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Abstract

In the last years, models based on completely-positive trace-preserving maps
have been proved to be effective for the description of a wide variety of quan-
tum system, and in particular those of interest for quantum information and
computation. This motivates a deeper analysis of this type of maps, aimed
to develop more effective protocols for quantum information processing and
their design. In this work their asymptotic behavior is analyzed. First, the
probabilities of converging to invariant subspaces, in the limit of infinite itera-
tion, are studied. Next, two different decompositions of the quantum system’s
Hilbert space are introduced, both aimed to analyze the convergence behavior
and speed. Finally the possibilities that the dynamics converges to a sub-
space, after a finite amount of time, is investigated. The starting point for
addressing all these issues is the Perron-Frobenius theory, and its specializa-
tion to completely-positive dynamics. The methods used are linear-algebraic,
and follow the typical approach of linear system and Markov chain theories.
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1. Introduction

One of the major discoveries of the twentieth century is undoubtedly the theory of quantum
mechanics. It owes its raise to a series of discrepancy between theoretical and experimental
results, obtained at the turn of the century, that showed the limits of the established
physical theories at that time, now dubbed classical physics. These arose applying classical
laws to new fields of interest, like the description of the elements composing matter,
the atoms, or their interaction with light. The solution arrived in the 1920s, with the
introduction of a new mathematical framework to construct physical theories: quantum
mechanics. Since then, an increasingly number of phenomenons have been modeled using
this new set of rules; for example, the effort in describing the interaction between atoms
and light has led to the theory called quantum electrodynamics.

In this framework, new effects, not possible in classical physics, can take place, some of
which are quite far from everyday intuition on how nature works. Another element of novel
is the description of composite systems, which is carried out using a tensor product, instead
of a direct sum. This results in an exponential growth of the mathematical model, when
the number of subsystems composing the system increases. As a consequence, simulations
of quantum system on classical computers are inefficient, and practically impossible for
large dimensional systems.

This problem was already noted by Richard Feynman, who suggested, in 1982, that
using quantum effects to simulate quantum system could overcome these difficulties. These
ideas, with different motivation, were used by David Deutsch in 1985 to define a new model
of computation, the quantum analogues of a Turing machine, which is the main theoretical
tool used in the analysis of algorithms (these concepts are not further developed here, the
reader is referred to [1] for a deeper treatment of quantum information and computation
theory, and related aspects).

What the model introduced by Deutsch suggested, was the possibility of executing
simulation algorithms more efficient on devices based on quantum effects, compared to
their classical counterparts. In the subsequent years, this has been confirmed by the design
of algorithms that assure better performance than the known in the classical context.
Among the most notably, there are Shor’s algorithms for the factorization in prime number
and the solution of the discrete logarithm, two problem still believed to have no efficient
solution on classical computers.

But the applications of quantum effects are not limited to computation, one other
possibility is the field of communications. This idea led to the creation of quantum infor-
mation theory, in the 1990s. This, in analogy with its classical counterpart, starts form
a fundamental unit of information: the quantum bit or qubit, defined by Ben Schumacher
when he provided the analogue of Shannon’s noiseless coding theorem, one of the corner-
stones of classical information theory. The main difference between classical bit and qubit
is, in a naive way, that the last can be in a superposition of values, instead of a well defined
one, as for classical bits. This opens to the possibilities of more efficient communication,
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for example, Charles Bennett and Stephen Wiesner found a way to transmit two classical
bit using one qubit, a result known as superdense coding.

It is also worth notice that with the increasingly interest for miniaturization in various
fields, the quantum nature of systems at study is emerging. In this contexts, models based
on quantum mechanics are attracting increasing interest, since quantum effects cannot be
neglected anymore.

What all these fields share, is the necessity for models that include the system-environment
iteration. For example, one of the major problem in the large scale implementations of
quantum computer is decoherence, i.e. the irreversible decaying of quantum correlations,
which, roughly speaking, converts quantum superposition in classical uncertainties. On
the side of communications, every channel is affected by noise, so every model should take
care of this aspect. Moreover, in any control loop, the system description has to include
the effect of control laws on it.

This necessity has impacted the research in quantum mechanics, posing the attention to
open system, rather than closed one, on which the theory was focused in the early years.
With the works of Davies [2] and Kraus [3], the Completely-Positive Trace-Preserving
(CPTP) maps have gained a central role in this context, being the mathematical tools for
the description of Markovian Dynamics, which permits to model a variety of interesting
phenomenons, some of which can be used to implements the results obtained in quantum
information and computation [1, 4].

The passage from closed to open dynamics, i.e. from unitary evolutions to CPTP maps,
has allowed for the maps describing the dynamics to exhibit contractive behavior, which
in turn calls for the study of their ergodic properties. Part of the effort has been spent
in the study of fixed points for these maps, whose structure is now well understood [5, 6].
Another topics of interest, especially for control of quantum system and quantum error
correction, is the convergence to a state or a subspace of the dynamics induced by the
maps [7, 8, 9, 10].

In this context, the identification of attractive subspaces, velocity of convergence as
well as the possibility to obtain a state in finite time, are of great interest. Some of these
problems have already been addressed, for continuous-time CPTP semigroups, notably
in the works of Baumgartner and Narnhofer [11, 12], and Ticozzi and al. [8]. We here
build on these ideas and develop the analysis directly in the discrete-time case. This is
more general, as not all discrete-time semigroup can be seen as “sampled” continuous-time
semigroups [13], and has its own peculiarities.

Our starting point is the Perron-Frobenious theory for linear maps preserving a cone,
and its specialization in the case of CPTP maps. This is in analogy of what can be done
with Markov chains, since CPTP maps can be thought as the quantum equivalent of them,
and this parallel has already proved to be useful in many cases (see e.g. [14, 15], where it
is exploited in different way). Taking this point of view, and borrowing some ideas from
linear system theory, it is possible to develop a set of linear-algebraic tools for the analysis
of the asymptotic behavior of a CPTP map, which can be used also to support the design
of quantum devices that need state or subspace preparation protocols.

Specifically, the problem of finding closed formulas for some asymptotic probabilities,
obtained iterating a CPTP map, is addressed directly following what can be done for
Markov chains. Then two different decomposition of the Hilbert space, underlying a
quantum system, are proposed. Both start from an invariant subspace and, based on the
action of the map, define a sequence of subspaces, until the whole space is covered. The
first is based on the support of the eigenvectors relative to the peripheral spectrum, while
the second exploits the “dissipitave links” between subspaces. In both cases, the resulting
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1. Introduction

decomposition permits to verify attractivity of the target subspace, and if it is not the
case, to extend it to an attractive one; also an estimation of the convergence speed can be
obtained. The approaches are built up on existing ergodicity results and representation of
CPTP maps [7, 8]. Finally, the possibility of restricting the dynamics to a subspace after
a finite number of iterations is explored.

The structure of the thesis is as follow.

- In Chapter 2 are collected the basic theorems of the Perron-Frobenius theory, for
linear maps preserving a cone.

- The first part of Chapter 3 reviews its specialisation to CPTP maps, further devel-
oping some key concepts. The relevant notions regarding invariant structures are
then recalled.

- Chapter 4 deals with the derivation of the closed formulas for asymptotic probabili-
ties.

- In Chapter 5 are illustrated the two decompositions, the nested-face decomposition,
based on spectral properties, and the dissipation induced decomposition, whose fea-
tures are also explored in the dual picture.

- The possibility that the dynamics is restricted in a subspace after a finite amount of
time is analyzed in Chapter 6.
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2. Cones and Positive Map

Let V be a finite-dimensional, real vector space.

Definition 1 (Cone)
A set C ⊂ V is a cone if

∀x, y ∈ C a, b ≥ 0⇒ ax+ by ∈ C.

A cone C is pointed if C ∩ −C = {0} and full if span(C) = V, or equivalently if its
interior is not void. A cone is proper if it is closed (in the topological sense), pointed and
full. A proper cone C induces a partial order over V defined by

x ≥ 0 ⇔ x ∈ C, (2.1)

x ≥ y ⇔ x− y ≥ 0; (2.2)

if x belongs also to the interior of C it is customary to write x > 0. One example of
proper cone is the set of positive semidefinite (PSD) hermitian matrices as a subset of the
hermitian matrices. In this case the order induced by the cone is the well known order
defined by X ≥ Y , if X − Y is positive semidefinite.

Definition 2 (Face)
A set F ⊂ C is a face (F C C) if it is a cone and ∀x ∈ C, y ∈ F y ≥ x⇒ x ∈ F

It is possible to see that if v ∈ int(C) then for any w ∈ C exists a c > 0 such that
cv > w, since a face which contains an element contains also every positive multiple of it,
we see that any nontrivial face of a cone is in its boundary.

For any set S ⊂ C, the application that associate to it the minimal face which contains
it, is defined as:

φ(S) :=
⋂
{F |F C C, S ⊂ F } (2.3)

using the application (2.3) it is possible to define the lattice of faces, with meet (∧) and
join (∨) being:

F ∧G := F ∩G, F ∨G := φ(F ∪G). (2.4)

For a single element the face generated by it is

φ({x}) = φ(x) = {y ∈ C : αx ≥ y, α > 0}. (2.5)

For the cone of PSD matrices, any non trivial face contains the operators with range on
a fixed subspace, moreover this bijection between subspaces and faces is a lattice isomor-
phism [16].

If T is a linear map, λ(T ) will denote its spectrum

λ(T ) := {λk ∈ C : ∃ v, Tv = λkv} , (2.6)
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σ(T ) its spectral radius
σ(T ) := max {|λk| : λk ∈ λ(T )} (2.7)

and νλk the index of λk ∈ λ(T ) i.e. its multiplicity as a root of the minimal polynomial of
T . A linear function T : V → V which maps a proper cone into itself is called positive1.
For these maps exist a generalization of Perron-Frobenius theory (see [17]).

Theorem 1 (Positive linear operator)
If C ⊂ V is a proper cone and T : V → V is positive then:

i. σ(T ) ∈ λ(T ),

ii. ∃v ∈ C such that T (v) = σ(T )v,

iii. ∀λk ∈ λ(T ) with |λk| = σ(T ), νλk ≤ νσ(T ).

Moreover, T is said to be irreducible if it does not leave any nontrivial face invariant.
If v is an eigenvector by (2.5), φ(v) is easily seen to be invariant. Since any face is in the
boundary of C and φ(v) = C if and only if v ∈ int(C), T is irreducible if and only if there
are no eigenvectors in the boundary of C.

Theorem 2 (Irreducible operator)
If T is irreducible then σ(T ) is a simple eigenvalue and the corresponding eigenvector v
can be chosen such that v ∈ int(C).

A positive operator such that T (C − {0}) ⊂ int(C) is irreducible, moreover for these
maps if λk ∈ λ(T ) is such that |λk| = σ(T ) then λk = σ(T ).

1Usually, in the theory of cone-preserving maps, these are called nonnegative maps while positive is
reserved to them which verify T (C − {0}) ⊂ int(C).
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3. Quantum Systems and
Discrete-Time Dynamics

3.1 Quantum Systems of Finite Dimension

Given a complex Hilbert space H, B(H) will stand for the set of linear bounded operators
on H, H(H) for the subset of hermitian ones and H+(H) for PSD operators. D(H) ⊂
H+(H) will denote the set of operators with trace one, the density operators.
The space B(H) is equipped with the Hilbert-Schmidt inner product :

〈ρ|η〉 = Tr(ρ†η) ρ, η ∈ B(H). (3.1)

A quantum system is associated to an Hilbert space, and a density operator ρ describes
our knowledge of the system and is usually referred as the state. Throughout this document
only finite dimensional quantum systems are considered.

Physical observable quantities or simply observables are associated to elements of H(H),
and correspond to possible measurements on the system. If X ∈ H(H) then there are
orthogonal projections Πi, such that:

X =
∑
i

xiΠi,
∑
i

Πi = I, (3.2)

where the Πi are unique if xi 6= xj for i 6= j. The observables act on density operators via
the inner product: the possible outcomes of the measurement are the xi and any of this
has probability to be observed

P[xi] = Tr(Πiρ). (3.3)

It follows that the expected value of the measurement is

E[X] = Tr(Xρ). (3.4)

The state after the measurement depends on the outcome; if it is xi, then the new state
ρ′ is

ρ′ =
ΠiρΠi

Tr(Πiρ)
. (3.5)

Since generally the outcome is not known, the average evolution has to be considered,
which is given by

E[ρ′] =
∑
i

ΠiρΠi. (3.6)

A map on H(H) is positive if it preserves the cone of PSD matrices.
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3.2 Completely-Positive Trace-Preserving Maps

This work is concerned only with discrete-time evolution, characterized by Markovian
dynamics. Then the state at a fixed time determines the whole evolution in the future,
which is described by a fixed, time-invariant map T : H(H)→ H(H).

In the Schrödinger’s picture the observables are time invariant, while the state evolves
according to the iterations of the map:

ρ(n+ 1) = T (ρ(n)). (3.7)

We are interested in dynamics of open systems, i.e. systems which interact with the
environment. In this scenario a map, to be physically admissible in the context of quantum
mechanic [1], has to be:

i. Linear :

∀ A,B ∈ H(H) : T (cA+B) = cT (A) + T (B). (3.8)

ii. Trace preserving :

∀ A ∈ H(H) : Tr(T (A)) = Tr(A). (3.9)

iii. Completely positive (CP):
∀n ∈ N, T ⊗ idn is positive, where idn is the identity map on the operators of an
Hilbert space of dimension n.

We shall refer to these maps as Completely-Positive Trace-Preserving (CPTP) maps. In
this case the map T is the generator of a Quantum Dynamical Semigroup (QDS), which
gives the evolution of the state.

Sometimes it will be useful to look at the Heisenberg’s picture, in this case the density
operator is fixed and observables are time varying. Since the action on density operators
is determined by the inner product, the evolution is obtained by the dual map T ∗, which
means that the probabilities (3.3) are determined by:

P[xi] = Tr(T ∗k(Πi)ρ), (3.10)

while the expected value (3.4) evolves according to:

E[X] = Tr(T ∗k(X)ρ). (3.11)

In this context the map T ∗ has to be linear and completely positive, while the trace
preserving constrain implies unitality for the dual map:

T ∗(I) = I. (3.12)

A map which fulfills the above three conditions (in the Heisenberg’s or Schrödinger’s
picture) is called a quantum channel.

The results in the following of the section can be found in [5].

A linear map T : H(H) → H(H) is completely positive if and only if it admits an
Operator-Sum Representation (OSR):

T (ρ) =

K∑
k=1

MkρM
†
k (3.13)
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3. Quantum Systems and Discrete-Time Dynamics

where Mk ∈ B(H) and M † is the adjoint of M . For a fixed T more than one OSR
is possible: two sets of matrices {M1,M2, . . . ,Mm} and {N1, N2, . . . , Nm} represent the
same operator if and only if

Mk =
∑
h

ukhNh, (3.14)

where ukh are the entries of a unitary matrix. Since we can add any number of zero opera-
tors to a set of matrices, without changing the map represented, this property characterizes
all the OSR of a map. In the OSR trace preserving is traduced in

K∑
k=1

M †kMk = I. (3.15)

For a linear map acting on a finite-dimensional vector space1 a Jordan decomposition
is possible:

T =
∑

λk∈λ(T )

λkPk +Nk (3.16)

where Pk stands for the projection onto the generalized eigenspace relative to λk along the
others generalized eigenspaces, and Nk is nilpotent with index νλk (N

νλk
k = 0). The next

theorems characterize the spectrum and the projections of trace preserving maps. The
following results, in a somewhat different formulation, can be found in [5].

Theorem 3
Let T be a (completely) positive, trace preserving map then:

i. σ(T ) = 1 and any λk ∈ λ(T ) with |λk| = 1 has algebraic multiplicity equals to its
geometric multiplicity, which means that Nk = 0 in the Jordan decomposition (3.16).

ii. T∞ :=
∑

k:λk=1

Pk = lim
N→+∞

1
N

N∑
n=1

Tn is (completely) positive.

iii. Tφ :=
∑

k:|λk|=1

Pk and Tϕ :=
∑

k:|λk|=1

λkPk are (completely) positive.

Recall that the support of X is supp(X) = ker(X)⊥ where ker(X) is the kernel of X.
If X is hermitian the support coincides with the range.

Theorem 4 (Fixed point)
If T is a trace preserving, positive map then

i. XF := T∞(B(H)) is the subspace containing all the fixed point of T .

ii. XF has a basis in H+(H).

iii. For any density operator ρ ∈ XF , if η ∈ D(H) and supp(η) ⊂ supp(ρ) then
supp(T (η)) ⊂ supp(ρ).

iv. For any density operator ρ ∈ XF , supp(ρ) ⊂ supp(T∞(I)).

1Here and after we mostly deal with the space H(H); since H(H) is a real space, a Jordan decomposition
in this form is not always possible, when this is needed its complex extension, B(H), is considered. In this
case a projection on a generalized eigenspace relative to a complex eigenvalue cannot be a real map. If
projections relative to a pair of complex conjugate eigenvalues are summed, the sum is a real map.
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3.3 Stability Properties of Subspaces

Consider a decomposition of the Hilbert space into two orthogonal subspaces:

H = HS ⊕HR. (3.17)

This decomposition defines two (orthogonal) projections2 ΠS ,ΠR ∈ H+(H) and it is asso-
ciated to a basis

{|ϕl〉} = {|φSl 〉} ∪ {|φRl 〉}, (3.18)

where {|φSl 〉} is a basis for HS and {|φRl 〉} for HR. This basis induces a block structure
on the matrices representing elements of X ∈ B(H):

X =

[
XS XP

XQ XR

]
. (3.19)

Moreover on the space H(H) a (orthogonal) decomposition is induced

H(H) = HS ⊕ HSR ⊕ HR,

HS =

{
ρ ∈ H(H) : ρ =

[
ρS 0
0 0

]}
,

HSR =

{
ρ ∈ H(H) : ρ =

[
0 ρP
ρ†P 0

]}
,

HR =

{
ρ ∈ H(H) : ρ =

[
0 0
0 ρR

]}
.

(3.20)

In what follows we shall also use H+
S for the subset of PSD matrices in HS (which is a face

of H+(H)) and similarly H+
R. Also DS will be used for the set of density operators acting

on HS .
We are mostly interested in decomposition with useful properties for quantum engineer-

ing. The next results, taken from [7], are useful in this sense. The following characterizes
the invariant property of the set DS in term of the matrices Mk, appearing in an OSR
representation of T .

Proposition 1
Let T be a CPTP map described by an OSR as in (3.13), then the set DS is invariant if
and only if the matrices Mk, expressed in their block structure, have the following form:

Mk =

[
Mk,S Mk,P

0 Mk,R

]
. (3.21)

By this we see that invariance of DS corresponds to invariance of the corresponding
subspace for the operators in a OSR, this motivates the following definition.

Definition 3 (Invariant subspace)
For a CPTP map T , HS is an invariant subspace if DS is invariant under the action of
T :

ρ ∈ DS ⇒ T (ρ) ∈ DS

2These subspaces are also associated with faces of the cone H+(H), as noted in section 2. These are
φ(ΠS) and φ(ΠR).
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3. Quantum Systems and Discrete-Time Dynamics

Another important concept about a subspace of the Hilbert space is attractivity:

Definition 4 (Attractive subspace)
A subspace HS ⊂ H is attractive for the CPTP map T if

lim
n→∞

‖Tn(ρ)−ΠST
n(ρ)ΠS‖ = 0,

∀ρ ∈ D(H).

A subspace is Globally Asymptotically Stable (GAS) if it is attractive and invariant.
The next theorem gives a necessary and sufficient condition for an invariant subspace to
be GAS.

Theorem 5 (Characterization of GAS subspaces)
Let T be a CPTP map, HS ⊕HR an orthogonal decomposition with HS invariant. With
regard to the block form (3.21), HS is GAS if and only if there are no invariant density
operators ρ with supp(ρ) ⊂

⋂
k ker(Mk,P ).
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4. Probabilities of Convergence
to Invariant Subspace

In this sections some probabilities which could be of interest are derived. The purpose is
to give some tools to analyze the asymptotic behavior of a quantum system which contains
a GAS subspace. In what follows T will stand for a CPTP map and the Hilbert space is
decomposed as in (3.17), with HS invariant.

4.1 Preliminaries

First of all we note that invariance of DS extends to the whole HS (and are in fact
equivalent). Using a direct calculation and the property of Proposition 1, it is easily seen
that HS ⊕ HSR is invariant too:

K∑
k=1

MkρM
†
k =

K∑
k=1

[
Mk,S Mk,P

0 Mk,R

] [
ρS ρP
ρ†P 0

][
M †k,S 0

M †k,P M †k,R

]
=

=
K∑
k=1

[
Mk,SρS +Mk,Pρ

†
P Mk,SρP

Mk,Rρ
†
P 0

][
M †k,S 0

M †k,P M †k,R

]
=

=

K∑
k=1

[
Mk,SρSM

†
k,S +Mk,Pρ

†
PM

†
k,S +Mk,SρPM

†
k,P Mk,SρPM

†
k,R

Mk,Rρ
†
PM

†
k,S 0

]
.

(4.1)

Using the decomposition (3.20) of H(H), the action of T could be split between the three
subspaces:

TS : HS → HS , TS(ρS) =

K∑
k=1

Mk,SρSM
†
k,S

TR : HR → HR, TR(ρR) =
K∑
k=1

Mk,RρRM
†
k,R

TSR : HR → HS , TSR(ρR) =

K∑
k=1

Mk,PρRM
†
k,P

TP : HSR → HSR, TP (ρP ) =
K∑
k=1

Mk,SρPM
†
k,R (4.2)

TSP : HSR → HS , TSP (ρP ) =

K∑
k=1

Mk,Pρ
†
PM

†
k,S +Mk,SρPM

†
k,P

13



TPR : HR → HSR, TPR(ρR) =

K∑
k=1

Mk,PρRM
†
k,R

The maps from HSR are defined only in terms of the upper part of the elements: this
simplified notation has no problem until we deal only with operators of H(H). If we
want to represent also elements of B(H), this is still possible but ρP has to be treated
as an element of a real vector space, so the real and the imaginary (i.e. the hermitian
and skewhermitian) parts have to be specified. However, this will be avoided and only
hermitian operators are considered when using this notation. These maps are defined
using a particular OSR of T , however it is easily seen that they do not depend on it; for
example, for TR an alternative definition could be

TR(ρR) = ΠRT (ρR)ΠR. (4.3)

The action of the map can now be splitted

T (ρ) =

[
TS(ρS) + TSP (ρP ) + TSR(ρR) TP (ρP ) + TPR(ρR)

(TP (ρP ) + TPR(ρR))† TR(ρR)

]
, (4.4)

and it is easily seen that:

ΠRT
n(ρ)ΠR =

[
0 0
0 TnR(ρR)

]
. (4.5)

The map TS is just the restriction to the invariant subspace HS , and for this reason it
is CPTP. The map TR is also CP, but generally just trace non increasing. The spectrum
of the maps TR, TS and TP is related to that one of T , to obtain this relation choose
three bases {ρSi} {ρPi} {ρRi} for the three subspaces. Their union is a basis for the whole
space. Using coordinates relative to this basis the map T can be represented by a matrix
T̂ , which, due to invariance of two subspaces, has the form:

T̂ =

 T̂S T̂SP T̂SR
0 T̂P T̂PR
0 0 T̂R

 . (4.6)

In the above representation the blocks are the matrix representation of the maps defined
in (4.2). By (4.6) the product of the characteristic polynomials of TR, TS and TP is the
characteristic polynomial of T (i.e. the spectrum of T is the union of the spectrum of TR,
TS and TP counting multiplicities) and also their minimal polynomial divide the minimal
polynomial of T .

The next Lemma will be needed later, and can be found in a more general form in [5].

Lemma 1
If A is a linear operator on a finite dimensional vector space and σ(A) < 1 then

+∞∑
n=0

An = (I −A)−1.

To be noted, if A is positive, the limit is positive since any partial sum is of positive
elements, and the set of positive maps is closed. To apply the lemma the next property
will be needed.
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4. Probabilities of Convergence to Invariant Subspace

Proposition 2 (Spectral characterization of GAS subspace)
An invariant subspace HS is GAS if and only if σ(TR) < 1.

Proof.
Since TR is a positive application, if σ(TR) = 1 then there exists a density ρ ∈ HR, such
that TR(ρ) = ρ. By this ΠRT

n(ρ)ΠR = ρ for any n and HS is not GAS.
If σ(TR) < 1 all the positive fixed points have support in HS and by Theorem 5 HS is
GAS.

From now on, until the end of the section, we assume that HS is GAS, then the lemma
can be applied with A = TR.

4.2 Cumulative convergence error

Firstly we look at the sum of the probabilities to find the state in HR during the evolution,
which can be easily expressed in closed form:

+∞∑
n=0

Tr(ΠRT
n(ρ)) =

+∞∑
n=0

Tr(ΠRT
n(ρ)ΠR) =

Tr(

+∞∑
n=0

TnR(ρR)) = Tr((I − TR)−1(ρR)).

(4.7)

Actually, the formula is also true in the case that ΠR act as observable. First note that
for the partial sums we have:

N∑
n=0

Tr(ΠRρ(n)) = Tr(

N∑
n=0

TnR(ρR)). (4.8)

In fact for N = 0 the formula is true. Assume it for N < k, assume also that
ρR(n) = TnR(ρR) for n < k and use (4.5) to obtain

ρR(k) = TR(ΠRρ(k − 1)ΠR) = T kR(ρR)

k∑
n=0

Tr(ΠRT
n(ρ)) =

= Tr(
k−1∑
n=0

TnR(ρR)) + Tr
(

ΠR T
(
ΠSρ(k − 1)ΠS + ΠRρ(k − 1)ΠR

)
ΠR

)
=

= Tr(

k∑
n=0

TnR(ρR)).

So (4.8) is true, and letting N go to infinity (4.7) is obtained.
If our purpose is to prepare a state in the subspace HS the quantity Tr((I−TR)−1(ρR))

could be thought as the error during the whole evolution.
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4.3 Asymptotic Probabilities of Invariant Subspaces

Suppose that HS is decomposed in N orthogonal invariant subspaces HSi . Choosing a
suitable basis, the submatrices Mk,S of an OSR are block diagonal:

Mk,S =


Mk,S1 0 · · · 0

0 Mk,S2 · · · 0
...

. . .
...

0 · · · · · · Mk,SN

 . (4.9)

In this case, if ρS ∈ DS and we look at the block structure induced by the decomposi-
tion, one block does not interact with the others, i.e. ΠSiTS(ρS)ΠSj depends only from
ΠSiρSΠSj . Our assumptions imply that the support of the state tends to HS , for any
initial condition; so it could be of interest to know what is the asymptotic probability to
find the state in one of these subspaces, i.e. to evaluate

lim
n→∞

Tr(ΠSiT
n(ρ)). (4.10)

This limit is easier to evaluate looking at the dual evolution. For T ∗ the invariant
subspaces are HSR ⊕HR and HR, since their orthogonal complements are invariant for T .
Note also that T ∗ can be partitioned by the dual maps of that ones in (4.4). Doing so, we
can obtain the following preliminary result.

Lemma 2
Let HS =

⊕N
i=0HSi and any of the HSi invariant. If ΠSi is the orthogonal projections on

HSi, then for any i
T ∗(ΠSi) = ΠSi + T ∗SR(ΠSi). (4.11)

Proof.
We will firstly explicitly prove the case N = 2; due to invariance of HS1,2 the matrices Mk

have the block-structure:  Mk,S1 0 Mk,P1

0 Mk,S2 Mk,P2

0 0 Mk,R

 . (4.12)

Rewriting the unitality condition, taking into account the structure (4.12), we obtain:

∑
k

 M †k,S1
0 0

0 M †k,S2
0

M †k,P1
M †k,P2

M †k,R


 Mk,S1 0 Mk,P1

0 Mk,S2 Mk,P2

0 0 Mk,R

 =

∑
k

 M †k,S1
Mk,S1 0 M †k,S1

Mk,P1

0 M †k,S2
Mk,S2 M †k,S2

Mk,P2

M †k,P1
Mk,S1 M †k,P2

Mk,S2 M †k,P1
Mk,P1 +M †k,P2

Mk,P2 +M †k,RMk,R

 =

 I 0 0
0 I 0
0 0 I

 .

(4.13)

Let us focus on HS1 , as the same reasoning applies to HS2 up to a relabeling. In the same
block-representation, the projection of interest is

ΠS1 =

 I 0 0
0 0 0
0 0 0

 , (4.14)

16



4. Probabilities of Convergence to Invariant Subspace

we thus have:

T ∗(Π1) =
∑
k

 M †k,S1
Mk,S1 0 M †k,S1

Mk,P1

0 0 0

M †k,P1
Mk,S1 0 M †k,P1

Mk,P1

 = ΠS1 + T ∗SR(ΠS1). (4.15)

In the general case HS =
⊕

iHSi , for any j = 1, . . . ,K we can consider the decomposition
HS = HSj ⊕

⊕
i 6=j HSi . These two orthogonal subspaces in the sum are both invariant so

by the reasoning above the evolution of ΠSj has the desired form.

Using the above result, we can obtain a closed formula for (4.10), which depend on the
initial state. To be noted, the limit is independent from the off diagonal block ρP .

Proposition 3
Under the same hypothesis of the above proposition, if HS is also GAS then

lim
n→∞

Tr(ΠSiT
n(ρ)) = Tr(ΠSiρS) + Tr(ΠSiTSR((I − TR)−1(ρR))). (4.16)

Proof.
The limit of ΠSi under the action of T ∗ is easily computed:

T ∗(ΠSi) = ΠSi + T ∗SR(ΠSi),

T ∗2(ΠSi) = ΠSi + (T ∗R(T ∗SR(ΠSi)) + T ∗SR(ΠSi)),

T ∗n(ΠSi) = ΠSi + (

n−1∑
k=0

T ∗kR (T ∗SR(ΠSi))).

(4.17)

Letting n go to infinity

lim
n→∞

T ∗n(ΠSi) = lim
n→∞

ΠSi + (
n−1∑
k=0

T ∗kR (T ∗SR(ΠSi)))

= ΠSi + ((I − T ∗R)−1(T ∗SR(ΠSi))).

(4.18)

By the relation

lim
n→∞

Tr(ΠSiT
n(ρ)) = lim

n→∞
Tr(T ∗n(ΠSi)ρ), (4.19)

the statement follows.

The obtained formula highlights that the probability of convergence to an invariant
subspace, inside a GAS subspace, is given by the sum of two terms: the initial probability
of finding the state there (the term Tr(ΠSi)), plus a term that can be computed explicitly
knowing the map in (4.2).

4.4 Outcome Probabilities

In the same situation as above, we could be interested in the probability of a specific
outcome of an observable, whose projections are the ΠSi . Consider an observable XS =∑

i xiΠi with
∑

i 6=0 Πi = ΠS and xi 6= 0 if i 6= 0, x0 = 0. Assuming the observable is
measured at n = 1, 2, 3 . . . (or at least until the first non zero outcome) it is possible to
obtain the probability for the first non zero outcome to be xi.
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First note that measuring the observable at any step do not change the invariant prop-
erty of HS , moreover during the computation that follows, we will see that the probability
to have always zero as outcome is zero, so the GAS property is preserved as well. Also
notice that we are interested in a subalgebra of the algebra of all observables, that one
generated by the projections Πi, since this is a commutative subalgebra the rule of classical
probability may be applied. Thanks to this we can define the events

Ei =“the first non zero outcome is xi”,
Eik=“the first non zero outcome is xi and happened at n ≤ k”,

Ai
k=“the outcome at n = k is xi”,

Bk=“the outcomes are all zero for n ≤ k”;

and use with them rule of classical probability. We want to evaluate P(Ei).
The relations between these events are:

Eik−1 ⊂ Eik,

Ei =

+∞⋃
k=1

Eik,

Eik = Eik−1 ∪ (Ai
k ∩ Bk−1),

Eik ∩ Bk = ∅,
Bk = Bk−1 ∩A0

k.

The latter relations thus imply:

P(Ei) = lim
k→+∞

P(Eik), (4.20)

P(Eik) = P(Eik−1) + P(Ai
k|Bk−1)P(Bk−1), (4.21)

P(Bk) = P(Bk−1)P(A0
k|Bk−1). (4.22)

Lemma 3
For i 6= 0 and k > 2

P(Ai
k|Bk−1)P(Bk−1) = Tr(ΠiTSR(T k−1R (ρR))).

Proof.
Let ρ(n|C) with C an event, be the state ρ(n) assuming that C happened.
First of all

ρ(2|B1) = T

(
ΠRT (ρ)ΠR

Tr(ΠRT (ρ))

)
=

1

Tr(TR(ρR))

 TSR(TR(ρR)) TPR(TR(ρR))

(TPR(TR(ρR)))† T 2
R(ρR)

 .
Assume for k ≥ 2

ρ(k|Bk−1) =
1

Tr(T k−1R (ρR))

[
TSR(T k−1R (ρR)) TPR(T k−1R (ρR))

(TPR(T k−1R (ρR)))† T kR(ρR)

]
, (4.23)

then

ρ(k + 1|Bk) = T

(
ΠRρ(k|Bk−1)ΠR

Tr(ΠRρ(k|Bk−1)

)
=

=
1

Tr(T kR(ρR))

[
TSR(T kR(ρR)) TPR(T kR(ρR))

(TPR(T kR(ρR)))† T k+1
R (ρR)

]
.
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4. Probabilities of Convergence to Invariant Subspace

So (4.23) is true for any k ≥ 2. By using it we have

P(Ai
k|Bk−1) = Tr(Πiρ(k|Bk−1)).

If i = 0

P(A0
k|Bk−1) =

Tr(T kR(ρR))

Tr(T k−1R (ρR))
, (4.24)

so by (4.22)
P(B1) = Tr(ΠRρ(1)) = Tr(TR(ρR)),

P(B2) = Tr(TR(ρR))
Tr(T 2

R(ρR))

Tr(TR(ρR))
= Tr(T 2

R(ρR)),

P(Bk) = Tr(T kR(ρR)).

Now for i 6= 0 and k ≥ 2

P(Ai
k|Bk−1) = Tr(Πiρ(k|Bk−1))) =

Tr(ΠiTSR(T k−1R (ρR))

Tr(T k−1R (ρR))

P(Ai
k|Bk−1)P(Bk−1) = Tr(ΠiTSR(T k−1R (ρR)))

(4.25)

We are now ready to derive a closed form for the probabilities we are looking for.

Proposition 4
P(Ei) = Tr(ΠiTS(ρS)) + Tr(ΠiTSP (ρP )) + Tr(ΠiTSR((I − TR)−1(ρR))).

Proof.
By the lemma and (4.20)

P(Ei1) = Tr(Πiρ(1)) = Tr(ΠiTS(ρS)) + Tr(ΠiTSP (ρP )) + Tr(ΠiTSR(ρR))

P(Ei2) = Tr(ΠiTS(ρS)) + Tr(ΠiTSP (ρP )) + Tr(ΠiTSR(ρR)) + Tr(ΠiTSR(TR(ρR))) =

= Tr(ΠiTS(ρS)) + Tr(ΠiTSP (ρP )) + Tr(ΠiTSR(ρR + TR(ρR)))

P(Eik) = Tr(ΠiTS(ρS)) + Tr(ΠiTSP (ρP )) + Tr(ΠiTSR(
k−1∑
j=0

T jR(ρR)))

and letting k go to infinity the proposition is proved.
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5. Convergence Tests and
Subspace Decompositions

In this section, starting from an invariant subspace and a CPTP map, we derive two
decompositions for the Hilbert space that will allow to decide if the subspace is also
attractive for the dynamical semigroup generated by the given map.

The first algorithm considers this subspace as an invariant face of the cone of PSD
matrices, and then constructs a sequence of other faces, which contain it and are invariant
as well. These nested faces will have the property that the whole cone tends asymptotically
to the smallest ones – and to the original subspace if it is attractive. The second is
the Dissipation-Induced Decomposition (DID), which has first been proposed in [8], here
adapted at the case of discrete time evolution. This decomposition is associated to a chain
of subspaces which have to be “crossed” by the state trajectory in order to reach the
invariant subspace.

5.1 Nested-Face Decomposition

5.1.1 Preliminary results

To obtain this decomposition we shall first need to generalize some known results on
invariant subspaces from CPTP to CP maps. In the case of CPTP maps, for a subspace
HS , we require that the set of density operators, with support onHS , is invariant under the
action of the map. When dealing with CP maps the set of density operators is generally
not preserved, so the natural extension is to require that the set of PSD matrices with
support on HS , i.e. the face that corresponds to HS , is invariant. It is easily seen that if a
map is CPTP, and the face associated to HS is invariant, then HS is an invariant subspace
in the sense of definition 3. With a slight abuse of notations, in the following we shall call
a subspace of H invariant for a CP map A, if the face which corresponds to it is invariant
for A. We will need to adapt some results obtained for CPTP maps at the case of CP
maps. These are mostly taken from [7] and the proofs use almost the same arguments.
Some of them are stated in Section 3 and 4 in the case of CPTP maps.

For a generic set W ⊂ H+(H) its support can be defined as the minimal subspace of
H which contains the supports of any element in W 1

supp(W ) :=
∨
η∈W

supp(η). (5.1)

Correspondingly, if F is a face, supp(F ) is the subspace which corresponds to F in the
lattice isomorphism of Section 2. Recall that φ(W ) denotes the face generated by W.

1∨ stands for the sum between subspaces.
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Lemma 4
For any set W ⊂ H+(H), supp(φ(W )) = supp(W ).

Proof.
Since the face generated by W contains W , supp(W ) ⊂ supp(φ(W )). On the other hand
the face which corresponds to supp(W ) contains any elements in W , so it must contains the
face generated by W , by this supp(φ(W )) ⊂ supp(W ) and then supp(W ) = supp(φ(W )).

The next lemma relates invariance of a subset of the PSD matrices with the invariance
of its support (or equivalently of the face generated by it).

Lemma 5
Let T be a positive map with W ⊂ H+(H) an invariant set. If A ∈ H+(H) is such that
supp(X) ⊂ supp(W ) then supp(T (X)) ⊂ supp(W ).

Proof.

Let W̃ be the convex hull of W , this has the same support of W and is also invariant.
Moreover it contains an element M of maximal rank such that

supp(M) = supp(W̃ ) = supp(W ). (5.2)

If A ∈ H+(H) is such that supp(A) ⊂ supp(W ) then for some c > 0, cM > A. By this
T (cM) > T (A) and then supp(T (A)) ⊂ supp(T (M)) ⊂ supp(W ).

The next proposition contains the generalizations announced above.

Proposition 5
Suppose T is a CP map on H(H) and H = HS ⊕HR then

i. HS is invariant if and only if in any OSR for T the matrices Mk have the block
structure:

Mk =

[
Mk,S Mk,P

0 Mk,R

]
. (5.3)

ii. HS is invariant if and only if HS ⊕ HSR is invariant under the action of T .

Proof.

i. Fix an OSR for T and let A ∈ H+
S

A =

[
AS 0
0 0

]
. (5.4)

Applying T results in:

T (A) =
∑
k

MkAM
†
k

=
∑
k

[
Mk,S Mk,P

Mk,Q Mk,R

] [
AS 0
0 0

][
M †k,S M †k,Q
M †k,P M †k,R

]
=

=
∑
k

[
Mk,SASM

†
k,S Mk,SASM

†
k,Q

Mk,QASM
†
k,S Mk,QASM

†
k,Q

]
.
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5. Convergence Tests and Subspace Decompositions

If HS is invariant, we must have∑
k

Mk,QASM
†
k,Q = 0,

for any choice of AS . Since it is a sum of positive terms, for any k

Mk,QASM
†
k,Q = 0,

irrespective of AS . This implies that Mk,Q = 0 for any k. Conversely, if Mk,Q = 0
for any k then for A ∈ H+

S , T (A) ∈ H+
S since all the others blocks are zero as well,

and HS is invariant.

ii. Suppose HS ⊕ HSR is invariant. Since T is positive H+(H) is invariant, then their
intersection is invariant too, and it is easily seen that

HS ⊕ HSR ∩ H+(H) = H+
S .

The converse is obtained using the first point and computing T (A) for A ∈ HS⊕HSR
like in Section 4 for the case of CPTP maps.

From the proof follows also that if a CP map has one OSR with matrices of the form
(5.4), then HS is invariant (and then all the OSR have matrices of the form (5.4)). Using
these results for a given CP map T and an invariant subspace HS , it is possible to split
the action of T between the three subspaces of H(H), as it is done in Section 4 for a
CPTP map. In this case also similar properties apply: the characteristic polynomial of T
is the product of the characteristic polynomial of TS , TP and TR, their minimal polynomial
divide the polynomial of T and both TS and TR are CP maps.

Before turning to the construction, a remark is in order. If as above, T is a CP map
and H = HS ⊕HR with HS invariant, we can consider TR which is a CP maps that acts
on HR. If we find in HR an invariant subspace for TR i.e. HR = HT ⊕ HR1 and HT is
invariant, using the first point of the last proposition we see that HS ⊕ HT is invariant
for T . In this situation we could think at two maps induced on HR1 , one is obtained from
T , the other from TR, however using an OSR for T follows immediately that these are
actually the same, so we shall refer to it simply as TR1 .

5.1.2 Construction of the Decomposition

Let T be a CPTP map and H = HS ⊕ HR with HS an invariant subspace. The aim of
this construction is to obtain a finite chain of N invariant subspaces HSi such that

HS1 = HS , (5.5)

HSi ⊂ HSi+1 , (5.6)

HSN = H. (5.7)

To any of these subspaces will correspond a remainder (its orthogonal complement) HRi
such that HSi⊕HRi = H, and the corresponding map TRi . We shall construct these maps
in order for them to have strictly decreasing spectral radius

σ(TRi) > σ(TRi+1). (5.8)
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If we look at the subspaces HSi as faces of the PSD cone, under the action of T the
cone tends to restrict to smaller faces, until that one which correspond to the least GAS
subspace containing HS is reached. To any of the HSi we can associate the spectral radius
of TRi , this permits to estimate the time needed to neglect HRi .

The basic idea is to use the observation above and to look for HRi+1 in HRi , referring
only at TRi . To start assume HS1 = HS and HR1 = HR. We next describe the general
construction step of HRi+1 and HSi+1 from HRi and HSi . From now on we deal with TRi
which is a CP map, generally trace non increasing, so invariance of a subspace of HRi has
to be intended as the invariance of the face associated to it.

i. Define

Di := ker((TRi − σ(TRi)I)d
2
i ) ∩ H+

Ri
(5.9)

HTi := supp(Di) (5.10)

with di = dim(HRi). Note that, since TRi is CP, Di contains elements different
from zero. Furhtermore Di is the intersection of two invariant sets for TRi , so it is
invariant. By Lemma 5 HTi is then invariant as well;

ii. put HSi+1 = HSi ⊕HTi , notice that this is an invariant subspace for T ;

iii. if HTi = HRi the construction is ended, otherwise put HRi+1 = H⊥Si+1
, and iterate.

Since at any step HTi is not the zero space, HSi+1 has dimension strictly larger than the
dimension of HSi , so in a finite number of steps its dimension must reach the dimension
of H and the construction stops (i.e. HTi = HRi). When this happens we obtain the
structure:

HS1 = HS , (5.11)

HSi ⊂ HSi+1 , (5.12)

HSN = H. (5.13)

Using theHTi the starting Hilbert spaceH can be written as a sum of orthogonal subspaces:

H = HS ⊕
⊕
i

HTi . (5.14)

It is then easy to see that, in a basis that reflect this structure, the matrices Mk are in a
block upper-triangular form, with the first diagonal block corresponding to HS and each
other diagonal block corresponding to one of the HTi .

We next highlight some of the features of the above decomposition.

Proposition 6
If the chain (5.12) is constructed as above, and we consider the maps TRi then

σ(TRi) > σ(TRi+1). (5.15)

The proof is based on two lemmas. The first one shows that it is always possible to
extend an eigenoperator of TR to one of T, both relative to the same eigenvalue.
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5. Convergence Tests and Subspace Decompositions

Lemma 6
Let T be a linear map on a vector space V = V1 ⊕ V2 of dimension d, with V1 invariant,
so that in a suitable basis T is represented by the matrix

T̂ =

[
T̂1 T̂2
0 T̂3

]
. (5.16)

If η ∈ V2 has coordinates

η̂ =

[
0
η̂2

]
, (5.17)

and T̂3η̂2 = ση̂2, then exists ξ ∈ V1 such that

ξ + η ∈ ker((T − σI)d). (5.18)

Proof.
If ξ ∈ V1 then

ξ =

[
ξ1
0

]
,

and the lemma is proved if the equation in ξ

(T − σI)d(ξ + η) =

[
(T1 − σI)dξ1 + T2η2

(T3 − σI)dη2

]
= 0 (5.19)

has solution.

Since η2 is an eigenvector of T3, (T3 − σI)dη2 = 0 and (5.19) reduces to

(T1 − σI)dξ1 = −T2η2. (5.20)

If σ is not an eigenvalue of T1, this system is clearly solvable in ξ1. In the other case it
is solvable only if T2η2 belongs to the image of (T1 − σI)d i.e. if T2η2 has no component
with respect to the generalized eigenspace relative to σ. Since generalized eigenspaces are
in direct sum, T2η2 admits a unique decomposition as sum of generalized eigenvectors of
T1:

T2η2 =
∑
k

vk, (5.21)

where any vk is relative to a different eigenvalue λk, with λj 6= λi if j 6= i. Also, due to
the invariance of V1, any vk can be (trivially) extended to a generalized eigenvector wk for
T, also relative to λk. We can thus write:

(T − σI)dη =

[
T2η2

0

]
=
∑
k

[
vk
0

]
=
∑
k

wk. (5.22)

Notice that if σ is an eigenvalue of T1, as it is in the case we are discussing, then it is
also an eigenvalue of T since V1 is invariant. It is thus apparent that none of the wk can
be a generalized eigenvalue corresponding to σ: in fact, due to the Jordan structure of T ,
T − σI restricted to the generalized σ-eigenspace is a nilpotent matrix of order at most
d, and hence any generalized σ-eigenvector for T is mapped to zero after d applications
of T − σI. This allows us to conclude that none of the vk is relative to σ and the system
(5.19) is always solvable.
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Lemma 7
Let H be a finite dimensional Hilbert space, and HS ⊕HR an orthogonal decomposition.
If Z ∈ H(H) has block form

Z =

[
ZS ZP
Z†P ZR

]
, (5.23)

with ZR > 0 and X ∈ H(H)

X =

[
XS 0
0 0

]
, (5.24)

with XS > 0, then there exists a scalar c > 0 such that Z + cX > 0.

Proof.
We wish to prove that for some c

〈ϕ|Z + cX|ϕ〉 > 0, (5.25)

for any |ϕ〉 6= 0.
Decompose |ϕ〉 = |ϕS〉 ⊕ |ϕR〉 according to the decomposition of H and rewrite (5.25) in
its block form

〈ϕS | ⊕ 〈ϕR|
[
ZS + cXS ZP

Z†P ZR

]
|ϕS〉 ⊕ |ϕR〉 =

〈ϕS |cXS + ZS |ϕS〉+ 〈ϕR|Z†P |ϕS〉+ 〈ϕS |ZP |ϕR〉+ 〈ϕR|ZR|ϕR〉. (5.26)

Since XS > 0 exists a c1 such that c1XS + ZS > 0, so that redefining c = c′ + c1 we have:

〈ϕS |cXS + ZS |ϕS〉 ≥ 〈ϕS |c′XS |ϕS〉 (5.27)

for any |ϕS〉.
The set of vectors |ϕS〉 ⊕ |ϕR〉, under the condition 〈ϕS |ϕS〉 = 〈ϕR|ϕR〉 = 1, is compact

and 〈ϕR|Z†P |ϕS〉+ 〈ϕS |ZP |ϕR〉 is a real continuous function; then exists m > 0 such that

〈ϕR|Z†P |ϕS〉+ 〈ϕS |ZP |ϕR〉 ≥ −2m, (5.28)

if 2 |ϕS | = |ϕR| = 1. So for |ϕS〉 and |ϕR〉 with |ϕS | 6= 0 and |ϕR| 6= 0

〈ϕR|Z†P |ϕS〉+ 〈ϕS |ZP |ϕR〉 =

|ϕR||ϕS |
(
〈 1
|ϕR|ϕR|Z

†
P |

1
|ϕR|ϕS〉+ 〈 1

|ϕS |ϕS |ZP |
1
|ϕR|ϕR〉

)
≥ −2m|ϕR||ϕS |. (5.29)

By positiveness of XS and ZR

〈ϕS |XS |ϕS〉 ≥ a21|ϕS |2

〈ϕR|ZR|ϕR〉 ≥ a22|ϕR|2
(5.30)

for some a1 , a2 > 0 (for instance the roots of their minimum eigenvalues).
Suppose |ϕS | 6= 0 and |ϕR| 6= 0 and put (5.27), (5.29) and (5.30) in (5.26), to obtain

〈ϕS | ⊕ 〈ϕR|cX + Z|ϕ1〉 ⊕ |ϕ2〉 ≥ a21|ϕS |2c′ + a22|ϕR|2 − 2m|ϕS ||ϕR|; (5.31)

2|ϕ| =
√
〈ϕ|ϕ〉 is the norm of |ϕ〉.
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choosing c′ >
(

m
a1a2

)2
〈ϕS | ⊕ 〈ϕR|cX + Z|ϕS〉 ⊕ |ϕR〉 >
m2

a22
|ϕS |2 + a22|ϕR|2 − 2m|ϕS ||ϕR| =

(
m

a2
|ϕ1| − a2|ϕ2|)2 > 0,

(5.32)

so cX + Z > 0.

Proof of proposition 6.
Suppose by contradiction that σ = σ(TRi) = σ(TRi+1). It would be then possible to
find A ≥ 0 such that TRi+1(A) = σA. HT ′ = supp(A) is invariant for TRi+1 so that
HR′ = HTi ⊕HT ′ is invariant for TRi . Consider TR′ the restriction of TRi to HR′ . For this
map H(HTi)⊕H(HTiT ′) is invariant and, being A ∈ H(HT ′) an eigenoperator for TT ′ , it is
thus possible to apply Lemma 6 to extend A to a generalized eigenoperator of TR′ , of the
form

A′ =

[
A1 A2

A†2 A

]
, (5.33)

with A > 0. By the definition of HTi there exists, for TRi , a generalized eigenvector X ≥ 0
relative to σ, such that supp(X) = HTi . Since HTi ⊂ HR′ , X is an eigenvector of TR′ as
well. Now by Lemma 7 it is possible to find a constant c > 0 such that B = cX +A > 0.
Since B is a generalized eigenvector of TR′ relative to σ, the same holds for TRi , however
this is not possible since HTi is strictly contained in supp(B) in contradiction with its
definition.

This decomposition thus provides us with a nested sequence of faces to which the
cone of PSD matrices asymptotically converge. In fact, if each of the HTi is characterized
by a spectral radius strictly less than one, these subspaces tend to correspond to zero
probability asymptotically. The next proposition shows how this is naturally related to
attractivity.

Proposition 7
The invariant subspace HS is GAS if and only if σ(TR1) < 1. If this is not the case,
HS2 = HS ⊕HT1 is then the minimal GAS subspace containing HS.

Proof.
The first part is just Proposition 2.
For the second part the same proposition assures that HS2 is GAS, so we only need to
check that any other GAS subspace which contains HS , contains HS2 as well. By the
definition of D1 exists M ∈ D1 with maximal rank (i.e. with support equal to HS2), since
the minimal polynomial of TR1 divides that one of T , M must be a simple eigenvector so

T (M) =

[
TSR(M) TPR(M)

(TPR(M))† TR(M)

]
=

[
TSR(M) TPR(M)

(TPR(M))† M

]
(5.34)

and then any subspace which is GAS must contains supp(M), and the statement follows.

We conclude the section with two remarks. First, all the construction is based on the
maps TRi , which do not depend on a particular OSR, but only on the (whole) map T .
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Secondarily, if HS is the support of the fixed points T∞(I) defined in Section 3, the above
construction is similar in principle to a decomposition of the “transient subspaces” that
has been outlined in [12] for continuous time evolutions. However, beside being developed
for discrete-time semigroups, our results differs from the above in the following aspects:
(i) we allow for the initial subspaces to be any invariant subspace, a generalization that is
of interest in many control and quantum information protection tasks [9, 8, 18, 19, 20, 21];
(ii) we investigate in more detail the structure and the properties of the HTi ; (iii) we use
the latter as tool for deciding asymptotic stability of the subspace.

5.2 Dissipation-Induced Decomposition

For this decomposition the framework is the same as before: T is a CPTP map, and H is
decomposed in two orthogonal subspaces

HS ⊕HR, (5.35)

with HS invariant. To obtain the desired decomposition we first work on an (arbitrary)
OSR of the map. However, in the next section we derive a dual characterization, which
will make clear that this decomposition does not depend on the particular OSR chosen.
The aim of this construction is to divide HR in N subspaces:

HR =
N⊕
i=1

HTi , (5.36)

with the property that if supp(ρ) ⊂ HTi , the support of T (ρ) cannot be in the HTi with
i < j − 1 or HS . Assume HS to be asymptotically stable: since the probability to find
the state in a fixed subspace is greater than zero only if the support of the state has non
zero intersection with that subspace, we see that for a state starting from a given HTi the
dynamics has to generate a “probability flow” through the preceding HTj in order for it
to reach HS . Our purpose is to check whether HS is GAS, and if it is the case to estimate
how fast the state reaches HS .

We first describe how this decomposition is carried out. Fix an OSR of K matrices
Mk for T . To start let HS1 = HS and HR1 = HR. We proceed iteratively: at each step
we have a decomposition of the form

H = HSi ⊕HRi , (5.37)

where

HSi = HS ⊕
i−1⊕
j=1

HTj . (5.38)

Let Mk,P ′i
and Mk,Ri be the P and R blocks in (3.19), for the decomposition (5.37).

First HRi+1 is defined as follows

HRi+1 =
⋂
k

ker(Mk,P ′i
). (5.39)

Three cases are possible:

i. for all k Mk,P ′i
= 0 i.e. HRi+1 = HRi . In this case we put HTi = HRi , obtaining

HSi+1 = H, and terminate the construction. We will see that we have just found an
invariant subspace disjoint from HS .
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ii. HRi+1 = {0}: in this case the construction is successfully concluded. We put again
HTi = HRi , and later we will see that in this case HS is GAS.

iii. If none of the above cases applies, we choose as HTi the orthogonal complement of
HRi+1 in HRi

HRi = HTi ⊕HRi+1 (5.40)

Note that since degenerate cases have been dealt separately, in this case both HTi
and HRi+1 have positive dimension, then HRi+1 has dimension strictly less than HRi .
Now put HSi+1 = HSi ⊕HTi and iterate.

First of all, notice that at any step the dimension of the HRi strictly decreases, so in
a finite number of steps the procedure terminates.

If the DID runs to completion we obtain a decomposition of the form (5.36), if we
choose a basis according to it, the matrices Mk have the block structure:

Mk =



Mk,S Mk,P1 0 . . . . . . 0
0 Mk,T1 Mk,P2 0 . . . 0

0 Mk,Q2,1 Mk,T2
. . .

...
...

...
. . .

0 Mk,QN−1,1
Mk,QN−1,2

. . . Mk,TN−1
Mk,PN

0 Mk,QN,1 Mk,QN,2 . . . Mk,QN,N−1
Mk,TN


∀k, (5.41)

with ∩k ker(Mk,Pi) = 0 for i = 1, . . . N .
If instead the decomposition is terminated due to case one, and we choose a basis according
to it, the matrices become

Mk =



Mk,S Mk,P1 0 . . . . . . 0
0 Mk,T1 Mk,P2 0 . . . 0

0 Mk,Q2,1 Mk,T2
. . .

...
...

...
. . .

0 Mk,QN−1,1
Mk,QN−1,2

. . . Mk,TN−1
0

0 Mk,QN,1 Mk,QN,2 . . . Mk,QN,N−1
Mk,TN


∀k. (5.42)

The zero blocks in the last column over Mk,TN , for all k, imply the invariance of the last
subspace due to Proposition 1.

We focus now on the properties of HS that can be inferred from the DID construction.

Proposition 8
HS is GAS if and only if the DID is terminated successfully.

Proof.
If the DID is not terminated successfully the matrices have the structure (5.42), by this
is easily seen that HTN is invariant, then HS cannot be GAS (to see invariance we can
permute the basis and use Proposition 1 or just verify it making a direct computation).

If instead the DID is terminated successfully then the statement is a consequence of
Theorem 5. We can verify that no fixed point has support in HR, arguing by absurd.
Suppose ρ is a density operator with support in HR and a fixed point for the map. Using
Theorem 5 we see that actually

supp(ρ) ⊂
N⊕
i=2

HTi . (5.43)
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Then there exists a maximal j between 2 and N (note that the next subspace is minimal)
such that

supp(ρ) ⊂
N⊕
i=j

HTi . (5.44)

Then ρTj (the component of ρ corresponding to HTj in its block structure) is not zero,
otherwise, due to positiveness of ρ, the corresponding columns and rows should be zero
and (5.44) would hold with j + 1. By the block structure (5.41) we see that

T (ρ)Tj−1 =
∑
k

Mk,PjρTjM
†
k,Pj

= 0, (5.45)

since ρ is a fixed point. This is a sum of PSD matrices so any terms must be zero.
If ρTj = CC† with C ∈ B(HTj ) we see that

Mk,PjC = 0, (5.46)

for any k, then the columns of C are in ∩k ker(Mk,Pi) = {0} which is impossible by
construction.

Consider now the case when the DID is completed successfully. We can compute the
probability to find a state ρ, with support in a fixed HTi , in HTi−1 after applying T

PT (ρ)(ΠTi−1) = Tr(ΠTi−1T (ρ)), (5.47)

where ΠTi−1 is the orthogonal projection onto HTi−1 . We can then obtain a bound on how
this probability has grown (recall it was zero before the action of the map). We have:

PT (ρ)(ΠTi−1) = Tr(ΠTi−1T (ρ)) = Tr(
∑
k

Mk,PiρTiM
†
k,Pi

) = Tr(
∑
k

M †k,PiMk,PiρTi) (5.48)

Calling γi the minimum eigenvalue of
∑

kM
†
k,Pi

Mk,Pi the increment is at least

γi Tr(ρTi), (5.49)

as is seen putting
∑

kM
†
k,Pi

Mk,Pi in its diagonal form. In the same way it is possible to

give an upper bound for (5.47) by the maximum eigenvalue of
∑

kM
†
k,Pi

Mk,Pi . Note that

these bounds are always meaningful:
∑

kM
†
k,Pi

Mk,Pi is positive definite by construction,
so its lowest eigenvalue cannot be zero. Moreover we can find a projection (e.g. the one on
the subspace generated by an eigenvector corresponding to γi) for which the lower bound
is reached, and in the same way we can reach the upper bound (this shows also that the
maximum eigenvalue is less than or equal to one).

In the light of these observations, the γi are indications of the (minimal) probabilities
that a transition from HTi to HTi−1 occurs. Knowing all these probabilities we can use
them to find the convergence bottlenecks, and estimate the worst-case time needed to
reach HS starting from any state.

It should be noted that the respect of the bounds derived is assured only when
supp(ρ) ∈ HTi , due to the possible presence of blocks that connect the subspaces HTi
in the opposite way. However, since we assume HS to be GAS, the transitions to it
“dominate” the dynamics, so the γi can be used as explained above.
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5.2.1 Dual Characterization

The DID can be also studied, and in fact characterized, in the Heisenberg picture. As we
shall see, in this dual framework some properties become more explicit, e.g. its indepen-
dence from the chosen OSR. We start by characterizing invariance of subspaces by using
the dual dynamics.

Proposition 9
Let T be a CPTP map, and T ∗ its dual. A subspace HS is invariant if and only if for any
n

T ∗n+1(ΠS) ≥ T ∗n(ΠS). (5.50)

Proof.
Suppose first HS is invariant, that implies

T ∗(ΠS) = ΠS + T ∗SR(ΠS). (5.51)

Iterating T ∗ we obtain

T ∗n(ΠS) = ΠS +
n−1∑
i=1

T ∗iR (T ∗SR(ΠS)) (5.52)

since T ∗nR (T ∗SR(ΠS)) ≥ 0 for any n, the sequence T ∗n(ΠS) is non decreasing.
Suppose now

T ∗(ΠS) ≥ ΠS . (5.53)

Let HR be the orthogonal complement of HS so that

ΠS + ΠR = I, (5.54)

and then
T ∗(ΠS) + T ∗(ΠR) = I. (5.55)

Rewriting these two terms in their block form we obtain:

T ∗(ΠS) =
∑
k

[
M †k,SMk,S M †k,SMk,P

M †k,PMk,S M †k,PMk,P

]
, (5.56)

T ∗(ΠR) =
∑
k

[
M †k,QMk,Q M †k,QMk,R

M †k,RMk,Q M †k,RMk,R

]
, (5.57)

Now by unitality ∑
k

M †k,SMk,S ≤ I, (5.58)

and from (5.53) ∑
k

M †k,SMk,S ≥ I, (5.59)

so ∑
k

M †k,SMk,S = I. (5.60)

But now (5.55), together with (5.57), implies

M †k,QMk,Q = 0, (5.61)

for any k. Using Proposition 1, we have invariance of HS .
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From this result we immediately have the following:

Corollary 1
Let T be a CPTP map and HS a subspace:

i. If T ∗(ΠS) ≥ ΠS then HS is invariant.

ii. If HS is invariant then for any n

supp(T ∗n(ΠS)) ⊂ supp(T ∗n+1(ΠS)). (5.62)

Our main interest is for the second point of the corollary, since it helps in proving the
following characterization.

Proposition 10
Let T be a CPTP map, HS a GAS subspace and consider the decomposition induced by
the DID. Then for n ≤ N

supp(T ∗n(ΠS)) = HS ⊕
n⊕
i=1

HTi (5.63)

and for n > N the support is the whole H.

Proof.
We shall prove that (5.63) holds by induction on n.

First the case n = 1. By using the matrix block-decomposition provided in (5.41), it
is easy to show that:

T ∗(ΠS) =
∑
k

M †kΠSMk =
∑
k


M †k,SMk,S M †k,SMk,P1 0 · · · 0

M †k,P1
Mk,S M †k,P1

Mk,P1 0 · · · 0

0 0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (5.64)

Recall that by (5.62)

HS ⊂ supp(T ∗(ΠS)), (5.65)

so, by (5.64), it suffices to show that HT1 is contained in supp(T ∗(ΠS)). Choosing a set
of vector |ϕ1,h〉 in HT1 , applying T ∗(ΠS) results in:

T ∗(ΠS)|ϕ1,h〉 =


M †k,SMk,P1 |ϕ1,h〉
M †k,P1

Mk,P1 |ϕ1,h〉
0
...
0

 =


|ψ1,h〉
|φ1,h〉

0
...
0

 . (5.66)

By a proper choice of |ψ1,h〉, it is possible to obtain that the |φ1,h〉 are a basis for HT1 , since

by construction the range of
∑
k

M †k,P1
Mk,P1 is HT1 . Hence, the case n = 1 is completed.

32



5. Convergence Tests and Subspace Decompositions

Now assume (5.63) true for n < l, and call Πi the projection on HS ⊕
⊕i

j=1HTj so
that

supp(T ∗l−1(ΠS)) = HS ⊕
l−1⊕
j=1

HTj = supp(Πl−1), (5.67)

and for some real constant c > 0 and C > 0

cΠl−1 ≤ T ∗l−1(ΠS) ≤ CΠl−1. (5.68)

This implies that the support of T ∗(Πl−1) and T ∗l(ΠS) is the same and the statement
is proved if we show that supp(T ∗(Πl−1)) coincides with HS ⊕

⊕l
j=1HTj , which can be

verified proceeding as above. By (5.62) in Corollary 1 we have:

HS ⊕
l−1⊕
j=1

HTj ⊂ supp(T ∗l(ΠS)) = supp(T ∗(Πl−1)). (5.69)

Again if we apply T ∗(Πl−1) to a set of vector |ϕl,h〉 in HTl we obtain:

T ∗(Πl−1)|ϕl,h〉 =
∑
k



0

M †k,Ql−1,1
Mk,Pl |ϕl,h〉

M †k,Ql−1,1
Mk,Pl |ϕl,h〉
...

M †k,Tl−1
Mk,Pl |ϕl,h〉

M †k,PlMk,Pl |ϕl,h〉
0
...
0


=


|ψl,h〉
|φl,h〉

0
...
0

 , (5.70)

where |φl,h〉 =
∑
k

M †k,PlMk,Pl |ϕl,h〉 and |ψl,h〉 accounts for the firsts blocks of elements.

By (5.70) |ψl,h〉⊕ |φl,h〉 are in supp(T ∗(Πl−1)). Again choosing properly |ϕl,h〉, and noting

that
∑
k

M †k,PlMk,Pl is strictly positive definite, we prove that (5.63) holds for l as well.

Finally the last statement follows directly from the first and the hypothesis of HS being
GAS, which in turn implies that the DID algorithm runs to completion and

HS ⊕
N⊕
i=1

HTi = H.

So the DID is determined by, and is in fact equivalent to, the sequence of supports
(5.63). Since it depends only from the form of T ∗ we readily obtain that the DID is
independent from the chosen OSR. From the last result another useful property can be
obtained.

Corollary 2
Suppose HS is an invariant subspace for the CPTP map T . Then it is GAS if and only if
the sequence supp(T ∗n(ΠS)) is strictly increasing until it reaches the whole space.
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Proof.
One implication is just a restatement of the last proposition.
For the other implication it suffices to follow the last proof, taking into account that the
failure of the DID returns the block structure of the form (5.42), from which we see that
if a subspace is not GAS, the sequence supp(T ∗n(ΠS)) cannot cover the whole space.

5.3 Example of Decomposition

In this last part of the chapter the two decomposition are illustrated on a simple exam-
ple. Since this permits to apply the results presented in Chapter 4, some asymptotic
probabilities are also evaluated.

5.3.1 Description of the dynamics

Consider a 7 level quantum system associated to the Hilbert space H = span({|j〉}7j=1),
on which, within each fixed time step, one of the following “noise actions” may occur:

i. with probability γ1 < 1, level 1, 3 and 2, 4 are swapped,

ii. with probability γ2 < 1, level 3 decays to 1 and 4 to 2,

iii. with probability γ3 � 1, level 5 decays to level 4 and 3 in the same proportion,

iv. with probability γ4 < 1, level 6 decays to 5,

v. with probability γ5 < 1, level 7 decays to 5;

where
∑

i γi = 1, γi > 0 for any i and γ3 < γ4 < γ5. An OSR for the map T jointly
describing these processes can be obtained by the following matrices, associated to each
of the processes in the ordered basis for H given above (see e.g. [1], Chapter 8 for details
on phenomenological description of noise actions):

i. N1 =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


;

ii. N2 =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0

0 0 0 0 0 1√
2

0

0 0 0 0 0 0 1√
2


, N3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0

0 0 0 0 0 1√
2

0

0 0 0 0 0 0 1√
2


;
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iii. N4 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0

0 0 0 0 1√
2

0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, N5 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


;

iv. N6 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, N7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


;

v. N8 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, N9 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


.

Defining the probability-weighed matrices M1 =
√
γ1N1, M2 =

√
γ2N2, M3 =

√
γ2N3,

M4 =
√
γ3N4, M5 =

√
γ3N5, M6 =

√
γ4N6, M7 =

√
γ4N7, M8 =

√
γ5N8 and M9 =

√
γ5N9

we obtain a representation for the whole process T .

5.3.2 Checking GAS

By looking at the structure of the matrices, it is easy to note that the subspaceHS1 = span({|1〉, |3〉})
is invariant. This allows us to employ the results of Section 5.2.1 in order to to check if it
is also GAS. We must look at the sequence of supports T ∗n(|1〉〈1|+ |3〉〈3|), obtaining:

supp(T ∗(|1〉〈1|+ |3〉〈3|)) = span(|1〉, |3〉, |5〉),
supp(T ∗2(|1〉〈1|+ |3〉〈3|)) = span(|1〉, |3〉, |5〉, |6〉, |7〉),
supp(T ∗3(|1〉〈1|+ |3〉〈3|)) = span(|1〉, |3〉, |5〉, |6〉, |7〉).

Since this sequence stops before covering the whole H, by Corollary 2 HS1 is not GAS.

5.3.3 Nested Faces

It is interesting find out what is the minimal subspace that contains HS1 and is GAS. This
can be done using the nested faces construction, thanks to the results in section 5.1.2.
Decomposition (5.14) returns in this case the following subspaces, each characterized by
the spectral radius of the corresponding TRi :

HT1 = span({|2〉, |4〉}) σ(TR1) = 1,

HT2 = span({|5〉}) σ(TR2) = 1− γ3,
HT3 = span({|6〉}) σ(TR3) = 1− γ4,
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HT4 = span({|7〉}) σ(TR4) = 1− γ5.

As expected, given Proposition 7, σ(TR1) = 1; moreover, the same proposition permits
to obtain the minimal GAS subspace, which is HS = HS1 ⊕ HT1 . In our case where
HT1 = HS2 = span({|2〉, |4〉}), we obtain:

HS = span({|1〉, |3〉, |2〉, |4〉}).

The subspaceHS can be used as the starting point for the DID; doing so, decomposition
(5.36) is given by:

HT ′1 = span({|5〉}),
HT ′2 = span({|6〉, |7〉}).

For any of these subspaces there is a minimal and a maximal transition probability, as
explained in Section 5.2, the least of which has value γ3 (in this case it can be read out
directly from the form of the dynamics, and in particular M4). A comparison with the
maximal spectral radius of the nested faces decomposition shows that both the construc-
tions give the same estimation for the covergence speed towards HS .

5.3.4 Asymptotic probabilities

Knowing that HS is GAS, it is possible to use the results in section 4.3, to evaluate
the asymptotic probabilities of the two subspaces HS1 and HS2 . In order to find the
form of the fixed-point set, it is useful to note that representing the dynamics restricted
to HS in the basis {|1〉, |3〉, |2〉, |4〉}, one directly obtains a tensor structure. In fact,
by relabeling these four states as |1〉 = |0N 〉 ⊗ |0F 〉, |2〉 = |1N 〉 ⊗ |0F 〉, |3〉 = |0N 〉 ⊗ |1F 〉
and |4〉 = |1N 〉 ⊗ |1F 〉, results in a decomposition of HS in two “virtual” subsystem of
dimension 2: HS = HN ⊗ HF . With respect to this decomposition the matrices that
generates the dynamics inside HS can be written as:

B1 =
√
γ1I2 ⊗

[
0 1
1 0

]
, B2=

√
γ2I2 ⊗

[
0 1
0 0

]
,

B3 =
√
γ2I2 ⊗

[
1 0
0 0

]
, B4=

√
1− γ1 − γ2I2 ⊗ I2.

Any of the Bi factorizes in an operator proportional to the identity on HN times another
on HF , this is a sufficient condition for HN to be a Noiseless Subsystem [9, 20]. Moreover
in this decomposition projecting onto the the subspaces HS1 and HS2 , defined above, cor-
respond to projecting onto the states |0N 〉 and |1N 〉. Thus evaluating the trace of the state
projected onto one of them returns the probability of having prepared the corresponding
state in HN . To do this in the asymptotic limit we can use the results of Section 4.3, since
both subspaces are invariant.

Turning to the asymptotic probabilities, it is convenient to evaluate the limits of the
projections, as is done in the proof of Proposition 3, and then apply them to the initial
state:

lim
n→∞

E∗n(ΠS1) = |1〉〈1|+ |3〉〈3|+ 1

2
(|5〉〈5|+ |6〉〈6|+ |7〉〈7|),

lim
n→∞

E∗n(ΠS2) = |2〉〈2|+ |4〉〈4|+ 1

2
(|5〉〈5|+ |6〉〈6|+ |7〉〈7|).
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5. Convergence Tests and Subspace Decompositions

By these, if the initial state is ρ0 = 1
7I7, we obtain:

lim
n→∞

Tr(ΠS1En(ρ0)) =
1

2
,

lim
n→∞

Tr(ΠS2En(ρ0)) =
1

2
.

If instead the initial state is ρ0 = 1
2(|1〉〈1|+ |7〉〈7|), then we have

lim
n→∞

Tr(ΠS1En(ρ0)) =
3

4
,

lim
n→∞

Tr(ΠS2En(ρ0)) =
1

4
.
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6. Finite-Time Convergence to
Subspaces

6.1 A Motivating Example

Consider the CPTP map T , described by the following matrices

M1 =

 0 1 0
0 0 1
0 0 0

 , M2 =

 1 0 0
0 0 0
0 0 0

 , (6.1)

in the basis {|ϕ1〉, |ϕ2〉, |ϕ3〉}.
For this map the subspace generated by |ϕ1〉 is GAS. The interesting characteristic is

that this subspace is reached in a finite number of steps: whatever is the initial condition,
after two steps the state is the only fixed point

ρf = |ϕ1〉〈ϕ1|. (6.2)

To convince ourselves of this, it suffices to consider how the identity operator is transformed
under the action of T :

T (I) = 2|ϕ1〉〈ϕ1|+ |ϕ2〉〈ϕ2|,
T 2(I) = 3|ϕ1〉〈ϕ1|. (6.3)

Since for any density operator we have ρ ≤ I, applying T leads to T 2(ρ) ≤ T 2(I), which
implies that the support of T 2(ρ) is contained in span(|ϕ1〉) and then that it coincides with
ρf . In analogy with classical linear system, this phenomenon is impossible in the case of
continuous time evolution [12].

In this example the state ρf is obtained in a finite number of steps from any initial
condition. This is the most interesting case for applications, however in the following
we look at a more general situation, this permits to obtain some results which are not
immediate if only this special case is considered. We shall say that a subspace HS , is
dead-beat in k steps, if

Tn(ρ) ∈ DS ∀ρ ∈ D(H), n ≥ k, (6.4)

and k is the least integer for which (6.4) holds. In some situation we could know that
(6.4) holds, but we do not know if k is minimal. In this case clearly HS is dead-beat, but
in general not in k steps, what we can easily check is that HS is dead-beat in at least k
steps. Due to positiveness of density operators (6.4) is easily seen to be equivalent to

Tr(ΠRT
n(ρ)) = 0 ∀ρ ∈ D(H), n ≥ k, (6.5)

where ΠR is the orthogonal projection on HR = H⊥S .
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6.2 Characterization

To characterize the subspaces that fulfill condition (6.4), first we derive a condition which
is easier to check, since it does not involve the whole evolution.

Lemma 8
Let T be a CPTP map, HS a subspace of the underlying Hilbert space and ΠR the orthogonal
projection on H⊥S . If for some k

Tr(ΠRT
k(ρ)) = 0 ∀ρ ∈ D(H), (6.6)

then HS is dead-beat in at least k steps.

Proof.
This property is easily seen looking at the dual evolution. In this case the dead-beat
condition (6.5) becomes

Tr(T ∗n(ΠR)ρ) = 0 ∀ρ ∈ D(H), n ≥ k, (6.7)

which is the same as
T ∗n(ΠR) = 0 ∀n ≥ k. (6.8)

Rewriting (6.6) we obtain

Tr(T ∗k(ΠR)ρ) = 0 ∀ρ ∈ D(H) (6.9)

or equivalently
T ∗k(ΠR) = 0. (6.10)

Since T ∗ is a linear map (6.10) implies (6.8).

To obtain some results on dead-beat subspaces we shall mostly follow what is done in
the example at the beginning, we restrict our attention on how the support of a density
operator (or more generally of a PSD matrix) evolves during the evolution. To obtain
general results looking only at how a particular support evolves, a direct consequence of
positiveness for maps will be useful.

Lemma 9
Let T be a positive map. For any X,Y ∈ H+(H), if

supp(Y ) ⊂ supp(X) (6.11)

then
supp(T (Y )) ⊂ supp(T (X)). (6.12)

By a simple inductive argument this can be generalized at supp(Tn(Y )) ⊂ supp(Tn(X)),
∀n. Moreover if supp(Y ) = supp(X) then supp(Tn(Y )) = supp(Tn(X)).

Proof.
Let ΠY and ΠX be the orthogonal projections onto supp(Y ) and supp(X) respectively.
For some real numbers a, b > 0 we have

aΠY ≤ Y ≤ bΠY , (6.13)
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6. Finite-Time Convergence to Subspaces

then applying T

T (aΠY ) ≤ T (Y ) ≤ T (bΠY ), (6.14)

which implies

supp(T (ΠY )) = supp(T (Y )). (6.15)

In the same way

supp(T (ΠX)) = supp(T (X)). (6.16)

Now by (6.11)

ΠY ≤ ΠX , (6.17)

and then, applying T and looking at the supports we obtain

supp(T (Y )) = supp(T (ΠY )) ⊂ supp(T (ΠX)) = supp(T (X)). (6.18)

The last proposition offers a physical interpretation: if we think at the dimension of
the support as an indicator of the degree of classical uncertainty in the knowledge of the
state, this property says that the order of states with respect to this indicator is preserved
by positive maps. Also, and maybe more interesting, if we are able to stabilize a state
in finite time, starting from a full rank state (i.e. a maximal uncertain state), then we
can stabilize it (with the same means) starting from any state (to be noted the property
immediately extends even if different positive maps are applied).

If we combine the last two properties we obtain another simple way to check if a
subspace is dead-beat: HS is dead-beat in at least k steps if

supp(T k(I)) ⊂ HS . (6.19)

This was exactly the idea we used in the example. Also notice that here the use of the
identity is only a matter of convenience: any other operator of full rank can be used instead
(and in fact by the preceding their supports evolve in the same way). We can make the
last observation more precise.

Lemma 10
HS is dead-beat in k steps if and only if

supp(Tn(I)) 6⊂ HS , (6.20)

for n < k, and

supp(T k(I)) ⊂ HS . (6.21)

Proof.
By the former discussion if (6.21) holds HS is dead-beat in at least k steps, moreover by
(6.20) this is the minimal k for which the dead-beat condition holds.
If HS is dead-beat in k steps then (6.21) must hold, moreover if (6.20) does not hold for
some k < k by the first part HS is dead-beat in k steps which is impossible since our
definition implies that a subspace could be dead-beat only for one number of steps.

This suggests to look at how the support of I evolves under the action of T , since by
the last proposition it identifies the dead-beat subspaces, giving also the number of steps
needed to reach them.
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Proposition 11
Let T be a positive map then the sequence of supports supp(Tn(I)) is non increasing

supp(Tn+1(I)) ⊂ supp(Tn(I)), (6.22)

for any n.
Moreover if the sequence of support is stationary for some k:

supp(T k+1(I)) = supp(T k(I)), (6.23)

then it is stationary for all n ≥ k

supp(Tn(I)) = supp(T k(I)). (6.24)

Proof.
The first part is a straightforward application of what precedes.
If supp(Tn(I)) is the whole Hilbert space (6.22) is obvious.
If supp(Tn(I)) = HS then this subspace is dead-beat at least in n steps, so for any k > n
the support of T k(I) is contained in it and then (6.22) holds.
The second part is a consequence of Lemma 9, if

supp(T k+1(I)) = supp(T k(I)) (6.25)

then
supp(T k+2(I)) = supp(T k+1(I)) = supp(T k(I)), (6.26)

and iterating
supp(Tn+k(I)) = supp(T k(I)). (6.27)

Corollary 3
Let T be a CPTP map and HS a dead-beat subspace for T . Then it is dead-beat in at most
d− 1 steps, where d is the dimension of the whole Hilbert space.

Proof.
By the last proposition we know that supp(Tn(I)) is decreasing and if at some step stops,
then it remains stationary. Since a decrease in the sense of inclusion implies a decrease in
the dimension this can happen only for the first d− 1 steps.

If k is the number of steps in which HS is dead-beat, looking at Lemma 10, equations
(6.20) and (6.21) imply that the decrease is strict at least until k, then it must be k ≤
d− 1.

If we put together what we know until now, we see that the sequence of supports Tn(I)
gives us a sequence of dead-beat subspaces until it stops. These subspaces are minimal,
since by Lemma 10 any subspace which is dead-beat in k steps must contains supp(T k(I)).
As we will see later this property will assure also invariance of these subspaces.

Before turning to this a discussion about how invariance and dead-beat behavior relate
seems appropriate. Dead-beat behavior requests that the subspace is the only possible after
a fixed k, on the other hand invariance requests that starting on a subspace we remains in
it for any n. As will be clear later, the problem of dead-beat subspaces is that we do not
request the minimality property necessary: if HS is dead-beat then any subspace which

42



6. Finite-Time Convergence to Subspaces

contains it is dead-beat too. To see why this could be a problem we refer to the example
at the beginning, we know that the subspace generated by |ϕ1〉 is dead-beat in 2 steps and
this subspace is also invariant. On the other hand span(|ϕ1〉, |ϕ3〉) is also dead-beat in two
steps but not invariant. The problem with this last subspace is the presence of |ϕ3〉.

Proposition 12
If HS is dead-beat in k steps, and exists ρ ∈ D(H) such that

supp(T k(ρ)) = HS (6.28)

then HS is also invariant.

By Lemma 9 1
dI must be one of these ρ.

Proof.
By dead-beat behavior

supp(Tn(ρ)) ⊂ HS , (6.29)

for any n ≥ k. If ρS ∈ DS then

supp(ρS) ⊂ HS = supp(T k(ρ)), (6.30)

which implies
supp(Tn(ρS)) ⊂ supp(T k+n(ρ)) ⊂ HS , (6.31)

or equivalently
Tn(ρS) ∈ DS . (6.32)

If we call
HSi = supp(TN−i+1(I)), (6.33)

for i = 1, . . . , N , where N is the maximal n until supp(Tn(I)) stops, we obtain a nested
sequence of subspaces where any HSi is dead beat in N− i+1 steps and invariant. By this
and (6.33), if we use a suitable basis (a basis such that if we restrict to the first dim(HSi)
elements we obtain a basis for HSi), the matrices Mk become of the form

Mk =


Mk,S1 Mk,P1,2 Mk,P1,3 . . . Mk,P1,N+1

0 0 Mk,P2,3

...
...

...
. . .

0 0 · · · Mk,PN,N+1

0 0 · · · 0

 . (6.34)

HS1 is the minimal dead-beat subspace, and the dynamics restrict to it after N steps;
since it is invariant we can consider the map induced on its orthogonal complement. If we
look at this map, it is defined by the matrices:

Mk =


0 Mk,S2 Mk,P2,3 . . . Mk,P2,N+1

0 0 Mk,P3,4

...
...

...
. . .

0 0 · · · Mk,PN,N+1

0 0 · · · 0

 . (6.35)
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It is readily seen that these matrices define a nilpotent map of index N (and also that any
of these matrices is nilpotent of index at most N). Moreover, if for an invariant subspace
the map induced on its orthogonal complement is nilpotent, clearly that subspace is dead-
beat.

6.3 Finite-Time Convergence and Nested Faces

The structure of subspaces, highlighted in the previous section, shares some similarities
with that one obtained applying the first decomposition of Chapter 5; both are a sequence
of nested faces, to which the cone of PSD matrices restricts under the action of T . It
turns out that these two structures are related: the subspace HS1 is the union of the
faces identified during the construction except the last, which has to be associated to zero
spectral radius, otherwise there is no possibility of convergence in finite time. To prove this
we shall prove an equivalent fact: if in the decomposition (5.12) all the TRi have positive
spectral radius then supp(Tn(X)) = H for any n for an appropriate full rank X.

Lemma 11
Let T be a CP map, if σ(T ) > 0,

D = ker((T − σ(T ))d
2
) ∩ H+(H) (6.36)

and

supp(D) = H, (6.37)

then exists X ∈ H+(H) such that, for any n

supp(Tn(X)) = H (6.38)

Proof.
The following construction is a refinement of the construction considered in Section 5.1.
Let

D1 = ker(T − σ(T )) ∩ H+(H), (6.39)

since T is positive D1 contains non zero vectors. Pick X1 of maximal rank in D1. If
supp(D1) = H then X1 is an eigenvector of maximal rank and X = X1 satisfies (6.38). In
the other case by the results of Chapter 5 supp(D1) is an invariant subspace, so we can
consider the map TR1 on its complement. Due to condition (6.37) σ(T ) = σ(TR1), and we
can consider a D2 to obtain an X2. Iterating this we can find Xi such that the sum of
their supports is H. By the construction is readily seen that for any i

supp(Xi) ⊂ supp(T (Xi)), (6.40)

this is a consequence of the fact that they are eigenvectors for some “part” of the applica-
tion, so their supports under the action of T can only grow (here the hypothesis σ(T ) > 0
is needed). Then X =

∑
iXi is what we are looking for:

supp(T (X)) = supp(
∑
i

T (Xi))), (6.41)

since any terms in the sum is a PSD matrix the support of the sum is the sum of the
supports of the elements, then by (6.40), X fulfills (6.38).
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6. Finite-Time Convergence to Subspaces

Proposition 13
Let T be a CPTP map. If in the decomposition (5.12) all the TRi have positive spectral
radius then exists X ∈ H+(H) such that

supp(X) = H,
supp(T (X)) = H. (6.42)

Proof.
If we consider the block form induced by the decomposition, the matrices in an OSR of T
are upper triangular. The diagonal blocks define CP maps Ti on HTi (these subspaces are
that ones defined in Section 5.1). For these maps we can apply the preceding lemma and
obtain Xi, one for HTi , such that its support remains the whole HTi when Ti is applied.
If we look at how these Xi are transformed by T , thanks to upper triangular matrices we
see that the same argument used in the last proof works again:

X =
∑
i

Xi. (6.43)

A question which comes out naturally is if even the DID is related with dead-beat
behavior, looking at the example, we could note that if we put HS = T d(I) and apply the
DID (clearly this subspace is GAS for any T ) the sequence of subspaces found is the same
sequence of supp(Tn(I)) (in reversed order), and then ask if this is a general property, or
at least if these two chains have always the same length.
It turns out that both these assertions could fail, a simple example is the map defined by
the matrices

M1 =


0 0 1 0
0 0 0 1√

2

0 0 0 1√
2

0 0 0 0

 , M2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (6.44)

in the basis {|ϕ1〉, |ϕ2〉, |ϕ3〉 |ϕ4〉}. In this case the basis is already that one of the DID,
which gives only one subspace, while the decomposition in dead-beat subspaces is com-
posed by two subspaces.
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7. Conclusion

With the increasing interest for quantum information, more attention has been posed on
CP maps, which are commonly used to describe the evolution of open Markovian quantum
systems. The passage from conservative to dissipative system has led to an in depth study
of the structure of the set of fixed points and peripheral eigenvectors, which is now well
known [5, 6].

In this work we focused on their asymptotic behavior, characterizing the probabilities
and the structure of the “vanishing” subspace. Some works have already addressed parts
of this problems in the continuous-time case [8, 11, 12], and the ideas beyond them have
been reused here. However, developing the analysis directly for the discrete-time dynamics,
permits to obtain some characteristic results, since discrete-time evolutions have their own
peculiarities and cannot always be obtained by sampling of continuous one [13]. We have
been concerned with different aspects of the evolution:

- in the first part we derived analytic formulas for the asymptotic probabilities which
results from the iteration of a CPTP map, given an initial state, in different sce-
narios. These include simple iteration of the map, as well as iteration of maps and
measurement of appropriate observables.

- The central part of the work deals with two Hilbert-space decompositions. The first
is the nested-face decomposition, which can be seen as an extension to discrete-time
system of part of the results in [12], with the notable difference that we allow for
any invariant subspace as starting point. The following DID decomposition has
been adapted from the analogous, continuos-time decomposition presented in [8], to
which a dual characterization has been added. Both provide methods to evaluate
the attractivity properties of an invariant subspace, and to estimate the converge
speed.

- Finally, a well known aspect of discrete-time system has been analyzed in depth: the
possibility that the map has zero eigenvalues, which permits to reach a subspace in
finite time. This is of course a topic of interest in many control application [10, 7, 22].

These results complements known results in the theory of discrete-time quantum semi-
gruops, and stand between a pure theoretical works in quantum dynamical system theory
and its application of quantum information and control.

Further developments could aim to find methodologies to obtain state preparation in
finite time or asymptotically, given some specific control capabilities. Particularly interest-
ing is the case of preparation of entangled state, which has many application in quantum
information [23, 24, 25, 26, 27]. If perfect preparation cannot be achieved, the focus could
be on partially prepare a state, i.e. with a (possibly high) probability. In this context the
asymptotic formulas derived can be some of the tools used during the design.
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