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Abstract

This Master Thesis provides an analysis to find a numerically efficient method to model
a satellite flexible bodies in the MATLAB - Simulink environment. The numerical anal-
ysis is conducted by comparing two mathematical representations of flexible bodies: the
Lumped-parameter method and the Flexible-beam method, which are implemented by the
Simulation Tool to model and simulate the dynamics of a solar panel and a 3-DOF robotic
arm.
This study is on purpose to contribute to a project conducted at the University of Padua
in collaboration with the European Space Agency (ESA): it focuses on the development
of the Guidance Navigation Control technologies (GNC) suitable to be applied to both
In-Orbit Servicing (IOS) and Active Debris Removal (ADR) missions conducted by a
chaser spacecraft equipped with a robotic arm that can grab space debris and lock onto
other satellites; in particular, the research activity under contract is a simulator of the
dynamics of Close Proximity Operations (CPOs) scenarios, called Functional Engineering
Simulator (FES).
The solar panel and robotic arm mounted on the spacecraft behave as flexible bodies and
need to be studied because their deformations may occasionally become severe enough to
affect the performance of their respective systems. If these effects occur, vibrations are
significantly amplified, accelerating the rate of mechanical wear, increasing power con-
sumption, and interfering with high-precision tasks. The goals of this Master Thesis are:
(1) to create a reliable simulation tool to study the dynamic response of the solar panel
subject to external perturbations and the effects of the flexible elements of the robotic
arm during its motion, (2) to compare the two flexible body methods in terms of accuracy
of results and execution time, (3) to find the mathematical model that can adequately
represent the flexible body theory so that it can be used to model a real-time simulator.
The solar panel is modeled according to two different scenarios, which represent two ex-
amples of space mission architectures requiring robotic operations in the near future. Its
behavior is studied by analyzing the response to impulses caused by external perturba-
tions acting on the solar panel surface. On the other hand, the robotic arm is modeled
to follow a rectilinear path from a starting point to an end point and the behavior of its
flexible elements is studied at each time-step of this motion.
The flexible-beam method consists of using an existing Simscape Multibody block to model
the spacecraft element. Hence, it has been considered as a benchmark in order to verify
the reliability of the lumped-parameter method, for which the results demonstrated that
it is a valid tool for describing the behavior of flexible bodies of a spacecraft, mainly due
to its fast execution times, which make it suitable for modeling in a real-time simulator.
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Sommario

Questa Tesi Magistrale fornisce un’analisi per trovare un metodo numericamente efficiente
per modellare i corpi flessibili di un satellite. L’analisi numerica è condotta su MATLAB
- Simulink confrontando due rappresentazioni matematiche dei corpi flessibili: il metodo
a “parametri forfettari” e il metodo della “trave flessibile”, utilizzati per modellare un pan-
nello solare e un braccio robotico a 3 GdL.
Questo studio ha lo scopo di contribuire ad un progetto condotto presso l’Università di
Padova in collaborazione con l’Agenzia Spaziale Europea (ESA): esso si concentra sullo
sviluppo di tecnologie di Guidance Navigation Control (GNC) per missioni di In-Orbit
Servicing (IOS) e Active Debris Removal (ADR), condotte da un veicolo spaziale, dotato
di un braccio robotico in grado di afferrare detriti spaziali e agganciare altri satelliti; in
particolare, l’attività di ricerca oggetto del contratto è un simulatore della dinamica di
scenari per Close Proximity Operations (CPOs), denominato Functional Engineering Si-
mulator (FES).
Il pannello solare e il braccio robotico, montati sul satellite, devono essere studiati perché
le loro deformazioni possono occasionalmente diventare abbastanza severe da influenzare
sia le proprie prestazioni che quelle degli altri sistemi. Se ciò dovesse accadere, le vibrazioni
verrebbero notevolmente amplificate, accelerando il tasso di usura meccanica, aumentan-
do il consumo di energia e interferendo con i compiti che necessitano un’alta precisione.
Gli obiettivi di questa tesi Magistrale sono: (1) creare un Simulatore adatto per studiare
la risposta dinamica del pannello solare soggetto a perturbazioni esterne e gli effetti degli
elementi flessibili del braccio robotico durante il suo movimento, (2) confrontare i due
metodi dei corpi flessibili in termini di accuratezza dei risultati e tempi di simulazione,
(3) trovare il modello matematico che possa rappresentare adeguatamente la teoria dei
corpi flessibili, in modo da poter essere utilizzato per modellare un vero simulatore.
Il pannello solare è stato modellato secondo due diversi scenari, i quali rappresentano due
esempi di architetture di missioni spaziali che prevederanno operazioni con bracci robo-
tici nel prossimo futuro. Il suo comportamento è stato studiato analizzando la risposta
degli impulsi causati dalle perturbazioni esterne che agiscono sulla superficie del pannello
solare. Invece, il braccio robotico è stato modellato per seguire un percorso rettilineo da
un punto iniziale a un punto finale e il comportamento dei suoi elementi flessibili è stato
studiato ad ogni istante del suo movimento.
Per modellare un elemento del veicolo spaziale, il metodo della trave flessibile utilizza un
blocco già esistente di Simscape Multibody. Per questo motivo, esso è stato considerato
come metodo di riferimento per verificare l’affidabilità di quello a parametri forfettari, per
il quale i risultati hanno dimostrato essere uno metodo valido per descrivere il comporta-
mento dei corpi flessibili di un veicolo spaziale, soprattutto grazie ai suoi rapidi tempi di
simulazione, i quali lo rendono adatto per modellare in un vero simulatore.



vi



Contents

1 Introduction 1

1.1 In-orbit servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Manoeuvering a robotic arm in space . . . . . . . . . . . . . . . . . 7

1.2 Thesis motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 GNC and robotic arm combined control 15

2.1 Functional Engineering Simulator (FES) . . . . . . . . . . . . . . . . . . . 16

2.2 Mission scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Servicing a large GEO platform . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Servicing a small platform of a large constellation in LEO . . . . . 19

2.3 Robotic Arm physical model . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Robotic Arm control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Numerical analysis description 25

3.1 Flexible body theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Lumped-parameter and Flexible-beam method description . . . . . . . . . 31

3.2.1 Response to an impulse . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Effects of the discretization on the beam response . . . . . . . . . . 35

vii



viii CONTENTS

3.3 Application of lumped theory on models . . . . . . . . . . . . . . . . . . . 38

3.3.1 Comparison against the benchmark . . . . . . . . . . . . . . . . . . 41

3.4 Solver definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Explicit vs Implicit fixed-step solvers . . . . . . . . . . . . . . . . . 46

4 The Simulation Tool 49

4.1 The MATLAB - Simulink environment . . . . . . . . . . . . . . . . . . . . 49

4.2 MATLAB segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Simulink segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Solar panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Robotic arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Numerical results 59

5.1 Solar Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.3 Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Robotic arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 End-Effector position error . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Methods comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Solver test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusions 79



List of Tables

1 Scenario 1 chaser properties . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Scenario 1 target properties and characteristics . . . . . . . . . . . . . . . 19

3 Scenario 2 chaser properties . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Scenario 2 target properties and characteristics . . . . . . . . . . . . . . . 21

5 Kinematics parameters for the SC1 robotic arm. . . . . . . . . . . . . . . . 22

6 7075 Aluminium alloy physical and mechanical properties . . . . . . . . . . 22

7 Classification of continuous solvers type . . . . . . . . . . . . . . . . . . . . 46

8 List of fixed-step solvers [67] . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Solar panel characteristics for both scenario . . . . . . . . . . . . . . . . . 60

10 Scenario 1 Lumped-parameter method characteristics, which depends on the

Number of Elements (NOE) . . . . . . . . . . . . . . . . . . . . . . . . . . 62

11 Scenario 2 Lumped-parameter method characteristics, which depends on the

Number of Elements (NOE) . . . . . . . . . . . . . . . . . . . . . . . . . . 64

12 Comparison of the models main results for Scenario 1 . . . . . . . . . . . 68

13 Comparison of the models main results for Scenario 2 . . . . . . . . . . . 69

14 3 DOF Robotic arm characteristics . . . . . . . . . . . . . . . . . . . . . . 70

15 Lumped-parameter models end-effector position error . . . . . . . . . . . . 75

16 Flexible-beam models end-effector position error . . . . . . . . . . . . . . . 75

ix



x LIST OF TABLES

17 Rigid-body models end-effector position error . . . . . . . . . . . . . . . . 75

18 Execution Time for Lumped-parameter and Flexible-beam models . . . . . 75

19 Execution Time for the Rigid-body models . . . . . . . . . . . . . . . . . . 76

20 Solver test for 2 Numbers of Elements . . . . . . . . . . . . . . . . . . . . 77

21 Solver test for 3 Numbers of Elements . . . . . . . . . . . . . . . . . . . . 77

22 Solver test for 4 Numbers of Elements . . . . . . . . . . . . . . . . . . . . 77



List of Figures

1 Overall failure rate during an IOS mission [7] . . . . . . . . . . . . . . . . 3

2 Satellites orbits which contains most of the object passing through the GEO

region and satellites longitude distribution [21] . . . . . . . . . . . . . . . . 6

3 Typical components of a feedback control loop [30] . . . . . . . . . . . . . . 8

4 Free-flying robot prototype with 4-DOF arm [32]. . . . . . . . . . . . . . . . 8

5 Canadarm (right) during Space Shuttle mission STS-72 [40] . . . . . . . . 10

6 FES high level data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Simplified chaser and target model for the Scenario 1. . . . . . . . . . . . . 18

8 Chaser spacecraft for SC2 operations. On the right is shown the preliminary

allocation of the stowed robotic arm subsystem. . . . . . . . . . . . . . . . . 20

9 Scenario 2 target representation and geometry. . . . . . . . . . . . . . . . . 20

10 7 DOF multi-offset arm configuration . . . . . . . . . . . . . . . . . . . . . 21

11 Simple feedback control loop . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 PID block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 Modified PID block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 24

14 Rectilinear beam with constant section A (left) and the stress vector tz =

{τzx, τzy, σz}T at a generic point of the beam section A (right) [52] . . . . . 27

15 Stress plane and axis of the beam [52] . . . . . . . . . . . . . . . . . . . . 28

xi



xii LIST OF FIGURES

16 Example of flexed beam [52] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 Deformed beam block [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 Deformed beam axis [52] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 Example of a flexible body with 4 flexible units, according to the lumped-

parameter method [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

20 Continuous-time cosine signal with a frequency of 40 Hz . . . . . . . . . . 37

21 Signal in Fig. 20 sampled at three different rates . . . . . . . . . . . . . . . 38

22 A lumped flexible body with 4 rotational degrees of freedom [50] . . . . . . . 39

23 Comparison between models with α = 0.05 . . . . . . . . . . . . . . . . . . 42

24 Comparison between models with α = 0.005 . . . . . . . . . . . . . . . . . . 43

25 Classification of solvers in the Simulink library [64] . . . . . . . . . . . . . 45

26 Simulation tool structure to study the solar panel . . . . . . . . . . . . . . 50

27 Simscape model structure of the solar panel . . . . . . . . . . . . . . . . . . 52

28 Block diagrams for the solar panel subsystem . . . . . . . . . . . . . . . . . 53

29 Example of lumped Simscape diagram with three discretizations . . . . . . . 54

30 Simscape model structure of the robotic arm . . . . . . . . . . . . . . . . . 54

31 Three-link planar arm [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

32 Simscape representation of the revolute joint and the i link . . . . . . . . . 57

33 Simplified flexible body subjected to an external load Fx . . . . . . . . . . . 61

34 Scenario 1 frequency error percentage distribution for each Number of El-

ements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

35 Scenario 1 execution time of Lumped-parameter and Flexible-beam methods

based on the Number of Elements, with a Simulation Time of 20s . . . . . 63

36 Scenario 1 execution time based on Lumped-parameter and Flexible-beam

methods, with a Simulation Time of 20s . . . . . . . . . . . . . . . . . . . 64

37 Scenario 2 error percentage distribution for each Number of Elements . . . 65



LIST OF FIGURES xiii

38 Scenario 2 execution time of Lumped-parameter and Flexible-beam methods

based on the Number of Elements, with a Simulation Time of 14 s . . . . . 66

39 Scenario 2 execution time based on Lumped-parameter and Flexible-beam

methods, with a Simulation Time of 14 s . . . . . . . . . . . . . . . . . . . 67

40 Mean error between the instantaneous position of the end-effector and the

position set by the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

41 Error & Standard deviation (STD) of all models . . . . . . . . . . . . . . . 73

42 Execution time based on the models number of elements . . . . . . . . . . . 74



xiv LIST OF FIGURES



1. Introduction

The following chapter introduces briefly the context in which the research work takes

place. It is explained what In-Orbit Servicing missions are and how they are a solution

to extend the operational life of existing spacecraft and to the space debris problem.

Secondly, space manipulators and their applications to In-Orbit Servicing missions are

presented. In conclusion, the motivation and objectives of the thesis are reported, and a

brief summary of the performed work is given.

1.1 In-orbit servicing

In-orbit servicing (IOS) refers to in-orbit operations conducted by a space vehicle like re-

fueling and commodities replenishment, orbit modification (relocation) and maintenance,

upgrade, repair, assembly. Every mission requires a target which can be a non-cooperative

or cooperative space object [1]. Non-cooperative targets are space objects like pieces of

orbital debris, derelict rocket bodies, and non-operational satellites that offer no support

for relative navigation [2]. On the contrary, cooperative targets offer features designed to

help the servicer navigation system with active information [3].

The interest in space missions involving close-proximity operations is growing world-

wide [4] and in the past decades many missions emphasized the growing importance of

IOS. For instance, the assembly of the International Space Station (ISS) would not be

1



2 CHAPTER 1. INTRODUCTION

possible without satellite servicing. This need to rely on in-orbit servicing missions is

due to the presence of space mission-related difficulties that have arisen in past years. To

begin with, the risk of failure due to the inaccessibility of spacecraft in orbit, which can

lead to permanent or temporary mission degradation [5]. To avoid this problem, there

are certain design philosophies that allow a satellite to be operational for a long time

without ever being modified as unreachable. However, these solutions can lead to some

side effects:

• increased production costs due to the increased mass of satellites;

• the system requirements may need to be modified during the spacecraft operational

lifetime;

• satellites are more likely to become technically and commercially obsolete before

the end of their missions [6].

Talking about spacecraft failures, Fig. 1a shows different types of failure that can

involve the spacecraft. However, it is always difficult to attribute a cause to them. In

fact, it has been verified that a few failures can occur due to environmental conditions

(Fig. 1b), but a large number of spacecraft failures occur for unknown reasons.

Moreover, 41% of all failures happen within 1 year of in-orbit activities, which would

suggest insufficient testing and inadequate modeling of the spacecraft and its environment,

while 37% of all failures happen within 1-5 years [7]. One recent example is Intelsat-29e

which was a geostationary communications satellite that suffered a fuel leak followed by

a communication system failure, resulting in the loss of a satellite 3 years into its 15-year

design life [1]. This event could have been avoided if an on-orbit servicing infrastructure in

orbit could have helped save the spacecraft. The repair could have solved these problems

by restoring some of the satellite’s capabilities. In addition, an orbit modification could

have moved Intelsat-29e out of the geostationary orbit (GEO) belt, removing a large piece

of debris from a high-value orbit.



1.1. IN-ORBIT SERVICING 3

(a) Spacecraft failure type

(b) Proportion of failure due to space environment.

Figure 1: Overall failure rate during an IOS mission [7]

On the other hand, astronauts visited the Hubble Space Telescope five times between

1993 and 2009 to replace limited-life items such as batteries, gyroscopes and electronic

boxes, and to install state-of-the-art science instruments [8]. Every time astronauts have

visited Hubble, they have left it as a more capable and more productive observatory.

In summation, the development of IOS solutions can impact satellite and launch service

orders and, in general, the structure of the space industrial value chain [9]. Hence, if

satellites are designed to be serviced, their nominal mission life-time could be extended

to maximize the return on investment [10].

A NASA Report on IOS [11] concludes that in-orbit repair and refurbishment will di-

rectly improve overall mission reliability and will help to ensure mission success. Further-

more, these benefits will become more and more important as costs and missions challenges

will increase [3]. Servicing missions can replace failed components to keep spacecraft oper-

ational, and can upgrade onboard components to improve spacecraft performance. In fact,

the possibility to recycle existing spacecraft by extending their operational life instead of
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replacing them, may be one of the possible solutions to make the space sector long-term

sustainable [4]. A measure of system performance used to prioritize this decision is the

operational availability (Eq. 1.1), which is a measurement of how long a system has been

available to use when compared with how long it should have been available to be used.

Availability, A = MTBF/(MTBF +MTTR +MTFS) (1.1)

where MTBF is the mean time between failures and reflects reliability, MTTR is the mean

time to repair and reflects maintainability and MTFS is the mean time for supply and

reflects logistic capability [5].

Many IOS demonstrators have been launched over the last years and one of the most

prominent projects in this area was the Defense Advanced Research Projects Agency’s

(DARPA) Orbital Express program, which was launched in 2007 and provided resounding

evidence of the technical usefulness of in-orbit servicing [12]. The Orbital Express program

demonstrated autonomous in-orbit refueling and reconfiguration of satellites [13] as well

as autonomous delivery of a small payload representing an avionics upgrade package [14].

Another example is the Mission Extension Vehicle 1 (MEV-1), which raised its orbit to

rendezvous with its client satellite, Intelsat 901 (IS-901), in geosynchronous equatorial

orbit (GEO). On April 2, 2020, after three and a half months from launch, MEV-1 reposi-

tioned the spacecraft so that it could come back on line in its designated geosynchronous

spot where it will remain for five years [15]. At the end of the mission it will repeat the

process once again on new client spacecraft and provide new mission extension services.

More recently, on 12 April 2021, the Mission Extension Vehicle 2 (MEV-2) successfully

attached to the target satellite Intelsat 10-02 which had been active in geosynchronous

orbit since 2004 carring communication traffic. However, MEV-2 did not move its satellite

to a different orbit, as MEV-1 did; instead, it serves as a new engine and fuel tank to

extend the life of the spacecraft for another 5 years [16].
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In conclusion, in-orbit servicing offers the capability to physically have access to satel-

lites once in orbit. By doing so, space systems will be able to be repaired thanks to

maintenance and upgrade operations. This is going to be a way to allow space opera-

tors to mitigate risks and these technologies will allow a greater return on investment by

extending the life of existing satellites [17].

Another global interest involving close-proximity operations is the need to mitigate the

spread of space debris, which seriously threatens the sustainability of space utilization. In

1978, Kessler and Cour-Palais [18] theorized that as debris generated from launch vehicles

and damaged satellites accumulate in orbit, a tipping point is reached when they will

continually collide with themselves, increasing the population of orbital debris and leading

to an escalation of spacecraft failures. This outcome is called "Kessler Syndrome" [19].

Currently, many events occur where two satellites approach each other several kilometers

apart. In 2009, the derelict Russian military satellite Kosmos-225 collided with the active

commercial communications satellite Iridium 33 due to a not executed avoidance maneuver

at an altitude of 789 km. The U.S. Space Surveillance Network had catalogued over 2000

large debris fragments from the collision [20]. Ram S. Jakhu et al. [11] show that more

than 21,000 human-made objects larger than 10 cm in diameter are currently in orbit and

over 95% of them are non-functional objects. In addition, there are about 600,000 objects

measuring between 1 and 10 cm in diameter, and many hundreds of millions between 1

mm and 1 cm.

The space debris problem is particularly acute in some common orbits such as sun-

synchronous orbits, between 600 to 800 km, or geo-synchronous (GEO) orbits, at an alti-

tude of 36,000 km above the Earth equator. These are highly valuable orbital region with

high traffic due to their advantageous characteristics for observation and communication

missions (Fig. 2). Due to the non-spherical nature of the Earth, there are gravitational

forces that attract objects toward two ”geopotential wells” [21]. The centers of the two

wells are at 75◦E and 105◦W and GEO satellites must combat these gravitational forces

when executing east-west station keeping.
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(a) Orbit tracks of GEO satellites in the ECEF co-
ordinate system

(b) Distribution of longitude of the satellites in GEO
region

Figure 2: Satellites orbits which contains most of the object passing through the GEO
region and satellites longitude distribution [21]

Therefore, if objects are left uncontrolled in GEO, they will naturally be captured in

the closest geopotential well and will start oscillating around the center of the well [22].

The reason is that there is no atmospheric drag that removes abandoned objects over

time [23].

The probability of collision (PC) can be calculated with the following equation [24]:

PC = 1− exp(−V R · AC · SPD · T )

where V R is the relative collision velocity [Km/s], AC is the collision cross-section [Km2],

SPD is the spatial density [objects/Km3] and T is the time at risk [s].

There are ways to limit any collision damage and to control the spread of potentially

harmful objects: new satellites can be either placed at orbital altitudes where the danger

of collision is low, space launches can be planned to minimize the release of nonfunctional
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objects and space junk can be directed to special orbits (graveyard orbits). Low Earth

Orbit (LEO) Satellites at specific altitudes can be also retrieved and returned to Earth

when their useful life is ended. Another strategy to minimize the effects of damage to

functioning spacecraft can be reached by implementing redundant load path and fewer but

stiffer and stronger structural members. In addition, shielding can be added to protect

against dust-sized debris [25].

In-orbit servicing and Active Debris Removal (ADR) can be part of the solution. If

satellites can be inspected and repaired in orbit, malfunctions can be identified and miti-

gated without the satellite becoming part of the debris population [26]. Furthermore, the

active removal of large space debris by deorbiting, especially in critical sun-synchronous

orbits, may prevent them from collide with other satellites [27]. There are many solutions

to safely capture orbital objects, the majority relying on robotic systems. The European

Space Agency (ESA) has been developing technologies in this field for decades. An en-

couraging option is the employment of an autonomous spacecraft (chaser) equipped with

a highly dexterous robotic arm able to capture an uncontrolled space object [28].

1.1.1 Manoeuvering a robotic arm in space

The mechanical system of a robot manipulator consists of a sequence of links intercon-

nected by means of articulations (joints). A manipulation apparatus is characterized by

an arm with joints that ensures mobility, a wrist that confers dexterity, and an end-effector

at the end of the manipulator that performs the task required of the robot [29].

Fig. 3 shows the control loop of a system. The capability to execute a task is given by

the actuators block, which provides motion to the manipulation and movement apparatus.

The connection with the outside world is made possible by the presence of sensors, which

enable data acquisition. Finally, the control block permits to make the whole system an

smooth working machine, reading data from the sensors and commanding the actuators

with well-tuned control laws.
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Controller Actuator Process

Sensor

Figure 3: Typical components of a feedback control loop [30]

Figure 4: Free-flying robot prototype with 4-DOF arm [32].

The degrees of freedom (DOF) are appropriately distributed along the mechanical

system: if the manipulator moves in Cartesian space, it must have at least 6 DOF, while

if it moves in the plane it must have at least 3 DOF. Fig. 4 shows an example of free-flying

robot prototype with 4-DOF arm, therefore, each joint adds a degree of freedom to the

mechanism. [31]. The articulation between two consecutive links can be realized with a

prismatic joint, which creates a relative translational motion between the two links, or a

revolute joint, which creates a relative rotational motion between the two links. [29].

Furthermore, if a robotic has more than 6 DOF, the manipulator is redundant, and

the same position can be reached through different configurations. However, there are

some limitations on the EE orientation if a robotic arm has less than 6 DOF.
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Nowadays, autonomous space manipulator systems are considered as a valid solution

to perform various in-orbit space missions. A space manipulator system consists of a

spacecraft with a robotic manipulator arm mounted on it [2]. The difference between

a space robot and a fixed-base robot is the free-flying base. When a robotic arm is

mounted on a satellite, its motions result in a dynamic coupling effect: the reaction force

or torque induced by the arm motions will produce translation or rotation disturbances

at the base [33]. This effect between the robotic arm and the base can severely affect the

motion accuracy of space robots in some operational tasks [34], such as in-orbit assembly

and in-orbit refueling [35]. In order to stabilize the satellite behavior during these tasks,

attitude control of the base acts against the reaction of the robotic arm and control of the

satellite-mounted robotic arm in order not to generate excess reaction against the base,

must be achieved through the coordination between these two systems [36].

Researchers have proposed several motion planning and control methods to study ac-

tive compensation control strategies for free-flying space robots. Zong et al. [37] proposed

a concurrent learning algorithm that simultaneously uses past motion data points and in-

stantaneous motion data of the system to minimize base disturbances problems after the

space manipulator has captured an unknown target. Richard W. Longman et al. [38]

studied the case of the Shuttle’s Remote Manipulator System (RMS) (Fig. 5) by compen-

sating the coupling force and torque with the Newton–Euler recursive equations. On the

other hand, Papadopoulos and Dubowsky [39] proposed a method to control the position

and attitude of a system spacecraft by using a Jacobian transpose controller to control

the manipulator and the satellite base in a coordinated manner. This control scheme has

the double advantage of allowing system motion planning to avoid impacts with the en-

vironment and maintaining a favorable manipulator configuration during the end-effector

motion. However, this method is not suitable for continuous trajectory tracking in oper-

ational space.
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Figure 5: Canadarm (right) during Space Shuttle mission STS-72 [40]

In past decades, several mission proven the feasibility of space manipulators. The

remote manipulator system (RMS), Canadarm, was successfully demonstrated in orbit

on November 1981 [41]. It was given by Canada to NASA for installation on the shuttle

orbiter and was used for deployment, retrieval, and handling of payloads up to 65000 lb

mass, 15 ft in diameter and 60 ft in length (Fig. 5). In addition, the arm became essential

in the assembly of the International Space Station (ISS) and provided a mobile and stable

work platform for Extra Vehicular Activities (EVA), enabling astronauts on spacewalks

to perform a greater variety of tasks in a shorter period time [42]. A more recent example

is the e.Deorbit mission [43], which began to be developed in 2013 by ESA Clean Space

initiative but was never launched. It was dedicated around the task of capturing and

safely deorbiting the Envisat Earth-observing satellite from its orbit by robotic capture

means: the robotic arm had to place the end-effector at the grasping point, a well-defined

position at the target launch adapter ring, while compensating the station keeping errors

of the chaser platform.

Within a space mission involving the use of a space manipulator, the robotic arm

stays retracted until after the satellite is placed in orbit and it is deployed in later phases.
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The most critical mission phase is the capture phase, in which the chaser platform and

the robotic arm are operated simultaneously during the rendezvous manoeuvres: the

chaser has to perform station keeping close to the target, while the robotic arm has to

compensate the chaser station keeping errors. In particular, the main technical challenges

of these missions are related to the design of the Guidance, Navigation and Control (GNC)

system. If a space manipulator is employed during the capture phase, the GNC aspects

become even more crucial, given the physical interaction between the robotic arm and the

satellite itself [44].

In the previous paragraphs it was explained why the interest in In-Orbit Servicing

and Active Debris Removal missions is growing worldwide. In addition to the benefits

previously presented, IOS can be of great value for scientific purposes, like supporting large

observation constellations, for orbital assembly of large structures and to support human

spaceflight. Several companies and space agencies are pushing the research in this field

and a few IOS and ADR demonstration missions have flown over the years: the “Restore-

L”, which is a NASA mission originally planned for 2020 that aimed to demonstrate the

ability to service and refuel a satellite in orbit [45], the “RemoveDEBRIS”, which is a

European Space Agency (ESA) mission launched in 2018 that consisted of a deploying

satellite releasing simulated space debris, which were then captured by a net, harpoon or

drag sail [46], and the “ELSA-d”, which is a mission developed by Astroscale, a Japanese

startup, and launched in 2021, consisting of a mother spacecraft and a target satellite,

which was supposed to be captured and removed from orbit using a magnetic docking

system [47]. These missions demonstrate the potential of IOS and ADR technologies and

highlight the growing interest in developing sustainable space environments.

1.2 Thesis motivation and objectives

The University of Padua, in collaboration with the University of Naples and the Polytech-

nic of Milan, is involved in a research activity under contract with ESA to study new GNC



12 CHAPTER 1. INTRODUCTION

algorithms for proximity operations for missions conducted by an autonomous spacecraft

equipped with a robotic arm. This Master Thesis aims to contribute to the efforts of

the University of Padua by analyzing the modeling of a spacecraft flexible bodies and

finding a numerically efficient method to accomplish this task. Specifically, the goal of

this thesis is to simulate in a MATLAB - Simulink environment the dynamics of a space-

craft solar panel and robotic arm considered as flexible bodies. This numerical analysis

is conducted by comparing two mathematical representation of the flexible bodies: the

Lumped-parameter method and the Flexible-beam method. In particular, the objectives of

this Master Thesis can be summarized as follows:

1. Analysis of these two methods for modeling flexible satellite bodies

2. Creation of a MATLAB - Simulink tool which can simulate the dynamic response

of spacecraft flexible bodies

3. Methods comparison to find a mathematical model that can adequately simulate

the flexibility of bodies, so that it can be used to model a real-time simulator

1.3 Thesis Outline

The thesis work is divided into five Chapters, excluding the Introduction:

• Chapter 2 provides a study of the Guidance, Navigation and Control design, in-

troducing two different simulation scenarios and a description of the Functional

Engineering Simulator. The physical model of the robotic arm and its control strat-

egy are then presented.

• Chapter 3 introduces the numerical analysis description. After a general approach

to the flexible bodies theory, the description of the Lumped-parameter, the Flexible-

beam methods and Simulink solvers is provided.

• Chapter 4 describes in detail the Simulation Tool implementation.
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• Chapter 5 shows the results obtained from the numerical analysis. First, the

results of the solar panel for both scenarios are presented; second, the results of the

robotic arm motion are given. For both spacecraft elements, flexible body methods

are compared. Finally, tests and results to find the best solver for all simulations

are provided.

• Chapter 6 sums up the thesis conclusions and explains which flexible body method

is best suited to be implemented to model a real time simulator.
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2. GNC and robotic arm combined con-

trol

Chapter 1.1 described why in-space robotic operations are of great interest for In-Orbit

Servicing (IOS) and Active Debris Removal (ADR) mission applications. The potential of

In-Orbit Servicing to extend the operational life of satellites and the need to implement

Active Debris Removal to effectively address the space debris problem are well known to

the space community. Furthermore, research into technical solutions to enable this class

of mission is flourishing, driven in part by the development of next-generation sensors and

control systems [44].

The Guidance, Navigation & Control (GNC) subsystem includes components used for

position determination and the components used by the Attitude Determination and Con-

trol System (ADCS). Its design and performances strongly depend on the cooperativeness

and collaborativeness of the target to be captured during an In-Orbit space robotic mis-

sion. Close proximity operations are divided into six phases [2]: (1) close-range rendezvous

and short range closing in maneuver, (2) target identification, (3) attitude synchronization

with the target, (4) manipulator deployment, (5) capture and (6) post-capture maneu-

vers. The GNC system guides the chaser through the rendezvous maneuver to a very

short distance from the target; then, phases (2) and (3) are carried out. After the manip-

ulator is released, the robotic arm reaches and grasps the target at the selected capture

15
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point [44]. The University of Padua has created a complete simulation environment to

test the developed GNC solutions, called the Functional Engineering Simulator (FES).

2.1 Functional Engineering Simulator (FES)

The FES is developed in the MATLAB - Simulink environment: it includes realistic

models of actuators (thrusters) and sensors such as Star Tracker, Inertial Measurement

Unit (IMU), and cameras. It also simulates environmental disturbances that affect system

dynamics. To comply with the multibody approach, external perturbations are applied

to each component of the system as external forces/torques; therefore, if a satellite with

deployed solar panels is considered, the perturbations act not only on the center of mass

of the satellite, but also on the center of mass of the appendages. In addition, the

FES can simulate the capture phase of different targets in different scenarios and the

stack dynamics after capture. In both phases, to assist the development of the GNC

architecture and to validate its performance, the FES includes two validation tools: (1)

the contact detection tool, which must ensure that no collisions or compenetrations occur

between two distinct bodies; (2) the energy conservation tool, which verifies that the total

energy and the linear and angular momenta of the system are conserved in the presence

of external disturbances, non-linearities (flexure and sloshing), and deactivated actuators.

The principles on which the FES is designed are:

• Reliability and simulation accuracy;

• modular structure in order to maximize its operational flexibility, reusability and

re-configurability;

• user-friendliness, with a complete documentation, a straightforward setup interface

and detailed outputs in different forms.
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Figure 6: FES high level data flow

Futhermore, because the navigation sensors and algorithms rely heavily on synthetic

images to operate, the PANGU (Planet and Asteroid Natural Scene Generation Util-

ity) software plugin is fully integrated into the FES: PANGU is a third-party software

that allows users to generate synthetic images of spatial environments and objects. It is

also used to simulate visible/infrared cameras or electro-optical (EO) sensors-and active

ranging devices.

Once launched, the FES evaluates all the parameters required for simulation of the

chosen scenario and initializes a Simulink model. Fig.6 shows the data flow diagram of

the simulator. Upon completion of the simulation, the data is saved in the workspace and

in a user-designated working directory, a PDF report is generated, and additional custom

post-processing tasks are performed to enable streamlined and fully automated execution.

Finally, a realistic 3D representation of the simulation is provided using 3D Animation

Toolbox.

2.2 Mission scenarios

This chapter defines two different scenarios, which represents two examples of mission

architectures requiring robotic operations in the near future.
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2.2.1 Servicing a large GEO platform

The first chosen scenario represents an IOS mission in a “geosynchronous equatorial orbit”

(GEO), which is a circular geosynchronous orbit 35 786 km (22.236 mi) in altitude above

Earth equator and following the direction of Earth rotation. This IOS mission architecture

is designed for mission extension and servicing of large geostationary communication

platforms. In addition, the chaser and the target are considered to have the similar

geometry (Fig. 7).

The target is a communication satellite, which is expected to be operative and control-

lable and will be refueled, updated or repaired by the GEO platform, which is equipped

with fiducial markers for the navigation aid task. In terms of capture interface, the target

is assumed to be not prepared for capture and to be semi-cooperative: a semi-cooperative

target is equipped with either active or passive artificial markers mounted according to

a specific configuration which provide indirect information about the relative state. The

capture point is considered the launcher adapter ring (LAR), a rigid interface common to

many GEO satellites that fall under this scenario.
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Figure 7: Simplified chaser and target model for the Scenario 1.
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Table 1: Scenario 1 chaser properties

Value Unit

Dimensions (D,L,H) 2100× 2300× 3100 mm

Length (s) 25 m

Mass 1900 kg

Principal moments of inertia [13500, 2000, 14000] kgm2

Solar panels 2.1× 10.85× 0.05 m

Table 2: Scenario 1 target properties and characteristics

Value Unit

Dimensions (D,L,H) 2500× 2800× 3500 mm

Length (s) 31 m

Mass 2000 kg

Principal moments of inertia [17000, 3000, 18000] kgm2

Solar panels 2.5× 13.6× 0.03 m

Target Collaboration Cooperation
Geo communication satellite Semi-collaborative Semi-cooperative

2.2.2 Servicing a small platform of a large constellation in LEO

The second scenario represents a servicing mission in a “low Earth orbit” (LEO), partic-

ularly tailored to a small platform of a large constellation. The interest is focused on the

capability of having a servicer platform used to maintain the constellation operative, pro-

viding services such as repair, refuelling, and deorbiting in case of failures or malfunction

of some satellite subsystems.

Table 3: Scenario 2 chaser properties

Value Unit

Dimensions (D,L,H) 1300× 1300× 1750 mm

Mass 372 kg

Principal moments of inertia [200, 200, 140] kgm2
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Figure 8: Chaser spacecraft for SC2 operations. On the right is shown the preliminary
allocation of the stowed robotic arm subsystem.

In this scenario the chaser is a target pointing LEO platform, without solar panels

(Fig. 8). To avoid occlusion of relative navigation sensors during capture operations, the

robotic arm subsystem is placed in the ±X or ±Y faces of the spacecraft.

The target is spinning around the axis along solar panels (Y) (Fig. 9) and is considered

semi-cooperative and prepared for servicing, featuring a grapple fixture as grapple inter-

face and fiducial markers across the spacecraft body as navigation aid. However, it is also

considered non-collaborative during the mission phase; this assumption allows including

both IOS and ADR mission architectures to a non-controllable and controllable satellite.
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x

Figure 9: Scenario 2 target representation and geometry.
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Table 4: Scenario 2 target properties and characteristics

Value Unit

Dimensions (D,L,H) 1× 1× 1 m

Mass 150 kg

Principal moments of inertia [45, 20, 50] kgm2

Solar panels 1× 1× 0.03 m

Target Collaboration Cooperation
Leo large constellation satellite Non collaborative Semi-cooperative

As explained before, a non-cooperative target is characterized by a known geometry

but there are no easily recognizable artificial markers on its surface.

2.3 Robotic Arm physical model

For both scenarios, the chaser robotic arm architecture features a 7 DOF manipulator

realized using 7 joints and a gripper, which connect four links and an EE (End-Effector).

Hence, the arm is kinematically redundant to increase its dexterity. Fig. 10 shows the

robotic arm configuration. Links are made by hollow cylinders with external radius equal

to 0.05 m and thickness equal to 0.002 m while the length is not the same for all links

(Table 5). The deployed robotic arm total length of Scenario 1 is preliminary defined

as 3 m from Table 5, whereas that of Scenario 2 is defined as 2 m. The cylinders are

made of 7075 aluminium alloy (AA7075) which is widely used for aerospace application:

its physical and mechanical properties are shown in Table 6.

Offset
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Figure 10: 7 DOF multi-offset arm configuration
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Table 5: Kinematics parameters for the SC1 robotic arm.

Length Radius Thickness Unit

Offset 160 / / mm

l1 300 50 20 mm

l2 1150 50 20 mm

l3 1150 50 20 mm

l4 400 50 20 mm

l5 100 50 20 mm

Total length 3000 / / mm

Table 6: 7075 Aluminium alloy physical and mechanical properties

Value Unit

Density 2810 kgm−3

Young’s module of Elasticity 71.7 GPa

Tensile strength (σt) 572 MPa

Poisson’s ratio (ν) 0.33

The robotic manipulator that will be modeled and analyzed in this thesis is a simplified

version of the one in Fig. 10: its model is described in Chapter 4.3.2 and involves a 3 DOF

(three joint) robotic arm with two links considered as flexible bodies, while the third link

is considered a rigid body.

2.4 Robotic Arm control

In this thesis a control strategy is implemented to control the dynamics of the robotic arm:

the Proportional-Integrative-Derivative (PID) controller, which is a feedback control loop

mechanism, widely used in industrial control systems and other applications requiring

continuous modulation control. Since the PID controller can only be applied to Single-

Input Single-Output (SISO) systems, it is necessary to use three controllers (one for each

joint), each performing decentralized control, that is, considering only one joint at a time.
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R(s) E(s)
C(s) G(s)

U(s) Y (s)

Figure 11: Simple feedback control loop

Fig. 11 shows a simple SISO (Single-input Single-output) control loop, where R(s) is

the reference signal, E(s) = R(s)−Y (s) is the error between the reference and the output

signal values and C(s) is the controller. In addition, PID controllers can be described by

their transfer functions by relating error E(s) and controller output U(s) [48]:

CPID(s) = Kp

(︃
1 +

1

Tis
+ Tds

)︃
(2.1)

However, an amplification of measurement noise in the manipulated variable is caused

by the high-frequency gain of the pure derivative action. As a result, Eq. 2.1 cannot be

implemented in practice. To solve this problem, the derivative action can be filtered with

a first-order low-pass filter so that the real PID transfer function becomes [49]:

CPID(s) = Kp

(︄
1 +

1

Tis
+

Tds
Td

N
s+ 1

)︄
(2.2)

where N is a value between 8 and 16. Eq. 2.2 shows that the PID controller is

composed of three actions:

• Kp, which is a proportional action. In a proportional controller, the steady-state

error depends inversely on the proportional gain: an high value of Kp results in an

increased response overshoot.

• Ki, which is an integral action that can automatically set the correct value of the

output u(t) so that the steady-state error is zero but, on the other hand, can worsen

the transient response. It should be noted that, in the presence of an integral action,
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the so-called integrator windup phenomenon may occur in the presence of saturation

of the control variable.

• Kd, which is a derivative action that have the effect of increasing system stability,

reducing overshoot and improving transient response.

Fig.12 shows the simplest block diagram of a PID controller. However, if the input

signal R(s) is a step function, the derived term will be impulsive. Thus, Fig. 13 shows a

different PID block diagram, in which the low filter characteristic of the system is used

to avoid impulsive responses of the derivative term.

R(s)
Y (s)

G(s)

P

I

D

Figure 12: PID block diagram

R(s)
Y (s)

G(s)

P

I
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Figure 13: Modified PID block diagram



3. Numerical analysis description

The main objective of this Master thesis is to analyze the modeling of flexible bodies and

find a numerically efficient method to study the behavior of a spacecraft solar panel and

robotic arm, both considered as flexible bodies during IOS and ADR missions. To be

used to model a real-time simulator, the method must be able to simulate the responses

of flexible bodies with a execution time less than that imposed by the simulation: real

time is the wall clock time, also called real-world time, which refers to the elapsed time

determined by a chronometer, while the execution time is derived from the clock frequency

and is the time required by the model to produce the response.

Numerous modeling techniques to describe a flexible body are available in the literature

and to achieve this goal, two different flexible body methods have been compared: the

lumped-parameter method and the flexible-beam method. The first section of this chapter

introduces the general theory of the elastic problem, then the main differences between

these two methods are provided, along with a general description of how the system

responds to a given impulse and how discretization affects the body response. Secondly,

a description of the lumped-parameter method in Simscape Multibody, shows how this

method has been implemented to study the behaviour of a flexible body. Finally, the

chapter describes in detail the features of Simulink solvers, which are used to simulate a

dynamic system by computing its model states.

25
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3.1 Flexible body theory

In constructing a multibody model, it is often assumed that bodies do not deform: each

body is treated as a rigid unit, unable to undergo the mechanically induced distortions

that real materials often experience. However, deformation can play an important role

in some systems: the movements of neighboring bodies, the loads on their joints, the

performance of control algorithms, are all vulnerable to the effects of deformation. For

example, aerodynamic forces are known to induce visible flutter in aircraft wings, while

impact forces often cause significant shaking in excavator arms. Wings and arms behave

like flexible bodies, and their deformations occasionally become severe enough to affect

the performance of their respective systems.

These effects tend to be particularly pronounced in resonant systems: resonance

greatly amplifies vibration, accelerating the rate of mechanical wear, increasing energy

consumption, and interfering with high-precision tasks. Chapter 1.1.1 describes that

robotic manipulators employ active vibration control to mitigate the effect of vibration

on the positioning accuracy of the end effector. To properly model such systems, it is

necessary to capture the behavior of their flexible bodies [50].

3.1.1 General theory

One of the most important cases in which the elastic problem can be solved is that of the

deformable beam, also known as the De Saint Venant problem (D.S.V.) [51]. The body

analyzed within this problem is a constant section rectilinear beam, also called D.S.V

solid (Fig. 14). The z-axis corresponds with the axis of the beam, while x and y axes are

the barycentric and principal axes of inertia.
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Figure 14: Rectilinear beam with constant section A (left) and the stress vector tz =
{τzx, τzy, σz}T at a generic point of the beam section A (right) [52]

The resultants, i.e., internal actions of the section dA are:

N =

∫︂
A

σzdA

Tx =

∫︂
A

τzxdA

Ty =

∫︂
A

τzydA

Mx =

∫︂
A

yσzdA

My = −
∫︂
A

xσzdA

Mt =

∫︂
A

(xτzy − yτzx)dA

(3.1)

where N is the normal force, Tx and Ty are the shear forces along x and y, Mx and

My are the bending moments around x and y, and Mt is the torque moment. These

resultants give the internal actions as a function of stresses τzx, τzy and σz; solving the

D.S.V. problem allows this relationship to be reversed, returning stresses as a function of

internal actions. However, this solution considers only homogeneous and isotropic beams,

and to obtain the solution for inhomogeneous and anisotropic beams, it is necessary to

proceed with the semi-inverse solution [53].
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Figure 15: Stress plane and axis of the beam [52]

Thanks to this solution, it is possible to study the bending case of a flexible beam.

The moment vector (Mx) is pointed as a main direction of inertia of the section and it is

perpendicular to the stress plane (y,z); the intersection between the stress plane and the

section of the beam (y) is called stress axis (s) (Fig.15).

In addition, if a beam is flexed with two equal and opposite moments at the end, the

midsection translate and rotate without bending (Fig.16); in that case, a rigid motion

is added in the origin (z = 0) to guarantee the framing condition in the origin. This

property of the mid-section of the beam is related to the Navier name and is the basis

of the Timoshenko beam model [54]. However, if it is assumed that the section remains

also perpendicular to the deformed axis of the beam, then the Euler-Bernoulli theory [55]

must be considered.
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Figure 16: Example of flexed beam [52]
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Figure 17: Deformed beam block [52]

Given a deformed beam block as in Fig.17, the initial length of the fiber y is li =

dz = Rdβ, while its length after the deformation becomes lf = (R + y)dβ. So the beam

deformation is:

εz =
lf − li
li

=
(R + y)dβ −Rdβ

Rdβ
=

y

R
= κxy (3.2)

where R is the bending radius of curvature and κx = 1
R

is the curvature.

In addition, by combining the beam deformation of the semi-inverse solution (εz = σz

E
)

with Eq.3.2, it is possible to obtain the normal tension of the deformed beam:

σz = Eκxy, while τxy = τzx = 0 (3.3)

where E is Young’s Modulus of Elasticity.

Hence, Tx = Ty = Mt = 0, so the internal actions (Eq.3.1) become:
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N =

∫︂
A

σzdA = Eκx

∫︂
A

ydA = EκxSx = 0

Mx =

∫︂
A

yσzdA = Eκx

∫︂
A

y2dA = EκxIx

My = −
∫︂
A

xσzdA = Eκx

∫︂
A

xydA = EκxIxy = 0

(3.4)

At this point, from Eq.3.4, it is possible to get the curvature as:

κx =
1

R
=

Mx

EIx
(3.5)

which, within Eq.3.3, returns the Navier formula:

σz =
Mx

Ix
y (3.6)

where Ix is the second moment of area.

This relationship describes the tensional state as a function of internal action.

Furthermore, Eq.3.5 shows that if a beam is rigid (high EIx), it is difficult to bring it to

the curvature because a higher bending moment (Mx) would be required.
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Figure 18: Deformed beam axis [52]
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The final step is to analyze the deformation of the beam axis (Fig.18), which performs

a transversal displacement v(z) equal to:

v(z) = − z2

2R
= −1

2
κxz

2 = −1

2

Mx

EIx
z2 (3.7)

The inclination angle ϕ(z) is obtained by deriving Eq.3.7 and it is considered positive

if counterclockwise:

ϕ(z) = −v′(z) = κxz =
Mx

EIx
z (3.8)

In conclusion, the final angle of deformation is:

ϕL =
MxL

EIx
(3.9)

where z = L is the length of the beam axis.

The number EIx
L

is the bending stiffness of the beam and describes the moment required

to have a rotation, while the number L
EIx

is the bending deformability of the beam and

describes the rotation corresponding to a uniform moment [52].

3.2 Lumped-parameter and Flexible-beam method de-

scription

According to the flexible-beam method, the bending and axial deformations of a flexible

beam follow the classical Euler-Bernoulli beam theory: bending can occur about any axis

in the plane of the cross-section (xy plane) of the beam. Cross-sections are assumed to

be rigid in plane, to remain planar during deformation, and to always be perpendicular

to the deformed neutral axis of the beam. The torsion of the beam is derived from De

Saint Venant torsion theory, and the cross sections are rigid in plane but free to deform

out of plane.
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In Simscape Multibody, the implementation of the flexible beam method consists of

using the Flexible Rectangular Beam block [56]. In this block, flexible beams are assumed

to consist of a homogeneous, isotropic and linearly elastic material. Furthermore, they are

assumed to be thin bodies whose length must far exceed the cross-sectional dimension,

and all deformations are assumed to be linear and small. Material properties, such as

density and Young’s Modulus of Elasticity can be specified by the user, while the beam

cross-sectional properties, such as axial, flexural, and torsional rigidities, are automati-

cally calculated by the block based on the specified geometry and material properties.

The “Number of Elements” (NOE) parameter within the beam block specifies the number

of finite elements used to discretize the beam. Its value can be specified by the user to

achieve a good compromise between simulation accuracy, which may require more ele-

ments, and simulation speed, which requires fewer elements. In addition, for bending

deformations, the beam blocks use the cubic Hermite interpolation method [57] to com-

pute the displacement distributions throughout each element, while the distributions of

axial displacement and torsional rotation are obtained by linear interpolation method.

On the other hand, the lumped-parameter method [58] treat the flexible body as a

collection of discrete flexible units fixed to one another. According to this method, each

flexible unit consists of two rigid mass elements connected through joints with internal

springs k and dampers b (Fig.19). The joints provide the necessary degrees of freedom for

deformation: rotational degrees of freedom enable bending and torsion, while translational

degrees of freedom enable axial deformation and shear. The mass, spring and damper

elements provide the inertial, restoring and dissipating forces that, collectively, cause the

deformation. The accuracy of the lumped-parameter method depends in part on the

number of mass elements used: increasing this number tends to improve the accuracy

obtained, but at a higher computational cost.
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Figure 19: Example of a flexible body with 4 flexible units, according to the lumped-
parameter method [50]

3.2.1 Response to an impulse

To properly study the behavior of flexible bodies, each method is applied in a Simulink

model and their response to an external impulse is analyzed. The impulse response of a

dynamic system is the reaction of a dynamic system in response to an external load and

describes the reaction of the system as a function of time. To compare the frequencies of

the lumped-parameter and flexible-beam methods, the response data and time are used

to compute the “Fast Fourier Transform” (FFT) of each method.

In general, for continuous periodic functions of time f(t) it is common to use the

Fourier series representation of the function:

f(t) =
∞∑︂

n=−∞

F (n)ejn2πf1t (3.10)

The period of the function is T1 = 1/f1 and F (n) is the complex Fourier coefficient, given

by

F (n) =
1

T1

∫︂ T1/2

−T1/2

f(t)e−jn2πf1t dt (3.11)

Furthermore, another representation for continuous aperiodic functions of time x(t) is

given by the integral

x(t) =
1

2π

∫︂ ∞

−∞
S(ω)ejωt dω (3.12)

where ω = 2πf . So the complex continuous frequency spectrum of the aperiodic function
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S(f) is expressed by:

S(f) =

∫︂ ∞

−∞
x(t)e−j2πft dt (3.13)

Eq.3.12 and its reciprocal Eq.3.13 are the Fourier transform pair and S(f) is referred to

as the Fourier transform of x(t).

Since the Fourier transform is a powerful tool for analysis, research was undertaken

to establish techniques for numerical calculation of the Fourier transform. The “Discrete

Fourier Transform” (DFT) thus evolved but was considered impractical until the devel-

opment of the Fast Fourier Transform (FFT) [59].

Hence, the FFT is an optimized algorithm for implementing the Discrete Fourier

Transform that converts a signal into individual spectral components and thus provides

information about the frequency of the signal. In the sample-data case, the Fourier

transform pair given in Eq. 3.12 and Eq. 3.13 for N samples becomes

S(fn) = ∆t
N−1∑︂
k=0

x(tk)e
−j2πfntk , n = 0,±1, ...,±N/2 (3.14)

x(tk) = ∆f

N/2∑︂
n=−N/2

S(fn)e
j2πfntk , k = 0, 1, ..., N − 1 (3.15)

However, if tk = k∆t, fn = n∆f , where ∆t = T/N and ∆f = 1/T , Eqs. 3.14 and 3.15

becomes [60]:

S(n) = ∆t
N−1∑︂
k=0

x(k)e−2πj(nk)/N , n = 0, ..., N − 1 (3.16)

x(k) = ∆f

N−1∑︂
n=0

S(n)e2πj(nk)/N , k = 0, ..., N − 1 (3.17)

where S(n) is the nth coefficient of the Discrete Fourier transform, x(k) denotes the

kth sample of the time series consisting of N samples and j =
√
−1. The values of x(k)

can be complex numbers, while the numbers of S(n) are always complex. For convenience

of notation, Eq. 3.16 is often written as:



3.2. LUMPED-PARAMETER AND FLEXIBLE-BEAM METHOD DESCRIPTION 35

S(n) =
N−1∑︂
k=0

x(k)W nk, n = 0, ..., N − 1 (3.18)

where

W = e−2πj/N (3.19)

The index n is called the “frequency” of the DFT since the values of x(k) are often of

a function at discrete time points.

In conclusion, the FFT is an algorithm that allows the DFT of a time series to be

calculated faster than other available algorithms: it takes advantage of the fact that the

computation of the coefficients of the DFT can be done iteratively, which saves consid-

erable computation time and also substantially reduces round-off errors associated with

these computations.

3.2.2 Effects of the discretization on the beam response

In general, discretization is the process of transferring continuous functions, models, vari-

ables and equations into discrete counterparts. This process is usually performed as a

first step to make them suitable for numerical evaluation and implementation.

The lumped-parameter method discretizes the body into flexible units, each comprising

two mass elements coupled through a joint with an internal spring and internal damper.

The accuracy of this method is largely dependent on the number of flexible units used.

Indeed, accuracy improves as the number of flexible units increases. Similarly, the flexible-

beam method improves in accuracy when the “Number of elements” (NOE) increases. This

number is located in the Discretization section of the Flexible Rectangular Beam block

and specifies the number of finite elements used to discretize the beam.

The discretization must be modified to achieve a good trade-off between simulation

accuracy, which may require a larger number of elements, and simulation speed, which

requires a smaller number of elements. For both methods, a larger number of elements
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increases the computational cost and slows down the speed of the simulation. Also, at

some point, the increase in accuracy is negligible when there are many elements.

Whenever a model is discretized, there is always a certain amount of discretization

error. The goal is to reduce this amount to a level that is considered negligible for

modeling purposes. In numerical analysis and simulation, discretization error is the error

resulting from the fact that a function of a continuous variable is represented by a finite

number of evaluations, such as on a grid [61]. Discretization error can usually be reduced

by using a more finely spaced grid, that is, by reducing the simulation step size with an

increase in computational cost.

Furthermore, in signal processing, the discretization error can be related to aliasing,

which is the effect of the appearance of new frequencies in the sampled signal after re-

construction, which were not present in the original signal. In the analysis of the impulse

response of a dynamical system, sampling is lossless if the conditions of the Sampling

Theorem are met. This theorem specifies the minimum sampling frequency at which a

continuous-time signal must be uniformly sampled so that the original signal can be com-

pletely recovered or reconstructed from these samples only. This condition is satisfied if

the sampling frequency is at least twice as high as the highest frequency component of

the analog signal to be sampled [62]. The condition is described as:

fs ≥ 2fmax (3.20)

where fs is the sampling rate (how many samples of a continuous signal is taken per

second) and fmax is the maximum-frequency component of the analog signal to be sampled.

The minimum sampling rate allowed by the sampling theorem is fs = 2fmax and it is

called the Nyquist rate [63]. However, if the condition of the sampling theorem (Eq. 3.20)

is not satisfied, the signal reconstructed from the samples is different from the original

continuous signal and results in a permanent loss of signal information. This undesirable

effect is “aliasing” and is caused by too low sampling rate for a particular signal or by
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too high frequencies present in the signal for a particular sampling rate. An example of

a signal sampled at different rates is shown below.

Fig. 21 shows the original cosine signal of 40 Hz (Fig. 20) sampled at three different

rates:

• Fig. 21a, provides an accurately sampled signal, which preserves the shape of the

original signal. In fact, the sampling frequency of 200 Hz is well above 80 Hz, which

is twice the cosine wave frequency.

• Fig. 21b, uses a sampled rate equal to the Nyquist rate. This sampled signal is at

the limit of reconstructability.

• In Fig. 21c, aliasing is expected to occur. In fact, the signal is sampled at too low

a rate to be reconstructed accurately. Therefore, it is no longer possible to recover

the original cosine wave from these sampled points.

Aliasing can be avoided by using a sufficiently large sampling rate or by filtering the

signal with a low-pass filter before sampling to ensure the condition fmax < fs/2.
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Figure 20: Continuous-time cosine signal with a frequency of 40 Hz
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Figure 21: Signal in Fig. 20 sampled at three different rates

3.3 Application of lumped theory on models

A complete lumped flexible body (Fig. 22) when subjected to purely cross-sectional forces

behaves as a damped harmonic oscillator with a rotational degree of freedom provided for

each joint. This behaviour is described by the equation of motion [50]:

Iθ̈ + bRθ̇ + kRθ = τ (3.21)

where τ is the external torque acting on the rotating mass element and θ is the

rotational displacement of that mass element from its equilibrium position.
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Figure 22: A lumped flexible body with 4 rotational degrees of freedom [50]

The parameters I, bR and kR are, respectively, the moment of inertia of a mass ele-

ment about the axis of rotation, the rotational damping coefficient of the joint, and the

rotational elastic coefficient of the joint.

In addition, since it is an harmonic system, it is possible to introduce two new pa-

rameters: the damping ratio (ζ) and the natural frequency (ω). The damping ratio is a

system parameter that describes how quickly the oscillations decay from one bounce to

the next: it can range from undamped (ζ = 0), underdamped (ζ < 1), critically damped

(ζ = 1) and overdamped (ζ > 1). The natural frequency is the rate at which an undamped

oscillator tends to vibrate in the absence of an applied load. Expressing the rotational

equation (Eq. 3.21) in terms of these parameters gives:

I(θ̈ + 2ζωθ̇ + ω2θ) = τ (3.22)

where

ζ =
bR

2
√
IkR

and ω =

√︃
kR
I

2
√
IkR is called critical damping coefficient, which is the value of damping at which

the oscillator switches between underdamping and overdamping conditions.

According to the lumped-parameter method, the flexible body is divided into flexible

body units, the length of which is equal to:

l =
L

N
(3.23)
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where L is the total length of the flexible body and N is the number of discretizations

(flexible body units) used to describe the model.

The external load is chosen to achieve at least 1 cm deformation of the body end

(Fig. 33), while the second moment of area IA is calculated from the standard analytical

expression for a rectangular cross section:

IA =
WT 3

12
(3.24)

where W and T are respectively the width and the thickness of the body.

Considering the case of a beam subjected to a deflection angle ϕ, Eq. 3.5 gives the

bending moment on a continuous beam unit:

M =
EIA
R

(3.25)

where E is Young modulus of elasticity and R is the bending radius of curvature.

However, if very small deflections are considered, ϕ reduces to l
R

and the spring coefficient

kR of the rotary joint can be calculated by the bending formula:

kR =
EIA
l

(3.26)

The damping coefficient bR of the revolute joint is taken as linear and proportional to

the spring coefficient kR and calculated as

bR = αkR (3.27)

where α is a proportional constant derived empirically and related to the discretizations

level of the beam. The scaling of the damping coefficient is provided by the spring

coefficient as calculated Eqs. 3.23 and 3.26: if the number of flexible beam units increase,

the damping coefficient increases also.
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Solar panel and robotic arm models implemented using the lumped-parameter method

are realized within Simscape Multibody. Dimensions and material properties are summa-

rized in Chapters 5.1 and 5.2, while the Simscape diagram of the flexible body unit used

for both models is presented in Chapter 4.3.2.

3.3.1 Comparison against the benchmark

Since the flexible-beam method follows the classical theory of flexible beams (Chapter

3.1.1) and is modeled with a block, created by Simulink, that automatically computes

properties related to beam deformation, it was considered as a “Benchmark” against the

lumped-parameter method for their evaluation and comparison in all simulations.

For example, this property was also used to calibrate the proportional constant α for

the lumped model: the damping coefficient bR (Eq. 3.27) of the revolute joint depends

on the constant α, which is related to the level of discretization of the beam. Since α is

empirical, it was calibrated by the following method:

1. At the end of the simulation, each model generates a graph of the response displace-

ments (Figs. 23a and 23b);

2. The graph of the lumped model is compared with that of the flexible beam, which

is considered as the reference graph (Fig. 23c);

3. Since α directly affects the damping coefficient of the lumped graph, its value is

changed until the discrepancy between the two graphs is less than a certain percent-

age (Figs. 24c).
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Figure 23: Comparison between models with α = 0.05

Figs. 23 and 24 show the comparison between the models used to calibrate the constant

α. The main difference is that the response of the two lumped models (Figs. 23b and 24b)

changes depending on the value of the α constant: with a smaller α, the response is less

damped. This attitude is confirmed by the values of the damping coefficient bR of the two

lumped models, which are: bR = 1.41× 103Ns/m with α = 0.05 and bR = 141.129N s/m

with α = 0.005.
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Figure 24: Comparison between models with α = 0.005

3.4 Solver definition

To simulate a dynamic system, its states are calculated at successive time steps over a

specified time frame. Time steps are time intervals in which the computation takes place:

the size of this time interval is called the step size. The process of computing the states

of a model in this manner is known as solving the model and this calculation uses the

information provided by the model. A wide variety of numerical integration techniques

for solving the ordinary differential equations (ODEs) are available in the literature these
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equations represent the continuous states of dynamic systems.

Simulink provides a set of solvers, which applies a numerical method to solve a set

of ordinary differential equations representing the model. Through this calculation, it

determines the time of the next simulation step. In the process of solving the initial value

problem, the solver also meets the accuracy requirements specified by the user. A solver

can be continuous or discrete. Continuous solvers use numerical integration to calculate

the continuous states of a model at the current time step based on the states of previous

time steps and state derivatives and rely on individual blocks to calculate the values of

the discrete states of the model at each time step. On the other hand, discrete solvers are

mainly used to solve purely discrete models: they compute only the next simulation time

step for a model. When they perform this calculation, they rely on each model block to

update its discrete state. Discrete solvers do not compute continuous states.

Continuous solvers are also divided into fixed-step and variable-step solvers, each of

which implements a specific method of solving a specific ODE solution method [64]:

• Fixed-step solvers solve the model using the same step size from the beginning to

the end of the simulation and the step size can be specified. In general, decreasing

the step size increases the accuracy of the results and the time required to simulate

the system.

• Variable step solvers vary the step size during simulation. These solvers reduce the

step size to increase the accuracy at certain events during model simulation, such

as rapid state changes or zero crossing events. They also increase the step size to

avoid taking unnecessary steps when model states change slowly. Calculating the

step size increases the computational overhead at each step. However, it can reduce

the total number of steps and thus the simulation time required to maintain a given

level of accuracy for models with zero crossings, rapidly changing states, and other

events that require additional computation.
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Since this study is on purpose to contribute to a project at the University of Padua in

collaboration with ESA, all models in this Master’s thesis are simulated with a fixed-step

continuous solver. This is a requirement of ESA in order to be able to use the GNC

system on computers representative of those on the mission.

All solvers provided by MATLAB - Simulink follow a similar naming convention: ode,

followed by two or three numerals indicating the orders of the solver. Some solvers can

solve stiff differential equations and the methods used by them are expressed by the s,

t, or tb suffixes. Fig. 25 and Table 7 shows how Simulink classifies solvers.

Library of Solvers

Fixed-Step Solver?

model with
continuos
states

model with
continuos
states

Variable-Step

Discrete Solver
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Continuous
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ode 5
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ode 14x

ode 15s
ode 23s
ode 23t
ode 23tb

ode 45
ode 23
ode 113
odeNode1be

Figure 25: Classification of solvers in the Simulink library [64]
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Table 7: Classification of continuous solvers type

Type of solver Fixed-step solvers Variable-step
solvers

explicit ode8 ode45
explicit ode5 ode23
explicit ode4 ode113
explicit ode3 odeN
explicit ode2
explicit ode1
implicit ode14x ode23s
implicit ode1be ode23t
implicit ode23tb
implicit ode15s

3.4.1 Explicit vs Implicit fixed-step solvers

Another property of continuous solvers is that they can be explicit or implicit (Table 7).

An explicit system is represented by the equation:

ẋ = f(x) (3.28)

where for any given value of x, ẋ is computed by substituting x in f(x) and evaluating

the equation. In general, all fixed-step explicit solvers calculate the next step as:

X(n+ 1) = X(n) + h · dX(n) (3.29)

where X is the state, h is the step size, n indicates the current time step and dX is a

solver-dependent function that estimates the state derivative. dX(n) is calculated by a

particular algorithm using one or more derivative evaluations depending on the order of

the method.
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On the other hand, an implicit system is represented by the equation:

F (ẋ, x) = 0 (3.30)

where for any value of x, the equation must be solved to calculate ẋ.

Implicit solvers offer greater stability for oscillatory behavior and they are more effi-

cient than explicit solvers for solving a linearly implicit system. However, implicit solvers

are more computationally expensive: at each time step they generate a Jacobian ma-

trix and solve the set of algebraic equations by a Newton-like method. To reduce this

additional cost, implicit solvers offer a Solver Jacobian method parameter to improve

the simulation performance of implicit solvers. There are five options for computing the

solver Jacobian method: “auto”, Sparse perturbation, Full perturbation, Sparse analytical

and Full analytical [65]; the default setting is “auto”, which causes Simulink to determine

which of the remaining four methods best suits the model, depending on the Number of

simulation states and if an analytical Jacobian method is available for all blocks.

Moreover, implicit solvers are specifically designed to solve stiff problems: an ordinary

differential equation problem is said to be stiff if the desired solution varies slowly, but

there are closer solutions that vary rapidly. The numerical method must therefore take

small time steps to solve the system. Stiffness is an efficiency problem and the more stiff

a system is, the longer it takes the explicit solver to perform a calculation.

Table 8 shows the different integration techniques used to implement all Simulink fixed-

step solvers, where the last two solvers are implicit. ode14x uses a combination of Newton’s

method and extrapolation from the current value to compute the model state at the next

time step, as an implicit function of the state and the state derivative at the next time

step:

X(n+ 1)−X(n)− h · dX(n+ 1) = 0 (3.31)

It is possible to specify the number of iterations of Newton’s method and the order of

extrapolation that the solver uses to compute the next value of a model state: the greater
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the number of iterations and the order of extrapolation selected, the greater the accuracy

obtained. However, this simultaneously results in a greater computational burden for

each step. Although it requires more calculations per step than an explicit solver, ode14x

is more accurate for a given step size.

The last one is the ode1be solver: a Backward Euler type solver [66], that uses a

fixed number of Newton iterations and runs into a fixed cost. The ode1be solver is a

computationally inexpensive fixed-step alternative to the ode14x solver.

Table 8: List of fixed-step solvers [67]

Solver Integration Technique Order of accuracy

ode1 Euler’s method First
ode2 Heun’s method Second
ode3 Bogacki-Shampine formula Third
ode4 Runge-Kutta (RK4) formula Fourth
ode5 Dormand-Price (RK5) formula Fifth
ode8 Dormand-Price RK(7) Eight
ode14x Newton’s method and extrapolation to be specified
ode1be Backward Euler to be specified



4. The Simulation Tool

This chapter provides a description of the entire simulation tool used in this thesis. After

a general introduction to the tool structure, a description of the MATLAB scripts that

complement Simulink models is provided. Then, an in-depth presentation of these models,

shows how the structures of the solar panel and the robotic arm were implemented in

Simulink.

4.1 The MATLAB - Simulink environment

The Simulation tool structure consists of two main segments. The first one is implemented

in the MATLAB environment and consists in a script which calls several functions in

order to initialize the parameters required during the simulation. The second part is

implemented in the Simulink environment and performs the numerical integration of the

system dynamics.

The objectives of the simulation tool to properly analyze the solar panel and robotic

arm can be summarized as follows:

1. implement different models of flexible body methods, specifically the lumped-parameter

and flexible-beam methods;

2. reproduce the response of these spacecraft elements when subjected to external loads

(solar panel) and during their movement from one point to another (robotic arm);

49
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3. allow comparison between flexible body methods.

Fig. 26 shows the structure of the Simulation tool used to study the solar panel. The

Simulink environment consists of two models to study the problem by two different meth-

ods. The first one is called “lumped_parameter.slx” in which the model presented in

Chapter 3.2 is implemented. The second one is called “flexible_beam.slx” in which the

Flexible Rectangular Beam block [56] is used to study the behaviour of the solar panel.

Each Simulink model is called by the script “launcher.m”, which defines the initial param-

eters of the simulation. Once the outputs have been generated, they are post-processed

to perform the FFT (Fast Fourier Transform) [68] of the two models so that the resulting

responses from the two methods can be compared.

To achieve this goal for the solar panel, the Simulation tool must:

(a) implement each model within Scenario 1 and 2, described in Chapters 2.2.1 and 2.2.2;

(b) simulate the panel displacement caused by the system response to an external load

and plot its data and time;

(c) use these information to create a FFT graph for each model.

launcher.m

output

output

lumped params.slx

flexible beam.slx

model params.m

Post
Processing

MATLAB Simulink

MATLAB

Figure 26: Simulation tool structure to study the solar panel
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On the other hand, three different MATLAB - Simulink models are used to study

the behavior of the robotic arm (Fig. 30): two of them implement lumped-parameter and

flexible-body methods to the robotic arm links, which are considered as flexible bodies,

while the third model implements the robotic arm links as rigid bodies. Since the robotic

arm is a 3 DOF planar arm (Fig. 31), it is described in two dimensions (one plane).

Each model describes the robotic arm motion, which must:

(a) track a rectilinear path from the starting point to the final one;

(b) have initial and final velocity and acceleration equal to zero;

(c) employ smooth acceleration and velocity profiles to define the tool motion.

4.2 MATLAB segment

Solar panel

The main script (“launcher.m”) that starts the simulation (Fig. 26) contains the system

characteristics of both scenarios such as geometric features (mass and inertia), material

properties (Young’s modulus of elasticity, density and Poisson’s ratio) and the modulus

of the external load. Other values, such as the unit length of the flexible body (Eq. 3.23),

lumped masses (Fig. 28b), the revolute joint stiffness (Eq. 3.26), and damping coefficient

(Eq. 3.27) were considered only for the lumped model and have been evaluated in a MAT-

LAB function called “model_params.m”. After defining these inputs, the simulation is

launched.

The second part of the script evaluates data and time plotted by each model and

generates two different Bode diagrams, one for each Fast Fourier Transform (FFT) [68].
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Robotic Arm

Robotic arm models are launched from the Simulink segment, while the MATLAB script

merely defines their parameters. It also defines the Cartesian coordinates of the start and

end position of the the robotic arm End-Effector (EE). All Simulink models contains a

MATLAB function that implements the manipulator inverse kinematics to convert the

arm position into rotation angles for the arm joints to assume.

4.3 Simulink segment

The two spacecraft elements studied in this Master Thesis are implemented using different

Simscape Multibody models. Fig. 27 represents the main model structure of the solar

panel, while Fig. 30 represents the general model structure to simulate the robotic arm

motion.

4.3.1 Solar panel

The Simulation Setup is the block required by Simscape for setting up the simulation,

which contains the Mechanism Configuration, the Solver Configuration, and the

World Frame. External forces are defined by the External force and Torque block [69]

that is connected to the subsystem and applies the external load to the end of the panel.

EXTERNAL

FORCES

SENSOR
RESULTS

SOLAR
PANEL

SUBSYSTEM

SIMULATION
SETUP

MEASUREMENT

Fx

Displacements

Figure 27: Simscape model structure of the solar panel
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The solar panel subsystem implements the lumped-parameter and the flexible-beam

models. Its input is the external load Fx acting at the end of the solar panel, defined

in the “launcher.m”. The output is the panel displacements along the axis on which the

external force acts. These values are given by the Measurement sensor, which contains

the Transform Sensor block [70]: this block measures the relative spatial relationship

between the two ends of the panel.

Fig. 28 shows the block diagrams used within the flexible-beam model and the lumped-

parameter model. The Revolute Joint [71] (Fig. 28b) provides internal springs k and

dampers b, which gives the necessary degrees of freedom for deformation, while the Rigid

Transform block [72] applies a time-invariant transformation between two frames. This

transformation translates the frame of the follower (F ) relative to the frame of the base

(B) (Fig. 28b). The frames remain fixed with respect to each other during the simulation,

moving only as a single unit. This translation is necessary to define the position of the

revolute joint and the two mass blocks within the subsystem.

Flexible Rectangular Beam
Configurations

External
Force

Fx

output

(a) Solar panel block for the flexible-beam model [56]

mass

Rigid
Transform

Revolute
Joint

mass

Rigid
Transform

Rigid
Transform

Rigid
Transform

Fx

Configurations output

External
Force

B F

(b) Solar panel lumped unit for the lumped-parameter model

Figure 28: Block diagrams for the solar panel subsystem
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LumpedConfigurations Lumped Lumped Fx

mass

Rigid
Transform

Revolute
Joint

mass

Rigid
Transform

Rigid
Transform

Rigid
Transform

Unit Unit Unit

Figure 29: Example of lumped Simscape diagram with three discretizations

While the number of elements of the flexible beam model is chosen within the Flexible

Rectangular Beam block, the discretization of the lumped model must be adjusted by

adding or removing a lumped unit: each unit corresponds to a unit of Number of Elements

(Fig. 29).

4.3.2 Robotic arm

As described in the Chapter 4.1, three models were created to analyze the behaviour of

robotic arm links.

ROBOTIC
ARM

SUBSYSTEM

x, y

θ1,2,3

output θ1,2,3

RESULTS

TRAJECTORY
GENERATION

ACTUATORS

Initial position

Final position

Execution Time

Clock

INVERSE

KINEMATICS
CONTROL

+

-

Figure 30: Simscape model structure of the robotic arm
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Each model is divided into four main sections: the “Trajectory Generation” block, the

“Inverse kinematics” block, the “Control” block and the robotic arm system. The latter is

divided into two other blocks: the “Actuators” block and the “Robotic Arm Subsystem”

block, which includes the flexible body method chosen to simulate the robotic arm motion.

Fig. 30 shows the block diagram of the robotic arm model.

Trajectory generation

The first block is the trajectory generation, in which the trajectory is implemented by

employing fifth order polynomials. The initial and final position of the EE and the

manoeuvre time are specified in the Cartesian space (x, y), where the origin coincides

with the first joint of the manipulator. Its task is to have the manipulator hold the EE at

the desired initial position from the beginning of the simulation until the time when the

maneuver begins; then, after the maneuver is executed, the EE will be held at the final

position.

Inverse kinematics

Fig. 31 shows the three-link robotic arm used within this thesis. The input of this block

is the motion trajectory assigned by the guide to the EE in terms of position in the

Cartesian space (x, y). The goal of inverse kinematics is to determine the joint variables

corresponding to the position and orientation of the EE. Solving this problem is impor-

tant for transforming the motion specifications, assigned to the EE within the trajectory

generation block, into the corresponding joint-space variables θ1, θ2 and θ3 [73].

Control

The structure of the robotic arm model (Fig. 30) includes a “control loop” before the

“control” block. This loop allows the output value of the robotic arm subsystem to be

compared at each time-step with that calculated analytically from the Inverse kinematics

block.
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Figure 31: Three-link planar arm [29]

The “control” block then implements the obtained error into the Proportional-Integrative-

Derivative (PID) controller described in Chapter 2.4, which is a feedback control loop

mechanism implemented to control the dynamics of the robotic arm. The output of this

block is the torque that the robotic arm joint shall generate to drive the movement of the

i− joint in the robotic arm subsystem.

Actuators and Robotic Arm Subsystem

Fig. 32 shows the block diagram of the actuator and the robotic arm subsystem. The ac-

tuator is implemented inside the revolute joint [71], which performs rotation and provides

output signals for each joint (θi, joint velocity vi, and torque). These signals are used as

feedback to control the motion of the manipulator. In a real model, the actuator would be

a DC motor. Hence, the “inertia” block represents its mass: without this block, the mass

of the motor would not be considered in the model, since the revolute joint represents the

action of the motor, but not its mass.
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REVOLUTE
JOINT

Link i-1

LINKi

Link i+1

Torquei

Inertia

θi

vi

output torquei

Figure 32: Simscape representation of the revolute joint and the i link

The “Linki” represents the subsystem of the robotic arm, and, for each model, a

different method is used to create its links:

• the lumped-parameter method, which uses the same techniques described in Chapter

3.3;

• the flexible-beam method, also defined in Chapter 3.2;

• the rigid-body method, where links are created with the “Cylindrical Solid” block [74].

This block generates a rigid body cylinder whose radius and height can be specified

by the user.

This structure is repeated for each joint. However, since a three-link robotic manip-

ulator is analyzed, the third link is made as a rigid body cylinder for each model. Note

that this manipulator model is a simplification of the robotic manipulator described in

Chapter 2.3, which consisted of seven cylindrical links, and the objective of this thesis is

not to study the motion of a robotic manipulator, but to analyze how the flexible bodies

of the robotic arm affect its motion.
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5. Numerical results

This chapter presents the results of all the simulations performed with the simulation

tool to find the best numerical method to study the flexible body behaviour, given the

specific simulation requirements of this project. For this purpose a comparison between

the Lumped-parameter and Flexible-beam methods is provided: firstly, the response of the

solar panel subjected to an external load is studied; secondly, the motion of the robotic

arm is simulated and the position error of the end-effector at each time-step is analyzed.

The final part of the Chapter analyzes the Simulink solvers used to run the simulation;

in particular, an explicit and an implicit fixed-step solver are compared to find the best

combination of acceptable results and integration step.

To compare the Lumped-parameter and Flexible-beam methods, the two case studies

of the solar panel and the robotic arm are analyzed separately. Despite this, both flex-

ible bodies are simulated with the same Simulink solver. Each result is reported in the

following sections.

59
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5.1 Solar Panel

Table 9 summarizes the characteristics of the system. These values are independent of the

discretization of the system and are considered in both lumped-parameter and flexible-

beam models, while the damping ratio ζ was considered only for the flexible rectangular

beam block.

The external force Fx is chosen to achieve at least 1 cm deformation of the body end

(Fig. 33). The Simulation Time specify the stopping time of the simulation in seconds and

is not equal to the Execution Time. For example, running a simulation with a Simulation

Time of 10 seconds usually does not take 10 seconds. The execution time is the time

required by the model to produce the response and depends on many factors, such as

model complexity, solver type, step size and system speed.

Discretization is carried out with values between 2 and 4 Numbers of Elements (NOE):

after each model simulation, the NOE is increased or decreased to analyze its impact on

the system outputs. In addition, the values of the parameters dependent on the NOE are

given in Tables 10 and 11.

Table 9: Solar panel characteristics for both scenario

Scenario 1 Scenario 2 Unit

External Force, Fx 50 5× 103 N
Simulation time 20 14 s

Thickness (x) 0.05 0.03 m

Width (y) 2.1 1 m

Length (z) 10.85 1 m

Mass 90 4 kg

Young’s module of Elasticity 3.5× 109 70× 109 Pa
Poisson’s ratio 0.3 0.3
Second moment of area 2.1875× 10−5 2.25× 10−6 m4

Damping ratio, ζ 0.1 0.1
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Figure 33: Simplified flexible body subjected to an external load Fx

The criteria for comparing the lumped-parameter and the flexible-beam methods with

solar panel models are:

• frequency difference, which is taken as the relative error between the two methods;

• execution time.

Since the goal of this thesis is to find a numerically efficient method to model a real-

time simulator, it is essential that its execution time is equal to or faster than that of the

Simulation Time.

Each simulation is also conducted with a different value of solver step-size, from 1 ×

10−5 s to 1× 10−2 s. The smaller the step size, the more accurate results it provides, but

at a higher computational cost. In addition, Chapter 5.3 will describe that during the

first few simulations an explicit fixed-step solver (ode3) was chosen, but then, due to some

problems encountered in Scenario 2, the use of an implicit fixed-step solver (ode1be) was

chosen upon for both scenarios.

5.1.1 Scenario 1

In Table 10, lumped is the length of a flexible body unit (Eq. 3.23), mlumped is one of the two

lumped unit masses (Fig. 29), kr is the spring coefficient and br is the damping coefficient,

which depends on α. From the calibration of the proportional constant α in Chapter

3.3.1, its value was chosen as α = 0.005 for this scenario. The simulation output provides

the panel displacements along the axis on which the force acts. This response is then

converted from its original domain (time) to a representation in the frequency domain.
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Table 10: Scenario 1 Lumped-parameter method characteristics, which depends on the
Number of Elements (NOE)

NOE 2 NOE 3 NOE 4 Unit

llumped 5.425 3.6167 2.7125 m

mlumped 22.5 15 11.25 kg

kr 1.411× 104 2.117× 104 2.822× 104 N/m
br 70.5645 105.8468 141.129 Ns/m

To compare the lumped-parameter model (Lp) to the flexible-beam model (Fb), the

relative error percentage between the resulting frequencies is computed (Fig. 34) by con-

sidering the flexible-beam model as a benchmark:

Error(%) =
fLp − fFb

fFb

· 100 (5.1)

Fig. 34 shows the error percentage paths of the two methods according to Eq. 5.1.

With a Number of Elements of three and four, the frequency of the panel response with

the lumped-parameter method is comparable to that of the flexible-beam model, with a

relative error lower than 3.5%, while it diverges slightly with two Numbers of Elements

(≃7.5%). This confirms that the greater the Number of Elements, the more accurate the

system response.
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Figure 34: Scenario 1 frequency error percentage distribution for each Number of Ele-
ments
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Figure 35: Scenario 1 execution time of Lumped-parameter and Flexible-beam methods
based on the Number of Elements, with a Simulation Time of 20s

Each simulation of this scenario was calculated with a Simulation time of 20 s. Fig.35

shows that, compared with the flexible-beam method, the lumped-parameter method

shows more results that satisfy the task of having a lower execution time than 20 s (step-

sizes 1× 10−4 s, 1× 10−3 s and 1× 10−2 s).

From the study of the effects of discretization, it is possible to observe that a larger

Number of Elements increases the computational cost of both methods, slowing down the

speed of simulation. This behavior is also shown in Fig. 36, where it can be seen that

comparing all simulations performed with the two methods, the flexible-beam method

always has a higher computational cost.
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Figure 36: Scenario 1 execution time based on Lumped-parameter and Flexible-beam
methods, with a Simulation Time of 20s

Table 11: Scenario 2 Lumped-parameter method characteristics, which depends on the
Number of Elements (NOE)

NOE 2 NOE 3 NOE 4 Unit

llumped 0.5 0.333 0.25 m

Mlumped 1 0.667 0.5 kg

kr 3.15× 105 4.725× 105 6.3× 105 N/m
br 3.15 4.725 6.3 Ns/m

5.1.2 Scenario 2

Table 11 summarizes the same characteristics of the method described for Scenario 1. As

it can be seen from this table and Table 9, the solar panel analysed in this scenario has

a length lower than the one of the solar panel considered in Scenario 1. With a 1-meter

long solar panel, the response frequencies are higher (on the order of Hz instead of mHz).

In order to obtain an accurate approximation of the solution, it is necessary to choose

a step-size that is small enough (≤ 1 × 10−4 s) to capture the features of the solution,

including any high-frequency components. However, a step-size smaller than 1 × 10−5 s

has a too high computational cost that would lead to excessive execution time, and conse-

quently the model could no longer be used as a real-time simulator. On the other hand, at
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higher step-sizes, the high-frequency components are no longer accurately represented in

the frequency spectrum because the resulting frequency resolution is coarser. Hence, these

frequency components which are still present in the original signal, may appear to have

a frequency value of zero in the frequency spectrum. This problem is better described in

the final section of this chapter (Chapter 5.3), which explains that the use of an explicit

fixed-step solver at those step-sizes brought to the simulation to stop at every run.

The following section reports results provided with an implicit fixed-step solver (ode1be),

with only three values of step-size.

Scenario 2 results

The lumped-parameter method is modeled with a proportional constant α of 1 × 10−5

for this scenario. Fig. 37, shows the relative error percentage between the frequency of

each method computed with Eq. 5.1. As it can be seen, these paths are very different

from those in Scenario 1, and errors are also higher: from 3% to 14% for a step-size of

1× 10−4 s and from 5% to 12% for a step-size of 1× 10−5 s.
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Figure 37: Scenario 2 error percentage distribution for each Number of Elements
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Note that for a step-size of 1×10−3 s, it may appear that there are no frequency values

in the frequency spectrum for either method, but, as explained before, high-frequency

components are still present in the original signal. Thus, in fact, the execution time for

that step-size is still reported. In addition, it can be seen that the relative error rate with

two and three Numbers of Elements decreases when the step size is increased, although

the simulation result should be less accurate with a larger step size. Probably, with such

high frequencies, the step-size 1× 10−4 s is not low enough for the simulator to generate

reliable results: NOE 4 has the highest error percentage with that step size, even though

with a large Number of Elements the simulation should be more accurate (Chapter 3.2.2).
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Figure 38: Scenario 2 execution time of Lumped-parameter and Flexible-beam methods
based on the Number of Elements, with a Simulation Time of 14 s
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Figure 39: Scenario 2 execution time based on Lumped-parameter and Flexible-beam
methods, with a Simulation Time of 14 s

Each simulation is computed with a Simulation Time of 14 s. From the comparison

of the two methods execution time (Figs. 38 and 39), it can be seen that the lumped-

parameter method still obtains the most results with less execution time than the Simu-

lation Time and, in general, has the lowest computational cost. However, Fig. 37 shows

that this method is not very accurate when used in this scenario.

5.1.3 Methods comparison

All Frequency and Execution Time results shown in previous figures, are summarized in

Tables 12 and 13. By observing all models frequencies, it can be seen that those of the

lumped-parameter method depend much more on the Number of Elements than those of

the flexible-beam method, which always maintain a value in the range of 452.1mHz to

454.1mHz for Scenario 1, and 107.04Hz to 112.21Hz for Scenario 2.

In addition, simulations with circled Execution Time values for both methods are

considered valid to be used in a real-time simulator; as a matter of fact, these values are

less than the Simulation Time of 20 s for Scenario 1 and 14 s for Scenario 2.
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Table 12: Comparison of the models main results for Scenario 1

NOE Step Size [s] Lumped-parameter
frequency [mHz]

Flexible-beam
frequency [mHz]

Relative Error
Percentage (%)

2 1× 10−5 487.062 454.070 7.27

1× 10−4 487.043 454.037 7.27

1× 10−3 487.388 453.882 7.38

1× 10−2 486.343 452.304 7.53

3 1× 10−5 468.481 453.905 3.21

1× 10−4 468.450 454.032 3.18

1× 10−3 468.375 453.494 3.28

1× 10−2 466.796 452.139 3.24

4 1× 10−5 462.055 453.823 1.81

1× 10−4 462.018 453.783 1.81

1× 10−3 461.755 453.613 1.79

1× 10−2 460.436 452.100 1.84

NOE Step Size [s] Lumped-parameter
Execution Time [s]

Flexible-beam
Execution Time [s]

Simulation Time
of 20 s

2 1× 10−5 107.95 1.4× 103 ≃ 23min

1× 10−4 10.15 115.15

1× 10−3 1.65 12.55

1× 10−2 0.465 1.72

3 1× 10−5 157.89 2.76× 103 ≃ 46min

1× 10−4 14.1 226.24

1× 10−3 1.83 22.97

1× 10−2 0.45 3.1

4 1× 10−5 219.01 4.88× 103 ≃ 81min

1× 10−4 19.3 391.28

1× 10−3 2.71 40.88

1× 10−2 0.5 5.72
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Table 13: Comparison of the models main results for Scenario 2

NOE Step Size [s] Lumped-parameter
frequency [Hz]

Flexible-beam
frequency [Hz]

Relative Error
Percentage (%)

2 1× 10−5 119.663 107.07 11.76

1× 10−4 101.536 112.205 9.51

1× 10−3 - - -

3 1× 10−5 112.300 107.044 4.91

1× 10−4 115.448 111.860 3.21

1× 10−3 - - -

4 1× 10−5 113.148 107.040 5.71

1× 10−4 96.538 111.863 13.70

1× 10−3 - - -

NOE Step Size [s] Lumped-parameter
Execution Time [s]

Flexible-beam
Execution Time [s]

Simulation Time
of 14 s

2 1× 10−5 65.98 944.14≃ 15min

1× 10−4 6.93 81.77

1× 10−3 1.06 9.26

3 1× 10−5 96.49 1.90× 103≃ 31min

1× 10−4 9.15 158.80

1× 10−3 1.43 16.52

4 1× 10−5 127.78 3.24× 103≃ 54min

1× 10−4 12.76 274.88

1× 10−3 1.96 29.10

5.2 Robotic arm

The implemented robotic arm models are described in Chapter 4.3.2 and its characteristics

are shown in Table 14. The first two robotic manipulator links (L1 and L2) are considered

as flexible bodies with a square section of 2.5×10−3m2, while the third link L3 is considered

as a rigid body cylinder, since it is the shortest. This version of the manipulator is

considered to compare the lumped-parameter and the flexible-beam methods applied to

the first two robotic arm links, along with a third version featuring three rigid-body links.
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Table 14: 3 DOF Robotic arm characteristics

Value Unit

First link length, L1 1 m

Second link length, L2 1 m

Third link length, L3 0.2 m

Initial position (x,y) (2,0) m

Final position (x,y) (0.5,1.5) m

Simulation Time 10 s
Density 2700 kgm−3

Young’s module of Elasticity 70 GPa

Poisson’s ratio 0.3

For the two flexible links, the rectangular shape was chosen to use the lumped-

parameter method with the same procedure described in Chapter 3.3, while their square

section was chosen to have comparable dimensions with those of the cylindrical link,

already included in the default manipulator model, described in Chapter 2.3.

Criteria for this comparison are:

• Mean error between the instantaneous position of the end-effector and its position

set by the robotic arm subsystem at each time step;

• Execution time, which has to be equal to or less than the Simulation Time of 10 s.

The instantaneous position of the end-effector is computed analytically in MATLAB

and is taken as the reference value, while the position set by the robotic arm subsystem

depends on the accuracy of the flexible body method used to model the two links.
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5.2.1 End-Effector position error

The End-Effector mean position error of the three considered models is shown in Fig.40

and consists of subtracting, for each simulation step, the EE position computed analyti-

cally by the Trajectory Generation block (Chapter 4.3.2) from its position at the output of

the robotic arm subsystem. At the end of each simulation, the mean position error and its

standard deviation are taken into account to compare the three flexible-body models. It

should be noted that this error is different from the relative error used to analyze the solar

panel behavior: while that was the percentage of the relative frequency error between the

two flexible body methods, this is a position error computed separately for each method.

Since the rigid-body model has the same number of elements in all simulations, its

presence is only for comparison with other models; it can also be noted that its values are

the lowest (≃ 0.78 × 10−4m). While the flexible-beam position error has a comparable

path with both Numbers of Elements, the position error of the lumped-parameter model

is higher with three Numbers of Elements (Fig. 40).
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Figure 40: Mean error between the instantaneous position of the end-effector and the
position set by the guide
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However, this error still remain on the order of 1× 10−4, which corresponds to an EE

position error of half a millimeter, while a real model of the robotic arm works on the

order of centimeters. Therefore, a margin of safety is provided for the lumped-parameter

method and the quality of its performance can be based on its execution time.

Another measure for comparing End-Effector position errors is the standard deviation

(STD), which is a measure of the amount of variation or dispersion of a set of values.

Standard deviation is considered as a measure of uncertainty: a low STD indicates that

values tend to be closer to the mean of the set, while a high STD indicates that values are

spread out over a wider range [75]. For each model, the standard deviation was computed

in the MATLAB script of the robotic arm with the following syntax [76]: S = std(E),

where E is a vector containing the model position errors at each time step.

Fig. 41 shows the STD values of each method at different Numbers of Elements. Each

figure has the same values on the X-axis and Y-axis, and the line connecting each point

is the mean error path shown in Fig. 40. Moreover, STD values of the flexible beam

models increase by ≈ 5.65 × 10−3m between step 1 × 10−3 s and 1 × 10−2 s, while the

lumped-parameter models have a stable STD value for both NOE. However, the lumped

model values have an higher dispersion (± 5.5 × 10−3m and ± 8.8 × 10−3m with NOE

2 and NOE 3 respectively). This means that during the motion of the robotic arm, the

lumped-parameter method is less accurate in describing the behavior of its flexible bodies

with both numbers of elements, while the flexible-beam method provides less accurate

values only with a step-size of 1× 10−2 s.
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(a) NOE 2, lumped-parameter method
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(b) NOE 2, flexible-beam method
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(c) NOE 3, lumped-parameter method
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(d) NOE 3, flexible-beam method
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Figure 41: Error & Standard deviation (STD) of all models
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Figure 42: Execution time based on the models number of elements

To simulate the robotic arm motion, the Simulation Time for each model is 10s.

As it can be seen in Fig. 42, the Execution Time follows a comparable path for each

discretization. The rigid-body is the model with the best combination of high accuracy

and short execution time, but it does not consider the robotic arm links as flexible bodies,

so its results are not a viable solution for the flexible bodies theory. When considering

the two flexible-body methods, the lumped-parameter method is overall the one with the

shortest execution time.

5.2.2 Methods comparison

All results of the robotic arm End-effector position error are summarized in Tables 15, 16

and 17, while execution times are summarized in Tables 18 and 19.

Both flexible body models have the same number of simulation with a Execution

Time less than the Simulation Time, although the lumped-parameter method has two

Execution Time values at a step size of 1 × 10−3 s (10.26 s and 10.98 s with NOE 2 and

NOE 3 respectively), which are remarkably close to the Simulation Time.
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Table 15: Lumped-parameter models end-effector position error

NOE Step Size [s] Mean error
[1× 10−4]

St. deviation
[1× 10−3]

2 1× 10−4 4.80 5.50

1× 10−3 4.80 5.50

1× 10−2 4.81 5.40

3 1× 10−4 7.00 8.80

1× 10−3 7.00 8.80

1× 10−2 7.01 8.60

Table 16: Flexible-beam models end-effector position error

NOE Step Size [s] Mean error
[1× 10−4]

St. deviation
[1× 10−3]

2 1× 10−4 1.60 1.30

1× 10−3 1.60 1.30

1× 10−2 1.86 6.70

3 1× 10−4 1.60 1.40

1× 10−3 1.60 1.50

1× 10−2 1.84 7.30

Table 17: Rigid-body models end-effector position error

NOE Step Size [s] Mean error
[1× 10−4]

St. deviation
[1× 10−3]

- 1× 10−4 0.78 0.49

1× 10−3 0.78 0.48

1× 10−2 0.80 0.46

Table 18: Execution Time for Lumped-parameter and Flexible-beam models

NOE Step Size [s] Lumped-parameter
Execution Time [s]

Flexible-beam
Execution Time [s]

Simulation Time =
10 s

2 1× 10−4 61.35 429.01

1× 10−3 10.26 48.47

1× 10−2 2.28 6.45

3 1× 10−4 98.56 719.61≃ 12min

1× 10−3 10.98 76.82

1× 10−2 2.48 9.12
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Table 19: Execution Time for the Rigid-body models

NOE Step Size [s] Rigid-body Execution
Time [s]

- 1× 10−4 42.58

1× 10−3 6.31

1× 10−2 1.56

5.3 Solver test

The analyses conducted as part of this thesis serve to support the design of the FES

simulator (Chapter 2.1), thus the first simulations were conducted with ode3, the same

explicit fixed-step solver also used for the FES. This solver integration technique is the

Bogacki-Shampine method for the numerical solution of ordinary differential equations,

which is a Runge-Kutta method of order three, so it uses approximately three evaluations

of functions per step [77]. This solver did not generate any issues with solutions of

Scenario 1, unlike in Scenario 2 (Chapter 5.1.2).

Since the frequency of a system is inversely proportional to the length of the element,

the short solar panel in Scenario 2 generated high frequency responses that could only

be calculated with small step sizes. Hence, the use of an explicit fixed-step solver at high

step-sizes resulted in an error, i.e., the state of the derivative when the load was applied

was not finite, creating a singularity in the solution. Since this error occurred only after a

certain value of the panel frequency, it was necessary to figure out what was the threshold

length associated with that frequency value for each Number of Elements.

In order to accomplish this task, a solver test was conducted on a solar panel model

with the same characteristics described in Table 9 for Scenario 2. Both lumped-parameter

and flexible-body methods were used to realize the panel, with a Number of Elements

varying from 2 to 4. The test consists of a simulation, launched with the solver ode3 and

a step size of 1× 10−3 s, that computes the same model with a smaller length each time

until it is stopped due to the derivation error.
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Table 20: Solver test for 2 Numbers of Elements

Length [m] Lumped-parameter
frequency [Hz]

Flexible-beam
frequency [Hz]

Relative Error
Percentage (%)

1.6 3.42 3.25 5.13
1.5 3.83 3.66 4.54
1.4 4.41 4.16 5.99
1.3 5.08 4.91 3.39
1.2 5.83 5.75 1.45
1.1 499.96 6.83 7217.07
1.0 2.74 1.64 66.67

Table 21: Solver test for 3 Numbers of Elements

Length [m] Lumped-parameter
frequency [Hz]

Flexible-beam
frequency [Hz]

Relative Error
Percentage (%)

2.2 1.75 1.67 4.99
2.1 1.92 1.84 4.55
2.0 2.08 2.079 0.01
1.9 2.33 2.25 3.70
1.8 2.58 2.58 0.01
1.7 499.96 2.83 17547.04
1.6 1.17 0.25 64.11

Table 22: Solver test for 4 Numbers of Elements

Length [m] Lumped-parameter
frequency [Hz]

Flexible-beam
frequency [Hz]

Relative Error
Percentage (%)

2.8 1.08 1.08 7.0× 10−4

2.7 1.17 1.17 1.0× 10−4

2.6 1.25 1.25 9.0× 10−4

2.5 1.33 1.33 1.0× 10−4

2.4 0.58 0.365 58.82
2.3 0.17 0.09 89.47
2.2 0.17 0.09 90.00

Tables 20, 21 and 22 show the panel length at which each simulation stops, along with

the frequency of the two methods and the relative error between them. In these tables,

values of the minimum length (Lmin) and the maximum frequency (fmax) reached for the

three Numbers of Elements are circled. It can be seen that the frequency increases as the

panel length decreases until a length at which the maximum frequency, which probably
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causes the derivative error, is reached. Also, frequency values after fmax have a relative

error > 50%, which means that at those lengths the model cannot adequately simulate

the dynamic response.

To solve this problem, the solar panel of Scenario 2 was analyzed with the ode1be im-

plicit fixed-step solver (Chapter 3.4.1), which uses a Backward Euler integration technique

[66]. This solver successfully overcame the derivation error and computed all simulations

at each step-size. However, step-sizes that generated the error with the explicit solver

failed to accurately capture the panel dynamics for simulations performed with the im-

plicit solver: this attitude does not necessarily imply that at those step sizes the frequency

value is zero. Increasing the step-size of a solver can result in a loss of accuracy in the

estimation of the frequency content of a signal, particularly if the signal contains high-

frequency components, such as those in Scenario 2.

When using numerical solvers to estimate the frequency content of a signal, such

as with a Discrete Fourier Transform (DFT) (Chapter 3.2.1), the frequency resolution

is determined by the number of samples in the time domain and the sampling rate.

Increasing the step-size of a solver effectively decreases the number of samples in the time

domain, which reduces the frequency resolution and can lead to a loss of accuracy in the

estimation of the signal frequency content. If the solver step-size is increased too much,

the resulting frequency resolution can become so coarse that high-frequency components

are no longer accurately represented in the frequency spectrum. In this case, the high-

frequency components may appear to have a frequency value of zero in the frequency

spectrum, even though they are present in the original signal (Fig. 39). Therefore, it is

important to choose an appropriate step-size when using numerical solvers to estimate

the frequency content of a signal, to ensure that the frequency resolution is sufficient to

accurately represent the frequency content of the signal.



6. Conclusions

This Master Thesis had a main goal: to find a numerically efficient method with adequate

execution time to be used in a real-time simulator and suitable for studying the behavior

of satellite flexible bodies. To achieve this task a Simulation Tool was developed to model

these bodies and reproduce their dynamics.

The Simulation Tool was implemented in the MATLAB - Simulink environment, and

its development was presented in detail in Chapter 4. The two spacecraft elements stud-

ied within this thesis were a solar panel and a 3 DOF robotic arm. The objective was

to create and compare several models of these two spacecraft flexible bodies, each imple-

mented by using Simscape Multibody with two different mathematical representations of

flexible bodies: the Lumped-parameter and the Flexible-beam method. The Tool offers

the possibility to reproduce the response of the solar panel when subjected to an external

load and to simulate the robotic arm motion from one point to another. Furthermore,

each spacecraft element is modeled with different Number of Elements (NOE) and imple-

mented with different simulation step-sizes in order to compare the accuracy and execution

time of the two flexible body methods. The solar panel model accuracy was analyzed by

computing the Relative error (RE) percentage, which is the ratio of the absolute error of

the two method frequencies to the frequency value of the flexible-beam method. On the

other hand, the robotic arm model accuracy was expressed by finding the End-Effector

position error and its standard deviation. This error is the mean difference between the

79
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instantaneous position of the End-Effector and its position set by the robotic arm model

subsystem, after a movement from an initial point to an end point. Thus, finally, for both

spacecraft elements, the execution time was tracked after each simulations and compared

to the Simulation Time, which is the time specified by the simulation in seconds. The goal

here was for the execution time of each model to be equal to or less than the Simulation

Time, so that the model could be used for modeling a real-time simulator. Tables within

Chapters 5.1.3 and 5.2.2 include all these simulations results.

The study showed that the dynamic response of the solar panel was affected by various

factors, particularly its geometry: by reducing the length of the solar panel from 10.85m

to 1m in Scenario 2, the response frequencies increased from the mHz to the Hz. At high

step-sizes the number of samples in the time domain decreases and thus the frequency

resolution is reduced; consequently, these high-frequency components were no longer ac-

curately represented in the frequency spectrum, resulting in a loss of information for a

step-size of 1 × 10−3 s. On the other hand, the solar panel dynamic response could be

predicted with reasonable accuracy for Scenario 1 and the lumped-parameter method was

able to simplify the complexity of the flexible structure while still capturing its essential

dynamic behavior. To model a real-time simulator, the relative error (RE) percentage

should be at least less than 5%: by comparing the frequencies of the lumped-parameter

method with those of the flexible-beam method, the RE with three and four Numbers of

Elements was ≈ 3.23% and ≈ 1.81% respectively for all step-sizes, while it was ≈ 7.36%

for two Numbers of Elements. In addition, it proved to be 91% faster on average than

the flexible-beam method to simulate the solar panel response (Table 12).

However, the same accuracy considerations could not be made when analyzing the

robotic arm. The End-Effector position error computed with the lumped-parameter

method gave a mean error ≈ 3 times higher than that of the flexible-beam method with

two Numbers of Elements, and ≈ 5 times higher with three Numbers of Elements. In

addition, the mean position error for the lumped-parameter model increased by 46% with

a larger Number of Elements, while that of the flexible-beam model gave comparable
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results with both Numbers of Elements. The Standard deviation (SD) also reflected the

same attitudes for both methods: lumped-parameter model solutions showed greater dis-

persion with all step-size values than those of the flexible-beam model, although the latter

method presented an high dispersion with a step size of 1 × 10−2 s for each Number of

Elements (Tables 15 and 16). Even though the analyses conducted on the behavior of

the robotic arm have shown that the lumped-parameter method has higher errors than

the flexible-beam method, they still remain on the order of 1 × 10−4, which corresponds

to an end-effector position error of half a millimeter, while a real model of the robotic

arm works on the order of centimeters. Therefore, a margin of safety is provided for the

lumped-parameter method and the quality of its performance can be based on its execu-

tion time, which remains 76% faster with two Numbers of Elements and 84% faster with

three Numbers of Elements than the flexible-beam method.

Through these analyses, it can be seen that these flexible bodies exhibit complex

behaviors that must be carefully considered in their design, operation and control. The

solver analyses also demonstrated the importance of using the right solver for the model

to be simulated: due to the shorter length of the solar panel from one scenario to the next,

a fixed-step explicit solver was unable to compute the panel frequencies after a certain

length, until a minimum length was reached after which the simulation was stopped.

Tables in Chapter 5.3 show that for each Number of Elements the frequencies increase

steadily with decreasing panel length to a value that corresponds to the maximum panel

frequency fmax. All values after this maximum frequency cannot be considered suitable to

describe the dynamic behavior of the solar panel because of their high relative error rate

values: well over 55% for all frequencies after fmax. The fixed-step implicit solver ode1be

was the right solver to overcome this problem: the results for Scenario 1 remained the

same even though the solver was changed, and for Scenario 2 no more errors occurred

leading the termination of the simulation. However, the implicit solver failed to accurately

capture the panel dynamics for simulations performed at high step-sizes (≥ 1 × 10−3 s):

frequency values of these step-sizes were not displayed or were not consistent if compared
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with the values of smaller step-sizes. This attitude justifies obtaining more accurate results

with Scenario 1, where significantly lower frequencies were involved.

This problem did not occur for the robotic arm models because the results analyzed

were position errors after a defined movement and not frequency responses after a received

impulse. Despite this, the implicit solver ode1be was still used to simulate the motion of

the robotic arm.

In conclusion, the research revealed that the dynamic behavior of flexible bodies can be

modeled by various methods and that the appropriate modeling approach depends on the

specific problem and the required accuracy of the results. The lumped-parameter method

of flexible bodies has proved to be a valuable tool for the design, analysis, and optimiza-

tion especially for its simulation speed, which makes it suitable for modeling real-time

simulators. Future research in this area, may focus on developing more accurate and effi-

cient modeling techniques and control strategies, along with solving challenges associated

with the design and operation of flexible-body satellites, such as the trade-off between

stiffness and weight, thermal management, and compatibility with other subsystems. For

example, the lumped-parameter method can be extended to model more complex robotic

manipulators and solar panel structures, such as flexible arrays, and to study the effect

of their deformation on power output.



Bibliography

[1] J. P. Davis, J. P. Mayberry, and J. P. Penn. “On-orbit servicing: Inspection, repair,

refuel, upgrade, and assembly of satellites in space”. In: The Aerospace Corporation

report (Apr. 2019).

[2] Borna Monazzah Moghaddam and Robin Chhabra. “On the guidance, navigation

and control of in-orbit space robotic missions: A survey and prospective vision”. In:

Acta Astronautica 184 (2021), pp. 70–100. issn: 0094-5765. doi: https://doi.org/

10.1016/j.actaastro.2021.03.029.

[3] On-Orbit Satellite Servicing Study. NASA Project Report. National Aeronautics

and Space Administration (NASA). Oct. 2010.

[4] Paulina Swiatek et al. “Design Principles for Sustainable Close Proximity Opera-

tions”. In: (2019). url: https://www.hou.usra.edu/meetings/orbitaldebris2019/

orbital2019paper/pdf/6177.pdf.

[5] Alex Ellery, Joerg Kreisel, and Bernd Sommer. “The case for robotic on-orbit servic-

ing of spacecraft: Spacecraft reliability is a myth”. In: Acta Astronautica 63.5 (2008),

pp. 632–648. issn: 0094-5765. doi: https://doi.org/10.1016/j.actaastro.2008.01.042.

[6] Joseph H. Saleh, Daniel E. Hastings, and Dava J. Newman. “Spacecraft Design

Lifetime”. In: Journal of Spacecraft and Rockets 39.2 (2002), pp. 244–257. doi:

10.2514/2.3806. eprint: https://doi.org/10.2514/2.3806.

83

https://doi.org/https://doi.org/10.1016/j.actaastro.2021.03.029
https://doi.org/https://doi.org/10.1016/j.actaastro.2021.03.029
https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019paper/pdf/6177.pdf
https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019paper/pdf/6177.pdf
https://doi.org/https://doi.org/10.1016/j.actaastro.2008.01.042
https://doi.org/10.2514/2.3806
https://doi.org/10.2514/2.3806


84 BIBLIOGRAPHY

[7] Mak Tafazoli. “A study of on-orbit spacecraft failures”. In: Acta Astronautica 64.2

(2009), pp. 195–205. issn: 0094-5765. doi: https://doi.org/10.1016/j.actaastro.

2008.07.019.

[8] HubbleSite. Enabling Science Through New Technologies. 2009. url: https://hubblesite.

org/mission-and-telescope/servicing-missions.

[9] European Space Policy Istitute (ESPI). In-Orbit Servicing: Challenges and Implica-

tions of an Emerging Capability. url: https://www.espi.or.at/wp-content/uploads/

espidocs/ESPI.

[10] L. Bitetti et al. “Reliability Model Supporting Satellite Life Extension and Safe

Disposal”. In: 2018 Annual Reliability and Maintainability Symposium (RAMS).

2018, pp. 1–6. doi: 10.1109/RAM.2018.8463107.

[11] Ram S. Jakhu, Yaw Otu M. Nyampong, and Tommaso Sgobba. “Regulatory frame-

work and organization for space debris removal and on orbit servicing of satellites”.

In: Journal of Space Safety Engineering 4.3 (2017), pp. 129–137. issn: 2468-8967.

doi: https://doi.org/10.1016/j.jsse.2017.10.002.

[12] David A. Whelan et al. “DARPA Orbital Express program: effecting a revolution

in space-based systems”. In: Small Payloads in Space. Ed. by Brian J. Horais and

Robert J. Twiggs. Vol. 4136. International Society for Optics and Photonics. SPIE,

2000, pp. 48–56. doi: 10.1117/12.406656.

[13] Walker J. “Fact Sheet: Defense Advanced Research Projects Agency.” In: Orbital

Express, 2007, March.

[14] Putbrese et al. “When will on-orbit servicing be part of the space enterprise?” In:

Acta Astronauta (2016). issn: 0094-5765. url: http ://hdl .handle .net/1721 .1/

118431.

[15] Vicki Cox. Mission Extension Vehicle: Breathing Life Back Into In-Orbit Satellites.

2020. url: https://news.northropgrumman.com/news/features/mission-extension-

vehicle-breathing-life-back-into-in-orbit-satellites.

https://doi.org/https://doi.org/10.1016/j.actaastro.2008.07.019
https://doi.org/https://doi.org/10.1016/j.actaastro.2008.07.019
https://hubblesite.org/mission-and-telescope/servicing-missions
https://hubblesite.org/mission-and-telescope/servicing-missions
https://www.espi.or.at/wp-content/uploads/espidocs/ESPI
https://www.espi.or.at/wp-content/uploads/espidocs/ESPI
https://doi.org/10.1109/RAM.2018.8463107
https://doi.org/https://doi.org/10.1016/j.jsse.2017.10.002
https://doi.org/10.1117/12.406656
http://hdl.handle.net/1721.1/118431
http://hdl.handle.net/1721.1/118431
https://news.northropgrumman.com/news/features/mission-extension-vehicle-breathing-life-back-into-in-orbit-satellites
https://news.northropgrumman.com/news/features/mission-extension-vehicle-breathing-life-back-into-in-orbit-satellites


BIBLIOGRAPHY 85

[16] Jason Rainbow. Northrop’s MEV-2 servicer closing in on Intelsat-10-02 docking

attempt. 2021. url: https://spacenews.com/mev-2-servicer-closing-in-on-intelsat-

10-02-docking-attempt/.

[17] Daniel Hastings and Carole Joppin. “Evaluation of the Value of the Flexibility Of-

fered by On-orbit Servicing: Case of Satellite Upgrade”. In: AIAA Space 2003 Con-

ference &amp; Exposition. doi: 10.2514/6.2003-6366. eprint: https://arc.aiaa.org/

doi/pdf/10.2514/6.2003-6366.

[18] Donald J. Kessler and Burton G. Cour-Palais. “Collision frequency of artificial satel-

lites: The creation of a debris belt”. In: 83.A6 (June 1978), pp. 2637–2646. doi:

10.1029/JA083iA06p02637.

[19] Nodir Adilov, Peter J. Alexander, and Brendan M. Cunningham. “An economic

“Kessler Syndrome”: A dynamic model of earth orbit debris”. In: Economics Letters

166 (2018), pp. 79–82. issn: 0165-1765. doi: https://doi.org/10.1016/j.econlet.

2018.02.025.

[20] National Aeronautics and Space Administration (NASA). “Orbital Debris Quarterly

News”. In: (2009). url: https://www.orbitaldebris.jsc.nasa.gov/newsletter/pdfs/

odqnv13i2.pdf.

[21] Wang Dongfang, Pang Baojun, and Xiao Weike. “GEO space debris environment

determination in the earth fixed coordinate system”. In: PR China (2017). url:

https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/304/SDC7-paper304.

pdf.

[22] Darren S. McKnight and Frank R. Di Pentino. “New insights on the orbital debris

collision hazard at GEO”. In: Acta Astronautica 85 (2013), pp. 73–82. issn: 0094-

5765. doi: https://doi.org/10.1016/j.actaastro.2012.12.006.

[23] R. Jehn, V. Agapov, and C. Hernández. “The situation in the geostationary ring”.

In: Advances in Space Research 35.7 (2005). Space Debris, pp. 1318–1327. issn:

0273-1177. doi: https://doi.org/10.1016/j.asr.2005.03.022.

https://spacenews.com/mev-2-servicer-closing-in-on-intelsat-10-02-docking-attempt/
https://spacenews.com/mev-2-servicer-closing-in-on-intelsat-10-02-docking-attempt/
https://doi.org/10.2514/6.2003-6366
https://arc.aiaa.org/doi/pdf/10.2514/6.2003-6366
https://arc.aiaa.org/doi/pdf/10.2514/6.2003-6366
https://doi.org/10.1029/JA083iA06p02637
https://doi.org/https://doi.org/10.1016/j.econlet.2018.02.025
https://doi.org/https://doi.org/10.1016/j.econlet.2018.02.025
https://www.orbitaldebris.jsc.nasa.gov/newsletter/pdfs/odqnv13i2.pdf
https://www.orbitaldebris.jsc.nasa.gov/newsletter/pdfs/odqnv13i2.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/304/SDC7-paper304.pdf
https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/304/SDC7-paper304.pdf
https://doi.org/https://doi.org/10.1016/j.actaastro.2012.12.006
https://doi.org/https://doi.org/10.1016/j.asr.2005.03.022


86 BIBLIOGRAPHY

[24] G.J. Dittberner, J.S. Huth M.L. Fudge, and D.S. McKnight N.L. Johnson. “Exam-

ining simplifying assumptions of probability of collisions in LEO”. In: Proceedings

of the First European Conference on Space Debris. 1993, pp. 485–489.

[25] Donald J. Kessler et al. “Aerospace: Collision avoidance in space: Proliferating pay-

loads and space debris prompt action to prevent accidents”. In: IEEE Spectrum 17.6

(1980), pp. 37–41. doi: 10.1109/MSPEC.1980.6330357.

[26] Markus Wilde, Jan Harder, and Enrico Stoll. “Editorial: On-Orbit Servicing and

Active Debris Removal: Enabling a Paradigm Shift in Spaceflight”. In: Frontiers in

Robotics and AI 6 (2019). issn: 2296-9144. doi: 10.3389/frobt.2019.00136.

[27] Stephen Ornes. “Bringing down the trash”. In: Physics World 25.06 (June 2012),

p. 28. doi: 10.1088/2058-7058/25/06/38.

[28] G. Borelli et al. “Preparation of enabling space technologies and building blocks:

GNC and Robotic Arm Combined Control. TN1: Scenario definition and GNC re-

quirements”. In: (2021).

[29] Bruno Siciliano et al. Robotics Modelling, Planning and Control. Springer, 2009.

[30] Andrea Antonello. “Design of a robotic arm for laboratory simulations of spacecraft

proximity navigation and docking”. 2016.

[31] Jamshed Iqbal, R Ul Islam, Hamza Khan, et al. “Modeling and analysis of a 6

DOF robotic arm manipulator”. In: Canadian Journal on Electrical and Electronics

Engineering 3.6 (2012), pp. 300–306.

[32] Carlo Menon et al. “Free-Flying Robot Tested on Parabolic Flights: Kinematic Con-

trol”. In: Journal of Guidance Control and Dynamics - J GUID CONTROL DYNAM

28 (July 2005), pp. 623–630. doi: 10.2514/1.8498.

[33] Zhang X and Liu J. “Autonomous trajectory planner for space telerobots capturing

space debris under the teleprogramming framework”. In: (2017). doi: 10 . 1177 /

1687814017723298.

https://doi.org/10.1109/MSPEC.1980.6330357
https://doi.org/10.3389/frobt.2019.00136
https://doi.org/10.1088/2058-7058/25/06/38
https://doi.org/10.2514/1.8498
https://doi.org/10.1177/1687814017723298
https://doi.org/10.1177/1687814017723298


BIBLIOGRAPHY 87

[34] Wenfu Xu et al. “Hybrid modeling and analysis method for dynamic coupling of

space robots”. In: IEEE Transactions on Aerospace and Electronic Systems 52.1

(2016), pp. 85–98. doi: 10.1109/TAES.2015.140752.

[35] Zhai Guang, Zheng Heming, and Bin Liang. “Attitude Dynamics of Spacecraft with

Time-Varying Inertia During On-Orbit Refueling”. In: Journal of Guidance, Control,

and Dynamics 41.8 (2018), pp. 1744–1754. doi: 10.2514/1.G003474.

[36] M. Oda and Y. Ohkami. “Coordinated control of spacecraft attitude and space

manipulators”. In: Control Engineering Practice 5.1 (1997), pp. 11–21. issn: 0967-

0661. doi: https://doi.org/10.1016/S0967-0661(96)00202-X.

[37] Zong L., Luo J., and Wang M. et al. “Parameters concurrent learning and reaction-

less control in post-capture of unknown targets by space manipulators”. In: Nonlin-

ear Dynamics 96.1 (2019), pp. 443–457. doi: https://doi.org/10.1007/s11071-019-

04798-w.

[38] R. LONGMAN, R. LINDBERG, and M. ZEDD. “Satellite mounted robot manipu-

lators - New kinematics and reaction moment compensation”. In: Guidance, Navi-

gation and Control Conference. doi: 10.2514/6.1985-1885.

[39] Evangelos Papadopoulos and Steven Dubowsky. “Coordinated manipulator/space-

craft motion control for space robotic systems.” In: ICRA. 1991, pp. 1696–1701.

[40] Canadian Space Agency. Canadarm, Creation of the first Canadian robotic arm,

flight history, comparison with Canadarm2 and Canadarm3. url: https://www.asc-

csa.gc.ca/eng/canadarm/.

[41] Bruce A. Aikenhead, Robert G. Daniell, and Frederick M. Davis. “Canadarm and the

space shuttle”. In: Journal of Vacuum Science & Technology A 1.2 (1983), pp. 126–

132. doi: 10.1116/1.572085.

[42] Michael Hiltz et al. “Canadarm: 20 years of mission success through adaptation”.

In: International Symposium on Artificial Intelligence, Robotics and Automation.

JSC-CN-6877. 2001.

https://doi.org/10.1109/TAES.2015.140752
https://doi.org/10.2514/1.G003474
https://doi.org/https://doi.org/10.1016/S0967-0661(96)00202-X
https://doi.org/https://doi.org/10.1007/s11071-019-04798-w
https://doi.org/https://doi.org/10.1007/s11071-019-04798-w
https://doi.org/10.2514/6.1985-1885
https://www.asc-csa.gc.ca/eng/canadarm/
https://www.asc-csa.gc.ca/eng/canadarm/
https://doi.org/10.1116/1.572085


88 BIBLIOGRAPHY

[43] Juergen Telaar et al. “Coupled control of chaser platform and robot arm for the e.

deorbit mission”. In: 10th Int. ESA conference on Guidance Navigation and Control

Systems (GNC), May 2017. 2017, p. 4.

[44] Z. Pavanello et al. “Combined Control and Navigation Approach to the Robotic

Capture of Space Vehicles”. In: (2021). url: https://hdl.handle.net/11311/1189477.

[45] Gunter D. Krebs. “OSAM 1 (Restore-L)”. In: Gunter’s Space Page (2023). url:

https://space.skyrocket.de/doc_sdat/osam-1.htm.

[46] ESA. “The RemoveDebris ADR Mission: Preparing for an International Space Sta-

tion Launch”. In: 7 (2017). url: https://conference.sdo.esoc.esa.int/proceedings/

sdc7/paper/173.

[47] Chris Blackerby et al. “ELSA-d: An In-Orbit End-of-Life Demonstration Mission”.

In: Proc. Int. Astronaut. Congr. IAC. Vol. 6. 2018, p. 43644.

[48] Mario E. Salgado, Graham C. Goodwin, and Stefan F. Graebe. Control System

Design. Ed. by Pearson College Div. 2000. url: http ://caaelotel . elo .utfsm.cl/

home/wp-content/uploads/Control-System-Design-SalgadoGoodwinGraebe.pdf.

[49] “Identification and Model Reduction Techniques”. In: Practical PID Control. Lon-

don: Springer London, 2006, pp. 165–207. isbn: 978-1-84628-586-8. doi: 10.1007/1-

84628-586-0_7. url: https://doi.org/10.1007/1-84628-586-0_7.

[50] S. Miller et al. Modeling Flexible Bodies with Simscape Multibody Software. url:

https://it.mathworks.com/campaigns/offers/model-flexible-bodies.html.

[51] Rached El Fatmi and Hatem Zenzri. “On the structural behavior and the Saint

Venant solution in the exact beam theory: Application to laminated composite

beams”. In: Computers Structures 80.16 (2002), pp. 1441–1456. issn: 0045-7949.

doi: https : / / doi . org / 10 . 1016 /S0045 - 7949(02 ) 00090 - 1. url: https : / /www .

sciencedirect.com/science/article/pii/S0045794902000901.

[52] Stefano Lenci. Lezioni di MECCANICA STRUTTURALE. Ed. by Pitagora Editrice

Bologna. 2004, pp. 243–268.

https://hdl.handle.net/11311/1189477
https://space.skyrocket.de/doc_sdat/osam-1.htm
https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/173
https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/173
http://caaelotel.elo.utfsm.cl/home/wp-content/uploads/Control-System-Design-SalgadoGoodwinGraebe.pdf
http://caaelotel.elo.utfsm.cl/home/wp-content/uploads/Control-System-Design-SalgadoGoodwinGraebe.pdf
https://doi.org/10.1007/1-84628-586-0_7
https://doi.org/10.1007/1-84628-586-0_7
https://doi.org/10.1007/1-84628-586-0_7
https://it.mathworks.com/campaigns/offers/model-flexible-bodies.html
https://doi.org/https://doi.org/10.1016/S0045-7949(02)00090-1
https://www.sciencedirect.com/science/article/pii/S0045794902000901
https://www.sciencedirect.com/science/article/pii/S0045794902000901


BIBLIOGRAPHY 89

[53] Alexander Mielke. “Saint-Venant’s problem and semi-inverse solutions in nonlinear

elasticity”. In: Archive for Rational Mechanics and Analysis 102 (1988), pp. 205–

229.

[54] J. Thomas and B.A.H. Abbas. “Finite element model for dynamic analysis of Tim-

oshenko beam”. In: Journal of Sound and Vibration 41.3 (1975), pp. 291–299. issn:

0022-460X. doi: https://doi.org/10.1016/S0022-460X(75)80176-3. url: https:

//www.sciencedirect.com/science/article/pii/S0022460X75801763.

[55] Alessandro Tasora. “Euler-bernoulli corotational beams in chrono:: Engine”. In:

Chrono:: Engine technical documentation (2016).

[56] MathWorks. Flexible Rectangular Beam. url: https://it.mathworks.com/help/sm/

ref/flexiblerectangularbeam.html.

[57] Xuli Han and Xiao Guo. “Cubic Hermite interpolation with minimal derivative

oscillation”. In: Journal of Computational and Applied Mathematics 331 (2018),

pp. 82–87. issn: 0377-0427. doi: https://doi.org/10.1016/j.cam.2017.09.049. url:

https://www.sciencedirect.com/science/article/pii/S0377042717304910.

[58] W. Khalil and M. Gautier. “Modeling of mechanical systems with lumped elasticity”.

In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference

on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 4.

2000, 3964–3969 vol.4. doi: 10.1109/ROBOT.2000.845349.

[59] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. “The Fast Fourier Trans-

form and Its Applications”. In: IEEE Transactions on Education 12.1 (1969), pp. 27–

34. doi: 10.1109/TE.1969.4320436.

[60] James W Cooley and John W Tukey. “An algorithm for the machine calculation of

complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–301.

[61] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Soci-

ety for Industrial and Applied Mathematics, 2002. doi: 10.1137/1.9780898718027.

url: https://epubs.siam.org/doi/abs/10.1137/1.9780898718027.

https://doi.org/https://doi.org/10.1016/S0022-460X(75)80176-3
https://www.sciencedirect.com/science/article/pii/S0022460X75801763
https://www.sciencedirect.com/science/article/pii/S0022460X75801763
https://it.mathworks.com/help/sm/ref/flexiblerectangularbeam.html
https://it.mathworks.com/help/sm/ref/flexiblerectangularbeam.html
https://doi.org/https://doi.org/10.1016/j.cam.2017.09.049
https://www.sciencedirect.com/science/article/pii/S0377042717304910
https://doi.org/10.1109/ROBOT.2000.845349
https://doi.org/10.1109/TE.1969.4320436
https://doi.org/10.1137/1.9780898718027
https://epubs.siam.org/doi/abs/10.1137/1.9780898718027


90 BIBLIOGRAPHY

[62] Lizhe Tan and Jean Jiang. “Chapter 2 - Signal Sampling and Quantization”. In:

Digital Signal Processing (Third Edition). Ed. by Lizhe Tan and Jean Jiang. Third

Edition. Academic Press, 2019, pp. 13–58. isbn: 978-0-12-815071-9. doi: https :

//doi.org/10.1016/B978-0-12-815071-9.00002-6. url: https://www.sciencedirect.

com/science/article/pii/B9780128150719000026.

[63] Edmund Lai. “2 - Converting analog to digital signals and vice versa”. In: Practical

Digital Signal Processing. Ed. by Edmund Lai. Oxford: Newnes, 2003, pp. 14–49.

isbn: 978-0-7506-5798-3. doi: https://doi.org/10.1016/B978-075065798-3/50002-3.

url: https://www.sciencedirect.com/science/article/pii/B9780750657983500023.

[64] MathWorks. Choose a solver. url: https://it.mathworks.com/help/simulink/ug/

choose-a-solver.html.

[65] MathWorks. Choose a Jacobian Method for an Implicit Solver. url: https :// it .

mathworks.com/help/simulink/ug/choose- a- jacobian-method- for- an- implicit-

solver.html.

[66] John Charles Butcher. Numerical methods for ordinary differential equations. John

Wiley & Sons, 2016.

[67] MathWorks. Fixed Step Solvers in Simulink. url: https://it.mathworks.com/help/

simulink/ug/fixed-step-solvers-in-simulink.html.

[68] MathWorks. fft - Fast Fourier Transform. url: https://it.mathworks.com/help/

matlab/ref/fft.html.

[69] MathWorks. External Force and Torque. url: https://it.mathworks.com/help/sm/

ref/externalforceandtorque.html.

[70] MathWorks. Transform Sensor. url: https :// it .mathworks .com/help/sm/ref/

transformsensor.html.

[71] MathWorks. Revolute Joint. url: https : / / it . mathworks . com / help / sm / ref /

revolutejoint.html.

https://doi.org/https://doi.org/10.1016/B978-0-12-815071-9.00002-6
https://doi.org/https://doi.org/10.1016/B978-0-12-815071-9.00002-6
https://www.sciencedirect.com/science/article/pii/B9780128150719000026
https://www.sciencedirect.com/science/article/pii/B9780128150719000026
https://doi.org/https://doi.org/10.1016/B978-075065798-3/50002-3
https://www.sciencedirect.com/science/article/pii/B9780750657983500023
https://it.mathworks.com/help/simulink/ug/choose-a-solver.html
https://it.mathworks.com/help/simulink/ug/choose-a-solver.html
https://it.mathworks.com/help/simulink/ug/choose-a-jacobian-method-for-an-implicit-solver.html
https://it.mathworks.com/help/simulink/ug/choose-a-jacobian-method-for-an-implicit-solver.html
https://it.mathworks.com/help/simulink/ug/choose-a-jacobian-method-for-an-implicit-solver.html
https://it.mathworks.com/help/simulink/ug/fixed-step-solvers-in-simulink.html
https://it.mathworks.com/help/simulink/ug/fixed-step-solvers-in-simulink.html
https://it.mathworks.com/help/matlab/ref/fft.html
https://it.mathworks.com/help/matlab/ref/fft.html
https://it.mathworks.com/help/sm/ref/externalforceandtorque.html
https://it.mathworks.com/help/sm/ref/externalforceandtorque.html
https://it.mathworks.com/help/sm/ref/transformsensor.html
https://it.mathworks.com/help/sm/ref/transformsensor.html
https://it.mathworks.com/help/sm/ref/revolutejoint.html
https://it.mathworks.com/help/sm/ref/revolutejoint.html


BIBLIOGRAPHY 91

[72] MathWorks. Rigid Transform. url: https : / / it .mathworks . com/help / sm/ ref /

rigidtransform.html.

[73] Bruno Siciliano et al. Robotics Modelling, Planning and Control. Springer, 2009,

pp. 91–94.

[74] MathWorks. Cylindrical Solid. url: https : / / it .mathworks . com/help / sm/ ref /

cylindricalsolid.html.

[75] J Martin Bland and Douglas G Altman. “Statistics notes: measurement error”. In:

Bmj 312.7047 (1996), p. 1654.

[76] MathWorks. std - standard deviation. url: https://it.mathworks.com/help/matlab/

ref/std.html#d124e1492879.

[77] P. Bogacki and L.F. Shampine. “A 3(2) pair of Runge - Kutta formulas”. In: Applied

Mathematics Letters 2.4 (1989), pp. 321–325. issn: 0893-9659. doi: https://doi.

org/10.1016/0893-9659(89)90079-7. url: https://www.sciencedirect.com/science/

article/pii/0893965989900797.

https://it.mathworks.com/help/sm/ref/rigidtransform.html
https://it.mathworks.com/help/sm/ref/rigidtransform.html
https://it.mathworks.com/help/sm/ref/cylindricalsolid.html
https://it.mathworks.com/help/sm/ref/cylindricalsolid.html
https://it.mathworks.com/help/matlab/ref/std.html#d124e1492879
https://it.mathworks.com/help/matlab/ref/std.html#d124e1492879
https://doi.org/https://doi.org/10.1016/0893-9659(89)90079-7
https://doi.org/https://doi.org/10.1016/0893-9659(89)90079-7
https://www.sciencedirect.com/science/article/pii/0893965989900797
https://www.sciencedirect.com/science/article/pii/0893965989900797

	Introduction
	In-orbit servicing
	Manoeuvering a robotic arm in space

	Thesis motivation and objectives
	Thesis Outline

	GNC and robotic arm combined control
	Functional Engineering Simulator (FES)
	Mission scenarios
	Servicing a large GEO platform
	Servicing a small platform of a large constellation in LEO

	Robotic Arm physical model
	Robotic Arm control

	Numerical analysis description
	Flexible body theory
	General theory

	Lumped-parameter and Flexible-beam method description
	Response to an impulse
	Effects of the discretization on the beam response

	Application of lumped theory on models
	Comparison against the benchmark

	Solver definition
	Explicit vs Implicit fixed-step solvers


	The Simulation Tool
	The MATLAB - Simulink environment
	MATLAB segment
	Simulink segment
	Solar panel
	Robotic arm


	Numerical results
	Solar Panel
	Scenario 1
	Scenario 2
	Methods comparison

	Robotic arm
	End-Effector position error
	Methods comparison

	Solver test

	Conclusions

