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Abstract

Arrays of identical neutral atoms trapped in optical tweezers are a promising
candidate for use in quantum computing. These platforms are highly scalable
to large numbers of qubits and neutral atoms boost several attractive features as
long coherence times and the possibility to be entangled via strong dipole-dipole
interactions by driving them to highly excited Rydberg states. The Thesis work is
developed inside the framework of the QRydDemo project, whose aim in the next
few years is to realize a neutral atom quantum processor with several hundred qubits.
The smallest building blocks for the quantum computer are one and two-qubit gates:
to entangle two atoms in the quantum register, a controlled-phase (CZ) gate will
be implemented by shining fine-tuned laser pulses onto them. In this work, after
giving a theoretical description of the Hamiltonian of two neutral atoms in the
quantum register, a numerical simulation of this system is exploited to reproduce
the behavior of the two-qubit CZ gate. Realistic effects are taken into account as
finite temperature, imperfect Rydberg blockade, or decay out of the Rydberg state.
A protocol with constant pulses is analyzed and its optimal parameters are found
through classical optimizers. Then, time-dependent pulses are introduced and
the optimal pulses are found through the optimal control algorithm dCRAB in an
open-loop optimization. For the experimental realization of the gate, this analysis is
of pivotal importance to know in which aspect more effort has to be put to maximize
the experimental precision of the operation and thus improving the performance of
the whole device.
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Introduction

In 1982 Richard Feynman introduced for the first time the idea of quantum
computing [1]: he suggested that a quantum mechanical device, a quantum
computer, had the potential to simulate more efficiently than a classical computer the
probabilistic quantum nature of the physical world. Quantum computation promises
advantages on a large variety of fields from condensed-matter problems [2] and high-
energy physics [3] to industrial applications [4]. Although the quantum supremacy had
not been demonstrated yet, in the last years there has been remarkable experimental
and theoretical progress towards making this idea a reality [5–7]. Inspired by
classical computing, one way to define a quantum computation algorithm is through
a quantum circuit that describes the computation in terms of a network of quantum
logic gates [8]. A quantum circuit manipulates the information stored in a set
of two-level systems called qubits by exploiting purely quantum phenomenon as
entanglement. From an experimental point of view, generating and managing qubits
is a challenge since quantum devices are extremely susceptible to noise sources [9].
Over the past few decades, various quantum devices have been developed, among
which, the more established ones are superconducting loops [10], trapped ions [11],
and neutral atoms [12]; for each of these different platforms, an effective two-level
system is implemented to realize the qubit and the gates are operations acting on
them. Considerable efforts are dedicated to improving all these platforms, each with
its strengths and weaknesses, and the race to develop a fully functional quantum
computer is currently ongoing.

Arrays of identical neutral atoms trapped in optical tweezers, which are the study
of this Thesis, boost several attractive features, one for all the high scalability to large
numbers of qubits. Indeed, many atoms can be packed close together since neutral
atoms separated by more than a few Angstroms interact very weakly. Moreover,
neutral atoms present long decoherence times and they can be individually and
accurately controlled by using electromagnetic fields [13]. However, to implement
entangling operations strong interactions among qubits are required. Given the
weak interaction between neutral atoms, a solution is to temporarily excite them
to Rydberg states. The study of Rydberg atoms began in the early stage of atomic
physics at the end of the 1800s, when the Swedish physicist Johannes Rydberg
introduced a formula describing the relation between the wavelengths in spectral



lines of alkali metals. With the birth of tunable lasers in the 1970s, the extreme
sensitivity of Rydberg atoms to microwave radiation made them ideal to study
atom-light interaction. At the end of the 1990s, it was proposed for the first
time to exploit the strong interaction between neutral atoms excited to Rydberg
states to realize entangling quantum gates [14, 15]. This is possible thanks to
the Rydberg blockade effect which prevents the simultaneous Rydberg excitation of
two nearby atoms. However, only recently the progress in the manipulation of
individual Rydberg atoms has allowed the physical implementation of high-fidelity
gates between neutral atoms [16]. In 2019, it has been shown how to implement a
controlled-phase gate with a Bell-state fidelity greater than 97.4% with Rubidium-87
atoms [17]. In 2020, it has been demonstrated a Bell-state fidelity greater than 99.1%
switching to a Strontium-88 platform [13]. These very exciting results show how
Rydberg gates can achieve very high fidelity. They are also fast with a typical gate
time of the order of 100 ns. However, the single-qubit coherence time is limited to
∼ 10 `s so far.

This Thesis has been developed in the framework of the QRydDemo project,
which in the next few years aims to realize a neutral atom quantum computer
demonstrator with several hundred qubits. The main aim of the project is to
improve the coherence time up to three orders of magnitude solving the technical
problems that up to now are limiting applications as quantum computers. This
improvement would give more flexibility for the implementation of new type of
algorithms and thus exploring new scenarios. The physical hardware is based on
individually controlled Strontium-88 atoms trapped in a two-dimensional array by
using optical tweezers. The main idea is to encode the qubit in two very long-
lived states of a metastable triplet state. The coherence time can be considerably
increased by setting the frequency of the tweezers to a specific value, that we call
magic wavelength, which allows one to reach an optimal, or magic, trapping condition.
In this setup, rotations around the 𝑧-axis by an arbitrary angle are implemented via
AC Stark shift using a Raman laser. Rotations around the 𝑥-axis by an arbitrary angle
are realized by coupling the two-qubit states via the Raman transition. However, in
a quantum platform, it is not enough to implement only single-qubit operations. To
entangle two atoms in the QRydDemo platform, a controlled-phase (CZ) gate will be
implemented by driving atoms to highly excited Rydberg states and thus exploiting
the Rydberg blockade effect.

In this work, the different contributions to the total system Hamiltonian of
two atoms in the quantum register are analyzed such as the trapping in the optical
tweezer, the atom-light interaction, and the Rydberg atoms interaction. This
system is simulated by Sebastian Weber, within the QRydDemo project, in order
to reproduce the behavior of a two-qubit CZ gate. The simulation takes into
account realistic effects as finite temperature, imperfect Rydberg blockade, or decay
out of the Rydberg state. Realistic parameters for the QRydDemo device are
considered. The aim of our analysis is to explore which kind of protocol for the
gate implementation works best on this platform and to benchmark theoretically

x



the maximum gate fidelity achievable. Firstly, a protocol developed in Ref. [17]
is analyzed. It consists of just two global laser pulses with Rabi frequency Ω and
with the laser phase of the second pulse shifted by b. The two pulses have the
same length 𝜏 and a constant detuning Δ which couples the excited state |1⟩ to the
Rydberg state |𝑟⟩ and they drive nearest neighbour atoms to the Rydberg blockade
regime. The optimal time duration 𝜏, detuning Δ, and phase shift b which maximize
the gate fidelity are found through classical optimizers. Then, a time-dependent
detuning Δ(𝑡) is introduced to investigate if this can lead to an improved fidelity.
In this case, the optimal Δ(𝑡) pulse is found through the optimal control algorithm
dCRAB in an open-loop optimization [18]. The analysis is also performed by
introducing a realistic finite bandwidth for Ω, Δ and b. After that, a protocol
consisting of a global laser pulse of duration 2𝜏 with Rabi frequency Ω, a zero phase
and a time-dependent detuning with a triangular shape is analyzed. Also in this case,
the optimal parameters are first found through classical optimizers and then the
optimal control algorithm is applied to investigate if there could be a gain in fidelity.
Finally, we show that a protocol with a time-dependent phase and constant detuning
is equivalent to the one with a zero phase and a time-dependent, within a unitary
transformation.

This Thesis is structured as follows:

→→→ In Chapter 1, the fundamental concepts of quantum computation are shortly
reviewed to provide a first general insight into quantum computer develop-
ment from a generic theoretical perspective. We start with the notion of
the qubit and we discuss how pure states are represented in a computational
basis. Then, we introduce the model of quantum circuits and we show the
representation of the most popular quantum gates. After that, we briefly
discuss the density matrix formalism to represent the most general mixed
states and the time evolution of closed and open quantum systems are shortly
reviewed. The operator-sum representation is also introduced to include
selected open system effects to the previously ideal quantum processes. In
the end, we discuss how to represent quantum states at finite temperature.

→→→ In Chapter 2, we provide a general insight into the theoretical basis of neutral
atoms quantum devices. First of all, the physical description and the main
properties of independent Rydberg atoms are reviewed. Then, we discuss the
interaction of Rydberg atoms via the electric dipole-dipole operator and we
describe the main mechanism of Rydberg blockade. Afterward, we explain
how to create/assemble arrays of neutral atoms: they are trapped in optical
tweezers which can be modeled as harmonic oscillators from a theoretical
perspective. To understand how neutral atoms can be excited, the foundation
of atom-light interaction is also reviewed.

→→→ In Chapter 3, the optimal control algorithm dCRAB is reviewed as well as its
implementation on the open source quantum optimal control suite.
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→→→ Chapter 4 gives a brief overview of the experimental apparatus at the basis of
a neutral atom quantum processor by reference to the QRydDemo processor.
The main steps of one computation cycle, namely register loading, quantum
processing and register readout, are analyzed. Then, the total system
Hamiltonian of two neutral atoms in the register is described in detail. It
is implemented numerically by the members of the QRydDemo project to
perform a simulation of the system to reproduce the behavior of a two-qubit
CZ gate. The simulation takes into account realistic effects, such as the
trapping in the optical tweezer at a finite temperature, the decay out of the
Rydberg state |𝑟⟩ or an imperfect blockade regime.

→→→ In Chapter 5, we show the main results of the numerical simulation of the
two-qubit CZ gate. As already mentioned, we start from the proposal shown
in Ref. [17] and we theoretically benchmark this protocol for the QRydDemo
platform. The optimal control algorithm dCRAB is used to improve the
gate fidelity. After that, a new proposal with a triangular detuning shape is
discussed. Finally, we show that these two protocols are related by a unitary
transformation.

xi i



Part I

Concepts for quantum computation
and neutral atoms





Chapter 1

Basics of Quantum Computing

“Never underestimate the joy people derive

from hearing something they already

know.”

— Enrico Fermi

In this Chapter, the fundamental concepts of quantum computation are reviewed. In
Sec. 1.1, we introduce the general concept of a qubit and discuss its representation
on the so-called Bloch sphere. In Sec. 1.2 we review the quantum circuit model for
performing quantum computation and the definition of quantum gates is given. In
Sec. 1.3 we introduce the density matrix formalism, a useful tool to describe systems
interacting with an external environment. Then, in Sec. 1.5 we discuss different
kinds of measures to compare noisy and ideal quantum processes. Finally, in Sec. 1.6
we review quantum systems at a finite temperature and a method to simulate them
based on sampling minimally entangled typical thermal states.

1.1 Quantum bit

A quantum bit (or qubit) is the quantum version of the classic binary bit. It is a
two-level quantum system where the two basis qubit states are denoted as |0⟩ and
|1⟩ [8]. Generally, a pure qubit state is a unit vector in a two-dimensional Hilbert
space and can be written as a linear combination, or superposition, of the basis states:

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , 1.1

where 𝛼, 𝛽 ∈ C are probability amplitudes with the constraint |𝛼 |2 + |𝛽 |2 = 1.



1 BASICS OF QUANTUM COMPUTING

1.1.1 Bloch sphere representation

Any possible quantum state for a single qubit can be geometrically visualized.
Indeed, with a suitable change of coordinates and exploiting the undetectability
of global phases in quantum mechanics, it is possible to rewrite the probability
amplitudes 𝛼 and 𝛽 as follows:

|𝜓⟩ = cos \2 |0⟩ + 𝑒𝑖𝜑 sin \

2 |1⟩ , 1.2

where 0 ≤ \ ≤ 𝜋 and 0 ≤ 𝜑 < 2𝜋. The angles \ and 𝜑 define a point on a
three-dimensional unitary sphere, called Bloch sphere illustrated in Fig. 1.1. The state
|0⟩ occupies the north pole and the state |1⟩ the south pole, and any point at the
surface of the sphere is associated with another unique qubit state, being a coherent
superposition of |0⟩ and |1⟩ .

i

\

|k〉

|0〉

|1〉

x

y

z

Figure 1.1 • Qubit state visualization on the Bloch sphere. The basis state |0⟩ is represented
by the unit vector �̂� while the basis state |1⟩ by −�̂�. Any point at the surface of the sphere is
associated with a qubit state given by |𝜓⟩ = cos \

2 |0⟩ + 𝑒𝑖𝜑 sin \
2 |1⟩.

1.1.2 Multiple qubits and entanglement

The states of the quantum system of 𝑁 distinguishable qubits live in a Hilbert space
of dimension 2𝑁 given by the tensor product of the Hilbert spacesH𝑖 of the single
qubits:

H = H1 ⊗ · · · ⊗ H𝑁 . 1.3
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1.2 QUANTUM CIRCUIT

Given the state | 𝑗⟩ 𝑖 of the i-th qubit, a generic state |𝜓⟩ ∈ H can be written as:

|𝜓⟩ =
∑︂

𝑗1... 𝑗𝑁 ∈{0,1}𝑁
𝑐 𝑗1... 𝑗𝑁 | 𝑗⟩1 . . . | 𝑗⟩𝑁 1.4

with the constraint
∑︁

𝑗1... 𝑗𝑁 ∈{0,1}𝑁 |𝑐 𝑗1... 𝑗𝑁 |2 = 1.
The power of quantum computation relies on purely quantum phenomena as

entanglement, that entails an intrinsic correlation between the constituents of a
quantum system. Given an 𝑁-qubit system, a quantum state is said to be entangled
if it cannot be factorized as a tensor product of states of its local constituents. The
simplest example of entangled states are the Bell states for a two-qubit system:|︁|︁Φ+⟩︁ =

1
√

2
( |00⟩ + |11⟩) 1.5a

|Φ−⟩ = 1
√

2
( |00⟩ − |11⟩) 1.5b|︁|︁𝜓+⟩︁ =

1
√

2
( |01⟩ + |10⟩) 1.5c

|𝜓−⟩ = 1
√

2
( |01⟩ − |10⟩) . 1.5d

1.2 Quantum circuit

Quantum computation consists of acting on a qubit register by means of a quantum
algorithm. It is useful to use the quantum circuit model in which quantum algorithms
are decomposed into a sequence of quantum gates performed on one or more qubits.
In general, an 𝑁-qubit quantum gate is an operation that is applied on 𝑁 qubits
changing their quantum state. It can be represented by a unitary matrix generically
indicated as �̂� of dimension 2𝑁 × 2𝑁 .

As unitary transformations, any single-qubit gate corresponds to a rotation of
the state vector onto the Bloch sphere. In this respect, they can always be written as
combinations of the Pauli matrices �̂�𝑥, �̂�𝑦 and �̂�𝑧. A single-qubit gate of paramount
importance is the Hadamard gate, defined as:

Ĥ =
1
√

2

(︃
1 1
1 −1

)︃
=

(�̂�𝑥 + �̂�𝑧)√
2

. 1.6

It maps the basis state |0⟩ to ( |0⟩+|1⟩)√
2

and |1⟩ to ( |0⟩−|1⟩)√
2

, thus creating an equal

superposition of the two basis states. In the Bloch sphere, it corresponds to a 𝜋

rotation around the (𝑥 + 𝑧) axis.
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1 BASICS OF QUANTUM COMPUTING

Two-qubit gates are unitary transformations described by 4 × 4 matrices that
transform one two-qubit state into another. They are the most basic but crucial
resource allowing the generation of entanglement between qubits. An important
two-qubit gate is the controlled-phase (or CZ ) gate:

ĈZ =

⎛⎜⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . 1.7

It is an example of a controlled unitary operator gate where the two qubits in input
are designated as the target and control respectively. The gate has no effect on the
control qubit but performs a unitary operation on the target qubit conditionally on
the state of the control qubit.

Together with arbitrary single-qubit gates, the entangling operation forms a
universal quantum computing gate set: they are sufficient for the realization of any
quantum algorithm. For instance, the two-qubit CZ gate can be combined with a set
of generators for single-qubit gates to form a universal set of gates [19].

A quantum circuit is usually concluded with a measurement of one or more qubits.
It is an irreversible operation that destroys quantum information and converts it into
a classical one.

1.2.1 Creating Bell states

To provide an example of a simple quantum circuit, let us show the procedure [20] to
prepare the Bell state of Eq. (1.5a) using only the Hadamard and the controlled-phase
gates previously described:

1 start with the separable state |11⟩;

2 apply the Hadamard gate to both qubits:

|in⟩ = Ĥ1Ĥ2 |11⟩ = 1
2 ( |00⟩ − |01⟩ − |10⟩ + |11⟩); 1.8

3 apply the ĈZ gate to |in⟩;

4 then, apply a Hadamard gate on qubit 2 to obtain the Bell state |Φ+⟩ .

6



1.3 DENSITY MATRIX FORMALISM

1.3 Density matrix formalism

Pure states, described by state vectors |𝜓⟩ on Hilbert space as in Subsec. 1.1.2, are
an idealized description. They cannot characterize statistical (incoherent) mixtures,
which often occur in the experiment due to interaction with the environment. To
describe this situation in more abstract terms, the information regarding the system
is not complete and the system’s state is associated with an ensemble of pure states:
a mixed state. A formulation that can encode all the (accessible) information about a
quantum mechanical system and can represent both pure states and mixed states is
the density matrix representation.

1.3.1 General properties

Each quantum state can be represented by an operator 𝜌, called density matrix, with
the following properties:

I 𝜌† = 𝜌 hermiticity

II Tr 𝜌 = 1 normalization

III ∀ |𝑢⟩ : ⟨𝑢 | 𝜌 |𝑢⟩ ≥ 0 positivity

If we fix an arbitrary basis {|𝑖⟩}𝑁
𝑖=1 of the Hilbert space the density matrix in this

basis is written as 𝜌 =
∑︁𝑁

𝑖, 𝑗=1 𝜌𝑖, 𝑗 |𝑖⟩⟨ 𝑗 |, or

𝜌 =

⎛⎜⎜⎜⎜⎝
𝜌00 𝜌01 . . . 𝜌0𝑁
𝜌10 𝜌11 . . . 𝜌1𝑁
...

...
. . .

...

𝜌𝑁0 𝜌1𝑁 . . . 𝜌𝑁𝑁

⎞⎟⎟⎟⎟⎠
, 1.9

where the diagonal elements are called populations (𝜌𝑖𝑖 ∈ R+0 and
∑︁

𝑖 𝜌𝑖𝑖 = 1), while
the off-diagonal elements are called coherences (𝜌𝑖 𝑗 ∈ C and 𝜌𝑖 𝑗 = 𝜌∗

𝑗𝑖
).

The expectation value of an observable �̂� in a state, represented by a density
matrix 𝜌, is given by

⟨�̂�⟩𝜌 = Tr
(︂
𝜌�̂�

)︂
. 1.10
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1 BASICS OF QUANTUM COMPUTING

1.3.2 Pure and mixed states

If the system can be fully described by a state vector |𝜓⟩, the density matrix 𝜌 for
the pure state |𝜓⟩ is given by

𝜌 = |𝜓⟩⟨𝜓 | . 1.11

Since the density matrix for a pure state is a projector, it is an idempotent: 𝜌2 = 𝜌.
By combining this property and Tr 𝜌 = 1, a pure state is characterized by

Tr 𝜌2 = 1. 1.12

Most generally, a quantum system can be in one state of a set {|𝜓𝑖⟩} with
probabilities 𝑝𝑖. Therefore, our knowledge of the system is given by an ensemble of
pure states described by the set {|𝜓𝑖⟩ , 𝑝𝑖}. If more than one 𝑝𝑖 is different from
zero the state is not pure anymore, and it is called a mixed state. The latter can be
written as a convex sum of pure state density matrices

𝜌 =
∑︂
𝑖

𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 | , 1.13

where
∑︁

𝑖 𝑝𝑖 = 1 and with the property Tr 𝜌2 < 1.

1.3.3 Reduced density matrix

Consider a quantum system composed of subsystems 𝐴 and 𝐵 with Hilbert space
H = H𝐴 ⊗ H𝐵 and fully described by the density matrix 𝜌𝐴𝐵. The reduced density
matrix of subsystem 𝐴 is then given by:

𝜌𝐴 = Tr𝐵 (𝜌𝐴𝐵), 1.14

where Tr𝐵 is the partial trace operation over the system 𝐵. Let {|𝑎𝑖⟩} be a basis
of H𝐴 and {|𝑏𝑖⟩} of H𝐵 the partial trace function, taken over subsystem 𝐵, is
defined [21] as

Tr𝐵 (𝜌𝐴𝐵) = Tr𝐵
⎡⎢⎢⎢⎢⎣
∑︂
𝑖 𝑗 𝑘𝑙

|︁|︁𝑎𝑖⟩︁⟨︁𝑎 𝑗

|︁|︁ ⊗ |𝑏𝑘⟩⟨𝑏𝑙 |
⎤⎥⎥⎥⎥⎦ =

∑︂
𝑖 𝑗

|︁|︁𝑎𝑖⟩︁⟨︁𝑎 𝑗

|︁|︁ Tr
[︄∑︂

𝑘𝑙

|𝑏𝑘⟩⟨𝑏𝑙 |
]︄
. 1.15
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1.4 TIME EVOLUTION

1.4 Time evolution

1.4.1 Closed quantum systems

The dynamics of a closed pure quantum system is governed by the Schrödinger
equation

𝑖ℏ
𝜕 |𝜓⟩
𝜕𝑡

= Ĥ |𝜓⟩ , 1.16

where |𝜓⟩ is the wavefunction, Ĥ the Hamiltonian of the system and ℏ the Planck’s
constant. The formal solution is |𝜓(𝑡)⟩ = �̂� (𝑡, 𝑡0) |𝜓(𝑡0)⟩, where the unitary
operator �̂�, also called propagator, is the solution of the equation

𝑖ℏ
𝜕�̂�

𝜕𝑡
= Ĥ�̂� (𝑡, 𝑡0). 1.17

If the Hamiltonian is time-independent, the propagator has the form �̂� (𝑡, 𝑡0) =

𝑒−
𝑖
ℏ
Ĥ(𝑡−𝑡0) .
The equivalent of the Schrödinger equation in the density matrix formalism is

the Liouville-von Neumann equation

𝑖ℏ
𝜕𝜌

𝜕𝑡
= [Ĥ, 𝜌] . 1.18

The solution of the von Neumann equation is:

𝜌(𝑡) = �̂� (𝑡, 𝑡0)𝜌(𝑡0)�̂�
†(𝑡, 𝑡0). 1.19

In the next subsection, we present how to evolve the density matrix as an open
system instead of a closed system.

1.4.2 Open quantum systems

While the evolution of the state vector in a closed quantum system is deterministic,
open quantum systems are stochastic in nature. As we have seen, the state of an
open quantum system is therefore described in terms of ensemble averaged states
with the density matrix 𝜌. The standard approach to derive the equations of motion
for a system interacting with its environment is to expand the system to include the
environment. The combined quantum system encoded in 𝜌tot is then closed, and its
evolution is governed by the von Neumann equation Eq. (1.18) with Hamiltonian

Ĥtot = Ĥsys ⊗ 1env + 1sys ⊗ Ĥenv + Ĥint, 1.20

9



1 BASICS OF QUANTUM COMPUTING

System
( d, Ĥsys)

Environment
( denv, Ĥenv)

Total system ( 1tot, Ĥtot)

Figure 1.2 • An open quantum system with the density matrix 𝜌 and Hamiltonian Ĥsys and
the environment represented by 𝜌env and Ĥenv form a closed quantum system, i.e., the density
matrix 𝜌tot and the Hamiltonian Ĥtot. The total Hamiltonian Ĥtot contains the contributions of
the system, the environment and the interaction between them.

which includes the original system Hamiltonian Ĥsys, the Hamiltonian for the

environment Ĥenv, and a term representing the interaction between the system and

its environment Ĥint. Since we are only interested in the dynamics of the system, we
can at this point perform a partial trace over the environmental degrees of freedom
in Eq. (1.19), and thereby obtain a master equation for the motion of the original
system density matrix

𝜌 = Trenv(𝜌tot). 1.21

The most general trace-preserving and completely positive form of this evolution
is the Lindblad master equation [21] for the reduced density matrix 𝜌

𝜕𝜌

𝜕𝑡
= − 𝑖

ℏ
[�̂� (𝑡), 𝜌(𝑡)] +

∑︂
𝑛

1
2

[︂
2�̂�𝑛𝜌(𝑡)�̂�

†
𝑛 − 𝜌(𝑡)�̂�†

𝑛�̂�𝑛 − �̂�
†
𝑛�̂�𝑛𝜌(𝑡)

]︂
, 1.22

where the �̂�𝑛 =
√
𝛾𝑛 �̂�𝑛 are collapse operators, or Lindblad operators, and the

operators �̂�𝑛 are derived from the interaction Hamiltonian Ĥint, and 𝛾𝑛 are the
corresponding rates. The Lindblad equation is derived assuming that: correlations
of the system with the environment develop slowly, excitations of the environment
caused by system decay quickly and terms that are fast-oscillating when compared
to the system timescale of interest can be neglected. These three approximations
are called Born, Markov, and rotating wave, respectively [22]. Since they do not hold
for every system, e.g. a small environment that can be perturbed by the system, the
Lindblad equation can be a wrong approximation and more advanced approaches
should be used [23].

10



1.5 COMPARE NOISY AND IDEAL QUANTUM PROCESSES

1.5 Compare noisy and ideal quantum
processes

Since many real-world imperfections arise when a quantum process is performed, it
is important to quantitatively measure these imperfections in order to characterize
the quality of the quantum operation. In this section, we first introduce the
description of quantum operations in the so-called operator-sum representation.
Then, we briefly describe the procedure of quantum tomography used to determine
the operators which characterize the quantum process. Once these operators have
been determined, the quality of the quantum operation can be estimated. Different
measures, which compare experiments with the theoretical ideal task, exist such as
the average gate fidelity and the diamond error rate.

1.5.1 Operator-sum representation

The most general physical processes that may occur in a quantum system, including
unitary evolution, measurement, noise, and decoherence, can be described by a
quantum operation Y [24]. In this formalism, input 𝜌in and output 𝜌out states are
related by

𝜌out = Y(𝜌in) =
∑︂
𝑗

�̂� 𝑗 𝜌in�̂�
†
𝑗 , 1.23

where the operators �̂� 𝑗 are known as operation elements, or Kraus operators [8],

and obey the condition that
∑︁

𝑗 �̂�
†
𝑗 �̂� 𝑗 ≤ 1. As mentioned, the operation elements

completely describe the effect of the process including any possible unitary operation
(quantum logic gate), projection (generalized measurement), or environmental effect
(decoherence).

1.5.2 Quantum process tomography

In an experiment, the quantum operation Y can be determined by using quantum
process tomograph y [25]. The goal is to describe the state change process by
determining the operators 𝐸𝑖 which describe Y. To relate the 𝐸𝑖 to measurable
parameters, it is convenient to rewrite them in an orthogonal basis {˜︁𝐸𝑖} for 𝜌

�̂� 𝑖 =
∑︂
𝑚

𝑒𝑖𝑚 ˜︁𝐸𝑖, 1.24

11



1 BASICS OF QUANTUM COMPUTING

where 𝑒𝑖𝑚 can be complex. The Eq. (1.23) may thus be rewritten as

Y(𝜌) =
∑︂
𝑚,𝑛

˜︁𝐸𝑚𝜌˜︁𝐸†
𝑛 𝜒𝑚𝑛, 1.25

where 𝜒𝑚𝑛 =
∑︁

𝑖 𝑒𝑖𝑚𝑒
∗
𝑖𝑛
is a positive Hermitian operator, also called error correlation

matrix, and fully describes the action of the quantum process [26]. The big
advantage of this representation is that once the basis {˜︁𝐸𝑖} is chosen, the error
correlation matrix can be shown to be unique to the process [24], namely it depends
only on Y and not on the particular choice of operation element basis {˜︁𝐸𝑖}.

To determine 𝜒 from a set of measurement, a set of basis states {𝜌 𝑗 } is chosen,
such that for each input state 𝜌 𝑗 , quantum state tomograph y returns an output

Y(𝜌 𝑗 ) =
∑︂
𝑘

𝑐 𝑗 𝑘 𝜌𝑘 . 1.26

By defining ˜︁𝐸𝑚𝜌 𝑗
˜︁𝐸†
𝑛 =

∑︁
𝑘 𝛽

𝑚𝑛
𝑗 𝑘
𝜌𝑘 (where 𝛽𝑚𝑛

𝑗 𝑘
is a complex matrix completely

determined by the choice of the input basis states {𝜌 𝑗 }, output basis states {𝜌𝑘 } and
the basis for the operators {˜︁𝐸𝑖}), one can note that

∑︁
𝑘

∑︁
𝑚,𝑛 𝜒𝑚𝑛𝛽

𝑚𝑛
𝑗 𝑘
𝜌𝑘 =

∑︁
𝑘 𝑐 𝑗 𝑘 𝜌𝑘

and since 𝛽 is invertible:

𝜒𝑚𝑛 =
∑︂
𝑗 𝑘

(𝛽−1)𝑚𝑛
𝑗 𝑘 𝑐 𝑗 𝑘 . 1.27

1.5.3 Average gate fidelity

The average gate fidelity 𝐹ave compares how well an operation Y approximates an
ideal gate �̂� [27]. It is defined as

𝐹ave(Y, �̂�) =
∫

d𝜓 ⟨𝜓 | �̂�†
Y( |𝜓⟩⟨𝜓 |)�̂� |𝜓⟩ . 1.28

Note that 𝐹ave = 1 if and only if Y implements �̂� perfectly, while lower values
indicate that Y is a noisy implementation of �̂�. Suppose we introduce an orthogonal
basis of unitary operators {�̂� 𝑗 } for the system, the average gate fidelity can be
rewritten explicitly as

𝐹ave(Y, �̂�) =

∑︁
𝑗 Tr

(︂
�̂��̂�

†
𝑗�̂�

†
Y(�̂� 𝑗 )

)︂
+ 𝑑2

𝑑2(𝑑 + 1) 1.29

where 𝑑 is the system’s dimension. In order to determine experimentally 𝐹ave, the
quantum process Y is determined through quantum process tomography and then it
is substituted into Eq. (1.29).

12



1.6 QUANTUM STATES AT FINITE TEMPERATURE

1.5.4 Diamond distance

Let us consider two quantum operations Y1 and Y2 in the Hilbert space H , the
diamond distance [24] measures the distance between them, namely it measures how
well we can distinguish between the two channels by applying them to input states
of arbitrarily large dimensions [28]. By introducing an ancillary Hilbert space K and
defining the input density matrix 𝜌 in K ⊗ H , the output states to discriminate are
(1 ⊗ Y1) (𝜌) and (1 ⊗ Y2) (𝜌). The diamond norm is then defined as

∥Y1 − Y2∥◇ = max
𝜌

( ∥(1 ⊗ Y1) (𝜌) − (1 ⊗ Y2) (𝜌)∥1) , 1.30

where ∥·∥1 denote the trace norm. The minimal error probability reads

𝑝𝐸 =
1
2 −

∥Y1 − Y2∥◇
4 . 1.31

The two quantum channels Y1 and Y2 become perfectly distinguishable (𝑝𝐸 = 0 )
when their diamond distance ∥Y1 − Y2∥◇ = 2.

1.6 Quantum states at finite temperature

The thermal expectation value of an observable �̂� in the canonical ensemble at
temperature 𝑇 is defined as

⟨�̂�⟩𝑇 = Tr
(︂
𝜌�̂�

)︂
, 1.32

where 𝜌 is the thermal density matrix at temperature 𝑇 . In the canonical ensemble,

𝜌 =
1
Z 𝑒−𝛽Ĥ 1.33

where 𝛽 = 1/𝑘𝐵𝑇 with 𝑘𝐵 the Boltzmann’s constant and Z is the partition function.

By fixing an orthonormal basis |𝑖⟩ , the expectation value of �̂� can be rearranged
in the following way [29]:

⟨�̂�⟩𝑇 =
1
Z

∑︂
𝑖

⟨𝑖 | 𝑒−𝛽Ĥ/2 �̂�𝑒−𝛽Ĥ/2 |𝑖⟩

=
1
Z

∑︂
𝑖

𝑃(𝑖) ⟨𝜙(𝑖) | �̂� |𝜙(𝑖)⟩ ,
1.34

where the set of normalized states |𝜙(𝑖)⟩ is defined as

|𝜙(𝑖)⟩ = 𝑃(𝑖)−1/2𝑒−𝛽Ĥ/2 |𝑖⟩ 1.35

13



1 BASICS OF QUANTUM COMPUTING

together with the (unnormalized) probability distribution

𝑃(𝑖) = ⟨𝑖 | 𝑒−𝛽Ĥ |𝑖⟩ . 1.36

Let us fix as orthonormal basis state |𝑖⟩ the set of classical product states (CPS),
with zero entanglement entropy, given by

|𝑖⟩ = |𝑖1⟩ |𝑖2⟩ . . . |𝑖𝑁⟩ , 1.37

where the 𝑖 𝑗 label states in a local basis that may be chosen arbitrarily for each site 𝑗 .
At non zero 𝛽, we expect the resulting |𝜙(𝑖)⟩ to have minimal entropy within this
general class of states, and so we call them minimally entangled typical thermal states
(METTS) [30].

1.6.1 Producing METTS with the pure-state method

The pure-state method is an approach for calculating METTS distributed with
probability 𝑃(𝑖)/Z [29]. The steps of the algorithm are

1 Choose a CPS |𝑖⟩ .

2 Compute the METTS by using Eq. (1.35).

3 Collapse a new CPS |𝑖′⟩ from |𝜙(𝑖)⟩ with probability 𝑝(𝑖 → 𝑖′) = | ⟨𝑖′|𝜙(𝑖)⟩ |2
and return to step 2.

Note that such a procedure could be carried out using any orthonormal basis of
states |𝑖⟩ , however not every choice would lead to an efficient algorithm.

Once the states |𝜙(𝑖)⟩ are sampled, one may estimate the average value of the
observable �̂� at a finite temperature, ⟨�̂�⟩𝑇 , by using Eq. (1.34). In the simulation
described in detail in Chapter 4, METTS are sampled to simulate a finite trapping
temperature of the atoms in optical tweezers.

14



Chapter 2

Quantum Computing with
neutral atoms

“The best that most of us can hope to

achieve in ph ysics is simply to

misunderstand at a deeper level.”

—Wolfgang Pauli

Arrays of identical neutral atoms trapped in optical tweezers can be used to perform
quantum computing. Neutral atoms boast several attractive features: they can
readily be prepared by optical pumping in well-defined initial states, their qubit states
can be accurately controlled with electromagnetic fields and precisely measured by
using fluorescence. Moreover, in some cases they present long decoherence times
since they can be well isolated from the environment [31]. Many atoms can be
packed close together in a quantum computer since neutral atoms separated by more
than a few angstroms interact very weakly. As already stated in Chapter 1, together
with arbitrary single-qubit gates, the entangling operation forms a universal quantum
computing gate set. However, to implement entangling gates strong interactions
among qubits are required. Given the weak interaction between neutral atoms, a
solution is to temporarily excite atoms to Rydberg states, i.e., a highly energetic state
with exaggerated properties. In this way, the Rydberg blockade mechanism, which
prevents more than one atom in a small volume from being simultaneously excited
to a Rydberg state, can be used to entangle two qubits.

In Sec. 2.1, we describe the main properties of individuals Rydberg atoms
making them very good tools for quantum computation. They benefit from their
strong mutual interaction (given by huge dipole matrix elements) as well as their
long lifetimes. Not less important, thanks to their simple internal structure they
can be easily manipulated by means of currently available microwave technology.
The scaling laws of the main properties with the principal quantum number are also



2 QUANTUM COMPUTING WITH NEUTRAL ATOMS

provided. Then, in Sec. 2.2 we describe the dipole-dipole interaction between two
Rydberg atoms and we focus our attention on the Rydberg blockade mechanism.
Finally, in Sec. 2.3 we explain how to write the system Hamiltonian of a neutral
atom trapped in an optical tweezer and we describe the mechanism of atom-light
interaction.

2.1 General properties of Rydberg atoms

Rydberg atoms are atoms with one or more electrons in a highly excited state
with a principal quantum number 𝑛∗ ≥ 10. In such a state, the atom diameter is
approximately a factor of 104 larger than that of a neutral atom in the ground state.
However, the atom is not ionized, as its outer electrons are not free, but still bound,
even if very weakly. This results in exaggerated properties of Rydberg atoms as
their very high sensitivity to external electromagnetic influences and the strong
interaction between them [32]. In the following, we will consider only atoms with a
single valence electron.

2.1.1 Hydrogen atom approximation

In many scenarios, since the outer electron stays far away from the atomic core,
it is sufficient to treat the Rydberg atom as hydrogenic [33]. This approach is the
simplest model one can think of where the outer electron held by the Coulomb force
orbits around an elementary charge. If we suppose the core as infinitely massive the
Hamiltonian reads

Ĥ0 = − ℏ

2𝑚𝑒

∇2 − 𝑞2

4𝜋Y0

1
𝑟
, 2.1

where 𝑚𝑒 is the electron mass, 𝑞 is the elementary charge and 𝑟 is the core-
electron distance. Its eigenfunctions are written as a product of radial and angular
wavefunctions

𝜓(𝑟, \,Φ) = 𝑅𝑛𝑙 (𝑟)𝑌𝑚𝑙

𝑙
(\,Φ). 2.2

The radial part can be expressed in terms of generalized Laguerre polynomials as

𝑅𝑛𝑙 (𝑟) =

√︄(︃
2
𝑛𝑎0

)︃ 3 (𝑛 − 𝑙 − 1)!
2𝑛[(𝑛 + 𝑙)!] 𝑒

−𝑟/𝑛𝑎0

(︃
2𝑟
𝑛𝑎0

)︃ 𝑙
𝐿2𝑙+1
𝑛−𝑙−1

(︃
2𝑟
𝑛𝑎0

)︃
, 2.3
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2.1 GENERAL PROPERTIES OF RYDBERG ATOMS

where 𝑎0 ∼ 0.529Å is the Bohr’s radius, while the angular wavefunction is a
spherical harmonic function proportional to an associated Legendre polynomial and
reads as

𝑌
𝑚𝑙

𝑙
(\,Φ) = 𝑁𝑒𝑖𝑚𝑙Φ𝑃

𝑚𝑙

𝑙
(cos \). 2.4

Each set of {𝑛, 𝑙, 𝑚𝑙} (respectively the principal, orbital and magnetic quantum
numbers) describes a different wavefunction |𝑛𝑙𝑚𝑙⟩ and satisfies

𝑛 = 1, 2, 3, . . . 2.5a

𝑙 = 0, 1, 2, . . . , 𝑛 − 1 2.5b

𝑚𝑙 = −𝑙,−𝑙 + 1, . . . , 0, . . . , 𝑙 − 1, 𝑙. 2.5c

In addition, the spin quantum number 𝑠 represents the state of the electron and
takes the value 𝑠 = ±1/2, spin up and down respectively. The binding energy of the
electron is given by the Rydberg formula

𝐸
(0)
𝑛 = −𝑅∞

𝑛2 , 2.6

where 𝑅∞ = 𝑚𝑒𝑞
4/(8Y2

0ℎ
2) = 13.6 eV is the Rydberg constant. To take into account

the finite mass 𝑀 of the atomic core, one has to replace 𝑅∞ by 𝑅𝑀 = 𝑅∞/(1 + 𝑚𝑒

𝑀
).

Fine structure correction

The next level of description includes the interaction between the electron spin and
its motion; it is taken into account by using perturbation theory. The interaction
hamiltonian is

Ĥ𝐹𝑆 = 𝐴L⃗ · S⃗ 2.7

where L⃗ and S⃗ are the total orbital momentum and the total spin operators and the
constant 𝐴 represents the strength of the interaction. The total angular momentum
operator is defined as

J⃗ = L⃗ + S⃗. 2.8

Since the operators H, L⃗
2
, S⃗

2
, J⃗

2
and 𝐽𝑍 all commute with each other, the

set of eigenvalues {𝑛, 𝑙, 𝑠, 𝑗 , 𝑚 𝑗 } completely specifies a unique eigenstate of the
Hydrogenic atom

|︁|︁𝑛𝑙𝑠 𝑗𝑚 𝑗

⟩︁
. The possible values of 𝑗 and 𝑚 𝑗 are

𝑗 = 𝑙 ± 1
2 2.9a

𝑚 𝑗 = − 𝑗 ,− 𝑗 + 1, . . . , 0, . . . , 𝑗 − 1, 𝑗 . 2.9b
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2 QUANTUM COMPUTING WITH NEUTRAL ATOMS

In addition to the spin-orbit coupling, the fine structure correction takes into account
also relativistic corrections. In conclusion, the corrected binding energy within the
fine structure picture is

𝐸𝑛𝑙 𝑗 = 𝐸
(0)
𝑛

[︄
1 +

𝛼2
𝐹

𝑛

(︄
1

𝑗 + 1
2
− 3

4𝑛

)︄ ]︄
2.10

where 𝛼𝐹 ∼ 1/137 is the fine structure constant and 𝐸
(0)
𝑛 is given by Eq. (2.6).

Quantum defect theory

The assumption of the atomic core as a single point charge used previously holds as
long as the outer electron is far away from the nucleus. For large 𝑛∗, this is valid for
large 𝑙, but as soon as lower 𝑙 are considered, as one can see in Fig. 2.1, there is a
penetration of the outer electron into the electronic cloud of the core that has to
be taken into account. Indeed, the presence of the outer electron close to the core
leads to a deformation of the inner electronic cloud and the electron feels a deeper
Coulomb potential due to a smaller screening of the nucleus charge. These effects
lead to a reduction of the energy of the Rydberg state.

5B(; = 0)

5?(; = 1)

53 (; = 2)

5 5 (; = 3)

56(; = 4)

Figure 2.1 • Semiclassical orbits of the valence electron for an atomwith 𝑛 = 5with all allowed
values of orbital angular momentum. The black dot denotes the position of the atomic core.

A phenomenological approach to include this deviation is quantum defect
theory which replaces the principal quantum number 𝑛 by a non-integer effective
quantum number 𝑛∗ = 𝑛 − 𝛿𝑙, 𝑗 where 𝛿𝑙, 𝑗 is the quantum defect which depends on
the atomic species considered and on the angular momentum quantum numbers.
Experimentally, the quantum defect can be obtained by measuring the binding
energy of the electron according to

𝐸𝑛𝑙 = − 𝑅∞
1 + 𝑚𝑒

𝑀

1
(𝑛 − 𝛿𝑙, 𝑗 )2 . 2.11
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2.1 GENERAL PROPERTIES OF RYDBERG ATOMS

2.1.2 Dipole matrix elements

The extreme sensitivity of Rydberg atoms to electric field derives from the huge

matrix elements of the dipole operator. Given the dipole operator d⃗ = −𝑞r⃗, the
dipole matrix elements between two levels |𝑛𝑙𝑚𝑙⟩ and

|︁|︁𝑛′𝑙′𝑚′
𝑙

⟩︁
is⟨︁

𝑛′𝑙′𝑚′
𝑙

|︁|︁ d⃗ |𝑛𝑙𝑚𝑙⟩ = −𝑞
⟨︁
𝑛′𝑙′𝑚′

𝑙

|︁|︁ r⃗ |𝑛𝑙𝑚𝑙⟩ . 2.12

This dipole transition matrix is not zero only if the quantum numbers satisfy the
selection rules given by

Δ𝑙 = 𝑙 − 𝑙′ = ±1, Δ𝑚𝑙 = 𝑚𝑙 − 𝑚′
𝑙 = 0,±1. 2.13

These transitions correspond to the emission or absorption of 𝜋 polarized (Δ𝑚𝑙=0)
photon or of a 𝜎± polarized (Δ𝑚𝑙 = ±1) photon. For low 𝑙 Rydberg states, the
dipole matrix element scales as ∼ 𝑛2 [32]. Thus, since Rydberg atoms have a
high principal quantum number 𝑛, one can easily deduce that their dipole matrix
elements are huge numbers. As a direct consequence, Rydberg atoms strongly
couple to microwave radiation which can be used to manipulate transitions between
Rydberg levels in real experiments. The scaling is different going towards 𝑙 ≈ 𝑛

where the dependency on the angular part has to be taken into account.

2.1.3 Radiative lifetime

The radiative decay from a state 𝑖 to a state 𝑓 of a Rydberg atom can be described by
the Einstein coefficient 𝐴𝑖 𝑓 for spontaneous emission

𝐴𝑖 𝑓 =
𝜔3
𝑖 𝑓

3𝜋Y0ℏ𝑐3 | ⟨ 𝑓 | d⃗ |𝑖⟩ |2 2.14

where 𝜔𝑖 𝑓 is the transition frequency. The spontaneous decay rate 𝛾𝑖 of the level 𝑖 is
calculated by summing over all possible decay channels 𝐴𝑖 𝑓 , while the life-time is
𝑡𝑖 = 1/𝛾𝑖. In general, the life-time scales as ∼ 𝑛3. This is not valid for 𝑙 ≈ 𝑛, where
instead the scaling is as ∼ 𝑛5 [32].

At finite temperature, there is also a decay mechanism via the absorption
and emission of blackbody radiation photons due to stimulation. The enhanced
Einstein’s coefficient is

𝐵𝑖 𝑓 = �̄�(𝜔)𝐴𝑖 𝑓 2.15

where �̄�(𝜔) is the mean number of photon per mode in free space at thermodynamic
equilibrium. At finite temperature 𝑇 , it is given by

�̄�(𝜔) = 1
𝑒ℏ𝜔/𝑘𝐵𝑇 − 1

. 2.16
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2 QUANTUM COMPUTING WITH NEUTRAL ATOMS

To give some numbers, the contribution from the stimulated transitions slightly
reduces the lifetime of the rubidium atom in the 60s state from 244 `s at 0K to
99 `s at room temperature [33].

2.1.4 Summary

As we have seen, Rydberg atoms possess exaggerated properties which scale rapidly
with the principal quantum number 𝑛. Their size and dipole moment scale as 𝑛2,
while their radiative lifetime scale as 𝑛3 and the binding energy as 𝑛−2. These
scaling laws are summarized in Tab. 2.1. As an example, the typical numbers for the
rubidium atom in the 50p state are reported [34].

Property Scaling Rb(50p)

Binding energy 𝐸𝑛 𝑛−2 6.2 meV
Orbital radius 𝑟 𝑛2 0.17 `m
Dipole moment 𝑛2 3200 𝑒𝑎0
Radiative lifetime 𝑡𝑎 of |𝑎⟩ 𝑛3 106 `s

Table 2.1 • Scaling behavior of some properties of Rydberg atoms with the principal quantum
number 𝑛. These scaling laws refer to low 𝑙 Rydberg states. The typical numbers for the rubidium
atom in the 50p state are given [34].

2.2 Interacting Rydberg atoms

Let us consider two neutral atoms each having one electron excited into a Rydberg
state and separated by a distance 𝑅. As long as 𝑅 is much larger than the
size of the electronic wavefunction, one needs to consider only the electrostatic
interaction between two localized charge distributions utilizing the well-known
electric multipole expansion in spherical coordinates [35]. It turns out that their
interaction is mainly via the electric dipole-dipole operator

V̂dd ∼
1

4𝜋Y0 |R⃗ |3

(︄
d⃗1 · d⃗2 −

3(R⃗ · d⃗1) (R⃗ · d⃗2)
|R⃗ |2

)︄
2.17

where d⃗𝑖 is the electric dipole moment of atom 𝑖. This approximation is valid in the
near field of the oscillating dipole where the internuclear distance is considerably
smaller than the wavelength of the transition.

The effect of this operator on a pair of Rydberg atoms depends on how the pair

is prepared [33]. If the two atoms are excited in the same Rydberg level |𝑎⟩, V̂dd

has no effect at first order in perturbation theory as an atomic state has a vanishing
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2.2 INTERACTING RYDBERG ATOMS

average electric dipole moment [16]. In this case, the dipole interaction operator
acts as a second-order perturbation coupling to intermediate pair states |𝑐𝑑⟩ . If the
dipole-dipole coupled states |𝑐𝑑⟩ are not degenerate [36], the resulting interaction
energy, and thus the shift of the considered pair state, has the form:

𝐶𝑎𝑎 =
∑︂
|𝑐𝑑⟩

| ⟨𝑐𝑑 |𝑉 𝑑𝑑 |𝑎𝑎⟩ |2
2𝐸𝑎 − 𝐸𝑐 − 𝐸𝑑

=
𝐶6,𝑎𝑎

|R⃗ |6
2.18

corresponding to the Van der Waals interaction with 𝐶6,𝑎𝑎 the Van der Waals
coefficient. The latter scales dramatically with the principal quantum number as 𝑛11.
The Van der Waals interaction between two Rydberg atoms is huge: it can reach
tens of megahertz for atomic separations of several micrometers.

2.2.1 The Rydberg blockade mechanism

The strong interaction between atoms excited to Rydberg states modifies the
excitation dynamics. It can be exploited to suppress the simultaneous excitation of
two atoms and to generate entangled states. This is obtained by driving atoms in a
regime called Rydberg blockade [16].

Let us consider a resonant laser field that couples the ground state |𝑔⟩ and a
given Rydberg state |𝑟⟩ with Rabi frequency Ω. In the case of two atoms separated
by a distance R⃗, the system is fully described by the states |𝑔𝑔⟩ , |𝑔𝑟⟩ , |𝑟𝑔⟩ , and |𝑟𝑟⟩ .
The doubly excited state |𝑟𝑟⟩ is shifted in energy by the quantity 𝐶6/|R⃗ |6 due to the
van der Waals interaction. The Hamiltonian is of the form

Ĥ =
Ω

2 ( |𝑔⟩⟨𝑟 | ⊗ 1 + 1 ⊗ |𝑔⟩⟨𝑟 | +H.c.) − 𝐶6

|R⃗ |6
|𝑟𝑟⟩⟨𝑟𝑟 | . 2.19

Since the state |−⟩ = ( |𝑔𝑟⟩ − |𝑟𝑔⟩)/
√

2 does not take part in the dynamic, i.e. it is
an eigenstate of the Hamiltonian with an eigenvalue of zero, the dynamics result as
the one of a three-level system of states |𝑔𝑔⟩, |+⟩ = ( |𝑔𝑟⟩ + |𝑟𝑔⟩)/

√
2 and |𝑟𝑟⟩ . In

this new basis, the Hamiltonian becomes

Ĥ =

√
2Ω
2 ( |𝑔𝑔⟩⟨+| + |+⟩⟨𝑟𝑟 | +H.c.) − 𝐶6

|R⃗ |6
|𝑟𝑟⟩⟨𝑟𝑟 | . 2.20

Note the enhancement of the Rabi frequency by a factor of
√

2 in this basis. The
resulting dynamics depend on the strength of the interaction compared to the Rabi

frequency. In the regime of strong interactions denoted by 𝐶6/|R⃗ |6 ≫ ℏΩ, that is

𝑅𝑏 ≫ |R⃗ | where 𝑅𝑏 = (𝐶6/ℏΩ)1/6 is the blockade radius, the system behaves in the
following way: the excitation from |𝑔𝑔⟩ to the entangled state |+⟩ is unaffected by
the interaction. The excitation from |+⟩ to |𝑟𝑟⟩ is off-resonant because of the strong
interaction. Effectively, the |𝑟𝑟⟩ state is decoupled from the dynamics, as it can
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Figure 2.2 • For two-atoms separated by a distance 𝑅 < 𝑅𝑏, the collective ground state
|𝑔𝑔⟩ is coupled only to |+⟩ = ( |𝑔𝑟⟩ + |𝑟𝑔⟩)/

√
2 with an enhanced Rabi frequency

√
2Ω. The

excitation from |+⟩ to |𝑟𝑟⟩ is shifted out of resonance by the Van der Waals interaction 𝐶6/𝑅6.

never be reached. This decoupling of the doubly excited state is called the Rydberg
blockade. Thus, in this case, the description can be reduced to the one of a two-level
system consisting only of |𝑔𝑔⟩ and |+⟩ , governed by the Hamiltonian

Ĥ =

√
2Ω
2 ( |𝑔𝑔⟩⟨+| +H.c.) . 2.21

The dynamics of this Hamiltonian produces Rabi oscillations as the non-interacting
case. However, in this case the probability to find an atom in the Rydberg state 𝑝𝑟 is
given by

𝑝𝑟 (𝑡) =
1
2 sin2(

√
2Ω𝑡) 2.22

and thus the maximum is given by 𝑝𝑟 = 1/2, as the |+⟩ state has only one of the two
atoms in the Rydberg state.

The above considerations can be extended to an ensemble of 𝑁 atoms all
included within a blockade volume. For 𝑁 atoms that can be either in the |𝑔⟩ or in
the |𝑟⟩ state, the Hamiltonian can be written as

Ĥ =
Ω

2
∑︂
𝑖

(︁
|𝑔⟩ 𝑖 ⟨𝑟 |𝑖 +H.c.

)︁
+

∑︂
𝑖< 𝑗

𝑉𝑖 𝑗 |𝑟⟩ 𝑖 |𝑟⟩ 𝑗 ⟨𝑟 |𝑖 ⟨𝑟 | 𝑗 , 2.23

where 𝑉𝑖 𝑗 is the strength of the van der Waals interaction between atoms 𝑖

and 𝑗 . In the blockaded regime, where all the interaction strengths are much
larger than the Rabi frequency, i.e. 𝑉𝑖 𝑗 ≫ Ω, at most one Rydberg excitation is

possible. This leads to collective Rabi oscillations with an enhanced frequency
√
𝑁Ω
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2.3 CREATE ASSEMBLING OF NEUTRAL ATOMS ARRAY

between the collective ground state |𝐺⟩ = |𝑔1𝑔2 . . . 𝑔𝑁⟩ and the entangled state
|𝑅⟩ = 1√

𝑁

∑︁
𝑖 |𝑔1 . . . 𝑟𝑖 . . . 𝑔𝑁⟩ where the Rydberg excitation is shared among all the

atoms. Indeed, in the collective basis, the Hamiltonian is given by

Ĥ =

√
𝑁Ω

2 ( |𝐺⟩⟨𝑅 | +H.c.) . 2.24

The probability to find an atom in the Rydberg state is given by

𝑝𝑟 (𝑡) =
1
𝑁

sin2(
√
𝑁Ω𝑡). 2.25

In the case of a system whose size is larger than the blockade radius, several
Rydberg atoms can be excited. The many-body dynamics will be very complex since
the atom positions will be strongly correlated due to the blockade constraint.

2.3 Create assembling of neutral atoms array

2.3.1 Trapping in optical tweezers

In neutral atoms devices, the atoms are trapped in arrays by using optical tweezers.
Their working principle is the following: the oscillating electric field of a light
beam induces an oscillating electric dipole moment in the atom. The associated
energy shift is called the AC Stark shift. When the light frequency is detuned
from atomic resonance, little spontaneous emission occurs and the light creates
a conservative potential for the atoms. Atoms are attracted to light below the
resonance frequency (red detuned) and repelled by light above it (blue detuned).
The optical tweezer is a red detuned laser beam that holds atoms at its focus [31].
The shape of the atom trap is the shape of the intensity field since the AC Stark
shift is proportional to the light’s intensity. The optical tweezers are typically
approximated as harmonic traps since the tightly focused gaussian trapping beams
of light give rise to an approximately harmonic trapping potential at the focus [37].
Thus, in the following, we will consider the trapping potential to be harmonic and
we will work in 1-dimension.

Let us consider a single particle which can be in the electronic ground state
|𝑔⟩ or in the excited state |𝑒⟩; the trapping contribution to the Hamiltonian of the
system is

Ĥtrap =
�̂�2

2𝑚 ⊗ 1 + 1
2𝑚𝑥2

(︂
𝜔2
𝑔 |𝑔⟩⟨𝑔 | + 𝜔2

𝑒 |𝑒⟩⟨𝑒 |
)︂
. 2.26

We can define the relative polarizability of |𝑔⟩ and |𝑒⟩ in terms of a fictitious
trapping frequency 𝜔 as 𝛼𝑔 = 𝜔2

𝑔/𝜔2 and 𝛼𝑒 = 𝜔2
𝑒/𝜔2, respectively. If we fine-tune

the wavelength of the trapping light, we can ensure that the optical polarizability
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2 QUANTUM COMPUTING WITH NEUTRAL ATOMS

of the two states are identical. This is known as a magic trapping condition [38].
However, in general the polarizabilities of the two states are unequal. For instance,
the Rydberg state it is generically not even trapped by the optical tweezer. Using 𝜔,
the Hamiltonian can be rewritten as

Ĥtrap =

(︃
�̂�2

2𝑚 + 1
2𝑚𝜔2𝑥2

)︃
⊗1+ 1

2𝑚𝜔2𝑥2 (︁(𝛼𝑔 − 1) |𝑔⟩⟨𝑔 | + (𝛼𝑒 − 1) |𝑒⟩⟨𝑒 |
)︁
. 2.27

Now let us expand the continuous position operators 𝑥 and �̂� in terms of the ladder
operators as:

𝑥 =

√︃
ℏ

2𝑚𝜔

(︂
𝑎 + 𝑎†

)︂
2.28a

�̂� =

√︃
ℏ𝑚𝜔

2

(︂
𝑖𝑎† − 𝑖𝑎

)︂
2.28b

which satisfy the commutation relation [𝑎, 𝑎†] = 1 and also 𝑎 |𝑛⟩ =
√
𝑛 |𝑛 − 1⟩ and

𝑎† |𝑛⟩ =
√
𝑛 + 1 |𝑛 + 1⟩ . In this basis the Hamiltonian is given by:

Ĥtrap = ℏ𝜔

(︃
�̂� + 1

2

)︃
⊗ 1 + ℏ𝜔

4
(︁
(𝛼𝑔 − 1) |𝑔⟩⟨𝑔 | + (𝛼𝑒 − 1) |𝑒⟩⟨𝑒 |

)︁ (︁
𝑎 + 𝑎†

)︁ 2
2.29

where �̂� = 𝑎†𝑎 is the number operator.

2.3.2 Atom-light interaction

Let us consider a two-level atom with ground state |𝑔⟩ and excited state |𝑒⟩
interacting with laser light. The light can be described by an oscillating electric

field, e.g. a plane wave propagating in space E⃗ = E⃗0 cos(𝜔𝑡 − 𝑘𝑥 + 𝜙) , with angular
frequency 𝜔, wave number 𝑘 and phase 𝜙 [39]. The interaction between the atom

and the field perturbs the energy of the atomic levels by an amount Ĥint = −d⃗ · E⃗
where d⃗ = ⟨𝑟 | 𝑞r⃗ |𝑔⟩ is the associated electric dipole moment of the transition
between the levels |𝑔⟩ and |𝑒⟩ with 𝑞 the charge and r⃗ the position of the electron.
The Hamiltonian for the system reads

Ĥ = ℏ𝜔𝑔 |𝑔⟩⟨𝑔 | + ℏ𝜔𝑒 |𝑒⟩⟨𝑒 | + ℏΩ cos(𝜔𝑡 − 𝑘𝑥 + 𝜙) ( |𝑔⟩⟨𝑒 | + |𝑒⟩⟨𝑔 |) , 2.30

where we have introduced the Rabi frequency Ω = d⃗ · E⃗0/ℏ. For later convenience,
we transform the Hamiltonian by introducing the frequency difference 𝜔d = 𝜔𝑒 −𝜔𝑔

as

Ĥ = −ℏ𝜔d

2 |𝑔⟩⟨𝑔 | + ℏ𝜔d

2 |𝑒⟩⟨𝑒 | + ℏΩ cos(𝜔𝑡 − 𝑘𝑥 + 𝜙) ( |𝑔⟩⟨𝑒 | + |𝑒⟩⟨𝑔 |) 2.31
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where we ignore also the energy shift
ℏ𝜔𝑔+ℏ𝜔𝑒

2 12. Then, the Hamiltonian of the two
levels atom can be transformed by using the Euler formula, approximating cos \
as [40]

cos \ =
𝑒𝑖\ + 𝑒−𝑖\

2 =
𝑒𝑖\

2

(︂
1 + 𝑒−2𝑖\

)︂
≈ 𝑒𝑖\

2 , 2.32

where we neglect 𝑒−2𝑖\ because 𝑒−𝑖\ goes away from 𝑒𝑖\ by two times speed. In
general, fast oscillating terms may be neglected because on average

∫
𝑒𝑖𝑛\ d\ ≈ 0 for

large 𝑛. This is called rotating wave approximation. By recalling that the Hamiltonian
is hermitian, we can approximate

˜︁H = −ℏ𝜔d

2 |𝑔⟩⟨𝑔 | + ℏ𝜔d

2 |𝑒⟩⟨𝑒 | + ℏΩ

2

(︂
𝑒𝑖(𝜔𝑡−𝑘𝑥+𝜙) |𝑔⟩⟨𝑒 | + 𝑒−𝑖(𝜔𝑡−𝑘𝑥+𝜙) |𝑒⟩⟨𝑔 |

)︂
. 2.33

The Hamiltonian can be rewritten within the rotating frame of reference [41] defined
by the unitary transformation

Ĥrwf = �̂�˜︁H�̂�† + 𝑖ℏ
𝜕�̂�

𝜕𝑡
�̂�

†
, 2.34

where the unitary operator �̂� (𝑡) is given by

�̂� (𝑡) =
(︄
𝑒−

𝑖 (𝜔𝑡+𝜙)
2 0

0 𝑒
𝑖 (𝜔𝑡+𝜙)

2

)︄
. 2.35

The final Hamiltonian reads

Ĥrwf = −ℏΔ2 |𝑔⟩⟨𝑔 | + ℏΔ

2 |𝑒⟩⟨𝑒 | + ℏΩ

2

(︂
𝑒−𝑖𝑘𝑥 |𝑔⟩⟨𝑒 | + 𝑒𝑖𝑘𝑥 |𝑒⟩⟨𝑔 |

)︂
, 2.36

where we have defined the detuning of the laser relative to the transition frequency
as Δ ≡ 𝜔d − 𝜔 = 𝜔𝑒 − 𝜔𝑔 − 𝜔.

Now, let us expand the continuous position variable 𝑥 using Eq. (2.28a) and let
us introduce the Lamb-Dicke parameter:

[ = 𝑘

√︃
ℏ

2𝑚𝜔
=

2𝜋
_

√︃
ℏ

2𝑚𝜔
2.37

where _ is the wavelength of the driving laser. The final Hamiltonian in Eq. (2.36)
becomes

Ĥrwf = −ℏΔ2 |𝑔⟩⟨𝑔 | + ℏΔ

2 |𝑒⟩⟨𝑒 | + ℏΩ

2

(︂
𝑒−𝑖[(𝑎+𝑎

†) |𝑔⟩⟨𝑒 | + 𝑒𝑖[(𝑎+𝑎
†) |𝑒⟩⟨𝑔 |

)︂
. 2.38
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Gaussian incident beam

Now, let us consider a more realistic system by supposing that the incident light is
a Gaussian beam. We suppose that the light propagates in the 𝑥 direction and the
focused beam intensity varies in 𝑦 and 𝑧. Then the electric field of the beam [42]
can be analytically modeled in three dimensions using

E⃗(𝑥, 𝑦, 𝑧, 𝑡) = |E⃗0 |
𝑤0
𝑤(𝑥) exp

[︃
− (𝑦2 + 𝑧2)

𝑤2(𝑥)

]︃
× exp

[︃
𝑖𝑘

(𝑦2 + 𝑧2)
2𝑅(𝑥) − 𝑖Φ(𝑥)

]︃
𝑒𝑖(𝑘𝑥−𝜔𝑡) ,

2.39

where |E⃗0 | is the amplitude of the electric field at the center of the focal plan, 𝑤0 is
the beam waist and 𝑤(𝑥) is a function of axial distance from the plane of the beam
waist

𝑤(𝑥) = 𝑤0

⌜⃓⎷(︄
1 + 𝑥2

𝑥2
𝑅

)︄
, 2.40

where we have defined Rayleigh range as 𝑥𝑅 = 𝜋𝑤2
0/_. The term 𝑅(𝑥) is the

wave-front curvature radius and has the form

𝑅(𝑥) = 𝑥

[︄
1 +

𝑥2
𝑅

𝑥2

]︄
2.41

while Φ(𝑥) is the Gouy phase given by

Φ(𝑥) = tan−1
(︃
𝑥

𝑥𝑅

)︃
. 2.42

Given the electric field in Eq. (2.39), the system Hamiltonian illustrated in
Eq. (2.36) can be modified in the following way [20]:

→→→ First of all, let us add the contribution given by the Guoy phase, so let us
expand Eq. (2.42) in Taylor series as tan−1(𝑥/𝑥𝑅) ≈ 𝑥/𝑥𝑅 − 𝑥3/3𝑥3

𝑅
. The first

linear term decreases the momentum kick along the beam axis 𝑘 → 𝑘 − 1/𝑥𝑅,
but, typically, this relative change in the axial momentum can be ignored.
Instead, the cubic term is taken into account with exp

(︁
−𝑖𝑥3/3𝑥3

𝑅

)︁
.

→→→ Then, let us consider the contribution from the curvature of phase fronts. It

is given by exp
(︂
−𝑖𝑥(𝑦2+𝑧2)

𝑥𝑅𝑤
2
0

)︂
.

→→→ The focusing leads to a spatial dependence to the electric field strength. This

is taken into account by adding the term exp
(︂
− 𝑥2

2𝑥2
𝑅

− 𝑦2+𝑧2

𝑤2
0

)︂
.
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In conclusion, the Hamiltonian of atom-light interaction with the light modeled as a
Gaussian beam can be rewritten as

Ĥrwf = −ℏΔ2 |𝑔⟩⟨𝑔 | + ℏΔ

2 |𝑒⟩⟨𝑒 | + ℏΩ

2

(︂
𝑒G𝑔 |𝑔⟩⟨𝑒 | + 𝑒−G𝑔 |𝑒⟩⟨𝑔 |

)︂
2.43

where

G𝑔 = −𝑖𝑘𝑥 − 𝑖𝑥3

3𝑥3
𝑅

− 𝑖𝑥(𝑦2 + 𝑧2)
𝑥𝑅𝑤

2
0

− 𝑥2

2𝑥2
𝑅

− 𝑦2 + 𝑧2

𝑤2
0

. 2.44

This equation is the reference point for Subsec. 4.2.2 to write the atom-light
interaction part of the Hamiltonian of a system composed of two neutral atoms in
the quantum register.
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Chapter 3

An algorithm for Optimal
Control: dCRAB

“Or does it mean, as it seems to me, that we

must accept the idea that reality is only

interaction?”

—Carlo Rovelli

In the last years, one of the most promising challenges in physics is the capability
to control quantum systems. For this purpose, there is an increasing interest in
quantum optimal control (OC) theory that studies the development of optimization
techniques to improve the outcomes of quantum processes [18,43]. An optimization
method to compute the optimal driving fields, to let the system evolve from an
initial to a target state, is the dressed Chopped Random Basis (dCRAB) technique. Its
key feature is to expand the control function into a sum of truncated randomized
basis and the problem is recast to a multi-variable function minimization that can
be performed via direct-search methods. This algorithm can be used both in
an open-loop and in a closed-loop optimization and it is capable to work under
experimental constraints.

In Sec. 3.1, the key idea and structure of the dCRAB algorithm are discussed.
Then, in Sec. 3.2, we briefly describe the quantum optimal control suite which
incorporates the algorithm and is used for the gate optimization in Chapter 5.



3 AN ALGORITHM FOR OPTIMAL CONTROL: DCRAB

3.1 Algorithm description

3.1.1 Control problem

In order to explain the working principles of the dCRAB algorithm [18], one has
to define a control problem. The simplest problem one can think of is the state-to-
state transfer. Let us consider an initial state |𝜓0⟩ whose evolution is described
by |𝜓(𝑡)⟩ = 𝑈 (𝑡) |𝜓0⟩, where the unitary operator 𝑈 (𝑡) is the solution of the
Schrödinger equation with Hamiltonian:

Ĥ(𝑡) = Ĥ0 + 𝑓 (𝑡)Ĥ1 3.1

where Ĥ0 is the drift Hamiltonian, while Ĥ1 is the control Hamiltonian with 𝑓 (𝑡) a
time-dependent control pulse. Our aim is to transfer the state from the initial |𝜓0⟩ to
|Φ⟩ in a time 𝑇 . Let us set the control objective 𝐽 ( 𝑓 ) to be the overlap of the time
evolved state and the target state, namely the fidelity of the state transfer:

𝐽 ( 𝑓 ) = 𝐹 ( |𝜓(𝑇)⟩) = |⟨Φ|𝜓(𝑇)⟩ |2 3.2

The control problem is finding a control pulse 𝑓 (𝑡) in order to maximize 𝐽 ( 𝑓 ).

3.1.2 Key idea

The key idea of the dCRAB algorithm to tackle the control problem is an iterative
procedure consisting of 𝑁𝑠 super-iterations. For each super-iteration 𝑗 , the control
pulse 𝑓 𝑗 (𝑡) is expanded in a truncated randomized basis with 𝑁𝑐 basis functions

𝑓
𝑗

𝑖
(𝑡) and the coefficients 𝑐

𝑗

𝑖
(𝑖 = 0, . . . , 𝑁𝑐) are optimized. Then, the optimal

solution from the previous superiterations is used as a guess pulse for the next
iteration. Thus, the control pulse in the 𝑗-th super-iteration can be written as:

𝑓 𝑗 (𝑡) = 𝑐
𝑗

0 𝑓
𝑗−1(𝑡) +

𝑁𝑐∑︂
𝑖=1

𝑐
𝑗

𝑖
𝑓
𝑗

𝑖
(𝑡) 3.3

where 𝑓
𝑗

𝑖
(𝑡) are the new basis functions and 𝑓 𝑗−1 is the control pulse obtained

from the ( 𝑗 − 1)-th super-iteration. As one can note, the coefficient 𝑐 𝑗0 allows the
optimization to move along the direction of the old pulse, while the coefficients 𝑐

𝑗

𝑖

allow it to move along the new search directions 𝑓
𝑗

𝑖
(𝑡). This is a crucial step to

escape from local false traps.
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3.1 ALGORITHM DESCRIPTION

3.1.3 Constrained optimization

With the dCRAB algorithm one can also perform constrained optimizations. Band-
width constraints are naturally introduced in the truncated randomized basis
expansion choice, but also other types of constraints can be implemented:

→→→ a hard wall constraint can be imposed to limit the pulse height to a maximum
value 𝑓max. The update formula becomes:

𝑓 𝑗 (𝑡) =
{︄

�̃�
𝑗 (𝑡) if

|︁|︁|︁ �̃� 𝑗 (𝑡)|︁|︁|︁ < 𝑓max

sign( 𝑓 𝑗 (𝑡)) 𝑓max otherwise
3.4

where �̃�
𝑗 (𝑡) is as in Eq. (3.3). This hard wall constraint can potentially

increase the bandwidth of the control pulse.

→→→ alternatively, if one desires to maintain the bandwidth constraint while
introducing an additional hard wall constraint, a rescaling of the control pulse
at each iteration can be performed. In this way, the pulse maximum is limited
to 𝑓max but its shape is not affected. The update formula becomes:

𝑓 𝑗 (𝑡) =
⎧⎪⎨⎪⎩ �̃�

𝑗 (𝑡) if �̃�
𝑗

max(𝑡) < 𝑓max
𝑓max

�̃�
𝑗

max

�̃�
𝑗 (𝑡) otherwise

3.5

where �̃�
𝑗

max = max𝑡 | �̃�
𝑗 (𝑡) | and �̃�

𝑗 (𝑡) is as in Eq. (3.3).

Quantum Speed Limit

Whether or not a solution of the control problem can be found, depends on the
available resources as the finite pulse operation time, the finite pulse power as
well as the degrees of freedom of the control pulse,e.g., given by the bandwidth
or parametrization of the control pulse. In particular, the minimum pulse time is
limited by the pulse power by a condition commonly known as the Quantum Speed
Limit (QSL) closely related to time-energy uncertainty relations.

As an example of QSL, for closed quantum systems with unitary time evolution,
the minimum evolution time between two distinguishable states of a quantum
system is limited by the Mandelstam–Tamm [44] bound

𝑇QSL ≥ 𝜋ℏ

2Δ𝐸 3.6

where Δ𝐸 is the variance of energy of the initial state.
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3 AN ALGORITHM FOR OPTIMAL CONTROL: DCRAB

3.2 Quantum optimal control suite

The quantum optimal control suite (QuOCS) is an open source software for optimal
control written in Python. It incorporates the algorithm dCRAB for performing
both open- and closed-loop optimizations. In the following, we give a brief overview
of the main optimization options that one can set. These options will be chosen
carefully to perform the two-qubit CZ gate optimization in Chapter 5.

Main settings

The dCRAB algorithm can be selected and the minimization of the figure of
merit can be performed through the Nelder-Mead method. It is a direct search
method thus it does not require the computation of any gradient. The number of
superiterations 𝑁𝑠 and the number of iterations 𝑁 , for each superiteration, should
be fixed as well as the total duration of the pulses 𝑇 .

Pulses

Multiple pulses may be defined and for each of them the truncated basis with 𝑁𝑐

basis functions is selected. For instance, one can choose the Fourier basis given by

𝑓 (𝑡) =
𝑁𝑐∑︂
𝑖=1

[︃
𝐴𝑖 sin

(︃
2𝜋𝜔𝑖𝑡

𝑇

)︃
+ 𝐵𝑖 cos

(︃
2𝜋𝜔𝑖𝑡

𝑇

)︃ ]︃
3.7

For each superiteration, the set of frequencies {𝜔𝑖} of dimension 𝑁𝑐 are randomly
sampled following a uniform distribution between the upper and lower limit,
𝜔max = 2𝜋𝑛max/𝑇 and 𝜔min = 2𝜋𝑛min/𝑇 respectively. For each iteration, the 2𝑁𝑐

parameters given by {𝐴𝑖} and {𝐵𝑖} are optimized. By imposing hard wall constraints,
the pulse amplitudes can be limited to a maximum and minimum values, 𝑓max and
𝑓min. An initial guess for the pulses can be given in input as well as a maximum
amplitude variation for the first iteration.

Parameters

Multiple parameters may be also optimized and for each of them an initial guess
should be given in input. The value of each parameter can be bounded between a
lower and upper limit. Moreover, an initial amplitude variation can be provided.
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Part II

Simulation and optimization of
two-qubit CZ gate





Chapter 4

Setup andMethods

“Nature isn’t classical, dammit, and if you

want to make a simulation of Nature, you’d

better make it quantum mechanical, and by

golly it’s a wonderful problem, because it

doesn’t look so easy.”

— Richard Feynman

In this Chapter, a brief overview of the experimental apparatus at the basis of a
neutral atom quantum processor is given in Sec. 4.1. By reference to a general
processor, the main ideas of the QRydDemo apparatus are also presented. After that,
in Sec. 4.2 the total Hamiltonian of two-atoms in the quantum register is shown
and the different contributing terms are analyzed. Then, we describe a software
which performs a simulation of this system in order to reproduce the behavior of a
two-qubit CZ gate. This software has been developed by Sebastian Weber within
the QRydDemo project.

4.1 Neutral atom quantum processor

The neutral atom quantum processor is based on configurable arrays of single neutral
atoms. The array can be seen as a register, where each single atom plays the role of
a qubit. Two electronic levels of the neutral atom are chosen to be the two-qubit
states, which we refer to as |0⟩ and |1⟩ . Since the register in an atomic quantum
processing unit is not permanently built, a typical computation cycle consists of
three phases: register preparation, quantum processing, and register readout [12]. In
this section, after illustrating the atomic levels involved in the QRydDemo quantum
processor, we will briefly review the building blocks of these three stages for this
platform.



4 SETUP AND METHODS

4.1.1 Atomic levels

The main idea of the QRydDemo project is to use a Strontium-88 platform but
encode the qubit in a way that so far has not been demonstrated using this isotope.
On the valence structure, the Strontium atom has two valence electrons [45]. As
we can see in Fig. 4.1, there is a strong transition at 461 nm that can be used for
cooling the atoms and for fluorescence detection. There is also a transition at 689 nm
between the singlet and triplet sectors that can be used for sidebands cooling. The
idea is to encode the qubit in this metastable triplets state, in particular in the two
very long-lived ones 5𝑠5𝑝3𝑃0 for |0⟩ and 5𝑠5𝑝3𝑃2 for |1⟩ . The two states can be
connected using fast Raman transfer incorporating the intermediate state 5𝑠6𝑠3𝑆1.
Diode lasers can be used to make fast Raman gates on 100 ns time scale. The
Rydberg manifold can be reached by a single-photon transition using light at 323 nm.
A single-photon transition allows one to get rid of spontaneous scattering on an
intermediate state in comparison with two-photon excitation.
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Figure 4.1 • Atomic levels of Strontium-88 involved in the encoding of the qubit and on the
implementation of quantum gates. The transitions between the atomic levels with their relative
wavelengths are represented with the colored arrows.

4.1.2 Register loading

As a starting point, a dilute atomic vapor is formed inside an ultra-high vacuum
system operated at room temperature. Then, a cold ensemble of atoms is prepared
inside a 3D magneto-optical trap. To prepare a register made of neutral atoms, a
second trapping laser system isolates individual atoms within this ensemble: the
Strontium-88 atoms are trapped in optical tweezers in 2D arrays with a typical

36



4.1 NEUTRAL ATOM QUANTUM PROCESSOR

spacing of the order of ∼ 1 `m. Within a trapping volume of a few `m3, each
tweezer contains at most one single atom at a time. The size of the quantum register
is only limited by the amount of trapping laser power and by the performance of
the optical system generating the optical tweezers. In principle, this confers the
property of scalability to neutral atom platforms.

The tweezer loading is a stochastic process, namely on average there is a 50%
chance that after the loading of the magnetic optical trap a site is empty or filled by
exactly one atom. To detect which of the tweezers are filled, the atoms are imaged
by collecting their fluorescence onto a sensitive camera. After the occupied sites are
specified, the atoms are shifted in order to generate the desired sub-registers. At
the end of the shift operations, an assembled image is acquired to confirm the new
positions of the atoms in the sub-register.

Optical tweezers implementation

The optical tweezers are technically realized using Acusto Optic Deflectors (AODs)
which deflect an input beam into hundreds of beams. Indeed, in the operation of an
AOD the power driving the acoustic transducer is kept on, at a constant level, while
𝑛 different radio frequency (RF) tones {𝜔1, . . . , 𝜔𝑛} are applied in order to generate
𝑛 beams with output angles {\1, . . . , \𝑛}, where \𝑖 = \ (𝜔𝑖). This step allows us to
prepare one-dimensional arrays that can be shifted in 100 ns time scale by changing
the frequencies that one fits onto the AODs. The plan is to use up to 20 AODs,
stack them together and build a 2D array of individually controlled 1D lines each
of them with about ∼ 50 traps. The target is to reach on the order of 500 shiftable
qubits allowing for fast and individually (decoupled) control over each atom in this
2D array.

The crucial idea at the basis of the QRydDemo device is using trapping at
592 nm for the tweezer arrays. This generates a magic trapping condition (see Sec. 2.3)
for the qubit states, |0⟩ and |1⟩, and the Rydberg state |𝑟⟩ . This aspect is really
important working with neutral atoms since they typically present very strong dipole
forces which generate dephasing of the qubit state while they are trapped in the
arrays. So, one has to work on specific wavelengths where the traps look the same
for all the involved states as the triple magic point. This in principle would allow for
a target coherence time of the order of 10ms and that would be a 103 improvement
compared to what has been demonstrated so far [13]. Once these long coherence
times are reached, one can think about doing more complex operations on these
atoms arrays as manipulating the atom’s position within the single-atom coherence
time of the system. Up to now, the shuffling time using AOD systems typically takes
on the order of 100 `s and thus there is a trade-off of how often an array can be
reshuffled. With the target coherence time, more operations can be implemented
and this offers the possibility to explore new types of algorithms.
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4 SETUP AND METHODS

Tweezers calibration

As already pointed out, a proper realization of the optical tweezers has a direct
and crucial impact on the performance of the neutral atom processor. In this
paragraph, we will analyze how to calibrate the tweezers in order to address the trap
homogeneity.

The waveform that one initially sends into the AOD has the form:

𝑛∑︂
𝑖=1

𝐴𝑖𝑒
𝑖𝜙𝑖𝑒𝑖𝜔𝑖𝑡 4.1

with 𝐴𝑖 and 𝜙𝑖 being the real amplitude and phase, respectively, of the radio
frequency tone with frequency 𝜔𝑖. The finite power bandwidth along with other
imperfections of the system, given for instance by the RF amplifier and the AOD,
generate a non-linear response to the input signal [46]. For instance, at the lowest
order of non-linearity, new tones are generated as the difference and sum of the
input frequencies. At the next order, these new tones are mixed with the original
ones. Thus, these intermodulations can interfere destructively with the original
tones if the set of phases {𝜙𝑖} are not carefully selected. To address this issue,
the phases of the different RF tones are chosen to almost completely cancel out
the non-linearities. By starting with 𝑛 tones evenly spaced in frequency and with
random phases and equal amplitudes, each phase in the set {𝜙𝑖} is optimized by
minimizing the quantity∑︂

𝑖, 𝑗
𝑖≠ 𝑗

𝐴𝑖𝑒
𝑖(𝜙𝑖−𝜙 𝑗 )𝑒𝑖(𝜔𝑖−𝜔 𝑗)𝑡

4.2

After the phases calibration, the amplitudes should be adjusted in order to realize
homogeneous traps. Thus, the next step in the optimization consists of imaging the
focused trap array on a camera and find the intensity peaks. The amplitudes are
consequently modified in order to minimize the difference in intensity between all
the peaks. For doing that an iterative procedure, consisting of taking an image and
adjusting the amplitude, is exploited until all the intensity peaks are approximately
uniform.

In Fig. 4.2 an image of a tweezer array with 100 traps, implemented for the
QRydDemo experiment, is shown before and after we perform the calibration of the
phases and amplitudes. One can see that before the adjustment the intermodulations
strongly interfere with the intended frequency tones and significantly distort the
trap amplitudes. Instead, by optimizing the phases {𝜙𝑖} and amplitudes {𝐴𝑖} of the
RF tones one can reduce intermodulations and generate homogeneous traps.
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4.1 NEUTRAL ATOM QUANTUM PROCESSOR

Figure 4.2 • Tweezer array with 100 traps before (up) and after (down) we perform the
calibration of the phases and the amplitudes.

4.1.3 Quantum processing

Once the register is fully assembled, quantum processing can start. In the processing
stage a succession of gates, described by a quantum circuit, is applied to the qubits
to implement a quantum algorithm. The quantum gates are realized by shining
fine-tuned laser pulses onto a chosen subset of individual atoms in the register.
Since the spacing between atoms in the register is of the order of ∼ `m, specific
qubits can be addressed with high accuracy by strongly focusing the lasers. As
already discussed in Sec. 1.2, one- and two-qubit gates are all that is needed to
constitute a universal gate set.

In order to reach any point on the Bloch sphere and thus implementing any
single-qubit gate, arbitrary rotation around the 𝑥- and 𝑧-axis should be performed.
In the QRydDemo platform, rotation around the 𝑥-axis by an arbitrary angle will
be performed by driving the qubit transition with a control field. The latter is an
optical laser field coupling |0⟩ (5𝑠5𝑝3𝑃0) and |1⟩ (5𝑠5𝑝3𝑃2) via Raman transitions
through the intermediate atomic state 5𝑠6𝑠3𝑆1 [47]. The atom-light interaction is
characterized by the Rabi frequency Ω. The pulse duration defines the rotation
angle, namely driving the control field for a duration 𝜏 induces a rotation around the
𝑥-axis with an angle Ω𝜏. Instead, rotation around the 𝑧-axis by an arbitrary angle
will be performed via AC Stark shift.

To implement two-qubit gates strong interactions among qubits are required.
Since neutral atoms separated by more than a few angstroms interact very weakly,
a solution is to temporarily transfer atoms to Rydberg states, as already discussed
in Chapter 2. In this way, the Rydberg blockade mechanism can be exploited to
entangle two qubits. It is the basic mechanism to achieve a quantum logic: the
excitation of a first atom to a Rydberg state conditions the excitation of a second
one. Since there are never two simultaneous Rydberg excitations, the atoms are
never subjected to significant forces on each other even as they become entangled.
Moreover, since the Rydberg interaction is strong and long-range, it is possible
to entangle not just neighboring atoms but also those separated by several lattice
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sites. Furthermore, the distance between atoms in the optical tweezers is ideally
suited to be combined with the interaction between Rydberg atoms since the typical
interaction strength is of the order of MHz and allows one to drive gates on the
order of 100 ns time-scale. Technically, the entangling gates are realized by driving
the two targeted atoms with a control field generated by an arbitrary waveform
generator which can produce pulses ∼ 𝐴(𝑡) sin(𝜔RF(𝑡)𝑡 + 𝜙(𝑡)) . In practice, a radio
frequency is added on top of the optical frequency and this allows one to tune the
amplitude and the phase of the pulse. The laser-light interaction, in the rotating
wave frame, is characterized by the Rabi frequency Ω, the detuning Δ and their
relative phase 𝜙. By tuning the pulses duration 𝜏 and these parameters, two-qubit
gates can be realized.

4.1.4 Register readout

After the execution of quantum algorithms, the atomic register is read out by taking
a final fluorescence image. The image is acquired with a sensitive camera and the
acquisition is performed such that each atom in qubit state |0⟩ will appear as bright,
whereas atoms in qubit state |1⟩ remain dark.

As imposed by quantum mechanics, the possible outcomes are probabilistic.
Thus, the three computation cycles are repeated many times in order to reconstruct
the relevant statistical properties of the final quantum state produced by the
algorithm. The temporal sequence of one computation cycle is depicted in Fig. 4.3.

Register
loading

Sub-register
rearranging

Quantum
processing

0 TimeRegister
readout

Assembled
image

Initial
image

Figure 4.3 • Temporal sequence of one computation cycle for a neutral atom quantum
processor. The loading of the register is a stochastic process, i.e. there is a 50% probability that
after the loading a trap is empty or filled by one atom. The atoms are rearranged to realize the
desired sub-registers, on which the quantum processing is performed.
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4.2 HAMILTONIAN OF TWO NEUTRAL ATOMS IN THE REGISTER

4.2 Hamiltonian of two neutral atoms in the
register

Let us consider a system composed of two neutral atoms of the quantum register
discussed in Subsec. 4.1.2. The atoms are trapped in optical tweezers and each of
them can be in the qubit states |0⟩ and |1⟩ . In order to interact, the atoms can be
excited to the Rydberg state |𝑟⟩ . From now on, for simplicity, we will suppose ℏ = 1.
The total Hamiltonian of the system can be written in a rotating-wave frame as

Ĥtot = Ĥtrap ⊗ 1 + 1 ⊗ Ĥtrap

+Ω(Ĥ1𝑟 ⊗ R̂) +Ω∗(Ĥ1𝑟 ⊗ R̂)† +Ω(R̂ ⊗ Ĥ1𝑟) +Ω∗(R̂ ⊗ Ĥ1𝑟)†

+ Δ(Ĥ𝑟 ⊗ 1) + Δ(1 ⊗ Ĥ𝑟) + Ĥinter

4.3

where Ĥtrap describes the optical traps with the atoms polarization inside it. Ĥ1𝑟
define the coupling between the state |1⟩ and |𝑟⟩ driven by the Rabi frequency Ω
and R̂ is the restrictor operator which, as we will see, has a different form depending

if a perfect or imperfect blockade regime is considered. Then, Ĥ𝑟 describes the

detuning of the Rydberg state and Ĥinter identifies the Rydberg atoms interaction.

4.2.1 Trapping part

As shown in Subsec. 2.3.1, to reproduce the trapping by the optical tweezers
the latter can be modeled as one-dimensional harmonic oscillators with trapping
frequency 𝜔

Ĥtrap

2𝜋 = 𝜔

(︃
�̂� + 1

2

)︃
⊗ 1 + Ĥpolar 4.4

where �̂� is the number operator, whose dimension depends on the number of energy

levels 𝑛 taken into account, and Ĥpolar, which describes the relative polarizabilities
of the electronic states of the atom inside the trap, is given by

Ĥpolar =
𝜔

4 [ (𝛼0 − 1) |0⟩⟨0| + (𝛼1 − 1) |1⟩⟨1| + (𝛼𝑟 − 1) |𝑟⟩⟨𝑟 |] ⊗
(︁
𝑎 + 𝑎†

)︁ 2
4.5

where 𝛼0, 𝛼1 and 𝛼𝑟 are the relative polarizabilities of the states |0⟩, |1⟩ and
|𝑟⟩ respectively. For satisfying the magic trapping condition, one should impose
𝛼0 = 𝛼1 = 𝛼𝑟 .

In order to reproduce the optical tweezer potential in 3D, one can consider an
independent harmonic oscillator along the three axis 𝑥, 𝑦 and 𝑧 [37]. Thus, for
each trap, one can suppose a harmonic oscillator in the axial direction with 𝑛𝑎𝑥
oscillator levels and trapping frequency 𝜔𝑎𝑥, one in the transverse direction (along
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the interatomic axis) with 𝑛𝑡𝑎1 and 𝜔𝑡𝑎1 and one in another transverse direction with
𝑛𝑡𝑎2 and 𝜔𝑡𝑎2 . Consequently, the dimension of the Hilbert space of the system with
two atoms is (𝑛𝑠𝑛𝑎𝑥𝑛𝑡𝑎1𝑛𝑡𝑎2)2, where 𝑛𝑠 = 3 is the number of electronic states of
each atom.

4.2.2 Atom-light interaction part

Following the theoretical formulation of atom-light interaction developed in Sub-
sec. 2.3.2, the Hamiltonian which describes the coupling of the single atom on the
|1⟩ ↔ |𝑟⟩ transition is

Ĥ1𝑟
2𝜋 =

1
2 |𝑟⟩⟨1| ⊗ 𝑒G 4.6

where the exponential factor 𝑒𝐺 depends on whether we suppose the incident light
to be a plane wave or a Gaussian beam:

→→→ If the light is treated as a plane-wave and one supposes also to have a laser
misalignment 𝑥𝑎𝑥 along the axial direction, the exponential factor is

G𝑝 = −𝑖[1𝑒𝑎𝑥

(︂
𝑎𝑎𝑥 + 𝑎†𝑎𝑥 − 𝑥𝑎𝑥

)︂
/𝑥0𝑎𝑥

4.7

where 𝑥0𝑎𝑥
=

√︁
ℏ/(4𝜋𝑚𝜔𝑎𝑥) and [1𝑒𝑎𝑥 = 2𝜋𝑥0𝑎𝑥

/_1𝑟 is the Lamb-Dicke
parameter, with _1𝑟 the transition wavelength from |1⟩ to |𝑟⟩ and 𝑚 the atom
mass.

→→→ If the light is treated as a Gaussian-beam, and one supposes a laser misalign-
ment 𝑥𝑎𝑥 along the axial direction of beam propagation and 𝑥𝑡𝑎1 and 𝑥𝑡𝑎2 along
the transverse ones (along with the focused beam varies in intensity), the
exponential factor becomes

G𝑔 =G𝑝 − 𝑖

(︂
𝑥0𝑎𝑥

(𝑎𝑎𝑥 + 𝑎†𝑎𝑥) − 𝑥𝑎𝑥

)︂ 3 1
3𝑧3

01𝑒

− 𝑖

(︂
𝑥0𝑎𝑥

(𝑎𝑎𝑥 + 𝑎†𝑎𝑥) − 𝑥𝑎𝑥

)︂ (︂
𝑥0𝑡𝑎1

(𝑎𝑡𝑎1 + 𝑎
†
𝑡𝑎1) − 𝑥𝑡𝑎1

)︂ 2 1
𝑧01𝑒𝑤

2
0

− 𝑖

(︂
𝑥0𝑎𝑥

(𝑎𝑎𝑥 + 𝑎†𝑎𝑥) − 𝑥𝑎𝑥

)︂ (︂
𝑥0𝑡𝑎2

(𝑎𝑡𝑎2 + 𝑎
†
𝑡𝑎2) − 𝑥𝑡𝑎2

)︂ 2 1
𝑧01𝑒𝑤

2
0

−
(︂
𝑥0𝑎𝑥

(𝑎𝑎𝑥 + 𝑎†𝑎𝑥) − 𝑥𝑎𝑥

)︂ 2 1
2𝑧2

01𝑒

−
(︂
𝑥0𝑡𝑎1

(𝑎𝑡𝑎1 + 𝑎
†
𝑡𝑎1) − 𝑥𝑡𝑎1

)︂ 2 1
𝑤2

0

−
(︂
𝑥0𝑡𝑎2

(𝑎𝑡𝑎2 + 𝑎
†
𝑡𝑎2) − 𝑥𝑡𝑎2

)︂ 2 1
𝑤2

0

4.8
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where 𝑧01𝑒 = 𝜋𝑤2
0/_1𝑟 is the Rayleigh range and 𝑤0 is the beam waist.

Now, let us analyze the restrictor operator R̂:

→→→ In the real world, the Rydberg blockade condition 𝐶6/𝑅6 ≫ ℏΩ (see Sub-
sec. 2.2.1) is only partially fullfilled and a regime of imperfect Rydberg blockade
holds. To take into account finite blockade interactions, i.e. a dynamics
toward the state |𝑟𝑟⟩ , the restrictor operator is just the identity.

→→→ If a perfect Rydberg blockade regime is assumed, the |𝑟𝑟⟩ is decoupled from the
dynamics. The operator is:

R̂ = ( |0⟩⟨0| + |1⟩⟨1| + |𝑑⟩⟨𝑑 |) ⊗ 1 4.9

where, as we will see later, |𝑑⟩ is a generic state outside the computational
basis which takes into account the finite lifetime of the Rydberg state.

Finally, the detuning Hamiltonian is simply given by:

Ĥ𝑟

2𝜋 = |𝑟⟩⟨𝑟 | 4.10

4.2.3 Rydberg atoms interaction part

Two neutral atoms excited to the Rydberg state |𝑟⟩ interact mainly via dipole-dipole
interaction, as discussed in Sec. 2.2. If the two atoms are excited to the same
Rydberg level, the resulting interaction energy has the form

Ĥinter

2𝜋 = −𝐶6
𝑅6 |𝑟𝑟⟩⟨𝑟𝑟 | 4.11

where 𝐶6 is the Van der Waals coefficient and 𝑅 is the distance between the two
atoms.

4.3 Numerical simulation

The total Hamiltonian in Eq. (4.3) is numerically implemented in Python by
Sebastian Weber within the QRydDemo project to reproduce the behavior of a
two-qubit CZ gate (see Sec. 1.2) which exploits the Rydberg blockade effect. His
program takes in input the time evolution array, the Rabi frequency array Ω, the
detuning Δ and the rotation of the driving field b such that Ω → 𝑒𝑖bΩ. Realistic
parameters related to the QRydDemo platform are fixed and realistic effects are
reproduced as the decay out of the Rydberg state and a finite temperature for the
trapping. The time evolution is performed by exploiting the library QuTiP [48] and
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the Bell state fidelity, average gate fidelity, and diamond error rate are returned as
output to quantify the quality of the gate. In Chapter 5, we will use this software to
investigate which kind of protocol is more suitable for realizing a high-fidelity gate
for the QRydDemo platform.

4.3.1 Realistic effects

Imperfect Rydberg blockade

In the program, finite blockade interactions can be accounted for. Indeed, a perfect
blockade regime is not always a good assumption to work with, since it is possible
that the Rydberg blockade condition is not totally satisfied.

Finite lifetime of |𝒓⟩

In the program, the decay out of the Rydberg state |𝑟⟩ toward a generic state |𝑑⟩
can be taken into account. For simplicity, the state |𝑑⟩ is assumed to be not coupled
to the system, i.e. the probability is lost since |𝑑⟩ is not in the computational basis.
The collapse operator is defined as:

Ĉ =
√
𝛾𝑒

(︂
|𝑑⟩⟨𝑟 | ⊗ 1 + 1 ⊗ |𝑑⟩⟨𝑟 |

)︂
4.12

where 𝛾𝑒 = 1/𝑇𝑟 is the decay rate with 𝑡𝑟 the lifetime of the state |𝑟⟩ .

Finite temperature

The trapping at a finite temperature is simulated with the METTS method [29]
illustrated in Sec. 1.6. In particular, for each of the axial and transverse trapping
directions, we implement the following thermalizer

𝑒−𝛽Ĥ/2 = exp
(︃
−𝜔ℎ2𝛽

(︃
𝑎†𝑎 + 1

2

)︃ )︃
4.13

where Ĥ = 2𝜋𝜔(𝑎†𝑎 + 1
2 ) is the harmonic oscillator Hamiltonian, 𝛽 = 1/(𝑘𝐵𝑇)

with the trapping temperature 𝑇 and 𝑘𝐵 = 1.38 × 10−23 J · K−1, i.e., the Boltzmann
constant. The number of considered quantum trajectories is 𝑛𝑞𝑡 while the number of
METTS that are initially discarded is 𝑛𝑀 .
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Parameter Value Units

Number of oscillator levels {𝑛𝑎𝑥 , 𝑛𝑡𝑎1 , 𝑛𝑡𝑎2} {5, 5, 1} −
Trap frequency {𝜔𝑎𝑥 , 𝜔𝑡𝑟 , 𝜔𝑡𝑠} {0.05, 0.3, 0.3} MHz
Trap temperature {𝑇𝑎𝑥 , 𝑇𝑡𝑟 , 𝑇𝑡𝑠} {1, 9, 9} `K
Relative polarizability {𝛼0, 𝛼1, 𝛼𝑟} of |0⟩ , |1⟩ , |𝑟⟩ {1, 1, 1} −
Atom mass 𝑚 1.4597 × 10−25 kg
Lifetime 𝑡𝑟of |𝑟⟩ 50 `s
Wavelength _1𝑟 of the transition from |1⟩ to |𝑟⟩ 0.323 `m
Waist 𝑤0 of the driving lasers 0.8 `m
𝐶6 coefficient −164110 MHz · `m6

Interatomic distance 𝑅 3 `m
Number of considered quantum trajectories 𝑛𝑞𝑡 10 −
Generated METTS initially discarded 𝑛𝑀 10 −

Table 4.1 • Fixed realistic parameters for two-qubit CZ gate simulation.

Parameters

The realistic parameters in the numerical simulation are fixed as in Tab. 4.1, unless
stated differently.

4.3.2 Time evolution

The system’s dynamical evolution is computed exploiting the mesolve function
provided by QuTiP. It is a time-evolution solver for the Lindblad Master equation
capable of handling time-dependent Hamiltonians and collapse terms [48]. It takes
in input:

→→→ the system Hamiltonian Ĥtot as in Eq. (4.3);

→→→ the state at the beginning of the evolution 𝜌0;

→→→ the total time of the evolution and its discretization;

→→→ if the decay is included, the collapse operator Ĉ as in Eq. (4.12).

The result is an array with the system evolution vector at each time step. It is
projected to the states |0⟩ and |1⟩ to obtain the final state.

We pointed out that the computation can become really intensive if a great
number of oscillator levels is considered, since the Hilbert space grows accordingly
as we have seen. A way to partially overcome the problem is to neglect jumps and use
an effective Hamiltonian only. The collapse operator in this case is a term added to
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the total Hamiltonian Ĥ as:

Ĥjn = Ĥtot −
𝑖Ĉ

†
Ĉ

2 4.14

4.3.3 Extract fidelities

After the dynamical time evolution of the Hamiltonian, the quality of the simulated
two-qubit CZ gate is quantified. In the numerical simulation, the following measures
are given in output: the average gate fidelity, the diamond error rate and the
Bell-state fidelity. The first two measures are briefly discussed in Sec. 1.5. The
Bell-state fidelity quantifies the fidelity of the CZ gate by calculating the fidelity
of the Bell state |Φ+⟩ = ( |00⟩ + |11⟩)/

√
2 which can be prepared by a perfect gate

operation as discussed in Subsec. 1.2.1. Except for the Bell-state fidelity, the other
two measures require quantum tomography in order to be computed.
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Chapter 5

CZ Gate Protocols

“The science of today is the technology of

tomorrow.”

— Edward Teller

In this Chapter, the numerical simulation described in detail in Sec. 4.3 is applied
to study the behavior of a two-qubit CZ gate. The aim is to investigate which kind
of protocol is more suitable for realizing a high-fidelity gate for the QRydDemo
platform. In general, it turns out that the gate is very flexible, in the sense that there
are several ways to implement it with numerical high-fidelity.

In Sec. 5.1, we reproduce the protocol of Ref. [17] which consists of two laser
pulses of the same length 𝜏 with constant Rabi frequency Ω and detuning Δ, but
with a phase jump b in between. The maximum average gate fidelity obtained is
𝐹ave = 99.90%. Given the drop in performance when a realistic raise time of 40 ns
is introduced on Ω, Δ and b, we want to investigate if a time-dependence on the
detuning could lead to fidelity improvements both in the case with or without a finite
bandwidth. For this purpose, the optimal control algorithm dCRAB is exploited
to find the optimal pulse Δ(𝑡) and parameter b which maximize the average gate
fidelity. The symmetry of the protocol is mantained, since the detuning of the
second pulse is supposed to be the time-reversed of the first one. The minimum
pulse duration 𝜏, which still results in a high gate fidelity, is found. For this analysis,
we use the open-source version of dCRAB, see Sec. 3.2. We find that the optimal
control solution allows to reduce the gate time and it increases also the maximum
gate fidelity of ∼ 0.01%.

Then, in Sec. 5.2 a protocol with a detuning with a triangular shape, and without
phase changes between the two pulses, is implemented. Its performance is really
good even under experimental limitations. Also in this case, we use optimal control
to further optimize the gate, but we did not obtain improvements both in time nor
in fidelity.



5 CZ GATE PROTOCOLS

Finally, in Sec. 5.3 we show that a protocol with a time-dependent phase b (𝑡)
and a constant detuning Δ can be transferred into a protocol without a phase change
and a time-dependent detuning Δ(𝑡) by a unitary transformation.

5.1 Constant pulses with phase jump

In this section, we describe the protocol of Ref. [17] and then we recalculate the
optimal parameters which realize a gate with high fidelity. After that, we use the
optimal control algorithm dCRAB to reduce the duration of the gate and to further
increase its performance.

5.1.1 Description

Let us consider the total Hamiltonian, Eq. (4.3), of two neutral atoms in the
quantum register. The protocol developed in Ref. [17] consists of two consecutive
laser pulses of the same length 𝜏, with detuning Δ and with Rabi frequency Ω. The
laser phase of the second pulse is shifted by b, namely Ω → 𝑒𝑖bΩ. In the most
simple scenario, we can describe the physics of the system just considering the
driving field and the Rydberg blockade mechanism, thus neglecting realistic effects
as decay. Then, the system dynamics can be described as:

→→→ the state |00⟩ does not evolve since it is uncoupled by the laser field;

→→→ if one of the two atoms is in the ground state |0⟩, only the system in the
excited state |1⟩ evolves. The dynamics can be described with a two-level
system with states |1⟩ and |𝑟⟩;

→→→ under a perfect Rydberg blockade assumption, if both atoms are initially in |1⟩ ,
the dynamics can be described with a two-level system with states |11⟩ and
1√
2
( |1𝑟⟩ + |𝑟1⟩) . If an imperfect blockade regime holds, a three-level system

should be considered where the third state is |𝑟𝑟⟩ as discussed in Subsec. 2.2.1
and Subsec. 4.2.2.

The two-qubit CZ gate (up to a global rotation 𝜙 of the state |1⟩) is realized
by setting Ω, b and Δ in such a way that the computational basis states evolve as
follows:

|00⟩ → |00⟩
|01⟩ → |01⟩ 𝑒𝑖𝜙

|10⟩ → |10⟩ 𝑒𝑖𝜙

|11⟩ → |11⟩ 𝑒𝑖(2𝜙−𝜋) .

5.1
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5.1 CONSTANT PULSES WITH PHASE JUMP

The evolution dynamics on the Bloch sphere of states |01⟩ and |11⟩ is shown
in Fig. 5.1. Note that to produce these plots with the numerical simulation,
we switch off the traps to have a Hilbert space of dimension 9, namely we set
{𝑛𝑎𝑥 , 𝑛𝑡𝑎1 , 𝑛𝑡𝑎2} = {1, 1, 1}. If all numbers of oscillator levels are set to one, the basis
states is given by the tensor product of the basis states of each atom which are |0⟩,
|1⟩ and |𝑟⟩ . We consider separately the evolution with |01⟩ and |11⟩ as initial states.
As discussed, for both of the initial states, the dynamics can be simplified as the one
of a two-level system. Thus, to make the plots on the Bloch sphere, we select the
states {|01⟩ , |0𝑟⟩} if the system is initially in |01⟩ and {|11⟩ , 1√

2
( |1𝑟⟩ + |𝑟1⟩)} if it

is in |11⟩ .
As one can see in Fig. 5.1, the first laser pulse, represented in blue, drives

an incomplete oscillation on |01⟩, while the state |11⟩ completes a full cycle of a
detuned Rabi oscillation. The second laser pulse, in red, completes the oscillation
for a |01⟩ system returning to |01⟩ thanks to the rotation by an angle b of its driving
field. It also drives a second complete oscillation, around another axis, on the |11⟩
configuration. These plots are valid both in a perfect and imperfect blockade regime,
with the exception that in an imperfect blockade case there is also a dynamic toward
the state |𝑟𝑟⟩ .

|01〉

|0r〉

|11〉

1√
2
(|1r〉 + |r1〉)

Figure 5.1 • Illustration of the dynamic of |01⟩ and |11⟩ states on the Bloch sphere for the
protocol with two constant pulses with a phase jump. The initial rotation axis is fixed by the
constant detuning; the phase jump has the effect of changing the rotation axis between the two
pulses. For a fixed Rabi frequencyΩ, optimal detuning Δ and pulse length 𝜏, the first laser pulse
(in blue) drives an incomplete Rabi oscillation on the |01⟩ system (see left plot), while the |11⟩
system (see right plot) undergoes a complete detuned Rabi cycle. The phase b of the second
pulse (in red) is chosen such that for the |01⟩ system the second pulse of length 𝜏 completes
the oscillation and returns to the state |01⟩. Instead, for the |11⟩ state the second pulse drives a
second complete cycle around another axis. See Ref. [17].
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5 CZ GATE PROTOCOLS

5.1.2 Find optimal pulses

The realistic parameters for the numerical simulation of the behavior of the two-
qubit CZ gate are fixed as given in Tab. 4.1 and the selected Rabi frequency is
Ω = 10MHz. The effects taken into account are: an imperfect Rydberg blockade,
decay out of the Rydberg state |𝑟⟩ , a Gaussian light beam as well as a finite trapping
temperature. The laser misalignment is assumed to be zero. According to the
protocol, Ω and Δ are constant with a phase shift b between the two pulses. For the
beginning, we also neglect that the bandwidth of changing experimental parameters
is finite.

The duration of the pulse 𝜏, the detuning Δ, and the phase b are determined
to minimize the average gate infidelity. To do that, we first fix the pulse duration
and for each value of 𝜏 we find the optimal Δ and b using the optimize.minimize
function inside the SciPy library [49]. It uses the direct search method of Nelder-
Mead for finding the minimum of the objective function [50]. In the end, we select
as optimal 𝜏 the one with the minimum average gate infidelity with its corresponding
optimal Δ and b. The best solution found is illustrated in Tab. 5.1. On the left, the
optimal values of the parameters are given, while on the right the corresponding
average gate fidelity, Bell-state fidelity and diamond error rate are reported. As one
can see, the optimal values for the pulses are different with respect to Ref. [17]. This
is because we are taking into account finite blockade interactions and the realistic
parameters fixed for the simulation are specific of the QRydDemo platform. The
fidelities values found for this protocol are high: 𝐹ave = 99.90% and 𝐹b = 99.88%.

Now, let us briefly analyze the contribution of the different effects on the gate
fidelity. If we switch off the effect of the traps, namely we set {𝑛𝑎𝑥 , 𝑛𝑡𝑎1 , 𝑛𝑡𝑎2} =

{1, 1, 1}, both the average and the Bell-state fidelity increase by 0.01%. Thus, the
trap contribution to the infidelity is really small. The effects of the Gaussian beam
are even lower. Instead, if we switch off the decay out of the Rydberg state, the
average fidelity increases by 0.08%, while the Bell-state fidelity by 0.11%. Thus, the
decay effect is the most relevant one and represents a physical limit for the target
maximum gate fidelity one can reach with this protocol.

Parameter Value Unit Measurement (%)

Pulse duration 𝜏 0.0688 `s Average gate fidelity 99.90
Detuning Δ 3.66 MHz Bell-state fidelity 99.88
Phase jump b 3.87 rad Diamond error rate 0.434

Table 5.1 • Optimal parameters and fidelity results for the protocol with perfectly constant
pulses with a phase jump in the middle. The Rabi frequency is fixed toΩ = 10MHz.
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5.1 CONSTANT PULSES WITH PHASE JUMP

Realistic bandwidth

The assumption of perfectly constant pulses does not hold in the real experiment
where one has to consider a finite bandwidth, given for istance by the time to turn
on and turn off the laser. In the following, an analysis similar to the previous one is
performed. However, the pulses are not anymore assumed perfectly constant but
a finite raise time is taken into account. The variables Ω, Δ and b are modeled as
hyperbolic functions

Ω(𝑡) = Ωmax

2 tanh
(︄
𝑡 − 2

3 𝑡rise

𝑎

)︄
− Ωmax

2 tanh
(︄
𝑡 − 2𝜏 + 2

3 𝑡rise

𝑎

)︄
5.2a

Δ(𝑡) = Δmax

2 tanh
(︄
𝑡 − 2

3 𝑡rise

𝑎

)︄
− Δmax

2 tanh
(︄
𝑡 − 2𝜏 + 2

3 𝑡rise

𝑎

)︄
5.2b

b (𝑡) = bmax

2 tanh
(︂ 𝑥 − 𝜏

𝑏

)︂
+ bmax

2 . 5.2c

For this analysis, we set 𝑎 = 0.005, 𝑏 = 0.008 and the raise time equal to
𝑡raise = 40 ns. As before, we set Ωmax = 10MHz and for a fixed 𝜏, the algorithm
finds the best Δmax and bmax in order to minimize the average gate infidelity. Then,
the pulse duration 𝜏 with the minimum infidelity is chosen as optimal value with
its corresponding Δmax and bmax. The best solution is reported in Tab. 5.2 and the
corresponding pulse shapes are shown in Fig. 5.2. In this case, the best fidelity
𝐹ave = 96.65% is dramatically lower with respect to the perfect pulses scenario and
the price to pay is also a greater pulse duration 𝜏 = 120.2 ns. Indeed, more time
is needed because with a finite bandwidth on the Rabi frequency Ω less energy is
given to the system. However, this is not the main source of infidelity since the
time spent in the Rydberg state is not drastically increased. Indeed, if we switch
off the decay, the average gate fidelity increase by 0.10% and the Bell-state fidelity
by 0.12%. These results are consistent with before. Also the bandwidth in the
detuning does not play a major role, since even by removing it the result in fidelity
is the same. This leads us to think that the decreasing fidelity is especially a fault of
the non-instantaneous phase jump. The conclusion is that this protocol does not
work properly anymore when a finite and realistic raise time is considered.

Parameter Value Unit Measurement (%)

Pulse duration 𝜏 0.1202 `s Average gate fidelity 98.65
Detuning Δmax 2.35 MHz Bell-state fidelity 98.31
Phase jump bmax 2.31 rad Diamond error rate 1.422

Table 5.2 • Optimal parameters and fidelity results for the protocol with constant pulses with a
phase jump in the middle, under the assumption of pulses with a finite bandwidth of 𝑡raise = 40 ns.
The pulse shape is as in Eq. (5.2). We set 𝑎 = 0.005, 𝑏 = 0.008 andΩmax = 10MHz.
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Figure 5.2 • Optimal pulses illustration for the protocol with constant pulses with a phase
jump, under the assumption of a finite bandwidth of 𝑡raise = 40 ns. The pulse shape is as in
Eq. (5.2) where we fix 𝑎 = 0.005 and 𝑏 = 0.008.

5.1.3 Optimal control optimization

Now, let us introduce a time-dependent detuning Δ(𝑡) to investigate if this can
improve the performance of the gate. We assume that the two pulses of duration
𝜏 are still symmetric, namely the detuning shape of the second pulse is the time-
reversed of the first one. The realistic parameters for the simulation are again fixed
as in Tab. 4.1. Also in this case the effects taken into account are: an imperfect
Rydberg blockade, decay out of the state |𝑟⟩ , a Gaussian light beam as well as a finite
trapping temperature.

Reduce pulse duration

Let us set the Rabi frequency to Ω = 10MHz. We search for the optimal pulse
Δ(𝑡) and constant phase jump b in order to find the minimum pulse duration 𝜏

which still results in a high gate fidelity, in accordance with the quantum speed limit.
The Δ(𝑡) is optimized through the optimal control algorithm dCRAB, described
in Chapter 3. In the following, we suppose that the pulse can be expanded as a
truncated Fourier basis with 𝑁𝑐 = 4 basis functions. The random frequencies follow
a uniform distribution between 𝜔min = 0 and 𝜔max = 3𝜋/𝜏 and we assume that the
amplitude of the pulse is constrained in the range [−12 : 12]MHz. These limits are
chosen in such a way that they fit with the assumed raise time. The initial pulse
guess is constant.

To do the optimization, we first fix the pulse duration and for each value
of 𝜏 we find the optimal pulse Δ(𝑡) and parameter b using the open-source of
dCRAB introduced in Sec. 3.2. As before, once the detuning of the first pulse is
optimized, the one of the second pulse is just the time-reversed of the first one. The
figure of merit to minimize is the average gate infidelity 1 − 𝐹ave. The number of
superiterations is 𝑁𝑠 = 3, while the number of iteration for each of them is 𝑁 = 500.
Since different local minima exist, different optimizations with the same 𝜏 and
initial guesses can result in slightly distinct fidelities given the randomity nature of
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the dCRAB algorithm. Thus, to have statistically meaningful results and to avoid
fluctuations on the plots, for each 𝜏 the procedure is repeated 10 times. The average
of the minimum infidelity achievable is illustrated in Fig. 5.3 for different pulse
durations.
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Figure 5.3 • Average gate infidelity as a function of the pulse duration 𝜏 for Ω = 10MHz.
These plots are obtained by performing an optimization through the dCRAB algorithm: for
each 𝜏, the optimal detuning Δ(𝑡) and the phase parameter b are found in order to minimize
the average gate infidelity. In (A), the Rabi frequency is assumed to be perfectly constant and
the phase jump instantaneous, while in (B) a finite bandwidth onΩ and b is taken into account.
Each point is an average of 10 repetitions.

In particular, Fig. 5.3A refers to the case of perfectly constant Ω and instanta-
neous phase jump b. In this case, one can note that by using optimal control we
are able to reduce the pulse duration from ∼ 69 ns up to ∼ 61 ns. The reduction by
approximately 10% in time leads to an increasing of 0.01% of the maximum gate
fidelity obtained previously: the best solution is for 𝜏 = 60.8 ns with an average
gate fidelity 𝐹ave = 99.91% and a Bell state fidelity 𝐹b = 99.89%. The gain can be
interpreted in the following way: a shorter gate time reduces the time spent in the
Rydberg state, which is the main source of infidelity. As imposed by the QSL, for
the applied parameters it is not possible to reduce the time further since we have
a limited pulse power of Ω = 10MHz. As an example, in Fig. 5.4 we illustrate an
optimal detuning pulse found for an optimization with 𝜏 = 60.8 ns. As imposed, the
detuning is symmetric: the second pulse is the time-reversed of the first one. The
related optimized phase jump is b ∼ 5.8 rad. The dynamic on the Bloch sphere for
this pulse is illustrated in Fig. 5.5. One can note that with respect to Fig. 5.1, after
the first pulse, both |01⟩ and |11⟩ do not complete an oscillation. With the second
pulse the two states return to themselves with a different acquired phase.

In Fig. 5.3B, we show the same plot for the case in which a realistic bandwidth
is considered for the Rabi frequency and for the phase jump. As in the previous
section, Ω and b are modeled as hyperbolic functions given by Eq. (5.2a) and
Eq. (5.2c), where we set 𝑡raise = 40 ns, 𝑎 = 0.005 and 𝑏 = 0.008. We can see that
with optimal control we are able to reduce the pulse time from ∼ 120 ns to ∼ 96 ns.
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5 CZ GATE PROTOCOLS

Not only the gate time can be drastically reduced, but also the maximum gate fidelity
achievable now is higher. The best results are 𝐹ave = 99.90% and 𝐹b = 99.87% for
𝜏 = 96.27 ns in comparison to 𝐹ave = 98.65% and 𝐹b = 98.31% for 𝜏 = 120.2 ns
(see Tab. 5.2).
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Figure 5.4 • Example of optimal Δ(𝑡) for 𝜏 = 60.8 ns found with dCRAB. The total detuning
is assumed to be symmetric and once the first pulse is optimized, the second one is the time-
reversed. The first pulse is expanded as a truncated Fourier basis with 𝑁𝑐 = 4 basis functions.
The random frequencies follow a uniform distribution between 𝑛min = 0 and 𝑛max = 1.5 and the
amplitude is constrained between [−12; 12]MHz. The initial pulse guess is constant.
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Figure 5.5 • Illustration of the dynamic of |01⟩ (left) and |11⟩ (right) states on the Bloch
sphere for the protocol with time-dependent detuning as in Fig. 5.4, a phase jump b ∼ 5.8 rad
andΩ = 10MHz. The first laser pulse (in blue) drives an incomplete Rabi for both the |01⟩ and
|11⟩ states, while the second one (in red) completes the oscillation. The states |01⟩ and |11⟩
returns to themselves with a different acquired phase. Note that, as imposed, the two pulses are
symmetric.
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5.1 CONSTANT PULSES WITH PHASE JUMP

Analysis for different Rabi frequencies𝛀

As stated previously, shorter gate times reduce the time spent in the Rydberg state.
Thus, the contribution of the decay effects, which is the main source of infidelity,
can decrease. However, as imposed by the QSL, the minimum gate duration is
limited by available resources of the process, as the finite pulse power given by
Ω = 10MHz. In this sense, it is interesting to ask how much the gate fidelity
improves if more resources are available.

To investigate this curiosity, we fix the Rabi frequency Ω in the range [10 :
20]MHz. For each Ω, the minimum pulse duration 𝜏 is found as previously. Thus,
we scan a range of different 𝜏 and for each one we find the optimal Δ(𝑡) and b

which minimize the average gate infidelity. The minimum pulse duration is the one
that results in the lower infidelity. In Fig. 5.6A, the result of this analysis is shown.
We can see that with a higher Rabi frequency it is actually possible to increase the
average gate fidelity: for Ω = 20MHz and a pulse duration 𝜏 = 30 ns, we can reach
𝐹ave ∼ 99.95%. The minimum pulse durations, related to each infidelity value,
are plotted as a function of 1/Ω in Fig. 5.6B. As expected, they are proportional
as 𝜏 = 𝑘/Ω and with a linear fit we obtain 𝑘 ∼ 609MHz·s. Of course, the pulse
duration cannot be reduced close to zero, since for very high Rabi frequencies other
physical effects should be taken into account.
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Figure 5.6 • In (A) a plot of the average gate infidelity as a function of the Rabi frequency is
shown. For each Ω, the infidelity value is related to an optimization where 𝜏 is the minimum
accessible pulse duration in accordance with the QSL. The latter is illustrated in (B) as a function
of 1/Ω. As expected they satisfy a linear relation.
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5 CZ GATE PROTOCOLS

5.2 Time-dependent detuning with
triangular shape

In this section, we describe a protocol with a time-dependent detuning (with a
triangular shape) and with zero phase. Then we found the optimal parameters which
realize a CZ gate with high fidelity. After that, we use the optimal control algorithm
dCRAB to investigate if this could lead to an increase in performance.

5.2.1 Description

The optimal control solutions for the detuning look as a triangle and the related
phase jumps are really small. Given this intuition, one can ask if a simple protocol
with a triangular time-dependence on the detuning and without the phase jump
works. Thus, let us slightly modify the previous protocol in the following way.
We consider two laser pulses of Rabi frequency Ω and duration 𝜏, but without
phase jump in between. This time, the total detuning Δ is time-dependent with
a triangular shape. The two sides of the triangle have equal length, thus the
gate is still symmetric. The map that we want to realize is still given by Eq. (5.1)
and the system can be simplified as a two-level system as described previously in
Subsec. 5.1.1.

The evolution dynamics on the Bloch sphere of states |01⟩ and |11⟩ is shown
in Fig. 5.7. As one can see, for a fixed Ω and a given triangular detuning Δ(𝑡), the
first laser pulse, represented in blue, drives an incomplete oscillation for both the
states |01⟩ and |11⟩ . This is different with respect to the previous protocol, where
the state |11⟩ returns to itself just after the first pulse. The second laser pulse, in
red, completes the oscillation making the system initially in |01⟩ or in |11⟩ returning
to themselves, but with a different acquired phase. These plots are similar to the
ones for the optimal control solution in Fig. 5.5. Indeed, a triangular detuning shape
is not so different from the optimal pulses found previously shown in Fig. 5.4. In
comparison, now we can note the absence of the phase jump. Indeed, the path on
the Bloch sphere is smoother, without any edge between the two pulses.

5.2.2 Find optimal pulses

The realistic simulation of the two-qubit CZ gate is performed with the experimental
parameters in Tab. 4.1 and with a Rabi frequency fixed at Ω = 10MHz. As before,
the effects taken into account are: an imperfect Rydberg blockade, decay out of
the state |𝑟⟩, a Gaussian light beam, a finite trapping temperature and a zero laser
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Figure 5.7 • Illustration of the dynamic of |01⟩ (left) and |11⟩ (right) states on the Bloch
sphere for the protocol with a triangular detuning shape. The initial rotation axis is fixed by the
initial detuning, then the axis slightly changes due to the time-dependence Δ(𝑡). For a fixed Rabi
frequency Ω and triangular detuning Δ(𝑡), the first laser pulse (in blue) drives an incomplete
Rabi oscillation for both the |01⟩ and |11⟩ systems. The second pulse (in red) completes the
oscillation and returns to the state |01⟩ or |11⟩ with a different acquired phase.

misalignment. According to the protocol, the phase jump b between the two pulses
is null for the whole gate duration. In the following, Ω is assumed to be perfectly
constant, namely no experimental bandwidth is taken into account.

The triangular detuning depends on two free parameters Δmax and Δmin, that
represent respectively the maximum and minimum of the equilateral triangle. They
are found in order to minimize the average gate infidelity along with the pulse
duration 𝜏. The steps of the analysis are the following. Firstly, the pulse duration
is fixed and for each value of 𝜏 we find the optimal Δmax and Δmin as before, thus
using the optimize.minimize function. In the end, we select as optimal 𝜏 the one
with the minimum average gate infidelity with its corresponding optimal parameters.
The best solution found is illustrated in Tab. 5.3. On the left, the optimal values of
the parameters are given, while on the right the corresponding average gate fidelity,
Bell-state fidelity and diamond error rate are reported. The fidelities values found
for this protocol are 𝐹ave = 99.91% and 𝐹b = 99.89%. They are higher with respect
to the previous protocol with constant pulses of 0.01% and they reach the values
of the ones obtained via dCRAB. Also the optimal pulse duration 𝜏 = 61.3 ns is as
small as the best optimal control solution. The optimized triangular detuning is
plotted in Fig. 5.8. Let us note that the crucial point that seems to make the gate
properly working is the change between a positive and a negative detuning with the
minimum in the middle. Indeed, a detuning with only negative or positive values
results in very low fidelities.
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5 CZ GATE PROTOCOLS

The contributions of the different effects on the gate fidelity are more or less the
same as the previous protocol. Thus, by switching off the traps, both the average
gate fidelity and the Bell state fidelity increase by 0.01%. If we switch off the decay
out of |𝑟⟩, the average gate fidelity increases by ∼ 0.07% and the Bell state fidelity
by approximately 0.10%.
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Figure 5.8 • Optimal detuning Δ(𝑡) for the protocol with a triangular detuning shape.

Parameter Value Unit Measurement (%)

Pulse duration 𝜏 0.0613 `s Average gate fidelity 99.91
Max detuning Δmax 12.79 MHz Bell-state fidelity 99.89
Min detuning Δmin −8.97 MHz Diamond error rate 0.368

Table 5.3 • Optimal parameters and fidelity results for the protocol with a triangular detuning
shape under the assumption of a constant Rabi frequency fixed toΩ = 10MHz.

Realistic bandwidth

Now, let us take into account the experimental limitations. Thus, a finite bandwidth
is introduced for the Rabi frequency which is modeled as Eq. (5.2a) with 𝑡rise = 40 ns
and 𝑎 = 0.005. The Δ(𝑡) pulse instead is modified in the following way. If 𝑡 < 𝑡rise
or 𝑡 > 2𝜏 − 𝑡rise, the detuning is assumed to be constant, otherwise it is modeled as
a triangle with Δmax and Δmin parameters. However, since a perfect triangular shape
is not achievable experimentally, a smoothed function has to be considered. For this
purpose, a Savitzky-Golay filter available in SciPy [49] is exploited to slightly smooth
the whole Δ array (see Fig. 5.9B). For this analysis, we consider Ω = 10MHz and
for a fixed 𝜏 the algorithm finds the best Δmax and Δmin in order to minimize the
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5.2 TIME-DEPENDENT DETUNING WITH TRIANGULAR SHAPE

average gate infidelity. The pulse duration 𝜏 with the minimum infidelity is chosen
as optimal value with its corresponding parameters. In Tab. 5.4 we report the best
solution, while in Fig. 5.9 the corresponding Ω and Δ pulse shapes are illustrated.

It is really interesting to note that even considering a finite bandwidth for Ω, the
maximum gate fidelity is still very high: 𝐹ave = 99.91% and 𝐹b = 99.89%. Indeed,
finite raise time only increases the gate duration up to 𝜏 = 88.1 ns, since at the
beginning we give less power to the system. But, during the raise time the Rydberg
state is not populated, thus effects as decay does not affect the gate’s performance.
In conclusion, in contrast to the previous protocol, this works well also when a finite
and realistic raise time is considered, even without using optimal control.

Parameter Value Unit Measurement (%)

Pulse duration 𝜏 0.0881 `s Average gate fidelity 99.91
Max detuning Δmax 8.30 MHz Bell-state fidelity 99.89
Min detuning Δmin −9.13 MHz Diamond error rate 0.410

Table 5.4 • Optimal parameters and fidelity results for the gate protocol with triangular
detuning under the assumption ofΩ with a finite bandwidth. Its pulse shape is as in Eq. (5.2),
where 𝑡raise = 40 ns, 𝑎 = 0.005 andΩmax = 10MHz. TheΔ is constant if 𝑡 < 𝑡rise or 𝑡 > 2𝜏−𝑡rise,
otherwise it has a triangular shape. It is also smoothed in order to be experimentally feasible.
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Figure 5.9 • Optimal pulses illustration for the protocol with triangular detuning. The pulse
Ω is assumed with a finite bandwidth and its shape is as in Eq. (5.2) where we fix 𝑡raise = 40 ns
and 𝑎 = 0.005. The Δ is constant if 𝑡 < 𝑡rise or 𝑡 > 2𝜏 − 𝑡rise, otherwise it has a triangular shape.
It is also smoothed with a Savitzky-Golay filter in order to be experimentally feasible.
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5 CZ GATE PROTOCOLS

5.2.3 Optimal control optimization

Now, let us investigate if it is possible to further reduce the gate time for this
protocol by using optimal control. First of all, we fix Ω = 10MHz. In order to
find the minimum pulse duration for which a high fidelity is achievable, we scan
different values of 𝜏 and for each of them the detuning Δ(𝑡) is optimized through
dCRAB. Also in this case, the pulse is expanded as a truncated Fourier basis with
𝑁𝑐 = 4 basis functions and with uniform random frequencies between 𝜔min = 0 and
𝜔max = 3𝜋/𝜏. The amplitude of Δ is constrained in the range [−12 : 12]MHz and
its initial guess is a triangle. As before, we choose 𝑁𝑠 = 3 and 𝑁 = 500. To have
results with a statistic, for each 𝜏 the detuning pulse is optimized 10 times.

The minimum average gate infidelity results for the different gate durations
are illustrated in Fig. 5.10A. In this case, Ω is assumed to be perfectly constant
without any experimental bandwidth. We can note that the best fidelity is again
𝐹ave ≈ 99.91% with the minimum time 𝜏 ∼ 61 ns. Thus, any improvement is
possible and the perfectly triangular solution is already the fastest one. Also in
the case of a finite bandwidth on Ω, the gate cannot be speeded up nor there are
improvements in fidelity as one can deduce from Fig. 5.10B. Here, we have modeled
Ω as in Eq. (5.2a) with 𝑡raise = 40 ns and 𝑎 = 0.005.
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Figure 5.10 • Average gate infidelity as a function of the pulse duration 𝜏 forΩ = 10MHz.
These plots are obtained by performing an optimization through the dCRAB algorithm: for each
𝜏 the optimal pulse Δ(𝑡) is found in order to minimize the average gate infidelity. The initial
guess for the pulse is a triangle and it is expanded as a truncated Fourier basis with 𝑁𝑐 = 4
basis functions and with uniform random frequencies between 𝑛min = 0 and 𝑛max = 1.5. Its
amplitude is constrained in the interval [−12 : 12]MHz. In (A) the Rabi frequency is assumed
to be perfectly constant, while in (B) a finite bandwidth is considered.
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5.3 Relation between the two protocols

As we have seen in the previous sections, there are several ways to implement
a two-qubit CZ gate with numerical high-fidelity. We can use a protocol with a
constant detuning and a phase jump between the two pulses, but a protocol with
only a triangular detuning without any phase jump still works. One can ask if these
two protocols are somehow related in a more general framework. To investigate this
question, let us consider the atom-light interaction Hamiltonian of one single-qubit,
with Rabi frequency Ω, constant detuning Δ and with a time-dependent laser phase
b (𝑡), given by

Ĥ0 =
Ω

2 𝑒−𝑖b (𝑡) |1⟩⟨𝑟 | + Ω∗

2 𝑒𝑖b (𝑡) |𝑟⟩⟨1| − Δ |𝑟⟩⟨𝑟 | . 5.3

We can use the unitary operator

�̂� (𝑡) = |0⟩⟨0| + |1⟩⟨1| + 𝑒𝑖b (𝑡) |𝑟⟩⟨𝑟 | 5.4

to express the single-qubit Hamiltonian in a rotating frame through the transforma-
tion defined in Eq. (2.34) [40]. The resulting Hamiltonian is

Ĥ0rwf =
Ω

2 |1⟩⟨𝑟 | + Ω∗

2 |𝑟⟩⟨1| − (Δ + ḃ (𝑡)) |𝑟⟩⟨𝑟 | . 5.5

One can note that, in this frame, the oscillating term is removed from the dynamics
and the new detuning is given by Δrwf(𝑡) ≡ Δ + ḃ (𝑡). The total Hamiltonian of a
system of two interacting qubits is

Ĥ = Ĥ0rwf ⊗ 1 + 1 ⊗ Ĥ0rwf −
𝐶6
𝑅6 |𝑟𝑟⟩⟨𝑟𝑟 | . 5.6

If we compare Eq. (5.3) and Eq. (5.5), we can deduce that a protocol with a time-
dependent phase b (𝑡) and a constant detuning Δ is equivalent to a protocol with a
zero phase and a time-dependent detuning Δrwf(𝑡), within a unitary transformation.
In the following, let us check if the numerical results are consistent with this
relation.

First of all, we fix Ω = 10MHz, Δ is constant for the whole duration of the gate
2𝜏 and we suppose a smooth phase jump defined as the connection of two parabolas

b (𝑡) =
{︄

−𝑏𝑡2 𝑡 ≤ 𝜏

−2𝑏𝜏2 + 𝑏(𝑡 − 2𝜏)2 𝜏 < 𝑡 ≤ 2𝜏
5.7

where 𝑏 is an amplitude parameter and 𝜏 is the pulse duration. We find Δ and 𝑏 in
order to minimize the average gate infidelity along with the pulse duration 𝜏. As done
before, the steps of the analysis are the following. The pulse duration is fixed and
for each value of 𝜏 we find the optimal Δ and 𝑏 by using the optimize.minimize
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5 CZ GATE PROTOCOLS

Parameter Value Unit Measurement (%)

Pulse duration 𝜏 0.0613 `s Average gate fidelity 99.91
Amplitude parameter 𝑏 1114 rad/s2 Bell-state fidelity 99.89
Detuning Δ 12.78 MHz Diamond error rate 0.365

Table 5.5 • Optimal parameters and fidelity results for a smooth phase jump b (𝑡) given by
Eq. (5.7) and constant detuning Δ, under the assumption of a constant Rabi frequency fixed to
Ω = 10MHz.

function. In the end, we select as optimal 𝜏 the one with the minimum average gate
infidelity with its corresponding optimal parameters. The best solution found is
reported in Tab. 5.5 and the optimal phase is shown in Fig. 5.11. One can note that
the optimal pulse duration 𝜏 = 61.3 ns is exactly the same as the triangular protocol
solution shown in Tab. 5.3. Also the Δ ≈ 12.78 is quite similar to Δmax and the
results in fidelity are still very high: 𝐹ave = 99.91% and 𝐹b = 99.89%. The slightly
difference between the two solutions is ongly given by numerical random errors.

These results are not so surprising, indeed the derivative of b (𝑡), defined as
Eq. (5.7), is a triangle

ḃ (𝑡) =
{︄

−2𝑏𝑡 𝑡 ≤ 𝜏

2𝑏(𝑡 − 2𝜏) 𝜏 < 𝑡 ≤ 2𝜏.
5.8

Thus, by mapping b (𝑡) → 0 and Δ → Δ+ ḃ (𝑡)1, we obtain the same optimal solution
of the protocol with a triangular detuning shape shown in Fig. 5.8. We can conclude
that the two protocols are the same within a unitary transformation, with the unitary
operator as in Eq. (5.4). It is interesting to compare the path on the Bloch sphere
within the two frames of reference. For this purpose in Fig. 5.12 we illustrate the
system dynamics with a smooth phase and constant detuning. In comparison with
Fig. 5.7, we can note that the rotation axis, initially fixed by the detuning Δ, changes
fast due to the time-dependence on the phase. Thus, the overall dynamic in this
case is rapidly rotating.

1ḃ (𝑡) is given in units of frequency not in angulary frequency, namely ḃ (𝑡) → ḃ (𝑡)/(2𝜋).
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Figure 5.11 • Optimal phase b (𝑡) with shape as in Eq. (5.7).
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Figure 5.12 • Illustration of the dynamic of |01⟩ (left) and |11⟩ (right) states on the Bloch
sphere for a time-dependent phase as in Fig. 5.11, a constant detuning Δ ∼ 12.78MHz and
Ω = 10MHz. The smoothly changing phase has the effect of changing the rotation axis all the
time. The initial rotation axis is fixed by the constant detuningΔ. Also in this case the two pulses,
represented in blue and red respectively, are symmetric.
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Conclusions and outlook

In this Thesis, we have analyzed in detail the total Hamiltonian of a system of two
atoms in a neutral atom quantum register. A numerical simulation of this system
has been implemented by Sebastian Weber to reproduce the behavior of a two-qubit
controlled-phase gate. Realistic parameters specific for the neutral atom processor
developed within the project have been fixed in the simulation. Moreover, realistic
effects as imperfect Rydberg blockade, trapping at a finite temperature, and decay
out of the Rydberg state have been taken into account. In this work, by using this
software, we have benchmarked the gate performance for different protocols through
Bell state fidelity, average gate fidelity, and diamond distance measurements.

In a first step, a protocol with a constant detuning Δ and a phase jump b is
analyzed. In this case, it turns out that the decay out of the Rydberg state is the
main source of infidelity, leading to a maximum average gate fidelity achievable of
99.90%. The maximum fidelity reachable is drastically reduced by approximately
1% if a realistic bandwidth for the phase jump b, the Rabi frequency Ω and the
detuning Δ is taken into account. The infidelity is no more due to the decay effect,
as the main source contribution comes from the smoother phase jump. Then, a
time-dependent detuning is introduced. To maintain the symmetry of the gate, we
set the shape of the second pulse as the time-reversed of the first one. With the
optimal control algorithm dCRAB we were able to find an optimal time-dependent
detuning Δ(𝑡) which reduces the pulse duration by approximately 10%, namely from
68 ns to 61 ns. The corresponding average gate fidelity is 99.91%, namely there is
an increase of 0.01% since the time that the atoms spend in the Rydberg state is
reduced. Also in the case of a realistic bandwidth for the phase jump, the optimal
control algorithm allows us to find a solution with a fidelity of 99.91%. The gate time
is reduced from 120 ns to 96 ns. Moreover, we performed an analysis of how much
we can reduce the gate time if we increase the Rabi frequency Ω.

After that, another protocol for realizing a high fidelity two-qubit CZ gate is
discussed. It consists just of a time-dependent detuning with a symmetric triangular
shape, thus in comparison with the previous one, the phase jump is neglected. The
optimal solution for this case results in an average gate fidelity of 99.91%. The total
gate duration is 122 ns. It is already the fastest one, as we have checked by trying to
reduce the time by using optimal control techniques.



Finally, we have shown that the protocol with a triangular detuning Δ(𝑡) and a
zero phase is equivalent to the one with a constant detuning Δ and a time-dependent
phase b (𝑡). They are related by a unitary transformation which expresses the
Hamiltonian of the system in a rotating wave frame.

Quantum platforms with trapped neutral atoms in optical tweezers are very
promising due to their potential high scalability. Thanks to the recent developments
on the control of Rydberg atoms, they offer new opportunities to realize fast
two-qubit or multi-qubit gates with high fidelity by exploiting the Rydberg blockade
effect. By implementing 2D individually controlled arrays of Strontium-88 atoms
and encoding the qubit in two very long-lived states, the main aim of the QRydDemo
project is to improve the coherence times of the qubits up to 10 ms, i.e. three
orders of magnitude with respect to what demonstrated so far. Different gate
schemes will be investigated to figure out which is the best performing one for
this platform. The combination of longer coherences times, high-fidelity gates and
fast and individual control over each atom in the arrays unlock the possibility for
implementing new types of algorithms. In the longer term, it is also fruitful to figure
out how many-body gates can help to accelerate quantum circuits. In conclusion, the
realization of fully programmable neutral atom devices with hundred of qubits opens
many exciting perspectives in quantum computing towards making the quantum
advantage a solid reality.
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