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Abstract

This thesis investigates multimodal federated learning (FL) within the domain of semantic segmentation for au-
tonomous driving scenarios. Building upon existing research [1] as the starting point of this work, the study
experimentally evaluates the performance of FL when employing multiple modalities of data. Specifically, it uses
the Cityscapes [2] dataset, both in its standard RGB format and augmented with geometric information, to eval-
uate the effectiveness of multimodal FL in improving semantic segmentation accuracy.

Utilizing an encoder-decoder architecture consisting of Mobilenet-v2 as the encoder and Deeplabv3 as the
decoder, the study was conducted by performing experiments that covered both multimodal and depth-only sce-
narios.

The findings in this experimental work present valuable insights into the limitations and challenges linked to
integratingmultiplemodalities within the FL framework for semantic segmentation tasks in autonomous driving
settings. The study highlights the importance of empirical analysis, illuminates the practical effects of advanced
machine learning techniques, and highlights potential implications for future research aimed at overcoming the
observed limitations.
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1
Introduction

The rise of Artificial Intelligence (AI) is transforming the way complex problems are tackled, especially in au-
tonomous driving, where cutting-edge AI technologies are applied. The quest for developing systems capable
of navigating complex urban environments with precision and autonomy has never been more crucial. Federated
learning emerges as an important approach and addresses the intrinsic limitations posed by conventionalmachine
learning paradigms. This thesis targets the problems of semantic image segmentation within the context of fed-
erated learning as it is a domain where understanding the immediate environment through visual data becomes
critical for the safe operation of autonomous vehicles. As cities and urban landscapes become more crowded and
complex, the demand for innovative solutions that can process and analyze vast amounts of data while respect-
ing user privacy and system efÏciency increases. Federated learning offers a promising and privacy-preserving ap-
proach by decentralizing data processing and bridges the gap between these requirements in autonomous driving
technologies.

Traditional machine-learning approaches facemultiple adversities in effectively addressing themodernworld’s
data-oriented challenges. One notable obstacle stems from the centralized nature of traditional learning models,
causing hardship in scalability, privacy, and efÏciency. Centralization poses significant scalability challenges with
large and complex datasets. The idea of creating a structure that prevents potential bottlenecks and performance
limitationswhile relying on a central information source becomes nearly impossible as such systemswould require
extensive computational resources and infrastructure. Furthermore, traditional machine learning frameworks of-
ten struggle to accommodate the needs of data privacy through such model structures. Another crucial concern
lies in the efÏciency of these approaches. The centralized model training process results in significant computa-
tional overhead, making it difÏcult to have a short response time in real-time problems.

Tackling these problems requires novel approaches that prioritize data privacy, decentralization, and, therefore,
computational efÏciency. As a solution to these challenges, an alternative approach is advocated, whereby the
training data remains distributed across devices, and a shared model is learned through the aggregation of locally
computed updates [9]. This decentralized method is referred to as Federated Learning. Handling a Computer
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Vision problem within the scope of Federated Learning, this work dives more into the usage of semantic image
segmentation - a critical process for understanding and analyzing complex road scenes in autonomous driving sce-
narios. Semantic segmentation assigns specific classes, such as cars, pedestrians, and buildings, to each pixel in an
image, thereby allowing us to possess a detailed understanding of the environment around autonomous vehicles.
This technology stands at the forefront of current Artificial Intelligence technology, among others, offering a new
perspective to make sense of our world in ways previously unimagined.

Theworkpresented in this thesis is to harness the power ofmultimodal data to enhance semantic segmentation.
As the first type of input source, Cityscapes dataset [2], a rich repository of urban scene images, is utilized in its
standard RGB form. Then, an equivalent set of depth images using a Python script is generated. This conversion
process createsHorizontalDisparity toHeight (HHA) encoded images, offering a depth perspective alongside the
original RGB images. This dual-modality approach—combining RGB and Depth (HHA) images— creates the
multimodality of this work. By integrating these various data streams, the objective of this thesis is to explore the
effects and raise a more comprehensive understanding of its effect on this nuanced Computer Vision challenge.
This research builds upon previous foundational work [1], with the ambition of having an experimental take on
top of the current work. It proposes a decentralized collaboration network of clients controlled by a central server
under the scope of Federated Learning. This design ensures that data privacy is maintained, as each client’s data
does not leave its local storage. Instead, model updates are shared and aggregated at the server level, updating the
global model without compromising individual data privacy.

A set of experimental configurations is designed to systematically explore the integration of RGB and Depth
data within the federated learning framework. Varying combinations of encoders and decoders to process this
multimodal data are investigated, aiming to discover optimal architectures for feature fusion and segmentation
effectiveness. Through this series of methodologically different experiments, this thesis seeks to contribute to
the domain of autonomous driving. The findings yielded from this research are expected to provide important
insights into semantic segmentation using federated learning approaches, potentially influencing other domains
beyond autonomous driving.
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2
Frameworks

2.1 Federated Learning

In today’s world, where machine learning has started redefining how many things are, and data has become valu-
able as currency as also expressed in [10], the concept of Federated Learning has emerged as a revolutionary frame-
work. A team of engineers at Google [11] came up with an approach that allows for the collaborative training of
machine learning models without the necessity of storing data at a central repository. This sort of approach can
be explained as an algorithm traversingmultiple data sources and learning from them, and only themodel updates
are transmitted back to a central server.

Each client in this scenario possesses their own local data, as seen in Figure 2.1. Clients could range from smart-
phones to hospitals, and they all contribute to the learning process of the model. Each client independently com-
putes an update to the model based on its local data and sends back to the server only these updates, not the data
itself. The server then aggregates these updates using various algorithms such as Federated Averaging (FedAvg).
By this, the weighted average of the updates is computed and the model refined global model is redistributed to
the clients for further improvement. This iterative process continues until the model converges to a satisfactory
level of accuracy.

FedAvg handles federated optimization of models by considering the local counterpart Fk(w) of the the global
objective function on each device. In this process, it uses any optimizer (stochastic gradient descent (SGD) is used
as an example for explanatory purposes) uniformly across devices and can be described as follows:

1. The server initializes the model and distributes it to a selected subset of clients within the federated net-
work.

2. These clients then execute SGD locally, shown in equation 2.1,for a specified number of epochs E, opti-
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mizing their local objective functions.

wk
t+1 = wk

t − ηt∇Lk(wk
t ) (2.1)

where wk
t represents the local model parameters for client k at iteration t, ηt is the learning rate, and∇Lk

is the gradient of the loss with respect to the local dataset.

3. Subsequently, each client sends back their model updates (weights and biases) to the server.

4. The central server aggregates these updates to update the global model as in equation 2.2. This updated
model is then redistributed to clients, starting a new round.

wt+1 =

K∑

k=1

nk
n
wk
t+1 (2.2)

where wt+1 represents the updated global model parameters, K is the total number of clients, nk is the
number of data samples on client k, and n is the total number of data samples across all clients.

5. This procedure is iteratively repeated until convergence is achieved or a predefined stop condition is met.

Figure 2.1: Centralized‐server approach example to federated learning. Source: NVIDIA [12].

Some of the common assumptions made for the traditional machine learning training approaches are mostly
dropped in federated learning. Those assumptions are listed below, also stated in [13]:

• Data is assumed to be sampled as independent and identically distributed (i.i.d) in traditional machine
learning algorithms, whereas federated learning assumes different users store various types of data.

• Evenly distributed data assumption does not hold in federated learning, as well. This assumption is vio-
lated in almost all real-world problems as it is virtually impossible to achieve.
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In this distributed approach, user privacy is preserved by training models directly on remote devices without
centralizing data [10]. Moreover, federated learning models may additionally integrate end-to-end encryption to
protect against reverse engineering attacks on the raw updates and secure training metadata during transmissions.
On topof its privacy advantages, federated learning also stands outwith its ability tohandle highdegrees of systems
and statistical heterogeneity [14]. This includes:

• Systems Heterogeneity: The clients in the federated learning network might possess a wide range of
hardware capabilities and resource availability, such as CPU performance, battery life, and network con-
nectivity. This type of heterogeneity can affect the consistency of participation of devices immensely. A
client with a low battery or poor network connectivity may drop out of a given iteration for instance and
cause inconsistencies in model training.

• Statistical Heterogeneity: Real-life federated learning scenarios don’t usually work with independently
and identically distributed (i.i.d.) data, unlike traditional centralized ML settings. Clients are likely to
have their own unique data distribution depending on their user behavior, geographical location, and
other factors. Therefore, the size and shape of data across these devices can vary dramatically. This type
of statistical heterogeneity can introduce delays and inefÏciencies in the training process and prevent the
global model from converging.

Centralized conventionalmachine learning approaches train themodel at the center server or cloud. The infor-
mation transmitted from clients is used in the server and then stored. This architecture requires a large bandwidth
and increases the risk of congestion [15]. Federated learning reduces the latency by eliminating the need to trans-
fer extensive raw data and reduces response time. Low latency and local processing capability that comes with
this approach become crucial in scenarios such as autonomous driving, where real-time data analysis and timely
response holds paramount importance.

The main objective in federated learning is to minimize a global function formulated as:

F(w) =
m∑

k=1

pkFk(w)

where pk defines the relative impact of each device, with
∑

k pk = 1.
The local objective function for the k-th device is typically expressed as:

Fk(w) =
1
nk

nk∑

j=1

fkj (w, xkj , ykj ),

where nk is the number of examples for a given client, fkj is the loss of the j-th example on the k-th device, xkj and
ykj are the features and label of the j-th example on the k-th device, respectively. This equation shows the direct
relation with local data for global model update

2.2 Semantic Segmentation
Within Computer Vision, semantic segmentation can be considered a crucial domain. It is a subset of artificial
intelligence with a focus on analyzing, interpreting, and understanding the visual data by classifying each pixel
into a predefined category. As seen in Figure 2.2, the way it differs from classic image classification is by not
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only identifying objects within an image but also assigning each pixel of the image to a specific class label. This
process is called dense prediction, where every pixel intensity value is mapped to a categorical label, making it
perfect for analyzing images in a detailedmanner. The importance of semantic segmentation lies in its application
across numerous fields, such as augmented reality, medical image analysis, video surveillance, three-dimensional
reconstruction, and autonomous driving [16].

Figure 2.2: Progression in visual comprehension from broad to detailed analysis. Source: [17].

Medical image analysis is also afieldwhere semantic segmentation canbeused. Rather than focusingon specific
regions for the interpretation, pixel-level and precise explanations of various anatomical structures and patholog-
ical regions frommedical imaging data are made possible through semantic segmentation [18].

Semantic segmentation also plays a crucial role in augmented reality scenarios. It allows the users the possibility
to have more detailed and in-depth experience in the scene , especially in medical environments. It has shown
promising use cases in the medical field such as real-time identification of anatomical structures in surgeries.

Another field that’s been highly affected by semantic segmentation is video surveillance. It has been heavily
used in Unmanned Aerial Vehicles (UAVs), improving the way we monitor and manage environments. Semantic
segmentation allows the detailed detection and tracking of objects across a wide range of scenarios by providing
a precise pixel-level understanding of video data. Despite its numerous advantages in the field, the scarcity of
annotated ground truth data necessary for training robust models makes its application to video surveillance a
challenge for researchers. In order to overcome the problem of weakly supervised semantic segmentation, deep
learning-based architectures [19] emerge as the technology advances.

Having a good understanding of the surroundings in autonomous driving has always become a crucial task
because of the importance of navigation and decision-making processes of self-driving cars. It offers a compre-
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hensive understanding of the environment, helping obstacle detection, route planning, and trafÏc management
by classifying each pixel of an image into categories such as roads, vehicles, and pedestrians. With existing mod-
els and the newly emerging ones, the performance of semantic segmentation models is constantly evaluated and
being improved [20].

2.3 Multimodality
Complex real-world scenes pose a great challenge that often cannot be mitigated by any single source of data
or segmentation architecture when it comes to achieving highly accurate semantic segmentation. Real-world
applications usually involve dynamic environments where the volume and the complexity of data can exhaust
traditional unimodal strategies [21]. Various data sources have their own unique explanation of the same scenery,
as shown in Figure 2.3, aiding overallmodel accuracy in challenging adverse conditions [21, 22]. Having their own
strengths anddrawbacks for numerous reasons, using them in amultimodal system leverages their complementary
strengths and enriches the perception and understanding of a scene. At its core, multimodality offers integration
and synthesis of the information from various sensors and detectors that provide a unique perspective of the same
scene. This way, the system captures a more detailed and in-depth representation of the environment without
compromising its complexity.

Nonetheless, integration of the multimodal data comes with its own challenges. Each modality presents un-
certainty in the fusion process through its own noise levels and characteristics. Therefore, in many multimodal
architectures, reducing redundant datawhile utilizing it in error correction and cross-validationprocesses becomes
highly important. Corresponding strategies are being developed to tackle these challenges while extracting and
benefiting from valuable insights from the training data. One of the strategies that has been revolutionizing the
field is deep learning, which has come onto the stage for multimodal fusion in semantic segmentation of com-
plex environments. Deep learning models offer vast computational power and the ability to learn from massive
datasets [23, 24]. In many multimodal fusion processes, the dataset required for training grows larger, making it
difÏcult for traditional learning strategies. However, deep learning models are able to handle such datasets while
taking multiple inputs [25] and understand the given scenery with a level of perceptual depth close to human
understanding. Furthermore, deep learning architectures allow for flexible and effective fusion strategies that can
precisely gauge the contribution of each modality and optimize the model.

Existing driving scenery datasets often feature a single type of attribute while missing other complementary
data [27, 28, 29]. Therefore, designing deep learning models that can harness the features offered by various
sensory modalities becomes the primary object in neural network design. In multimodal learning, different data
types can be obtained from a range of devices such as 3DLiDARs, depth sensors, RGB cameras, thermal cameras,
and various other sensors, providing spatial and contextual data surpassing the richness of unimodal scenarios.
These modalities can be utilized individually or together to mitigate the innate uncertainty in interpreting the
scene at hand to achieve robust and accurate perception.

For instance, LiDAR sensors are highly precise in the construction of 3D maps of the surroundings. There-
fore, this attribute allows them to be beneficial for obstacle detection. When the ambient light conditions are not
suitable for traditional visual cameras, LiDAR sensors come in handy as they work reliably under low-light condi-
tions. By nature, LiDAR sensors provide high-resolution point clouds [30] and this way, they offer amuch better
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Figure 2.3: (a) RGB images from Cityscapes dataset; (b) Predicted depth map; (c) ground truth semantic segmentation
images; and (d) prediction. Source: [26].

understanding of fine features in the scanned area. However, the accuracy precision decreases under challenging
weather conditions like rain or fog for these types of sensors. Another challenge to the usage of LiDAR sensors is
their high production cost. These systems are often much more expensive compared to other traditional modali-
ties, preventing widespread adoption. However, it’s predicted to be cheaper and more available for autonomous
vehicles [31]. Their ability to provide high-resolution data can be beneficial in environmental understanding, but
they create a heavy load on overall data volume and increase processing power. Lastly, LiDAR sensors are not
suitable for all machine learning tasks as they do not provide color information.

In tasks where color information plays an important role, RGB cameras have long been reliable and well-
established sensor types. This fact makes an abundance of information from research and development in the
field available in scenery interpretation. This type of sensor can be useful in object recognition [32] and tracking
tasks. Moreover, modern RGB cameras can yield high-resolution images with the advancement of current tech-
nology [33]. In comparison with LiDAR sensors, they are often less expensive to produce, making them more
accessible in the autonomous driving field. Contrary to their benefits, RGB cameras lack in some ways, such as
dependency on light. By their nature, they require adequate lighting to capture clear images, and this limits their
usage in low-light conditions. Furthermore, RGB cameras do not provide in-depth information on the environ-
ment, losing an important aspect of data in model training.

Thermal cameras havebeen a crucial tool for nighttime and low-light condition sensing applications [34]. They
can detect heat signatures even in absolute darkness, therefore making them useful in navigation and surveillance.
Their ability to perceive through obscuring factors such as smoke, dust, and thin foliage makes them invaluable
for operations where a clear weather condition is not present. Moreover, thermal cameras have become incredibly
useful for living being detection thanks to their ability to discern the contrast provided by body heat against cooler
backgrounds. This capability in itselfmakes it efÏcient forwildlife research [35] and security scenarios. Conversely,
they fall behind their counterparts in terms of rendering quality and overall output resolution. Similar to LiDAR
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sensors, they lack color sensitivity and do not provide enough color information.
Depth cameras provide another layer of understandingbydelivering important spatial data. This feature allows

accurate 3D mapping and enhanced object detection in autonomous vehicles and robotics. They are often used
as complementary information sources [36] working in tandem with other sensors as they can provide valuable
data across different lighting conditions. Moreover, their real-time processing capabilities make them especially
suited for dynamic settings where immediate spatial understanding is paramount. However, like its counterparts,
the limitations of depth cameras are noteworthy. Their less extensive range compared to LiDARs, sensitivity to
the other infrared-emitting sources in the detecting range, and their less detailed image quality [37] compared to
high-resolution RGB cameras prevent them from being the standalone information source in machine learning
challenges.

The cumulative evidence from previously conducted research [38, 39, 40, 41] emphasizes that various sensory
inputs used together are far more potent than the singular data stream in deep learning model efÏciency and
accuracy. The integration of multimodal data allows the deep learning model to analyze and understand the
scenes in a multidimensional way that single modality systems might not fully capture. The utilization of RGB
cameras for capturing visual information about the environmentwith the complementary usage of depth cameras
for gathering more extensive spatial data provides a layered comprehension of the operational environment. This
thesis explores a set of encoder-decoder architectureswheredata is provided inbothRGBandDepth formats. This
experimental study thrives to illuminate the effects of multimodality in practical autonomous driving scenarios.
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3
Dataset

3.1 Dataset Overview: Cityscapes
Cityscapes[2] dataset is one of themost commonly used benchmark suites for evaluating the semantic understand-
ing of urban scenes. It offers 5000 images with high-quality pixel-level annotations and an additional 20,000 with
coarse annotations. Its richness for annotations, large size, and scene variability puts it among the top choices for
autonomous driving tasks. This dataset has been like a cure for the facilitation of the development and evaluation
of algorithms that require a solid understanding of urban environments. Moreover, the Cityscapes dataset stands
out with its extensive collection of annotated images that were captured under diverse weather conditions and
varying lighting conditions. This feature allows users to have more realistic data for deep learning model train-
ing. Another important aspect of this dataset is that it has a diverse set of annotations that cover a wide range
of urban scenarios. This diversity helps models to be more robust and less prone to overfitting and have a better
overall generalization. The captured imagery within the dataset is from an automobile in transit across seasons
to increase the diversity. The data is gathered predominantly across German cities and other areas in their close
proximity [2]. Initially, this study employed the standard RGB image format as supplied by the dataset’s creators.
To further explore the multimodal approach, these RGB images were subsequently transformed into the HHA
format through a Python script designed for this conversion task.

3.1.1 Data Recording and Variance
The dataset captures across different seasons and covers a range of city parts—from crowdedmetropolises to small
towns as seen in Figure 3.1

This temporal and spatial diversity is highly important for training models that are robust and generalizable
for real-world conditions. The geographic and temporal data distribution is as follows:
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Figure 3.1: Locations of images captured on map. Source: [42].

• Geographic Spread: Data are captured from cities located in the western, central, and eastern regions.

• City Size Variance: Includes large, medium, and small urban centers.

• Seasonal Coverage: Encompasses beginning, middle, and end-of-year scenarios.

• City-Level Split: Each city is contained within a single data split to maintain split consistency.

3.1.2 Class Definitions and Annotations
Cityscapes defines 30 visual classes that are further organized into eight categories. These categories range from
structural and stationary elements of the urban landscape to moving objects such as vehicles and pedestrians, as
well as more miscellaneous elements like the sky and various terrains. A detailed description of the corresponding
classes are as follows:

1. Construction: bridge, building†, fence†, guard rail, tunnel, wall†

2. Flat: road†, sidewalk†, parking, rail track

3. Human: person†, rider†

4. Nature: vegetation†, terrain†
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their versatile usage inwidespread applications, including natural language processing [44], image processing [45],
and speech recognition[46].

4.1 Encoder: Mobilenet-v2

Achieving an optimal balance between the limited computational resources and the accuracy of models is crucial,
especially on mobile devices. In order to create a model tailored for computer vision applications in resource-
constrained environments, the MobileNets series was introduced by Google [4]. The initial model was released
in the spring of 2017 [4], then subsequentmodels with enhanced architectures were released, themost recent one
beingMobileNetV3 [47]. Thesemodels are designed to be lightweight yet effective for a broad range of computer
vision tasks, including but not limited to classification, object detection, and semantic segmentation [5].

Figure 4.2: Various recognition tasks of MobileNetV1 architecture. Source: [4].

The initial model MobileNetV1 made a great contribution to minimizing the model size and computational
complexity. The reduction in complexity requires a number of parameters and computational operations, such as
multiplications and additions. Above all,MobileNetV1 stands out for its diversity across different tasks, as shown
in Figure 4.2. For this, the model employs a method that significantly reduces the computational burden. This
method is called depthwise separable convolutions. It breaks down the convolutional process into two separate
layers, depthwise and pointwise convolution, governed by equations 4.1 and 4.2. By decomposing these steps,
filtering and combining steps are done separately and lower the computational requirements drastically.

Yi,j,m =

D∑

k=1

K∑

l=1

Wl,k,m · Xi+l,j+k,k (4.1)

where:
Yi,j,m is the output feature map at position (i, j) in channelm,
Wl,k,m represents the depthwise filter weights,
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Xi+l,j+k,k denotes the input feature map at position (i+ l, j+ k) in channel k.

Zi,j,p =

M∑

m=1

Vm,p · Yi,j,m (4.2)

where:
Zi,j,p is the final output feature map at position (i, j) in channel p,
Vm,p denotes the pointwise filter weights.

Then, a refined version ofMobileNetV2was introduced to improve the performance across various computer
vision tasks. This architecture employs linear bottlenecks and shortcut connections as shown in Figure 4.3. Linear
bottlenecks serve two purposes: they reduce the dimensionality of data passing through while conserving essen-
tial information, and they also act as a compression mechanism between the network’s layers. The other update
introduced in this model is shortcut connections inspired by residual networks. This addition in the architecture
creates a direct pathway for the gradient flowduring backpropagation and allows faster convergence and improved
model accuracy. They also address the vanishing gradient problem and facilitate the training of deeper network
architectures.

Figure 4.3: Overview of MobileNetV2 architecture. Source: [5].

In MobileNetV2, the input and output of the bottleneck layers are of higher dimensions compared to the in-
termediate layers. This architecture design allows the network to preserve high-level feature representation and
reduces computational resources, which gives it the capacity to transform lower-level features into high-level de-
scriptors efÏciently, like image categories.

In summary, MobileNetV2 was preferred overMobileNetV3 thanks to having a crucial balance for real-world
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applications in the autonomous driving domain given that MobileNetV3 has a larger model size. MobileNetV2
model, which is used in the encoder part in our network, achieves the best performance balancing the trade-offs
between accuracy, speed, and computational resource usage and stands out for mobile device applications.

4.2 Decoder: Deeplabv3
The DeepLab architecture, which was developed by Chen et al.[7], has significantly influenced the field of se-
mantic image segmentation through several improved iterations [6]. The first architecture was introduced as
DeepLabv1. The model combined Deep Convolutional Neural Networks (DCNNs) with fully connected Con-
ditional RandomFields (CRFs) to tackle inherent challenges in semantic segmentation. It uses a technique called
Atrous Convolution or Dilated Convolution, shown in Figure 4.4, to extend the receptive field of convolutional
filters without increasing the computational cost. This technique adds spaces between the pixels of the input
image for ”skipping” over them and expands the range of influence of the filter without introducing additional
parameters.

Figure 4.4: Atrous convolution with kernel size 3× 3 and different rates. Source: [6].

In atrous convolution, the spacing between the kernel points of the convolutional filter is dictated by a critical
parameter, the dilation rate. This parameter modifies the standard convolution operation, y(i) =

∑
k x(i + r ·

k)w(k), where x is the input image, w is the filter weights, r is the dilation rate, and y is the output feature map.
This way, the model is able to aggregate multi-scale contextual information to capture fine details and maintain
spatial resolution in segmentation tasks. After the convolution, fully connected CRFs were employed to enhance
the precision of feature localization and reduce segmentation map noise.

In the second model, DeepLabv2, Atrous Spatial Pyramid Pooling (ASPP) aggregates the output of atrous
convolutions at different rates to a given input feature map. This approach, illustrated in Figure 4.5, processes
the input image at multiple scales concurrently and encodes the multi-scale information to enhance the ability to
recognize objects across various sizes of the model.

The model employed in our work, DeepLabv3, was introduced to optimize previous architectures further.
This model removes the post-network CRF processing for end-to-end learning. Moreover, it introduces an en-
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5
Experimental Setup

5.1 BaselineModel: Only RGB

The Cityscapes dataset, described in Chapter 3, covers a diverse set of urban scenes from various European cities.
The training split organizes images into directories named after the cities they represent, such asAachen, Stuttgart,
and Zurich, each of which contains hundreds of RGB images. The baseline model is configured to process the
Cityscapes dataset using only standard RGB color information following the methodology established in [2],
which is a Python implementation for supervised learning. This section dives into the training and validation
procedures, explains the dataset’s composition, and illuminates the data preprocessing steps involved.

In this experimental work, virtual clients are generated for each city. Each of these clients is assigned a unique
identifier related to its origin folder. This way is chosen to ensure that each client has images assigned to it from
only one city in the dataset. The logic of splitting the dataset into subsets for different clients is illustrated in Figure
4.1 with the Aachen example, where the dataset’s 174 total image files are evenly distributed across eight clients.

5.1.1 Image Preprocessing

Images undergo several preprocessing steps to enhance the model’s generalization capabilities before being fed to
the model for training. The first transformation is RandomScale. As the name suggests, it randomly varies the
scale of the images within a specified range as an initial step in data augmentation. This is followed by Random-
Crop. This transformation extracts some portions of the original image while maintaining a specific output size
of [512, 1024]. The final preprocessing steps include ToTensor transformation and normalization. In the final
step of preprocessing, we utilize the mean and standard deviation values specified in the DeeplabV3 architecture
documentation [6].
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Federated Learning Parameters

These parameters highlight the decentralized nature of the training process and the strategy for aggregating local
updates to improve the global model:

• Number of Rounds: 5000 indicates the total number of federated learning rounds to be executed. It
allows the model to improve iteratively through local client updates.

• Clients Per Round: 5, specifying the number of clients randomly selected in each round to participate
in the training, reflecting the federated learning’s distributed approach.

• Number of Epochs: 1, ensuring that each selected client trains the local model for only one epoch per
round to prevent overfitting on local data.

• Evaluation Interval: Every 50 rounds, the model’s performance is evaluated to monitor progress and
adjust strategies as necessary.

• Test Interval: Set at every ten rounds, conducting regular testing of the model against the validation set
to ensure robustness and generalization capability.

• Federated Algorithm: FedAvg, a common federated learning algorithm, manages the aggregation of
locally-computed updates to enhance the global model.

A specific evaluationmethod is employed based on the number of completed training rounds during the train-
ing process. When the number of executed rounds is amultiple of the input given parameter ”evaluation interval”,
a new client is created. This unique client gathers all training examples into a singular, comprehensive dataset.
Moreover, the preprocessing steps are deliberately streamlined to only include ToTensor transformation and nor-
malization for this evaluation client. Therefore, images retain their original dimensions of [1024, 2048]. This
configuration is used to assess the model’s capacity for generalization across diverse urban scenes.

Similarly, a unique test client is instantiated depending on the the ”test interval” parameter following the same
logic of evaluationmethod. The input images for the test client is drawn from evaluation subset of the Cityscapes
dataset. This way, the model’s performance across standardized urban environments is tested fairly.

Notably, this subset includes:

• Frankfurt, encompassing 267 examples,

• Lindau, with 59 examples, and

• Munster, offering 174 examples.

All images utilized for testing purposes maintain their original resolution of [1024, 2048] to preserve the in-
tegrity of the evaluation.

On the server side, a singular model architecture, the encoder-decoder configuration discussed in Chapter 5,
is utilized. This model employs a unified aggregation process that sets a foundation for the baseline system for
subsequent experiments. This baseline creates a foundational understanding of supervised(oracle) learning with
RGB data within urban environments. This section sets the stage for the following experiments that explore
multimodal inputs and advanced model architectures.
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For a batch of N predictions, the L2 loss is computed as the average of the squared differences, yielding the
Mean Squared Error (MSE):

L2MSE =
1
N

N∑

i=1

(ŷi − yi)2 (6.3)

The output of this provides a measure of how well the model is performing across the entire batch of data.
Morever, the better the model performs, the lower its score is.

The L2 loss is particularly sensitive to outliers since the errors are squared, and the square of large differences
is amplified.

6.1.3 Mean Intersection over Union (mIoU)
One of the most common metrics used to assess the performance of semantic segmentation models is the Inter-
section over Union (IoU) metric, also known as the Jaccard index. This evaluation metric provides information
about the accuracy of the model by calculating the overlap between the predicted segmentation and the ground
truth.

The IoU is a ratio ranging between 0 and 1. It is the ratio of the common pixels (intersection) to the total pixels
present (union) in both predicted and ground truth masks. For each class, the IoU is computed as:

IoU =
Area of Overlap
Area of Union

(6.4)

where the Area of Overlap and the Area of Union between the predicted segmentation and the ground truth
are given by:

Area of Overlap = TP = Ground Truth ∩ Prediction (6.5)

Area of Union = TP+ FP+ FN = Ground Truth ∪ Prediction (6.6)

Therefore,

IoU =
TP

TP+ FP+ FN
(6.7)

where:

• TP (True Positives): Number of pixels correctly classified for a specific class.

• FP (False Positives): Number of pixels incorrectly labeled as belonging to a class.

• FN (False Negatives): Number of pixels belonging to a class that are missed by the model.

TP, FP, and FN counts can be expressed in terms of pixel-wise comparisons:

TP =
∑

i,j
[GTij ∧ Predij] (6.8)
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7
Conclusion

The study aims to explore ways to enhance semantic segmentation for autonomous driving through multimodal
data and federated learning.

The baseline model, using only RGB images, set a high standard with a training mIoU of 68.34% and a test
mIoU of 59.27%. However, only the HHA (Depth) model struggled comparatively and achieved training and
test mIoU scores of 53.42% and 45.24%, respectively. This highlighted the challenges of learning from depth
information alone.

For (RGB || D) with two encoders and two decoders configuration a decline inmIoU scores was observed, sug-
gesting complexity in managing and extracting features from two separate data modalities simultaneously. With
this setup, the training mIoU for RGB was 61.97%, and for Depth, it was 43.9%, while testing mIoU for RGB
was 56.25%, and for Depth, it was 39.39%.

The (RGB || D) model with two encoders but a single decoder further lowered mIoU scores, which suggests
that while a shared decoder provides some computational efÏciency, it may not be optimal for feature integration
from two modalities.

Conversely, the RGB&Dmodel with two encoders and one decoder marked an improvement against (RGB
|| D) modality and achieved a training mIoU of 62.99% and a test mIoU of 58.33%. This shows the potential
of a multimodal approach that can effectively combine features from both RGB and Depth data for enhanced
semantic segmentation.

The study discovered that using both L2 and Cross Entropy losses together gave some valuable insights, but
it resulted in lower performance compared to using only the CE model. The research highlighted that the L2
weighting factor has a significant impact on training, which shows that optimizing loss functions can be tricky.
Future studies should focus on fine-tuning the training process by carefully adjusting the loss function weights to
unlock the model’s potential for generalization.

In conclusion, this thesis provides a thorough analysis of multimodal semantic segmentation while also cre-
ating opportunities for more exploration. The results help to improve model architectures and loss functions.
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Future work may include conducting broader experiments with different weighting factors or implementing ad-
vanced techniques to identify the most effective model structures. The ultimate goal is to refine and advance
semantic segmentation methods to achieve the highest levels of accuracy and reliability required for autonomous
driving and beyond.
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