of the ways in which a manipulator can be controlled are explained.

Particular attention is given to the joint space control techniques. The

analysis, on behalf of the linearized model hypotheses, starts by con-

sidering the control of a single joint: a design approach for a PD and

a PID controller is minutely presented, assisted by numerical simula-

tions of the models. Finally, the extension of the control technique to

20 Chapter 1. Introduction

a multibody system is discussed.

• Chapter 6 - Space trajectory analysis : In this chapter, the core ap-

plications of the manipulator are discussed. From orbital mechanics

theory, the power of CW equations is explained and it’s applied to

the our model. With the aid of equations and block diagrams, sev-

eral laboratory scenarios are discussed for the simulation of rendzvous

maneuvers, disturbances, force contacts and attitude commands; this

is followed by an overview on feasible force sensors. Finally, using the

models developed for the trajectory simulations, a rendzvous maneu-

ver is implemented, combining the free motion with disturbances and

attitude commands.

• Chapter 7 - Sizing : This chapter collects and processes all the data

obtained in the previous chapters, and with the aid of geometrical,

structural and cost analyses, guides the reader through the design pro-

cess that finally leads to the physical realization of the structure. The

chapter ends with the presentation of rendered images of the final prod-

uct, combined with drawings and CAD assemblies.

• Chapter 8 - Conclusions and future work : This chapter presents the

concluding summary of the thesis, as well as recommendations for fu-

ture work.

Chapter 2
Kinematics

2.1 Introduction

Kinematics is the study of the motion of a body that considers the ob-

ject without taking into account the dynamics causing the movement. This

branch of robotics accounts for the study of the position and its higher order

derivatives1 (velocity, acceleration, jerk etc). The key for a clear and success-

ful analysis is the correct description of the system in terms of the geometry

and its relative motion. The links are numbered starting from the base of

the arm, which is fixed and is numbered as link 0. The first moving link is

link 1, and so on, until the last link, which is link n.

Usually, at least 6 joints are needed in order to have a complete descrip-

tion of an object in space (corresponding to 6 degrees of freedom). Some

robot might have more than 6 DOF, and they are usually referred to as “re-

dundant”.

Each link presents several characteristics that need to be considered during

the design process, but as long as kinematics is concerned, we only need

information about the relationship between the two neighboring joint axes.

The links will be treated as rigid bodies.

1Taken with respect to time or other variables.

21

22 Kinematics

Figure 2.1: Link and joint notation schematic

2.2 Denavit-Hartenberg convention

In order to describe the manipulator and to accomplish not only the kine-

matic analysis, but also all the further studies, it is necessary to implement

a solid and recursive notation. Thus, this convention will be used through

the course of the thesis.

The Denavit-Hartenberg convention defines the relative position and ori-

entation of two consecutive links. The problem is to determine the reference

frames attached to each link and to compute (possibly with the aid of a

standard recursive technique), the coordinate transformations among them.

Even if the frames may be arbitrarily chosen, the DH method proposes a

series of rules for the definition of these frames. These will be presented with

the aid of Fig 2.1.

Referring to Fig 2.1, joint i-1 and i can be seen. The link in between is

here numbered i-1. In the literature, the above-mentioned convention is a

standard; what might lead to uncertainties and mistakes is the definition of

the link frames, which does not appear to be standardized among the main

robotics textbooks [4], [8], [23]. Before enumerating the recursive steps, it is

mandatory to define some key parameters [8]:

2.2 Denavit-Hartenberg convention 23

1. The mutual intersection line (ai−1): in spatial geometry, there always

exists a well defined distance between two non-parallel lines (let’s call

them line 1 and line 2). This distance is measured along an axis which

is mutually orthogonal to these two lines. This distance can be also

interpreted as the radius of a cylinder whose axis is line 1 and that

touches line 2 (o vice versa). When the two lines are parallel, then the

mutual intersection line is not unique, that is, there are infinite parallel

lines that satisfy the orthogonality condition.

2. The link twist (αi−1): if we consider the plane generated by axis i-1

and axis i, then the link twist is the angle between them, measured on

this plane, from axis i-1 to axis i, in the right hand sense around the

mutual intersection line.

It can be shown that only these two parameters are necessary to fully

describe the relative position between two lines in 3D space. However, we are

also interested in how these links are interconnected: two extra parameters

can be introduced:

3. The link offset (di): this parameter accounts for the distance, along

the common axis of two adjoining links, between one link and the next.

Referring to Fig 2.1, this offset is the distance between ai−1 and ai,

measured along the i axis. Notice that this distance is a signed number:

positive if pointing to the positive Zi axis.

4. The joint angle (θi): this parameter describes the amount of rotation

about the common axis i, between one link and his neighbor. Referring

to Fig 2.1, it is the angle from Xi−1 to Xi, measured around Zi.

By knowing these 4 parameters for each link of the robotic chain, it is pos-

sible to univocally identify the configuration. The link frames are obtained

by following these steps [8]:

• The links are numbered starting from the base, which gets number 0;

the first moving body is called link 1, and the first joint is joint 1

• The frame attached to link i-1 will have Xi−1, Yi−1, Zi−1 axis and Zi−1

will be chosen along the axis of joint i-1

24 Kinematics

Figure 2.2: Frame configuration obtained via DH procedure.

• Identify the joint axes and the common perpendicular between them.

At the point of intersection, assign the link-frame origin

• Assign Zi axis, which will point along the i-th joint axis of rotation

• Assign Xi axis, which will point along the common perpendicular. (In

the case of intersecting axes, Xi is chosen so that it’s normal to the

plane originated by the two axes)

• Assign Yi by following the right-hand rule

• Chose the first frame so that it matches frame 0 (or base frame) when

the first joint variable is zero

The first three frames can now be plotted for a random configuration of

the first three links (Fig 2.2)

As far as the end effector is concerned, the frames will have the same

origin, and they are oriented as shown in Fig 2.3.

Once all the frames are defined, their characteristic parameters can be

stored in a matrix (also called “DH matrix”). In this case, the table is:

2.2 Denavit-Hartenberg convention 25

Figure 2.3: Frame configuration for end-effector structure.

Joint (i) αi−1 ai−1 di θi

1 0 0 0 θ1

2 π
2

0 -d2 θ2

3 0 l2 -d3 θ3

4 -π
2

l3 -d4 θ4

5 -π
2

0 0 θ5

6 -π
2

0 0 θ6

Table 2.1: DH matrix containing the parameters for the frame definition.

It’s important to note that the table is not a function of the arm configu-

ration, that is, it will not change with the variation of the joint coordinates,

but it’s a mechanical characteristic of the robot.

A comment should be made upon the di column. These values, called

offsets, have an important influence on the kinematics calculations. These,

in fact, when they are not equal to zero, augment the configuration choices: if

we assign a point in space to be reached by the robot, a di 6= 0 will double the

possible q combinations that can be used. This redundancy has advantages

and disadvantages: it might be useful when there’s the need to avoid obstacles

or singularity conditions (by choosing another arm displacement), but, on the

other hand, requires a software that implements the ability to choose among

the different options. This, often, might lead to delays in the solution time.

At this point, we defined the frames for the whole system, and we know

their orientation with respect to the links. We now wish to define the matrices

26 Kinematics

that allow transforming from frame i to frame i+1. This process can be done

manually by looking at the DH table and building the transform considering

the translation and the rotation between the links.

A way to automate this calculation is to use a recursive process. One of

the most common techniques is to evaluate the following matrix, which is

DH-parameters dependent.

i−1
iT =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (2.1)

In this case, subtituting the values obtained in Table 2.1, the matrices

are:

0
1T =


cθ1 −sθ1 0 0

sθ1 cθ1 0 0

0 0 1 0

0 0 0 1

 1
2T =


cθ2 −sθ2 0 0

0 0 −1 d2

sθ2 cθ2 0 0

0 0 0 1



2
3T =


cθ3 −sθ3 0 l2

sθ3 cθ3 0 0

0 0 1 −d3

0 0 0 1

 3
4T =


cθ4 −sθ4 0 l3

0 0 1 −d4

−sθ4 −cθ4 0 0

0 0 0 1



4
5T =


c(θ5 − π

2
) −s(θ5 − π

2
) 0 0

0 0 1 0

−s(θ5 − π
2
) −c(θ5 − π

2
) 0 0

0 0 0 1

 5
6T =


cθ6 −sθ6 0 0

0 0 1 0

−sθ6 −cθ6 0 0

0 0 0 1



As we expected, the transforms are a function of the joint variables only.

Note that the last two transform-matrices present the same 4th column: this

means that the translation with respect to the previous frame is zero, and

there is only a rotational transform. This is due to the fact that the same

origin was chosen for these frames (Pieper’s hypothesis).

2.3 Direct Kinematics 27

2.3 Direct Kinematics

With these matrices computed, we can introduce the direct kinematics prob-

lem (DK). Direct kinematics allows for the knowledge of the cartesian posi-

tion of each link of a kinematic chain once the joint variables q = [q1 . . . qn]

are know.

In a manipulator, the most important result that the DK procedure pro-

vides is certainly the knowledge of the Cartesian position and orientation of

the end effector.

This is done by simply taking the product of the transforms:

0
NT(q) = 0

1T(q1) 1
2T(q2) ...N−1

NT(qN) (2.2)

If the cartesian position is needed (in terms of [px, py, pz]), we recall the

general expression of a rototransitional matrix:

0
NT(q) =


r11 r12 r13

0px,N

r21 r22 r23
0py,N

r31 r32 r33
0pz,N

0 0 0 1

 (2.3)

In this fashion, it is possible to instantly know the position of each joint

in the Cartesian space:
0pj = 0

jT(1 : 3, 4) (2.4)

Where 0pj is the position of the j-th joint with respect to the origin. The

orientation can be obtained in a similar way from from Eq 2.3:

0
jR(q) = 0

jT(1 : 3, 1 : 3) (2.5)

2.4 Inverse Kinematics

Inverse kinematics (IK) consists in the solution of the Cartesian-to-joint vari-

ables problem. That is, for a given end effector position in 3D space, we want

to know the joint variable vector(s) that allows that configuration.

The solution to this problem is way less straightforward than the direct

kinematics case, and it is strictly linked to the geometrical configuration of

28 Kinematics

the manipulator. Not for all cases, in fact, there exists an analytical solution;

moreover, for those cases whose analytical solution is available, this is usually

difficult and time consuming, since it involves nonlinear equations. These

might have multiple or even infinite solutions. In some cases, in view of the

manipulator kinematics, there might even be no admissible solutions at all.

In general, it can be said that the number of solutions depends on the

degrees of freedom but also on the link parameters; for a 6 DOF robot, there

might be up to 16 different solutions for a point in the dexterous space2. The

more non-zero DH parameters, the more solutions available.

The IK problem can be approached with two main strategies: numerical

solutions and closed-form solutions. Due to their iterative nature, numerical

solutions tend to be time consuming, and there is usually low interest in

applying these techniques for kinematic calculations.

In the next sections, we will focus our attention on closed form solutions:

they are divided into algebraic and geometric methods. In the first type,

the given equations are manipulated into a form for which solution is known

(transcendental expressions commonly arise), whereas in the latter the spatial

geometry of the arm is decomposed into several plane-geometry problems.

2.4.1 Pieper’s solution

Some configurations might provide huge simplifications for the inverse kin-

matics problem. A 6 DOF robot, for example, does not have a closed form

solution in general. However, if three consecutive axes intersect at a point,

then Pieper’s solution can be applied [8], [23].

In this thesis, the manipulator has the last three axes intersecting: the

origins of frame 3
4T, 4

5T, 5
6T in fact, are coincident. The merging point can

be calculated in base coordinates as:

2The dexterous space is defined as that volume of space that the robot end-effector can

reach with all orientations. The reachable workspace, on the other hand, is the volume

that the robot can reach in at least one orientation [8].

2.4 Inverse Kinematics 29

0p4 = 0
1T

1
2T

2
3T

3p4 =


px

py

pz

1

 (2.6)

from which, using the fourth column of Eq 2.1:

0p4 = 0
1T

1
2T

2
3T


a3

−d4sα3

d4cα3

1

 (2.7)

we can also state that:

0p4 = 0
1T

1
2T


f1(θ3)

f2(θ3)

f3(θ3)

1

 (2.8)

where we defined: 
f1(θ3)

f2(θ3)

f3(θ3)

1

 = 2
3T


a3

−d4sα3

d4cα3

1

 (2.9)

Using 2
3T from Eq 2.1, the following expressions for f can be obtained:

f1 = a3c3 + d4sα3sα3 + a2

f2 = a3cα2s3 − d4sα3cα2c3 − d4sα2cα3 − d3sα2

f3 = a3sα2s3 − d4sα3sα2c3 + d4cα2cα3 + d3cα2

(2.10)

We define also the following parameters:
g1 = c2f1 − s2f2 + a1

g2 = f1cα1s2 + f2cα1c2 − f3sα1 − d2sα1

g3 = f1sα1s2 + f2sα1c2 + f3cα1 + d2cα1

(2.11)

And we can write, with the aid of Eq 2.1, Eq 2.8 and Eq 2.11:

30 Kinematics

0p4 =


c1g1 − s1g2

s1g1 + c1g2

g3

1

 (2.12)

The square magnitude of 0p4, using Eq 2.12 and substituting Eq 2.10, is:

r = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2f3 + 2a1(c2f1 − s2f2) (2.13)

We define some symplifying parameters:
k1 = f1

k2 = −f2

k3 = f 2
1 + f 2

2 + f 2
3 + a2

1 + d2
2 + 2d2f3

k4 = f3cα1 + d2cα1

(2.14)

And we finally state: {
r = (k1c2 + k2s2)2a1 + k3

z = (k1s2 − k2c2)sα1 + k4

(2.15)

The utility of these steps can be appreciated by looking at Eq 2.15: the

dependence on θ1 has been eliminated and the dependence from θ2 has be-

come much simpler. The first step is to consider the solution for θ3. We

distinguish three cases:

1. If a1 = 0, then r = k3. Since k3 is a function of θ3 only, we can obtain

a quadratic equation in tan θ3
2

which yields the solution for θ3

2. If sα1 = 0, then z = k4. We can obtain a quadratic equation and solve

for θ3

3. If a1 6= 0 and sα1 6= 0, we can eliminate with an auxiliary equation s2

and c2, and we end up with a 4th degree equation, which will be solved

for θ3

In our particular case, a1 = 0 and we can compute θ3 referring to the first

bullet point. We then focus on the solution of θ2 and θ1: this is, however,

from Eq 2.12 and Eq 2.15, pretty straightforward.

2.4 Inverse Kinematics 31

At this point, we know θ1, θ2 and θ3. Since the three last axis are in-

tersecting, it is possible to compute the remaining angles with the aid of

elementary matrix transform algebra.

In this problem, we are given the wanted attitude of the end effector with

reference to the base frame, which is 0
6Tatt. From Pieper’s solution, 0

3T can

be computed:

0
4T = 0

1T(q1) 1
2T(q2) 2

3T(q3) (2.16)

The desired orientation, 0
6T, differs from the actual orientation 0

3T only

due to the action of the last three joints, whose contribution is described by

the following matrix:

3
6T(q4, q5, q6) = 0

3T
−1 0

6T (2.17)

From this matrix, the computation of the angle is pretty straightforward,

and we proceed algebraically from the symbolic expression of 3
6T, containing

the DH parameters and trigonometric functions of q4, q5, q6.

It is important to notice that this method won’t produce a single solution

vector q = [q1 . . . qn], but due to the properties of trigonometric functions,

every solution step will yield two values: each of these then must be used in

the next step, will which yields four corresponding solutions and so on. For

n degrees of freedom, we will have 2n solutions. Conceptually, we obtain the

tree shaped solution scheme of Fig 2.4. From the related table it can be seen

that we end up with 2n solution vectors (in this case, n=3 ; 2 3=8).

Some of these solutions, however, are not acceptable and they need to be

verified: a way to do this is to insert in matrix 2.1 each of the q obtained and

check if the resulting matrix corresponds to the original 0
6T (if computations

were to be taken, it will be seen that the 2n matrices differ only for some

sign changes, whereas the absolute value will be the correct ones).

With the aid of a Matlab simulation, the inverse kinematics problem for

the first three links of the manipulator was solved. The correct solutions

(which are always half of the total mathematical solutions), are plotted in

Fig 2.5 for the case in which all the offset are zero (a), and when d2 6= 0 (b).

32 Kinematics

f(θ1)

θII1

θIV2

θV III3

θV II3

θIII2

θV I3

θV3

θI1

θII2

θIV3

θIII3

θI2
θII3

θI3

Figure 2.4: Tree diagram of solution procedure for the first 3 joints

Sol #1 θI1 θI2 θI3
Sol #2 θI1 θI2 θII3

Sol #3 θI1 θII2 θIII3

Sol #4 θI1 θII2 θIV3

Sol #5 θII1 θIII2 θV3
Sol #6 θII1 θIII2 θV I3

Sol #7 θII1 θIV2 θV II3

Sol #8 θII1 θIV2 θV III3

2.4.2 Alternate algebraic solution

Piper’s method can be easily coded in any computing software. Some prob-

lems, however, might arise due to the need for the symbolic expression of

the equations. Matlab, for example, has its own symbolic toolbox, but this

stresses enormously the computing power, causing the simulation to run

much slower. In general, this is not much of an issue, but when the sim-

ulation needs to provide real time solutions (i.e. inputs to actuators), the

reduction of computing time is a priority.

In this section, an alternative method is presented, and it is based on

2.4 Inverse Kinematics 33

(a)

(b)

Figure 2.5: Matlab simulation of inverse kinematics problem. Case (a)

presents no offsets (di = 0 ∀i), and 2 configurations are allowed. Case

(b) has d2 = 0.1 and the possible configurations are doubled.

34 Kinematics

algebraic computations, avoiding any kind of symbolic usage. What has

been changed is the calculation of the end effector position; the procedure

for the calculation of the end effector orientation remains the same (Eq 2.16,

Eq 2.17).

Given the end effector desired position, we can recall Eq 2.6. The 0
1T,

1
2T, 2

3T matrix products can be written as a function of the q coordinates

and DH parameters (refer to Eq 2.1). From this matrix, we can extract the

needed values step by step by using the inverse trigonometric functions.

Once θ1 is obtained, we can proceed with θ2 and θ3. Recalling the consid-

erations of the previous chapter, since we are solving trigonometric functions,

we will have a tree of solutions that will need to be verified. Finally, the pro-

cedure for the calculation of the last two coordinates remains unchanged.

2.4.3 Methods comparison

The last method is much faster than the previous one, even after accounting

for the extra solution checking time: a test for the computation time has been

designed. A random point in the dexterous space of the robot was chosen,

and the code for the inverse kinematics calculation was run. The test was

carried out in three step: the same piece of code was run 1, 10 and 100 times

in a loop3. This procedure was repeated identically for the two approaches.

In Fig 2.6 the results from the approach explained in Section 2.4.1 are on the

right, whereas the results from the technique of Section 2.4.2 are on the left.

It is immediate to notice the disadvantages of the addition of symbolic

functions to a computational script: in the third test for example (red bars),

the time needed in the symbolic approach is ∼50 times more than its numeric

equivalent!

3For these measurements to be valuable, the number displayed in the plot is an average

of 20 values obtained in 20 different tests. For sake of precision, tests were carried out

with the aid of Matlab R© and a 2.4 GHz Intel Core i5, 4GB RAM laptop computer.

2.5 Differential kinematics 35

Figure 2.6: Computation time comparison between kinematic analysis ap-

proaches. On the left, the alternate albegraic solution, on the right the

symbolic solution.

2.5 Differential kinematics

The previous chapter dealt with the relationship between joint variables and

end effector position. Equation 2.18 illustrates the relationship between joint

velocities and end effector velocities (linear and angular).

v = J(q̄) · q̇ (2.18)

The link between these parameters is provided by the Jacobian matrix.

With the knowledge of this matrix and the end effector desired trajectory

(expressed in terms of velocities), the kinematic problem can be easily solved:

joint velocities can be directly obtained and then, with a numerical integra-

tion, also their instant position.

36 Kinematics

The Jacobian, as can be inferred, represents a fundamental quantity in

robotics, and it will be used further in the dynamics analysis. Its calculation

can be done in two ways: analytically or geometrically [20]. The analytical

computation can be used when the end effector has a minimal representation

in the operational space, and it’s thus possible to compute the matrix via

differentiation of the kinematics equations. The geometric computation, on

the other hand, is done by computing the contributions of each joint velocity

to the components of the end-effector cartesian linear and angular velocities.

These two different approaches will provide, obviously, the same result,

but they have indeed different mapping matrices. In this thesis the geometric

approach has been used, due to its recursive fashion that is perfectly suitable

for a Matlab routine.

2.5.1 Geometric approach

From solid mechanics, we recall that the velocity of point P belonging to a

rigid body moving in 3D space, with respect to frame A, can by expressed

as [23], [32]:
AVP = AVB + A

BR
BVP (2.19)

Where B is a reference matrix fixed to the body. In this case we consider

the motion of frame B as a pure translation. If a rotation is present, Eq 2.21

becomes:
AVP = AVB + A

BR
BVP + AΩB × A

B
BP (2.20)

Where AΩB is the angular velocity of the body with respect to frame A. By

using this equation and its derivatives we can approach the Jacobian matrix

derivation as well as the dynamics, presented in Chapter 4. For the solution

of differential kinematics, the velocities of each link (linear and angular) are

needed: a technique called “velocity propagation” will be used in order to

obtain a recursive and implementable sequence. We start from the base:

frame 0 will be considered the fixed, reference frame. We define vi as the

linear velocity of the origin of the frame attached to link i ; same notation

applies to wi. The superscript on the left of a parameter resprents the frame

in which it is expressed.

2.5 Differential kinematics 37

Figure 2.7: Velocity vectors for two adjoining links.

Once the notation issues are cleared, the procedure can be started: since

a manipulator is a chain of links, each capable of motion relative to its

neighbors, we compute the velocities in order, from the base to the end

effector. Referring to Fig. 2.7, velocity of link i+1 will be the one of link i

with the addition of a contribution from joint i+1. That is:

ivi+1 = ivi + iωi × iPi+1 (2.21)

Where iPi+1 is the vector connecting the two links. There is no need to

calculate this, since the i
i+1T matrices have this information stored in their

fourth column. Since we want the velocity of link i+1 to be expressed in

frame i+1, we might rearrange the previous equation:

i+1vi+1 = i+1
iR (ivi + iωi × iPi+1) (2.22)

As far as concerns the rotational velocities, we need to note that their

addition can take place only when they are expressed in the same reference

frame. We can write:

iwi+1 = iwi + i
i+1R θ̇i+1

i+1k̂i+1 (2.23)

38 Kinematics

Where:

θ̇i+1
i+1k̂i+1 = i+1

 0

0

θ̇i+1

 (2.24)

The same equation expressed in frame i+1 becomes:

i+1wi+1 = i+1
iR

iwi + θ̇i+1
i+1k̂i+1 (2.25)

We can finally write the system of equations that will be used to “propagate”

the velocities from i = 0, the base frame, to i = N , which corresponds to the

velocities (linear and angular) of the end effector.
i+1vi+1 = i+1

iR (ivi + iωi × iPi+1)

i+1wi+1 = i+1
iR

iwi + θ̇i+1
i+1 ˆki+1

(2.26)

Let’s go back to Eq. 2.18. For a 6 DOF manipulator, it can be rewritten

as follows: [
v

ω

]
=

[
JP

JO

]
·
[
q̇
]

(2.27)

Where JP and JO are both 3 × 6 matrices. The derivation of the Jacobian

can be accomplished with several methods. For example, we could differen-

tiate the kinematic equations of the structure. However, looking forward to

the dynamics analysis, we will use a technique that will be fundamental to

simplify the dynamic analysis. The Jacobian can be written as:[
JP

JO

]
=

[
zi × (pe − pi)

zi

]
(2.28)

Which, in our case, becomes:[
JP

JO

]
=

[
z1 × p̃1 z2 × p̃2 z3 × p̃3 z4 × p̃4 z5 × p̃5 z6 × p̃6

z1 z2 z3 z4 z5 z6

]
(2.29)

Where p̃i = pe − pi. The elements of the matrix are explained in the

following bullet point list [23]:

2.5 Differential kinematics 39

• zi respresents the axis of rotation of joint i expressed in the base frame.

It is obtained from the third column of the rotation matrix 0
iR:

zi = 0
1R

1
2R ...i−1

iR z0 (2.30)

with z0 = [0 0 1]T being used to extract the third column of 0
iR.

• pe represents the position of the end effector expressed in the base

frame. It is a 3 × 1 vector that can be extracted from p̌e, where p̌e is

calculated from:

p̌e = 0
1T

1
2T ...N−1

NT p̌0 (2.31)

in this case, p̌0 = [0 0 0 1]T allows for the extraction of the fourth

column; clearly, pe is given by the first three elements of p̌e.

• pi represents the position of the i-th joint expressed in the base frame.

It is a 3×1 vector that can be extracted from p̌i, where p̌i is calculated

from:

p̌i = 0
1T

1
2T ...i−1

iT p̌0 (2.32)

Equations 2.29 can be easily implemented in a Matlab code; the value

of J depends on the istantaneous configuration (its symbolic expression is

available in the Appendix).

2.5.2 Inverse differential kinematics

As above mentioned, the differential kinematics equation represents a linear

mapping between the operational space and the joint space. This fact sug-

gests the possibility to utilize this approach to tackle the inverse kinematics

problem. Recalling Eq. 2.18:

v = J(q̄) · q̇ (2.33)

What is interesting from a robotics point of view, is the q̇ vector: this contains

information about the motion in the joint space, which are needed when

controlling a robot. In order to extract this vector, we can invert the equation:

q̇ = J−1(q̄) · v (2.34)

40 Kinematics

From this vector, since v is known from the trajectory planning, we can

finally obtain the joint variable position using an integration:

q(t) =

T∫
0

q(t) dt + q(0) (2.35)

The initial position q(t = 0) needs to be known in order to start the inte-

gration. This value can be obtained, for example, with one of the two IK

methods presented in Section 2.4.1 and 2.4.2.

Eq 2.35 has to be implemented in the code has a discrete linear expres-

sion, using one of the several numerical integration methods available (Euler,

Heun, etc.); in this case, Euler method has been implemented: given an in-

tegration step, the position at time ti+1 is given by:

q(ti+1) = q(ti) + q̇(ti) ∆t q(ti+1) q = [0 0 0 0] (2.36)

At this point, it is possible to summarize the procedure with a block

diagram (Fig 2.8). If we insert the integration method, then the solution

procedure can be represented by the blocks in Fig 2.9. In the diagram,

Euler’s integration method is implemented.

Figure 2.8: Inverse differential kinematics diagram.

2.5 Differential kinematics 41

Figure 2.9: Inverse differential kinematics diagram with integration method.

2.5.3 Singularities

Without doubt, the most critical step in obtaining the joint variable values

lies in Eq. 2.34. This step, in fact, involves a matrix inversion, which can be

successfully carried out only if the determinant is different from zero. When

det(J)=0, one or more singularities are present: a singularity represents a

configuration in which the mobility of the robot is reduced. They can be

classified into [23], [8]:

• Boundary singularities: these occour when the robot is fully stretched

and the desired trajectory is outside of the reachable envelope surface.

This singularity can be easily avoided when designing a code: a simple

control can be put on theses points of the trajectory.

• Internal singularities: these take place inside the workspace when one

or more degrees of freedom are lost, that is, when there’s a lining up of

two or more joint axes. The most critical part of the robot in terms of

singularities is the end effector. For this reason, in this paper its design

has been carefully planned in order to limit these situations. Refer to

Section 1.3.3 for an accurate discussion.

Singularities constitute a serious issue, due to the fact that when det(J)=0,

the q̇ computations will provide infinite results, which are clearly not ac-

ceptable: if the robot is given these results as an input to the motors, then

serious trouble may arise.

42 Kinematics

A way to solve (or, at least, to prevent) this phenomenon is to solve

the det(J)=0 equation and spot the dangerous cases. It can be seen, un-

fortunately, that this process is difficult and of no easy solution for generic

structures.

For robots with a spherical wrist (our case) it’s however possible to split

the computation in two parts:

1. Calculation of arm singularities due to the motion of the first links (3

in this case)

2. Calculation of wrist singularities due to the wrist joints (3 in this case)

We can think of the Jacobian as composed by four 3× 3 sub-matrices:

J =

[
J11 J12

J21 J22

]
(2.37)

Recalling Eq. 2.29, we have that:

J12 =
[
z4 × p̃4 z5 × p̃5 z6 × p̃6

]
(2.38)

J22 =
[
z4 z5 z6

]
(2.39)

However, since we used Pieper’s mechanical simplification, the last three

joint axes are intersecting, which yields J12 = [0 0 0]. This means that the

overall Jacobian has the structure of a block lower-triangular matrix. Due

to this property, the determinant calculation is simplified:

det(J) = det(J11)det(J22) (2.40)

This form also allows for the immediate decoupling of the two singularity

cases: det(J11)=0, in fact, accounts for arm singularities, whereas det(J22)=0

accounts for wrist singularities.

As far as concerns arm singularities, the determinant is4:

det(J11) = −a2a3c3(a2c2 + a3c23) (2.41)

This equation has two solutions:

4The notations si...j , ci...j denote respectively sin(qi + ...+ qj), cos(qi + ...+ qj).

2.5 Differential kinematics 43

Figure 2.10: Arm singularities: elbow and shoulder.

1. sin(θ3)=0 ; θ3 = 0 , θ3 = π : in this configuration, the manipu-

lator is fully stretched or retracted along link 2. This is called elbow

singularity, Fig 2.10 (a).

2. a2c2 +a3c23 = 0 ; px=py=0 : in this case the end effector position

(that is, the origin of frames 3
4T, 4

5T, 5
6T) lies on the z0 axis. Singularity

arises because in this configuration the variation of θ1 has no effect on

the position of the end-effector: this is called shoulder singularity,

Fig 2.10 (b).

As far as wrist singularities are concerned, the solution can be inferred

by taking a close look at the J22 sub-matrix. The determinant is equal

to zero when the rows (or the columns) are linearly dependent. Since the

rows are the unit vectors describing the orientation of the last three joints’

revolution axes, the solution is fairly simple to obtain: when these axes

align, the rank of matrix J22 drops from 3 to a value <3, thus providing our

solution, det(J22)=0.

Axes z4 and z5 do not align, no matter what value is given to θ4. Same

thing applies to z5 and z6, which are never parallel. The only possible align-

ment among z4, z5 and z6 occurs when axis z6 aligns with z4. This situation

is influenced by θ5 only:

z4//z5 ; θ5 = 0 , θ5 = π (2.42)

44 Kinematics

2.6 Simulation

Once all the modeling has been completed, it is possible to simulate some trial

trajectories. Along with the script for computing the kinematics quantities,

a graphical output allows for a better visualization of the problem.

This consists in a 3D animation of a simplified model of the robot. For

each time step, a plot with the current configuration is drawn; thus, if the

frame rate is adequately high, the serie of images resembles a moving object.

On these figures, the predefined trajectory is drawn as well as the actual one,

in order to check the correct tracking motion of the end effector. It will be

shown how this variance increases dramatically with the time step.

2.6.1 Rectilinear trajectory

The first trajectory to be simulated is a line in space. According the theory

presented in Chapter 3, this path needs only the starting and ending points

(pi, pf) for its complete definition. As far as concerns the motion law, we

suppose a 5th degree polynomial with zero acceleration at the extremities.

Moreover, we need to define how the end effector orientation changes

during the journey; since we have no particular requirements at this point,

we impose the orientation to be coherent to a random attitude frame (Tatt),

described using Euler angles φatt, θatt, ψatt (the procedure for obtaining q4,

q5, q6 from this approach is explained in Section 2.4.1)

For sake of simplicity, we simulate a line parallel to the x-axis. The

parameters used to initialize the code5 are:

xin = [0.4 1.1 0.2] [m]

vin = [0 0 0] [m]

ψatt = −20◦

θatt = 90◦

φatt = 45◦

5A copy of the script is available in the Appendix.

2.6 Simulation 45

As far as concerns the trajectory, we have:

x(t) =


a5t

5 + a4t
4 + a3t

3 + a0

1.1

0.2

 (2.44)

ẋ(t) =


5a5t

4 + 4a4t
3 + 3a3t

2

0

0

 (2.45)

Where:

a0 = −0.4

a1 = 0

a2 = 0

a3 = −0.008

a4 = 0.0012

a5 = −4.8 · 10−5

t ∈ [0; 10] s

dt = 0.01 s

With the following boundary conditions on velocity and acceleration:

ẋ(0) = ẋ(T) =


0

0

0


ẍ(0) = ẍ(T) =


0

0

0


Notice that, in the kinematics simulations, no information about the mass

and inertial properties of the links are needed. In Fig 2.11 the position,

velocity and acceleration of the six joints are plotted.

The last frame of the Matlab animation is proposed in Fig 2.12 (a). The

end effector is represented as a concentrated mass, and its orientation is

46 Kinematics

(a) q(t), q̇(t), q̈(t) for joints 1, 2, 3.

(b) q(t), q̇(t), q̈(t) for joints 4, 5, 6.

Figure 2.11: Kinematics analysis for linear trajectory, T=10 s

2.6 Simulation 47

Figure 2.12: Linear trajectory: 3D simulation in Matlab’s native environ-

ment. Time steps of dt = 0.01 s (left) and dt = 0.1 s (right)

expressed by the frame attached to it. To verify to correctness of the end

effector orientation, the goal frame is plotted in the system’s origin: it can

be seen that they have the same attitude as predicted. The red line in the

figure represents the actual trajectory, which follows very well the ideal path

(represented with a blue segment, here hidden by the red line).

The importance of the time step choice can be seen in Fig 2.12 (b): in this

case, the only parameter that was changed in the simulation is the timestep,

which was increased to dt = 0.1 s. In this picture, the divergence between

the red and the blue line is visibily increasing with time.

2.6.2 Circular trajectory

For simulating a circular trajectory, we can follow the abovehead procedure.

According to the analytical description in Chapter 3, a circular path is char-

acterized by the radius, the center vector, the normal vector (i.e. the per-

pendicular to the circumference plane) and a starting point.

48 Kinematics

In this example, the analysis was carried out with the following parame-

ters:

xin = xfin = [0.9 0.7 0.3] [m]

xc = [0.9−R 0.7 0.3] [m]

n̄ = [0 0 1]

R = 0.4m

ψatt = 0◦

θatt = 45◦

φatt = 0◦

As far as the trajectory is concerned, we utilize a 5th order polynomial

for the angular law, that is:

Θ(t) =a5t
5 + a4t

4 + a3t
3

Θ̇(t) =5a5t
4 + 4a4t

3 + 3a3t
2

Θ̈(t) =20a5t
3 + 12a4t

26 + a3t

Where:

a0 =0

a1 =0

a2 =0

a3 =62.83

a4 = −94.25

a5 =37.69

t ∈ [0; 1] s

dt = 0.001 s

With the following boundary conditions on velocity and acceleration:

ẋ(0) = ẋ(T) =


0

0

0



2.6 Simulation 49

Figure 2.13: Cicular trajectory: 3D simulation in Matlab’s native environ-

ment. Time steps of dt = 0.001 s (left) and dt = 0.005 s (right)

ẍ(0) = ẍ(T) =


0

0

0


The cartesian position and velocity, then, are:

x(t) =


R cosΘ(t)

R sinΘ(t)

0.3

 =


0.4 cos(a5t

5 + a4t
4 + a3t

3)

0.4 sin(a5t
5 + a4t

4 + a3t
3)

0.3

 (2.50)

ẋ(t) =


−R sinΘ(t) · Θ̇(t)

R cosΘ(t) · Θ̇(t)

0

 =


−0.4 sin(a5t

5 + a4t
4 + a3t

3)(5a5t
4 + 4a4t

3 + 3a3t
2)

0.4 cos(a5t
5 + a4t

4 + a3t
3)(5a5t

4 + 4a4t
3 + 3a3t

2)

0


(2.51)

In Fig 2.14 the position, velocity and acceleration of the six joints are plotted.

Finally, we propose a screenshot of the animation carried out in this case.

As usual, the red trajectory represents the actual position of the end effector,

whereas the blue line is the goal trajectory. To stress the importance of the

50 Kinematics

(a) q(t), q̇(t), q̈(t) for joints 1, 2, 3.

(b) q(t), q̇(t), q̈(t) for joints 4, 5, 6.

Figure 2.14: Kinematics analysis for circular trajectory, T=10 s

2.7 Model verification: Simulink’s SimMechanics toolbox. 51

step size choice, two simulations are pictured. In the first one, Fig 2.13 (a),

step size is dt = 0.001; in the second one Fig 2.13 (b), the value was increased

to dt = 0.005.

Note that also in this case the end effector attitude frame was plotted. In

both picture, they are clearly coherent with the predefined attitude frame.

2.7 Model verification: Simulink’s SimMe-

chanics toolbox.

We here introduce an alternate way of simulating a robotic structure. In

the Matlab environment, it is possible to create a SimMechanicsTM model.

This add-in provides a multibody simulation environment for 3D mechanical

systems. The multibody system is modeled using blocks representing bodies,

joints, constraints, and force elements; SimMechanics then formulates and

solves the equations of motion for the complete mechanical system. Models

from CAD systems, including mass, inertia, joint, constraint, and 3D geom-

etry, can be imported into SimMechanics. An automatically generated 3D

animation allows for the visualization the system dynamics [26].

The power of the software, in our case, is the ability to cross verify the

analytical results. In fact, this can be done without writing any equation for

this new model. The only things needed are the physical parameters of the

robot and the input values for the motors.

The model can be easily imported from a compatible CAD software

(SolidWorks was used in our case), and mass, center of mass and inertial

properties are automatically computed and stored for each body part.

As far as concerns the inputs to the motors, SimMechanics joints can be

controlled in two ways:

1. Motion control: each link is provided with the generalized coordinates

qi and its derivatives q̇i and q̈i.

2. Torque control: each link is provided with the instantaneous torque τi.

In this chapter, we focus on motion control (refer to Chapter 4 for torque

control simulation).

52 Kinematics

Figure 2.15: Simulink block diagram for trajectory analysis and simulation.

In this case, the joints are motion controlled.

The motion controlled joint needs q(t), q̇(t), q̈(t) as inputs: these are

calculated from the Matlab script and stored in three matrixes that will be

extracted from the Simulink environment.

Moreover, SimMechanics provides several built in features for the motion

monitoring. For example, virtual sensors can be attached to the joints. What

was done in this case, since we are imposing a cartesian trajectory, was

to monitor the end effector position with a XY plot of its instantaneous

position.

As far as concerns the graphical interface, SimMechanics allows for the

import of the CAD drawings of the links. It is possible to obtain very detailed

animation, useful to identify intereferences or interface problems. In Fig 2.16

we present some screenshots of the graphical environment.

2.7 Model verification: Simulink’s SimMechanics toolbox. 53

Figure 2.16: Simmechanics virtual model of the manipulator: overall view

and end effector close up.

54 Kinematics

The Simulink block diagram governing the model is presented in Fig 2.15.

The diagram starts with the calculation of the current iteration count by

dividing the clock variable by the imposed stepsize (whose value is picked

automatically from the Matlab model). With this value (i), the Lookup Table

blocks extract the corresponding i-th column from the 6×N position, velocity

and acceleration matrices stored in the workspace. This column is finally

divided into its 6 components, which are then fed into the corresponding

joint inputs. The solution is obtained with the aid of a variable step solver:

ode45 (Dromand-Price) has been used.

In order to get the end effector position, a Body Sensor block is connected

to link 6. Its output, a 3× 1 cartesian position, is then plotted with the aid

of a Scope block. In Fig 2.17, this graphical output is presented for four

different step size choices; the blue line represents the wanted trajectory.

2.7 Model verification: Simulink’s SimMechanics toolbox. 55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simmechanics simulation (dt=0.001)

x [m]

y
 [

m
]

(a) dt=0.001 s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simmechanics simulation (dt=0.005)

x [m]

y
 [

m
]

(b) dt=0.005 s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simmechanics simulation (dt=0.01)

x [m]

y
 [

m
]

(c) dt=0.01 s

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simmechanics simulation (dt=0.05)

x [m]

y
 [

m
]

(d) dt=0.05 s

Figure 2.17: Simulink’s XY-scope output for circular trajectory. Step sizes

used: 0.001 s, 0.005 s, 0.01 s, 0.05 s.

56 Kinematics

Chapter 3
Trajectory definition

3.1 Introduction

The goal of trajectory planning is to generate the inputs for the control

system in order for the end effector to follow a predetermined trajectory.

The trajectory is defined with a series of parameters, which depend from the

task that the robot is wanted to accomplish.

Once a trajectory is defined in cartesian space, then the problem consists

in the conversion of this path into the joint space. The way in which the

path is fed to the motors is the core of this chapter.

Before we start, it is important to notice the difference between path and

trajectory : the path describes the locus of points in space (joint or cartesian)

that the end effector has to follow, whereas the trajectory contains also in-

formation on how this path is swept in terms of its derivatives (i.e. velocity

and acceleration).

3.2 Main approaches

A manipulator has to be able to move in space from a starting position to

an assigned end position. The way in which this task is performed needs to

be tuned for the specific machine in order not to approach singularities or

motor saturation. Moreover, the laws describing the motion should provide

a smooth transition, avoiding vibrations, resonance or shocks.

57

58 Trajectory definition

The laws describing the trajectory of the manipulator are of continuous

type. Obviously, it’s not possible to give a continuous input to the motors.

Usually, only several points are provided: starting and ending points and

internal points, which are obtained from the discretization of the continuous

laws.

What a trajectory planning algorithm does, is to provide the actuators

with a series of discrete inputs; the higher the density of these points in time,

the more precise the resulting motion will be. A coarse data flow, in fact,

due to the non-linear terms in the direct kinematics equations, might lead to

unpredicted motions. Hence, there could be a drift due to accumulated error,

and the manipulator motion could diverge, resulting in damages to thing or

personal.

It seems clear that a fine interpolation of the path is the best solution.

However, this is true as long as the computing saturation of the CPU is not

reached: when this happens, the control of the robot can be lost, creating

similar dangers as in the coarse interpolation case.

Though a tradeoff is clearly the best way to proceed, it is interesting to

mention some minor changes that can be performed in order to shift forward

the CPU limit:

� upgrading of the computing hardware

� predilection for numerical algorithms (refer to the IK example in Sec-

tion 2.4.3)

� usage of machine code routines (i.e. C++ over Matlab)

3.3 Joint space planning

In the joint space planning, the initial and final potion (x̄) of the end effector

are known, as long with its orientation (ϕ̄). From these, by invoking an in-

verse kinematic algoritm, it is possible to obtain the initial and final position

of the robot in the joint space, that is:

3.3 Joint space planning 59

Then, an appropriate law q(t) for each joint needs to be computed. There

are several techniques available: the common spirit beyond each of these is

to provide a smooth law. We analyze the two main cases: when the start

and end points are known and when also some midpoints are given.

Point-to-point motion

In this case, the end effector has to move from a starting position to a final

known position in a given time span T . Obviously, infinite curves can solve

this problem:

However, we need to impose the continuity of at least the first q(t) deriva-

tive. This guarantees that there are no jumps or discontinuites in the velocity

profile, which could cause the Jacobian matrix to become singular.

The easiest approach for this goal is to write the generic position law as a

polynomial function. The degree of the polynomial needed can be calculated

as n = C − 1 where C is the number of boundary conditions. In this case,

we have that (using θ(t) as the q(t) variable):

θ(0) = θin θ(T) = θfin (3.1)

60 Trajectory definition

And, for the velocity profile to be continuous:

θ̇(0) = 0 θ̇(T) = 0 (3.2)

With 4 boundary conditions, the 3rd degree polynomial can be written as:

θ(t) = a0 + a1t+ a2t
2 + a3t

3 (3.3)

And its derivatives:

θ̇(t) = a1 + 2a2t+ 3a3t
2 (3.4)

θ̈(t) = 2a2 + 6a3t (3.5)

The coefficients are easily computed. As an example, the trajectory laws for

θ(t0) = π, θ(T) = 2π, T = 10s are plotted in the following figure:

Figure 3.1: Trajectory profiles for a 3rd degree polynomial law.

The position, velocity and acceleration curves have respectively a cubic,

parabolic and linear profile. Note that the acceleration has a discontinuity

at the beginning and at the end.

When, however, acceleration discontinuities are to be avoided or a precise

acceleration profile is needed, the order of the polynomial can be increased

to 5. In this case, the function θ(t) is given by:

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.6)

Note that 2 extra boundary conditions on the initial and final acceleration

need to be set:

θ(0) = θin θ(T) = θfin (3.7)

3.3 Joint space planning 61

θ̇(0) = 0 θ̇(T) = 0 (3.8)

θ̈(0) = 0 θ̈(T) = 0 (3.9)

Using the sample data from the previuos example, the trajectory in this case

has the following profiles:

Figure 3.2: Trajectory profiles for a 5rd degree polynomial law.

3.3.1 Point-to-point motion with intermediate via points

From the previous the section, we can extend the problem to the case in

which we want the manipulator to be in a specific position at a specific time.

That is, we know the position and the orientation in the operational space,

and we want to sweep this point(s) without stopping.

The approach to adopt in this case is to analyze the problem piecewisely.

The various pieces need to join in a smooth fashion. Each of the “middle

stops” will first be converted to the corresponding q̄ vector with the aid of

the inverse kinematics routine. The boundary conditions, in this case, are:

θ(t0) = θt0 θ(tf) = θtf (3.10)

θ̇(t0) = θ̇t0 θ̇(tf) = θ̇tf (3.11)

From which:

θ(t0) = a0 (3.12)

θ̇(t0) = a1 (3.13)

62 Trajectory definition

θ(tf) = a0 + a1tf + a2t
2
f + a3t

3
f (3.14)

θ̇(tf) = a1 + 2a2tf + 3a3t
2
f (3.15)

With these expressions, we can extract the coefficients for each of the

polynomial pieces of the path. Note that, in order to have a continuous

trajectory in terms of position and velocity, the position and velocity of the

last point of piece i need to be equal to the first of piece i+1, that is: θi = θi+1,

θ̇i = θ̇i+1.

In this case, the main problem is how to calculate the θ̇i at the polynomial

connection. This can be done using differential kinematics if the cartesian

velocity has been specified; if this is not the case, it can be calculated, for

example, in order to have a continuous profile of the acceleration.

Obviously, if there’s the need for a continuous acceleration profile, this

approach can be modified by using a 5th order polynomial, similarly to what

was done in the previous section.

3.4 Operational space planning

An operational space trajectory is designed to generate a time sequence of

q(t) joint variables in order to follow a path in the operational space.

The spatial trajectories can be defined in several ways. If we are interested

in avoiding certain obstacles (this is the case, for example, of an industrial

manipulator for the movement of goods), then only a few path points could

be defined. An interpolation, then, takes cares of the other points.

If, on the other hand, we want the manipulator to follow a precise path

(i.e. a manipulator for painting or welding), then we are interested in the way

in which the journey through the path points is evolving. Our manipulator,

since it is needed for trajectory simulations, falls in this second category.

In this case, two main approaches are available: a densification of the

path points, in order to limit the free interpulated motion, and the definition

of an analytical path. It follows that the first approach is more demanding in

terms of trajectory definition, since each point needs to be singularly defined,

whereas in the second technique path points are easily extrapolated according

to the discretization time step.

3.4 Operational space planning 63

In both approaches, it is necessary to use the inverse kinematic func-

tion to translate the motion specification to the joint space (where actuators

operate) [19]. Since this increases the computational burden for trajectory

planning, the operations of computing the trajectory and translating it to

the joint space are made at a lower frequency with respect to the control

frequency. Therefore, it is necessary to interpolate the data before assigning

them to the low-level controllers: usually, a simple linear interpolation is

adopted.

3.4.1 Predefined analytical path

This approach consists in the definition of path primitives, which describe

parametrically paths in space. We have that p is 3 × 1 vector representing

the position of the end effector [23, 8]:

p = f(s) (3.16)

And p is a function of s, which is the parametric representation of path Γ.

The latter is usually a continuos function of time, so that we can write:

p = f(s(t)) (3.17)

Once p is defined, it is also possible to define three important unit vectors

for the characterization of the path. They are the tangent vector, denoted

with t, which is directed along the direction of Γ; the normal vector, denoted

with n, which lies in the osculating plane and is oriented perpendicularly

with respect to the tangent vector ; the binomial vector, finally, denoted with

b, completes the right handed frame and is perpendicular to the osculating

plane.

Their usefulness lies in their ability to describe the generic path Γ: we

can state, in fact:

t =
dp

ds
(3.18)

n =
1∥∥∥∥d2p

ds2

∥∥∥∥ ·
d2p

ds2
(3.19)

b = t× n (3.20)

64 Trajectory definition

With this background, it is possible to introduce two typical trajectories that

will be used in the kinematic and dynamic analysis.

Rectilinear path

We consider a rectilinear segment that connects point pi to pf . The position

vector can be written as:

p(s) = pi +
s

‖pf − pi‖
· (pf − pi) (3.21)

Where:

s ∈ [0; ‖pf − pi‖] (3.22)

The position of the end effector is thus fully described once the s = s(t) law

is defined. Its definition obeys to the same rules presented in the joint space

analysis section: the best way to choose this function is to use a polyno-

mial with the appropriate degree (usually 3rd, or 5th if specific acceleration

requirements need to be satisfied).

As an example, three sweeping laws are analyzed: linear, parabolic and

cubic. The parameters to be set are the starting and ending vectors (pf and

pi) and the total journey time (T); then, the three time laws are calculated

as follows:

• Linear law

s(t) = a0 + a1t (3.23)

s(0) = 0 ; a0 = 0 (3.24)

s(T) = ‖pf − pi‖ ; a1 =
‖pf − pi‖

T
(3.25)

s(t) =
‖pf − pi‖

T
· t (3.26)

• Parabolic law

s(t) = a0 + a1t+ a2t
2 (3.27)

s(0) = 0 ; a0 = 0 (3.28)

ṡ(0) = 0 ; a1 = 0 (3.29)

3.4 Operational space planning 65

Figure 3.3: Time evolution of three different s(t) trajectory laws for a recti-

linear path.

s(T) = ‖pf − pi‖ ; a2 =
‖pf − pi‖

T 2
(3.30)

s(t) =
‖pf − pi‖

T 2
· t2 (3.31)

• Cubic law

s(t) = a0 + a1t+ a2t
2 + a3t

3 (3.32)

s(0) = 0 ; a0 = 0 (3.33)

ṡ(0) = 0 ; a1 = 0 (3.34)

s(T) = ‖pf − pi‖ ; a2 = 3
‖pf − pi‖

T 2
(3.35)

ṡ(T) = 0 ; a3 = −2
‖pf − pi‖

T 3
(3.36)

s(t) =
‖pf − pi‖

T 3
· [3T · t2 − 2 · t3] (3.37)

An illustrate plot has been created in order to verify the laws: in Fig 3.3,

the previous three s(t) expressions are inserted into Eq 3.21 to be evaluated,

and a marker is drawn at equally spaced timesteps to show the evolution of

the trajectory1.

1For the simulation, the following parameters were used: p1 = [0 0 0]′, p2 = [10 2 20]′,

T = 10 s.

66 Trajectory definition

Circular path

For the definition of a circular path, four parameters must be defined:

1. The radius r (which is a scalar)

2. The center pc (which is a 3× 1 vector)

3. The angular velocity vector h (which is perpendicular to the circle’s

plane)

4. The starting path position (which is a point pin ∈ Γ)

We start by analyzing the simplest case, in which the circle is centered

in the frame’s origin and the path lies on the x− y plane. In this situation,

the position vector is given by:

p̂(θ) =

r · cos θ(t)r · sin θ(t)
0

 (3.38)

However, we are interested to express p as a function of the path’s law

s = s(t). From the definition of radiant:

θ[rad] =
arc

radius
=
s(t)

r
(3.39)

And we can substitute this result back into Eq 3.38:

p̂(s) =


r · cos (s/r)

r · sin (s/r)

0

 (3.40)

Which finally yields our goal expression. To extend this result to a generic

circle in space, we can write:

p(s) = pc + R · p̂(s) (3.41)

Where pc represents the translation of the center, and R accounts for the

rotation of the circle frame. In this latter matrix, R, it is possible to store

information on the starting point of the circumference. Once the cartesian

3.4 Operational space planning 67

Figure 3.4: Time evolution of three different s(t) trajectory laws for a recti-

linear path.

position of this point (pin) and the angular velocity vector h are known, the

new reference frame is composed by the unit vectors i, j, k:

i =
pin − pc
‖pin − pc‖

(3.42)

j =
h× i

‖h× i‖
(3.43)

k =
h

‖h‖
(3.44)

With theese values, the rotation matrix becomes, from its definition:

R = [i j k] (3.45)

Rewriting Eq 3.41, we finally obtain:

p(s) =

[
R pc

0 1

]
· p̂(s) (3.46)

p(s) =


ix jx kx pcx

iy jy ky pcy

iz jz kz pcz

0 0 0 1

 ·

p̂x

p̂y

p̂z

 (3.47)

68 Trajectory definition

Referring to the procedure used in the previous paragraph, we can obtain

the linear, parabolic and cubic s(t) path laws in order to simulate a circle

trajectory.

• Linear law

s(t) = a0 + a1t (3.48)

s(0) = 0 ; a0 = 0 (3.49)

s(T) = 2πr ; a1 =
2πr

T
(3.50)

s(t) =
2πr

T
· t (3.51)

• Parabolic law

s(t) = a0 + a1t+ a2t
2 (3.52)

s(0) = 0 ; a0 = 0 (3.53)

ṡ(0) = 0 ; a1 = 0 (3.54)

s(T) = 2πr ; a2 =
2πr

T 2
(3.55)

s(t) =
2πr

T 2
· t2 (3.56)

• Cubic law

s(t) = a0 + a1t+ a2t
2 + a3t

3 (3.57)

s(0) = 0 ; a0 = 0 (3.58)

ṡ(0) = 0 ; a1 = 0 (3.59)

s(T) = 2πr ; a2 =
6πr

T 2
(3.60)

ṡ(T) = 0 ; a3 = −4πr

T 3
(3.61)

s(t) =
2πr

T 3
· [3T · t2 − 2 · t3] (3.62)

The trajectory results for some trial parameters2 are presented in Fig 3.4.

A marker is drawn at equally spaced timesteps to show the evolution of the

trajectory.

2For the simulation, the following parameters were used: h = [0−5 10]′, pc = [0−5 10]′,

pin = [r − 5 10]′, r = 3 m, T = 10 s.

3.4 Operational space planning 69

3.4.2 Corrected on the go

When an analytical trajectory is designed, it is important to remeber that

the manipulator, for several reason, might not obey to the predefined laws.

If, for example, we want the end effector the follow a goal trajectory (i.e. we

need to weld two pieces of metal), and there are some kind of disturbances,

the actual path might drift from the theoretical one, resulting in errors and

stability problems.

On the other hand, if our goal is to simulate the motion in presence

of disturbances (i.e. a RvD manipulator), we need a system that is able

to detect these disturbances and to calculate the modified trajectory (the

manipulator, otherwise, will keep going approximately on the same path).

Both of these problems can be solved by implementing a software that

enables on the go corrections, that is, real time modification of the trajectory.

For this to be feasible, the control software needs to communicate with the

outside world to gain information on position, on disturbances and on the

way they are acting, in order to subsequently modify the trajectory. The

tools for this “communication” are usually position and force sensors.

The way to perform on the go corrections, is to define, first of all, a goal

trajectory. Then, if for some reason there’s a change in this path, the online

sensors are used to extrapolate the cause of this change (a vectorial force, for

example) and to compute the new trajectory that has to be imposed. Once

the inputs to the motors are calculated, a stable control system will take care

of providing the actuators with the appropriate control law.

The details on this technique, applied to RvD simulations, is extensively

explained in Chapter 6.

70 Trajectory definition

Chapter 4
Dynamics

4.1 Introduction

The analysis of the robot so far has focused on kinematics and positioning

problems only.

This chapter deals with the study of the forces required to cause the mo-

tion. In order to accomplish this goal, the equations of motion will be pre-

sented, and the relationship between the input torque to the motors and the

actual structure motion will be analyzed. In the field of robotics, two main

approaches are available: the Euler-Newton and the Euler-Lagrange [23, 22].

They both lead to the same unique results, but they are indeed very different,

both conceptually and computationally.

4.2 Euler-Lagrange method

Euler-Lagrange method is an energy based approach. With this technique,

the equations of motion can be obtained in a systematic way independently of

the reference frame. By choosing a set of generalized coordinates describing

the link positions (the q = [q1 . . . qn] are the natural choice), it is possible to

defined the Lagragian of the structure [23, 8]:

L = T + U (4.1)

71

72 Dynamics

Where T and U are the kinetic and potential energy. Lagrange equations is

given by:

d

dt

(
∂L
∂q̇

)
−
(
∂L
∂q

)
= τ (4.2)

Where τ are the generalized forces, or non-conservative forces acting on the

links: they are mainly given by the actuator torques and the joint friction

torques. From this equation it is possible to examine the relationship between

the joint positions and the generalized forces.

However, although the formulation is fairly easy to understand, its im-

plementation is actually very troublesome. The equations of the kinetic and

the potential energy are, in fact:

T =
1

2

n∑
i=1

n∑
j=1

bij(q)q̇iq̇j =
1

2
q̇TB(q)q̇ (4.3)

Where B(q) represents:

(4.4)B(q) =
n∑
i=1

(mliJP i
TJP i + JOi

TRiIliRi
TJOi

+mmi
JPm

TJPm

+ JOmi

TRmi
Imi

Rmi

TJOmi
)

And, for the potential energy:

U =
n∑
i=1

(Uli + Umi
) = −

n∑
i=1

(mlig0
Tpli +mmi

g0
Tpmi

) (4.5)

These equations do not have an easy solution: Eq 4.3, for example, is highly

non linear, and the B(q) matrix is made up of several nested components that

are not well suited for a quick, recursive approach. Moreover, the presence of

partial derivatives and the fact that we need to deal with symbolic quantities

complicates the problem exponentially. Thus, even tough this approach is

good for having a sense of the physics involved in the problem, it does not

appear to be a viable method for a real time code simulation.

4.3 Euler-Newton method 73

4.3 Euler-Newton method

Euler-Newton approach is based is based on the balance of all the forces and

torques acting on the generic link of the manipulator. The solution of this

problem is well suited for a recursive approach, thus making this our choice

for the dynamics simulation. The approach starts from the classic Newton’s

formula [8]:

F = m v̇C (4.6)

From solid mechanics [32], we can recall that the moment acting on a

rotating body of inertia CI is given by:

N = CIω̇ + ω × CIω (4.7)

Where ω is the angular velocity and ω̇ is the angular acceleration. By

knowing the trajectory to be followed, we then know the position, velocity

and acceleration of the joints (that is, q, q̇ and q̈).

With these information and with data about the mass distribution of each

joint (mass and inertia tensor), we can calculate the joint torques required

at each link. This approach is much more computationally-friendly, and its

equations are suited for a simple recursive technique. Thus, in this thesis we

analyze dynamics with Euler-Newton method.

4.3.1 The Euler-Newton routine

Equations can be implemented by following Luh-Walker method, developed

in 1980 [17]. It is based on two parts: the outward and the inward iteration.

The first part consists on the calculation of ω, ω̇, v̇ v̇cm for all the links of

structure. These computations are “propagated” from link 1 to link N of

the chain, hence the name “outward”.

Outward part

Recalling Section 2.5.1, the propagation of the rotational velocity was ob-

tained:
i+1wi+1 = i+1

iR
iwi + θ̇i+1

i+1k̂i+1 (4.8)

74 Dynamics

Derivation of rotational velocity implies the derivation of the trasformation

matrix as well. If we express the generic rotational velocity as:

Aw
C

= Aw
B

+ A
BR

Bw
C

(4.9)

Its derivative is:
Aẇ

C
= Aẇ

B
+
d

dt
(ABR

Bw
C

) (4.10)

Remebering the derivative of a vector expressed in a moving frame, Eq. 4.10

becomes:
Aẇ

C
= Aẇ

B
+ A

BR
Bẇ

C
+ Aw

B
× A

BR
Bw

C
(4.11)

In a similar fashion, we can take the derivative of Eq. 4.8:

i+1ẇi+1 = i+1
iR

iẇi + i+1
iR

iwi × θ̇i+1 + θ̈i+1
i+1k̂i+1 (4.12)

The linear acceleration is (from Eq. 2.22):

i+1v̇i+1 = i+1
iR [iv̇i + iω̇i × iPi+1 + iωi × (iωi × iPi+1)] (4.13)

The linear acceleration of center of mass of link i+1, expressed in Frame i+1,

is expressed by:

iv̇Ci
= iv̇i + iω̇i × iPCi

+ iωi × (iωi × iPCi
) (4.14)

Note that iPCi
represents the distance from the i joint to the center of mass

of link i. As far as concerns the forces and torques acting on the link, we can

apply Equations 4.6 and 4.7:

Fi = m v̇Ci
(4.15)

Ni = C
i Iω̇i + ωi × C

i Iωi (4.16)

Summing up, the outward part of the solution process is then constituted by

solution of the following set of equations, starting from i=0 and arriving to

i=N-1 :



i+1ẇi+1 = i+1
iR

iẇi + i+1
iR

iwi × θ̇i+1 + θ̈i+1
i+1k̂i+1

i+1v̇i+1 = i+1
iR [iv̇i + iω̇i × iPi+1 + iωi × (iωi × iPi+1)]

iv̇Ci
= iv̇i + iω̇i × iPCi

+ iωi × (iωi × iPCi
)

Fi = m v̇Ci

Ni = C
i Iω̇i + ωi × C

i Iωi

(4.17)

4.3 Euler-Newton method 75

Figure 4.1: Free body diagram of link i, with force balance

Inward part

The second part comprises the use of Newton Euler equations (Eq 4.6 and

4.7) to obtain the inertial forces and torques acting on the links’ centers of

mass. Then, referring to the free body diagram of Fig. 4.1 [8], the force and

moment balance equations need to be considered, in order to extract the

joint torques.

Every link experiences inertial force and torque in addition to forces and

torques exerted on it by the adjoining links. From the free body diagram,

the force and torque equilibrium yield the following balance equations:

iFi = ifi − i
i+1R

i+1fi+1 (4.18)

iNi = ini − ini+1 + (−iPCi
)× ifi − (iP i+1 − iP i)× ifi+1 (4.19)

Where the following notation was used:

• fi is the force exerted by link i-1 on link i

• ni is the torque exerted by link i-1 on link i

Equation 4.19 can be rearranged with the aid of rotational matrices and

the results from Eq. 4.18:

iNi = ini − i
i+1R

i+1ni+1 − iPCi
× iFi − iP i+1 × i

i+1R
i+1fi+1 (4.20)

76 Dynamics

Reordering Eq. 4.18 and Eq. 4.20, we can finally obtain the iterative

expressions needed. This time the index count for the solution will start

from N and descreases to 1.


ifi = iFi + i

i+1R
i+1fi+1

ini = iNi + i
i+1R

i+1ni+1 + iPCi
× iFi + iP i+1 × i

i+1R
i+1fi+1

τi = ifTi Ẑi

(4.21)

Since the calculations are taken from the end effector to the first link,

this second part of the routine is called “inward”.

Summing up, the script for the torque calculation will be composed of

these two parts:
1 % ac c e l e r a t i o n ana l y s i s > Outward i t e r a t i o n s

2

3 f o r j =1:6

4 W(: , j , i)=R i (: , : , j)∗W(: , j 1 , i)+[0 0 q dot (j , i)] ’ ;

5 W d(: , j , i)=R i (: , : , j)∗W d(: , j 1 , i)+c r o s s (R i (: , : , j)∗W(: , j 1 , i) , [0 0 q dot (j ,

i)] ’) +[0 0 q ddot (j , i)] ’ ;

6 V(: , j , i)=R i (: , : , j) ∗(V(: , j 1 , i)+c r o s s (W(: , j 1 , i) , P i (: , j))) ;

7 V d (: , j , i)=R i (: , : , j) ∗(V d (: , j 1 , i)+c r o s s (W d(: , j 1 , i) , P i (: , j))+c r o s s (W(: , j

1 , i) , c r o s s (W(: , j 1 , i) , P i (: , j)))) ;

8 Vc (: , j , i)=V(: , j , i)+c r o s s (W(: , j , i) ,com (: , j)) ;

9 Vc d (: , j , i)=V d (: , j , i)+c r o s s (W d(: , j , i) ,com (: , j))+c r o s s (W(: , j , i) , c r o s s (W(: , j

, i) ,com (: , j))) ;

10 F (: , j , i)=m(j)∗Vc d (: , j , i) ;

11 N(: , j , i)=I (: , : , j)∗W d(: , j , i)+c r o s s (W(: , j , i) , I (: , : , j)∗W(: , j , i)) ;

12 end

13

14 % ac c e l e r a t i o n ana l y s i s > Inward i t e r a t i o n s

15

16 f o r j =5 : 1 : 1

17 f (: , j , i)=R i (: , : , j +1) ’∗ f (: , j +1, i)+F(: , j , i) ;

18 n (: , j , i)=N(: , j , i)+R i (: , : , j +1) ’∗n (: , j +1, i)+c r o s s (com (: , j) ,F (: , j , i))+c r o s s (P i (: ,

j +1) , R i (: , : , j +1) ’∗ f (: , j +1, i)) ;

19 tau (i , j)=n (3 , j , i) ;

20 end

In this script, however, gravity is not considered. This is the case when

working in orbit, but on earth we need to deal with gravity, which will con-

stitute the prior force field that needs to be overcome by the motors.

Newton’s method, unlike Lagrange’s, allows for an easy addition/removal of

the gravity contribution: if we want to consider a gravitational field, in fact,

we just need to set v0 = g, where g has the magnitude of the gravity vector

but points in the opposite direction.

This is equivalent to accelerate the base of the manipulator upward with g

magnitude.

4.4 Simulation 77

Initial conditions

For both inward and outward iterations, we need some starting conditions.

Referring to equations block 4.17, the computation process starts for i=0.

This means that some of the parameters need to be known: ω0, ω̇0, v̇0.

These have to be set in this fashion:

ω0 =


0

0

0

 ω̇0 =


0

0

0

 v̇0 = k ·


0

0

g

 (4.22)

Where k is 0 if gravity is not considered, 1 if it is considered. Obviously,

if the base is connected to ground, ω0 and ω̇0 will be zero.

The initial conditions concerning equations block 4.21 are related to the dy-

namic effects present at the end effector; these effects can be due to impacts/-

contacts or to the presence of a tool or a load (i.e. industrial manipulators).

In this case, we suppose these components to be zero, that is, we suppose

an unloaded robot, subjected only to its dynamics with no external contri-

butions (apart from gravity). Thus, the initial conditions are:

7f7 =


0

0

0

 7n7 =


0

0

0

 (4.23)

In the future development of this project, the end effector will be provided

with a force sensor 6.3. This equipment will calculate the vectorial force

acting on the wrist, which will then be fed to a routine to compute the

perturbed trajectory. Please refer to Chapter 6 for the details.

4.4 Simulation

The routine described in the previous section (made up of an outward and

an inward part) was implemented in a Matlab code. This script can be used

for at least two goals:

� Control : instead of controlling the joints with a trajectory (q, q̇, q̈),

we can directly control them with the computed torques

78 Dynamics

� Sizing : the torques obtained from the calculations can be useful for the

sizing of the motors. By simulating several typical maneuvers, in fact,

we can inferre the average maximum torque for each joint.

Recalling Section 2.6 of the kinematics chapter, it is possible to continue

the analysis with the addition of the torque calculation. According to what

was done previously, we can simulate the same two trajectories: a line and a

circle.

4.4.1 Rectilinear trajectory

In this case, recalling Eq 2.44 and 2.45, the trajectory is defined as:

x(t) =


a5t

5 + a4t
4 + a3t

3 + a0

1.1

0.2


ẋ(t) =


5a5t

4 + 4a4t
3 + 3a3t

2

0

0


Where the coefficients and path parameters are the same of the kinematic

simulation. For each iteration, the Matlab code computes vector q = [q1 . . . qn]

and its first two derivatives using inverse differential kinematics; then, the

outward-inward Euler-Newton technique is executed, allowing for the calcu-

lation of the joints torques.

The geometric parameters (mass, center of mass, inertia tensor) of each

link are obtained from SolidWorks and are stored in an auxiliary function

(refer to Chapter 7 for the complete list of these values).

The simulation here can be divided in two parts: with and without grav-

ity. In the first case, the torques needed will keep into account the static

equilibrium as well as the dynamic interactions due to the relative motion of

the manipulator; in the latter case, the joints are not required to withstand

the weight of the structure, but only the relative dynamics contributions.

If gravity is taken into account, the torques needed for the trajectory of

Fig 2.11 are presented in Fig 4.2 (a). On the other hand, if g = 0, the torque

behavior in absence of gravity can be seen in Fig 4.2 (b).

4.4 Simulation 79

(a) Gravity case, T=10 s.

(b) No gravity case, T=10 s.

Figure 4.2: Rectilinear trajectory simulation. T=10 s

80 Dynamics

It follows that the torques required depend on the trajectory’s time law:

the faster the path is swept, the higher the moment that the motors need

to exert. The same trajectory, if the timespan becomes T = 0.1 · T1 = 1 s,

requires the torques plotted in Fig 4.3.

The effect that gravity has on the structure’s dynamics can be analyzed

in Fig 4.4. In these plots, the torques in presence of gravity are represented

with solid curves, whereas the dashed lines represent the weightless case.

Some interesting information can be inferred from this picture: joint 1 and

6, for example, are not affected by the gravitational field. This can be easily

explained due to the fact that, for joint 1, the joint axis is parallel to the

gravity vector; for joint 6, we supposed an axialsymmetrical link attached to

it, thus not creating any gravity moment.

T=10 s T=1 s

g=9.81 g=0 g=9.81 g=0

τ1max 0.046 0.046 4.62 4.62

τ2max 16.05 0.012 16.94 1.156

τ3max 8.623 3.87·10−4 8.648 0.037

τ4max 0.442 0.0046 0.578 0.454

τ5max 0.121 9.42·10−6 0.122 0.004

τ6max 2.11·10−10 2.11·10−10 2.13·10−7 2.13·10−7

Table 4.1: Linear trajectory: torques needed at each joint for different ma-

neuver conditions. All values have Nm units.

For all the other joints, the torque is gravity dependent, and there is a

dramatic difference in the maximum torque values required.

From Table 4.1 we can inferre a key result that will be useful during

the sizing process: generally speaking, the dynamic effects induced by the

motion, do not have a relevant effect on the torques required at the joints.

If we consider the columns that take into account gravity, only joint 1 and

joint 6 are clearly affected by the movement: for the other joints, a very

fast movement (T=1 s) requires not more than an additional 10% of the

corresponding torque in the quasi-static case (T=10 s).

The sizing of the motors for joints 2, 3, 4, 5, thus, can start from the static

analysis. Then, the dynamic effects can be accounted by simply multiplying

4.4 Simulation 81

(a) Gravity case, T=1 s.

(b) No gravity case, T=1 s.

Figure 4.3: Rectilinear trajectory simulation. T=1 s

82 Dynamics

(a) Torque comparison, T=10 s case.

(b) Torque comparison, T=1 s case.

Figure 4.4: Gravity influence on torques, cases T=10 s and T=1 s.

4.4 Simulation 83

the results from an appropriate safety factor. From the data available, a

coefficient ranging from 1.2÷1.3 seems to be a good choice.

This procedure obviously does not work for joint 1 and 6 : since they are

not influenced by gravity, the only sizing parameter is the dynamic contri-

bution. In order to identify their requirements, the only way to proceed is

to simulate several typical trajectories; in addition, if we want to have an

adequate margin on the motor performances, we can boost the requirements

of typical trajectories by decreasing their period.

4.4.2 Circular trajectory

For the circular trajectory, we recall Eq 4.25:

x(t) =


0.4 cos(a5t

5 + a4t
4 + a3t

3)

0.4 sin(a5t
5 + a4t

4 + a3t
3)

0.3

 (4.24)

ẋ(t) =


−0.4 sin(a5t

5 + a4t
4 + a3t

3)(5a5t
4 + 4a4t

3 + 3a3t
2)

0.4 cos(a5t
5 + a4t

4 + a3t
3)(5a5t

4 + 4a4t
3 + 3a3t

2)

0

 (4.25)

Where the path parameters are as follows:

xin = xfin = [0.5 0.7 0.3] [m]

xc = [0.5−R 0.7 0.3] [m]

n̄ = [0 0 1]

R = 0.4m

ψatt = 0◦

θatt = 45◦

φatt = 0◦

84 Dynamics

And the coefficients are:

a0 =0

a1 =0

a2 =0

a3 =0.0628

a4 = −9.425 · 10−3

a5 =3.769 · 10−4

t ∈ [0; 10] s

dt = 0.001 s

Even in this case, we will divide the simulation in two parts: one with

and the other without the account for gravity. For a maneuver time of 10

s, in the case of g=9.81 ms−2, Fig 4.5 (a) represents the needed torques;

if gravity is not considered, the behaviors are pictured in Fig 4.5 (b). If a

quicker maneuver is imposed, the plots change into Fig 4.6, where T=3 s was

used as the period.

Even in this case, it is possible to extrapolate a table containing the

torque values of the simulations: the data are stored in Tab 4.2. This table

confirms what was stated in the previous paragraph: gravity has a noticeable

influence on all the torques apart from joint 1 and joint 6.

This maneuver, moreover, confirms our choice for the coefficient that will

be used for sizing joint 2, 3, 4, 5 : a value in the 1.2÷1.3 range seems to be

the approriate choice.

Together with the previous simulation, we can gather some information

on the intensity of the torques at joint 1 and 6 for their sizing. As far as

concerns joint 1, even for a very quick maneuver, we do not exceed 10 Nm:

in the case of the line, 4.62 Nm were needed, and in the circular path we

arrive a 6.516 Nm. By applying a reasonable safety factor, we can chose a

motor in the 10÷12 Nm range.

As far as concerns joint 6, the torque required is very small: for the

fastest trajectory simulated, the calculations yield a value of 7.23 · 10−6 Nm.

However, we are in the approxiamtion of an axialsymmetric body connected

4.4 Simulation 85

(a) Gravity case, T=10 s.

(b) No gravity case, T=10 s.

Figure 4.5: Circular trajectory simulation. T=10 s

86 Dynamics

(a) Gravity case, T=3 s.

(b) No gravity case, T=3 s.

Figure 4.6: Circular trajectory simulation. T=3 s

4.5 Model verification: Simulink’s SimMechanics toolbox. 87

T=10 s T=3 s

g=9.81 g=0 g=9.81 g=0

τ1max 0.411 0.411 6.516 6.516

τ2max 27.869 2.703 34.610 31.404

τ3max 8.731 0.323 11.488 3.695

τ4max 0.058 0.014 0.211 0.159

τ5max 0.086 5.21·10−3 0.142 0.081

τ6max 1.74·10−7 1.74·10−7 7.23·10−6 7.23·10−6

Table 4.2: Circular trajectory: torques needed at each joint for different

maneuver conditions. All values have Nm units.

to the shaft whose axis of giration is coincident with the shaft’s axis. Since

other bodies, non necessarily axialsymmetric, might be attached to it for

testing, and due to possible misalignments between the axis, the torque re-

quired could be bigger. In order to stay away from saturation, we can think

of increasing the requirements: a commercial motor in the 0.1÷0.2 Nm range

appears to be more than sufficient to withstand misaligments and (limited)

extra weight.

4.5 Model verification: Simulink’s SimMe-

chanics toolbox.

The results obtained from the Matlab analysis need to be cross-verified. In

order to do this, a Simulink model was built, upgrading the kinematics one

presented in Chapter 2, Fig 2.15.

Recalling Simulink’s environment, we recall that there exist two options

for the joint control. We now want to use the torque control. The block

diagram is presented in Fig 4.7.

88 Dynamics

Figure 4.7: Simulink block diagram for trajectory analysis and simulation.

In this case, the joints are torque controlled.

The Matlab routine saves a N×nit matrix1, containing, for each iteration,

the torques computed with Euler-Newton approach. Simulink then extracts

the torque values with the aid of a Lookup table and feeds them into the joint

inputs. Note that in upper left hand corner there’s a block structure that

checks if the Matlab simulation was run with or without gravity.

Similarly to what was done in the kinematic case, the correctness of the

results can be verified either with an animation or with the plot of the tra-

1N stands for the degrees of freedom, whereas nit represents the iteration count, which

can be obtained from Tsim

∆t , with Tsim being the simulation time and ∆t the step size.

4.5 Model verification: Simulink’s SimMechanics toolbox. 89

jectory in a 2D graph (x − y, x − z or y − z). In the model, we verify the

data in both ways.

Each link needs to be fully described in terms of its mass, center of mass,

inertia tensor and frame of references. Refer to Chapter 7 for a complete list

of the parameters.

The XY trajectory plots obtained with Simulink’s SimMechanics tool are

presented in Fig 4.8 (for the linear path) and Fig 4.9 (circular path). It is

interesting to note how this model is strongly affected by the simulation

conditions. That is, a small change in the time step size affects dramatically

the computed motion; moreover, a change in the solution technique (i.e.

ode45, ode23, ode113) might lead to divergence. This is a behavior that was

not particularly marked in the kinematics analysis.

A likely explanation is connected with the probable uncertainties of the

overall simulation model. The inertial parameters fed into each link are com-

puted with the aid of SolidWorks, which surely introduces a certain degree

of approximation. Plus, the dynamics of the manipulator is being simu-

lated with Simulink’s internal simulation engine, which might present some

discrepancies with our iterative equations.

From Fig 4.9, it is straightforward to notice the relationship between the

time step size and the accuracy of the simulated trajectory. Notice how, for

the same step size, the simulation with gravity is more affected by drifting:

this can be explained if we consider the solution procedure: the solver ac-

quires the discrete simulation points and interpolates among them with a

specific algorithm (ode45, ode23, ode113 etc). In the case where gravity is

considered, the blank intervals among points are vexed by very high torques

if compared to the weightless case; this, therefore, leads to a faster drift

from the theoretical trajectory and will eventually drive the simulation to

divergence.

90 Dynamics

(a) dt=0.001 s (b) dt=0.005 s

(c) dt=0.01 s (d) dt=0.05 s

Figure 4.8: Simmechanics trajectory simulation for T=10 s. Blue line repre-

sents the case with g=0, whereas red line accounts for g=9.81 m/s−2.

4.5 Model verification: Simulink’s SimMechanics toolbox. 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Simmechanics simulation (dt=0.001)

x [m]

y
 [

m
]

(a) dt=0.001 s (b) dt=0.005 s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Simmechanics simulation (dt=0.01)

x [m]

y
 [

m
]

(c) dt=0.01 s

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Simmechanics simulation (dt=0.05)

x [m]

y
 [

m
]

(d) dt=0.05 s

Figure 4.9: Simmechanics trajectory simulation for T=10 s. Blue line repre-

sents the case with g=0, whereas red line accounts for g=9.81 m/s−2.

92 Dynamics

Chapter 5
Linear Feedback Control

In the previous chapters, trajectory planning techniques have been presented

which allow the generation of the inputs to the motion system. The problem

of controlling a robot can be formulated as that to determine the time history

of the generalized forces (forces or torques) to be developed by the joint

actuators, in order to guarantee the execution of the predefined tasks.

The problem of motion control of a manipulator is the topic of this chap-

ter. Several techniques are available, and their main distinction is due to

the way the operate: joint space or operational space. The most common

techniques, due to their simplicity, belong to the first category and can be

further divided according to the approach taken towards the dynamic contri-

butions. In the following paragraph, both families of control are presented,

with a particular focus on joint space procedures [29, 4, 22, 23].

5.1 Joint space control

In joint space techniques, the control is focused on the q(t) values so that the

actual motion track the reference inputs. These inputs are calculated from

the desired trajectory with the aid of an inverse kinematics procedure (refer

to Chapter 2 for an overview of the various IK approaches).

However, this solution has the drawback that a joint space control does

not have effects on the operational space variables, which are controlled in an

open-loop fashion through the manipulator mechanical structure. It follows

93

94 Linear Feedback Control

quite clearly that any uncertainty in the structure (backlash, play, stiffness)

or any dicrepancy between the calculated geometric data and the actual ones

causes a decrease of the accuracy on the operational space trajectory.

In approaching the control design, it is fundamental to frame the problem

properly. In a control system design process, in fact, several parameters are

required in order to model (and also simplify) the procedure. First of all, it

is mandatory to know the mechanical design of the structure (the control of

a cartesian manipulator, for example, would be substantially different from

the control of an anthropomorphic one).

Furthermore, the way the motion is transferred through the joints has

its influence as well; if the motors, for example, are coupled with high-ratio

reduction gears, it is possible to linearize the problem. This means that the

analysis of the joints can take advantage of the effects superposition, and the

solution is dramtically simplified. The disadvantage of this approximation is

that all the nonlinear effects (such as friction, backlashes, elasticity) might

affect the performances of the control.

5.1.1 Decentralized control

In our case, all the motors1 feature a reduction gear, whose transmission

ratio is relatively high. In this condition, the linear approximation can take

place. A control of this type is often reffered to as decentralized control [29],

since each linked is analyzed as a SISO independent system.

We recall, from the dynamic analysis, the differential equations describing

the motion of a n degrees of freedom robot [32].

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (5.1)

This represents the dynamics of an interconnected chain of bodies when a

generalized force τ is acting. This torque is produced by an actuator, which

can be electric, hydraulic or pneumatic.

Even if this expression is quite complicated, it does not take into consid-

erations several dynamic effects which are present in the real case. Friction,

1Except from joint 6, whose contribution to the coupling effect is nonetheless very

small.

5.1 Joint space control 95

flexibility and backlash, for example, are accounted. In this chapter only the

dynamics of permanent DC motors will be treated, but the analysis can be

further extended to other families of actuators.

An armature controlled DC motor presents the following electric dia-

gram [29]:

Due to the presence of a movable rotor inside the stator (which creates a

radial magnetic flux Φ), if there is a current ia flowing, there will be a torque

on the rotor:

τm = K1 Φ ia (5.2)

When the rotor starts to rotate, however, an electromagnetic field arises

(back emf), trying to oppose the current flow in the conductor. This can be

expressed with:

Vb = K2 Φ ωm (5.3)

The differential equation for the armature current is:

L
dia
dt

+R ia = V − Vb (5.4)

Since the flux Φ is constant, we can rewrite τm as (where Km is the torque

constant of the motor):

τm = K1 Φ ia = Km ia (5.5)

From Eq 5.3, with Kb being the back emf constant, we have:

Vb = K2 Φ ωm = Kb ωm = Kb
dθm
dt

(5.6)

96 Linear Feedback Control

Figure 5.1: Block diagram of DC motor.

When the motor stalls, the corresponding torque is denoted with τ0; evalu-

ating Eq 5.4 for Vb=0 and dia
dt

=0:

Vr = R ia =
T τ0

Km

(5.7)

Which yields:

Km =
R τ0

Vr
(5.8)

If we couple the motor with a gear train, the differential equation describing

the assemby is:

Jm
d2θm
dt2

+Bm
dθm
dt

= τm − r τl (5.9)

Where Im = Ia + Ig, that is, the sum of the actuator and the geartrain

inertias. The torque at the output of the gear is τl. The block diagram of

the DC motor is pictured in Fig 5.1.

At this point, we can switch from the time domain to the Laplace domain,

and rewrite Eq 5.6 and Eq 5.9 as:

(Ls+R) Ia(s) = V (s)−Kb sΘm(s) (5.10)

(Jm s
2 +Bm s) Θm(s) = Ki Ia(s)− r τl(s) (5.11)

It is straightforward to obtain the transfer function between the armature

voltage V (s) and the angle Θm(s) (imposing τl = 0):

Θ(s)

V (s)
=

Km

s[(L s+R)(Jm s+Bm) +Kb Km]
(5.12)

5.1 Joint space control 97

If V = 0, the transfer function between the torque τl and Θm(s) is:

Θ(s)

τl(s)
=

−r (L s+R)

s[(L s+R)(Jm s+Bm) +Kb Km]
(5.13)

Dividing everything by R and assuming that the electrical constant L/R

is much smaller than the mechanical constant Jm/Bm, we approximate the

previous expressions to:

Θ(s)

V (s)
=

Km/R

s

(
Jm s+Bm +

Kb Km

R

) (5.14)

And:
Θ(s)

τl(s)
= − r

s

(
Jm s+Bm +

Kb Km

R

) (5.15)

Returning for a moment to the time domain, Eq 5.15 and 5.16 can be ex-

pressed, using the superposition of the effects, with the following differential

linear equation:

Jm θ̈m(t) + (Bm +Kb Km/R) θ̇m(t) = (Km/R) V (t)− r τl(t) (5.16)

At this point, we need to provide further assumptions and simplifications in

order to obtain the solution. Since the output of the gear is directly connected

to the link, then the generalized coordinate qi is given by (with ri being the

i-th reduction ratio):

qi = ri θmi (5.17)

It follows that the torques given by the actuators and the load torques of the

actuators share the following relationship:

τli = τi (5.18)

Finally, the equations of motion of the manipulator become:

n∑
j=1

dji(q)q̈j +
n∑

j,k=1

cjki(q)q̇j q̇k + gi(q) = τi (5.19)

Jm θ̈mi
+ (Bm +Kb Km/R) θ̇mi

= (Km/R) Vi − ri τli (5.20)

98 Linear Feedback Control

If we take a closer look to the last two equations, we can note that the first

one represents the nonlinear inertial, Coriolis, centripetal and gravitational

coupling contributions due to the motion of the robot, whereas the second

one models the actuator dynamics.

If we have to control this kind of system, a first good consideration would

be to treat the nonlinear term τi as a disturbance entering into Eq 5.20: this

is extremely convenient, since Eq 5.20 is linear.

After this substitution, however, the term r2
i dii(q) appears in the coefficient

Θ̈mi
, which hence becomes:

Jm + r2
i dii(q) (5.21)

That is, this coefficient is configuration dependent. For the purpose of the

control, however, we can approximate this value with an effective value, called

effective inertia Jeff . For the moment, we can suppose Jeff to be the simple

mean average between the value of the inertia at its minimum (Jmin) and at

its maximum (Jmax), that is:

Jeff =
Jmin + Jmax

2
(5.22)

We also define Beff as:

Beff = Bm +Kb Km/R (5.23)

K =
Km

R
(5.24)

Thus, Eq 5.20 becomes:

Jeff θ̈mi
+Beff θ̇mi

= K Vi − ri di (5.25)

In which di is taken as a disturbance and is made up by:

di :=
n∑
j 6=i

djiq̈j +
n∑
j,k

cjikq̇j q̇k + gi (5.26)

Translating this result into a block diagram, we finally obtain the scheme of

Fig 5.2, which is clearly an open loop system.

5.1 Joint space control 99

Figure 5.2: Open loop block diagram of manipulator link.

5.1.2 Design of the PD compensator

Once the equations describing the system are obtained, the open loop transfer

function in the Laplace domain is immediately obtained [10]:

s2 Jeff Θ(s) + s Beff Θ(s) = K V (s)− r D(s) (5.27)

The input V (s) can be substituted by a PD control law:

V (s) = Kp [Θr(s)−Θ(s)]− s Kd [Θ(s)] (5.28)

Where Θr(s) is the reference command that needs to be followed by the

system. Combining these two expressions, we get:

Θm(s) =
K Kp

α(s)
Θr(s)−

r

α(s)
D(s) (5.29)

With α(s) being the characteristic equation:

α(s) = Jeff s
2 + (Beff +K Kd) s+K Kp (5.30)

The feedback control loop can then be described by the block in Fig 5.3.

Stability analysis

From the characteristic equation, it is possible to use Routh-Hurwitz criterion

in order to analyze the stability of the system [10].

We recall that a stable system needs to have no poles in right hand section

of the Re-Im plane. In other words, the real part Re has to be smaller or

equal to zero.

Routh-Hurwitz criterion states that the number of roots of the character-

istic equation α(s) with Re≥0 is equal to the number of changes in sign of

100 Linear Feedback Control

Figure 5.3: Block diagram of PD control system.

the first column of the Routh array [10]. In our case, we have a second order

system whose generic equation can be written as:

q(s) = a0 + a1 s+ a2 s
2 (5.31)

It follows that the Routh array is:

s2 a2 a0

s1 a1 0

s0 b1 0

(5.32)

Where:

b1 =
a1 a0 − (0) a2

a1

= − 1

a1

·

∣∣∣∣∣a2 a0

a1 0

∣∣∣∣∣ = a0 (5.33)

Hence, the first column is made up by the coefficients of the equation: for

stability to be satisfied, they must all be positive (or all negative). In our

case, therefore, the system will be stable as long as the values of Kp and Kd

are positive (all the other parameters are already positive).

Tracking error

From the block diagram, the tracking error can be expressed as:

e(s) = Θr(s)−Θ(s) (5.34)

e(s) =
Jeff s

2 + (Beff +K Kd) s

α(s)
Θr(s) +

r

α(s)
D(s) (5.35)

5.1 Joint space control 101

For a step reference input and a constant disturbance:

Θr(s) =
Θr

s
(5.36)

D(s) =
D

s
(5.37)

The tracking error can be calculated by applying the final value theorem:

ess = lim
t→∞

e(t) = lim
s→0

s · e(s) =
−r D
K Kp

(5.38)

The system is a Type 1 : that is, for a step input, there will be a steady

state error that increases with the gear reduction ratio and (obviously) with

the magnitude of the disturbance; on the other hand, it can be reduced by

increasing the proportional gain Kp.

Note that D(s) won’t be necessarely constant; nevertheless, this simplified

model gives a good description of the physical system.

Performances and tuning

Since we have a second order system, the response will influenced by the

natural frequency ω and the damping ratio ξ of the closed loop characteristic

equation, which can be rewritten as:

s2 + 2ξω s+ ω2 (5.39)

s2 +
(Beff +K Kd)

Jeff
s+

K Kp

Jeff
(5.40)

The proportional and derivate gains can be extrapolated and yield:

Kp =
ω2 Jeff
K

Kd =
2 ξ ω Jeff −Beff

K
(5.41)

We notice that these gains depend only on the choice of ω and ξ. The

damping ratio affects the oscillatory response, and it’s usually chosen ξ = 1

in order to have a critically damped system, i.e. the fastest response with

no oscillations. Thus, the overall response of the system will depend only on

the value of the natural frequency ω.

102 Linear Feedback Control

We provide an example of this procedure referring to link 1. Its effective

inertia can be inferred by calculating the inertias in the minimum and max-

imum case. The minimum case occurs when the arm is perpendicular to the

ground, the maxium occurs when the arm is fully extended.

link Jlink Jmin, tot Jmax, tot Jeff Unit

1 2.623·10−3 0.102 3.682 1.89 kg·m2

As far as concerns the motor constants, from the EC90 motor’s datasheet

we can write:

Km = 0.217NmA−1

K =
Km

R
= 0.0943Nm V −1

Kb = 4.61 rad s−1 V −1

Bm = 2.05 · 10−2 kg m2 s−1

r = 43

For a step input of θr = 10◦, and with no disturbances (d = 0), the sys-

tem shows, for various values of ω, the characteristics reported in Table 5.1.

The corresponding behavior is plotted in Fig 5.4. Note that, since we set

ω[rad/s] Kp Kd ess [%] settling time [s]

1 20.04 35.25 0 4

2 80.17 75.34 0 2

4 320.72 155.53 0 1

8 1.28·103 3.16·102 0 0.5

Table 5.1: Step response parameters for system with no disturbances.

D(s) = 0, the error at steady state is zero. The same system for a distur-

bance input of D = 1, is characterized by the values in Table 5.2. The step

response, in this case, in pictured in Fig 5.5.

5.1 Joint space control 103

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Step response of manipulator link no disturbance (PD)

time [s]

Θ
 [

°
]

w = 8

w = 2

w = 1

w = 4

Figure 5.4: Time response of the system (with zero disturbances) for different

ω.

ω[rad/s] Kp Kd ess[%] settling time [s]

1 20.04 35.25 127.53 4

2 80.17 75.34 56.88 2

4 320.72 155.53 14.24 1

8 1.28·103 3.16·102 3.55 0.5

Table 5.2: Step response parameters for system with disturbances.

104 Linear Feedback Control

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

Step response of manipulator link with disturbance

time [s]

Θ
 [

°
]

w = 1

w = 2

w = 4

w = 8

Figure 5.5: Time response of the system with nonzero disturbance for differ-

ent ω.

In this last figure, it is evident that the steady state error is not longer

zero. The amplitude of the drift will depend on the intesity of the disturbance

D(s) and on the value of the gains: in the picture, in fact, the disturbace

was kept constant while the gain were increased (due to the increase in ω):

the higher the gains, the smaller the steady state errors.

Apart from disturbances, it is important to remember that the motors

can’t provide infinite velocity and acceleration, and they have a so called

saturation limit : beyond this point, an increase in the requested input will

not be satisfied, since the motor will provide the maximum output constantly.

This shows the limited capability of the gains: there is a point beyond

which a further increase of the gains won’t result in a faster response; on the

contrary, it will create an higher overshoot.

5.1 Joint space control 105

Figure 5.6: Block diagram of PDI control system.

5.1.3 Design of the PID compensator

In the previous section, we were able to acknowledge the limits of the PD

controller for our particular system: it is sensitive to external disturbances

and in order to limit the steady state error, high gains are needed. On the

other hands, motor saturation limits the values of these gains.

An interesting upgrade to the previous system would be the addition of

an integral term to the PD compensator law C(s):

C(s) = Kp +Kd s+
Ki

s
(5.42)

As far as concerns the closed loop expression, Eq 6.30 gets modified into:

Θm(s) =
Kd s

2 +Kp s+Ki

β(s)
Θr(s)−

r s

β(s)
D(s) (5.43)

The characteristic equation, in this case, is the following 3rd order polynomial:

β(s) = Jeff s
3 + (Beff +K Kd) s

2 +K Kp s+K Ki (5.44)

And the modified block diagram is pictured in Fig 5.6. Note the addition of

the feedforward integral part.

Stability analysis

Even in this case, the stability can be inferred from the characteristic equa-

tion by using Routh-Hurwitz criterion. For a third order system, whose

106 Linear Feedback Control

generic equation is:

q(s) = a0 + a1 s+ a2 s
2 + a3 s

3 (5.45)

We have that the Routh array is:

s3 a3 a1

s2 a2 a0

s1 b1 0

s0 c1 0

(5.46)

Where:

b1 =
a2 a1 − a0 a3

a2

c1 =
b1 a0

b1

= a0

∣∣∣∣∣a2 a0

a1 0

∣∣∣∣∣ = a0 (5.47)

It follows that, since stability occurs when all the elements of Routh matrix’s

first column are positive, the system is stable if:

a2 a1 > a0 a3 (5.48)

Hence:

Ki <
(Beff +K Kd)

Jeff
·Kp (5.49)

Performances and tuning

It is possible to integrate the PD case with the integral part of the controller.

Since the value of Ki is not already determined by the equations, we can

impose a semi-random value that satisfies Eq 5.49. For example:

Ki = 0.05 · (Beff +K Kd)

Jeff
·Kp (5.50)

With all the parameters set, we can first of all simulate the case in which

no disturbances are present. The parameters in this case are described in

Table 5.3. The time response for the different frequency choices is presented

in Fig 5.7. It can be seen that the behavior and the parameters are the same

of the PD case.

The power of the PID controller arises when the motion with disturbances

is analyzed. For the usual disturbance D = 1, in fact, we obtain the data in

5.1 Joint space control 107

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Step response of manipulator link no disturbance (PID)

time [s]

Θ
 [

°
]

w = 8

w = 2

w = 1

w = 4

Figure 5.7: Time response of the PID system with zero disturbance for dif-

ferent ω.

ω[rad/s] Kp Kd ess[%]

1 20.04 35.25 127.53

2 80.17 75.34 56.88

4 320.72 155.53 14.24

8 1.28·103 3.16·102 3.55

Table 5.3: Step response parameters for system with disturbances.

108 Linear Feedback Control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

Step response of manipulator link no disturbance (PID)

time [s]

Θ
 [
°

]
w = 1

w = 2

w = 4

w = 8

Figure 5.8: Time response of the PID system with nonzero disturbance for

different ω.

Table 5.4. The time response to the step is presented in Fig 5.8 and it can

be seen that, after the overshoot, the angle tends to θr. The error at steady

state, hence, is zero.

ω[rad/s] Kp Kd ess[%]

1 20.04 35.25 0

2 80.17 75.34 0

4 320.72 155.53 0

8 1.28·103 3.16·102 0

Table 5.4: Step response parameters for system with disturbances.

This yields an important result: the addition of the integral part to the

control law is mandatory if we are looking for a system which is able to reject

external disturbances (that are always present).

5.1 Joint space control 109

5.1.4 Extension to a multibody system

The previous analysis of the PD and PID control system concerned the con-

trol of a single link. In the case of a multibody structure, as in our case, the

problem can be solved by invoking the linearity of the model (if the hypoteses

on the high gear ratio and the slow dynamics are fulfilled [4]).

This extension is fairly straightforward, since any dependency among the

bodies has been removed. Hence, every link will be modeled by following the

approach explained in the previous paragraphs, and the gains will be tuned

in order to obtain the best overall performances.

With these simplifications, the only actual way to verify the performances

of system would be to simulate a control and to post-analyze the results; this

is due, first of all, to the fact that the inertia seen by each link has been

approximated with the effective inertia Jeff , even if this parameter is clearly

configuration dependent.

Moreover, the input disturbance, that should take into account all the

nonlinear effects, cannot be known exactly at each step, and an educated

guess on its value has to be made, introducting another relevant source of

uncertainties. Note that, again, the slower the dynamics of the object, the

better this simplified model will control the system.

Adaptive control

A cunning refinement of this system would be the introduction of an adaptive

control. In such a technique, the gains of the controller are not fixed, but

they change according to the manipulator configuration.

Using a model with a single averaged value Jeff of the inertia, in fact,

results in some obvious disadvantages. The control is well tuned when Jreal is

equal to Jeff , but when we approach the maximum or the minimum inertia,

unpleasant consequences arise: if Jreal > Jeff , the manipulator will have a

time delay; if Jreal < Jeff , the motion will be jerky.

One technique that can be implemented in order to avoid these side ef-

fects, is to identify several working configurations and to calculate the ef-

fective inertias in those subcases. Then, with these data, it is possible to

calculate the optimal gains for ech subcase, which will be then stored in a

110 Linear Feedback Control

look-up table.

During the simulation, a sensing system will detect in which of the work-

ing configurations the robot is and will extrapolate the computed optimal

gains from the table. It is clear that this is still an approximation, but it’s

way less coarse than the original approach, thus limiting the delay and jerk

phenomena.

5.2 Operational space control

The operational space control enables the manipulator to obtain a greater

degree of precision in the cartesian space: that is, the end effector position is

actively controlled and is not longer a byproduct of the accuracy with which

the geometry of manipulator is known.

However, this global approach requires a greater complexity; notice, in

fact, that the inverse kinematics algorithm is now embedded into the feedback

control loop. This slows down the algorithm and requires higher computa-

tional perfomances. Moreover, the abovementioned advantage on the end

effector position presents actually an obvious limit. The measurement of the

cartesian variables, in fact, is not always2 performed directly, but via the

application of the direct kinematic algorithm to the encoders’ readings.

Hence, since this technique does not clear the need of a having good

knowledge of the robot parameters, it doesn’t makes sense to go to the trouble

of implenting such a complicated and CPU consuming control law. The need

for the extra computing power to run the model at a sufficient rate might

not be worthwhile.

The most common industrial robots, for economic reasons, do not use

this technique: instead, present-day manipulators are controlled with very

simple control laws that generally are just error driven.

For all the above reasons, in this section we are just going to introduce

the schematics of the principal control blocks without diving too deep into

the details, leaving any further analysis to the appropriate references [23, 22,

4, 8].

2This is not valid if there exists a cartesian sensor which avoids the need for the direct

kinematics transformation: for example, cameras or vision sensors.

5.2 Operational space control 111

Figure 5.9: Block diagram of a general cartesian based control loop.

5.2.1 An overview

The general scheme of a control based on operational space techniques is

presented in Fig 5.9. The input to the close loop block is not longer the

generalized coordinate q(t), but it’s simply the cartesian trajectory needed.

Thus, all the cartesian transformation into the joint space variables need

to be performed inside the loop; this is an important drawback, that results

in a lower sampling frequency if compared to joint based controls, degrading

the stability and the disturbance-rejection ability of the loop [8].

Note that, even if we are talking about a cartesian control, the conversion

to the joint space is necessary at some point for the calculation of the joint

torques.

The procedure starts from the reading of the position sensors in order to

gain information on the θ(t) values. With the aid of simple direct kinematics,

the angles are converted to the actual position of the end effector. By knowing

the goal coordinates Xd, we can obtain cartesian errors δX:

δX = Xd −X

From these errors, with the aid of a coordinate conversion and some appro-

priate gains, the torques are then computed and provided to the joints.

It is quite clear that the most important part of the block diagram in

Fig 5.9 is the “Coordinate conversion and gains” block. In the literature,

there are several ways of practically implementing this block [23, 22, 4, 8].

One the most common strategies, recalling the theory from Section 2.5,

is to use a Jacobian-type algorithm. If the time step is sufficiently small, in

112 Linear Feedback Control

Figure 5.10: The inverse-Jacobian cartesian control block.

Figure 5.11: The transpose-Jacobian cartesian control block.

fact, we can map the cartesian error δX into the corresponding displacement

δθ in the joint space. The δθ errors are then multiplied by the appropriate

gains to compute the torques that will presumably reduce the errors. This

approach takes the name of inverse-Jacobian controller and is presented

in Fig 5.10 [8].

Another viable solution, that is strictly related to the previous one, is

presented in Fig 5.11. In this case, we compute the cartesian error δX and

we multiply it by a gain block to obtain a force vector F in the cartesian

space. We can think of this force as the vector that, if applied to the end

effector, would reduce the error δX. From this vector, we can again use the

differential kinematics theory to obtain the solution: F gets multiplied by

the transpose of Jacobian, JT , and the torques are obtained. This approach

is referred to as transpose-Jacobian controller.

Although the block diagrams look neat and simple, the exact dynamics

of these systems is very complicated. It has been shown that both schemes

5.2 Operational space control 113

will work, meaning that it is possible, with the approriate gains, to make

the loop stable. This partial success, however, is obscured by the need for

adaptive laws: it is not possible to choose some fixed gains and have fixed

closed loop poles in all the points of the workspace. The dynamics of these

controllers, in fact, is influenced by the arm configuration.

114 Linear Feedback Control

Chapter 6
Space trajectory analyis

In this chapter we analyze the ultimate goal of the manipulator: the need to

simulate spacecraft proximity navigation and docking. The previous chapters

dealt with the general analysis of the manipulator, which does not actually

introduce any innovative argument.

The insteresting application of the robot is to be able to simulate, on

a ground laboratory, what happens in space. Thus, the motion needs to

account for the effect of the orbital environment, and the trajectory definition

must consider the non inertial frame of reference.

Moreover, the most challenging goal of the project is to provide the robot

with instrument and software that allows for a real time interaction with

the outside world. The dynamics of the contact bewteen two approaching

satellites, for example, might create impulsive forces that have a relevant

effects on the trajectory. The software, with the aid of a force sensing de-

vice, will extrapolate from the transducer the corrected trajectory, and the

manipulator will simulate the motion along this new path.

Thereby, it is immediate to foresee the powerful applications of this piece

of equipment: apart from docking maneuvers, it is possible to simulate any

kind of reaction control system and examine their dynamic and kinematic

effects. Nonetheless, it is a powerful test bench for control systems and

attitude architectures.

In this chapter, we introduce the theory behind the trajectory simulation

and depict all the main applications of the system. A brief overview on force

115

116 Space trajectory analyis

sensors is then presented and the results of a Matlab simulation campaign

are finally discussed.

6.1 Orbital mechanics review

The main goal of the manipulator is to simulate docking and approach bew-

teen orbiting satellites. In order to simulate these situations on the ground,

the modeling needs to faithfully reproduce the dynamic conditions.

When the relative motion of two objects is analyzed, it is fundamental to

understand the physics of the space in which they are immersed.

In orbital mechanics, the motion is usually described with reference to an

inertial frame, fixed to the center of attraction (center of the planet), so that

Newton equation can be used [9]:

Fnet = m · aabs (6.1)

In laboratory, however, this motion can be simulated only as seen from

a relative frame. That is, given two objects (a target and a chaser), it is

possible to define the target (for exampe), as the center of the free falling,

rotating non inertial frame of reference, considered fixed with respect to the

lab ground.

With this approach, rendevous manouvers can be reproduced: it is fun-

damental, however, to recognize that in this new relative system, we need to

take into account the transformation of relative velocity and acceleration.

6.1.1 Relative motion in orbit

In close approach maneuvers, generally, one object (the target) is passive

and non-maneuvering, whereas the other (the chaser), is active and trying

to approach the target.

Referring to Fig 6.1, the position of the target in the geocentric frame is

given by r0. The target represents also the origin of the moving frame, whose

x axis is along the r0 direction, y points in the local horizon of the target’s

orbit and z is chosen to complete a right handed frame.

6.1 Orbital mechanics review 117

Figure 6.1: Absolute and relative position vectors

In order to analyze the motion, we recall the formulas for relative velocity

and acceleration [9]:

v = v0 + vrel + Ω× rrel (6.2)

a = a0 + arel + Ω̇× rrel + Ω× (Ω× rrel) + 2 Ω× vrel (6.3)

In these equations, the terms Ω and Ω̇ need to be computed. The angular

moment of the orbit can be calculated as:

h = r0 × v0 = (r0 Ω) ẑ = r2
0 Ω (6.4)

From which, the angular velocity of the moving frame is:

Ω =
r0 × v0

r2
0

(6.5)

As far as concerns the acceleration Ω̇, we derive the previous equation:

Ω̇ =
1

r2
0

(ṙ0 × v0 + r0 × v̇0)− 2

r3
0

ṙ0(r0 × v0) (6.6)

Which yields (recalling that ṙ0 × v0 = 0 and r0 × v̇0 = 01):

Ω̇ = − 2

r0

ṙ0Ω (6.7)

1Note that ṙ0 × v0 = v0 × v0 = 0. As far as concerns the second equation: v̇0 = − µ
r30

r0.

Hence: r0 × v̇0 = r0 ×
(
− µ
r30

r0

)
= − µ

r30
(r0 × r0) = 0.

118 Space trajectory analyis

Finally, since ṙ0 = v0 · r0/r0:

Ω̇ = −2(r0 × v0)

r2
0

Ω (6.8)

By placing equations Eq 6.5 and 6.8 inside Eq 6.2 and 6.3, one can calculate

the relative velocity and accelerations of an object measured along the frame

centered in the target.

Linearization

We start by recalling that the inertial acceleration of the chaser is given by:

r̈ = −µ r

r3
(6.9)

From this, since r = r0 + rrel, we can write that:

r̈rel = −r̈0 − µ
r0 + rrel

r3
. (6.10)

Referring to Fig 6.1, if rrel is much smaller than r0 (which is the case of a

close approach maneuver), then Eq 6.10 can be linearized as follows:

r̈rel = − µ
r3

0

[
rrel −

3

r2
0

(r0 · rrel)r0

]
(6.11)

Since R = R k̂ and rrel = δx̂i + δŷj + δzk̂, we can further simplify Eq 6.11:

r̈rel = − µ
r3

0

(−2δx̂i + δŷj + δzk̂) (6.12)

To avoid confusion, note that this is the linearized acceleration of the chaser

with respect to the geocentrical frame; our goal, on the other hand, is to

obtain the motion equations with reference to the target centered frame.

This means plugging Eq 6.12 into Eq 6.3.

Omitting the tedious algebraic calculations, we can write the final expression

for the relative acceleration:

(6.13)
δarel = − µ

r3
0

(−2δx̂i + δŷj + δzk̂)− 2(V · r0)h

r4
0

(δŷi− δx̂j)

+
h2

r4
0

(δx̂i + δŷj)− 2
h

r2
0

(δẋ̂j− δẏ̂i)

6.1 Orbital mechanics review 119

Its components are then:

δẍ−
(

2µ

r3
0

+
h2

r4
0

)
δx+

2(V · r0)h

r4
0

δy − 2
h

r2
0

δẏ = 0

δÿ −
(
µ

r3
0

− h2

r4
0

)
δy − 2(V · r0)h

r4
0

δx+ 2
h

r2
0

δẋ = 0

δz̈ +
µ

r3
0

δz = 0

(6.14)

Clohessy-Wiltshire equations

Equations 6.14 describe the relative motion of the chaser in the target frame,

which has a generic elliptical orbit around the center body. If this orbit is

circular, then:

V · r0 = 0 h =
√
µ r0 (6.15)

And Eq 6.14 become: 

δẍ− 3
µ

r3
0

δx− 2

√
µ

r3
0

δẏ = 0

δÿ + 2

√
µ

r3
0

δẋ = 0

δz̈ +
µ

r3
0

δz = 0

(6.16)

These are called Clohessy-Wiltshire (CW) equations and they are relatively

simple to solve. With a simple analytical integration, we can obtain the

velocity and the position equations:


δẋ = 3nsin(nt)δx0 + cos(nt)δẋ0 + 2sin(nt)δẏ0

δẏ = 6n[cos(nt)− 1]δx0 − 2sin(nt)δẋ0 + [4cos(nt)− 3]δẏ0

δż = −nsin(nt)δz0 + cos(nt)δż0

(6.17)


δx = [4− 3cos(nt)]δx0 +

sin(nt)

n
δẋ0 +

2

n
[1− cos(nt)]δẏ0

δy = 6[sin(nt)− nt]δx0 + δy0 +
2

n
δ[cos(nt)− 1]δẋ0 +

1

n
[4sin(nt)− 3nt]δẏ0

δz = cos(nt)δz0 +
1

n
sin(nt)δż0

(6.18)

120 Space trajectory analyis

In order to improve the relative motion analysis, the handling of CW equa-

tions is made easier with the a matrix notation. First of all, we define:

δr(t) =


δx(t)

δy(t)

δz(t)

 δv(t) =


δẋ(t)

δẏ(t)

δż(t)

 (6.19)

Whose corresponding initial values, for t = 0 are:

δr0 =


δx0

δy0

δz0

 δv0 =


δẋ0

δẏ0

δż0

 (6.20)

Then, the position and velocity of the chaser at instant t is given by:δr(t)

δv(t)

 =

Ψrr(t) Ψrv(t)

Ψvr(t) Ψvv(t)

 ·
δr0

δv0

 (6.21)

Or:

{δr(t)} = [Ψrr(t)] { δr0}+ [Ψrv(t)] { δv0} (6.22)

{δv(t)} = [Ψvr(t)] { δr0}+ [Ψvv(t)] { δv0} (6.23)

Where:

Ψrr(t) =


4− 3cos(nt) 0 0

6[sin(nt)− 1] 1 0

0 0 cos(nt)

 (6.24)

Ψrv(t) =
1

n


sin(nt) 2[1− cos(nt)] 0

[cos(nt)− 1] [4sin(nt)− 3nt] 0

0 0 sin(nt)

 (6.25)

Ψvr(t) =


3nsin(nt) 0 0

6n[cos(nt)− 1] 0 0

0 0 −nsin(nt)

 (6.26)

6.2 CW equations: main applications 121

Ψvv(t) =


cos(nt) 2sin(nt) 0

−2sin(nt) 4cos(nt)− 3 0

0 0 cos(nt)

 (6.27)

6.2 CW equations: main applications

Once the equations describing the orbital relative motion of two (or more)

object is known from Clohessy Wiltshire expressions, it is possible to sketch

out some interesting applications for the robotic manipulator.

6.2.1 Relative free motion simulation

The first, immediate application of CW equations is the free motion simu-

lation. The starting point is to define the target position in the operational

space (which will be chosen to maxime the robot dexterity in the neighbor-

hood area); then, the direction of x and y is chosen for the target-centered

frame (a good choice would be to choose the orbital plane x− y parallel to

the base plane x0 − y0).

This fully defines the CW environment and, consequentely, the 0
cwT trans-

formation matrix between this frame and the base robot frame. The robot, in

fact, will be provided trajectory information with respect to his frame of ref-

erence: the conversion from CW coordinates to the manipulator coordinates

can be written as:

0δr = 0
cwT · cwδr (6.28)

0δr =

 R(α, β, γ) pcw

0 1

 · cwδr (6.29)

To start the simulation, information on the orbit are need (since it’s a circular

orbit, we actually need to know only the altitude); moreover, a starting

position and velocity has to be set (that is, vectors r0 and v0). At this point,

the solution block diagram can be easily inferred:

122 Space trajectory analyis

Figure 6.2: Block diagram for the free relative motion simulation.

The diagram is composed essentially by three parts: the first one com-

prises the CW equations routine, the second consists in the CW frame to

base frame conversion and the third one (boxed in green) takes care of the

conversion from operational space to joint space (using the inverse differential

kinematics, Section 2.5).

Notice that, since the last box does not change among the different cases

presented in this chapter, we will further omit it (even if, obviously, it is

always present).

6.2.2 Relative motion with quasi-constant disturbances

The motion of the chaser can be subjected to several types of external forces.

Their behavior with respect to time might be constant, impulsive or semi-

periodic. CW equations allow for the modeling of the motion when distur-

bances are present.

In order to take them into account correctly, it is fundamental to under-

stand their way of action. Specifically, the duration of these disturbances

changes their insertion spot into the CW expressions.

A very fast-acting force, for example, can be approximated with an im-

pulse. Thus, we can suppose that throughout the dynamic phenomenon, the

position of the object doesn’t change. On the contrary, for a low frequency

disturbance, this approximation doesn’t stand. In this latter case, the CW

6.2 CW equations: main applications 123

equations can be written as:

δẍ− 3
µ

r3
0

δx− 2

√
µ

r3
0

δẏ =
Fx
mc

δÿ + 2

√
µ

r3
0

δẋ =
Fy
mc

δz̈ +
µ

r3
0

δz =
Fz
mc

(6.30)

Where the Fx, Fy, Fz terms are the disturbance components in the CW

frame. Note that, since the equations are expressed in terms of acceleration,

the forces need to be divided by the mass of the chaser.

The block diagram, in this case, has the following arrangement:

Figure 6.3: Block diagram for the relative motion with quasi-constant dis-

turbances.

6.2.3 Relative motion with impulsive disturbances

When the force acts very quickly, for example in the case of an impact, we

can approximate its effect to that of an impulse. In physics, an impulse J is

defined as:

J =

∫ t2

t1

F · dt (6.31)

If the impulse is acting on a body of mass m, the change in linear velocity is

given by:

∆v =

∫ t2

t1

|F |
m
· dt (6.32)

124 Space trajectory analyis

For this first approach, we suppose the force as acting on the object’s center

of mass, so that no tumbling motion is induced. The sensor will provide the

components of the force decomposed along a certain frame of refence fixed

with respect to the sensor.

First of all, we need to transform these three components (Fx, Fy and

Fz) into Clohessy-Wiltshire frame. In order to do this, we first transform

the vector into base frame coordinates (we denote with S the force sensor’s

frame of reference):

0F = 0
ST SF (6.33)

The transformation from base coordinates to the CW frame is:

cwF = cw
0T

0F (6.34)

The cumulative transformation is then:

cwF = cw
0T

0
ST SF (6.35)

Once the frame transformation is completed, the impulse calculation can

be carried out. The force data with respect to time will tipically resemble

a peak, whose area, recalling Eq 6.31, is the magnitude of the impulse. A

numerical integration can be easily implemented to calculate the area under-

neath the curve.

Having the impulse value, we can immediately obtain the ∆v: from

Eq 6.32, in fact, since the mass is constant (we suppose no mass flow leav-

ing or entering the object), the ∆v is simply the impulse J divided by the

satellite’s mass m. This procedure is graphically illustrated in Fig 6.4.

The three computed components of the ∆v will be inserted into Eq 6.37.

At time t = 0−, the position δr−0 and velocity δv−0 are known. At istant

t = 0+, the position doesn’t change, whereas there’s the velocity jumps to

the new value. In formulas, we have:

δr+
0 = δr−0 (6.36)

δv+
0 = δv−0 + ∆v0 (6.37)

6.2 CW equations: main applications 125

Figure 6.4: ∆v components computation from force sensor acquistions.

Figure 6.5: Block diagram for the relative motion with impulse disturbances.

Thus, the trajectory is affected by the impulse and this is modeled with the

modification of Eq 6.21, which becomes:


δr(t)+

δv(t)+

 =

Ψrr(t) Ψrv(t)

Ψvr(t) Ψvv(t)

 ·

δr0

δv+
0

 (6.38)

Where the change on the velocity initial conditions is denoted by the +

superscript. The conditions on the position, as said, do not change. The

block diagram of this case is presented in Fig 6.5.

126 Space trajectory analyis

6.2.4 Relative motion with ADCS control

The Clohessy-Wilthsire model, due to its elegance in the force/impulses anal-

ysis, can be used also to simulate an attitude control system.

That is, we can design an approach maneuver with the knowledge of the

initial conditions and the time needed for the rendez-vous. This consists in

the calculation of two impulses, at the start and at the end of the trajectory,

that will then translated into vectorial forces (for example, which thruster to

turn on and for how long).

Moreover, the model can be used for the opposite goal: that is, for a given

thrust/reaction, the new trajectory is computed and immediately simulated.

This is particularly useful if on-the-go corrections have to be made, or if dis-

turbances drift away the trajectory from the planned one. This second aspect

of the problem, however, is a direct application of the diagram presented in

the previous section, where the force sensor is substituted by the (known)

thrust force provided to the ADCS.

As far as concerns the maneuver planning (also known as two impulses

rendezvous), we start with the definition of the tf , the time required for the

maneuver; this, obviously, is a function of the requirements and is limited by

the reaction control system performances.

Thus, in time tf , we want the chaser to start from initial position A and

arrive at target position B, which, recalling the CW model, is also the origin

of the local frame of reference. Hence, from Eq 6.22:

{0} = [Ψrr(tf)] { δr0}+ [Ψrv(tf)] { δv+
0 } (6.39)

Which yields:

{δv+
0 } = −[Ψrv(tf)]

−1[Ψrr(tf)] { δr0} (6.40)

This provides the velocity needed at the beginning, after the first thrust. The

corresponding ∆v is then:

∆v0 = δv+
0 − δv−0 (6.41)

The second thrust happens as soon as the target is reached, and is cal-

culated by setting to zero the velocity of the chaser. Since we know the

6.3 Force sensor 127

trajectory, we also know the velocity at the end (i.e. t = tf), which is given

by: {
δv−f

}
= [Ψvr(tf)] { δr0}+ [Ψvv(tf)] { δv+

0 } (6.42)

From Newton’s dynamic formula, a velocity with the same magnitude but

opposite direction is needed to bring the chaser to rest at point B:

∆vf = δv+
f − δv

−
f = 0− δv−f = −δv−f (6.43)

Some doubts may arise from these calculations: how come are differences

between relative velocities being used if the delta-v are actually absolute

velocities? This can be easily explained by taking a look at the relative

velocity formulas:

v− = v−0 + v−rel + Ω− × r−rel (6.44)

v+ = v+
0 + v+

rel + Ω+ × r+
rel (6.45)

Since the maneuver is impulsive, the state of motion does not change: v−0 =

v+
0 and Ω− = Ω+. For the same reason, the position remains unchanged,

and r−rel = r+
rel. It yields that:

v+ − v− = v+
rel − v−rel (6.46)

∆v = ∆vrel (6.47)

The block diagram pictured in Fig 6.6 represents the working model of this

system. However, this model could also be integrated with all the previous

block diagrams. In this way, the system will be able to accomplish a maneu-

ver, to perform on-the-go corrections and to take into account constant and

impulsive disturbances all at the same time.

6.3 Force sensor

In the previous section, the theory beyond the trajectory simulation was

analyzed. Moreover, several applications of this powerful tool were discussed.

Most of times, a force sensor was introduced as a mean for the robot to

interface with the external world.

128 Space trajectory analyis

Figure 6.6: Block diagram for the free relative motion simulation.

Nowadays, there exist several kinds of dynamic sensor. The main techon-

logies, with their advantages and disadvatages, are described in Table 6.1.

Among the numerous choices, it is possible to narrow our search if we esta-

bilish some requirements: first of all, most of the sensors presented in the

table can measure forces along a single axis. In this application, however, we

need a multi-axis sensor in order to obtain the components vectorial force

acting on the object.

If we apply this filter, we are left with Hall sensors (which are sensitive

to normal and shear forces), piezoelectric sensors (which can measure longi-

tudinal, transversal and shear loads) and strain gauges (which sense forces

and torques along multiple axes).

We choose a strain gauge-based sensor, due to its relative low cost and

handling simplicity. A good choice, for example, would be one of the products

from the Multi-Axis Sensors series by ATI [3].

Along with our requirements, these sensors measure all the six compo-

nents of force and torque in compact and rugged transducer. This is made

possible by the presence of 12 strain gauges positioned along three different

axes. When a strain gauge, (properly glued to the surface of the beam), is

subject to a force, its length slightly changes, changing its resistance as well.

An active circuit is needed to read this change in terms of a voltage, and

usually a Wheatstone’s bridge is used.

It is important to remember that Wheatstone’s bridge may presents dif-

6.3 Force sensor 129

Technology Type Advantages Disadvantages

Mechanical

Whisker Simple, robust Bad resolution

Mechanical displacement Simple, robust, cheap Limited resolution

Pneumatic sensor Simple, robust, cheap Can’t measure force

Tactile sensor No AD conversion Prone to damage

Capacitive Good sensitivity, robust Complex circuit, noise

Strain gauges
Metal strain gauges Robust Temperature drift

Semiconductor gauges Linear, low hysteresis Temperature drift

Piezoresistive
Conductive elastometers Shapeable Creep, memory

Carbon fibers Shapeable Noise @ low loads

Piezoelectric Dynamic range, durability Fragile, complex

Pyroelectric Dynamic range, durability Difficult to model

Optical

Opto-mechanical Repeteability Creep, hysteresis

Fiber-optic Low noise Complex

Photoelasticity Linear Complicated optics

Marker tracking No interconnects Requires PC

Magnetic
Hall effect Shapeable Measure in one direction

Magnetoelastic Wide dynamic range Affected by noise

Ultrasonic Dynamic range, durability Impedance problems

Electrochemical Low sensitivity

Table 6.1: Advantages and disadvantages of different sensor technologies

130 Space trajectory analyis

Figure 6.7: The ATI Nano-17 6-axis transducer.

ferent configurations (full bridge, 1/2 bridge, 1/4 bridge) according to the

requirements: precision, temperature drift avoidance, cost. The readings are

then elaborated by the transducer default software, which provides the force

and torque vector components in an orthogonal cartesian reference frame

(which is clearly a body fixed frame). Hence, the components provided by

the software interface do not refer to an absolute frame, and the probe posi-

tion needs to be taken into account.

For the selection of the proper transducer, a maximum force requirement

has to be set. Typically, we can suppose that the contact forces won’t be

higher than ±50 N along each of the axes. A good option, for example,

would be the ATI Nano 17 (Fig 6.7). Among its main features, it is the

smallest commercially available 6-axes tranducer and presents a very fine

resolution. It has silicon strain gages that provide a signal 75 times stronger

than conventional foil gages. This signal is the amplified, resulting in near-

zero noise distortion.

Without diving too much into the details, in Table 6.2 we present the

sensor’s main characteristics.

6.4 Matlab simulation 131

Single-axis overload

Fx,y ±250 N

Fz ±480 N

Tx,y ±1.6 Nm

Tz ±1.8 Nm

Resonant frequency

Fx,y,z 7200 Hz

Tx,y,z 7200 Hz

Physical specifications

mass 0.00907 kg

diameter 17 mm

height 15 mm

Table 6.2: ATI Nano-17 main characteristics.

6.4 Matlab simulation

6.4.1 Rendezvous maneuver

By using the equation developed in the kinematics chapter, it is possible to

simulate the rendevous and approach with very minor changes to the original

script.

First of all, we might want to define some starting parameters: one of key

parameters is the choice of the CW frame position and orientation. A wise

choice would be to avoid setting the origin coincident with the manipulator’s

base frame origin: this is due to the fact that the manipulator has limited

dexterity in this region; instead, there should be an adequate offset (we’ll

name this as CW) between the origins.

As far as concerns the orientation, the natural choice would be to use a

CW frame whose axes are parallel to those of the base frame (Fig 6.8): in

this way, the computation of the parameters it’s faster and the motion it’s

easier to visualize (the horizontal ground plane corresponds to the virtual

orbital plane). In our case, for example, a good choice as far as concerns the

132 Space trajectory analyis

offset would be:

CW =

1

0

0

 [m] (6.48)

The rotation matrix between the base frame and the CW frame was chosen

as:

CW

0 R =

1 0 0

0 1 0

0 0 1

 (6.49)

That is, the CW frame is simply translated from the base frame. We then

need to determine the orbit characteristics; let’s imagine, for example, an ap-

proach bewteen our chaser and the International Space Station. The orbital

parameters for the ISS are2:

R = 390 km

n =
V

R
=

√
µ

R3
= 1.134 · 10−3 rad/s

Where n is the mean motion of the orbit and it’s the only orbital parameter

needed in the CW approach. Next, we need a starting point for the maneuver

and a total journey time. We impose, for example:

CWXin =

−0.4

−0.5

0

 [m] (6.50)

0Xin =CW Xin + CW =

 0.6

−0.5

0

 [m] (6.51)

With a total maneuver time of tf=300 s, we can calculate the initial and

final maneuver impulses as follows:

{0} = [Ψrr(tf)] { δr0}+ [Ψrv(tf)] { δv+
0 } (6.52)

{δv+
0 } = −[Ψrv(tf)]

−1[Ψrr(tf)] { δr0} (6.53)

2We suppose the orbit to be circular; in reality, the ISS is on an elliptical orbit with

hp=388 km and ha=401 km [14].

6.4 Matlab simulation 133

Figure 6.8: CW environment definition with respect to the robot base frame

Which yields:

{δv+
0 } =

8.82 · 10−7

2.07 · 10−6

0

 [km/s] (6.54)

From which, if we suppose a zero velocity at the beginning:

∆v0 = δv+
0 (6.55)

The final impulse can be calculated by setting to zero the final velocity:

∆vf = δv+
f − δv

−
f = 0− δv−f = −δv−f (6.56)

Hence: {
δv−f

}
= [Ψvr(tf)] { δr0}+ [Ψvv(tf)] { δv+

0 } (6.57)

And finally:

{
δv−f

}
=

−1.76 · 10−6

−1.16 · 10−6

0

 [km/s] (6.58)

The trajectory, along with the corresponding ∆v, is pictured in Fig 6.9.

The path has been drawn recalling that the motion in described by the

following equations:

{δr(t)} = [Ψrr(t)] { δr0}+ [Ψrv(t)] { δv+
0 } (6.59)

134 Space trajectory analyis

Figure 6.9: Chaser trajectory in CW coordinates for a rendezvous maneuver.

{δv(t)} = [Ψvr(t)] { δr0}+ [Ψvv(t)] { δv+
0 } (6.60)

Once the initial conditions δr0 and δv+
0 are known, the trajectory is fully

defined. This leads to a straightforward simulation with the aid of the ma-

nipulator: it is sufficent, in fact, to feed the output of equations Eq 6.59 and

6.60 into the previously designed Matlab and Simulink control environments.

The Matlab simulation screenshot is provided in Fig 6.10.

6.4.2 Rendez-vous maneuver with impulsive disturbance

The natural extension of this procedure is to implement a trajectory modifi-

cation algorithm in order to account for the presence of forces. We will focus

on impulsive effects only.

By using the same trajectory parameters as before, we can suppose that

an object collides with the chaser after t = Timp from the start. This generates

an impulsive force F that it’s translated into a change in trajectory. Firstly,

6.4 Matlab simulation 135

Figure 6.10: Rendezvous simulation in the CW relative frame using Matlab

environment.

we define:

F =

−10

10

0

 [N] (6.61)

in the hypothesis that this vector is already expressed in the CW frame of

reference. The impact time can be chosen as:

Timp = 0.5 · tf = 150 s (6.62)

The simulation starts normally, but as soon as the sensor records the

impact and integrates the data to obtain the vectorial force, there’s the need

for the appropriate new path simulation. The impact generates (we impose a

satellite mass of 5 kg, a contact time of 0.1 s and square wave impulse profile):

∆vimp =
1

m
· F · dt =

1

5
·

−1

1

0

 · 0.1 =

−0.02

0.02

0

 [m/s] (6.63)

136 Space trajectory analyis

Figure 6.11: Chaser trajectory in CW coordinates for a rendezvous maneuver.

The change in the trajectory, once the ∆v is known, consists in the calcu-

lation of the new δr0 and δv0. Hence, the position where the impact occours

is: {
δr−imp

}
= [Ψrr(Timp)] { δr0}+ [Ψrv(Timp)] { δv0} (6.64)

{
δr−imp

}
=

−0.233

−0.216

0

 [m] (6.65)

And the velocity before the impact is:{
δv−imp

}
= [Ψvr(Timp)] { δr0}+ [Ψvv(Timp)] { δv0} (6.66)

{
δv−imp

}
=

1.34 · 10−6

1.69 · 10−6

0

 [km/s] (6.67)

The value of δr+
imp is equal to δr−imp (we assume an instantaneous action of

the force), whereas δv+
imp is given by:

δv+
imp = ∆vimp + δv−imp (6.68)

6.4 Matlab simulation 137

δv+
imp =

−2 · 10−5

2 · 10−5

0

+

1.34 · 10−6

1.69 · 10−6

0

 =

−1.86 · 10−5

2.17 · 10−5

0

 [km/s] (6.69)

Which yields the new equations of motion:{
δr+(t)

}
= [Ψrr(t)] { δr−imp}+ [Ψrv(t)] { δv+

imp} (6.70){
δv+(t)

}
= [Ψvr(t)] { δr−imp}+ [Ψvv(t)] { δv+

imp} (6.71)

The resulting trajectory is pictured in Fig 6.11. It can be seen that the

impulse has completely deviated the chaser from its approach trajectory.

The last frame of the Matlab animation is reported in Fig 6.12.

Figure 6.12: Rendezvous simulation with impulse disturbance in the CW

relative frame using Matlab environment.

138 Space trajectory analyis

6.4.3 Rendezvous approach with on the go corrections

Finally, it is possible to simulate an actively controlled system, which allows

for the continuous correction of the path in case of disturbances. What is

needed, in fact, is to recompute the chasing trajectory and, in turn, the ∆v

that needs to be provided to the ADCS.

By contiuning with the previous example, we want the chaser to get back

in the approaching path; naturally this path would be different from the one

computed at the beginning of the journey, and a new set of parameters needs

to be calculated.

In a real case situation, there will be a certain time delay between the

drifting event and the shot of the new ∆v, and we can’t assume the δr vector

to be constant anymore. Let’s suppose a time delay between the impact and

the reaction of Tdelay=10 s; in this time span, the position and the velocity

constants become (recalling Eq 6.70 and 6.71):

{δrshot} = [Ψrr(Tdelay)] { δr−imp}+ [Ψrv(Tdelay)] { δv+
imp} (6.72)

{δvshot} = [Ψvr(Tdelay)] { δr−imp}+ [Ψvv(Tdelay)] { δv+
imp} (6.73)

{
δr−shot

}
=

 −0.417

3.11 · 10−3

0

 [m] (6.74)

{
δv−shot

}
=

−1.82 · 10−5

2.21 · 10−5

0

 [km/s] (6.75)

The new approaching trajectory is then calculated as usual (assume a

total maneuver time of t∗f = 150 s):

{0} = [Ψrr(t
∗
f)] { δr−shot}+ [Ψrv(t

∗
f)] { δv+

shot} (6.76)

{δv+
shot} = −[Ψrv(t

∗
f)]
−1[Ψrr(t

∗
f)] { δr−shot} (6.77)

{δv+
shot} =

2.84 · 10−6

4.56 · 10−7

0

 [km/s] (6.78)

6.4 Matlab simulation 139

Figure 6.13: Chaser trajectory in CW coordinates for a rendezvous maneuver

with on the go corrections.

Which yields the first impulse:

∆v∗0 = δv+
shot − δv

−
shot =

 2.11 · 10−5

−2.16 · 10−5

0

 [km/s] (6.79)

As far as concerns the final impulse, we set to zero the final velocity:

∆v∗f = δv∗f
+ − δv∗f− = 0− δv∗f− = −δv∗f− (6.80){

δv∗f
−} = [Ψvr(t

∗
f)] { δr−shot}+ [Ψvv(t

∗
f)] { δv+

shot} (6.81)

∆v∗f =

−2.71 · 10−6

4.91 · 10−7

0

 [km/s] (6.82)

The position and velocity laws for this final trajectory are then:{
δr∗+(t)

}
= [Ψrr(t)] { δr−shot}+ [Ψrv(t)] { δv+

shot} (6.83){
δv∗+(t)

}
= [Ψvr(t)] { δr−shot}+ [Ψvv(t)] { δv+

shot} (6.84)

140 Space trajectory analyis

Figure 6.14: Rendezvous simulation with on the go corrections in the CW

relative frame using Matlab environment.

The plot of the maneuver is presented in Fig 6.13. Obviously, this proce-

dure can be performed each time a disturbance is sensed, and the corrected

trajectory is easily computed. The manipulator graphic simulation yields the

plot in Fig 6.14.

In this last case, we also provide the plot of the required torques for

the maneuver (Fig 6.15). As expected, the behavior of the torques presents

noticeable spikes in presence of the impact and of the attitude modification.

This is due to the fact the trajectory has a discontinuity in these locations,

and thus the accelerations needed for this repentine path change show a very

steep slope. However, the maximum torques required are in the range of the

motors (refer to Chapter 7 for details on the actuators), and the maneuver

success will depend only on the control system capability and on the motors

6.4 Matlab simulation 141

response time.

Figure 6.15: The torques required at each joint for the maneuver presented

in Fig 6.13.

142 Space trajectory analyis

Chapter 7
Sizing

7.1 Introduction

In this chapter, the sizing approach is described. This process is made up

of several steps, and most of the time these are not indipendent from each

other: that is, the variation of one of the conditions might have important

consequences on the others.

The problems presented in this chapter, in fact, cannot be solved ana-

litically, and the solution is not unique either. Several combinations of the

parameters satisfy the requirements fixed at the beginning. It is however pos-

Figure 7.1: Block diagram representing the iterative sizing process.

143

144 Sizing

sible to design a generic block diagram, presented in Fig 7.1, that represents

the logic process on which the sizing procedure is based. In the picture, the

blue writings represents the requirements, and are needed for the calculation

of the different steps, whereas the dotted lines are the parameters that need

to be assumed and then back-checked in a trial-error type of procedure.

7.2 Link design

The process starts from the requirements presented in Chapter 2. The robot

needs to have a working space of at least 0.5×0.5×0.5 m. Obviously, infinite

configurations would satisfy this requirement, and some initial values need to

be set to solve the indetermination. We can, for example, use the following

lengths for the first three links:

l1 = 0.7 m l2 = 0.7 m l3 = 0.6 m (7.1)

With this configuration, the working space requirement is fully satisfied.

This can be inferred by plotting a cloud of points for all the positions reached

by the end effector. These points are obtained from the direct kinematics by

varying discretely θ1, θ2 and θ3.

Since a single figure won’t be easy to understand, three separate plots

are presented: in the first one, θ1=0 and θ2, θ3 sweep the [-π; π] interval; in

the second one, θ2=0 and θ1, θ3 ∈ [−π; π]; in the last one, θ3=0 and θ1, θ2

∈ [−π; π].

The sizing of the end effector is actually more delicate, since there shall

not be any interference between the last three links. Plus, the space occupied

by an eventual test object has to be considered. In Fig 7.3, a preliminary

design of the end effector configuration is shown (refer to Section 1.3.3 for an

accurate analysis of the problem).

Note that, in these configurations, the offsets between the links, identified

as di in Denavit-Hartenberg’s notation, are all zero except from d4.

This choice can be explained from a computational point of view: apart from

d4, which needs to be different from zero in order to have a 3 axes intersec-

tion at the end effector1, the other offsets are zeroed. This limits the inverse

1In order to satisfy Pieper’s approach, Sec. 2.4.1.

7.2 Link design 145

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

z
 [

m
]

x [m]

(a) θ1 = 0, θ2, θ3 ∈ (−π; π)

−1.5

−1

−0.5

0

0.5

1

1.5

−1

−0.5

0

0.5

1

−0.5

0

0.5

z
 [
m

]

x [m]

y [m]

(b) θ2 = 0, θ1, θ3 ∈ (−π; π)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

z
 [

m
]

x [m]

y [m]

(c) θ3 = 0, θ1, θ2 ∈ (−π; π)

Figure 7.2: Manipulator workspace analysis.

kinematics solution, thus speeding up the code.

As far as concerns the links, we now have their lengths. What is needed

are the geometric properties and the material properties, which will then

provide further information about the weight, the inertia and the stiffness.

7.2.1 Material choice

The material choice is fairly straightforward: what is needed is a material

with a high resistance-to-weight (RtoW) ratio. Weight saving is a must in

order to limit the size and cost of the motor. From this standpoint, steel

could be a good choice in terms of performances, but its high density doesn’t

146 Sizing

Figure 7.3: End effector preliminary design.

make it a suitable material for this application.

Probably the best solution, in terms of resistance-to-weight ratio, would

be a composite material, such as carbon fiber or fiberglass. However, this is

not the ideal choice for a preliminary design. Moreover, these materials need

to be custom made, with an obvious steep increase in the price. Aluminium

is definitely the most favorable solution: it presents a good RtoW ratio, it is

very easy to machine and there are a lot of section choices which are relatively

cheap due to the simple process (extrusion) used in their production.

7.2.2 Load analysis

When working with slender bodies, it is key to worry about their rigidity in

order to avoid bending and buckling. In this case, due to the way loads are

applied, it is unlikely for buckling to occur for link 2 and link 3, whereas

bending could be a serious issue. Moreover, a flimsy structure might cause

vibrations and disturbances. Link 1, on the other hand, could be subjected

to both buckling and bending.

To avoid these phenomena, proper sections need to be chosen. A first

approach to the problem could be the analysis of the symplified 2D structure

when the arm is fully extended. The diagram in Fig 7.4 schematizes the

problem.

In the figure, FM is the weight of the motor and Fpay is the weight of the

payload. The latter accounts not only for the object attached at the tip of the

7.2 Link design 147

1
L

2
L

F
m pay

FF
m

3
L

Figure 7.4: Simplified model of the robot structure.

end effector, but also for the weight of the last three links. The distributed

loads represent the weight of the arms and do not have necessarily the same

magnitude.

This structure can be easily analyzed analitically in order to obtain the

moment, shear and normal force distribution along the links. Although we

haven’t defined the parametrs yet, a plot of the general behavior can be

obtained and is presented in Fig 7.5.

It is clear that link 1 is subjected to the highest load, in terms of moment

(which is constant along its span) and normal force. The normal force acting

F
m pay

FF
m

Shear

Normal

Force

F
m pay

FF
m

Moment

Figure 7.5: Moment, shear and normal force behavior of robot’s simplified

structure.

148 Sizing

on this first link may create buckling: this situation will be further analyzed

in section 7.2.3.

Moving on towards the end effector, we can see that link 2 is subjected

to a bending moment that has the highest value at joint 1 and decreases in

a parabolic fashion until the end effector. The shear force acting on link 2 is

linear.

The presence of a concentrated force at joint 3, induced by the weight of

the motor, changes the slope of the moment profile, which keeps decreasing

till zero at the end effector. On the other hand, there is a discontinuity of

the shear profile due to the concentrated load Fm (note that this “jump” is

equal to the value of this force), which descreases linearly from joint 2 to the

end effector, where its value is Fpay.

The sizing of the links, once the length is known, might start from the

displacement analysis. It is possible to set a requirement on the maximum

vertical displacement2 in the worst case configuration: this happens when

the manipulator is fully stretched (Fig 7.4).

With a simple analytical procedure, this approach can lead to the calcu-

lation of the minimum moment of inertia Ix required for the links’ sections.

The commercial link choice is then quite straightforward.

This approach, however, needs some assumptions, and a trial/error pro-

cedure has to be used:

1. The motor and payload weights are estimated, with an appropriate

safety factor (e.g. 1.3/1.5)

2. The links’ linear weight (kg/m) are estimated according to the common

extruded profiles properties. Again, an appropriate safety factor is used

3. A maximum tip displacement requirement is set

4. The displacement analysis is executed: this will yield the product E · I

5. Knowing the material properties (and E), the value of I is obtained

2We will ignore the horizontal displacement analysis. That is, we suppose the links’

sections to be axialsymmetric and the loads to be applied along the shear center [18].

7.2 Link design 149

6. A profile having this I and the previously estimated linear weight is

searched among the commercially available sections

7. If commercial profiles present higher weight for that I, the estimated

weight has to be increased. Another solution could be the relaxation

of the tip displacement requirement. Analysis is executed again with

these modifications.

8. If commercial profiles present lower weight for that I, the estimated

weight has to be descreased. Another solution could be to set a tighter

requirement on the tip displacement. Analysis is executed again with

these modifications.

9. If there exists commercial profiles with the parameters used, then the

problem is solved and the procedure ends.

After the definition of the first-try parameters, we need to calculate the

displacement. From beam theory [18], we recall the formula relating the

moment and the curvature it produces on a beam:{
Mx = −EIxyu′′ − EIxxv′′

My = −EIyyu′′ − EIxyv′′
(7.2)

Since we assume to work with symmetric profiles, Ixy = 0. Moreover, in our

2D model, My = 0. We are left with the formula for the vertical displacement:

v′′(x) = −Mx(x)

EIxx
(7.3)

Integrating twice this formula, we can obtain the displacement of the beam as

a function of x. The main problem is to obtain the Mx(x) function. This can

be easily accomplished remembering that we are analyzing a linear elastic

problem, and the superposition of effects is value.

Therefore, the problem in Fig 7.4 can be decomposed in three parts (we

assume the distributed weigth to be constant, that is, link 2 and link 3

have the same profile): we obtain the three cases presented in Fig 7.6. The

computation of the moments derives from static equilibrium, and yields, for

150 Sizing

Fm pay
F

q

A

B C D

A

B C D

A

B C D

Figure 7.6: Load decomposition for structural analysis.

the three cases (referring to Fig 7.4, we set the x axis as starting from joint

2 and going rightwise, and L = L2 + L3):

M1(x) =
q

2
(L− x)2 for 0 ≤ x ≤ L (7.4)

M2(x) = Fm(L− x) for 0 ≤ x ≤ L2 (7.5)

M3(x) = Fpay(L− x) for 0 ≤ x ≤ L (7.6)

The moment diagrams are presented in Fig 7.7. From these expressions, we

can obtain the corresponding displacements [18]:

Case 1

EIv′′1 = −M1(x) (7.7a)

EIv′′1 = −q
2

(L− x)2 (7.7b)

EIv′1 = −q
2

[
L2x+

x3

3
− Lx2

]
+ C1 (7.7c)

EIv1 = −q
2

[
L2x

2

2
+
x4

12
− Lx

3

3

]
+ C1x+ C2 (7.7d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v1(x) is:

v1(x) = − q

24 EI

[
6L2x2 + x4 − 4Lx3

]
(7.8)

7.2 Link design 151

Fm pay
F

A

B C D

A

B C D

A

B C D

Figure 7.7: Moment diagrams for the three decomposed cases.

Case 2

EIv′′2 = −M2(x) (7.9a)

EIv′′2 = −Fm(L2 − x) (7.9b)

EIv′2 = −Fm
(
L2x−

x2

2

)
+ C1 (7.9c)

EIv2 = −Fm
(
L2
x2

2
− x3

6

)
+ C1x+ C2 (7.9d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v2(x) is:

v2(0 ≤ x ≤ L2) = − Fm
6 EI

[
3L2x

2 − z3
]

(7.10)

Since the load is effective till x = L2, the slope of the curvature past L2

will remain constant, and the deformed curve will be a segment. Since we

can calculate the value of the displacement and its derivative in L2, the line

equation3 yields the formula for v2(x) when L2 ≤ x ≤ L:

v2(L2 ≤ x ≤ L) = − Fm
6 EI

[
3L2

2x− L3
1

]
(7.11)

3We can write the line equation as v2(x) = v′2(L2)(x − L2) + v2(L2), where v2(L2) =

− Fm

3EIL
3
1 and v′2(L2) = − Fm

2EIL
2
1.

152 Sizing

Case 3

EIv′′3 = −M3(x) (7.12a)

EIv′′3 = −Fpay(L− x) (7.12b)

EIv′3 = −Fpay
(
Lx− x2

2

)
+ C1 (7.12c)

EIv3 = −Fpay
(
L
x2

2
− x3

6

)
+ C1x+ C2 (7.12d)

From which, using the assumption of a fixed constraint at joint 2, v′(x = 0) = 0

and v′(x = 0) = 0. Thus, C1 = C2 = 0. The final expression for v2(x) is:

v3(x) = − Fpay
6 EI

[
3Lx2 − z3

]
(7.13)

Putting together the three case, we can obtain the equation describing

the total displacement as the sum of v1, v2, v3:

v(x) =



1

6 EI

{
q
[
6L2x2 + x4 − 4Lx3

]
+

−4
[
Fm(3L2x

2 − z3) + Fpay(3Lx
2 − z3)

]
if 0 ≤ x ≤ L2

1

6 EI

{
q
[
6L2x2 + x4 − 4Lx3

]
+

−4
[
Fm(3L2

2x− L3
1) + Fpay(3Lx

2 − z3)
]

if L2 ≤ x ≤ L

(7.14)

Finally, the tip displacement can be obtained by evaluating Eq 7.14 for

x = L. This yields:

vtip = − qL
4

8EI
− FmL

2
1(3L− L1) + 3FpayL

3

6EI
(7.15)

The requirement set for the displacement is vtip. Since we are looking for

the value of I, Eq 7.15 can be rewritten extracting EI:

EI = − 1

vtip
[3qL4 + 4FmL

2
1(3L− L1) + 12FpayL

3] (7.16)

The parameter E, Young’s modulus, is material dependent and is known:

for aluminium, E = 70 GPa. We are left with I, which can be easily com-

puted. The relation between the requirement vtip and the minimum I needed

7.2 Link design 153

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

Vertical displacement analysis as a function of beam inertia

Tip vertical displacement [mm]

C
o
rr

e
s
p

o
n

d
in

g
 I

x
 m

o
m

e
n
t
o
f

in
e
rt

ia
 o

f
b
e
a
m

 [
c
m

4
]

Figure 7.8: Vertical displacement versus Ix value.

can be expressed with a plot (Fig 7.8). It can be seen that the smaller the

requirement for the displacement becomes, the steeper the rise in I is.

The procedure now is quite simple: with the requirements and the given

values for the loads, I is computed. From commercial available profiles,

the sections with a similar I are located, and the mass for linear meter is

compared to the one supposed at the beginning (q).

If these values are close to each other, say, in a ±10% range, the assump-

tions were good and the sections are readily available. If, on the other hand,

this is not happening, we need to re-iterate the process. Two parameters

can be changed: the requirement on the displacement and/or the weight for

unit length q. If, for example, the computed I is typical of profiles with

higher mass per unit length, the simulation will be repeated increasing the

presumed q. This tuning will finally provide a compatible solution. In our

154 Sizing

Figure 7.9: Typical extruded aluminium profiles. Data gathered from

boschrexroth.us.

case, the sizing parameters were chosen as follows:

Fm = 1 kg

Fpay = 2 kg

E = 70GPa

q = 2 kg/m

vtip = 5mm

With these data, Eq 7.16 yields the value for the x moment of inertia:

Ix = 11.27 cm4

From the internet [2], we can find some typical extruded profiles (Fig 7.9).

The main properties corresponing to these sections are gathered in Table 7.1.

From the table, it can be seen that, for profiles with a linear weight similar

to the one we chose (2 kg/m), the x moment of inertia satisfies the computed

value. In our case, sections B, C, D, E might fulfill our needs. An interesting

7.2 Link design 155

A B C D E F G H J L M N

Ix [cm4] 11 13.8 11.8 11.5 11.8 37.2 81.8 73.4 85.6 87.2 124.6 766.7

Iy [cm4] 11 13.8 12.1 11.4 11.7 22.7 23.1 18.1 38.1 38.8 32.8 57.3

mass [kg/m] 1.5 2.0 1.6 1.6 1.6 2.9 3.0 2.44 3.24 3.2 4.15 6.90

Table 7.1: Geometric characteristic of the extruded profiles pictured in

Fig 7.9.

choice would be also section H, which is relatively lightweight and, due to

its bigger dimensions, could facilitate the building and interfacing with the

motors (recall that the motor height, in fact, has to be augmented with the

length of the transmission gear).

For H, however, we need to the change the parameters of the simula-

tions: weight requirement will increase from 2 kg/m to ∼2.5 kg/m. Since we

have the moment of inertia of the section, we solve equation Eq 7.15 for the

maximum displacement. This yields:

vHtip = 0.83mm (7.17)

Which shows an interesting improvement in the stiffness of the structure.

The main drawback is given by the extra torque that the motors have to

provide for equilibrium. With these data, link 2 and link 3 are fully defined.

The next step is to define the characteristics of link 1. This link is sub-

jected to both bending and compression. We can treat this case with a

buckling analysis.

7.2.3 Buckling analysis

Link 1 can be analyzed as a column subjected to a loading combination

(Fig 7.10). There are, in fact, a normal loading component PN , given by:

PN = q(L2 + L3) + 2 Fm + Fpay (7.18)

And a moment, which can be calculated (in the worst case condition), as:

M = FmL2 + Fpay(L2 + L3) + q
L2

2

2
+ qL3(L2 +

L3

2
) (7.19)

156 Sizing

Figure 7.10: Free body diagram for link 1.

Under this loading, it is possible to calculate the deformed profile of the

column. We recall the governing equation from bending theory [18]:

EI
d2v

dx2
= −M (7.20)

From which, having this case M = PNv +M :

EI
d2v

dx2
= −[PNv +M] (7.21)

d2v

dx2
+
PN
EI

v = −M
EI

M ′ = −M
EI

(7.22)

d2v

dx2
+
PN
EI

v = M ′ (7.23)

Where the last one is a second order linear non homogeneous differential

equation; its solution v is composed by a combination of the homogenous

solution vh and of a particular one vpart:

v = vh + vpart (7.24)

The homogeneous solution can be obtain recalling the armonic oscillator

equation:

v′′(x) + k2v(x) = 0 (7.25)

7.2 Link design 157

Where:

k2 =
PN
EI

(7.26)

From Eq 7.25, the homogenoeous solution is [5]:

v(x) = A sin(kx) +B cos(kx) (7.27)

The particular solution is obtained immediately if the characteristic equa-

tion4 is considered, and yields:

vpart =
M ′

k2
(7.28)

The complete solution is then:

v(x) = A sin(kx) +B cos(kx) +
M ′

k2
(7.29)

The coefficients A and B can be obtained from the boundary conditions of

the problem. In this case, since the lower end is considered fixed and the

upper free, we have that v = 0 for x = 0 and dv
dx

= 0 for x = 0. The

coefficients then become:

A = 0 B = −M
′

k2
(7.30)

Equation 7.29 is useful to obtain the deformation of the column under the

combined load. However, to structurally dimension the link, we can use the

secant formula. Suppose the two ends of the column are pinned. Then the

boundary conditions become v = 0 for x = 0 and v = 0 for x = L. This

yields the following conditions:

0 = B +
M ′

k2
; B = −M

′

k2
(7.31)

0 = A sin(kL)− M ′

k2
cos(kL) +

M ′

k2
(7.32)

A sin(kL) =
M ′

k2
[cos(kL)− 1] (7.33)

From which, recalling the duplication trigonometric formula:

sin(kL) = 2sin

(
kL

2

)
cos

(
kL

2

)
(7.34)

4The characteristic equation, in this case, is given by s2 + k2 = 0.

158 Sizing

1− cos(kL) = 2sin2

(
kL

2

)
(7.35)

Plugging these relations into Eq 7.33:

A

[
2sin

(
kL

2

)
cos

(
kL

2

)]
= −M

′

k2

[
2sin2

(
kL

2

)]
(7.36)

A = −M
′

k2
tan

(
kL

2

)
(7.37)

Finally, Eq 7.29 becomes:

v(x) = −M
′

k2

[
tan

(
kL

2

)
sin(kx) + cos(kx)− 1

]
(7.38)

The maximum displacemente is obtained for x = L

vmax = −M
′

k2

[
tan

(
kL

2

)
sin(kL) + cos(kL)− 1

]
(7.39)

Using the secant, we can write:

vmax = −M
′

k2

[
sec

(
kL

2

)
− 1

]
(7.40)

We note that vmax becomes infinite when the argument of the secant tends

to π
2
:

kL

2
=

√
PN
EI
· L

2
=
π

2
(7.41)

This expression yields the value of P for which vmax becomes unacceptably

large, that is, the critical load. Solving for P , we get:

Pcr =
π2EI

L2
e

(7.42)

Where Le is the effective legth and depends on the constraint configuration

(refer to Table 7.2). Thus, the critical load in this case becomes:

Pcr =
π2EI

4L2
(7.43)

With this formula, we can solve the y−z problem, where the x axis belongs

to the manipulator arm plane, the y is perpendicular to it and z is directed

along link 1.

7.2 Link design 159

Fixtures Le

Pinned-Pinned L

Fixed-Free 2 L

Fixed-Fixed 0.5 L

Pinned-Fixed 0.7 L

Table 7.2: Effective lengths for different constraint configurations

Equation 7.43, however, is not sufficient for the calculation of the x − z
behavior, since a bending moment is acting as well. The maximum stress

σmax is compressive and composed by two components:

σmax =
PN
A

+
M̂

I
c (7.44)

Where M̂ = M +PN vmax. Rearranging all the previous expressions, we end

up with:

σmax =
PN
A

+

[
M

I
+
PN vmax

I

]
· c (7.45a)

σmax =
PN
A

+

{
M

I
+
PN
I
· M
PN

[
sec

(√
PN
EI
· L

2

)
− 1

]}
· c (7.45b)

σmax =
PN
A

+

[
M

I
· sec

(√
PN
EI
· L

2

)]
· c (7.45c)

Where c is the distance measured from the centroid of the profile section to

the outer skin. We can finally proceed with the calculations for the thesis’

case. We start by defining and calculating the needed parameters:

q = 2.44 kg/m

PN = 52.2 N

M = 47.19 Nm

From Eq 7.43, the minimum value for I required to withstand y−z buckling

is:

I =
52.2 · 4 · 0.72

π2 · 70 · 109
= 1.1 · 10−10 m4 = 0.011 cm4 (7.46)

160 Sizing

Obviously, this requirement is easily met even with the thinner sections

available. It might be more interesting to set some requirements on the max-

imum displacement vmax. A starting value could be vmax ≤ 1 mm. Solving

Eq 7.40 for I yields:

I =
PN

E ·
{

2
L
· acos

[
1

1+
PN
M
vmax

]}2 = 4.13 cm4 (7.47)

From Table 7.1 we can see that even the smaller profile, the A model, is

suitable for this application, whose specifics are:

Ix = Iy = 11 cm4

h = w = 45 mm

q = 1.5 kg/m

A = 5.70 cm2

For sake of precision, it is also possible to verify under which condition this

profile will fail. The critical load for profile A, for x− y buckling, is:

Pcr,y =
π2EI

4L2
=
π2 · 70 · 109 · 11 · 10−8

4 · 0.72
= 38.7 kN (7.48)

As far as concerns the y − z behavior, we recall Eq 7.45:

σmax =
PN
A

+

[
M

I
· sec

(√
PN
EI
· L

2

)]
· c (7.49)

In this case, we set σmax = σY : we want to find the load Pcr,x that causes

yielding. Since σY = 165MPa for aluminum, we write:

σY =
Pcr,x

0.00057
+

[
47.19

11 · 10−8
· sec

(√
Pcr,x

70 · 11 · 10
· 0.7

2

)]
· 0.045

2
(7.50)

Solving numerically for Pcr,x (with Newton-Rapson technique, for example),

we get:

Pcr,x = 25.7 kN (7.51)

This means that, since Pcr,x < Pcr,y, the link will fail due to the moment and

compression combination on plane y − z. This is intuitive since the loading

conditiong is higher in this case.

7.2 Link design 161

Note that the maximum stress when failing occurs is:

σmax =
Pcr,x
A

= 45.12 MPa (7.52)

σmax = 45.12 MPa � σY = 165 MPa (7.53)

That is, failing occurs much before yielding: this is due to the slenderness

of the column. By decreasing the slenderness ratio (i.e. the ratio between

the height and the width of the element), it can be shown that the failure

mode shifts from buckling to yielding.

Reassuming the reults obtained in this section, the links’ sizing parame-

ters are:

length [m] area [cm2] Ix[cm
4] Iy[cm

4] q [kg/m] mass [kg]

link 1 0.7 5.70 11 11 1.5 1.05

link 2 0.7 9.04 73.4 18.1 2.44 1.71

link 3 0.6 9.04 73.4 18.1 2.44 1.46

It is important to note that the sizing of the link is actually oversized for

static stability: however, designing a robot’s structure just to avoid yielding

is not the way to proceed here. In fact, apart from yielding, there’s the need

to avoid vibrations and resonance: a flismy structure, although statically

adequate, might be excited at very low frequencies. Oversizing the links

beyond the static safety limits seems to be the best way to shift the natural

frequency of the system to higher, less dangerous ranges.

Moreover, since the inertial characteristics of link 1 do not influence the

performances of the structure, we can think of using section H for link 1 too.

The extra weight, in fact, will not affect any of the motors: on the other

hand, we obtain a much stiffer structure, way less prone to resonance and

vibrations than the one having section A for link 1.

At this point, the first three links are fully dimensioned. As far as con-

cerns the last three links, the approach used is different. Since their lengths

are fairly small, they won’t be subjected to relevant moments. The main

problem, thus, would be the geometric definition (yielding of the material

and bending/buckling can be easily ignored).

162 Sizing

Since, referring to Fig 7.3, the profiles need to be curved, we can’t no

longer use a standard extruded profile; the section will have to be custom

made. The profiles have been designed in SolidWorks, using a thickness of

5mm. The last link, which is supposed to host the force sensor, has been

approximated with an axialsymmetric cylinder.

By knowing the specific weight of the material, the mass was computed.

In the following table these parameters are presented. More details on the

geometry are presented in the Physical parameters section.

mass [g]

link 4 230

link 5 190

link 6 210

7.3 Motor choice

7.3.1 Motor types

There are several types of motors available for robotic purposes, which can

be divided according to different characteristics.

The main distinction is based on the kind of power used, AC or DC.

AC motors are generally used in high power, single or multi phase industrial

systems where a constant rotational rate is usually needed. The motors used

in robotics are an evolution of these actuators, with powers ranging from

10W to 10kW, and are mainly DC powered.

The key parameters to seek for when choosing a motor are:

� high power-to-weight ratio

� low mass and inertia

� high rotational speed

� low backlash (e.g. high precision)

7.3 Motor choice 163

Figure 7.11: Brushed and brushless DC motor schematics.

� low torque ripple

� (if available) accurate built-in sensors

The most common DC electric actuators can be further divided into two

classes: permanent-magnet DC servomotors and brushless DC servomotors.

The first type, Fig 7.11 (a), consists in a stator coil that creates the

magnetic flux, since it is a permanent magnet made out of a ferromagnetic

material; the rotor, which is again made out of a ferromagnetic material, is

covered by an armature, composed by current carrying windings. Brushes

between the rotating armature and the external winding are used for the

commutation.

In the brushless type, Fig 7.11 (b), the rotor (in ferromagnetic material)

generates the magnetic flux, whereas the fixed external armature (stator)

has polyphase windings. The commutation is provided by a position sensor

placed on the shaft, which generates the feed sequence for the windings.

It is crystal clear that in the latter case, because of the absence of physical

contact between the rotor and the stator, the performances are definitely

superior. First of all, with no contact, the mechanical losses due to friction

are minimized. The elimination of brushes eliminates also the electric loss

due to voltage drops at the contact of brushes and plates. Moreover, with

164 Sizing

no contact there is also less material wear, and the motor life is increased.

This choice, however, comes with its disadvantages: brushless motors

are more expensive, and they usually require a more sophisticated control

algorithm.

This first mental process allows for the identification of the kind of motor

to be used in this application. Due to the superior performances and the

limited disadvantages, we’ll stick with a brushless DC motor. What is needed

next are the operative requirements for each of the actuators.

7.3.2 Requirements

The motor choice starts with the analysis of torques required in the worst

operational case. Two contributions sum up:

1. the torques needed for supporting the weight of the structure5

2. the torques needed for withstanding the dynamic effects

For most applications, the first contribution is much more relevant than the

second one. The ideal approach is to study the static case and then add a

correction factor chosen accordingly to the typical torques calculated in the

dynamics simulations.

We start with the analysis of the static situation. The motors loads

depend on the configuration, that is, on the values of the generalized coordi-

nates q̄ = [q1 . . . qn]. However, it is immediate to note that θ1 does not have

any relevance in changing the configuration’s loads. For the same reason, θ6

has no influence as well.

We are left with θ2, θ3, θ4 and θ5, whose variations change the torques

needed for static equilibrium. The situation can be further simplified by

noting that the end effector can be considered as a single body, thus arriving

at the conclusion that only θ2 and θ3 are playing a significant role in the

variation of the static torque. (With this simplification, the static torque

analysis for joint 1 and 6 is momentarily ignored).

With the values obtained from the analysis presented in Section 7.2, we

can obtain the moments that need to be provided at joints 2 and joint 3 in

5We suppose a gravity field different from zero.

7.3 Motor choice 165

Fm

A

B

C

D

pay
F

LL

L
1

2 3

**

θ

θ

2

3

Figure 7.12: Simplified model of robot’s structure for nonzero joint angles

order to have a static equilibrium. Referring to Fig 7.12, we can write:

M2(θ2, θ3) = q · L∗2 ·
L∗2
2

+ FmL
∗
2 + Fpay(L

∗
2 + L∗3) + q∗3 ·

(
L∗2 +

L∗3
2

)

M3(θ2, θ3) = q · L∗3 ·
L∗3
2

+ FpayL
∗
3

Where:

L∗2 = L2 · cos(θ2)

L∗3 = L3 · cos(θ2 + θ3)

This calculation can be extended from the simple discrete case to a contin-

uous analysis of all the possible configurations for link 2 and 3 : by varying θ2

and θ3, two 3D plots are obtained, one representing on the z -axis the torque

τ2 as a function of θ2 and θ3, and the other representing τ3 as a function of

θ2 and θ3. The results are presented in Fig 7.13.

The peaks (both positive and negative) represent the worst loading con-

ditions, and the choice of the motor starts here.

166 Sizing

−200

−100

0

100

200

−200

−100

0

100

200

−10

−5

0

5

10

15

20

Θ
2
 [°]

Torque required (static) − Joint 3

Θ
3
 [°]

T
o
rq

u
e
 [
N

m
]

−200

−100

0

100

200

−200

−100

0

100

200

−20

−10

0

10

20

30

40

50

60

Θ
2
 [°]

Torque required (static) − Joint 2

Θ
3
 [°]

T
o
rq

u
e
 [
N

m
]

(a) Surface plot: τ2 on the left, τ3 on the right

Θ
2
 [°]

Θ
3
 [

°
]

Torque required (static) − Joint 3 (ABS)

1.6

3.01

4.42

5.84

7.25

8.66

10.1

11.5

1.6

1.6

3.01

3.01

4.42

1.6

4.42

1.6

3.01

3.01

4.42

4.42

5.84

5.84

7.25

7.25

8.66

8.66

10.1

10.1

11.5

11.5

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

1

2

3

4

5

6

7

8

9

10

11

Θ
2
 [°]

Θ
3
 [

°
]

Torque required (static) − Joint 2 (ABS)

4.1

8.19

12.3

16.4

4.1
4.1

20.5

24.6

28.7

32.8

8.19

8.19

36.9

8.19

8.19

41

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

0

5

10

15

20

25

30

35

40

(b) Contour plot: τ2 on the left, τ3 on the right

Figure 7.13: Static torque analysis for joint 2 and 3

When the arm is fully stretched, there is a maximum of the torque to be

provided at joint 2. For the addition of the dynamic contribution, we can

refer to the plots and the tables in Section 4.4. The torques required in the

dynamic case are in the +10÷12% range, confirming the assumption that

dynamic loading constitutes a relatively small percentage of the total value.

A good design strategy would be to multiply the maximum values ob-

tained from Fig 7.13 by a dynamic correction coefficient of 1.2. Moreover, in

addition to the dynamic effects, we need to take into account also friction and

all the additional hardware and harness weight needed in the installation.

7.3 Motor choice 167

An additional safety factor (SF) of 1.1 can be reasonably introduced.

Besides, this allows to still have some authority margin when the critical

conditions are reached.

As far as joint 1 is concerned, it can be seen that, ideally, there are

no torque requirements for static equilibrium: since the axis of rotation is

parallel to the gravity vector, the vectorial moment acting on joint 1 due to

gravity can not be handled by joint 1. Consequently, an appropriate bearing

attached to joint 1 will be needed in order to hadle this load.

In this case, the only torque contribution for the motor sizing is given

by inertial and dynamic loads, which can be inferred again from the torque

tables of Section 4.4. A sizing torque of 10 Nm seems to be a reasonable

choice. We again multiply this value by the usual safety factor SF.

The last three joints are clearly not subjected to high torque values. Joint

4 experiences the maximum static torque in the (unlikely) case in which link 3

is parallel to the z0 direction and link 4 is perpendicular to link 3. Maximum

torque for joint 5 happens when link 5 and its axis of revolution lie on the

ground plane.

Recalling the link masses from Section 7.2 and assuming 300 g as the

average weight of the motors, the maximum moments are calculated with

the following formulas:

M4 =
L4

2
· (m4 · g) + L4 · [(m5 +m6 +mpay + 2 ·mM) · g] (7.55)

M5 =

[
L5

2
·m5 + L5 ·mM +

(
L5 +

L6

2

)
· (m6 +mpay)

]
· g (7.56)

Joint 6 maximum torque takes into account only dynamic related torques:

as long as link 6 and the objects connected to it are axial-symmetric, there

are no acting torques for static equilibrium.

From Section 7.2 we can see that for the fastest trajectory simulated, a

torque value of 7.23·10−6 Nm is needed. However, we are in the approxima-

tion of an axialsymmetric body connected to the shaft whose axis of giration

is coincident with the shaft’s axis. Since other bodies, non necessarily axial-

symmetric, might be attached to it for testing, and due to possible misalign-

ments between the axis, the torque required could be bigger. In order to stay

168 Sizing

away from saturation, we can think of increasing the requirements: a com-

mercial motor in the 0.1÷0.2 Nm range appears to be more than sufficient

to withstand misaligments and (limited) extra weight.

The following table summarizes the maximum torque required by each

motor (all values are in Nm):

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

Static torque / 40.3 12.9 1.27 1.34 /

Dynamic correction 10 48.4 15.5 1.53 1.61 0.2

SF correction 12 53.2 17.1 1.68 1.77 0.25

With the aid of these simple static formulas, this procedure allows for

the selection of the motors in terms of torques. There are no problems in

finding a motor that satisfies the torque requirement for joint 6. Problems

arise when looking at the other joints. The maximum output torque for an

average commercial motor is usually on the order of ∼1 Nm: a transmission

gear is obviously needed.

This kind of device allows to up-size/down-size a motor in terms of torque;

the consequence is a proportional change in the revolution speed, according

to the following laws:

θ̇out =
1

η
· θ̇in (7.57)

τout = η · τin (7.58)

From which:

θ̇in · τout = θ̇out · τin (7.59)

Where η is the gear ratio. However, this is an ideal law: in the real case

mechanical losses are present. Clearly, a good performing transmission, in

terms of efficiency, is what we are looking for. The reduction ratio should be

as high as possible, as long as the minimum rotational speed requirement is

satisfied. Moreover, a high reduction rate means usually a longer series of re-

duction stages, which decrease the efficiency and increase the backlash. This,

however, is not true for certain kind of gears, such as the harmonic drives

(also know as “strain wave gearing”).

7.3 Motor choice 169

Wave generator

Circular spline

Flexible spline

Figure 7.14: Harmonic gear schematic [34]

These devices are built by taking advantage of the metal elasticity. They

are composed by three main elements (refer to Fig 7.14): a wave generator,

a flex spline and a circular spline. The flex spline sides are very thin, but

the bottom is thick and rigid and can be attached to a shaft (output shaft).

The wave generator is tightly secured inside the flex spline, and when it is

rotating, the spline deforms to the shape of an ellipse.

Because of this shape, the teeth of the spline mesh only with two parts of

the outer circular ring: the key point of the design is that there are two/three

fewer teeth in the flex spline. This means that for an entire spin of the

input shaft (connected to the wave generator), the output shaft (secured

to the flex spline) rotates only of the angular range corresponding to those

two/three teeth. That is, extremely high reduction ratio are possible (up to

300:1), coupled with good resolution, high torque capability, compactness,

light weight and no backlash6.

Practically, with this kind of gear, very small (and cheap) motors would

be necessary to produce high torques, thus making this the best performing

transmission device any robot could desire. In this thesis, harmonic gear

6Backlash, which arises from the imperfect meshing of gears, can be defined as the

maximum angular motion of the output gear when the input gear remains fixed.

170 Sizing

drives were immediately taken into account. Unfortunately, all these qualities

come with a big drawback: price. For a 100:1 harmonic drive gear, in fact,

unit price is on the k$ range, which abundantly overcomes the available

budget.

Among other kind of gear drives, planetary gears represent a good alter-

native. Although their performances dwarf if compared to harmonic drives,

their quality-to-price ratio is extremely high, and the backlash is still very

limited.

7.3.3 Hardware selection

As far as concerns the choice of the motor, the Maxon EC 90 seems to be

a viable choice for joint 1, 2 and 3 : it is relatively small and presents very

good performances. Its main characteristics are presented in Table 7.3 (the

complete datasheet is available in the Appendix):

As far as concerns joint 4 and 5, smaller motors can be used. From the

Maxon R© catalog, for example, the EC 45 is a good option, since it is very

cheap and lightweight.

Motor data EC 90 EC 45

Nominal voltage [V] 48 36

Nominal speed [rpm] 1640 3210

Nominal torque [mNm] 494 69.5

Max efficiency [%] 85 81

Weight [g] 648 88

Price [$] ∼ 230 ∼ 80

Table 7.3: Maxon EC 90 and EC 45 data

The required reduction ratio for the motors is computed as follows: first

of all, we define ξgear as the efficiency of the gearbox. From the Maxon

datasheets, average efficiency of a planetary gearbox ranges from 60 to 90%;

for the first-try calculation, we can suppose and efficiency ξgear = 0.75. We

have that:

τout = τin · η · ξgear (7.60)

7.3 Motor choice 171

η =
τout

τin · ξgear
(7.61)

From which, using the Maxon EC 90 for link 1, 2 and 3 and Maxon EC 45

for link 4 and 5 :

η link 1 =
12

0.494 · 0.75
= 32.4 (7.62a)

η link 2 =
53.2

0.494 · 0.75
= 143.6 (7.62b)

η link 3 =
17.1

0.494 · 0.75
= 46.2 (7.62c)

η link 4 =
1.68

0.059 · 0.75
= 37.9 (7.62d)

η link 5 =
1.77

0.059 · 0.75
= 40 (7.62e)

(7.62f)

From these calculation, we can obtain the (commercial) values of the gear

ratios needed: 150 for link 2, 50 for link 3 and 40 for link 1, 4 and 5. From

the Maxon catalog, Table 7.4 can be compiled.

Gearhead type Model Stages Ratio Weight Efficiency Price Joint

GP 52C 223097 4 150:1 920g 78% 420$ 2

GP 52C 223090 3 53:1 620g 83% 411$ 3

GP 52C 223089 3 43:1 620g 83% 411$ 1, 4, 5

Table 7.4: Gear ratio selection, Maxon datasheet.

The choice of the specific motors for joints 6 is not of dramatic impor-

tance, and since the requirements in term of torque are all less than 0.5 Nm,

the reduction gear is not needed.

Thus, relatively cheap actuators can be used. An important requirement,

in this case, is to find a motor with a built-in position sensor (e.g. encoder),

or at least a motor that allows for the installation of a third party sensor.

For example, the Maxon EC 90 could be used.

This motor overcomes the requirements of joint 6 : in this case however,

since price is not a big concern, it is better to have a set of identic motors

instead of a specific motor for each joint. Having the same model standardizes

172 Sizing

the configuration process and the control loop. Moreover, if test samples

have to be attached to the end effector, the excess torque available would be

certainly useful.

7.4 Final data

The following data are the same used in the dynamics chapter for the Matlab

and Simulink simulations, Section 4.4. The inertia tensors, due to the rela-

tive complexity of the structures, are calculated with the aid of SolidWorks

“Mass properties” tool. In the CAD model, supporting metal structures

were designed to hold the motors in place; since this is still not the definitive

building design, we omit their corresponding mechanical analysis.

The frames used in this calculation are centered in the center of mass of

the body (link+motor+supporting structure) and their axes are parallel and

equi-oriented to the ones of the link frames defined with Denavit-Hartenberg’s

process.

• Assembly 1: link, motor, support structure, hardware fasteners

m1 = 2259.34 g (7.63)

−−→
Com1 =


−0.13

−1.54

−300.08

 mm (7.64)

I1 =


1.289 · 108 4.951 · 103 −8.773 · 104

4.951 · 103 1.299 · 108 −1.041 · 106

−8.773 · 104 −1.041 · 106 2.622 · 106

 g ·mm2 (7.65)

• Assembly 2: link, motor, support structure, hardware fasteners

m2 = 2424.06 g (7.66)

−−→
Com2 =


392.94

−0.12

1.43

 mm (7.67)

7.4 Final data 173

I2 =


3.078 · 106 −9.561 · 104 1.134 · 106

−9.561 · 104 1.539 · 108 −4.981 · 103

1.134 · 106 −4.981 · 103 1.546 · 108

 g ·mm2 (7.68)

• Assembly 3: link, motor, support structure, hardware fasteners

m3 = 2076.64 g (7.69)

−−→
Com3 =


330.04

−6.30

0

 mm (7.70)

I3 =


2.761 · 106 −3.754 · 106 0

−3.754 · 106 9.971 · 107 0

0 0 1.004 · 108

 g ·mm2 (7.71)

• Assembly 4: link, motor, support structure, hardware fasteners

m4 = 182.86 g (7.72)

−−→
Com4 =


0

81.77

60.82

 mm (7.73)

I4 =


7.399 · 105 0 0

0 4.335 · 105 −3.101 · 105

0 −3.101 · 105 3.739 · 105

 g ·mm2 (7.74)

• Assembly 5: link, motor, support structure, hardware fasteners

m5 = 158.69 g (7.75)

−−→
Com5 =


0

50.17

55.71

 mm (7.76)

174 Sizing

I5 =


4.269 · 105 0 0

0 1.363 · 105 −1.421 · 105

0 −1.421 · 105 3.481 · 105

 g ·mm2 (7.77)

• Assembly 6: link, motor, support structure, hardware fasteners

m6 = 41.39 g (7.78)

−−→
Com6 =


0

0

105.25

 mm (7.79)

I6 =


9.714 · 103 0 0

0 9.714 · 103 0

0 0 2.118 · 103

 g ·mm2 (7.80)

Finally, the assembled structure has the following characteristics:

� Total weight: ∼7.5 kg

� Maximum extension of the arm: ∼1.3 m

� Maximum height of the arm: ∼2.2 m

7.5 SolidWorks renders

In this section we present the graphical rendering of the manipulator. First,

each link assembly (link, motor, support structure, hardware fasteners) is

displayed; subsequently, the whole structure is analyzed and rendered in

different positons and configurations.

The simulations take into account that material properties and the mani-

facturing processes for their realization. In order to host the motors, auxiliary

U-shaped support structures were designed.

7.5 SolidWorks renders 175

Figure 7.15: Base structure.

Figure 7.16: Link 1 assembly.

176 Sizing

Figure 7.17: Link 2 assembly.

Figure 7.18: Link 3 assembly.

7.5 SolidWorks renders 177

Figure 7.19: Link 4 assembly.

Figure 7.20: Link 5 assembly.

178 Sizing

Figure 7.21: End effector assembly.

Figure 7.22: End effector assembly, rear view.

7.5 SolidWorks renders 179

Figure 7.23: The actuators: EC 90 on the left, EC 45 on the right.

Figure 7.24: Manipulator side view.

180 Sizing

Figure 7.25: Manipulator closeup.

 45

 6
20

 70

 5

 5

 1
20

 1

0

G G

 90

 100

25

7

 150

6

 90

 4
5

 R3

 1
0

 10 10 35

SEZIONE G-G

SCALA 1 : 2

Assembly 1

Drawing 1

27/09/13A. A.

-

none

Alluminium
A4

FOGLIO 1 DI 1SCALA:1:20

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

 45

 5
70

 80

 5

 5

 1
20

 70

 5

 5

 1
20

 90

 100

 100

 25

6

20

 10

Assembly 2

Drawing 2

27/09/13A. A.

-

none

Alluminium
A4

FOGLIO 1 DI 1SCALA:1:20

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

 45

 4
80

 80

 5

 1
20

 25

 7

 5

 R55

 110

20

 90

 100

 5

 1
20

20

 10

 R50

Assembly 3

Drawing 3

27/09/13A. A.

-

none

Alluminium
A4

FOGLIO 1 DI 1SCALA:1:20

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

 1
33

 133

 5

 5

 R25

 1
1

5

12

 4
6

50

 R25

10

 46

Assembly 4

Drawing 4

27/09/13A. A.

-

none

Alluminium
A4

FOGLIO 1 DI 1SCALA:1:5

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

5

 1
37

 99
 5

R25

 12

 5

 5
4

50

R2
5

5 8
 38

Assembly 5

Drawing 5

27/09/13A. A.

-

none

Alluminium
A4

FOGLIO 1 DI 1SCALA:1:5

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

190 Sizing

Chapter 8
Conclusions and future work

Due to the growing number of artificial orbiting objects, space missions for

servicing purposes have recently been the subject of attention from industries

and agencies [16]. Consequently, there is the need for a simulation facility that

allows for reproduction of on-orbit close approaches. The main goal of this

thesis is the development of a robot manipulator for the simulation of orbital

maneuvers, with particular attention to docking and capture.

As was discussed in the introduction, this work split into several sec-

tions: kinematics, dynamics, space trajectory planning, linear control and

final sizing.

With reference to the corresponding chapters, it can be stated that the

kinematics was carried out successfully, leading to the calculation of the Ja-

cobian matrix, providing the capability of relating joint and cartesian vari-

ables. The simulations showed a perfect correspondence with the imposed

trajectory laws. The extension of the analysis to the dynamics resulted in a

simple, fast reliable algorithm for the computation of the generalized forces

involved in the motion. This enabled a wide campaign of trajectory simula-

tions, which were compared with the theoretical model, showing the powers

and the limits of Newton’s approach.

The core part of this thesis, consisting in the space trajectory analysis,

was successfully studied and simulated, and provided an extremely flexible

model, able to take into consideration several kinds of modifications to the

free orbital relative motion: it was possible, in fact, to simulate rendezvous,

191

192 Conclusions and future work

disturbances, impacts and attitude maneuvers.

Above all, the addition of a force sensor to the end effector tip makes the

manipulator an active simulation facility: the initial approach trajectory is

calculated and imposed by the controller, but in presence of disturbances,

the sensing transducer (which can be real, i.e. for contact simulation, or

fictious, i.e. for the simulation of ADCS systems) allows for real time, online

modifications of the orbital trajectory.

Trial simulations consisting in the combination of some of these effects,

proved the correctness of the Matlab model, validating our code and un-

derlining the power of this innovative flexible approach.

The general overview on the linear control of the robot provided a sim-

plified approach to the problem, and a PID control technique was designed.

Analyses confirmed the stability of the system to step response as well as

to external disturbances. Additionaly, the PID controller, unlike the PD

version, revelead a null-error steady state behavior even in the presence of

disturbances.

The sizing process, finally, combined all the previous analyses with phys-

ical and geometrical parameters. Commercial link sections were chosen after

examining bending and buckling problems. A static 3D load analysis, cou-

pled with extrapolation of the dynamic loads from the trajectory simulations,

lead to the choice of appropriate actuators and their corresponing gear boxes.

The future development of this thesis will consist in a further refinement

of the aspects that time didn’t allow to treat properly. For example, an

extension of the control scheme might be implemented: a broad campaign

of simulations has to be performed in order to estimate the proper gains

of the controllers. In addition, we can think of implementing an adaptive

control in order to increase the positioning accuracy and to limit delays and

jerks. This will ultimately lead to the selection of the sensors and electronics

hardware. The dynamic model, after the control sensors and the wiring

harness are known, can be further polished by taking into account these

extra components.

Obvious modifications will then be made to the CAD model, designing all

the interfaces for the connections and for the housing of motors and sensors.

Moreover, bearing and fastening hardware selection will be required.

193

Once all these issues have been cleared, construction and testing will

start. Due to its extreme flexibility, the robot will serve as a test bench for

multidisciplinary simulations. From docking to rendezvous, from cooperative

to uncooperative capture, this manipulator will be the leading character of

an advanced testing facility.

194 Conclusions and future work

Bibliography

[1] G. Acaccia and L. Bruzzone. “A modular robotic system for indus-

trial applications A modular robotic system for industrial applications

A modular robotic system for industrial applications”. In: Assembly

Automation 28.2 (2008), pp. 151–162.

[2] Aluminium Framing Catalog. url: http://www.boschrexroth-_us.

com/country_units/america/united_states/sub_websites/brus_

dcl/Products.

[3] ATI Nano 17 Force Transducer. url: http://www.ati-_ia.com/

products/ft/ft_models.aspx?id=Nano17.

[4] T. Bajd and M. Mihelj. Robotics. Springer Verlag, 2010.

[5] M. Bertsch, R. Dal Passo, and L. Giacomelli. Analisi Matematica.

McGraw-Hill, 2007.

[6] CISAS - Unipd. url: http://cisas.unipd.it/Attivita.php.

[7] M. Collins, A. Aldrich, and G. Lunney. STS 41-G National Space

Transportation Systems Program Mission Report. Tech. rep. Johnson

Space Center: NASA, 1984.

[8] J. Craig. Intorduction to Robotics: Mechanics and Control. Prentice

Hall, 2005.

[9] H. D. Curtis. Orbital Mechanics for Engineering Students. Elsevier,

2010.

195

196 Bibliography

[10] R. C. Dorf and Bishop R. H. Modern Control Systems. 12th. Prentice

Hall, 2012.

[11] European Proximity Operations Simulator (EPOS) - DLR. url: http:

//www.weblab.dlr.de/rbrt/OOS/EPOS/EPOS.html.

[12] Gemini 7. url: http://en.wikipedia.org/wiki/Gemini_7.

[13] History of Robots. url: http://en.wikipedia.org/wiki/History_

of_robots.

[14] International Space Station. url: http://it.wikipedia.org/wiki/

Stazione_Spaziale_Internazionale.

[15] S. Isakowitz, J. Hopkins, and J. Hopkins. International Reference Guide

to Space Launch Systems. 4th. AIAA, 2004.

[16] A. Long, M. Richards, and D. Hastings. “On-Orbit Servicing: A New

Value Proposition for Satellite Design and Operation”. In: Journal of

Spacecraft and Rockets 44.4 (July–August 2007).

[17] J. Y. S. Luh, M. W. Walker, and R. P. Paul. “On-Line Computational

Scheme for Me- chanical Manipulators”. In: ASME Journal of Dynamic

Systems, Measurement, and Control (1980).

[18] T. H. G. Megson. An introduction to Aircraft Structural Analysis. El-

sevier, 2010.

[19] C. Melchiorri. Trajectory Planning for Robot Manipulators, Part 4.

url: http://www-_lar.deis.unibo.it/people/cmelchiorri/

Files_Robotica/FIR_07_Traj_4.pdf.

[20] J. Pires. Industrial Robots Programming. Springer Verlag, 2007.

[21] J. Saleh et al. “To Reduce or Extend a Spacecraft Design Lifetime”.

In: Journal of Spacecraft and Rockets 43.1 (2006), pp. 207–217.

[22] L. Sciavicco and B. Siciliano. Modelling and control of robot manipula-

tors. Springer Verlag, 2010.

[23] L. Sciavicco and B. Siciliano. Robotics: Modelling, Planning and Con-

trol. Springer Verlag, 2010.

Bibliography 197

[24] P. B. Selding. Intelsat Signs Up for MDA’s Satellite Refueling Ser-

vice. url: http://www.spacenews.com/article/intelsat-_signs-

_satellite-_refueling-_service.

[25] P. B. Selding. MDA, Intelsat Scrap In-orbit Servicing Deal. url: http:

//www.spacenews.com/article/mda-_intelsat-_scrap-_orbit-

_servicing-_deal.

[26] SimMechanics 2 User Guide. The MathWorks, Inc. 2007.

[27] Space Infrastructure Servicing. url: http://en.wikipedia.org/

wiki/Space_Infrastructure_Servicing.

[28] Space Robotics Technical Committee. url: http://ewh.ieee.org/

cmte/ras/tc/spacerobotics/.

[29] M. Spong. Robot dynamics and control. Wiley, 1989.

[30] B. Sullivan. “Technical and Economic Feasibility of Telerobotic On

Orbit Satellite Servicing”. PhD thesis. University of Maryland, 2005.

[31] B. Sullivan and D. Akin. “A Survey of Serviceable Spacecraft Failures”.

In: AIAA Paper (2001).

[32] K. R. Symon. Mechanics. Addison-Wesley, 1971.

[33] The Robot. url: http://en.wikipedia.org/wiki/Robot.

[34] What are Gearmotors? url: http://www.motioncontroltips.com/

2011/10/04/gearing/.

198 Bibliography

List of Figures

1.1 Timeline of average GEO satellite design life. 4

1.2 Resolution comparison of WFPC camera from Hubble telescope 6

1.3 MDA’s Space Infrastucture Servicing concept design (a) and

NASA’s Robotic Refuelling Mission satellite (b). 7

1.4 Gemini 6’s first successfull rendezvous (a) and Gemini 8’s first

successfull docking (b). 8

1.5 EPOS RvD simulation facility: laboratory configurations (a),

(b) and conceptual operating diagram 10

1.6 Robotic system components. 12

1.7 Joint configuration types . 13

1.9 Worldwide robot distribution of robots by kinematic configu-

ration type. 15

1.8 Main kinematic configurations for manipulators 16

1.10 End effector custom design. 17

1.11 Typical industrial end-effector design. 18

2.1 Link and joint notation schematic 22

2.2 Frame configuration obtained via DH procedure. 24

2.3 Frame configuration for end-effector structure. 25

2.4 Tree diagram of solution procedure for the first 3 joints 32

199

200 List of Figures

2.5 Matlab simulation of inverse kinematics problem. Case (a)

presents no offsets (di = 0 char : NNn0238i), and 2 config-

urations are allowed. Case (b) has d2 = 0.1 and the possible

configurations are doubled. 33

2.6 Computation time comparison between kinematic analysis ap-

proaches. On the left, the alternate albegraic solution, on the

right the symbolic solution. 35

2.7 Velocity vectors for two adjoining links. 37

2.8 Inverse differential kinematics diagram. 40

2.9 Inverse differential kinematics diagram with integration method. 41

2.10 Arm singularities: elbow and shoulder. 43

2.11 Kinematics analysis for linear trajectory, T=10 s 46

2.12 Linear trajectory: 3D simulation in Matlab’s native environ-

ment. Time steps of dt = 0.01 s (left) and dt = 0.1 s (right) . . 47

2.13 Cicular trajectory: 3D simulation in Matlab’s native environ-

ment. Time steps of dt = 0.001 s (left) and dt = 0.005 s (right) 49

2.14 Kinematics analysis for circular trajectory, T=10 s 50

2.15 Simulink block diagram for trajectory analysis and simulation.

In this case, the joints are motion controlled. 52

2.16 Simmechanics virtual model of the manipulator: overall view

and end effector close up. 53

2.17 Simulink’s XY-scope output for circular trajectory. Step sizes

used: 0.001 s, 0.005 s, 0.01 s, 0.05 s. 55

3.1 Trajectory profiles for a 3rd degree polynomial law. 60

3.2 Trajectory profiles for a 5rd degree polynomial law. 61

3.3 Time evolution of three different s(t) trajectory laws for a

rectilinear path. 65

3.4 Time evolution of three different s(t) trajectory laws for a

rectilinear path. 67

4.1 Free body diagram of link i, with force balance 75

4.2 Rectilinear trajectory simulation. T=10 s 79

4.3 Rectilinear trajectory simulation. T=1 s 81

4.4 Gravity influence on torques, cases T=10 s and T=1 s. 82

List of Figures 201

4.5 Circular trajectory simulation. T=10 s 85

4.6 Circular trajectory simulation. T=3 s 86

4.7 Simulink block diagram for trajectory analysis and simulation.

In this case, the joints are torque controlled. 88

4.8 Simmechanics trajectory simulation for T=10 s. Blue line

represents the case with g=0, whereas red line accounts for

g=9.81 m/s−2. 90

4.9 Simmechanics trajectory simulation for T=10 s. Blue line

represents the case with g=0, whereas red line accounts for

g=9.81 m/s−2. 91

5.1 Block diagram of DC motor. 96

5.2 Open loop block diagram of manipulator link. 99

5.3 Block diagram of PD control system. 100

5.4 Time response of the system (with zero disturbances) for dif-

ferent char : NNn7121. 103

5.5 Time response of the system with nonzero disturbance for dif-

ferent char : NNn7121. 104

5.6 Block diagram of PDI control system. 105

5.7 Time response of the PID system with zero disturbance for

different char : NNn7121. 107

5.8 Time response of the PID system with nonzero disturbance

for different char : NNn7121. 108

5.9 Block diagram of a general cartesian based control loop. . . . 111

5.10 The inverse-Jacobian cartesian control block. 112

5.11 The transpose-Jacobian cartesian control block. 112

6.1 Absolute and relative position vectors 117

6.2 Block diagram for the free relative motion simulation. 122

6.3 Block diagram for the relative motion with quasi-constant dis-

turbances. 123

6.4 char : NNn7001v components computation from force sensor

acquistions. 125

6.5 Block diagram for the relative motion with impulse disturbances.125

6.6 Block diagram for the free relative motion simulation. 128

202 List of Figures

6.7 The ATI Nano-17 6-axis transducer. 130

6.8 CW environment definition with respect to the robot base frame133

6.9 Chaser trajectory in CW coordinates for a rendezvous maneuver.134

6.10 Rendezvous simulation in the CW relative frame using Matlab

environment. 135

6.11 Chaser trajectory in CW coordinates for a rendezvous maneuver.136

6.12 Rendezvous simulation with impulse disturbance in the CW

relative frame using Matlab environment. 137

6.13 Chaser trajectory in CW coordinates for a rendezvous maneu-

ver with on the go corrections. 139

6.14 Rendezvous simulation with on the go corrections in the CW

relative frame using Matlab environment. 140

6.15 The torques required at each joint for the maneuver presented

in Fig 6.13. 141

7.1 Block diagram representing the iterative sizing process. 143

7.2 Manipulator workspace analysis. 145

7.3 End effector preliminary design. 146

7.4 Simplified model of the robot structure. 147

7.5 Moment, shear and normal force behavior of robot’s simplified

structure. 147

7.6 Load decomposition for structural analysis. 150

7.7 Moment diagrams for the three decomposed cases. 151

7.8 Vertical displacement versus Ix value. 153

7.9 Typical extruded aluminium profiles. Data gathered from

boschrexroth.us. 154

7.10 Free body diagram for link 1. 156

7.11 Brushed and brushless DC motor schematics. 163

7.12 Simplified model of robot’s structure for nonzero joint angles . 165

7.13 Static torque analysis for joint 2 and 3 166

7.14 Harmonic gear schematic [34] 169

7.15 Base structure. 175

7.16 Link 1 assembly. 175

7.17 Link 2 assembly. 176

List of Figures 203

7.18 Link 3 assembly. 176

7.19 Link 4 assembly. 177

7.20 Link 5 assembly. 177

7.21 End effector assembly. 178

7.22 End effector assembly, rear view. 178

7.23 The actuators: EC 90 on the left, EC 45 on the right. 179

7.24 Manipulator side view. 179

7.25 Manipulator closeup. 180

204 List of Figures

List of Tables

2.1 DH matrix containing the parameters for the frame definition. 25

4.1 Linear trajectory: torques needed at each joint for different

maneuver conditions. All values have Nm units. 80

4.2 Circular trajectory: torques needed at each joint for different

maneuver conditions. All values have Nm units. 87

5.1 Step response parameters for system with no disturbances. . . 102

5.2 Step response parameters for system with disturbances. 103

5.3 Step response parameters for system with disturbances. 107

5.4 Step response parameters for system with disturbances. 108

6.1 Advantages and disadvantages of different sensor technologies 129

6.2 ATI Nano-17 main characteristics. 131

7.1 Geometric characteristic the extruded profiles pictured in Fig 7.9.155

7.2 Effective lengths for different constraint configurations 159

7.3 Maxon EC 90 and EC 45 data 170

7.4 Gear ratio selection, Maxon datasheet. 171

205

206 List of Tables

Appendix A
Matlab Scripts

We report in this section the Matlab scripts used in the simulation. The main

script is called main.m; the functions invoked during the simulations (i.e. for

matrix inversion, for direct and inverse kinematic solving, for drawings, etc.)

are:

� bending_analysis.m: for the analysis of bending in the structure

� buckling_analysis.m: for the analysis of buckling for link 1

� Cylinder.m: drawing purposes

� direct_kin.m: for the direct kinematics calculation

� disframe3.m: draws the coordinate frames

� geom.m: stores the inertial parameters

� inv_kin.m: for the inverse kinematics calculation

� jaco.m: for the calculation of the Jacobian

� jaco_syms.m: for the calculation of the symbolic Jacobian

� rot_matrix.m: obtains the rotational matrices

� rot_matrix_sym.m: obtains the rotational matrices in symbolic form

� rpy_wrist.m: solves the end effector orientation

207

208 Matlab Scripts

� sim_starter.m: calculates the initial conditions for the simulations

� static_analysis.m: for the analysis of static loading in the structure

In the next pages it is possible to find the complete Matlab scripts.

1 % main .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 c l e a r a l l

8 f i g u r e

9 g l oba l l 1 l 2 l 3 d1 d2 d3 d4 d a alp at t Tatt

10

11 sim=0; % 1=ok s imulat ion , 0=no s imula t ion

12 t i c

13

14 format long

15

16 % grav i ty s e l e c t i o n

17 gr=1; % 1=ok gravi ty , 0=no grav i ty

18 g=9.81;

19

20 T=5; % s imulat i on per iod

21 dt =0.05; % s imula t i on step

22

23 % ta rge t

24 l 1 =0.664;

25 l 2 =0.720;

26 l 3 =0.625;

27 d1=0.0;

28 d2=0.0;

29 d3=0.0;

30 d4=0.160;

31 alp=[0 pi /2 0 pi /2 pi /2 pi / 2] ;

32 a=[0 0 l 2 l 3 0 0] ;

33 d=[0 d2 d3 d4 0 0] ;

34

35 % i n i t i a l s i t u a t i o n computation

36 R=0.4; % rad ius o f c i r c l e

37 x or (: , 1) =[0.5 0 .7 0 .3 0 0 0] ; % i n i t i a l p o s i t i o n

38 x f i n=x or (: , 1) ;

39 x dot (: , 1) =[0 0 0 0 0 0] ’ ; % i n i t i a l v e l o c i t y

40 at t =[0.1 45 0 . 1] ; % angle in degree s

41

42 [th]= s im s t a r t e r (x or) ;

43

44 q (: , 1) =[th] ’ ; % rad ians

45 q dot = [] ;

46

47 [T01 T12 T23 T34 T45 T56]= rot matr ix (a , th , alp , d) ; % get s the r o t a t i o n a l matr ixes

48

49 sys=[Tˆ5/32 Tˆ4/16 Tˆ3/8 pi ; 5∗Tˆ4 4∗Tˆ3 3∗Tˆ2 0 ; 20∗Tˆ3 12∗Tˆ2 6∗T 0] ;

50 s o l=sys (1 : 3 , 1 : 3) \ sys (: , 4) ;

51 aa=s o l (1) ;

52 bb=so l (2) ;

53 cc=s o l (3) ;

54

55 t=0;

209

56 i =1;

57

58 ex t=toc ;

59

60 % plo t i n i t i a l i z a t i o n

61 i f sim==1

62 f i g=f i g u r e ;

63 s e t (f i g , ’ un i t s ’ , ’ normal ized ’ , ’ o u t e rpo s i t i o n ’ , [0 0 1 1]) ;

64 view (3 0 , 3 0) ;

65 end

66

67 % geometr ic i n f o s

68 [I ,m, com]=geom ;

69

70 whi le t<T

71 c l a

72 x l ab e l (’ x ’) ;

73 y l ab e l (’ y ’) ;

74 z l a b e l (’ z ’) ;

75 % step i

76 t i c

77 i f i >1;

78 th=aa∗ tˆ5+bb∗ tˆ4+cc∗ t ˆ3 ;

79 thd=5∗aa∗ t ˆ4+4∗bb∗ t ˆ3+3∗ cc∗ t ˆ2 ;

80 thdd=20∗aa∗ t ˆ3+12∗bb∗ t ˆ2+6∗ cc∗ t ;

81 x dot (: , i) = [R∗ s i n (th)∗thd ;

82 R∗ cos (th)∗thd ;

83 0 ;

84 0 . 0 ;

85 0 . 0 ;

86 0 . 0] ;

87 end

88

89 Jin=jaco (q (: , i)) ; % Jacobian

90 q dot (: , i +1)=Jin∗x dot (: , i) ;

91 q ddot (: , i +1)=(q dot (: , i +1) q dot (: , i)) /dt ;

92 q (: , i +1)=q (: , i)+q dot (: , i +1)∗dt ;

93 [T01 T12 T23 T34 T45 T56]= ro t ma t r i x j a c o (q (: , i)) ; % get s the r o t a t i o n a l matr ixes

94

95 T21=T12 ’ ;

96 T32=T23 ’ ;

97 T43=T34 ’ ;

98 T54=T45 ’ ;

99 T65=T56 ’ ;

100

101 [t01 t12 t23 t34 t45 t56]= ro t ma t r i x j a c o (q (: , i +1)) ; % get s the r o t a t i o n a l matr ixes

102 t03=t01∗ t12∗ t23 ;

103 t04=t01∗ t12∗ t23∗ t34 ;

104

105 t06=eye (4) ;

106 t06 (1 : 3 , 1 : 3) =[rpy (at t (1) , a t t (2) , a t t (3))] ;

107 t06 (: , 4)=t34 (: , 4) ;

108 t36=t03 ’∗ t06 ;

109 [th4 th5 th6]= rpy wr i s t 23J (t36) ;

110 q (4 : 6 , i +1)=[th4 th5 th6] ;

111

112 R01=T01 (1 : 3 , 1 : 3) ;

113 R12=T12 (1 : 3 , 1 : 3) ;

114 R23=T23 (1 : 3 , 1 : 3) ;

115 R34=T34 (1 : 3 , 1 : 3) ;

116 R45=T45 (1 : 3 , 1 : 3) ;

117 R56=T56 (1 : 3 , 1 : 3) ;

118 R10=R01 ’ ;

119 R21=R12 ’ ;

120 R32=R23 ’ ;

121 R43=R34 ’ ;

122 R54=R45 ’ ;

123 R65=R56 ’ ;

124

125

210 Matlab Scripts

126 % ac c e l e r a t i o n ana l y s i s > Outward i t e r a t i o n

127

128 P i=[T01 (1 : 3 , 4) T12 (1 : 3 , 4) T23 (1 : 3 , 4) T34 (1 : 3 , 4) T45 (1 : 3 , 4) T56 (1 : 3 , 4)] ;

129 R i (: , : , 1)=R10 ;

130 R i (: , : , 2)=R21 ;

131 R i (: , : , 3)=R32 ;

132 R i (: , : , 4)=R43 ;

133 R i (: , : , 5)=R54 ;

134 R i (: , : , 6)=R65 ;

135

136 Vd 0=g ∗ [0 0 gr] ’ ;

137

138 W(: , 1 , i)=R i (: , : , 1) ∗ [0 0 q dot (1 , i)] ’ ;

139 W d(: , 1 , i)=[0 0 q ddot (1 , i)] ’ ;

140 V(: , 1 , i)=[0 0 0] ’ ;

141 V d (: , 1 , i)=Vd 0 ;

142 Vc (: , 1 , i)=[0 0 0] ’ ;

143 Vc d (: , 1 , i)=Vd 0 ;

144 F(: , 1 , i)=m(1) ∗Vc d (: , 1 , i) ;

145 N(: , 1 , i)=I (: , : , 1) ∗W d(: , 1 , i)+c r o s s (W(: , 1 , i) , I (: , : , 1) ∗W(: , 1 , i)) ;

146

147 f o r j =1:6

148 i f j>1

149 W(: , j , i)=R i (: , : , j)∗W(: , j 1 , i)+[0 0 q dot (j , i)] ’ ; % angular v e l o c i t y

150 W d(: , j , i)=R i (: , : , j)∗W d(: , j 1 , i)+c r o s s (R i (: , : , j)∗W(: , j 1 , i) , [0 0 q dot (j ,

i)] ’) +[0 0 q ddot (j , i)] ’ ; % angular v e l o c i t y dot

151 V(: , j , i)=R i (: , : , j) ∗(V(: , j 1 , i)+c r o s s (W(: , j 1 , i) , P i (: , j))) ; % l i n e a r

v e l o c i t y o f l i n k

152 V d (: , j , i)=R i (: , : , j) ∗(V d (: , j 1 , i)+c r o s s (W d(: , j 1 , i) , P i (: , j))+c r o s s (W(: , j

1 , i) , c r o s s (W(: , j 1 , i) , P i (: , j)))) ;

153 Vc (: , j , i)=V(: , j , i)+c r o s s (W(: , j , i) ,com (: , j)) ;

154 Vc d (: , j , i)=V d (: , j , i)+c r o s s (W d(: , j , i) ,com (: , j))+c r o s s (W(: , j , i) , c r o s s (W(: , j

, i) ,com (: , j))) ;

155 F (: , j , i)=m(j)∗Vc d (: , j , i) ;

156 N(: , j , i)=I (: , : , j)∗W d(: , j , i)+c r o s s (W(: , j , i) , I (: , : , j)∗W(: , j , i)) ;

157 end

158 end

159

160 % ac c e l e r a t i o n ana l y s i s > Inward i t e r a t i o n

161

162 f (: , 7 , i)=[0 0 0] ’ ;

163 n (: , 7 , i)=[0 0 0] ’ ;

164

165 f (: , 6 , i)=F(: , 6 , i) ;

166 n (: , 6 , i)=N(: , 6 , i)+c r o s s (com (: , 6) ,F (: , 6 , i)) ;

167 tau (i , 6)=n (3 ,6 , i) ;

168

169 f o r j =5 : 1 : 1

170 f (: , j , i)=R i (: , : , j +1) ’∗ f (: , j +1, i)+F(: , j , i) ;

171 n (: , j , i)=N(: , j , i)+R i (: , : , j +1) ’∗n (: , j +1, i)+c r o s s (com (: , j) ,F (: , j , i))+c r o s s (P i (: ,

j +1) , R i (: , : , j +1) ’∗ f (: , j +1, i)) ;

172 tau (i , j)=n (3 , j , i) ;

173 end

174

175

176 check (: , : , i)=T01∗T12∗T23∗T34∗T45∗T56 ;

177

178 %% Plot

179 i f sim==1

180 % Plot

181 Or=[0 0 0 1] ’ ;

182 P check=T01∗T12∗T23∗T34∗Or ;

183

184 dis f rame3 (T01 , 0 . 0 6) ;

185 dis f rame3 (T01∗T12 , 0 . 0 6) ;

186 dis f rame3 (T01∗T12∗T23 , 0 . 0 6) ;

187 dis f rame3 (T01∗T12∗T23∗T34 , 0 . 0 6) ;

188 dis f rame3 (T01∗T12∗T23∗T34∗T45 , 0 . 0 6) ;

189 dis f rame3 (T01∗T12∗T23∗T34∗T45∗T56 , 0 . 5) ;

190 dis f rame3 (Tatt , 0 . 5) ;

211

191

192 P(: , 2)=T01∗Or ; % o r i g i n

193 p lo t3 (P(1 ,2) ,P(2 ,2) ,P(3 ,2) , ’ o ’)

194 p lo t3 ([0 P(1 ,2)] , [0 P(2 ,2)] , [0 P(3 ,2)] , ’b ’)

195

196 P(: , 3)=T01∗T12∗Or ; % o r i g i n

197 P3=T01∗T12∗ [l 2 0 0 1] ’ ;

198 P4=T01∗T12∗ [l 2 0 d3 1] ’ ;

199 p lo t3 (P(1 ,3) ,P(2 ,3) ,P(3 ,3) , ’ o ’)

200 p lo t3 ([P3 (1) P(1 ,3)] , [P3 (2) P(2 ,3)] , [P3 (3) P(3 ,3)] , ’ r ’)

201

202 P(: , 4)=T01∗T12∗T23∗Or ; % o r i g i n

203 p lo t3 (P(1 ,4) ,P(2 ,4) ,P(3 ,4) , ’ o ’)

204 P5=T01∗T12∗T23∗ [l 3 0 0 1] ’ ;

205 p lo t3 ([P(1 ,4) P3 (1)] , [P(2 ,4) P3 (2)] , [P(3 , 4) P3 (3)] , ’ k ’)

206 p lo t3 ([P(1 ,4) P5 (1)] , [P(2 ,4) P5 (2)] , [P(3 , 4) P5 (3)] , ’ k ’)

207

208 P(: , 6)=T01∗T12∗T23∗T34∗Or ; % o r i g i n

209 p lo t3 (P(1 ,6) ,P(2 ,6) ,P(3 ,6) , ’ o ’)

210 p lo t3 ([P(1 ,6) P5 (1)] , [P(2 ,6) P5 (2)] , [P(3 , 6) P5 (3)])

211

212 r e a l t r a j (: , i)=[P(1 ,6) P(2 ,6) P(3 ,6)] ’ ;

213

214 % actuato r s

215 Dz=[0 0 0 .02 1] ’ ; % actuato r s he ight

216 mDz=[0 0 0 . 0 2 1] ’ ; % actuato r s he ight

217

218 Pz (: , 3)=T01∗T12∗Dz ; % o r i g i n

219 Pzz (: , 3)=T01∗T12∗(mDz) ; % o r i g i n

220

221 Pz (: , 4)=T01∗T12∗T23∗Dz ; % o r i g i n

222 Pzz (: , 4)=T01∗T12∗T23∗(mDz) ; % o r i g i n

223

224 Pz (: , 5)=T01∗T12∗T23∗T34∗Dz ; % o r i g i n

225 Pzz (: , 5)=T01∗T12∗T23∗T34∗(mDz) ; % o r i g i n

226

227 Cyl inder (P(1 : 3 , 1)+Dz (1 : 3) [0 0 l 1] ’ ,P(1 : 3 , 1) Dz (1 : 3) [0 0 l 1] ’ , 0 . 0 3 , 3 0 , ’ r ’ , 1 , 0)

228 Cyl inder (Pz (1 : 3 , 3) , Pzz (1 : 3 , 3) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

229 Cyl inder (Pz (1 : 3 , 4) , Pzz (1 : 3 , 4) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

230 Cyl inder (Pz (1 : 3 , 5) , Pzz (1 : 3 , 5) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

231

232 % l i n k s

233 Cyl inder (P(1 : 3 , 2) , [0 0 l 1] ’ , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

234 Cyl inder (P(1 : 3 , 2) ,P(1 : 3 , 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

235 Cyl inder (P(1 : 3 , 3) ,P3 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

236 Cyl inder (P3 (1 : 3) ,P(1 : 3 , 4) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

237 Cyl inder (P(1 : 3 , 4) ,P5 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

238 Cyl inder (P(1 : 3 , 6) ,P5 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

239

240 gr id on

241 ax i s ([0 . 3 1 0 . 7 0 .8 0 . 3 0 . 8])

242 ax i s square

243 hold on

244

245 % r e a l t r a j e c t o r y

246 p lo t3 (r e a l t r a j (1 , :) , r e a l t r a j (2 , :) , r e a l t r a j (3 , :) , ’ r ’)

247 end

248

249 i=i +1;

250 t=t+dt ;

251 time (i)=t ;

252 ex t (i)=toc ;

253

254 i f sim==1

255 pause (0 . 0 01)

256 end

257 end

258

259

260 % Data s t o r i n g

212 Matlab Scripts

261

262 i c 1=q (1 ,1) ;

263 i c 2=q (2 ,1) ;

264 i c 3=q (3 ,1) ;

265 i c 4=q (4 ,1) ;

266 i c 5=q (5 ,1) ;

267 i c 6=q (6 ,1) ;

268

269 format long

270 taut=tau ’ ;

271 save (’ my f i l e . mat ’ , ’ tau ’) ;

272

273 t1 = [0 : dt :T] ’ ;

274 m = taut ;

275 M = repmat (m, [1 1 l ength (t1)]) ;

276 data . time=t1 ;

277 data . s i g n a l s . va lues = M;

278 data . s i g n a l s . dimensions=[s i z e (taut , 1) s i z e (taut , 2)] ;

279

280 t1 = [0 : dt :T] ’ ;

281 m = q ;

282 M = repmat (m, [1 1 l ength (t1)]) ;

283 pos . time=t1 ;

284 pos . s i g n a l s . va lues = M;

285 pos . s i g n a l s . dimensions=[s i z e (q , 1) s i z e (q , 2)] ;

286

287 t1 = [0 : dt :T] ’ ;

288 m = q dot ;

289 M = repmat (m, [1 1 l ength (t1)]) ;

290 ve loc . time=t1 ;

291 ve loc . s i g n a l s . va lues = M;

292 ve loc . s i g n a l s . dimensions=[s i z e (q dot , 1) s i z e (q dot , 2)] ;

293

294 t1 = [0 : dt :T] ’ ;

295 m = q ddot ;

296 M = repmat (m, [1 1 l ength (t1)]) ;

297 acc . time=t1 ;

298 acc . s i g n a l s . va lues = M;

299 acc . s i g n a l s . dimensions=[s i z e (q ddot , 1) s i z e (q ddot , 2)] ;

300

301

302 % f i n a l p l o t

303 hold on

304 [T01 T12 T23 T34]= ro t ma t r i x j a c o (q (: , 1)) ; % get s the r o t a t i o n a l matr ixes

305 Or=[0 0 0 1] ’ ;

306

307 x l ab e l (’ x [m] ’)

308 y l ab e l (’ y [m] ’)

309 z l a b e l (’ z [m] ’)

310

311 P check=T01∗T12∗T23∗T34∗Or ;

312

313 dis f rame3 (T01 , 0 . 0 6) ;

314 dis f rame3 (T01∗T12 , 0 . 0 6) ;

315 dis f rame3 (T01∗T12∗T23 , 0 . 0 6) ;

316 dis f rame3 (T01∗T12∗T23∗T34 , 0 . 0 6) ;

317

318 P(: , 2)=T01∗Or ; % o r i g i n

319 p lot3 (P(1 ,2) ,P(2 , 2) ,P(3 , 2) , ’ o ’)

320 p lot3 ([0 P(1 ,2)] , [0 P(2 ,2)] , [0 P(3 ,2)] , ’b ’)

321

322 P(: , 3)=T01∗T12∗Or ; % o r i g i n

323 P3=T01∗T12∗ [l 2 0 0 1] ’ ;

324 P4=T01∗T12∗ [l 2 0 d3 1] ’ ;

325 p lo t3 (P(1 ,3) ,P(2 , 3) ,P(3 , 3) , ’ o ’)

326 p lot3 ([P3 (1) P(1 ,3)] , [P3 (2) P(2 ,3)] , [P3 (3) P(3 ,3)] , ’ r ’)

327

328 P(: , 4)=T01∗T12∗T23∗Or ; % o r i g i n

329 p lot3 (P(1 ,4) ,P(2 , 4) ,P(3 , 4) , ’ o ’)

330 P5=T01∗T12∗T23∗ [l 3 0 0 1] ’ ;

213

331 p lot3 ([P(1 ,4) P3 (1)] , [P(2 , 4) P3 (2)] , [P(3 ,4) P3 (3)] , ’ k ’)

332 p lot3 ([P(1 ,4) P5 (1)] , [P(2 , 4) P5 (2)] , [P(3 ,4) P5 (3)] , ’ k ’)

333

334 P(: , 6)=T01∗T12∗T23∗T34∗Or ; % o r i g i n

335 p lot3 (P(1 ,6) ,P(2 , 6) ,P(3 , 6) , ’ o ’)

336 p lot3 ([P(1 ,6) P5 (1)] , [P(2 , 6) P5 (2)] , [P(3 ,6) P5 (3)])

337

338 f i g=f i g u r e ;

339 s e t (f i g , ’ un i t s ’ , ’ normal ized ’ , ’ o u t e rpo s i t i o n ’ , [0 0 1 1]) ;

340

341 semi logy (ex t)

342 gr id on

343 hold on

344 x l ab e l (’ i t e r a t i o n ’) ;

345 y l ab e l (’ execut ion time [s] ’) ;

346 t i t l e (’ Execution time ’)

347 semi logy (ex t , ’ o ’)

348

349 f i g=f i g u r e ;

350 s e t (f i g , ’ un i t s ’ , ’ normal ized ’ , ’ o u t e rpo s i t i o n ’ , [0 0 1 1]) ;

351

352 l t=length (time) 2 ;

353

354 %% Pos i t i on s

355 subplot (4 , 6 , 1)

356 gr id on

357 hold on

358 x l ab e l (’ time [s] ’) ;

359 y l ab e l (’ ang le [deg] ’) ;

360 t i t l e (’ q1 po s i t i o n ’)

361 p lo t (time , q (1 , :) ∗180/ pi)

362

363 subplot (4 , 6 , 2)

364 gr id on

365 hold on

366 x l ab e l (’ time [s] ’) ;

367 y l ab e l (’ ang le [deg] ’) ;

368 t i t l e (’ q2 po s i t i o n ’)

369 p lo t (time , q (2 , :) ∗180/ pi)

370

371 subplot (4 , 6 , 3)

372 gr id on

373 hold on

374 x l ab e l (’ time [s] ’) ;

375 y l ab e l (’ ang le [deg] ’) ;

376 t i t l e (’ q3 po s i t i o n ’)

377 p lo t (time , q (3 , :) ∗180/ pi)

378

379 subplot (4 , 6 , 4)

380 gr id on

381 hold on

382 x l ab e l (’ time [s] ’) ;

383 y l ab e l (’ ang le [deg] ’) ;

384 t i t l e (’ q4 po s i t i o n ’)

385 p lo t (time , q (4 , :) ∗180/ pi)

386

387 subplot (4 , 6 , 5)

388 gr id on

389 hold on

390 x l ab e l (’ time [s] ’) ;

391 y l ab e l (’ ang le [deg] ’) ;

392 t i t l e (’ q5 po s i t i o n ’)

393 p lo t (time , q (5 , :) ∗180/ pi)

394

395 subplot (4 , 6 , 6)

396 gr id on

397 hold on

398 x l ab e l (’ time [s] ’) ;

399 y l ab e l (’ ang le [deg] ’) ;

400 t i t l e (’ q6 po s i t i o n ’)

214 Matlab Scripts

401 p lo t (time , q (6 , :) ∗180/ pi)

402

403 %% Ve l o c i t i e s

404

405 subplot (4 , 6 , 7)

406 gr id on

407 hold on

408 x l ab e l (’ time [s] ’) ;

409 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

410 t i t l e (’ q1 v e l o c i t y ’)

411 p lo t (time , q dot (1 , :) , ’ r ’)

412

413 subplot (4 , 6 , 8)

414 gr id on

415 hold on

416 x l ab e l (’ time [s] ’) ;

417 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

418 t i t l e (’ q2 v e l o c i t y ’)

419 p lo t (time , q dot (2 , :) , ’ r ’)

420

421 subplot (4 , 6 , 9)

422 gr id on

423 hold on

424 x l ab e l (’ time [s] ’) ;

425 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

426 t i t l e (’ q3 v e l o c i t y ’)

427 p lo t (time , q dot (3 , :) , ’ r ’)

428

429 subplot (4 ,6 , 10)

430 gr id on

431 hold on

432 x l ab e l (’ time [s] ’) ;

433 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

434 t i t l e (’ q4 v e l o c i t y ’)

435 p lo t (time , q dot (4 , :) , ’ r ’)

436

437 subplot (4 ,6 , 11)

438 gr id on

439 hold on

440 x l ab e l (’ time [s] ’) ;

441 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

442 t i t l e (’ q5 v e l o c i t y ’)

443 p lo t (time , q dot (5 , :) , ’ r ’)

444

445 subplot (4 ,6 , 12)

446 gr id on

447 hold on

448 x l ab e l (’ time [s] ’) ;

449 y l ab e l (’ v e l o c i t y [rad/ s] ’) ;

450 t i t l e (’ q6 v e l o c i t y ’)

451 p lo t (time , q dot (6 , :) , ’ r ’)

452

453 %% Acce l e r a t i on s

454 subplot (4 ,6 , 13)

455 gr id on

456 hold on

457 x l ab e l (’ time [s] ’) ;

458 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

459 t i t l e (’ q1 a c c e l e r a t i o n ’)

460 p lo t (time (1 : l t) , q ddot (1 , (1 : l t)) , ’ r ’)

461

462 subplot (4 ,6 , 14)

463 gr id on

464 hold on

465 x l ab e l (’ time [s] ’) ;

466 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

467 t i t l e (’ q2 a c c e l e r a t i o n ’)

468 p lo t (time (1 : l t) , q ddot (2 , (1 : l t)) , ’ r ’)

469

470 subplot (4 ,6 , 15)

215

471 gr id on

472 hold on

473 x l ab e l (’ time [s] ’) ;

474 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

475 t i t l e (’ q3 a c c e l e r a t i o n ’)

476 p lo t (time (1 : l t) , q ddot (3 , (1 : l t)) , ’ r ’)

477

478 subplot (4 ,6 , 16)

479 gr id on

480 hold on

481 x l ab e l (’ time [s] ’) ;

482 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

483 t i t l e (’ q4 a c c e l e r a t i o n ’)

484 p lo t (time (1 : l t) , q ddot (4 , (1 : l t)) , ’ r ’)

485

486 subplot (4 ,6 , 17)

487 gr id on

488 hold on

489 x l ab e l (’ time [s] ’) ;

490 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

491 t i t l e (’ q5 a c c e l e r a t i o n ’)

492 p lo t (time (1 : l t) , q ddot (5 , (1 : l t)) , ’ r ’)

493

494 subplot (4 ,6 , 18)

495 gr id on

496 hold on

497 x l ab e l (’ time [s] ’) ;

498 y l ab e l (’ a c c e l e r a t i o n [rad/ s ˆ2] ’) ;

499 t i t l e (’ q6 a c c e l e r a t i o n ’)

500 p lo t (time (1 : l t) , q ddot (6 , (1 : l t)) , ’ r ’)

501

502

503 %% Torques

504 subplot (2 , 3 , 1)

505 gr id on

506 hold on

507 x l ab e l (’ time [s] ’) ;

508 y l ab e l (’ torque [Nm] ’) ;

509 t i t l e (’ q1 torque ’ , ’ Fonts i ze ’ ,18)

510 p lo t (time ((1 : l t)) , tau ((1 : l t) ,1) , ’ k ’)

511 %plo t (time ((1 : l t)) , tau2 ((1 : l t) ,1) , ’ ’)

512 [ym,xm]=min(tau (: , 1)) ;

513 [yM,xM]=max(tau (: , 1)) ;

514 p lo t (time (xm) ,ym, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

515 p lo t (time (xM) ,yM, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

516 text (1 . 1∗ time (xm) ,ym, [’min=’ num2str (ym)] , ’ Fonts i ze ’ ,13)

517 text (1 . 1∗ time (xM) ,yM, [’MAX=’ num2str (yM)] , ’ Fonts i ze ’ ,13)

518

519 subplot (2 , 3 , 2)

520 gr id on

521 hold on

522 x l ab e l (’ time [s] ’) ;

523 y l ab e l (’ torque [Nm] ’) ;

524 t i t l e (’ q2 torque ’ , ’ Fonts i ze ’ ,18)

525 p lo t (time (1 : l t) , tau ((1 : l t) ,2) , ’ k ’)

526 %plo t (time ((1 : l t)) , tau2 ((1 : l t) ,2) , ’ ’)

527 [ym,xm]=min(tau (: , 2)) ;

528 [yM,xM]=max(tau (: , 2)) ;

529 p lo t (time (xm) ,ym, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

530 p lo t (time (xM) ,yM, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

531 text (1 . 1∗ time (xm) ,ym, [’min=’ num2str (ym)] , ’ Fonts i ze ’ ,13)

532 text (1 . 1∗ time (xM) ,yM, [’MAX=’ num2str (yM)] , ’ Fonts i ze ’ ,13)

533

534 subplot (2 , 3 , 3)

535 gr id on

536 hold on

537 x l ab e l (’ time [s] ’) ;

538 y l ab e l (’ torque [Nm] ’) ;

539 t i t l e (’ q3 torque ’ , ’ Fonts i ze ’ ,18)

540 p lo t (time (1 : l t) , tau ((1 : l t) ,3) , ’ k ’)

216 Matlab Scripts

541 %plo t (time ((1 : l t)) , tau2 ((1 : l t) ,3) , ’ ’)

542 [ym,xm]=min(tau (: , 3)) ;

543 [yM,xM]=max(tau (: , 3)) ;

544 p lo t (time (xm) ,ym, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

545 p lo t (time (xM) ,yM, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

546 text (1 . 1∗ time (xm) ,ym, [’min=’ num2str (ym)] , ’ Fonts i ze ’ ,13)

547 text (1 . 1∗ time (xM) ,yM, [’MAX=’ num2str (yM)] , ’ Fonts i ze ’ ,13)

548

549 subplot (2 , 3 , 4)

550 gr id on

551 hold on

552 x l ab e l (’ time [s] ’) ;

553 y l ab e l (’ torque [Nm] ’) ;

554 t i t l e (’ q4 torque ’ , ’ Fonts i ze ’ ,18)

555 p lo t (time (1 : l t) , tau ((1 : l t) ,4) , ’ k ’)

556 %plo t (time ((1 : l t)) , tau2 ((1 : l t) ,4) , ’ ’)

557 [ym,xm]=min(tau (: , 4)) ;

558 [yM,xM]=max(tau (: , 4)) ;

559 p lo t (time (xm) ,ym, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

560 p lo t (time (xM) ,yM, ’ o ’ , ’ marke r faceco lo r ’ , ’ r ’)

561 text (1 . 1∗ time (xm) ,ym, [’min=’ num2str (ym)] , ’ Fonts i ze ’ ,13)

562 text (1 . 1∗ time (xM) ,yM, [’MAX=’ num2str (yM)] , ’ Fonts i ze ’ ,13)

1 % bend ing ana ly s i s .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 c l e a r a l l

8 c l o s e a l l

9 c l c

10

11 g=9.81;

12 w=2.5; % 3 kg/m

13 q=w∗g ;

14 m pay=3; % kg

15 m mot=1; % kg

16 Fpay=g∗m pay ;

17 Fm=g∗m mot ;

18 L1=0.7;

19 L2=0.6;

20 L=L1+L2 ;

21

22 EI=1;

23

24 z =0 :0 .01 :L ;

25

26 %% l i nk 1

27 % q/24∗(6∗Lˆ2∗ z ˆ2 4∗L∗zˆ3+z ˆ4)

28 hold on

29 gr id on

30 p lo t (z , q/24∗(6∗Lˆ2∗ z . ˆ 2 4 ∗L∗z .ˆ3+z . ˆ4) , ’ r ’)

31

32 %% l i nk 2

33 % Fm/6∗(3∗L1∗z ˆ 2 z ˆ3)

34 % Fm/6∗(3∗L1ˆ2∗z L1ˆ3)

35 z1 =0 :0 .01 : L1 ;

36 z2=L1 : 0 . 0 1 : L ;

37 p lo t (z1 , Fm/6∗(3∗L1∗z1 . ˆ 2 z1 . ˆ 3) , ’b ’)

38 p lo t (z2 , Fm/6∗(3∗L1ˆ2∗z2 L1ˆ3) , ’b ’)

39

40 %% l i nk 3

41 % Fpay/6∗(3∗L∗z ˆ 2 z ˆ3)

42 p lo t (z , Fpay/6∗(3∗L∗z . ˆ 2 z . ˆ 3) , ’ k ’)

43 syms x

44 max disp =5∗10ˆ 3 ;

45 k=so l v e (q∗Lˆ4/(8∗(x)) Fm∗L1ˆ2/(6∗x) ∗(3∗L L1) Fpay/(2∗x)∗Lˆ3+max disp) ;

46 E=7∗10ˆ10;

217

47 I=double (k/E) ∗10ˆ (8) ; % in cmˆ4

48 I =75∗10ˆ(8) ; % in cmˆ4

49

50 %% plo t disp lacement as a func t i on o f Ix

51 f i g u r e

52 gr id on

53 hold on

54 x=0 . 5 : 0 . 0 1 : 2 0 ; % in mm

55 p lo t (x , (double ((3∗q∗Lˆ4 + 12∗Fpay∗Lˆ3 + 12∗Fm∗L∗L1ˆ2 4∗Fm∗L1ˆ3) . / (2 4 .∗ x . ∗ 1 0 ˆ 3)) . /E)

.∗10ˆ8)

56 t i t l e (’ Ve r t i c a l d i sp lacement ana l y s i s as a func t i on o f beam i n e r t i a ’ , ’ f o n t s i z e ’ ,18)

57 x l ab e l (’ Tip v e r t i c a l d i sp lacement [mm] ’ , ’ f o n t s i z e ’ ,10)

58 y l ab e l (’ Corresponding I {x} moment o f i n e r t i a o f beam [cmˆ4] ’ , ’ f o n t s i z e ’ ,10)

1 % buck l i n g ana l y s i s .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 vmax=1; % mm

8 vm=vmax ∗ 1 0 ˆ 3 ;

9

10 Pn=52.2;

11 M=470.18;

12 L=0.7;

13 E=70∗10ˆ9; % Pa

14

15 I=Pn/E∗(2/L∗acos ((1+Pn/M∗vm) ˆ 1)) ˆ (2) ;

16

17 I1 =11∗10ˆ(8) ;

18 A=5.7∗10ˆ(4) ;

19 c =45∗(10ˆ 3) ∗ 0 . 5 ;

20 sgy=165∗10ˆ6;
21

22 syms P

23 Pcr x=pi ˆ2∗(E∗ I1) /(4∗Lˆ2) ;

24 Pcr y=so l v e (sgy+P/A+(M/ I1 /(cos (sq r t (P/(E∗ I1))∗L/2)))∗c) ;

1 % Cyl inder .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s to the s c r i p t s owner

6

7 func t i on Cyl inder (X1 ,X2 , r , n , c y l c o l o r , c losed , l i n e s)

8 %

9 % This func t i on con s t ruc t s a cy l i nd e r connect ing two cente r po in t s

10 %

11 % Usage :

12 % [Cyl inder EndPlate1 EndPlate2] = Cyl inder (X1+20,X2 , r , n , ’ r ’ , c losed , l i n e s)

13 %

14 % Cylinder Handle o f the cy l i nd e r

15 % EndPlate1 Handle o f the S ta r t i ng End p la t e

16 % EndPlate2 Handle o f the Ending End p la t e

17 % X1 and X2 are the 3x1 vec to r s o f the two po int s

18 % r i s the rad ius o f the cy l i nd e r

19 % n i s the no . o f e lements on the cy l i nd e r c i r cumference (more > r e f i n e d)

20 % c y l c o l o r i s the c o l o r d e f i n i t i o n l i k e ’ r ’ , ’ b ’ , [0 . 5 2 0 .52 0 . 5 2]

21 % c l o s ed=1 f o r c l o s ed cy l i nd e r or 0 f o r hol low open cy l i nd e r

22 % l i n e s=1 f o r d i sp l ay ing the l i n e segments on the cy l i nd e r 0 f o r only

23 % su r f a c e

24 %

25 % Typical Inputs

26 % X1=[10 10 1 0] ;

27 % X2=[35 20 4 0] ;

28 % r=1;

218 Matlab Scripts

29 % n=20;

30 % c y l c o l o r =’b ’ ;

31 % c l o s ed =1;

32 %

33 % NOTE: There i s a MATLAB func t i on ” cy l i nd e r ” to r evo lve a curve about an

34 % ax i s . This ”Cyl inder ” prov ides more customizat ion l i k e d i r e c t i o n and etc

35

36

37 % Calcu la t ing the length o f the cy l i nd e r

38 l e n g t h cy l=norm(X2 X1) ;

39

40 % Creat ing a c i r c l e in the YZ plane

41 t=l i n spa c e (0 ,2∗ pi , n) ’ ;

42 x2=r∗ cos (t) ;

43 x3=r∗ s i n (t) ;

44

45 % Creat ing the po in t s in the X Di r e c t i on

46 x1=[0 l e n g t h cy l] ;

47

48 % Creat ing (Extruding) the cy l i nd e r po in t s in the X Di r e c t i on s

49 xx1=repmat (x1 , l ength (x2) ,1) ;

50 xx2=repmat (x2 , 1 , 2) ;

51 xx3=repmat (x3 , 1 , 2) ;

52

53 % Drawing two f i l l e d c i r l c e s to c l o s e the cy l i nd e r

54 i f c l o s ed==1

55 hold on

56 EndPlate1=f i l l 3 (xx1 (: , 1) , xx2 (: , 1) , xx3 (: , 1) , ’ r ’) ;

57 EndPlate2=f i l l 3 (xx1 (: , 2) , xx2 (: , 2) , xx3 (: , 2) , ’ r ’) ;

58 end

59

60 % Plo t t ing the cy l i nd e r along the X Di r e c t i on with r equ i r ed length s t a r t i n g

61 % from Orig in

62 Cyl inder=mesh (xx1 , xx2 , xx3) ;

63

64 % Def in ing Unit vec tor along the X d i r e c t i o n

65 unit Vx=[1 0 0] ;

66

67 % Calu la t ing the angle between the x d i r e c t i o n and the r equ i r ed d i r e c t i o n

68 % of cy l i nd e r through dot product

69 angle X1X2=acos (dot (unit Vx , (X2 X1)) /(norm(unit Vx)∗norm(X2 X1))) ∗180/ pi ;

70

71 % Finding the ax i s o f r o t a t i on (s i n g l e r o t a t i on) to roate the cy l i nd e r in

72 % X d i r e c t i o n to the r equ i r ed a rb i t r a r y d i r e c t i o n through c r o s s product

73 a x i s r o t=c ro s s ([1 0 0] , (X2 X1)) ;

74

75 % Rotating the p lo t t ed cy l i nd e r and the end p la t e c i r c l e s to the r equ i r ed

76 % ang l e s

77 i f angle X1X2˜=0 % Rotation i s not needed i f r equ i r ed d i r e c t i o n i s a long X

78 ro ta t e (Cylinder , a x i s r o t , angle X1X2 , [0 0 0])

79 i f c l o s ed==1

80 ro ta t e (EndPlate1 , ax i s r o t , angle X1X2 , [0 0 0])

81 ro ta t e (EndPlate2 , ax i s r o t , angle X1X2 , [0 0 0])

82 end

83 end

84

85 % T i l l now cy l i nd e r has only been a l i gned with the r equ i r ed d i r e c t i on , but

86 % po s i t i o n s t a r t s from the o r i g i n . so i t w i l l now be s h i f t e d to the r i gh t

87 % po s i t i o n

88 i f c l o s ed==1

89 s e t (EndPlate1 , ’XData ’ , get (EndPlate1 , ’XData ’)+X1(1))

90 s e t (EndPlate1 , ’YData ’ , get (EndPlate1 , ’YData ’)+X1(2))

91 s e t (EndPlate1 , ’ ZData ’ , get (EndPlate1 , ’ ZData ’)+X1(3))

92

93 s e t (EndPlate2 , ’XData ’ , get (EndPlate2 , ’XData ’)+X1(1))

94 s e t (EndPlate2 , ’YData ’ , get (EndPlate2 , ’YData ’)+X1(2))

95 s e t (EndPlate2 , ’ ZData ’ , get (EndPlate2 , ’ ZData ’)+X1(3))

96 end

97 s e t (Cylinder , ’XData ’ , get (Cylinder , ’XData ’)+X1(1))

98 s e t (Cylinder , ’YData ’ , get (Cylinder , ’YData ’)+X1(2))

219

99 s e t (Cylinder , ’ ZData ’ , get (Cylinder , ’ ZData ’)+X1(3))

100

101 % Set t ing the c o l o r to the cy l i nd e r and the end p l a t e s

102 s e t (Cylinder , ’ FaceColor ’ , c y l c o l o r)

103 i f c l o s ed==1

104 s e t ([EndPlate1 EndPlate2] , ’ FaceColor ’ , c y l c o l o r)

105 e l s e

106 EndPlate1 = [] ;

107 EndPlate2 = [] ;

108 end

109

110 % I f l i n e s are not needed making i t d i sapear

111 i f l i n e s==0

112 s e t (Cylinder , ’ EdgeAlpha ’ ,0)

113 end

1 % d i r e c t k i n ema t i c s .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 c l c

8 c l e a r a l l

9 c l o s e a l l

10

11 l 1 =0.664;

12 l 2 =0.720;

13 l 3 =0.625;

14 d1=0.0;

15 d2=0.0;

16 d3=0.0;

17 d4=0.160;

18 th =[0 pi /6 pi /3 0 0 0] ;

19

20 alp=[0 pi /2 0 pi /2 pi /2 pi / 2] ;

21 a=[0 0 l 2 l 3 0 0] ;

22 d=[0 d2 d3 d4 0 0] ;

23

24 [T01 T12 T23 T34 T45 T56]= rot matr ix 23J (a , th , alp , d) ; % get s the r o t a t i o n a l matr ixes

25

26 dis f rame3 (T01 , 0 . 3) ;

27 dis f rame3 (T01∗T12 , 0 . 3) ;

28 dis f rame3 (T01∗T12∗T23 , 0 . 3) ;

29 dis f rame3 (T01∗T12∗T23∗T34 , 0 . 3) ;

30 dis f rame3 (T01∗T12∗T23∗T34∗T45 , 0 . 1) ;

31 dis f rame3 (T01∗T12∗T23∗T34∗T45∗T56 , 0 . 6 1) ;

32

33 Or=[0 0 0 1] ’ ;

34

35 hold on

36 gr id on

37 ax i s equal

38 x l ab e l (’ x [m] ’)

39 y l ab e l (’ y [m] ’)

40 z l a b e l (’ z [m] ’)

41

42 P(: , 2)=T01∗Or ; % o r i g i n

43 p lo t3 (P(1 ,2) ,P(2 , 2) ,P(3 ,2) , ’ o ’)

44 p lo t3 ([0 P(1 ,2)] , [0 P(2 ,2)] , [0 P(3 ,2)])

45

46 P(: , 3)=T01∗T12∗Or ; % o r i g i n

47 P3=T01∗T12∗ [l 2 0 0 1] ’ ;

48 P4=T01∗T12∗ [l 2 0 d3 1] ’ ;

49 p lo t3 (P(1 ,3) ,P(2 , 3) ,P(3 ,3) , ’ o ’)

50 p lo t3 ([P3 (1) P(1 ,3)] , [P3 (2) P(2 ,3)] , [P3 (3) P(3 ,3)])

51

52 P(: , 4)=T01∗T12∗T23∗Or ; % o r i g i n

53 p lo t3 (P(1 ,4) ,P(2 , 4) ,P(3 ,4) , ’ o ’)

220 Matlab Scripts

54 P5=T01∗T12∗T23∗ [l 3 0 0 1] ’ ;

55 p lo t3 ([P(1 ,4) P3 (1)] , [P(2 , 4) P3 (2)] , [P(3 ,4) P3 (3)])

56 p lo t3 ([P(1 ,4) P5 (1)] , [P(2 , 4) P5 (2)] , [P(3 ,4) P5 (3)])

57

58 P(: , 6)=T01∗T12∗T23∗T34∗Or ; % o r i g i n

59 p lot3 (P(1 ,6) ,P(2 , 6) ,P(3 , 6) , ’ o ’)

60 p lo t3 ([P(1 ,6) P5 (1)] , [P(2 , 6) P5 (2)] , [P(3 ,6) P5 (3)])

61

62

63 % actuato r s

64 Dz=[0 0 0 .02 1] ’ ; % actuato r s he ight

65 mDz=[0 0 0 . 0 2 1] ’ ; % actuato r s he ight

66

67 Pz (: , 3)=T01∗T12∗Dz ; % o r i g i n

68 Pzz (: , 3)=T01∗T12∗(mDz) ; % o r i g i n

69

70 Pz (: , 4)=T01∗T12∗T23∗Dz ; % o r i g i n

71 Pzz (: , 4)=T01∗T12∗T23∗(mDz) ; % o r i g i n

72

73 Pz (: , 5)=T01∗T12∗T23∗T34∗Dz ; % o r i g i n

74 Pzz (: , 5)=T01∗T12∗T23∗T34∗(mDz) ; % o r i g i n

75

76 % motors

77 Cyl inder (P(1 : 3 , 1)+Dz (1 : 3) [0 0 l 1] ’ ,P(1 : 3 , 1) Dz (1 : 3) [0 0 l 1] ’ , 0 . 0 3 , 3 0 , ’ r ’ , 1 , 0)

78 Cyl inder (Pz (1 : 3 , 3) , Pzz (1 : 3 , 3) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

79 Cyl inder (Pz (1 : 3 , 4) , Pzz (1 : 3 , 4) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

80 Cyl inder (Pz (1 : 3 , 5) , Pzz (1 : 3 , 5) , 0 . 03 , 30 , ’ r ’ , 1 , 0)

81

82 % l i n k s

83 Cyl inder (P(1 : 3 , 2) , [0 0 l 1] ’ , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

84 Cyl inder (P(1 : 3 , 2) ,P(1 : 3 , 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

85 Cyl inder (P(1 : 3 , 3) ,P3 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

86 Cyl inder (P3 (1 : 3) ,P(1 : 3 , 4) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

87 Cyl inder (P(1 : 3 , 4) ,P5 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

88 Cyl inder (P(1 : 3 , 6) ,P5 (1 : 3) , 0 . 0 1 , 3 0 , [0 . 5 2 0 .52 0 . 5 2] , 1 , 0)

89 dis f rame3 (T01 , 0 . 3) ;

90 dis f rame3 (T01∗T12 , 0 . 3) ;

91 dis f rame3 (T01∗T12∗T23 , 0 . 3) ;

92 dis f rame3 (T01∗T12∗T23∗T34 , 0 . 3) ;

93

94 view (30 ,30)

1 % dis f rame3 .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [x1 , y1 , z1]=dis f rame3 (m, L)

8

9 x=L ;

10 y=L ;

11 z=L ;

12 x1=m∗ [x , 0 , 0 , 0] ’ ;

13 y1=m∗ [0 , y , 0 , 0] ’ ;

14 z1=m∗ [0 , 0 , z , 0] ’ ;

15 X1=m(1 ,4) ;

16 Y1=m(2 ,4) ;

17 Z1=m(3 ,4) ;

18

19 h=l i n e ([X1 X1+x1 (1 ,1)] , [Y1 Y1+x1 (2 ,1)] , [Z1 Z1+x1 (3 ,1)]) ;

20 k=l i n e ([X1 X1+y1 (1 ,1)] , [Y1 Y1+y1 (2 ,1)] , [Z1 Z1+y1 (3 ,1)]) ;

21 l=l i n e ([X1 X1+z1 (1 ,1)] , [Y1 Y1+z1 (2 ,1)] , [Z1 Z1+z1 (3 ,1)]) ;

22

23 s e t (h , ’ LineWidth ’ , 1 . 5)

24 s e t (k , ’ LineWidth ’ , 1 . 5)

25 s e t (l , ’ LineWidth ’ , 1 . 5)

26 s e t (h , ’Marker ’ , ’ o ’)

27 s e t (k , ’Marker ’ , ’ o ’)

221

28 s e t (l , ’Marker ’ , ’ o ’)

29 s e t (h , ’ Markers ize ’ , 2)

30 s e t (k , ’ Markers ize ’ , 2)

31 s e t (l , ’ Markers ize ’ , 2)

32 s e t (h , ’ Color ’ , ’ r ’)

33 s e t (k , ’ Color ’ , ’ g ’)

1 % geom .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [I ,m, com]=geom

8

9 % geometr ic in format ion about the arm

10

11 I (: , : , 1) =[0.128911203050000 4.95069000000000 e 0 6 8 .77328200000000 e 0 5 ;

12 4.95069000000000 e 0 6 0.129902859470000 0 .00104133814000000 ;

13 8 .77328200000000 e 0 5 0 .00104133814000000 0 .00262285717000000] ;

14

15 I (: , : , 2) =[0.00307791577000000 9 .56111000000000 e 0 5 0.00113495196000000;

16 9 .56111000000000 e 0 5 0.153927371740000 4 .98120000000000 e 0 6 ;

17 0.00113495196000000 4 .98120000000000 e 0 6 0 .154686818120000] ;

18

19 I (: , : , 3) =[0.00276059347000000 0 .00375355660000000 2 .86400000000000 e 0 8 ;

20 0 .00375355660000000 0.0997111819000000 1.43000000000000 e 0 9 ;

21 2 .86400000000000 e 0 8 1.43000000000000 e 0 9 0 .100361734600000] ;

22

23 I (: , : , 4) =[0.000739954430000000 7 .60000000000000 e 1 0 2 .09000000000000 e 0 9 ;

24 7 .60000000000000 e 1 0 0.000433548980000000 0 .000310060540000000 ;

25 2 .09000000000000 e 0 9 0 .000310060540000000 0 .000373994180000000] ;

26

27 I (: , : , 5) =[0.000426889310000000 6.00000000000000 e 1 1 7 .90000000000000 e 1 0 ;

28 6.00000000000000 e 1 1 0.000136362730000000 0 .000142111750000000 ;

29 7 .90000000000000 e 1 0 0 .000142111750000000 0 .000348042310000000] ;

30

31 I (: , : , 6) =[9.71437000000000 e 0 6 0 0 ;

32 0 9.71437000000000 e 0 6 0 ;

33 0 0 2.11854000000000 e 0 6] ;

34

35

36 com1=[0 .000130000000000000 0 .00154000000000000 0 . 3 00080000000000] ’ ;

37 com2=[0.392940000000000 0 .000120000000000000 0 .00143000000000000] ’ ;

38 com3=[0.330040000000000 0 .00630000000000000 0] ’ ;

39 com4=[0 0.0817700000000000 0 .0608200000000000] ’ ;

40 com5=[0 0.0501700000000000 0 .0557100000000000] ’ ;

41 com6=[0 0 0 .105250000000000] ’ ;

42

43 com=[com1 com2 com3 com4 com5 com6] ; % cente r o f mass coo rd ina t e s in meters

44

45 m=[2.259340

46 2.424060

47 2.076640

48 0.182860

49 0.158690

50 0 . 0 4 1 390] ;

1 % inv k in .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [THf]= inv k in (x , y , z , d , alp , a)

8

9 l 2=a (3) ;

222 Matlab Scripts

10 l 3=a (4) ;

11 d2= d (2) ;

12 d3= d (3) ;

13 d4= d (4) ;

14 i f s q r t (xˆ2+yˆ2+z ˆ2)>l 2+l3

15 d i sp (’ t a r g e t out o f reach ’)

16 return

17 end

18 th=ze ro s (8 , 3) ;

19

20 % f o r TH3

21 % d2ˆ2 + 2∗d2∗d3 + d3ˆ2 + d4ˆ2 + 2∗ s i n (th3)∗d4∗ l 2 + l2 ˆ2 + 2∗ cos (th3)∗ l 2 ∗ l 3 + l3 ˆ2

22

23 A=2∗ l 2 ∗d4 ;

24 B=2∗ l 2 ∗ l 3 ;

25 C=(xˆ2+yˆ2+z ˆ2) (d2+d3) ˆ 2 (d4ˆ2+ l2ˆ2+ l3 ˆ2) ;

26 th3 1 = atan2 (B,A)+as in (C/(sq r t (Aˆ2+Bˆ2))) ;

27 th3 2 = atan2 (B,A)+pi a s in (C/(sq r t (Aˆ2+Bˆ2))) ;

28 th (1 : 4 , 3)=th3 1 ;

29 th (5 : 8 , 3)=th3 2 ;

30

31 % f o r TH2

32 % l2 ∗ s i n (th2) d4∗ cos (th2)∗ cos (th3) + l3 ∗ cos (th2)∗ s i n (th3) + l3 ∗ cos (th3)∗ s i n (th2) + d4∗
s i n (th2)∗ s i n (th3)

33 % (l 2+l3 ∗ cos (th3)+d4∗ s i n (th3))∗ s i n (th2) + (l 3 ∗ s i n (th3)) d4∗ cos (th3))∗ cos (th2) = C

34

35 f o r i =1:4:8

36 A=l2+l3 ∗ cos (th (i , 3))+d4∗ s i n (th (i , 3)) ;

37 B=l3 ∗ s i n (th (i , 3)) d4∗ cos (th (i , 3)) ;

38 C=z ;

39 i f abs (C/(sq r t (Aˆ2+Bˆ2)))<1

40 th (i : i +1 ,2) = atan2 (B,A)+as in (C/(sq r t (Aˆ2+Bˆ2))) ;

41 th (2+(i : i +1) ,2) = atan2 (B,A)+pi a s in (C/(sq r t (Aˆ2+Bˆ2))) ;

42 e l s e

43 th (i : i +1 ,2)=1111;

44 th (2+(i : i +1) ,2) =1111;

45 end

46 end

47

48 % fo r TH1

49 % x= l2 ∗ cos (th1)∗ cos (th2) d3∗ s i n (th1) d2∗ s i n (th1) + l3 ∗ cos (th1)∗ cos (th2)∗ cos (th3) +

d4∗ cos (th1)∗ cos (th2)∗ s i n (th3) + d4∗ cos (th1)∗ cos (th3)∗ s i n (th2) l 3 ∗ cos (th1)∗ s i n (th2)

∗ s i n (th3)

50 % x= (d3 d2)∗ s i n (th1) + (l 2 ∗ cos (th2) + l3 ∗ cos (th2)∗ cos (th3) + d4∗ cos (th2)∗ s i n (th3) + d4

∗ cos (th3)∗ s i n (th2) l 3 ∗ s i n (th2)∗ s i n (th3))∗ cos (th1)

51

52 f o r i =1:2:8

53 A= d3 d2 ;

54 B=l2 ∗ cos (th (i , 2)) + l3 ∗ cos (th (i , 2))∗ cos (th (i , 3)) + d4∗ cos (th (i , 2))∗ s i n (th (i , 3)) + d4

∗ cos (th (i , 3))∗ s i n (th (i , 2)) l 3 ∗ s i n (th (i , 2))∗ s i n (th (i , 3)) ;

55 C=x ;

56 i f abs (C/(sq r t (Aˆ2+Bˆ2)))<1

57 th (i , 1) = atan2 (B,A)+as in (C/(sq r t (Aˆ2+Bˆ2))) ;

58 th (i +1 ,1) = atan2 (B,A)+pi a s in (C/(sq r t (Aˆ2+Bˆ2))) ;

59 e l s e

60 th (i , 1) =1111;

61 th (i +1 ,1)=1111;

62 end

63 end

64

65 f o r i =1:8;

66

67 [T01 T12 T23 T34]= rot matr ix (a , [th (i , :) 0 0 0] , alp , d) ; % get s the r o t a t i o n a l

matr ixes

68

69 Or=[0 0 0 1] ’ ;

70 P check=T01∗T12∗T23∗T34∗Or ;

71 i f P check (2) ∗y<0

72 cont inue

73 e l s e

223

74 THf(i , :)=th (i , :) ;

75 end

76 end

77

78 THf(a l l (THf==0,2) , :) = [] ;

1 % jaco .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [Jinv] = jaco (th)

8

9 g l oba l l 1 l 2 l 3 d1 d2 d3 d4

10

11 t1=th (1) ;

12 t2=th (2) ;

13 t3=th (3) ;

14 t4=th (4) ;

15 t5=th (5) ;

16 t6=th (6) ;

17 Jinv=[see appendix f o r jacob ian expre s s i on]

18

19 end

1 % jaco sym .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 c l c

8 c l e a r a l l

9 c l o s e a l l

10 syms l 1 l 2 l 3 l 4 l 5 d1 d2 d3 d4 d5 t1 t2 t3 t4 t5 t6

11

12 th=[t1 t2 t3 t4 t5 t6] ;

13 a=[0 0 l 2 l 3 0 0] ;

14 d=[0 d2 d3 d4 0 0] ;

15 [T01 T12 T23 T34 T45 T56]= rot matr ix sym (a , th , 1 , d) ;

16

17 R01=T01 (1 : 3 , 1 : 3) ;

18 R12=T12 (1 : 3 , 1 : 3) ;

19 R23=T23 (1 : 3 , 1 : 3) ;

20 R34=T34 (1 : 3 , 1 : 3) ;

21 R45=T45 (1 : 3 , 1 : 3) ;

22 R56=T56 (1 : 3 , 1 : 3) ;

23

24 z0=[0 0 1] ’ ;

25 z1=R01∗z0 ;

26 z2=R01∗R12∗z0 ;

27 z3=R01∗R12∗R23∗z0 ;

28 z4=R01∗R12∗R23∗R34∗z0 ;

29 z5=R01∗R12∗R23∗R34∗R45∗z0 ;

30 z6=R01∗R12∗R23∗R34∗R45∗R56∗z0 ;

31

32 p0=[0 0 0 1] ’ ;

33 pe=T01∗T12∗T23∗T34∗T45∗T56∗p0 ;

34 p1=T01∗p0 ;

35 p2=T01∗T12∗p0 ;

36 p3=T01∗T12∗T23∗p0 ;

37 p4=T01∗T12∗T23∗T34∗p0 ;

38 p5=T01∗T12∗T23∗T34∗T45∗p0 ;

39 p6=T01∗T12∗T23∗T34∗T45∗T56∗p0 ;

40

41 pe=pe (1 : 3) ;

224 Matlab Scripts

42 p0=p0 (1 : 3) ;

43 p1=p1 (1 : 3) ;

44 p2=p2 (1 : 3) ;

45 p3=p3 (1 : 3) ;

46 p4=p4 (1 : 3) ;

47 p5=p5 (1 : 3) ;

48 p6=p6 (1 : 3) ;

49

50

51 J1=[c r o s s (z1 , pe p1) c r o s s (z2 , pe p2) c r o s s (z3 , pe p3) c r o s s (z4 , pe p4) c r o s s (z5 , pe p5)

c r o s s (z6 , pe p6)] ;

52 J2=[z1 z2 z3 z4 z5 z6] ;

53 J=[J1 ; J2] ;

54 Jinv=inv (J) ;

1 % rot matr ix .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [T01 T12 T23 T34 T45 T56]= rot matr ix (a , th , alp , d)

8

9 th (5)=th (5) p i /2 ;

10

11 f o r i =1:6

12 T(: , : , i)=[cos (th (i)) s i n (th (i)) 0 a (i)

13 s i n (th (i))∗ cos (a lp (i)) cos (th (i))∗ cos (a lp (i)) s i n (a lp (i)) s i n (a lp (i))∗d(i)

14 s i n (th (i))∗ s i n (a lp (i)) cos (th (i))∗ s i n (a lp (i)) cos (a lp (i)) cos (a lp (i))∗d(i)

15 0 0 0 1] ;

16 end

17

18 T01=T(: , : , 1) ;

19 T12=T(: , : , 2) ;

20 T23=T(: , : , 3) ;

21 T34=T(: , : , 4) ;

22 T45=T(: , : , 5) ;

23 T56=T(: , : , 6) ;

24 end

1 % rot matr ix sym .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [T01 T12 T23 T34 T45 T56]= rot matr ix sym (a , th , alp , d)

8

9 alp=[0 sym(’ p i ’) /2 0 sym(’ p i ’) /2 sym(’ p i ’) /2 sym(’ p i ’) / 2] ;

10 th (5)=th (5) p i /2 ;

11

12 f o r i =1:6

13 T(: , : , i)=[cos (th (i)) s i n (th (i)) 0 a (i)

14 s i n (th (i))∗ cos (a lp (i)) cos (th (i))∗ cos (a lp (i)) s i n (a lp (i)) s i n (a lp (i))∗d(i)

15 s i n (th (i))∗ s i n (a lp (i)) cos (th (i))∗ s i n (a lp (i)) cos (a lp (i)) cos (a lp (i))∗d(i)

16 0 0 0 1] ;

17 end

18

19 T01=T(: , : , 1) ;

20 T12=T(: , : , 2) ;

21 T23=T(: , : , 3) ;

22 T34=T(: , : , 4) ;

23 T45=T(: , : , 5) ;

24 T56=T(: , : , 6) ;

25

26 end

225

1 % rpy wr i s t .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [th4 th5 th6]= rpy wr i s t (T)

8

9 % ang l e s in degrees

10 % r o l l , p itch , yaw ang l e s wrt f i x ed frame

11

12 % ROLL: rot about x

13 % PITCH: rot about y

14 % YAW: rot about z

15

16 % T34 =

17 % [cos (th4) , s i n (th4) , 0 , 2/5]

18 % [0 , 0 , 1 , 1 / 1 0]

19 % [s i n (th4) , cos (th4) , 0 , 0]

20 % [0 , 0 , 0 , 1]

21 %

22 % T45 =

23 % [cos (th5 pi /2) , s i n (th5 pi /2) , 0 , 0]

24 % [0 , 0 , 1 , 0]

25 % [s i n (th5 pi /2) , cos (th5 pi /2) , 0 , 0]

26 % [0 , 0 , 0 , 1]

27 %

28 % T56 =

29 % [cos (th6) , s i n (th6) , 0 , 0]

30 % [0 , 0 , 1 , 0]

31 % [s i n (th6) , cos (th6) , 0 , 0]

32 % [0 , 0 , 0 , 1]

33 %

34

35 ans=[acos (T(2 ,3))+pi /2 ;

36 2∗pi acos (T(2 ,3))+pi / 2] ;

37

38 Y(1 : 4 , 2)=(ans (1)) ;

39 Y(5 : 8 , 2)=(ans (2)) ;

40

41 ans1=[acos (T(2 ,1) / s i n (Y(1 ,2) p i /2)) ;

42 2∗pi acos (T(2 ,1) / s i n (Y(1 ,2) p i /2))] ;

43 ans2=[acos (T(2 ,1) / s i n (Y(5 ,2) p i /2)) ;

44 2∗pi acos (T(2 ,1) / s i n (Y(5 ,2) p i /2))] ;

45

46 Y(: , 3) =[ans1 ; ans1 ; ans2 ; ans2] ;

47

48 ans3=[acos (T(1 ,3) / s i n (Y(1 ,2) p i /2)) ;

49 2∗pi acos (T(1 ,3) / s i n (Y(1 ,2) p i /2))] ;

50 ans4=[acos (T(1 ,3) / s i n (Y(5 ,2) p i /2)) ;

51 2∗pi acos (T(1 ,3) / s i n (Y(5 ,2) p i /2))] ;

52

53 Y(: , 1) =[ans3 (1) ; ans3 (1) ; ans3 (2) ; ans3 (2) ; ans4 (1) ; ans4 (1) ; ans4 (2) ; ans4 (2) ;] ;

54

55

56 f o r i =1:8

57 i f s i n (Y(i , 1))∗ s i n (Y(i , 2) p i /2)∗T(3 ,3)>0 && s in (Y(i , 3))∗ s i n (Y(i , 2) p i /2)∗T(2 ,2)

>0

58 thh (i , :)=Y(i , :) ;

59 end

60 end

61

62 thh (a l l (thh==0,2) , :) = [] ;

63

64 f o r i =1: s i z e (thh , 1)

65 f o r j =1:3

66 i f thh (i , j)>2∗pi

67 thh (i , j)=thh (i , j) 2∗ pi ;

68 end

226 Matlab Scripts

69 end

70 end

71

72 % cho i c e o f s o l u t i o n

73 i f abs (thh (1))<abs (thh (2))

74 thh=thh (1 , :) ;

75 e l s e

76 thh=thh (2 , :) ;

77 end

78

79

80 th4=thh (1) ;

81 th5=thh (2) ;

82 th6=thh (3) ;

1 % s im s t a r t e r .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 func t i on [th]= s im s t a r t e r (x or)

8

9 g l oba l l 1 l 2 l 3 d1 d2 d3 d4 d a alp at t Tatt

10

11 [THf]= inv k in2 (x or (1) , x or (2) , x or (3) ,d , alp , a) ; % Inve r s e kinematic : y i e l d s th1 , th2 ,

th3

12 ind=1;

13 th1=double (THf(ind , 1)) ;

14 th2=double (THf(ind , 2)) ;

15 th3=double (THf(ind , 3)) ;

16 th=[th1 , th2 , th3 , 0 , 0 , 0] ;

17

18 [T01 T12 T23 T34]= rot matr ix 23J (a , th , alp , d) ; % get s the r o t a t i o n a l matr ixes

19 T03=T01∗T12∗T23 ;

20 T04=T01∗T12∗T23∗T34 ;

21 T06=eye (4) ;

22 T06 (1 : 3 , 1 : 3) =[rpy (at t (1) , a t t (2) , a t t (3))] ;

23 Tatt=T06 ;

24 T06 (: , 4)=T34 (: , 4) ;

25 T36=T03 ’∗T06 ;

26 [th4 th5 th6]= rpy wr i s t 23J (T36) ;

27 th=[th1 th2 th3 th4 th5 th6] ;

1 % s t a t i c a n a l y s i s .m

2 %

3 % Andrea Antonel lo antonela@uci . edu

4 % Master ’ s t h e s i s

5 % Un ive r s t i t y o f Padova Al l r i g h t s r e s e rved

6

7 % s t a r t

8 c l c

9 c l e a r a l l

10 f i g u r e

11 g l oba l l 1 l 2 l 3

12 % parameters d e f i n i t i o n

13 g=9.8062; % grav i ty

14 n=100;

15 l 1 =0.7; % length o f arm 1 [m]

16 l 2 =0.7; % length o f arm 2 [m]

17 bl2 =0.0; % back length o f arm 2 [m]

18 l 3 =0.4; % length o f arm 3 [m]

19 a1=0; % f i r s t angle , we suppose f i r s t arm perpend i cu la r to ground

20 a2v= 180 :360/n : 1 8 0 ; % vector o f ang l e s

21 a3v= 180 :360/n : 1 8 0 ; % vector o f ang l e s

22

23 % mater i a l p r op e r t i e s

227

24 rho1 =2.44; % p r o f i l e dens i ty [kg/m]

25 rho2 =2.44; % p r o f i l e dens i ty [kg/m]

26 rho3 =2.44; % p r o f i l e dens i ty [kg/m]

27 m1=l1 ∗ rho1 ; % mass o f arm 1 [kg]

28 m2=l2 ∗ rho2 ; % mass o f arm 2 [kg]

29 bm2=abs (bl2)∗ rho2 ; % mass o f back arm 2 [kg]

30 m3=l3 ∗ rho3 ; % mass o f arm 3 [kg]

31 P=0.7; % payload [kg]

32 Pm2=0.2; % motor weight [kg]

33 Pm3=0.2; % motor weight [kg]

34 Pcw=0; % counterweight [kg]

35 Fax=(m1+m2+m3+P+Pm2+Pm3)∗g /(10ˆ3) ;

36

37 % j o i n t s s t a t i c torque c a l c u l a t i o n

38 f o r i =1:n

39 a2=a2v (i) ;

40 f o r j =1:n

41 a3=a3v (j) ;

42 x (i , j)=a2 ;

43 y (i , j)=a3 ;

44 M3(i , j)=(P+0.5∗m3)∗g∗ l 3 ˆ2∗ cosd (a2+a3+a1) ;

45 M2(i , j)=m2∗g ∗0.5∗ l 2 ˆ2∗ cosd (a2+a1)+Pm3∗g∗ l 2 ˆ2∗ cosd (a2+a1)

46 (bm2∗g ∗0.5∗ bl2∗ cosd (a2+a1)) (Pcw∗g∗bl2∗ cosd (a2+a1))+

47 (l 2 ∗ cosd (a2+a1)+0.5∗ l 3 ˆ2∗ cosd (a2+a3+a1))∗m3∗g+(l 2 ˆ2∗ cosd (a2+a1)+l3 ∗ cosd (a2+a3+a1

))∗P∗g ;

48 z2 (i , j)=M2(i , j) ;

49 z3 (i , j)=M3(i , j) ;

50 end

51 end

52

53 M2 max=(max(max(M2))) ; % max value o f torque @ j o i n t 2

54 M3 max=(max(max(M3))) ; % max value o f torque @ j o i n t 3

55

56 % command window pr in t

57 f p r i n t f (’LENGTHS \n ’)

58 d i sp ([’ l ength arm 1 = ’ num2str (l 1) ’ m’]) ;

59 d i sp ([’ l ength arm 2 = ’ num2str (l 2) ’ m’]) ;

60 d i sp ([’ l ength arm 3 = ’ num2str (l 3) ’ m’]) ;

61

62 f p r i n t f (’\nMASSES \n ’)

63 d i sp ([’mass arm 1 = ’ num2str (m1) ’ kg ’]) ;

64 d i sp ([’mass arm 2 = ’ num2str (m2) ’ kg ’]) ;

65 d i sp ([’mass arm 3 = ’ num2str (m3) ’ kg ’]) ;

66 d i sp ([’mass payload (wr i s t) = ’ num2str (P) ’ kg ’]) ;

67 d i sp ([’mass motor 2 = ’ num2str (Pm2) ’ kg ’]) ;

68 d i sp ([’mass motor 3 = ’ num2str (Pm3) ’ kg ’]) ;

69

70 f p r i n t f (’\nTORQUES \n ’)

71 d i sp ([’Max torque @ j o i n t 2 = ’ num2str (M2 max) ’ Nm’]) ;

72 d i sp ([’Max torque @ j o i n t 3 = ’ num2str (M3 max) ’ Nm’]) ;

73

74

75 % s t a t i c d e f l e c t i o n , max load case

76 syms x2 x3

77 E=69∗10ˆ9; % alluminium [Pa]

78 I2 =22 .9∗10ˆ(8) ; % Ixx

79 I3 =11 .54∗10ˆ(8) ; % Ixx

80 y2=Pm3∗g∗x2 ˆ2/(6∗E∗ I2) ∗(3∗ l2 x2)+(m3∗g∗(l 2+l3 /2)

81 +P∗g∗(l 2+l3))∗x2 ˆ2/(2∗E∗ I2)+rho2∗g∗x2 ˆ2/(24∗E∗ I2) ∗(x2ˆ2+6∗ l 2 ˆ2 4∗ l 2 ∗x2) ;

82 y3=rho3∗g∗x3 ˆ2/(24∗E∗ I3) ∗(x3ˆ2+6∗ l 3 ˆ2 4∗ l 3 ∗x3)+P∗g∗x3 ˆ2/(6∗E∗ I3) ∗(3∗ l3 x3) ;

83

84 f i g u r e

85 gr id on

86 hold on

87 m=100;

88 xx2=0: l 2 /m: l 2 ;

89 xx3=0: l 3 /m: l 3 ;

90

91 d e f l 1 =[xx2 ; subs (y2 , ’ x2 ’ , xx2)] ;

92 d e f l 2 =[xx3 ; subs (y3 , ’ x3 ’ , xx3)] ;

228 Matlab Scripts

93 p lo t (d e f l 1 (1 , :) , d e f l 1 (2 , :) ∗10ˆ3)
94 p lo t (d e f l 2 (1 , :)+de f l 1 (1 ,m+1) , (d e f l 2 (2 , :)+de f l 1 (2 ,m+1)) ∗10ˆ3)
95 p lo t (d e f l 1 (1 ,m+1) , d e f l 1 (2 ,m+1) , ’ o ’)

96 x l ab e l (’ Length [m] ’)

97 y l ab e l (’ De f l e c t i on [mm] ’)

Appendix B
Jacobian expression

We report in this section the analytical expression of the Jacobian matrix for

reference purposes.

1

2 [l 3 ∗(s i n (t1)∗ s i n (t2)∗ s i n (t3) cos (t2)∗ cos (t3)∗ s i n (t1)) d4∗(cos (t2)∗ s i n (t1)∗ s i n (t3) +

cos (t3)∗ s i n (t1)∗ s i n (t2)) d2∗ cos (t1) d3∗ cos (t1) l 2 ∗ cos (t2)∗ s i n (t1) ,

cos (t1) ∗(l 3 ∗(cos (t2)∗ s i n (t3) + cos (t3)∗ s i n (t2)) d4∗(cos (t2)∗ cos (t3) s i n (t2)∗ s i n
(t3)) + l2 ∗ s i n (t2)) , cos (t1) ∗(d4∗(cos (t2)∗ cos (t3) s i n (t2)∗ s i n (t3)) l 3 ∗(cos (t2)∗
s i n (t3) + cos (t3)∗ s i n (t2))) , 0 , 0 , 0]

3

4

5 [d4∗(cos (t1)∗ cos (t2)∗ s i n (t3) + cos (t1)∗ cos (t3)∗ s i n (t2)) l 3 ∗(cos (t1)∗ s i n (t2)∗ s i n (t3)

cos (t1)∗ cos (t2)∗ cos (t3)) d2∗ s i n (t1) d3∗ s i n (t1) + l2 ∗ cos (t1)∗ cos (t2) ,

s i n (t1) ∗(l 3 ∗(cos (t2)∗ s i n (t3) + cos (t3)∗ s i n (t2)) d4∗(cos (t2)∗ cos (t3) s i n (t2)∗ s i n
(t3)) + l2 ∗ s i n (t2)) , s i n (t1) ∗(d4∗(cos (t2)∗ cos (t3) s i n (t2)∗ s i n (t3)) l 3 ∗(cos (t2)∗
s i n (t3) + cos (t3)∗ s i n (t2))) , 0 , 0 , 0]

6

7

8 [0 , s i n (t1) ∗(d4∗(cos (t2)∗ s i n (t1)∗ s i n (t3) + cos (t3)∗ s i n (t1)∗ s i n (t2)) l 3 ∗(s i n (t1)∗ s i n (

t2)∗ s i n (t3) cos (t2)∗ cos (t3)∗ s i n (t1)) + d3∗ cos (t1) + l2 ∗ cos (t2)∗ s i n (t1)) + cos (t1)

∗(d4∗(cos (t1)∗ cos (t2)∗ s i n (t3) + cos (t1)∗ cos (t3)∗ s i n (t2)) l 3 ∗(cos (t1)∗ s i n (t2)∗ s i n (

t3) cos (t1)∗ cos (t2)∗ cos (t3)) d3∗ s i n (t1) + l2 ∗ cos (t1)∗ cos (t2)) , s i n (t1) ∗(d4∗(cos
(t2)∗ s i n (t1)∗ s i n (t3) + cos (t3)∗ s i n (t1)∗ s i n (t2)) l 3 ∗(s i n (t1)∗ s i n (t2)∗ s i n (t3) cos (

t2)∗ cos (t3)∗ s i n (t1))) + cos (t1) ∗(d4∗(cos (t1)∗ cos (t2)∗ s i n (t3) + cos (t1)∗ cos (t3)∗ s i n (

t2)) l 3 ∗(cos (t1)∗ s i n (t2)∗ s i n (t3)) (cos (t1)∗ cos (t2)∗ cos (t3))) , 0 , 0 , 0]

9

10

11 [0 , s i n (t1) , s i n (t1) , cos (t1)∗ cos (t2)∗ s i n (t3) cos (t1)∗ cos (t3)∗ s i n (t2) , s i n (t4) ∗(cos (

t1)∗ s i n (t2)∗ s i n (t3) cos (t1)∗ cos (t2)∗ cos (t3)) cos (t4)∗ s i n (t1) , s i n (t5 p i /2) ∗(
s i n (t1)∗ s i n (t4) + cos (t4) ∗(cos (t1)∗ s i n (t2)∗ s i n (t3) cos (t1)∗ cos (t2)∗ cos (t3))) + cos

(t5 p i /2) ∗(cos (t1)∗ cos (t2)∗ s i n (t3) + cos (t1)∗ cos (t3)∗ s i n (t2))]

12

13

14 [0 , cos (t1) , cos (t1) , cos (t2)∗ s i n (t1)∗ s i n (t3) cos (t3)∗ s i n (t1)∗ s i n (t2) , cos (t1)∗ cos
(t4) + s in (t4) ∗(s i n (t1)∗ s i n (t2)∗ s i n (t3) cos (t2)∗ cos (t3)∗ s i n (t1)) , cos (t5 p i /2) ∗(
cos (t2)∗ s i n (t1)∗ s i n (t3) + cos (t3)∗ s i n (t1)∗ s i n (t2)) s i n (t5 p i /2) ∗(cos (t1)∗ s i n (t4)

cos (t4) ∗(s i n (t1)∗ s i n (t2)∗ s i n (t3) cos (t2)∗ cos (t3)∗ s i n (t1)))]

15

16

17 [1 , 0 , 0 ; cos (t2)∗ cos (t3) s i n (t2)∗ s i n (t3) , s i n (t4) ∗(cos (t2)∗ s i n (t3) + cos (t3)∗ s i n (t2

)) , cos (t5 p i /2) ∗(cos (t2)∗ cos (t3) s i n (t2)∗ s i n (t3)) cos (t4)∗ s i n (t5 p i /2) ∗(
cos (t2)∗ s i n (t3) + cos (t3)∗ s i n (t2))]

229

230 Jacobian expression

Appendix C
Datasheets

231

Operating Range Comments

Continuous operation
In observation of above listed thermal resistance
(lines 17 and 18) the maximum permissible winding
temperature will be reached during continuous
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

n [rpm]

maxon Modular System Overview on page 16 - 21

m
ax

on
fla

tm
ot

or

Specifications

May 2009 edition / subject to change maxon EC motor 199

Stock program
Standard program
Special program (on request)

Order Number

EC 90 flat !90 mm, brushless, 90 Watt

with Hall sensors 323772 244879
Motor Data

Values at nominal voltage
1 Nominal voltage V 24.0 48.0
2 No load speed rpm 3190 2080
3 No load current mA 539 130
4 Nominal speed rpm 2650 1640
5 Nominal torque (max. continuous torque) mNm 387 494
6 Nominal current (max. continuous current) A 5.39 2.12
7 Stall torque mNm 4670 4530
8 Starting current A 66.2 20.9
9 Max. efficiency % 83 85

Characteristics
10 Terminal resistance phase to phase ! 0.363 2.30
11 Terminal inductance phase to phase mH 0.264 2.50
12 Torque constant mNm / A 70.5 217
13 Speed constant rpm / V 135 44.0
14 Speed / torque gradient rpm / mNm 0.697 0.466
15 Mechanical time constant ms 22.3 14.9
16 Rotor inertia gcm2 3060 3060

Thermal data
17 Thermal resistance housing-ambient 1.89 K / W
18 Thermal resistance winding-housing 2.99 K / W
19 Thermal time constant winding 52.6 s
20 Thermal time constant motor 281 s
21 Ambient temperature -40 ... +100°C
22 Max. permissible winding temperature +125°C

Mechanical data (preloaded ball bearings)
23 Max. permissible speed 5000 rpm
24 Axial play at axial load < 15 N 0 mm

> 15 N 0.14 mm
25 Radial play preloaded
26 Max. axial load (dynamic) 12 N
27 Max. force for press fits (static) 150 N

(static, shaft supported) 8000 N
28 Max. radial loading, 7.5 mm from flange 30 N

Other specifications
29 Number of pole pairs 12
30 Number of phases 3
31 Weight of motor 648 g

Values listed in the table are nominal.

Connection
Pin 1 Hall sensor 1
Pin 2 Hall sensor 2
Pin 3 4.5 ... 24 VDC
Pin 4 Motor winding 3
Pin 5 Hall sensor 3
Pin 6 GND
Pin 7 Motor winding 1
Pin 8 Motor winding 2
Wiring diagram for Hall sensors see page 29

Cable
Connection cable Universal, L = 500 mm 339380
Connection cable zu EPOS, L = 500 mm 354045

M 1:2

Recommended Electronics:
DECS 50/5 Page 288
DEC 50/5 289
DECV 50/5 295
DEC 70/10 295
EPOS 24/5 303
EPOS 70/10 303
EPOS P 24/5 306
Notes 20

Connector:
39-28-1083
MOLEX

Connector:
39-28-1083
MOLEX

Planetary Gearhead
"52 mm
4 - 30 Nm
Page 244

Operating Range Comments

Continuous operation
In observation of above listed thermal resistance
(lines 17 and 18) the maximum permissible winding
temperature will be reached during continuous
operation at 25°C ambient.
= Thermal limit.

Short term operation
The motor may be briefly overloaded (recurring).

Assigned power rating

n [rpm]

maxon Modular System Overview on page 16 - 21

m
ax

on
fla

tm
ot

or

Specifications

May 2009 edition / subject to change maxon EC motor 195

Stock program
Standard program
Special program (on request)

Order Number

EC 45 flat !45 mm, brushless, 30 Watt

A with Hall sensors 200142 339281 339282
B sensorless 200189 339283 339284

Motor Data
Values at nominal voltage

1 Nominal voltage V 12.0 12.0 24.0 24.0 36.0 36.0
2 No load speed rpm 4370 4360 4370 4370 4760 4760
3 No load current mA 151 150 75.3 75.2 56.9 56.9
4 Nominal speed rpm 2860 2820 2850 2840 3210 3210
5 Nominal torque (max. continuous torque) mNm 59.0 54.3 58.8 57.5 70.6 69.5
6 Nominal current (max. continuous current) A 2.14 2.00 1.07 1.05 0.893 0.882
7 Stall torque mNm 255 219 253 243 380 369
8 Starting current A 10.0 8.57 4.96 4.77 5.38 5.22
9 Max. efficiency % 77 76 77 77 81 81

Characteristics
10 Terminal resistance phase to phase ! 1.20 1.40 4.84 5.04 6.70 6.9
11 Terminal inductance phase to phase mH 0.560 0.560 2.24 2.24 4.29 4.29
12 Torque constant mNm / A 25.5 25.5 51.0 51.0 70.6 70.6
13 Speed constant rpm / V 374 374 187 187 135 135
14 Speed / torque gradient rpm / mNm 17.6 20.6 17.8 18.5 12.8 13.2
15 Mechanical time constant ms 17.1 19.9 17.2 17.9 12.4 12.8
16 Rotor inertia gcm2 92.5 92.5 92.5 92.5 92.5 92.5

A with hall sensors B sensorless

Thermal data
17 Thermal resistance housing-ambient 4.23 K / W
18 Thermal resistance winding-housing 4.57 K / W
19 Thermal time constant winding 13.2 s
20 Thermal time constant motor 186 s
21 Ambient temperature -40 ... +100°C
22 Max. permissible winding temperature +125°C

Mechanical data (preloaded ball bearings)
23 Max. permissible speed 10000 rpm
24 Axial play at axial load < 5.0 N 0 mm

> 5.0 N typ. 0.14 mm
25 Radial play preloaded
26 Max. axial load (dynamic) 4.8 N
27 Max. force for press fits (static) 50 N

(static, shaft supported) 1000 N
28 Max. radial loading, 7.5 mm from flange 5.5 N

Other specifications
29 Number of pole pairs 8
30 Number of phases 3
31 Weight of motor 88 g

Values listed in the table are nominal.
Connection with hall sensors sensorless

!) on pin 1

Adapter Order Number Order Number
see p. 308 220300 220310
Connector Article number Article number
AMP 1-487951-1 487951-4
MOLEX 52207-1190 52207-0490
MOLEX 52089-1110 52089-0410
Pin for design with Hall sensors:
FPC, 11 pole, pitch 1.0 mm, top contact style

M 1:2

Recommended Electronics:
DECS 50/5 Page 288
DEC 24/3 289
DEC 50/5 289
DEC Module 24/2 289
DECV 50/5 295
EPOS2 Module 36/2 302
EPOS 24/1 302
EPOS2 24/5 303
EPOS P 24/5 306
Notes 20

Planetary Gearhead
"42 mm
3 - 15 Nm
Page 240
Spur Gearhead
"45 mm
0.5 - 2.0 Nm
Page 242

9.
37

3±
0.

02
5

5.
41

1±
0.

02
5

5°

30
°

12
0°

10
°

+
X

Eq
ua

lly
 S

p
a

c
e

d

N
a

no
17

-R
 C

a
b

le
 E

xi
t

-Y
+

Y

C
us

to
m

e
r I

nt
e

rf
a

c
e

(S
e

e
 N

o
te

 3
)

(S
ta

nd
a

rd
)

-X

(3
)T

a
p

 M
2x

.4
0

3.
5

B.
C

.
12

.5

Se
ns

in
g

 R
e

fe
re

nc
e

Fr
a

m
e

 O
rig

in

12
.5

)

±0
.0

25

(B
.C

.
3.

0

C
u

st
o

m
e

r I
n

te
rf

a
c

e

(2
)

2
Sl

ip
 F

it

6.
24

8

12
0°

C
us

to
m

e
r I

nt
e

rf
a

c
e

(S
e

e
 N

o
te

 3
)

-X

(A
lte

rn
a

te
)

+
Y

N
a

no
17

-A
 C

a
b

le
 E

xi
t

-Y

+
X

M
O

U
N

TI
N

G
 S

ID
E

(3
)T

a
p

 M
2x

.4
0

3.
5

B.
C

.
12

.5
Eq

ua
lly

 S
p

a
c

e
d

N
a

no
17

-R
 C

a
b

le
 E

xi
t

(S
ta

nd
a

rd
)

6.
15

3

±0
.0

25

±0
.0

25

(B
.C

.
C

u
st

o
m

e
r I

n
te

rf
a

c
e

12
.5

)

±0
.0

25
8.

29
1

±0
.0

25
6.

95
7

(S
e

e
 N

o
te

 3
)

(2
)

2
Sl

ip
 F

it
 3

.0

1.
08

5

3.
8

A
LT

ER
N

A
TE

 C
A

BL
E

EX
IT

N
A

N
O

17
-E

N
A

N
O

17
-R

 IS
O

M
ET

RI
C

 V
IE

W

N
a

no
17

 T
ra

ns
d

uc
e

r

B
3:

1
1

1

R
EV

IS
IO

N

N
O

TE
S:

 U
N

LE
SS

 O
TH

ER
W

IS
E

SP
EC

IF
IE

D

IS
O

90
01

 R
eg

ist
er

ed
 C

om
pa

ny
A

LL
 D

IM
EN

SI
O

N
S

A
R

E
IN

 M
IL

LI
M

ET
ER

S.

3r
d

 A
N

G
LE

 P
R

O
JE

C
TI

O
N

D
R

A
W

N
 B

Y:

C
H

EC
KE

D
 B

Y:

W
EI

G
H

T
LB

S:

A
SS

EM
BL

Y
R

EF
:

B.
 D

ig
es

o

D
. P

er
ry

TI
TL

E SC
A

LE
SI

ZE
D

R
A

W
IN

G
 N

U
M

BE
R

PR
O

D
U

C
T

R
EL

EA
SE

 #
SH

EE
T

 O

F

92
30

-0
5-

10
73

B
3:

1
1

1
-

R
EV

IS
IO

N

13

D
O

 N
O

T
SC

A
LE

 D
R

A
W

IN
G

.
D

R
A

W
N

 IN
 S

O
LI

D
W

O
R

KS
.

EX
C

EP
T

O
N

 O
R

D
ER

 O
R

 W
IT

H
 P

R
IO

R
 W

R
IT

TE
N

 A
U

TH
O

R
IZ

A
TI

O
N

 O
F

A
TI

.
PR

O
PE

R
TY

 O
F

A
TI

 IN
D

U
ST

R
IA

L
A

U
TO

M
A

TI
O

N
, I

N
C

. N
O

T
TO

 B
E

R
EP

R
O

D
U

C
ED

 IN
 A

N
Y

M
A

N
N

ER

10
31

 G
oo

dw
or

th
 D

riv
e,

Ap
ex

, N
C

27
53

9,
US

A
Te

l:
+1

.91
9.7

72
.01

15

 E
m

ail
: i

nf
o@

at
i-i

a.c
om

Fa
x:

 +1
.91

9.7
72

.82
59

 w

ww
.at

i-i
a.c

om

D
A

TE
:

(S
ta

nd
a

rd
)

+
Z

TO
O

L
SI

D
E

N
a

no
17

-R
 C

a
b

le
 E

xi
t

-Z

Pl
a

te

To
o

l A
d

a
p

te
r P

la
te

M
o

un
tin

g
 A

d
a

p
te

r

SI
D

E
V

IE
W

Se
ns

in
g

 R
e

fe
re

nc
e

Fr

a
m

e
 O

rig
in

14
.5

0

17

R
e

v.
D

e
sc

rip
tio

n
In

iti
a

to
r

D
a

te

13
Ec

o
 7

63
5;

 A
d

d
 -

E
c

a
b

le
 e

xi
t

C
C

S
3/

15
/2

01
0

N
o

te
s:

1.
 M

o
un

tin
g

 a
nd

 T
o

o
l A

d
a

p
te

r m
a

d
e

 o
f A

lu
m

in
um

.

 T
ra

ns
d

uc
e

r m
a

d
e

 o
f h

a
rd

e
ne

d
 S

ta
in

le
ss

 S
te

e
l.

2.
 W

A
RN

IN
G

: D
O

 N
O

T
LO

O
SE

N
 O

R
RE

M
O

V
E

IN
TE

RF
A

C
E

PL
A

TE
S

 O

R
C

A
BL

E
FI

TT
IN

G
 D

U
E

TO
 P

O
TE

N
TI

A
L

D
A

M
A

G
E.

3.
 D

O
 N

O
T

EX
C

EE
D

 IN
TE

RF
A

C
E

D
EP

TH
, M

A
Y

 C
A

U
SE

 D
A

M
A

G
E.

4.
 C

o
nn

e
c

to
r (

no
t

sh
o

w
n)

 h
a

s
17

m
m

 d
ia

m
e

te
r a

nd
 is

 6
7.

5m
m

 lo
ng

.

A
LT

ER
N

A
TE

 C
A

BL
E

EX
IT

N
A

N
O

17
-A

