




Abstract

In this thesis we will study through MC simulations the occurrence and the kinds of links
that forms between three polymer rings forced to stay close to each other as a function
of their interaction, reporting also their metric and thermodynamical properties. In order
to do that we will make use of a cubic lattice model of triples of self-avoiding polygons
that are mutually attracting. We will show that the metric properties display a dicrease as
the attractive interaction grows, which together with thermodynamical properties suggests
that the system undergoes a phase transition: it passes from a segregated to a mixed phase.
This fact is also indicated by the system topology which we investigated using pairwise
indices despite having triples of rings. However this approach allowed us to report the
occurrence of some links, which start to emerge after the critical point and, plotted versus
the interaction, follow different trend that will be reported and commented in the specific
chapter.
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Introduction

Topological linking between polymer rings is crucial in order to understand their rheolog-
ical properties: its usefulness has been proven in the description of DNA [2] transcription
and in its synthesis in nanostructures [4].
The purpose of this thesis is to count and classify the different ways three polymer rings
randomly entangle themselves at equilibrium under a constraint that keeps them suf-
ficiently close, and how the topology of the system evolves as their mutual attraction
varies, keeping an eye on their metric and thermodynamic properties. Previous works
have already studied metric features of polymers as self avoiding random walks in a lattice
[8],[1],some of them analyzing their topological properties [11] [10] [13]: in [9] this was
done for a single polymer ring and in [13] for two polymer rings: the model is a general-
ization of these previous works to 3 rings. The embedding space is a cubic lattice where
rings are modeled as R

3 lattice polygons (i.e. closed self and mutual avoiding walks) each
constrained to have some vertices at one lattice step distance apart from the other two
polygons; moreover a short range attraction between polygons is added, affecting only
nearest neighbours vertices. For the thesis purpose, i.e. analyzing polymers linking topol-
ogy one expects that the most interesting topological states occur in the strong attractive
regime. Unfortunately, not even in the 2 rings case [13] it is easy to have a rigorous theo-
retical description of the embeddings under strong attractive interactions, thus to explore
these configurations, Monte Carlo simulations are considered.
The MC simulations used in this thesis exploit a classic Metropolis-Hastings algorithm
implemented using pivot moves similar to those described in [8], and Verdier-Stockmayer
moves [18], which has been generalized for the case of three rings: the specific features
of these moves is going to be discussed later in the thesis; to put it short they guarantee
that self and mutual avoidance holds throughout the simulations and allow to move large
parts of the polygons through a set of spatial transformations. Besides the specific moves
carried out, other features of the algorithm will be discussed and different approaches will
be compared in order to fully explain its advantages and limits.
In order to analyze polymers topology strong semplifications were brought to the generated
lattice configurations so as to make the link occurring between them clearer. Furthermore
the linking number Lk, which will be defined in the specific chapter, has been used as link-
complexity index: as will be remarked later although it is a pairwise index, it can give
some insight about multicomponents link topology. In the topological investigation, six
different kinds of pairwise links appeared which gave rise to many different combinations
of triple link pairs that were then classified in macrogroups.
If one care to study links topology of such a model an analysis of thermodynamics can’t
be neglected: polymers topology is strongly affected by some peculiar thermodynamic
features of this system as shown in [13]. Self attracting rings, undergo a phase transition
(theta transition) [14] from a swollen to a compact phase at a given temperature Tθ. In our
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model self-attraction is neglected but we will show that the mutual attraction between the
3 rings will induce a segregated to mixing transition. More precisely for weak attraction the
dominant configurations are those where the 3 rings are swollen and tend to be separated
(segregation) while at sufficiently large attraction the system is in a mixed phase where
the 3 ring interpenetrate one to another; in this phase linking should be highly probable.
In this thesis we first study the metric and thermodynamic properties of this system and
its topological (linking) properties. The thesis is organised as follows: in chapter 1&2 we
will discuss about the theorethical backround, i.e. model details and a brief recap of links
theory notions that are exploited in this work. In chapter 3&4 a description of the used
algorithm will be presented along with some analysis on its strenghts and weaknesses. In
chapter 5&6 we will discuss the physical and topological results of the simulation and in
chapter 7 we will reach the conclusions.
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which is the same as the non interactiong SAW case ν = 0.587. If the solvent is bad
the polymer will instead collapses onto a embedded configuration and with an exponent
ν = 1/3 , which is typical of the dense-polymer phase [17].
This dual behaviour was observed in experiments [15], in simulations involving one self
interacting self avoiding polygon [13] and in simulations involving two self and mutual
interacting self-avoiding polygons; in this thesis we will show that such a phenomenon
occurs also in simulations over three mutual interacting (self interaction is not present)
self-avoiding polygons. Moreover for a single ring [17] and ring pairs [13] it was proved
that behind its change in the metrics there is actually a phase transition: below Tθ the
system is in the globule phase and above it’s in the coiled phase, while at Tθ there is a
third phase with its own exponent ν. Since in this work the divergence of free energy

F3n(β) = lim
x→∞

1

3n
logZ3n(β) (1.1.2)

for a certain βc is not proved (moreover it’s not even shown that it esixsts for β > 0 [17]
), we can not formally state that the system undergoes a phase transition, even if, as will
be shown, the metric properties display abrupt change as βc ≈ 0.35 is approached (in [13]
βc ≈ 0.3).
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[7] and topology is modified). If the resulting configuration fullfills self-avoidingness, the
metropolis test is executed over the configuration which is possibly saved or discarded. Its
attempts of moving large pieces of polygon are very likely to be rejected but a success is
rewarded by a remarkable change in global observables and thus by giving a good incorre-
lation between samples: it just takes about O(NlnN) computer time to tweak effectively
a given configuration, while it takes O(N) just to set up a N-step polygon [7].

3.2 Local moves

Since the pivot algorithm alone was not able to provide sufficient uncorrelation between
samples as will be discussed in the next chapter (this affected in particular the runs for high
betas), the algorithm was enriched adding Verdier-Stockmayer moves [18]. These moves
include ±90°, 180° rotations and diagonal reflections as described in the pivot algorithm
but performed picking as pivots two vertices that are two lattice units apart. It may
happen that the pivots for the local transformation are chosen along a straight line: in
that case the move is not attempted. Since the result is just a slight modification of the
polygon, it takes a few time to perform one but its use leads to a better uncorrelation
between samples. However it is necessary to perform a lot of local moves to make them
effective, so a number of (N1+N2+N3)

10 local moves where performed for each pivot move
executed: this procedure noticeably extended simulations time. These moves alone are
not sufficient to provide ergodicity, moreover they are not able to modify configurations
topology so it is not possible to rely only on them.

3.3 Multiple Markov Chain

Using pivot algorithm some issues might arise at high β: because of the strong interaction
between polygons, a large fraction of moves are rejected and relaxing to equilibrium might
take a very long time: to overcome this problem the algorithm has been enriched with
multiple Markov chain swapping described in [16]: The idea is to select a set of βi in
the interval [β′;β′′] where for β′ convergence is fast and for β′′ convergence is slow; βi
must be close enough so there is overlap between relative distrubutions. Each βi-Markov
chain is run in parallel for a specified number of steps, then a contiguous pair of β, i.e.
βi,βi+1 is chosen uniformly between the m-1 possible contiguous pairs and a swap between
βi configuration and βi+1 configuration is attempted. For example, if, before the swap
is attempted, the state of the l-th chain is in Sl and the state of the (l+1)-th chain is
Sl+1,probability of success r(l, l + 1) is given by:

r(l, l + 1) = min

(

1,
πSl+1

(βl)πSl
(βl+1)

πSl
(βl)πSl+1

(βl+1)

)

(3.3.1)

Where πS(βl) is the probability of finding the polygons of βl chain in the state S. The whole
process itself is a Markov chain with unique limit distribution the product distribution
of the single Markov chains [16]. It is important to check that the swapping success rate
between βi,βi+1 is not too low, and that each configuration as is swapped between the β,
spend at each β comparable times. Too low time spent at a certain β may be indicative
of non ergodicity [5].
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3.4 The Simulation procedure

To run a simulation some parameters are asked to the user:

• Polygons length for each polygon,

• Number of parallel Markov chain through which run the simulation,

• Betas for each chain, both mutual and for polygons self interaction,

• Every how many moves a swap trial must be executed,

• How many relaxation steps,

• file name for saved saw,

• Every how many tried moves a configuration must be held,

• How many samples must be saved,

• A seed for random number generators,

• After how many moves saving must be started.

The simulation gives three output files back:

• A file with saved saw,

• Output: where the observables for each configuration are saved,

• Structures: where the coordinates of each saved configuration are saved,

• Confs: where the coordinates of smoothed out polygons are saved,

• A file with saved saw.
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The graphs show how for each N, the percentage of finding a link increases abruptly for
β > βc; in the mixed phase at β ' 0.7 longer rings seem to display Star-of-David links
with higher frequency rather than Solomon links or Whitehead links while for medium-
short rings this trend is inverted. The latter two have maximum occurrence at β ' 0.6.
Close to βc Catenanes and 3-Hopf links display a peak while at β < βc the 3-Unlink is the
dominant link; Borromean links are rare at each β. However as β grows more and more
links were classified as ’unknown’.
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Chapter 7

Conclusions

In this thesis in order to investigate the topological, metric and thermodynamical proper-
ties of a system involving three ring polymers, we have modeled them as mutually inter-
acting self avoiding polygons in a cubic lattice. We implemented a Monte Carlo algorithm
to generate uncorrelated samples exploiting pivot moves to carry out global change at each
configuration and fullfill ergodicity enriched with local Verdier-Stockmayer moves to make
up for low success ratio of global moves, moreover the simulations were run through Multi-
ple Markov Chains which proved themselves to be suitable to decrease correlation between
samples. We found that metric observables such as radius of gyration, distance between
center of mass and occupied volume tend to decrease as the mutual interaction increases;
moreover as already reported in previous works for different systems, albeit lacking of a
formal proof we found some evidencies that a phase transition actually occurs at βc ' 0.35
as is suggested by the trend of metric observables and primarily by the mutual contacts
raise and by the divergence of specific heat. We verified therefore that for βc < 0.35 the
system is in a segregated phase and behaves like a non interacting self avoiding walk while
for βc > 0.35 it’s in a mixed phase and behaves as a dense-phase polymer. The topology
was investigated analysing only pairwise link types, thus we had to classify together dif-
ferent kinds of link that display the same pairwise link type. This choice was lead by the
computational expensiveness of multicomponent links parameters. Following this path we
found out that most of the link types emerge in such a system in the mixed phase and that
links such as 3-catenanes and 3-hopf links display a maximum close to βc especially as the
polymer length increases, while configurations displaying other links such as Whitehead,
Solomon and Star-of-David occur more frequently as beta increases and reach maximum
at β > βc. A little fraction of 3-unlinked 031 configurations were found to be Borromean
link: in order to find them we searched among those configurations whose rings were not
shrunk down to the minimal size N = 4 of a trivial link (unlink).
Some possible fields that such a model could address to range from biology to material
science: some microorganisms like trypanosomes display a quasi planar chainmail DNA
texture where each unit is a ring entagled to other rings [2]: the influence of topoisomerase
during DNA trascription may perturb such a system, complexifying its topology. In gen-
eral this analysis may be useful for systems characterized by a ring-entagled structure,
which is a topic that drew lot of attentions lately in material science [6].
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