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Abstract

The recent discovery of strong analogies between speculative markets and some well known
physical phenomena and concepts, such as spin systems, universality, criticality and complexity
has led to a growing interest of physicists in the dynamics of financial markets. Moreover the
immense amount of data that nowadays is provided by the internet represents both a challenge
and an opportunity to find appropriate models that are able to describe emergent statistical
laws.
Following the procedure of recent studies, in this thesis we investigate the interplay between
finance-related news and tweets and financial markets. In particular, we consider, in a period
of 9 years, the Twitter-and-news volume of the 30 stock companies that form the Dow Jones
Industrial Average (DJIA) index and, as a first attempt, we explore results of Granger-causality
test. However, the non-stationary andnon-gaussian nature of financial data requires a different
tool that can overcome the limits of linear statistics. We found this tool in information theory;
allowing us to propose a novel approach based on a multivariate transfer entropy analysis.
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1
Introduction

In recent years there has been a fast growth of data-production and data-accessibility. This avail-
ability has led to the emergence of a new field of study, as well introduced by Easley and Klein-
berg [4]: ”Over the past decades there has been a growing public fascination with the complex
“connectedness” of modern society. This connectedness is found in many incarnations: in the
rapid growth of the Internet and the Web, in the ease with which global communication now
takes place, and in the ability of news and information as well as epidemics and financial crises
to spread around the world with surprising speed and intensity. These are phenomena that
involve networks, incentives, and the aggregate behavior of groups of people; they are based on
the links that connect us and the ways in which each of our decisions can have subtle conse-
quences for the outcomes of everyone else.
Motivated by these developments in the world, there has been a coming-together of multiple
scientific disciplines in an effort to understand howhighly connected systems operate. Each dis-
cipline has contributed techniques and perspectives that are characteristically its own, and the
resulting research effort exhibits an intriguing blend of these different flavors. From computer
science and applied mathematics has come a framework for reasoning about how complexity
arises, often unexpectedly, in systems that we design; from economics has come a perspective
on how people’s behavior is affected by incentives and by their expectations about the behavior
of others; and from sociology and the social sciences have come insights into the characteristic
structures and interactions that arise within groups and populations. The resulting synthesis
of ideas suggests the beginnings of a new area of study, focusing on the phenomena that take
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place within complex social, economic, and technological systems”.

1.1 Predictingthebehaviouroftechno-sociosystems

The recent technological revolution has created an unprecedented situation of data availability,
changing the way in which we look at social and economic sciences. The constantly increasing
use of the Internet as a source of information, such online news and social media, started an
analogous increasing online activity. The interaction with technological systems is generating
large data-sets that illustrate collective behavior in a previously unimaginable way [5, 6]. In this
vast repository of Internet activity we can find the interests, concerns, and intentions of the
global population with respect to various economic, political, and cultural phenomena.
Modern techno-social systems are made of large scale physical infrastructures embedded in a
variety of communications and computing networks that evolves and develops mirroring hu-
man behaviors. To predict how these systems work, wemust start formally describing patterns
found in the realworld. Themodels thatwe canuse to anticipate future events, risks and trends
are based on these formalizations. Computational models, when provided with appropriate
data, can return high levels of anticipation power in very complex framework, such as weather
forecasting. As amatter of fact, in this context, thanks to recent development of computational
systems and a wide availability of historical meteorological data, we managed to reach a great
level of accuracy in predicting daily weather.
Despite these promising results in weather forecasting, we can not reach the same accuracy in
the quantitative prediction of phenomena in techno-social systems. Indeed our little knowl-
edge of social behavior limits the possibility to predict emergent human actions. This repre-
sents the main difference in prediction power between physical systems (for which we have a
vast knowledge of underlining laws) and social systems.
The level of information flow regarding social systems is not just due to the development of
modern super-computers. Understanding the links between people and technology and the at-
tenuation of borders between the real world and the online one are changing our accessibility
to data. A great instance of the people/technology inter-linkage can be found in the analysis of
humanmobility. In the past, this field was based on often limited and incomplete data; such as
census and survey, which were often incomplete and/or limited to a specific context. Despite
advances in the study of human transport, this lack of data has impeded the construction of
a general framework of human mobility. However, in pioneering work, Brockmann et al. [7]
opened the path to the general exploitation of proxy data for human interaction and mobility.
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Figure 1.1: U.S. highway network (up) and U.S. flights network (down) [1].

Complex systems, network science, non-equilibrium statistical physics, and computer science
all play a key role to face these challenging aspects of predicting andmanaging events in techno-
social networks. Although these approaches are not completelymature yet, it now seems possi-
ble to imagine computational predicting systems that will help us design cities, supply-chains,
connection infrastructures and resources distributions.

1.1.1 Financial markets

Financial markets such as the New York Stock Exchange (NYSE) or the NASDAQ stock mar-
ket are a cornerstone of modern financial economics and offer a great example of techno-socio
system thanks to the immense amount of electronically recorded financial data available and to
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the tight link with human behaviour. Thanks to stock exchanges, companies are able to grow
their capitals purchasing shares in change of investors funding. In practice, there are two ways
through which an investor can receive a reward:

• if a company perform well, it can earn a profit trough dividends (a percentage of the
company profits that are divided among the shareholders);

• otherwise it can sell the original shares at an higher price.

Market indices are one of themost importantmeasure ofmarket performances. For example
the Standard and Poor’s 500 (S&P500), the NASDAQ Composite Index and the Dow Jones
Industrial Average (DJIA) summarise, respectively, themarket’s performance of the 500 largest
publicly traded equities on the New York Stock Exchange (by market capitalisation), of all the
stocks listed on the Nasdaq stock exchanges and of the 30 major US manufacturing publicly
traded equities. These aggregate measures of the overall market performance of a subset of the
equities traded on that market. The importance of these indices it is not related only with the
summary of equity values but it extends as a measure of economic performance of a market
sector or even of a country as a whole.
We have understood that, through financial markets, companies can raise capital, while an in-
vestor can expect a reward in dividends, and high expected dividend can push the price of the
stocks. So, good performances of a company can lead to a grow of a financial index.
Nevertheless, there are many factors, not directly related to the performance of a company,
that can influence the stocks price. A prime example is he terrorist attacks on theWorld Trade
Center and the US Pentagon on September 11, 2001, in which nothing changed regarding the
underlying performance of the companies; while the DJIA lost the 7.14%. In this case it was
the behaviour of investors that expected lower returns in the future. From this point of view,
markets are a reflection of, not only the underlying performance of companies, but also of
overall market’s expectations. While markets themselves are exceptionally hard to predict with
any level of assurance, there may be very broad drivers in the wider economy that can guide
our expectations of what might happen in the financial markets. With this in mind there is
considerable interest in finding out what the underlying drivers of our markets and economies
really are. So an interesting area to explore is the relationship between equities and indices, in-
dices and indices, and indices and the economy as a whole in order to understand the extent to
which changes in one financial or economic measure act as a precursor or driver to changes in
the other. The changes in prices of equities show some unusual behaviours that have made the
study of their statistics a non-trivial matter. So in practice what is most likely being observed
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3M (MMM) American Express (AXP) Amgen (AMGN)
Apple (AAPL) Boeing (BA) Caterpillar (CAT)
Chevron (CVX) Cisco (CSCO) Coca-Cola (KO)
Disney (DIS) Dow (DOW) Goldman Sachs (GS)

Home Depot (HD) Honeywell (HON) IBM (IBM)
Intel (INTC) Johnson&Johnson (JNJ) JPMorgan (JPM)

McDonald’s (MCD) Merck (MRK) Microsoft (MSFT)
Nike (NKE) Procter&Gamble (PG) Salesforce (CRM)

Travelers (TRV) UnitedHealt (UNH) Verizon (VZ)
Visa (V) Walgreens (WBA) Walmart (WMT)

Table 1.1: List of the Dow Jones components.

in the price variations is the very rapid diffusion of both relevant and irrelevant information
through a financial market and its influence on how traders perceive the future value of indi-
vidual equities.
The goal of this thesis is to measure the information flow from the web (financial news and
tweets) to the stock market volumes of the 30 companies that compose the DJIA index (Ta-
ble 1.1). Indeed, financial turnovers, financial contagion and, ultimately, crises, are often orig-
inated by collective phenomena such as herding among investors (or, in extreme cases, panic)
which signal the intrinsic complexity of the financial system [8]. Therefore, the possibility
to anticipate anomalous collective behavior of investors is of great interest to policy makers
[9, 10, 11] because it may allow for a more prompt intervention, when this is appropriate.

1.2 Looking for cause-effect relationships

The advent of the scientific method and its application have led to rapid progress and constant
technological development. The mathematical modeling of phenomena allows the formula-
tion of accurate quantitative predictions, and the rigorous verification of the latter with repro-
ducible experiments.
Scientific models still not falsified by experimental measures are characterized by one predic-
tive capacity much higher than that obtained from empirical knowledge, and allow practical
applications that cannot otherwise be achieved. Scientific theories often have the property of
generalizing and unifying the description of apparently disconnected phenomena, such as the
fall of an apple from the tree and the revolution motion of the earth around the sun. In this
sense, the resulting knowledge can be said to be of a higher level.
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Figure 1.2: Examples of spurious correlations [2].

This approach is characteristic of physics in general and is applied in very different contexts,
from the dynamics of the universe to the study of biological systems. This gives excellent results
when the systems studied are ”simple”, while it is more difficult to frame ”complex” phenom-
ena, those in which the interacting bodies are very many and the dynamics critically depend
from the surrounding conditions: for example disciplines such asMedicine or Biology are very
far from developing a set of mathematical laws that explain in detail the functioning of living
organisms. However, a quantitative model that makes falsifiable predictions remains the main
objective of the scientific approach to problems.
The alternative to the theoretical development of a mathematical model is the search for cor-
relations: to try to understand the mechanisms that regulate a given phenomenon, one relies
on events that seem correlated, assuming that this correlation is the result of a cause and effect
relationship. If it is true, however, that a cause-effect relationship implies a correlation, the op-
posite is not always true; that is, correlation does not imply causation. Examples of spurious
(i.e. non-causal) correlations are everywhere; Tyler Vigen collects various paradoxical examples
of such correlations in a site that has become famous [2], a couple of them are reported in Fig-
ure 1.2.
The empirical knowledge that allows us to interact with the environment is based on the ob-
servation of correlations, learned over time thanks to our experiences.
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To understand the reasons, let’s consider the Bayesian approach to statistics. Formally, think-
ing to all the possible, mutually exclusive, hypotheses Hi (our model) which could condition
the event E (the data). What is the probability ofHi under the hypothesis that E has occurred?
The answer is given by Bayes Theorem [12]:

p(Hi|E) =
p(E|Hi)p(Hi)

p(E)
(1.1)

where
p(E) =

X
j

p(E|Hj)p(Hj) (1.2)

is the total probability.
From a data-model point of view:

p(model|data) α p(data|model)p(model)

posterior α likelihood prior

it is highlighted how our degree of confidence regarding the reliability of a certain model (pos-
terior probability) depends on howwell the data are in agreement with the model’s predictions
(likelihood), but also on the subjective preconception that we have regarding the model itself
(prior probability). The examples in Figure 1.2 are paradoxical, because, considering for exam-
ple the second of the two, the probability that we assign ’a priori’ to a model in which US per
capita cheese consumption, is causally related to the number of people died tangled in their
bedsheets is essentially zero; therefore even after observing the data, this probability, propor-
tional to the product of prior and likelihood, remains very low. The problem arises when with
regard to a certain phenomenon our prior is “flat”, i.e. we have no ab-origin information or pre-
conceptions: in those cases a likelihood that exhibits a correlation leads us to believe that this
correlation is not accidental. To take shelter it is therefore necessary to have correct preconcep-
tions, that is a solid knowledge of the phenomena, which is impossible for all the phenomena
we may have to deal with.
What has just been discussed makes it clear how difficult it is to extract information from data
without a theoretical model to guide. The approach that is therefore more efficient in the de-
velopment of knowledge consists in seeking a cause-effect link only where this link is predicted
by a well-justified theoretical model, essentially where the Bayesian prior has values not too far
from unity. Under these conditions, the theory suggests which measures to take, which data
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to analyze and under which hypotheses, triggering the virtuous circle of the scientific method.
The central aim ofmany studies in the physical, behavioral, social, and biological sciences is the
clarification of cause–effect relationships among variables or events. However, the appropriate
methodology for extracting such relationships from data – or even from theories – has been
debated a lot. When talking about causality, the two fundamental questions are [13]:

• ’What empirical evidence is required for legitimate inference of cause–effect relation-
ships?’

• ’given that we are willing to accept causal information about a phenomenon, what infer-
ences can we draw from such information, and how?’

These questions have been without clear answers in part because we have not had an hard
formalization for causality and in part because we have not had effectivemathematical tools for
answering causal questions.
Fortunately, in the last decade, causality has been revised into a mathematical object with a
defined meaning. Practical problems based on causal information can now be solved using
logic and mathematics.
In this thesis, we consider a statistical form of causality, which can be observed in codependent
time series where a response in the dependent series is more likely to follow after some change
in the driving series. The direction of information transfer is forced by requiring the cause to
precede the effect.
This concept takes shape into the context of Granger causality [14]. In this work we exploit
this formalization together with its natural generalization: the transfer entropy, that allows the
multivariate analysis needed for financial studies.

PreviousWorks andNovelty of the Thesis

The idea of this thesis starts from the works of Caldarelli [15, 16] and Novak [17, 18, 19],
where different kinds of sources and methods have been proposed to predict the behaviour
of financial markets. In particular, in [15] the authors show how ’Web Search Queries can
predict StockMarket Volumes’ through an analysis based on time-lagged cross-correlation and
GrangerCausality test; while in [16], using the samemethods, ’the effects of Twitter sentiment
on Stock PriceReturns’ is showed. In this frameworkwe aim, first, to reproduce some previous
results and, second, to step forward from these researches thanks to the use of contemporary
data. More precisely, the novelties that this thesis propose are the followings:
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• the analysis and comparing of different web sources updated to contemporary days;

• the use ofTransfer Entropy asmeasure of information flow and as natural generalization
of Granger Causality;

• a novel approach based on theMultivariate Transfer Entropy to study the combination
and the effect of multiple sources.

In order to do this in chapter 2 a formal definition of Transfer Entropy, together with the
comparison with Granger Causality and its Multivariate form is given. Chapter 3 provides
the detailed description of our data-set. Lastly, the analysis with the results and the numerical
methods are presented, followed by the conclusions.
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2
Methods

2.1 Information Theory

In the early decades of the 20th century, Bell Labs laid the foundations for information theory.
The major contribution was given by Claude Shannon, who built a mathematical theory of
communication, the results of which still stand today [20].
Shannon’s interest was how to transmit information over a channel in the most efficient way
possible. The analysis introduced the idea of entropy of signals and channels [21].
In its classical and original interpretation, production of entropy quantifies the irreversibility
of a process. More precisely, it is a function of state, depending onmacroscopic observables of
an equilibrium system. The difference in entropy between two equilibrium states A and B is
defined as [22]:

H(B)−H(A) =
Z B

A

�
dQ
T

�
R

(2.1)

where A and B are connected by a reversible transformation R. The system is at equilibrium
at every point on the path A → B, possessing a definite temperature Tsys, and exchanging an
infinitesimal amount of heat dQwith a thermal bath at the same temperature T = Tsys.
The second law of thermodynamics states that [22], for a reversible process, the total entropy -
i.e. that of the systemand anything it has interactedwith - remains the same. For any irreversible
transformation, however, it increases.
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It was thanks to Boltzmann that it has been possible to move from an axiomatic definition of
entropy to a formal definition in terms of microscopic states [23]. Formally, Boltzammproved
a connectionbetween the thermodynamicalH and the amountof states inphase-space available
to a system.

HB(E ,V,N) = kB logΩ(E ,V,N) (2.2)

where Ω(E ,V,N) is the number of microscopic states that correspond to a macroscopic state
with energy E , volume V and N number of particles; while kB is the Boltzmann constant. In
this way, as more microscopic states are present, the larger the entropy will be; leading to the
interpretation of entropy as some sort of “disorder” [23].
An even more general interpretation of entropy comes from information theory, whereH is a
measure of the experimenter’s ignorance about the system [23].

2.1.1 Information Entropy

In information theory there is an additional way of looking at entropy: it is as a measure of
our ignorance about a system [23]. To understand this we need to go back to the definition of
information itself. Consider a discrete event space E = {xi}i=1,...,N , with probabilities pi ≥ 0,
such that

P
i pi = 1. We want to quantify the amount of information η(xi) acquired by the

observation of event xi occurring. Shannon wanted an information measure which satisfied a
number of conditions, notably:

• it should be additive for independent pieces of information:

η(P[x1 ∧ x2]) = η(x1) + η(x2) (2.3)

where x1 and x2 are two independent events with, respectively, probability p1 and p2;

• it should reflect likelihood of events, in particular capturing increasing uncertainty asso-
ciated with an increasing number of (equally likely) events:

η(x) is a decreasing function of p,

the probability that x occurs;

• it should be continuous with respect to changes in these likelihoods.

He was interested in howmuch information a message conveyed. If something is very likely
to happen, the information gleaned from it happening is not very great, a bit like the sun ris-
ing in the morning does not actually tell us very much. On the other hand, rare events (such
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as the sun shining while it is raining) convey a great deal of information because they are rela-
tively surprising. Thus, his measure of the information, η(x), of an event x, was the log of the
probability, p(x), of x happening, being observed:

η(x) = − log2 p(x) (2.4)

Shannon used natural logs, giving information in nats. When we consider Gaussian variables,
natural logs appear directly, but in most cases we shall use logs to base 2, denoted log2, giving
information in bits, themore common unit today. One can interpret the values of η(x), in bits,
as the optimal number of yes/no questions that one needs to ask (on average) to determine the
value of x.
Given this definition of information, the entropy is now the average information over sets of
events, which can be measured as repeated observations over time, or over sets of different real-
isations of a system.
If we average or take the expectation value of the information according to the probability of
each event occurring, we end up with the Shannon entropy:

H(X) = E[η(x)] = −
X

p(x) log2 p(x) (2.5)

We also need the idea of conditional entropy, the uncertainty left after we have taken into con-
sideration some context:

H(X|Y) =
X
y

p(y)H(X|y) (2.6)

where
H(X|y) = −

X
x

p(x|y) log2 p(x|y) (2.7)

and p(x|y) is the conditional probability.

2.1.2 Mutual Information

Themutual information is the amount of shared information betweenX andY . It is ameasure
of their statistical dependence. Thus, we should be able to take the entropy of X and subtract
from it the entropy ofX given Y, since this chunk of the entropy has, by definition, nothing to
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do with Y. This is exactly the case as in Eqn. 2.6:

I(X : Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) (2.8)

which is clearly symmetric in X and Y.
The mutual information can be thought of as a non-linear form of correlation. The corollary
of this is that:

I(X : Y) = 0 ⇐⇒ X is independent of Y

An important generalisation of mutual information, which is crucial to the development of
transfer entropy is the idea ofmutual informationbetween twoprocesses,X andY, conditioned
on a thirdprocess,Z. In fact the expression for the conditionalmutual information, I(X : Y|Z),
is very straightforward. We simply condition each of the entropy terms in Eqn. 2.4:

I(X : Y|Z) = H(X|Z)−H(X|Y,Z) (2.9)

or with the following conditional independence criterion:

I(X : Y|Z) = 0 ⇐⇒ X, conditional on Z, is independent of Y.

2.1.3 Transfer Entropy

Given jointly distributed random variables X, Y -discrete or continuous, and possibly multi-
variate -we have seen that the mutual information I(X : Y) furnishes a principled and intuitive
answer to the questions:

• How much uncertainty about the state of Y is resolved by knowing the state of X (and
vice versa)?

• Howmuch information is shared between X and Y ?

• Howmay we quantify the degree of statistical dependence between X and Y ?

Suppose now that, rather than static variables, we have jointly distributed sequences of ran-
dom variables Xt, Yt labelled by a sequentially enumerable index t = . . . , 1, 2, 3, . . . . Intu-
itively the processes Xt, Yt may be thought of as an evolution in time t of some unpredictable
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variables X, Y, that is, random time-series processes. Such joint or multivariate stochastic pro-
cesses are natural models for a huge variety of real-world phenomena, from stockmarket prices
to neural signals, which may be viewed as non-deterministic dynamic processes.
How, then, might we want to frame, interpret and answer comparable questions to the above
for dynamic stochastic processes rather than static variables? We may, of course, consider the
mutual information I(Xt : Yt) between variables at a given fixed time t. But note that, by
jointly distributed for stochastic processes, we mean that there may be dependencies within
any subset Xt,Ys : t ∈ T, s ∈ S of the individual variables. Thus, for instance, Xt, the variable
X as observed at time t, may have a statistical dependency on its value Xt−s at the earlier time
t − s, or indeed on its entire history Xt−1,Xt−2, . . . , or the history Yt−1,Yt−2, . . . of the vari-
able Y. A particularly attractive notion is that of quantifying a time-directed transfer or flow of
information between variables. Thus we might seek to answer the question:

• How much information is transferred (at time step t) from the past of Y to the current
state of X (and vice versa)?

This information transfer, whichwewould expect - unlike the contemporaneousmutual in-
formation I(Xt : Yt) - to be asymmetric inX andY, is precisely the notion that transfer entropy
aspires to quantify [24].
The notion of transfer entropy (TE) was formalised by Thomas Schreiber [25]. Schreiber re-
alised that an obvious candidate for a time-asymmetric measure of information transfer from
X to Y, namely the lagged mutual information I(Xt : Yt−s) [25, 26], is unsatisfactory for the
reason that it fails to take into account shared history (as well as common external driving in-
fluences) between the processesX and Y , and that this is likely to lead to spurious inferences of
directed information transfer.
Information theory supplies just the tool to effect this accounting: we must condition on the
past of Y as a conditional mutual information. Such conditioning removes any redundant or
shared information between current Y and its own past, but also includes any synergistic infor-
mation about current Y in the source X that can only be revealed in the context of the past of
Y.

TX→Y(t) = I(Yt : Xt−1|Yt−1) = H(Yt|Yt−1)−H(Yt|Yt−1,Xt−1) (2.10)

Nevertheless it is possible that the shared information between the target and its past extends to
a longer history length and that the earlier values of the source contain additional information
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about the target. For these reasons it is needed to define also the general form of the (k, l)-
history transfer entropy:

T(k,l)
X→Y(t) = I(Yt : X(l)

t−1|Y
(k)
t−1) = H(Yt|Y(k)

t−1)−H(Yt|Y(k)
t−1,X

(l)
t−1) (2.11)

where l and k are respectively the history lenght of the source X and the target Y. The key
idea is that TX→Y(t)may be interpreted intuitively as the degree of uncertainty about current
Y resolved by the past statesX and Y, over and above the degree of uncertainty about current Y
already resolved by its own past state alone.

2.2 Relationship with Granger Causality

Asmentioned in the introduction to this thesis, transfer entropy is closely related to and shares
a common history withWiener–Granger causality (Granger causality for short).
Granger causality is based on the premise that cause precedes effect, and a cause contains infor-
mation about the effect that is unique, and is in noother variable. In its purest form, the essence
of the idea is surprisingly close to that of transfer entropy. Let F(yt|y(k)t−1, x

(l)
t−1) denote the dis-

tribution function of the target variable Y conditional on the joint (k, l)-history Y(k)
t−1, X

(l)
t−1 of

both itself and the source variable X, and let F(yt|y(k)t−1) denote the distribution function of Yt

conditional on just its own k-history. Then [27, 14] variableX is said to Granger-cause variable
Y (with lags k, l) if and only if

F(yt|y(k)t−1, x
(l)
t−1) ̸= F(yt|y(k)t−1) (2.12)

In other words:

X Granger-causes Y ⇐⇒ Y, conditional on its own history, is not independent
of the history of X

The connectionwith transfer entropy is clear: in fact (2.12) holds precisely whenT(k,l)
X→Y ̸= 0.

Thus Transfer Entropy might be construed as a non-parametric test statistic for pure Granger
causality.
Granger’s parametric formulationwas, specifically, basedon linear vector auto-regressive (VAR)
modelling [28]. Xt, Yt are assumed to bemultivariate real-valued, zero-mean, jointly stationary
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stochastic processes. Following Geweke [29] , we consider the nested VARmodels:

Xt = A1Xt−1 + · · ·+ AkXt−k + B1Yt−1 + · · ·+ BlYt−l + εt (2.13)

Xt = A′

1Xt−1 + · · ·+ A′

kXt−k + ε′t (2.14)

The parameters of the models are the VAR coefficient matrices Ai, Bj, A
′
i and the covariance

matrices Σ = c(εt), Σ
′
= c(ε′t)where εt, ε

′
t are the residuals, assumed to be serially uncorrelated;

(2.13) and (2.14) are referred to, respectively, as the full and reduced models.
The X → YGranger Causality statistic stands to quantify the degree to which the full model
yields a better prediction of the target variable than the reduced model. The most convenient
form for the Granger causality statistic is given by

F(k,l)X→Y = log
|Σ′ |
|Σ|

(2.15)

where | · | denotes the matrix determinant.
Adopting an approach based on a maximum-likelihood (ML) framework, we note that FX→Y

is precisely the log-likelihood ratio statistic for the model (2.13) under the null hypothesis

H0 : B1 = B2 = · · · = Bl = 0 (2.16)

Note that, given that Xt, Yt is described by the model (2.13), the null hypothesis (2.16) is pre-
cisely the negation of condition (2.12) for non-causality. An immediate payoff of the ML ap-
proach is that we have an (asymptotic) expression for the sample distribution of the statistic
FX→Y as a χ2 with degrees of freedom equal to the difference in number of free parameters be-
tween the full and reduced models.
Finally, Barnett et al. [30] proved the following theorem, stating that Granger Causality and
Transfer Entropy are equivalent for gaussian variables:

If the joint processXt ,Yt is Gaussian (more precisely, if any finite subset {Xt1 ,Yt2 :
(t1, t2) ∈ S} of the variables is distributed as amultivariateGaussian) then there is
an exact equivalence between theGranger causality and transfer entropy statistics:

T(k,l)
X→Y =

1
2
F(k,l)X→Y (2.17)

For some aspects, Granger causality offers some obvious advantages over non-parametric
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transfer entropy as a data-driven, time-directed, functional analysis technique; in particular
the ease and efficiency ofVARmodel parameter estimation as comparedwith the difficulties of
entropy/mutual information estimation, as well as the existence of known theoretical sampling
distributions for statistical inference. We might ask, then, why we should bother with (non-
parametric) transfer entropy at all. The answer depends largely on the nature of the data and
the stochastic generative processes underlying it. In particular, for this thesis, a multivariate
analysis is investigate; pushing for a transfer entropy approach.

2.3 Multivariate Transfer Entropy

With many systems there are many interacting variables, so we need to be able to handle addi-
tional influences on the pairwise interaction we have discussed so far. When a third (possibly
multivariate) process, Zt, say, is jointly distributed with the processes Xt ,Yt then the pairwise,
bivariate or apparent transfer entropyTX→Y may report a spurious information flow fromX to
Y, due to (possibly lagged) joint influences of Z on X and Y (i.e. Z → X and Z → Y ). This
is known as a common driver effect. Similarly, TX→Y may report a spurious information flow
from X to Y due to cascade effects, e.g. where we actually have X → Z → Y. Further, TX→Y

will not detect any synergistic transfer from X and Z together in these scenarios. It is, however,
a simple matter to discount redundant joint influences and include synergies by conditioning
on the past of Z. We thus define conditional transfer entropy [31, 32]:

T(k,l,m)
X→Y|Z(t) = I(Yt : Y(l)

t−1|Y
(k)
t−1,Z

(m)
t−1 ) = H(Yt|Y(k)

t−1,Z
(m)
t−1 )−H(Yt|X(k)

t−1,X
(l)
t−1,Z

(m)
t−1 ) (2.18)

TX→Y|Z(t)may be interpreted intuitively as the degree of uncertainty about current Y resolved
by the past state ofX,Y andZ together, over and above the degree of uncertainty about current
Y already resolved by its own past state and the past state of Z.
A case of particular practical importance is where we have a system of n jointly distributed
processes Xt = (X1,t, . . . ,Xn,t). Then since, as we have seen, the pair-wise transfer entropies
TXj→Xi(t), i, j = 1, . . . , n are susceptible to confounds due to common influences of the re-
maining Xk, an alternative measure of pairwise information flows in the full system X is given
by the pairwise- or bivariate-conditional or complete transfer entropies [31]:

TXj→Xi|X[ij](t) = I(Xi,t : Xj,t−1|X[ij],t−1) = H(Xi,t|X[j],t−1)−H(Xi,t|Xt−1) (2.19)
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where the notation [. . . ] indicates omission of the corresponding indices.
Similarly, we may define collective transfer entropy [32] as the transfer from somemultivariate
set of n jointly distributed processes Xt = (X1,t, . . . ,Xn,t) to a specific univariate process, Y:

T(k,l)
X→Y(t) = I(Yt : X(l)

t−1|Y
(k)
t−1) (2.20)

In particular, we focus on the case with n = 2, for which (2.17) becomes

T(k,l)
X→Y(t) = I(Yt : X(l)

1,t−1,X
(l)
2,t−1|Y

(k)
t−1) (2.21)

that is, as we will see, exactly the quantity of our interest.

2.4 Kernel Estimation

Before to proceed with our analysis, we give a look to the computational methods exploited for
this work. The Java Information Dynamics Toolkit (JIDT) [3] is a Google code project which
provides a standalone, (GNUGPL v3 licensed) open-source code implementation for empiri-
cal estimation of information-theoretic measures from time-series data. While the toolkit pro-
vides classic information-theoretic measures (e.g. entropy, mutual information, conditional
mutual information), it ultimately focuses on implementing higher-level measures for infor-
mation dynamics. It provides implementations for both discrete and continuous-valued data
for each measure, including various types of estimator for continuous data.
For continuous variables one could simply discretise or bin the data and apply discrete estima-
tors. This is a simple and fast approach, though it is likely to sacrifice accuracy. Alternatively,
we can use an estimator that harnesses the continuous nature of the variables, dealing with
the differential entropy and probability density functions. The latter is more complicated but
yields a more accurate result. For this work we chose a kernel estimator.
With this method the relevant joint PDFs are estimated with a kernel function Θ, which mea-
sures “similarity” between pairs of samples xn, yn and xn′ , yn′ using a resolution or kernel width
r:

pr(xn, yn) =
1
N

NX
n′=1

Θ
������xn − xn′

yn − yn′

�����− r
�

(2.22)
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By default Θ is the step kernel:

Θ(x) =

8<:0 x > 0

1 x ≤ 0
(2.23)

and the norm | · | is the maximum distance. This combination – a box kernel – is what is
implemented in JIDT. It results in pr(xn, yn) being the proportion of the N values which fall
within r of xn, yn in both dimensions X and Y.
Kernel estimation can measure non-linear relationships and is model-free, though is sensitive
to the parameter choice for resolution r. Selecting a value for r can be difficult, with a too small
value yielding under-sampling effects whilst a too large value ignores subtleties in the data. In
our analysis the default value r = 0.5 remained unchanged.
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3
Data

The importance of high-quality data as a proxy for a social system and for studying cause-effect
relationships has already been discussed. In this framework, a main part of this work concerns
data collection. First of all it is needed to define what we mean with TheWeb. To the best of
our knowledge, three distinct classes of online data sources have been investigated for financial
predictions, namely: news media, web search query data and social media feeds [33]. For this
thesis we collected the volume of websites news and the volume of tweets related to the 30 com-
panies that form the Dow Jones Index in a period of 9 years (fromOctober 2011 to December
2020), on a daily basis. Let’s see the details.

3.1 WebNews

Access to structured information regarding the financial market with its various instruments
and indicators is available for several decades, but the systematic quantification of unstructured
information hidden in news from diverse Web sources is of relatively recent origin.
We base our analyses on a newly developed text processing pipeline, New-Stream, which was
designed and implemented within the scope of the EU FP7 projects FIRST1 and FOC2. New-
Stream continuously downloads articles frommore than 200 worldwide news sources, such as
yahoo.com, reuters.com, nytimes.com and bbc.co.uk. It extracts the content, stores complete

1http://project-first.eu/
2http://www.focproject.eu/
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texts of articles and extracts finance-related entities. It is a domain-independent data acquisi-
tion pipeline but is biased towards finance by the selection of news sources and the taxonomy
of entities that are relevant to finance. More details can be found in [17].
Thanks to this newportal, we have been provided – directly by one of the authors –with a data-
set of over 10 million news regarding the companies that form the S&P500 index; including
news that satisfy the followings search criteria:

• full-text search: ticker symbol or ”company name” in article titles;

• constrain: the document content needs to be more then 1000 characters long.

This data-set, divided for each company of interest, will compose one of our sources that we
callNews.
In order to understand better and to investigate how stock markets are influenced by online
information, we selected a sub-set of news that are directly related to finance; for which the
content talks about financial topics, and not general arguments about the company. Specifi-
cally, these news have been filtered using an ontology of financial terms built in collaboration
with economy experts [17]. This sub-set is our second source, named Financial News.

Since they were already provided, the temporal range of this work is mainly due to these data.

3.2 Twitter

Social media are increasingly reflecting and influencing behavior of other complex systems, in
particular social media feeds are becoming an important source of data to support themeasure-
ment of investor and social mood extraction.
Because of its willingness to share data with academia and industry, Twitter has been the pri-
mary social media platform for scientific research as well as for the consulting of businesses and
governments in the last decade. In recent years, a series of publications have studied and crit-
icized Twitter’s APIs and Twitter has partially adapted its existing data streams. The newest
Twitter API for Academic Research allows to ”access Twitter’s real-time and historical public
data with additional features and functionality that support collecting more precise, complete,
and unbiased data-sets.” The main new feature of this API is the possibility of accessing the
full archive of all historic Tweets.

22



The second source of our data is exactly from Twitter and consists of relevant tweets. We col-
lected this data using the Twitter API3 for Academic Research, which is freely made available
by Twitter for research purposes upon request. For each stock of the Dow Jones Index, we col-
lected the correspondingdaily time-series by exploiting the function ’Client.get_all_tweets_count()’
available through the Python Tweepy library4 and for academic research only. As parameters
of this function, we used the initial and final date (23 Oct 2011 and 17 Dec 2020, respectively)
and the corresponding stock cash-tag (e.g. ”$APPL” for Apple). Cash-tags are a Twitter fea-
ture used in the financial sector instead of hashtags to tag conversations in order to allow users
to see all the other Tweets that include it.
To the best of our knowledge, all the available tweets with cash-tags are acquired. These will
compose our third sourceTweets.

3.3 StockMarket Volumes

The last part of our data-set is, of course, the financial data. Various financial terms have
been used in previous research as proxy for market performances, from log prices return to
volumes[16, 15]. The choice of the variables does not affect the outcome of the present work,
as amatter of fact it has been shown how volume shifts can be correlatedwith pricemovements
[34]. For this thesis the trading volume has been chose.
The daily financial data for all of stocks are publicly available from Yahoo! Finance 5 and we
collected them trough the yfinance library6 available in Python. We focused our attention on
the daily trading volumes, forming the target of our information-flow analysis: the Trading
Volume.

The whole data-set has been filtered for the days in which the stock market is open. An ex-
ample (Apple) of the trends of our time series is shown in Figure 3.1.

3https://developer.twitter.com/en/docs/twitter-api
4https://docs.tweepy.org/en/stable/client.html
5http://finance.yahoo.com/
6https://pypi.org/project/yfinance/
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Figure 3.1: Apple example data‐set.
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4
Results

4.1 Granger Causality

In practice, we have three different available data sources and we want to understand if there is
information flow between these and the trading volume for each company in consideration.
The first attempt is done with Granger Causality; probably the main definition of causality in
econometrics that aims to state if a time-series X ’causes’ another time-series Y. The method
follows the formalization of a statistical test:

• a null hypothesisH0 for which X does not ’granger-cause’ Y is built;

• the test returns a p-value;

• if the p-value is greater than a predefined thresholdH0 is not rejected, otherwise we can
reject the null hypothesis and we can estabilish the causality relation between X and Y.

Hence the results come in the form of a p-value, for this reason it is needed to define a sta-
tistical threshold for which we can reject theH0 hypothesis. In this case we choose two values,
namely 0.01 and 0.05.
Nevertheless, before to start the analysis, a study on the-time lag has to be performed. The data
are daily collected and we need to be sure that the minimum p-value corresponds to a lag of
exactly one day; as expected given previous studies [15]. In order to do this the time-lag effect
has been studied. In particular, it has been done for each company, and then represented by the
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Source p-value= 0.01 p-value= 0.05

News 27% 37%
Financial News 33% 40%

Tweets 27% 33%

Table 4.1: Granger Causality results.

4.2 Transfer Entropy

The main character of this thesis is, without doubts, the Transfer Entropy. The advantages in
moving to a non-parametric information theory measure are many. In particular, in this con-
text, we care about three major points that make us prefer it instead of the Granger Causality:

• it is able to capture non-linear relations;

• it works better with non-gaussian data;

• it provides an absolute value, allowing to identify a ’strenght’ of the information flow
and not only a yes/no test.

Strong with these arguments, we perform our analysis. It starts in the same way as before,
with a time-lag study that find the optimal lag day forwhich theTransfer Entropy ismaximized.
In Figure 4.2 the Twitter results are showed, following the same median and C.L. procedure
already discussed.
In this case we find the maximum value of TE in correspondence of a time lag ΔL = 0 days.
This could seem to contradict previous results but it is explained by the definition of Transfer
Entropy and by its computational implementation. We recall eq. 2.8 and we observe how the
mutual information is computed between the targetXt and a step back of the source Yt−1, lead-
ing to a pre-embedded one step (one day in our case) lag. This concept is made even clearer
in one illustration (Figure 4.3) provided by JIDT, the online library exploited for this work,
introduced in Chapter 2.
Thanks to this observations it is possible to perform the same kind of analysis done with

Granger Causality and to compare with it.

4.2.1 Statistical Significance

The first goal when passing to a Transfer Entropy analysis is to understand how to compare
this measure with Granger Causality or, more precisely, how to match an absolute value with
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Source C.L.= 99% C.L.= 95%

News 60% 73%
Financial News 67% 83%

Tweets 90% 97%

Table 4.2: Transfer Entropy results.

a statistical test. To address this, standard sub-sampling techniques such as permutation test-
ing and bootstrapping may be employed for significance testing and estimation of confidence
intervals for the transfer entropy [24]. This is done by forming a null hypothesisH0 that there
is no such relationship, and making a test of evidence (our original measurement) in support
of that hypothesis.
In practice we adopt a shuffling approach producing null-hypothesis transfer entropy values
from independently shuffled time-series over the same domain, containing no causal relation-
ships. By calculating the mean and standard deviation of the shuffled transfer entropy, we
estimate a Z-score that identify the significance of a causal result as the distance between the
result and the average shuffled result, standardizing by the shuffled standard deviation:

Z =
TX→Y − E[TXs→Y]

σ[TXs→Y]
(4.2)

where TX→Y is the transfer entropy of the temporally ordered sample, E[TXs→Y] is the average
transfer entropy over all shuffled realizations and σ[TXs→Y] is the standard deviation of the sam-
ple of shuffled realizations. This quantity corresponds to the degree to which the result lies in
the right tail of the distribution of the zero-causality shuffled samples, and hence how unlikely
the result is due to chance. Therefore, the Z-score represents the significance of the excess trans-
fer entropy in the un-shuffled case.
At the end it is important to manage to compare the Granger Causality results. In order to do
this we build a confidence level for which the Z-score test can fail and hence accept the alterna-
tive hypothesis for which we have a direct relationships. Starting from the p-values 0.05 and
0.01 we chose C.L. at 95% and 99% that, for a one-tail distribution, correspond toZ = 1.645
and Z = 2.32. In this framework we can count all the companies that present a Z-score larger
than the two thresholds. The results are presented in Table 4.2.

A deeper analysis could be conducted observing the distributions of the computed Z-scores.
In fact, focusing on the ’causal flow strenght’, one could individuate patterns among different
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Source Count

Financial News, Twitter> Financial News 93%
Financial News, Twitter>Twitter 80%

Table 4.3: Multivariate Transfer Entropy results.

which first removes the bias and then normalises by the entropy rateH′
Y(t), that represents the

fraction of information in the target Y not explained by its own past that is explained by X in
conjunction with that past.
Thanks to this normalization, we can make a comparison between the Transfer Entropy re-
sults in the two cases: univariate and bivariate. In particular we want to investigate for how
many companies the multivariate analysis presents an information flow larger than the simple
one; and to understand the differences adding one source with respect to the other. Table 4.3
presents the results.
In practice we are comparing the differences in the TE values between measures performed
with both sources with respect to a measure computed with just one of the two. In this way it
is possible to analyze if theMultivariate returns better results andwhich one of the two sources
provides more information. These numbers are not surprising, given the high values already
recorded in the univariate case. However they reveal the consistency of this analysis, confirm-
ing the higher predicting power of Twitter with respect the Web News. Indeed, adding the
information contained in Twitter, we get more predicting power than the other case of adding
the Financial News source.
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5
Conclusion

This thesis takes part in a context in which physicist are more often interested in the study of
economics and financial topics, and in which the recent digital revolution has led to the emer-
gence of new data-driven methods to investigate social systems. In this framework financial
markets are specifically interesting since they provided a lot of data and they are highly linked
with users behaviours.
In particular this work starts from a series of scientific papers that study the predictions of fi-
nancial markets starting formweb sources. Here, the Granger Causality analysis betweenWeb
News, Tweets and Stock Market Volumes has been re-proposed, supported by new and con-
temporary data. Nevertheless, the non-stationary and non-gaussian nature of financial data
required a different approach that can overcomes the limits of linear statistics. This tool has
been found in information theory, particularly with the use of Transfer Entropy. Thanks to
this non parametric measure, the following results have been observed:

• the sub-set of Financial News contains more information than the whole set of News,
letting think that a more sever filtering can produce a more precise market’s proxy;

• Twitter is revealed as the most important source of information, able to anticipate mar-
ket performances for almost all the companies (except one).

Given these outcomes, it is possible to note howTwitter is playing the role of main informa-
tion spreader around the world, substituting news job.
In this direction, as component of novelty, the use of Transfer Entropy allows a step forward
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in the study of different sources to forecast financial markets; making accessible a multivariate
analysis. Thanks to this quantity, it has been possible to investigate the combination of mul-
tiple sources in information flow detection. In particular, Financial News and Twitter have
been taken into consideration. Consistently with previous results, the leading role of Twitter
has been confirmed. Moreover, with respect the univariate case, a significant increase in perfor-
mance has been detected; making the multivariate analysis the preferred version.
These considerations lead to the following conclusions and future perspectives:

• the power and flexibility of Transfer Entropy in this field of application are clear, future
works can try tooptimize the computational efficiency troughdifferentmethods; such as
theKraskov-Stögbauer-Grassberger (KSG) technique or the SymbolicTransfer Entropy;

• Twitter has been confirmed as main vector of information world-wide; as a future step
one can investigate more limiting constraints on search queries; as well as a sentiment
analysis on News and Twitter corpora;

• as best of our knowledge, this thesis open the path for multivariate analysis in the finan-
cial field; in the future different kind of sources can be tried, such as Google Trends,
Reddit or Telegram;

• ultimately, this work is of course affected by limitations, being restricted to a small num-
ber of companies, as well to a defined time range. An immediate improvement can be
tried focusing on bigger indices, such as the S&P500; or on a different time-scale; going
under the daily base. Moreover, a deeper analysis can be made on specific stocks, going
to study the outliers with very small or big Z-score values and their relation with the
company history.
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