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Introduction

In this thesis we deal with some control problems for a scalar conservation
law with discontinuous flux{

ut + f(u, x)x = 0, x ∈ R, t ≥ 0
u(x, 0) = u0(x), x ∈ R

(1)

where f = H(x)fl(u) + (1−H(x))fr(u), fl, fr are uniformly convex and H
is the Heaviside function. In recent years PDEs like (1) have been a topic of
intense research due to the great number of applications, such as traffic flow
([20]), two phase flow in porous media ([17]), sedimentation problems and
Saint Venant model of blood flow, but also inverse problems for standard
(with continuous flux) conservation laws, and reformulation of balance laws
(i.e. conservation laws with source terms) in terms of conservation laws with
discontinuous flux (see [8] and the references therein). The discontinuity of
the flux represents some heterogeneity in the physical reality of the model,
such as a road with changing surface conditions in the case of traffic flow, or
an abrupt change in the properties of a porous medium. Despite the numer-
ous applications, control problems for equations like (1) are still basically
absent in the existing literature and here we study two of them, in particular
we deal with controllability and initial data identification.

The main difficulty when studying well posedness for problems like (1)
can be traced back to the fact that, in addition to the usual lack of regularity
of solutions to a (classical) conservation law, imposing that the conservation
of the quantity u through the discontinuity interface x = 0 holds (i.e. the
Rankine-Hugoniot condition) is not enough to prove uniqueness. In fact,
for a given initial datum, (1) has infinitely many solutions, depending on
the entropy conditions that we require to hold at the interface x = 0. In
this thesis we will be concerned with entropy solutions of type AB. More
specifically, we work with infinitely many concepts of solution, each one
associated to a connection (A,B), namely a specific pair of values such
that the function cAB(x) = H(x)A + (1 − H(x))B is an undercompressive
stationary solution of (1) (i.e. the characteristics emerge from the interface
discontinuity x = 0). For a fixed connection AB, we say that a function u
is a solution of (1) if it is an entropy solution at the left and at the right
of the discontinuity interface, separately, with fluxes fl, fr. Moreover, we
require that at the interface the only type of undercompressive wave that
is allowed is only the one of the stationary solution cAB, i.e. the wave with
values precisely the values of the connection. All of this is encoded in a
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Kružkov type inequality where, instead of the constant values ”k”, one has
the function cAB.

In this thesis two main results are achieved concerning control problems
for (1). The first one concerns the full characterization of the attainable set
at time T > 0

AAB(T ) ·= {SABT u0 : u0 ∈ L∞} (2)

in terms of some Oleinik-type inequalities and some further conditions mo-
tivated by the fact that there might be some profiles ω ∈ AAB(T ) that
are reachable only by solutions containing a shock in at least a semiplane
{x > 0}, {x < 0}. Here SABt is the semigroup operator associated to a con-
nection AB. This result completes the characterization already obtained in
[4], where only the profiles reachable with locally Lipschitz solutions outside
the line x = 0 were characterized. The result is achieved using an adap-
tation of the method of generalized characteristics, originally developed for
conservation laws with strictly convex flux by Dafermos in [11].

The second new main result obtained in this thesis is the full charac-
terization of the set of initial data that lead to a fixed profile ω, i.e. the
set

IABT ω
·= {u0 ∈ L∞ : SABt u0 = ω} (3)

in terms of two integral inequalities. Using this kind of characterization,
we manage to prove that the set IABT ω is an infinite dimensional cone in
L∞. This is a generalization to the discontinuous flux setting of the recently
obtained results in [10] for a convex conservation law; however we prove
that the set IABT ω is not anymore (in general) convex when dealing with
AB-entropy solutions. In order to achieve this results we will introduce a
new kind of generalized characteristic that is allowed to travel along the
interface discontinuity only when the flux is minimal (i.e. the flux is exactly
the flux of the connection fl(A) = fr(B)).

The thesis is structured as follows. In Chapter 1 we recall some basics of
the theory of conservation laws with Lipschitz continuous flux. In Chapter
2 we present the theory of entropy solution of type AB. In Chapter 3 we
prove the characterization of the attainable set (2). In Chapter 4 we prove
the results about the structure of (3).



Chapter 1

Preliminaries on conservation laws

Abstract. In the first part of this chapter, mainly following [7] (see
also [12]), we present the basic theory of scalar conservation laws in one
dimension. The last section will be dedicated to the method of gen-
eralized characteristics developed by Dafermos in [11] for conservation
laws with strictly convex flux.

A scalar one dimensional conservation law is a non linear partial differ-
ential equation of the form

ut + f(u)x = 0 (1.1)

where u(x, t) is the state variable and f is the so called flux function, that is
usually assumed to be Lipschitz. The name conservation laws follows from
the fact that the solution u represents the evolution in time of the conserved
quantity, while f is the flux. In particular,

d
dt

ˆ b

a
u(x, t) dx =

ˆ b

a
ut(x, t) dx

=
ˆ b

a
−f(u(x, t))x dx

= f(u(a, t))− f(u(b, t)) = [inflow at a]− [outflow at b] (1.2)

Accordingly, the conserved quantity is neither created nor destroyed, and
the only way to increase or decrease the total amount of u contained in
some interval [a, b] is with the flux through the two endpoints a, b.

In this chapter we will be mainly concerned with the Cauchy problem

ut + f(u)x = 0, x ∈ R, t ≥ 0
u(·, 0) = u0(·) (1.3)

For the first part of this chapter we will mainly follow the lines of [7]. In the
last section we present the theory of generalized characteristics, following
the original paper by Dafermos [11].

1.1. Classical solutions

We say that a function u is classical solution of (1.3) if it is a continu-
ously differentiable function whose partial derivatives pointwise satisfy the
equation.



1.2 Weak solutions 4

In case the flux f is a constant, i.e. f(u) = λu for every u ∈ R, the
conservation law becomes the transport equation ut + λux = 0. In this
case, the solution is u(x, t) = u0(x − λt) and u is constant along the lines
x = x0 + λt.

This fact can be generalized to a classical solution of (1.3) with a general
(smooth) flux function f . In fact, let x(t, y) be the solution of the following
differential equation

d
dtx(t, y) = f ′(u(x(t, y), t)),
x(0, y) = y

(1.4)

Then the solution u satisfies
d
dtu(x(t, y), t) = ux(x(t, y), t)f ′(u(x(t, y), t) + ut(x(t, y), t) = 0 (1.5)

This means that u is constant along the lines t 7→ x(t, y); accordingly
x(t, y) = y + tf ′(u0(y)) (1.6)

Using the method of characteristics, we can define (at least for small
times and compactly supported initial data u0) a solution u in the following
way: for a point (x, t), we go back along the (unique, at least for t small) line
x(s, y) such that x(t, y) = x and define u(x, t) = u0(y). One can easily check
that the function defined in this way is a classical solution. Of course this
construction fails as soon as two different characteristics cross each other. In
this case the concept of classical solution is not anymore sufficient to ensure
the existence globally in time. The aim of the next sections is then to derive
a well posedness theory for a conservation law (1.3).

1.2. Weak solutions

The main feature of conservation laws is that, regardless of how smooth
the initial data are, they can develop shocks (discontinuities) in finite time
so that, after this time, there is no hope of recovering a classical solution
of (1.3). This happens as, seen in the previous section, as soon as two
characteristics intersect.

For this reason, in order to have achieve well-posedness for the Cauchy
problem, it arises the need to consider weak distributional solutions of (1.1).
Definition 1.1. We say that a function u is a weak solution of (1.3) if u is
continuous as a function [0,+∞)→ L1

loc(R), u0 = u(·, 0) and for every test
function ϕ ∈ D(R× (0,+∞) holdsˆ +∞

0

ˆ
R
uϕt + f(u)ϕx dx dt = 0 (1.7)
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t = 0 t > 0

Figure 1.1: Formation of a shock in the case f = u2

2 (Burger’s equation). Higher
points moving with higher speed make the profile steeper and steeper, eventually
forming the shock.

It is easy to understand under which conditions a function like

u(x, t) =
{
ul x < λt

ur x > λt
(1.8)

is a distributional solution of (1.1). In fact, a simple application of the
divergence theorem yields the following necessary and sufficient condition
for (1.8) to be a distributional solution:

f(ur)− f(ul) = λ(ur − ul) (1.9)

This is the so called Rankine-Hugoniot condition. The Rankine-Hugoniot
condition uniquely determines at which speed a shock with states ul, ur must
travel in order to be an admissible shock for a solution u. This condition
can be used to determine weather or not u is a weak solution for a wide
class of functions:

Definition 1.2. We say that u(x, t) enjoys piecewise Lipschitz regularity if
u is measurable, bounded, and there exists finitely many Lipschitz curves
γi :]ai, bi[→ R and finitely many points Pi such that

1. every point P lying outside the curves γi’s and different from all the
Pi’s has a neighborhood in which u is Lipschitz continuous.

2. Every point Q lying on a curve γi has a neighborhood V in which u
is Lipschitz continuous in the domains {(x, t) ∈ V | x < γi(t)} and
{(x, t) ∈ V | x > γi(t)}.

One can prove the following proposition (see [7]):

Proposition 1.3. Let u be piecewise Lipschitz. Then u is a weak solution
of (1.1) if and only if
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1. for a.e. x ∈ R× (0,+∞) \ ∪iγi, u satisfies

ut + f(u)x = 0

2. for every curve γi and for a.e. t ∈]ai, bi[, the Rankine-Hugoniot con-
dition holds:

f(u(γi(t)+, t))− f(u(γi(t)−, t)) = γ̇i(u(γi(t)+, t)− u(γi(t)−, t)

In other words, to decide if a piecewise Lipschitz function u (as in Defi-
nition 1.2) is a solution, it is sufficient to check separately that the equation
holds pointwise in the regions where u is Lipschitz and that the Rankine-
Hugoniot condition holds at the points of discontinuity of u.

1.3. Entropy admissibility conditions

The concept of weak solution of (1.3), is not enough to select a unique
solutions to the initial value problem, as we can see in the following example.

Example 1.4. Consider Burgers’ equation, namely the conservation law
with flux f = u2

2 . Let the initial data be

u0(x) =
{

0 x < 0
1 x > 0

One can set ul = 0, ur = 1 and use the Rankine-Hugoniot condition to
find that for λ = 1

2 (1.8) is a weak solution. But one can also solve the
Cauchy problem using two discontinuities, for example, for each α ∈ [0, 1],
the function

uα(x, t) =


0 x < αt/2
α αt/2 < x < (α+ 1)t/2
1 x > (α+ 1)t/2

is a weak solution to the Cauchy problem. It is also possible to find a
continuous solution using a rarefaction wave. In particular, the function

u(x, t) =


0 x < 0
x/t 0 < x < t

1 x > t

is a Lipschitz continuous (classical) solution.
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A method to select a unique solution is via the so called vanishing vis-
cosity. The idea is to add a small viscosity term like εuxx, that usually has
a regularizing effect, to obtain

uε + f(uε)x = εuεxx (1.10)

and then let ε→ 0.

Definition 1.5 (Viscosity solution). A weak solution u of (1.1) is admissible
in the vanishing viscosity sense if there exists a sequence of solutions uε of
(1.10) that converges to u in L1

loc as ε→ 0+.

Finding such a sequence of uε is usually very difficult. For this reason,
it’s convenient to introduce further conditions that are easier to verify. Let
η(u) be a convex function. Let q(u) be such that q′(u) = η′(u)f ′(u). We
call the couple (η, q) an entropy-entropy flux pair. If u is a classical solution
of (1.1), it’s immediate to see that

η(u)t + q(u)x = 0

Now assume that u is a weak viscosity solution, i.e. there is a sequence uε
as above such that uε → u in L1

loc. Multiplying (1.1) by η′(u) and using the
chain rule, we obtain

η(uε)t + q(uε)x = ε(η(uε)xx − η′′(uε)(uεx)2) ≤ εη(uε)xx

Assuming that uε remains uniformly bounded, one gets, in distributional
sense, for ε→ 0+, that

η(u)t + q(u)x ≤ 0 (1.11)

Thus the idea is to use the above entropy inequality to single out the unique
solution of the conservation law.

Definition 1.6 (Entropy inequality). A weak solution is entropy admissible
if for every entropy-entropy flux pair (η, q) it holds

η(u)t + q(u)x ≤ 0 (1.12)

in distributional sense.

There is a family of entropies (the Kružkov entropies) that are really
easy to work with. For every k ∈ R, we define

ηk(u) = |u− k| , qk(u) = sgn(u− k)(f(u)− f(k)) (1.13)
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When studying entropy admissible solutions, it is possible to prove that
requiring (1.11) for all Kružkov entropies is already sufficient to single out
a unique solution. One can prove that entropy admissible solutions coincide
with solutions that satisfy the following condition, the Liu condition:

Definition 1.7 (Liu admissibility condition). A piecewise Lipschitz weak
solution to (1.1) is Liu admissibile if for almost every discontinuity point
(t, x)

f(u∗)− f(ul)
u∗ − ul

≥ f(ur)− f(u∗)
ur − u∗

(1.14)

for all u∗ = αul + (1 − α)ur and α ∈ [0, 1], where ul = u(x−, t) and ur =
u(x+, t).

The Liu admissibility condition has a clear meaning from both the geo-
metrical and the stability point of view. In particular, if ul < ur (ur < ul),
(1.14) tells us that the graph of f must lie above (below) the secant line
through ul, ur in the interval [ul, ur]([ur, ul]) (see Figure (1.2))

ul u∗ ur

Figure 1.2: Geometrical interpretation of the Liu condition

The stability interpretation is the following. Let the function u in (1.8)
be a weak solution of (1.1) and, to fix the ideas, let ul < ur. We can perturb
the initial data adding a small intermediate step u∗ ∈ [ul, ur]. In this way,
the solution will be initially made of two shocks propagating with velocities

f(u∗)− f(ul)
u∗ − ul

,
f(ur)− f(u∗)

ur − u∗

If we want the solutions to be stable with respect to small perturbation on
the initial data, we have to require that the speed of the shock behind (ul, u∗)
is greater than the speed of the shock ahead (u∗, ur). This is equivalent to
require the Liu condition.
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Figure 1.3: The graphical meaning of the Lax condition: for a shock to be admis-
sible, characteristics must enter the shock.

Finally, let’s present the Lax condition. It is not, in general, equivalent
to the conditions above. Nevertheless, in the case of convex (or concave)
flux, it can be proven to be equivalent to all the conditions stated until now.

Definition 1.8 (Lax condition). A piecewise Lipschitz weak solution to
(1.1) is Lax admissible if for almost every jump point (t, x) holds

f ′(ul) ≥ f ′(ur) (1.15)

where ul = u(x−, t), ur = u(x+, t).

One can easily check that only one of the solutions provided in Example
1.4 satisfies the Lax condition.

1.4. Front-tracking algorithm

The method of front-tracking is a classical method for proving existence of
solutions for conservation laws. It can be used also for systems of conser-
vation laws, but in that case one has to assume that the initial datum has
small total variation and a general theory is not known. In the case of scalar
conservation laws, the theory is a lot easier and can be presented in a couple
of pages. The idea is to approximate both the flux f , that can be any Lip-
schitz function, and the initial datum u0, with respectively piecewise affine
functions fν and piecewise constant functions u0,ν . For each ν one obtains
a piecewise constant front-tracking approximation uν . Letting ν → +∞, it
is possible to prove that uν converges to the solution of the problem (1.3).

First let us show how to build front tracking approximate solutions uν .
Let ν ≥ 1 be an integer. Let fν coincide with f on the points 2−νj, with
j ∈ Z, and affine on the segments [2−ν(j − 1), 2−νj]. We are going to show
that there is a piecewise constant entropy admissible weak solution uν , with
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discontinuities located on a finite number of segments, to the problem

(uν)t + f(uν)x = 0

with initial datum u0,ν , a piecewise constant function with compact support
taking values in the set 2−νZ. The solution uν will still have values in this
set. First of all, we need to know how to solve a Riemann problem with flux
fν , i.e. the Cauchy problem with initial datum

u0(x) =
{
ul x < 0
ur x > 0

1. ul < ur. Let conv(fν) be the largest convex function smaller than fν
(it will still be piecewise affine). Let the jumps of the derivative of
conv(fν) be located at ul = w0 < w1 < . . . < wq = ur. Let

λi = f(wi)− f(wi−1)
wi − wi−1

, i ∈ {1, . . . , q}

Then the solution of the Riemann problem with flux conv(fν) is

uν(x, t) =


ul x < tλ1

wi tλi−1 < x < tλi, 2 ≤ i ≤ q
ur x > tλq

Indeed, along each jump both the Rankine-Hugoniot and the Liu ad-
missibility condition are satisfied.

2. ul > ur. Let conc(fν) be the smallest concave function greater than
fν . As above, it will still be piecewise affine. Let the jumps of the
derivative of conc(fν) be located at ul = w0 < w1 < . . . < wq = ur.
Let

λi = f(wi)− f(wi−1)
wi − wi−1

, i ∈ {1, . . . , q}

Then the solution of the Riemann problem is

uν(x, t) =


ul x < tλ1

wi tλi−1 < x < tλi, 2 ≤ i ≤ q
ur x > tλq
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Notice that in both cases the solution takes values in 2−νZ.
Now we start with the more complex initial datum u0,ν . Let it’s discon-

tinuities be located at the finite number of points x1, . . . , xN . In each point
xi, we solve the Riemann problem, obtaining a solution uν defined until the
first time t1 at which two shock collide for the first time. Since the function
x 7→ uν(x, t1) is still piecewise constant with values in 2−νZ we can repeat
the procedure and solve new Riemann problems at the discontinuity points
of uν(·, t1), and so on. If we can prove that the number of interactions does
not become infinite in finite time, we can prolong the solution uν globally
in time.

Without loss of generality, with a small perturbation on the initial data,
we can assume that at each time at most two shocks collide. Two cases can
happen:

1. The fronts that interact at time t have the same sign. In this case
TotVar(u(·, t−)) = TotVar(u(·, t+)) and the number of fronts de-
creases by one.

2. The fronts that interact at time t have opposite sign. In this case , the
number of fronts might increase, but the total variation decreases by
at least 2−ν after the interaction time.

Case 2. can happen only finitely many times, since each time it happens, the
total variation decreases by at least of a fixed positive quantity, and Case
1. leaves it unchanged. Then also Case 1. can happen only finitely many
times. This proves that the total number of interactions is finite, and this
concludes the construction of the front tracking approximation uν .

1.5. A contractive semigroup

The aim of this section is first to prove existence of an admissible solution
for an initial datum in L1 with bounded variation, and then to extend (by
density) the result to general integrable bounded initial data.

Let us take any initial datum u0 ∈ L1 ∩ BV. Construct an approxi-
mating sequence of piecewise constant functions uν with the front-tracking
algorithm, corresponding to a sequence u0,ν of piecewise constant initial data
with total variation smaller than the total variation of u0, and that converge
to u0 in L1. We want to pass to the limit for ν → +∞, and to do that we
use Helly’s theorem that we recall here.
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Theorem 1.9. Let uν : R × (0,+∞) → R be a sequence of L∞ functions
such that there exists two constants M,L > 0 such that

TotVar(u(·, t)) ≤M, |uν(x, t)| ≤M, ∀x, t (1.16)

‖uν(·, t)− uν(·, s)‖L1 ≤ L |t− s| , ∀ t, s > 0 (1.17)
Then there exists a subsequence uµ converging to a function u ∈ L1

loc(R ×
[0,+∞), and u satisfies the same bounds.

Back to our problem, we want to apply Helly’s theorem to the front
tracking sequence. We can do that because we know

TotVar(u(·, t)) ≤ TotVar(u0,ν), |uν(x, t)| ≤M

Moreover, if L is a Lipschitz constant for f , the speed of the shocks will be
smaller than L, so that we obtain the bound

‖uν(·, t)− uν(·, s)‖ ≤ L |t− s|TotVar(u0,ν)

This ingredients allow us to apply Helly’s theorem and conclude that the
sequence uν converges in L1

loc to a function u. In order to prove that u is
an admissible solution, we only have to show that, for each k ∈ R and for
every test function ϕ ∈ C∞c (R+ × R), it holdsˆ

R+

ˆ
R
|u− k|ϕt + sgn(u− k)(f(u)− f(k)) dx dt ≥ 0 (1.18)

Thanks to the dominated convergence theorem, we can write
ˆ
R+

ˆ
R
|u− k|ϕt + sgn(u− k)(f(u)− f(k)) dx dt

= lim
ν→+∞

ˆ
R
|uν − k|ϕt + sgn(uν − k)(f(uν)− f(k)) dx dt ≥ 0 (1.19)

Uniqueness for L∞ solutions can be proved with the method of doubling
variables by Kružkov, and for the proof we refer to [7] (a detailed description
of an adapted version of this method is provided in the chapter on entropy
solutions of (A,B) type). The following theorem is due to Kružkov.

Theorem 1.10. Let f : R→ R be locally Lipschitz continuous. Let u, v be
entropy admissible solutions of (1.1) defined for t ≥ 0. Let M,L be constants
such that

|u(t, x)| ≤M, |v(t, x)| ≤M, for all t, x,

|f(w)− f(w′)| ≤ L |w − w′| , for all w,w′ ∈ [−M,M ].
(1.20)
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Then, for every R > 0 and τ ≥ τ0 ≥ 0, one has
ˆ
|x|≤R

|u(x, τ)− v(x, τ)| dx ≤
ˆ
|x|≤R+L(τ−τ0)

|u(x, τ0)− v(x, τ0)|dx. (1.21)

Corollary 1.11 (Uniqueness in L∞). Let f : R → R be locally Lips-
chitz continuous. If u, v are bounded entropy solutions of (1.1) such that
‖u(·, 0)− v(·, 0)‖L1 <∞, for every t > 0 we have

‖u(·, t)− v(·, t)‖L1 ≤ ‖u(·, 0)− v(·, 0)‖L1 . (1.22)

For all initial data u0 ∈ L∞, the problem (1.3) has at most one bounded
entropy solution.

By density of BV functions in L1 ∩ L∞, at the end one can prove the
following theorem:

Theorem 1.12. Let f : R → R be Lipschitz continuous. There exists
a continuous semigroup S : [0,+∞) × L1 → L1 such that the following
properties hold

(i) S0u0 = u0 and St+su0 = St(Ssu0) for each t, s ≥ 0

(ii) ‖Stu0 − Stv0‖ ≤ ‖u0 − v0‖

(iii) For each u0 ∈ L1 ∩ L∞ the trajectory t 7→ Stu0 yields the unique
bounded entropy admissible solution of (1.3).

(iv) If u0(x) ≤ v0(x) for every x ∈ R, then Stu0(x) ≤ Stv0(x) for each
x ∈ R, t > 0.

Proof. Fix any initial datum u0 ∈ L1 ∩ BV . With the front tracking al-
gorithm we can build an admissible solution with initial datum u0 and by
Corollary 1.11 we know that it is unique. Therefore the semigroup S is de-
fined at least on L1∩BV . By density of BV functions in L1, we can extend
the domain of S to the entire L1 by setting

Stu0 = lim
w0→u0,
w0∈BV

Stw0 (1.23)

Thanks to the contractive property of Corollary 1.11, the limit is well defined
and satisfies (i) and (ii). Moreover, by dominated convergence theorem, (iii)
holds. To prove (iv), we can assume that, by density of BV in L1, u0, v0 ∈
BV ∩ L1. In this case, the be obtained as the limit of the front tracking
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approximations constructed above. Therefore we can reduces ourselves to
prove that if u0 and v0 are piecewise constants initial data in BV ∩L1 that
satisfy u0 ≤ v0, the corresponding approximate solutions u, v satisfy

u(x, t) ≤ v(x, t), for all t ≥ 0, x ∈ R (1.24)

If (1.24) fails, there is a first time τ at which (1.24) ceases to hold (possibly
τ = 0). In particular, for all t ≤ τ it holds u(x, t) ≤ v(x, t). Since u, v are
piecewise constant, there is a small δ for which the solutions u, v, in [τ, τ+δ,
are obtained by solving the Riemann problems at the points of discontinuity
for u, v. To obtain a contradiction, it will be sufficient to show that the (iv)
holds for the solutions of the approximate Riemann problem with flux fν ,
that is, when u0, v0 are constant at the left and at the right of the origin and
with values respectively ul, ur and vl, vr. Since if max{ul, ur} ≤ min{vl, vr},
we only have to analyze two cases:

Case 1. ul ≤ vl ≤ ur ≤ vr. Observe that the solution of the Riemann
problem with flux fν satisfies the following property: at a point (x, t) we
have u(x, t) = w if and only if the line with slope x/t supports the graph of
fν at (w, fν(w)) (restricted to the interval [ul, ur]); in mathematical terms

fν(w)− x

t
w = min

s∈[ul,ur]

{
fν(s)− x

t
s
}

This implies that

u(x, t) = argmin[ul,ur]

{
fν(s)− x

t
s
}
≤ argmin[vl,vr]

{
fν(s)− x

t
s
}

that proves the result in Case 1.
Case 2. ur ≤ vr ≤ ul ≤ vl. In this case the solution of the Riemann

problem with flux fν satisfies the following property: at a point (x, t) we
have u(x, t) = w if and only if the line with slope x/t supports from above the
graph of fν at (w, fν(w)) (restricted to the interval [ul, ur]); in mathematical
terms

fν(w)− x

t
w = max

s∈[ul,ur]

{
fν(s)− x

t
s
}

This implies that

u(x, t) = argmax[ul,ur]

{
fν(s)− x

t
s
}
≤ argmax[vl,vr]

{
fν(s)− x

t
s
}

that proves the result also in Case 2., and the proof is completed.
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1.6. Lax-Oleinik formula

Lax-Oleinik formula is a classical formula that provides a representation for
the unique entropy solution u of the problem (1.3) in case the flux f is convex
and of superlinear growth. Let’s briefly motivate idea behind the formula.
One can prove that, for a given f convex and superlinear and v0 ∈ Lip(R),
the value function

v(x, t) = min
y∈R

{
v0(y) + f∗

(
x− y
t

)}
(1.25)

is the unique viscosity solution (see [14]) of the initial value problem for the
Hamilton-Jacobi equation in one space dimension

vt(x, t) + f(vx(x, t)) = 0 (x, t) ∈ R× (0,+∞),
v(x, 0) = v0(x) x ∈ R (1.26)

Let v be the solution of the problem above. We now proceed formally and
differentiate (1.6) with respect to x to get

(vx)t + (f(vx))x = 0
Therefore, the function u = vx should be a good candidate to solve the

conservation law (1.1) with initial data (v0)x. The idea is thus to differentiate
the value function v with respect to x . In fact, one can prove that under
our assumptions, v is Lipschitz (therefore differentiable almost everywhere
by Rademacher theorem) and that the following theorem holds (see [14]):

Proposition 1.13 (Lax-Oleinik formula). Assume f : R → R is smooth
and uniformly convex and u0 ∈ L∞.

1. For each t > 0 there exists for all but at most countably many points
x ∈ R a unique point y(x, t) such that

v(x, t) =
ˆ y(x,t)

0
u0(ξ) dξ + tf∗

(
x− y(x, t)

t

)

2. The mapping x 7→ y(x, t) is nondecreasing

3. For each t > 0 one has

v(x, t)x = (f ′)−1
(
x− y(x, t)

t

)
for a.e. x.
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Note that now it is immediate to check that v(x, t)x is the unique entropy
solution of (1.3). Indeed, it is trivial to check that it is a weak distributional
solution and that the initial condition is satisfied. We only need to check
that at the points of jump there holds v(x−, t)x > v(x+, t)x. This is clear
because the unique viscosity solution v is semiconcave (see [14]), so that the
the points in which the derivative of v(·, t) is discontinuous can only be ”∧”-
shaped. Another, more immediate way, to see it, is to notice that (f ′)−1 is
increasing and x 7→ y(x, t) is increasing, so that at the jump points it must
satisfy y(x−, t) < y(x+, t). From this the conclusion follows immediately.

1.7. Generalized characteristics

In this section we discuss the method of generalized characteristics, intro-
duced by Dafermos in the classical paper [11]. Here we briefly recall some
results of [11] that will be widely used in the following chapters. Generalized
characteristics really are a powerful tool in the context of conservation laws
for studying the structure of solutions. The main drawback is that their
use is essentially limited to conservation laws with stricly convex flux, and
the theory does not apply in the general case, although recent developments
show how to extend this approach for more general flux function (see [6]).
Accordingly, through this chapter we assume f ∈ C2 and strictly (but not
necessarily uniformly) convex, i.e. f ′′ is nonnegative and does not vanish
identically on any non degenerate interval. We know that, under this hy-
pothesis on the flux, the solution u of the conservation law (1.3) is in BVloc
(see the first section of the chapter on attainable profiles) and admits left
and right limits u(x−, t), u(x+, t) at every point. Then, with u being an
admissible solution of (1.3), we can give the following definition

Definition 1.14 (Generalized characteristics). A Lipschitz continuous curve
ζ : [a, b]→ R is called a characteristic if for almost all t ∈ [a, b],

ζ̇(t) ∈ [f ′(u(ζ(t)+, t)), f ′(u(ζ(t)−, t))]. (1.27)

By the theory of contingent equations [15], through any point (x, t) there
is at least one forward characteristic defined on an interval [t, t+ δ) and at
least on backward characteristic, defined on an interval (t− δ, t]. If there is
more then one forward (backward) characteristic, the funnel spanned by a
minimal and maximal characteristic is filled with forward (backward) char-
acteristic through the point (x, t).

One of the main features of generalized characteristics is the following.
Since the speed of ζ may belong to a nondegenerate interval, one might
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expect a characteristic to be able to travel with a lot of different speeds.
Actually, the following proposition shows that, if ζ is characteristic, it can
travel either with classical speed of with the Rankine-Hugoniot speed.

Proposition 1.15. Let ζ : [a, b]→ R be a characteristic for a solution u to
(1.1). Then for a.e. t ∈ [a, b],

ζ̇(t) =


f ′(u(ζ(t)±, t)) if u(ζ(t)−, t) = u(ζ(t)+, t),

f(u(ζ(T )+,t))−f(u(ζ(t)−,t))
u(ζ(t)+,t)−u(ζ(t)−,t) if u(ζ(t)−, t) > u(ζ(t)+, t).

(1.28)

The content of this Proposition follows immediately from a more general
result, that we state here, which will be of fundamental importance in our
work on initial data identification (see the next chapters).

Lemma 1.16. Let α : [a, b] → R and β : [a, b] → R be Lipschitz curves,
0 ≤ a < b <∞. Then for almost all σ, τ with a ≤ σ < τ ≤ b,

ˆ β(τ)

α(τ)
u(x, τ) dx−

ˆ β(σ)

α(σ)
u(x, σ) dx

=
ˆ τ

σ
{f(u(α(t)−, t))− α̇(t)u(α(t)−, t)} dt

−
ˆ τ

σ

{
f(u(β(t)−, t))− β̇(t)u(β(t)−, t)

}
dt (1.29)

Proof. The result is a straightforward consequence of the fact that ut +
f(u)x = 0 in the sense of distributions.

Now we introduce the concept of genuine characteristic. Essentially, a
genuine characteristic is a characteristic that travels with classical speed.

Definition 1.17. A characteristic ζ : [a, b]→ R is called genuine if

u(ζ(t)−, t) = u(ζ(t)+, t) for almost all t ∈ [a, b]. (1.30)

The next result establishes existence of genuine backward characteristics
through any point (x̄, t̄).

Theorem 1.18. For any point (x̄, t̄), t > 0, the minimal and maximal
backward characteristics ζ−(t; x̄, t̄) and ζ+(t; x̄, t̄) through (x̄, t̄) are genuine.
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Proof. We just try to give an idea of why this is true, delegating the details
of the proof to [11] (see also [12] for a different approach).

Assume at some time t ≤ t̄ the characteristic ζ−(·, t̄, x̄) is not genuine.
Then by strict convexity and by the entropy admissibility conditions it must
hold

f ′(u(ζ−(t)−, t)) > f ′(u(ζ−(t)−, t)), f ′(u(ζ−(t)+, t)) > f ′(u(ζ−(t)+, t))

But then it should be true that from the point (ζ−(t), t) there is a backward
characteristic that starts with speed f ′(u(ζ−(t)−, t)) that is strictly greater
than the speed of the characteristic ζ−(·; x̄, t̄), so that this is a contradiction
to minimality.

Theorem 1.19. Let ζ(·) be a genuine characteristic on [a, b]. Then there is
a constant ū such that ζ(·) is a straight line with slope f ′(ū) and in particular

u(ζ(t)−, t) = ū = u(ζ(t)+, t), a.e. on (a, b) (1.31)

Proof. Choose any σ < τ in the interval [a, b]. We apply Lemma 1.16 to the
curves ζ(·)|[σ,τ ] and ζ(·)|[σ,τ ] − ε, with ε > 0 and find

ˆ ζ(τ)

ζ(τ)−ε
u(x, τ) dx−

ˆ ζ(σ)

ζ(σ)−ε
u(x, σ) dx

=
ˆ τ

σ
f(u(ζ(t)− ε−, t))− f(u(ζ(t)+, t)

− f ′(u(ζ(t)+, t)) [u(ζ(t)− ε−, t)− u(ζ(t)+, t)] dt ≥ 0 (1.32)

This implies that

u(ζ(τ)−, τ) ≥ u(ζ(σ)−, σ), σ < τ (1.33)

Applying Lemma 1.16 to the curves ζ(·)|[σ,τ ] and ζ(·)|[σ,τ ] + ε, with ε > 0,
we find
ˆ ζ(τ)+ε

ζ(τ)
u(x, τ) dx−

ˆ ζ(σ)+ε

ζ(σ)
u(x, σ) dx

=
ˆ τ

σ
f(u(ζ(t)−), t)− f(u(ζ(t) + ε+, t)

− f ′(u(ζ(t)−, t)) [u(ζ(t)−, t)− u(ζ(t) + ε+, t)] dt ≤ 0 (1.34)

that yields
u(ζ(τ)+, τ) ≤ u(ζ(σ)+, σ) (1.35)
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Using the fact that ζ is genuine and (1.33), (1.35), with σ ∈ (a, b) and τ
fixed, we obtain that

u(ζ(σ)−, σ) = u(ζ(σ)+, σ) = u(ζ(τ), τ) ·= ū, for a.e. σ ∈ (a, b)
(1.36)

and the result is proved.

Remark 1.20. Notice that since the minimal and maximal backward char-
acteristics through any point (x̄, t̄) do not escape in finite time (they are
straight lines), every other backward characteristic from (x̄, t̄) must be de-
fined for all times (0, t̄).

Finally, we deduce a very important Corollary

Corollary 1.21. Two genuine characteristics may intersect only at their
end points.

Remark 1.22. For every point (x̄, t̄) there is only one forward characteristic.
In fact, assume there are two of them, say α < β defined on an interval
(t, t + δ). Take a point s ∈ (t, t + δ) and consider the maximal backward
characteristic ζ+(·;α(s), s) from (α(s), s) and the minimal backward char-
acteristic ζ−(·;β(s), s) from (β(s), s). Then we know that they are genuine,
so that they intersect only at their end points. But on the other hand we
have

ζ+(t̄;α(s), s) ≥ x̄ ≥ ζ−(t̄;β(s), s)
and this is a contradiction.

Theorem 1.23. At every point (x̄, t̄), the minimal and maximal backward
characteristics from (x̄, t̄) have slopes f ′(u(x̄−, t)) and f ′(u(x̄+, t)), respec-
tively.

Proof. First assume that (x̄, t̄) is a point of continuity for u, so that the
minimal and maximal backward characteristics from (x̄, t̄) coincide. In this
case, with the same arguments of the proof of Lemma 1.19, with τ = t, we
find that the corresponding value ū is ū = u(ζ(t̄), t̄) and the result holds in
this case.

Now let (x̄, t̄) be a discontinuity point, i.e. it holds u(x̄−, t̄) ≥ u(x̄+, t̄).
Since u(·, t̄) is BVloc it only has an at most countable number of discontinuity
points. Therefore there exists a sequence of continuity points xn ↑ x̄, n ∈ N.
Let ζn : [0, t̄] → R be the unique backward (genuine) characteristic from
(x̄, t̄). Then, by Corollary 1.21, it must hold

ζ1(t) < ζ2(t) < . . . < ζn(t) < . . . ∀t ∈ (0, t̄) (1.37)
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and the sequence ζn converges uniformly to a line ζ : [0, t̄]→ R whose slope
is the limit of the slopes of the lines ζn, i.e. f ′(u(x̄−, t̄)). By the theory of
contingent equations in [15], the line ζ satisfies the differential inclusion

ζ̇(t) ∈ [f ′(u(ζ(t)−, t), u(ζ(t)+, t)], for a.e. t ∈ (0, t̄) (1.38)

Therefore ζ is a backward characteristic from the point (x̄, t̄). Moreover, it
must be the minimal backward characteristic, by Corollary 1.21. Then the
result is proved for the minimal characteristic. The proof that the maximal
characteristic has slope f ′(u(x̄+, t̄)) is entirely analogous and is omitted.



Chapter 2

Entropy solutions of type (A,B)

Abstract. In this chapter we present the theory of AB-entropy solu-
tions for scalar conservation laws with discontinuous flux [1]. Following
[9], we prove uniqueness with an adaptation of the Kružkov doubling
of variables method, while existence of solutions can be proved with a
modified version of the front-tracking algorithm (see [16]).

In this chapter we study the initial value problem for the scalar conser-
vation law

ut + f(x, u)x = 0, x ∈ (0,+∞)× R (2.1)

u(0, x) = u0(x), x ∈ R (2.2)

where the flux function f is such that

f(x, u) = H(x)fl(u) + (1−H(x))fr(u), (2.3)

fl, fr are uniformly convex functions and H is the Heaviside function.
It’s well known, as we saw in the previous chapter, that equations like

(2.1) in general do not admit classical solutions, even in the continuous flux
case, no matter how smooth the initial data are. Therefore it arises the need
for weak distributional solutions. We recall also that even when the flux f
is a Lipschitz continuous function, imposing that u satisfies the equation in
distributional sense is not enough to select a unique solution. In order to
achieve uniqueness one requires that the entropy conditions hold.

In the case when the flux f is the discontinuous function (2.3), one re-
quires a solution u to (2.1) to be in particular an entropy admissible solution
at the left and at the right, separately, of the interface. This, thanks to a
result in [22], implies that the strong traces

ul(t) = lim
x→0−

u(t, x), ur(t) = lim
x→0+

u(t, x) (2.4)

exist. A straightforward consequence of is that a weak distributional solution
of (2.1) has to satisfy the Rankine-Hugoniot condition along the discontinu-
ity x = 0:

fl(ul(t)) = fr(ur(t)), for a.e. t > 0 (2.5)

However, this is provably not enough to achieve uniqueness, and additional
constraints must be added along the interface x = 0. In fact, in [1], the au-
thors pointed out that there are infinitely many L1-contractive semigroups,
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each one associated with a particular couple of values (A,B) (a connection)
such that fl(A) = fr(B). For this reason, there has been a great deal of
research to develop a well posedness theory, and several different interface
admissibility conditions were taken into consideration, each one leading to,
possibly, a different solution (see e.g. [5, 9, 13, 18]). For us, u is a solution of
(2.1), (2.2) if it satisfies an interface entropy condition associated to a inter-
face connection (A,B), introduced for the first time in [1]. More specifically,
once fixed a connection (A,B), u must satisfy, in the sense of distributions,
with cAB(x) = H(x)A+ (1−H(x))B,∣∣∣u− cAB∣∣∣

t
+
[
sgn(u− cAB)(f(x, u)− f(x, cAB))

]
x
≤ 0, in D′ (2.6)

Using this kind of enforced entropy conditions, it’s possible to prove unique-
ness using an adapted version of the Kružkov doubling of variables argument
(see [9, 16]). Existence can be obtained with a modified version of the front-
tracking algorithm, described in [16], in which the authors also provide a
new formulation of the problem in terms of Riemann solvers, that turns out
to be equivalent to the concept of AB-entropy solutions described above.

In the following sections we provide a detailed introduction to the theory
of AB-entropy solutions, exploring in more details what already mentioned
in this introduction.

2.1. Basic definitions and general setting

Referring to the conservation law (2.1), we make the following assumptions
on the fluxes fl, fr. As already said, we assume that they are C2(R) uniformly
convex functions, i.e. there exists a > 0 such that

f ′′l , f
′′
r ≥ a > 0 (2.7)

Moreover we assume that fl and fr coincide at two points of their domain.
Up to a reparametrization of u, we assume that

fl(0) = fr(0), fl(1) = fr(1) (2.8)

We assume also that
θl ≥ 0, θr ≤ 1 (2.9)

Let’s begin with the definition of connection.

Definition 2.1 (connection (A,B)). A pair of values (A,B) is called a con-
nection if
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u

fl fr

A Bθl θr

Figure 2.1: An example of connection (A,B) with fl, fr strictly convex fluxes

1. fl(A) = fr(B)

2. A ≤ θl and B ≥ θr

Throughout the next chapters we will use the following notation: we
denote by f−1

l,−
·= (fl|(−∞,θl])−1, f−1

r,−
·= (fr|(−∞,θr])−1 the inverse of fl, fr

restricted to their decreasing part and by f−1
l,+

·= (fl|[θl,+∞))−1, f−1
r,+

·=
(fr|[θr,+∞))−1 the inverse of fl, fr restricted to their increasing part. More-
over we set

πrl,±
·= f−1

l,± ◦ fr, πlr,±
·= f−1

r,± ◦ fl (2.10)

A B

Figure 2.2: The stationary undercompressive solution cAB .

For a connection (A,B) we let

cAB(x) = H(x)A+ (1−H(x))B (2.11)

In particular the second condition means that the function cAB(x) is a weak
stationary undercompressive (or marginally undercompressive) solution of
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(2.1), since the characteristics diverge, or are parallel to, the discontinuity
interface (see Figure 2.2).

Definition 2.2 ((A,B)-entropy solution). Let (A,B) be a connection. A
function u ∈ L∞(R× [0,+∞)) is said to be and AB-entropy solution of the
problem (2.1),(2.2) if the following holds

1. u is a distributional solution of (2.1), that is, for all test functions
φ ∈ D(R× [0,+∞)) holds

ˆ ∞
−∞

ˆ ∞
0

(uφt + f(x, u)φx) dx dt = 0 (2.12)

2. u is a Kružkov entropy solution of (2.1),(2.2) on (R \ {0})× (0,+∞),
that is, t 7→ u(·, t) is a continuous map from [0,+∞) → L1

loc(R) and
for any test function 0 ≤ φ ∈ D((−∞, 0)× (0,+∞)) holds
ˆ 0

−∞

ˆ ∞
0
|u− k|φt + sgn(u− k) (fl(u)− fl(k))φx dx dt ≥ 0, ∀k ∈ R

(2.13)
and for any test function 0 ≤ φ ∈ D((0,+∞)× (0,+∞)) holds
ˆ ∞

0

ˆ ∞
0
|u− k|φt + sgn(u− k) (fl(u)− fl(k))φx dx dt ≥ 0, ∀k ∈ R

(2.14)

3. u satisfies a Kružkov-type entropy inequality, depending on the con-
nection (A,B), that is, for any test function 0 ≤ φ ∈ D(R× (0,+∞))
holdsˆ ∞
−∞

ˆ ∞
0

∣∣∣u− cAB∣∣∣φt+sgn(u−cAB)
(
f(x, u)− f(x, cAB)

)
φx dx dt ≥ 0

(2.15)

Remark 2.3. Notice that, since the fluxes fl, fr are uniformly convex, the
solution u, that is in particular an entropy solution of (2.1) in (−∞, 0) ×
(0,+∞) and in (0,+∞)× (0,+∞), is such that u(·, t) is in BVloc(R \ {0}).
Moreover, thanks to a result in [22], since u is (in particular) a distributional
solution of ut + fl(u)x = 0 on (−∞, 0)× (0,+∞) and of ut + fr(u)x = 0 on
(0,+∞) × (0,+∞) and the fluxes fl, fr are strictly convex, it still admits
left and right strong traces at x = 0, i.e. the limits

u(0−, t) =: ul(t), u(0+, t) =: ur(t) (2.16)

exist for a.e. t > 0.
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The following Lemma is a direct consequence of the definition and of the
existence of the left and right traces ul, ur.

Lemma 2.4. A function u ∈ L∞(R × [0,+∞)) is an AB-entropy solution
of the problem (2.1),(2.2) if and only if it is a Kružkov entropy solution of
(2.1),(2.2) on (R \ {0}) × (0,+∞), and it is a function with traces (2.16)
that satisfy a.e. t > 0 the Rankine-Hugoniot condition at the interface

fl(ul(t)) = fr(ur(t)) (2.17)

and
IAB(ul(t), ur(t)) ≥ 0 (2.18)

where

IAB(ul(t), ur(t))
·= sgn(ur(t)−B) (fr(ur(t))− fr(B))

− sgn(ul(t)−A) (fl(ul(t))− fl(A)) (2.19)

Proof. Assume u is a solution in the sense of Definition 2.2. Fix any test
function ϕ ∈ C1

c (R+) and let

θε(x) =


1
ε (ε+ x), x ∈ [−ε, 0],
1
ε (ε− x), x ∈ [0, ε],
0, |x| ≥ ε,

(2.20)

With a density argument we find that the function φ(x, t) = ϕ(t)θε(x) can
be used as an admissible test function in (2.12). Then we obtain

0 =
ˆ ˆ

uϕ′(t)θε(x) dx dt

+ 1
ε

ˆ
R+

ˆ ε

0
fr(u)ϕ(t) dx dt−

ˆ
R+

ˆ 0

−ε
fl(u)ϕ′(t) dx dt (2.21)

Clearly, as ε goes to zero, the first term goes to zero as well. Thanks to
the existence of the strong traces ul, ur at the left and at the right of the
interface, in the limit we obtain that

ˆ
R+

(fr(ul(t))− fl(ul(t)))ϕ(t) dt = 0, ∀ ϕ ∈ C1
c (R+) (2.22)

and this implies the validity of (2.17).
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Conversely, assume that (2.17) holds. Then for δε = 1 − θε, any test
function φ ∈ C1(R+ × R), and letting φε(x, t) = φ(x, t)δε(x), we have
ˆ ˆ

uφεt + f(u, x)φεx dx dt =
ˆ ˆ

(uφt + f(u, x)φx) δε(x) dx dt

+ 1
ε

ˆ
R+

ˆ ε

0
fr(u)φ dx dt− 1

ε

ˆ
R

ˆ 0

−ε
fl(u)φ dx dt (2.23)

By approximation and by (2.13), (2.14) (that in particular imply that u is a
distributional solution at the left and at the right of the interface, separately)
the integral in the left hand side is equal to zero. Passing to the limit we
get

lim
ε→0

ˆ ˆ
(uφt + f(u, x)φx) δε(x) dx dt =

ˆ ˆ
(uφt + f(u, x)φx) dx dt

=
ˆ
R+
φ(0, t)(fr(ur(t)− fl(ul(t)) dx dt = 0 (2.24)

and this concludes the proof. In an entirely similar way one can show also
the equivalence between (2.15) and (2.18).

Remark 2.5. Notice that under our hypothesis on the fluxes, it is not difficult
to see that (2.18) is equivalent to

fl(ul(t)) = fr(ur(t)) ≥ fl(A) = fr(B)

(ul(t) ≤ θl, ur(t) ≥ θr)⇒ ul(t) = A, ur(t) = B
(2.25)

for a.e. t > 0.

2.2. Uniqueness

We now prove uniqueness of the AB-entropy solutions. The proof of unique-
ness exploits a modification of the Kružkov doubling method, adapted to
(A,B) connections. The proof is taken from [9]. The key point of the proof,
where the interface conditions come into play, is proving that the quantity
E that appears in (2.35) is actually negative. That is the only point where
we use the entropy conditions.

Theorem 2.6 (L1 stability and uniqueness). Let u and v be two (A,B)-
entropy solutions of the problem (2.1) with initial data u0, v0 ∈ L∞(R). Let
L be a Lipschitz constant for fl, fr in the interval [−M,M ], M > 0, and

|u(x, t)| ≤M, |v(x, t)| ≤M, ∀ x, t (2.26)
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Then for t ∈ (0,+∞)
ˆ r

−r
|u(x, t)− v(x, t)| dx ≤

ˆ r+Lt

−r−Lt
|u0(x)− v0(x)|dx, for all r > 0 (2.27)

In particular, there exists a unique entropy solution of type (A,B) of (2.1),(2.2).

Proof. The proof is based on Kružkov doubling method, with one extra
difficulty due to the fact that we have to deal with the interface at x = 0.

Consider a specific test function φ, defined as follow. Let 0 ≤ δ ∈ R and
δ ∈ C1(R) with compact support contained in (−1, 1) such that its integral
is 1, and let δh(t) := hδ(ht). Let ψ(X,T ) ∈ D((0,+∞) × (0,+∞)). Then
define φ as

φ(x, s, y, t) := ψ

(
x+ y

2 ,
t+ s

2

)
δh

(
x− y

2

)
δh

(
t− s

2

)
Note that as h increases, the mass becomes more and more concentrated
near the set x = y and t = s. We rewrite (2.13), for two solutions u and v,
using as test function for u the function (x, s) 7→ φ(x, s, y, t) and for v the
function (y, t) 7→ φ(x, s, y, t). Hence we obtain
ˆ +∞

0

ˆ +∞

0
|u(x, s)− k|φs(x, s, y, t)

+ sgn(u(x, s)− k) (f(x, u(x, s))− f(x, k))φx(x, s, y, t) dx ds ≥ 0 (2.28)

ˆ +∞

0

ˆ +∞

0

∣∣v(y, t)− k′
∣∣φt(x, s, y, t)

+ sgn(v(y, t)− k′)
(
f(y, v(y, t))− f(y, k′)

)
φy(x, s, y, t) dy dt ≥ 0 (2.29)

Now let k = v(y, t), k′ = u(x, s), integrate the first inequality w.r.t. y, t
and the second inequality w.r.t. x, s, then take the sum. What we get is the
following inequality:
ˆ

(R+)4
|u(x, s)− v(y, t)| (φt + φs)

+ sgn(u(x, s)− v(y, t))(fr(u(x, s))− fr(v(y, t)))(φx + φy) dx ds dy dt ≥ 0
(2.30)

Notice that

(φx + φy)(x, s, y, t) = ψX

(
x+ y

2 ,
t+ s

2

)
δh

(
x− y

2

)
δh

(
t− s

2

)
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(φs + φt)(x, s, y, t) = ψT

(
x+ y

2 ,
t+ s

2

)
δh

(
x− y

2

)
δh

(
t− s

2

)
Then one gets
ˆ

(R+)4

[
|u(x, s)− v(y, t)|ψT

(
x+ y

2 ,
t+ s

2

)
+ sgn(u(x, s)− v(y, t))(fr(u(x, s))− fr(v(y, t)))

ψX

(
x+ y

2 ,
t+ s

2

)]
δh

(
x− y

2

)
δh

(
t− s

2

)
dx ds dy dt ≥ 0

With the change of variables X = x+y
2 , Y = x−y

2 , ;T = s+t
2 , S = s−t

2
and sending h→ +∞ we obtain

ˆ +∞

0

ˆ +∞

0
|u− v|ψt + sgn(u− v)(fr(u)− fr(v))ψx dx dt ≥ 0 (2.31)

Now let 0 ≤ α : R→ R be a continuous function with compact support
in [0, 1]. Then let

αh(x) = hα (hx) , βh(x) =
ˆ x

0
αh

Let ψ ∈ C1
c ([0,+∞)× (0,+∞). Notice

(ψβh)x = ψxβh + ψαh

(ψβh)t = ψtβh

Then using (2.31) with test function ψβh, passing to the limit for h→∞
and the existence of traces at x = 0+ yields
ˆ +∞

0

ˆ +∞

0
|u− v|ψt + sgn(u− v)(fr(u)− fr(v))ψx dx dt

+
ˆ +∞

0
sgn(ur(t)− vr(t))(fr(ur(t))− fr(vr(t)))ψ(0, t) dt ≥ 0 (2.32)

We can do the same in the region x < 0 and obtain a similar inequality, i.e.
ˆ +∞

0

ˆ 0

+∞
|u− v|ψt + sgn(u− v)(fl(u)− fl(v))ψx dx dt

−
ˆ +∞

0
sgn(ul(t)− vl(t))(fl(ul(t))− fl(vl(t)))ψ(0, t) dt ≥ 0 (2.33)
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Then for every ψ ∈ D(R× (0,+∞)), adding (2.32), (2.33), one obtains:

−
ˆ +∞

0

ˆ +∞

0
|u− v|ψt + sgn(u− v)(f(u, x)− f(v, x))ψx dx dt ≤ E (2.34)

where

E =
ˆ +∞

0
[sgn(u(x, t)− v(x, t))(f(x, u(x, t))− f(x, v(x, t)))]x=0+

x=0−ψ(0, t) dt

and [·]x=0+
x=0− denotes the limit from the right minus the limit from the left at

x = 0. If we can prove that E ≤ 0, the proof is concluded in the exact same
way of the classical continuous flux case.

Let’s prove that for each t such that fl(ul(t)) = fr(ur(t)) and fl(vl(t)) =
fr(vr(t)) it holds

sgn(ur(t)− vr(t))(fr(ur(t))− fr(vr(t)))
− sgn(ul(t)− vl(t))(fl(ul(t))− fl(vl(t))) ≤ 0 (2.35)

This is enough to ensure that E ≤ 0 since the Rankine-Hugoniot condition
at the interface holds for almost every t. Without loss of generality, assume
ur(t) ≥ vr(t). If ur(t) = vr(t) or ul(t) = vl(t), the left hand side of (2.35)
is zero. Then assume ur(t) > vr(t). If ul(t) > vl(t), the left hand side of
(2.35) is again zero, thanks to the Rankine-Hugoniot condition. Otherwise,
if ul(t) < vl(t), the left hand side of (2.35) is equal to

2(fr(ur(t))− fr(vr(t)))

Assume by contradiction that fr(ur(t)) > fr(vr(t)). Since ur(t) > vr(t),
this implies ur(t) ≥ B. On the other hand, by Rankine-Hugoniot, also
fl(ul(t)) > fl(vl(t)). Coupled with ul(t) < vl(t), this implies ul(t) ≤ A.
Then either ur(t) = B and ul(t) = A, and in this case the l.h.s. of (2.35)
becames exactly (2.18) for v, and therefore (2.35) is satisfied, and this is a
contradiction, or ur(t) > B and ul(t) < A. This last case cannot happen,
therefore the proof that E ≤ 0 is concluded.

Now the proof follows essentially in the same way of the continuous-flux
case, since we know that for every test function ψ

ˆ +∞

0

ˆ +∞

0
|u− v|ψt + sgn(u− v)(f(u, x)− f(v, x))ψx dx dt ≥ 0 (2.36)

The idea is to choose a test function that approximates the trapezoid

Ω = {(x, t) : τ0 ≤ t ≤ τ, |x| ≤ R+ L(τ − t)} (2.37)
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In order to do this we define

ψ(x, t) ·= [αh(t− τ0)− αh(t− τ)] · [1− αh(|x| −R− L(τ − t))]

Now we use this ψ in inequality (2.36). With some easy calculations we
find that
ˆ ˆ

|u(x, t)− v(x, t)| [δh(t−τ0)−δh(t−τ)]·[1−αh(|x|−R−L(τ−t))] dx dt

≥
ˆ ˆ {

sgn(x)[f(u(x, t), x)− f(v(x, t), x))]sgn(u(x, t)− v(x, t))

+ L |u(x, t)− v(x, t)|
}

· [αh(t− τ0)− αh(t− τ)]δh(|x| −R− L(τ − t)) dx dt (2.38)

Since L is a Lipschitz constant for both fl, fr on the interval [−M,M ] and
by assumption ‖u‖L∞ , ‖v‖L∞ ≤M , we have |f(u)− f(v)| ≤ L |u− v|. This
implies that the right hand side of (2.38) is positive:
ˆ ˆ

|u(x, t)− v(x, t)| [δh(t−τ0)−δh(t−τ)]·[1−αh(|x|−R−L(τ−t))] dx dt ≥ 0
(2.39)

Letting h→∞ we obtain
ˆ
|x|≤R

|u(x, τ)− v(x, τ)| ≤
ˆ
|x|≤R+L(τ−τ0)

|u(x, τ0)− v(x, τ0)|dx (2.40)

and the statement of the theorem follows letting τ0 → 0.

2.3. Existence

In this section we prove existence for the problem (2.1), (2.2) with an
adapted version of the front-tracking algorithm. In order to define the al-
gorithm, we need to know how to solve a Riemann problem when a front
interacts with the interface. In [16] the authors introduced a new formu-
lation of the AB-entropy condition in terms of Riemann solvers, that they
used to define the front-tracking approximations. In the following section
we present that approach, starting with the definition of Riemann solver.

2.3.1. Riemann solvers As already said, we mainly follow the lines of
[16]. A Riemann solver is a function that tells us how to solve a Riemann
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problem with piecewise constant initial data of the form

u0(x) =
{
ul x < 0
ur x > 0

(2.41)

This approach has the advantage of providing a complete description of how
to solve a Riemann problem for (A,B) entropy solutions. For this reason,
we report here the main lines of that paper. Also, for continuity with the
rest of the thesis, we reformulate everything using convex fluxes, instead of
concave as done in [16]. Let’s give the definition of Riemann solver

Definition 2.7 (Riemann solver). A Riemann solver is a function

R : [0, 1]× [0, 1]→ [0, 1]× [0, 1]

(ul, ur) 7→ (R1(ul, ur), R2(ul, ur)) = (u−, u+)

such that

1. fl(u−) = fr(u+)

2. the waves (ul, u−) and (u+, ur) have respectively negative and positive
speed

3. the function (ul, ur) 7→ (fl(u−), fr(u+)) is continuous

4. R(R(ul, ur)) = R(ul, ur) for every ul, ur ∈ [0, 1]

5. for every (ul, ur) = R(ul, ur) and ũ such that the wave (ũ, R1(ul, ur))
has positive speed, it holds

fl(R1(ũ, ur)) ∈ [min{fl(ul), fl(ũ)},max{fl(ul), fl(ũ)}] (2.42)

6. for every (ul, ur) = R(ul, ur) and ũ such that the wave (R2(ul, ur), ũ)
has negative speed, it holds

fr(R2(ul, ũ)) ∈ [min{fr(ur), fr(ũ)},max{fr(ur), fr(ũ)}] (2.43)

For every Riemann solver, one has an associated notion of solution to
the problem (2.1),(2.2):

Definition 2.8 (Solution associated to a Riemann solver). Fix a Riemann
solver R. A function u ∈ L∞(R × [0,∞)) is an admissible solution to
(2.1),(2.2) associated to the Riemann solver R if
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1. u satisfies properties 1., 2. of Definition 2.1.

2. for almost every t > 0, it holds

R(ul(t), ur(t)) = (ul(t), ur(t))

that is, (ul(t), ur(t)) is an equilibrium for a.e. t > 0.

In [16], Riemann solvers are classified as follows. Notice that elements
in the image of R are equilibria for the Riemann solver by property 4. of
Definition 2.7. Consider the function

[0, θl]× [θr, 1]→ R

(ul, ur) 7→ fl(u−) = fr(u+)

An application of property 3. of Definition 2.7 shows that this function
is continuous. Let X be the image of this function. In particular it is a
closed, non empty interval. Now assume that X is actually a singleton, say
X = {γ}. Then we have the following

Proposition 2.9. If R is a Riemann solver such that the set X is a single-
ton, the Riemann solver is completely determined by the value γ such that
X = {γ}.

Proof. We take into account four different cases.

1. (ul, ur) ∈ [0, θl] × [θr, 1]. Since the wave (ul, u−) must have negative
speed, u− ∈ [0, θl]. Similarly, since the wave (u+, ur) must have pos-
itive speed, u+ ∈ [θr, 1]. Then, by definition of X, we must have
fl(u−) = fr(u+) = γ. Thus u−, u+ are uniquely determined.

2. (ul, ur) ∈ [0, θl] × [0, θr]. As before, we must have u− ∈ [0, θl]. More-
over, either u+ = ur or u+ ∈ [θr, 1] with fr(u+) > fr(ur). We now
split the proof into two subcases

(a) fr(ur) < γ. Consider the continuous function [0, 1] 3 ur 7→
fr(u+), where (u−, u+) = R(ul, ur). Notice that, by the previu-
ous case, if ur ≥ θr, one has fr(u+) = γ. Therefore, by continuity,
it must be fr(u+) = γ for all ur such that fr(ur) < γ. Thus in
this case the solution to the Riemann problem is u+ = f−1

r,+(γ)
and ul = f−1

l,−(γ).
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(b) fr(ur) ≥ γ. In this case one must have u+ = ur and u− =
πrl,−(ur). Otherwise should be u+ ∈ [θr, 1] with fr(u+) > fr(ur) ≥
γ, but since (u−, u+) = R(u−, u+), this is in contradiction with
the analysis of case 1.

3. The case (ul, ur) ∈ [θl, 1] × [θr, 1] is entirely similar to the previuous
one. In particular

(a) fl(ul) ≥ γ implies u− = ul and u+ = πlr,+(ul).
(b) fl(ul) < γ implies u− = f−1

l,−(γ), u+ = f−1
r,+(γ).

4. (ul, ur) ∈]θl, 1] × [0, θr[. By the second property of the Definition of
Riemann solvers, we must have either u− ∈ [0, θl] and fl(u−) > fl(ul)
or u− = ul. Analogously, either u+ ∈ [θr, 1] and fr(u+) > fr(ur) or
u+ = ur. We have two cases

(a) max{fr(ur), fl(ul)} ≥ γ. Assume that fr(ur) ≥ fl(ul).
First let fr(ur) > fl(ul).
Assume by contradiction that u− = ul. It can’t be u+ = ur,
therefore it must be u+ ∈ [θr, 1] with fr(u+) > fr(ur) but this is
not an equilibrium. Therefore u− ∈ [0, θl] with fl(u−) > fl(ul).
This forces u+ = ur, and u− = πrl,−(ur).
Now let fr(ur) = fl(ul). We have two possibilities: either u− ∈
[0, θl] and u+ ∈ [θr, 1] with fl(u−) = fr(u+) ≥ γ or u− = ul and
u+ = ur. The first one cannot happen by case 1, so that u− = ul
and u+ = ur.
If instead we assume fr(ur) < fl(ul), we obtain u− = ul, u+ =
πlr,+(ul).

(b) Now assume max{fr(ur), fl(ul)} < γ. Assume that fr(ur) ≥
fl(ul). First let fr(ur) > fl(ul). Assume by contradiction that
u+ = ur. Then it must be u− ∈ [0, θl]. This is impossible by case
2.a. Then u+ ∈ [θr, 1] with fr(u+) > fr(ur). This forces u− ∈
[0, θl]. By case 1., we finally find u− = f−1

l,−(γ) and u+ = f1
r,+(γ).

Now let fr(ur) = fl(ul). Either u− = ul and u+ = ur or u− =
f−1
l,−(γ) and u+ = f1

r,+(γ). The first possibility can be proven to
be impossible by passing to the limit in the previous case. Then
u− = f−1

l,−(γ) and u+ = f1
r,+(γ).

If we assume instead that fr(ur) ≤ fl(ul), we get the same result.
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Let us summarize the content of the previous proposition. Given a pair
of states (ul, ur) we can determine the left and right traces (u−, u+) of the
solution to the Riemann problem with initial datum (2.41) as follows:

1. If ul ≤ θl and ur ≥ θr, then u− = f−1
l,−(γ) and u+ = f−1

r,+(γ).

2. If ul ≤ θl and ur ≤ θr and fr(ur) < γ, then u− = f−1
l,−(γ) and u+ =

f−1
r,+(γ).

3. If ul ≤ θl and ur ≤ θr and fr(ur) ≥ γ, then u+ = ur and u− = πrl,−(ur).

4. If ul ≥ θl and ur ≥ θr and fl(ul) ≥ γ, then u− = ul and u+ = πlr,+(ul).

5. If ul ≥ θl and ur ≥ θr and fl(ul) < γ, then u− = f−1
l,−(γ), u+ = f−1

r,+(γ).

6. If ul ≥ θl and ur ≤ θr and fr(ur) ≥ γ and fr(ur) > fl(ul), then
u− = πrl,−(ur) and u+ = ur.

7. If ul ≥ θl and ur ≤ θr and fr(ur) = fl(ul) ≥ γ, then u− = ul and
u+ = ur.

8. If ul ≥ θl and ur ≤ θr and fl(ul) ≥ γ and fr(ur) < fl(ul), then u− = ul
and u+ = πlr,+(ul).

9. If max{fr(ur), fl(ul)} < γ, then u− = f−1
l,−(γ), u+ = f−1

r,+(γ).
Keeping in mind the previous description of the Riemann solver Rγ , it

is immediate to reformulate Definition 2.8 in the following way
Lemma 2.10. A function u ∈ L∞((0,+∞)× R) is a solution in the sense
of Definition 2.8 if and only

1. u satisfies properties 1.,2. of Definition 2.1

2. for a.e. t, the couple (ul(t), ur(t)) satisfies the following conditions

(a) fl(ul(t)) = fr(ur(t)) ≥ γ.
(b) if ul(t) ≤ θl and ur(t) ≥ θr, then fl(ul(t)) = γ = fr(ur(t)).

Remark 2.11. It is immediate to check that this definition is equivalent to
Definition 2.1. Indeed, for a fixed connection (A,B), it is sufficient to take
γ = fl(A) = fr(B).

Now we want to use the above description in terms of Riemann solvers to
obtain existence of solutions with the front tracking algorithm. As already
said, this was done in [16] with a careful analysis of waves interactions at
the junction.
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2.4. Existence by front-tracking

In this section we face the question of existence of solutions using an adap-
tation of the classical front tracking algorithm. We mainly follow the lines of
[16], here and there giving some further explanations to make the exposition
more elementary. We remark that in [16] the fluxes fl, fr are assumed to
be concave, while here they are convex, but the analysis remains essentially
the same.

We briefly sketch how this adaptation of the front-tracking algorithm
works. We fix an initial datum u0 with bounded total variation and con-
sider a sequence of piecewise constant approximations u0,ν of u0 such that
TotVar u0,ν ≤ TotVar u0. As in the continuous flux case, at every point
of discontinuity x 6= 0 of the functions u0,ν we solve the Riemann problem
either with a single shock (in case u0,ν(x−) > u0,ν(x+)) or by rarefaction
wave (in case u0,ν(x−) < u0,ν(x+)). Since we want the approximation uν
to be piecewise constant, we split the rarefaction waves into rarefaction fans
made of non entropic shocks, each shock violating the entropy condition of
an amount that goes to zero as ν → ∞; we can do this for example by re-
quiring that for a fixed ν the shocks into which we split the rarefaction wave
do not have strength bigger than 1/ν. At x = 0 we solve the Riemann prob-
lem using the Riemann solver Rγ defined above. The approximate solution
uν is defined until the first time in which there is a wave-wave interaction,
or wave-junction interaction. When this happens, we solve a new Riemann
problem. If we want to have the approximation uν defined globally in time,
we need to control the growth of the number of fronts. In particular, we
need that the number of interactions does not become infinite in finite time.
Without loss of generality, we can assume that at every interaction time at
most two waves interact (if not, it is always possible to perturb the initial
data by a small quantity and avoid this situation). Assume there is a wave-
wave interaction between two waves (ul, um) and (um, ur). Then, since the
speed of the first wave must be bigger then the speed of the second wave,
and since the fluxes fl, fr are convex, it must hold ul > ur. Then from the
collision a single shock (ul, ur) emerges, so that the number of total fronts
decreases by one. Assume that there is a wave-interface interaction from
the left, so that there is wave (ũ, u−) that arrives at the junction from the
left. If the shock (ũ, u−) is entropic, we will prove below that at most two
shocks emerge from the interaction point, one at the left and one at the
right of the interface. Moreover, they can interact again with the interface
only after canceling one wave at left or at the right. If instead the shock
(ũ, u−) is non entropic, we will see that it might be that from the point of
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interaction emerges a rarefaction wave. However the strength of the rar-
efaction wave will be

∣∣ur − u+∣∣ = O(1) |u− − ũ| = O(1)ν−1. Therefore in
this case we solve the problem with a non entropic shock with strenght at
most O(1)ν−1 where O(1) is constant that depends only on the choice of
the fluxes fl, fr. This implies that there is a finite number of waves and the
wave front approximation uν can be globally defined in time.

In order to construct the front-tracking approximation we need to decide
how to solve the Riemann problem when a wave interacts with the junction.
Of course we will use the Riemann solver Rγ . The problem is that when a
non entropic shock reaches the junction: in that case we have to prove that
a small rarefaction wave might emerge from the interaction. We study the
case in which a wave (ũ, u−) reaches the junction from the left at some time
t̄ with the equilibrium before the interaction being (u−, u+), hence creating
a new equilibrium (ul, ur) after time t̄. Following [16] (although here the
definition are not precisely the same since we are dealing with convex fluxes;
moreover, for the fixed γ, we have (A,B) the corresponding connection) we
say that an equilibrium (u−, u+) is of type

(i) G/G if (u−, u+) ∈ [0, A]× [B, 1] (and then (u−, u+) = (A,B));

(ii) G/B if (u−, u+) ∈ [0, A]× [0, B];

(iii) B/G if (u−, u+) ∈ [A, 1]× [B, 1];

(iv) B/B if (u−, u+) ∈ [0, A]× [B, 1].

From the analysis of the Riemann solver Rγ above, we conclude that

(i) If (u−, u+) is G/G, since the wave (ũ, u−) has positive speed, ũ > Ā.
This implies that (ũ, u−) is a (entropy admissible) shock and that the
Riemann problem at the point (0, t̄) is solved with a single shock in
quadrant I, and the new equilibrium is (ul, ur) = (ũ, πlr,+(ũ)). Hence
the new equilibrium (ul, ur) will be B/G

(ii) If (u−, u+) is G/B, since the wave (ũ, u−) has positive speed, ũ > Ā.
This implies that (ũ, u−) is a (entropy admissible) shock and (exactly
as in the previous case) that the Riemann problem at the point (0, t̄)
is solved with a single shock in quadrant I, and the new equilibrium
is (ul, ur) = (ũ, πlr,+(ũ)). Hence the new equilibrium (ul, ur) will be
B/G.

(iii) Assume (u−, u+) is B/G. Since the wave (ũ, u−) has positive speed,
ũ ∈ [πl,−(u−), 1].
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(a) The wave (ũ, u−) is an entropic shock. Then the new equilibrium
is (ul, ur) = (ũ, πlr,+(ũ)) and the Riemann problem is solved with
a unique (entropic) shock in quadrant I. The new equilibrium is
of B/G type.

(b) The wave (ũ, u−) is a rarefaction front, i.e. ũ < u−. Then, the
new equilibrium is

(ul, ur) =


(A,B), if ũ ∈ [πl,−(ũ), A], G/G

(A,B), if ũ ∈ [A, Ā], G/G

(ũ, πlr,+(ũ)), if ũ ∈ [Ā, u−], B/G

(2.44)

and the Riemann problem is solved, respectively, with two rarefac-
tion fronts (one at the left, and one at the right of the interface);
with a shock in quadrant I and a rarefaction front in quadrant
II; with a single rarefaction front in quadrant II. Notice that each
time a rarefaction front emerges, it has strength of order O(1)/ν,
O(1) being a positive constant depending only on the fluxes fl, fr.

(iv) Assume (u−, u+) is B/B. Since the wave (ũ, u−) has positive speed,
ũ ∈ [πl,−(u−), 1].

(a) The wave (ũ, u−) is an entropic shock. Then the new equilibrium
is (ul, ur) = (ũ, πlr,+(ũ)) and the Riemann problem is solved with
a unique (entropic) shock in quadrant I. The new equilibrium is
of B/G type.

(b) The wave (ũ, u−) is a rarefaction front, i.e. ũ < u−. Then, the
new equilibrium is (ul, ur) = (πrl,−(u+), u+) and the Riemann
problem is solved with a unique (entropic) shock in quadrant I.
The new equilibrium is of G/B type.

It is important to notice that if until some time T at the interface do
not arrive waves from the right, but only from the left, the state u+ at the
right of the junction can change only one time from B to G and then stays
G until time T .

Now we prove a Lemma in which, for an approximate wave front tracking
solution ū, we estimate the total variation of the flux f(ū, x).

Lemma 2.12. Let ū be an approximate wave front tracking solution. For
every t ≥ 0 it holds

TotVar(f(ū(·, t), ·)) ≤ TotVar(f(ū(·, 0+), ·)) (2.45)
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ũ
u− u+

t̄

ul ur

Figure 2.3: A wave reaches the junction from the left at time t̄

Proof. If there is an interaction in x < 0 or x > 0 the total variation remains
unchanged or decreases. Assume that a wave (ũ, ul) reaches the junction
from the left and denote by t the time of interaction. Let (u−, u+) be the
new equilibrium at time t. Then

TotVar(f(ū(·, t+), ·))− TotVar(f(ū(·, t−), ·))

=
∣∣fl(ũ)− fl(u−)

∣∣+ ∣∣∣fr(u+)− fr(ur)
∣∣∣− |fl(ũ)− fl(ul)| = 0 (2.46)

thanks to point 5. of Definition 2.7 on the Riemann solver.
Assume now that a wave (ur, ũ) reaches the junction from the right at

time t̄. Then, this time using point 6. of Definition 2.7, we obtain

TotVar(f(ū(·, t+), ·))− TotVar(f(ū(·, t−), ·))

=
∣∣∣fr(ũ)− fl(u+)

∣∣∣+ ∣∣fr(u−)− fr(ul)
∣∣− |fl(ũ)− fl(ur)| = 0 (2.47)

We notice that there exist L,M > 0 such that, for every t, s > 0,

f(uν(·, t), ·) ≤M, ‖f(uν(·, t), ·)− f(uν(·, s), ·)‖L1 ≤ L |t− s| (2.48)

Moreover, by Lemma 2.4, for every t > 0,

TotVar(f(uν(·, t), ·)) ≤ TotVar(f(uν,0(·), ·)) ≤ TotVar(f(u0(·), ·)) (2.49)

Therefore we can apply Helly’s theorem and conclude that, possibly passing
to a subsequence, f(uν , ·) converges in L1

loc to a function f̄ .
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Now we can finally prove that there is a subsequence of uν converging
in L1

loc. To do this, the idea is to isolate the interface/junction by means of
two curves Y ν

−(t) ≤ 0 ≤ Y ν
+(t) defined by

1. Y ν
−(0) = 0 = Y ν

+(0)

2. Y ν
± follow the generalized characteristics of the front tracking approx-

imation uν and Y ν
−(t) = 0 (respectively Y ν

+(t) = 0) if Y ν
−(t) (respec-

tively Y ν
+(t))) reaches the interface and f ′l (uν(t, 0−) ≥ 0 (respectively

f ′r(uν(t, 0+) ≤ 0). Notice that, by the presence of rarefaction fronts, it
might be that at time t̄ a rarefaction front emerges from the interface
x = 0 at the point (0, t̄). In this case we choose to follow the maximal
forward characteristic.

Now we define the sets

Dν
1
·= {(x, t) : Y ν

−(t) ≤ x ≤ Y ν
+(t)} (2.50)

and Dν
2
·= (R+ × R) \ Dν

1 . In the set Dν
2 it is easy to control the total

variation since it is by definition not influenced by the interface, and an a
priori estimates holds. As of the set Dν

1 , we can observe that thanks to the
previous analysis for every t > 0 in the intervals (Y ν

−(t), 0] and (0, Y ν
+(t)]

there is at most a point x̃ such that

sgn(uν(x̃−, t)−A)sgn(uν(x̃+, t)−A) ≤ 0

sgn(uν(x̃−, t)−B)sgn(uν(x̃+, t)−B) ≤ 0

This means that we can always split the intervals (Y ν
−(t), Y ν

+(t)) in at
most four sub-intervals in which we can invert fl, fr. This allows to conclude
that there exists a subsequence of uν converging in L1

loc to a function u.
We want to show that u is still an entropy solution at the left and

the right of the interface. Take any compactly supported function ϕ ∈
C1
c ((−∞, 0)× (0,+∞)). We want to prove that for every k ∈ R it holds

ˆ +∞

0

ˆ +∞

0
|u− k|ϕt + sgn(u− k)(fl(u)− fl(k))ϕx dx dt ≥ 0 (2.51)

Notice that by dominated convergence theorem the above integral is equal
to

lim
ν→+∞

ˆ +∞

0

ˆ 0

−∞
|uν − k|ϕt + sgn(uν − k)(fl(uν)− fl(k))ϕx dx dt (2.52)



2.4 Existence by front-tracking 40

u0,ν

Figure 2.4: The front tracking algorithm. The red curve is Y ν− .

so that to prove (2.51) it is enough to prove that the integral in (2.52) is
positive for every ν. Let T > 0 such that ϕ(x, t) = 0 for every (x, t) with
t > T . For a fixed ν and t ∈ (0, T ) we let x1(t) < x2(t) < . . . < xN (t) < 0
be the points in which uν(·, t) has a jump. In order to use the divergence
theorem, we notice that the polygonal lines xα(t) subdivide the domain
(−∞, 0)×(0, T ) in a finite number of regions Γj where uν is constant. Then,
with

Φ = (ϕ · sgn(uν − k)(fl(uν)− fl(k)), ϕ · |uν − k|)

we have
ˆ +∞

0

ˆ 0

−∞
|uν − k|ϕt + sgn(uν − k)(fl(uν)− fl(k))ϕx dx dt

=
∑
j

ˆ ˆ
Γj
|uν − k|ϕt + sgn(uν − k)(fl(uν)− fl(k))ϕx dx dt

=
∑
j

ˆ ˆ
Γj

divΦ dx dt =
∑
j

ˆ
∂Γj

Φ · n dσ (2.53)

where ∂Γj is the oriented boundary of Γj and n is the outer normal. Observe
that

n = ±(1,−ẋα(t))

with the sign depending on which Γj we are considering. Let

∆η(xα(t), t) = |uν(xα(t)+, t)− k| − |uν(xα(t)−, t)− k|
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∆q(xα(t), t) = sgn(uν − k)(fl(uν − fl(k))(xα(t)+, t)
− sgn(uν − k)(fl(uν)− fl(k))(xα(t)−, t)

Then, with S the indices for which xα is an entropic shock and R the indices
for which xα is a non entropic shock, we find

∑
j

ˆ
∂Γj

Φ · n dσ =
∑
α∈S

ˆ
∂Γj

ẋα(t)∆η(xα(t), t)−∆q(xα(t), t) dt

+
∑
α∈R

ˆ
∂Γj

ẋα(t)∆η(xα(t), t)−∆q(xα(t), t) dt (2.54)

The sum on α ∈ S is bigger than zero by definition since xα(t) is an entropy
admissible shock. The sum on α ∈ R might be negative, but very small and
going to zero for ν → +∞. In fact, following [7], we can establish

ẋα(t)∆η(xα(t), t)−∆q(xα(t), t) = O(1)ν−1 |uν(xα(t)+, t)− uν(xα(t)−, t)|
(2.55)

Since the total strength of non entropic fronts remains uniformly bounded
in ν, we can conclude.

There is only left to prove that the limit function u satisfies the interface
conditions. The idea is to prove an estimate on the total variation of the
flux of an approximate front tracking solution along the junction. In this
way one can prove that the flux along the interface of the limit solution u
is BV. For the details of the proof we refer to [16].

Lemma 2.13. Let {uν} be the approximate front-tracking sequence con-
structed above and uν,l, uν,r be the left/right traces at x = 0 of uν . Then for
every ν the following estimate holds

TotVar(fl(uν,l), (0, T )) = TotVar(fl(uν,r), (0, T ))

≤ 2TotVar(f(u0(·), ·),R) (2.56)

Lemma 2.14. The function u limit of the front-tracking approximations
satisfies the interface conditions 2.a, 2.b of Lemma 2.10.

Proof. Using Lemma 2.13 and invoking Helly’s theorem, the sequence fl(uν,l) =
fl(uν,r) converges in L1 to a BV function. Hence fl(ul) = fr(ur) is BV . Of
course every front-tracking approximation uν satisfies

fl(uν,l(t) = fr(ur(t)) ≥ γ, for a.e. t ≥ 0
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so that passing to the limit, u satisfies the same inequality and 2.a is proved.
Now assume by contradiction that 2.b does not hold. This means that there
is continuity point t̄ for ul, ur such that

(ul(t̄), ur(t̄)) ∈ ([0, A)× (B, 1])

in a neighborhood (t̄ − δ, +̄δ) of t̄. We know that uν converges in L1
loc to

u. Then if there is a subsequence such that the equilibria (uν,l, uν,r) are
of type G/G on a subset of positive measure (uniformly on ν) we obtain
a contradiction. Otherwise, there is a positive measure subset (uniformly
in ν) such that at least one of the equilibria uν,l or uν,r are of bad type.
However, this is clearly in contradiction with the fact that uν converges in
L1

loc to u.

Remark 2.15. A more direct approach for proving that the limit function u
is indeed an AB-entropy solution would be to directly pass to the limit in
inequality (2.15) and conclude with the same arguments that we used above
to prove that u is an entropy solution for fl, fr in quadrants I, II. In fact,
it will be sufficient to treat the interface as a front, and use the fact that
the (piecewise constant) traces of an approximate front-tracking solution
satisfies (2.25) (with the connection (A,B) corresponding to the value γ).



Chapter 3

Attainable set

Abstract. In this chapter we characterize the attainable set at time
T > 0

AAB(T ) ·= {SABT u0, u0 ∈ L∞} (3.1)

for AB-entropy solutions of the conservation law with discontinuous
flux in terms of some Oleinik-type inequalities. We prove, adapting the
method of generalized characteristics [11], that additional constraints
to the ones of [4] must be added in order to characterize also those
profiles that are reachable only with solutions that contain a shock in at
least one of the semiplanes {x < 0}, {x > 0}. This is a major difference
with respect to the continuous flux case where every attainable profile
is reachable with a locally Lipschitz solution.

3.1. Continuous flux case

In this section we present the known results about the attainable set for a
scalar one dimensional conservation law with uniformly convex flux{

ut + f(u)x = 0, x ∈ R, t ∈ R+,

u(·, 0) = u0,
(3.2)

In this setting it is well known that the reachable set, that is

A(T ) := {STu0 : u0 ∈ L∞} (3.3)

is fully characterized by the classical Oleinik inequalities. In particular, a
function ω ∈ L∞(R) is in A(T ) if and only if

f ′(ω(y))− f ′(ω(x)) ≤ y − x
T

, for a.e. x ≤ y (3.4)

This is well known since the work [21]. We assume the flux f to be uniformly
convex and of class C2. Here, inspired by an exercise in [7], we choose to
base our proof on the front-tracking algorithm presented in the first chapter.

Proposition 3.1. Let u be the solution of (3.2) and ω(x) = u(x, T ). Then
Oleinik estimates (3.4) hold.
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Proof. For a fixed ν ≥ 1, let uν be the piecewise constant front tracking
approximation with values in 2−νZ. For t ≥ 0 we say that a line xα(t)
where uν has a jump is a rarefaction front if uν(xα(t)−, t) < uν(xα(t)+, t),
otherwise we say that it is a shock front.

We prove that all the rarefaction fronts have strength uν(xα(t)+, t) −
uν(xα(t)−, t) = 2−ν . In fact, at time t = 0, a rarefaction front emerges from
x if and only if uν,0(x−) < uν,0(x+), and since f is convex, conv(fν) = fν , so
that from x emerge exactly (uν,0(x+)− uν,0(x−))2ν rarefaction fronts with
strength 2−ν .

Assume that two fronts (ul, um), from the left, and (um, ur), from the
right, collide. Notice that they cannot both be rarefaction fronts, otherwise
it holds ul < um < ur and the speed of the front from the left would be
smaller than the speed of the right front, a contradiction. Therefore at least
one of them is a shock. If they are both shocks, a single shock emerges.
Since the strength of a front is always bigger then 2−ν and the strength of
a rarefaction front is always 2−ν , a single shock emerges also if one of them
is a rarefaction front (unless there is a complete cancellation an no fronts
emerge).

It is easy to see that if xα(t) < xα+1(t) are two adjacent rarefaction
fronts, it holds, with 0 < c = min f ′′,

ẋα+1 − ẋα ≥ (c−O(1)) 2−ν (3.5)

where O(1) is a positive quantity approaching zero as ν →∞. Now consider
any two points x < y and t > 0. Assume that (x, t) and y(x, t) are separated
by k rarefaction fronts xα, α ∈ {1, 2, . . . , k}, and m shock fronts. Since every
rarefaction front has strength equal to 2−ν and each shock front has strength
at most 2−ν , we only consider rarefaction fronts that are not ”surrounded by
shocks”, i.e. rarefaction fronts that are adjacent to other rarefaction fronts:
assume there are n of them. Then it holds

uν(y, t)− uν(x, t) ≤ n · 2−ν (3.6)

Moreover, by (3.5) and since rarefaction fronts can only originate at time
t = 0, it holds

y− x ≥
n−1∑
α=1

xα+1(t)− xα(t) ≥
n−1∑
α=1

(ẋα+1(t)− ẋα(t))t ≥ (n− 1) (c−O(1)) 2−νt

(3.7)
This implies

(n− 1)2−ν ≤ y − x
(c−O(1)) t (3.8)
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and substituting this into (3.6) one obtains

uν(y, t)− uν(x, t) ≤ 2−ν + y − x
(c−O(1)) t (3.9)

Now it is sufficient to pass to the limit for ν → +∞ to find that

u(y, t)− u(x, t) ≤ y − x
ct

(3.10)

If a function ω ∈ L∞ satisfies (3.10), it is automatically in BVloc. Then
using the theory of generalized characteristics (see the first chapter), im-
posing that backward genuine characteristics do not intersect, one finds the
slightly stronger estimate (3.4).

Remark 3.2. This is a striking example in which the PDE has a regularizing
effect on the initial data. Notice that is related to the convexity of the flux.
In fact, if for example the flux is linear, say f(u) = λu, the conservation law
becomes

ut + λux = 0 (3.11)

that is just the transport equation with constant coefficients. Then the
solution to (3.11) to the Cauchy problem with initial datum u0 ∈ L∞ is just
u(x, t) = u0(x− λt).

The strategy to prove that Oleinik estimates are also a sufficient con-
dition to ensure that ω is reachable is the following. Assume that Oleinik
estimates hold for ω. Then ω is BVloc and we can use the theory of gener-
alized characteristics [11]. We solve the problem{

ũt + f(ũ)x = 0
ũ(x, 0) = ω(−x)

(3.12)

Oleinik estimates (3.4) give us a one sided Lipschitz constant for ũ. The
additional assumption that Oleinik estimates hold also for ω will give us
the other side-one sided Lipschitz constant. Therefore ũ is Lipschitz, and
reversing space and time it’s easy to check that ũ(−x,−t) is an admissible
solution to (3.2), with initial datum ũ(−x, 0) and ω(x) = ũ(−x, T ), so that
ω is attainable. We prove this in the following proposition.

Proposition 3.3. Let ω ∈ L∞(R) satisfy Oleinik estimates (3.4). Then
ω ∈ A(T ).
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Proof. Let ũ be as above. By Oleinik estimates, for every x1 ≤ x2 and t ≤ T
we have

f ′(ũ(x2−, t))− f ′(ũ(x1−, t)) ≤
x2 − x1
T

On the other hand, consider the minimal backward characteristics starting
from (x1, t) and (x2, t). Let ξ1, ξ2 be the values at zero of those character-
istic, i.e.

ξ1 = x1 − tf ′(ũ(x1−, t)), ξ2 = x2 − tf ′(ũ(x2−, t))

Then we have

f ′(ũ(x2−, t))− f ′(ũ(x1−, t)) ≥ f ′(ũ(ξ2−, 0))− f ′(ũ(ξ1+, 0))

= f ′(ω(−ξ2+))− f ′(ω(−ξ1−)) ≥ −ξ2 − ξ1
T

= x2 − x1 − t (f ′(ũ(x2−, t))− f ′(ũ(x1−, t)))
T

(3.13)

With some calculations, this implies

f ′(ũ(x2−, t))− f ′(ũ(x1−, t)) ≥ −
x2 − x1
T − τ

(3.14)

This implies that x 7→ f ′(ũ(x, t)) is Lipschitz for t ∈]0, T [. Then ũ is
actually Lipschitz in compact sets of R× (0, T ), and by standard arguments
one verifies that ũ is an admissible solution for (3.2) and at time T produces
the profile ω.

Remark 3.4. There is another possible approach in order to prove that
Oleinik estimates select the profiles ω are attainable for the conservation
law (3.4). This method provides explicitly the solution and the idea is that,
if Oleinik estimates hold for ω, the lines

θx,±(t) := x− (T − t)f ′(ω(x±))

do not intersect each other in the interior of the domain. Then, roughly
speaking, if a point (ξ, τ) lies on one of these lines, say θx±, one defines the
solution to be u(ξ, τ) = ω(x±). In the regions not covered by these lines,
the solution is defined to be a compression wave, generating a shock at time
T (see Figure 3.1). This approach was used in [3], for a boundary problem,
and we will use it again here for entropy AB-solutions. One can prove that
this construction actually provides an admissible solution u, and that it is
Lipschitz. Actually, the solution constructed in this way must coincide, by
uniqueness of entropy solutions, with the solution constructed in Proposition
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3.3. Indeed, being Lipschitz, u can be reversed in space time and still be an
entropy solution of (3.4). The reverse u will solve the Cauchy problem with
initial datum equal to ω(−x), therefore u(−x,−t) must coincide with ũ.

x
T

Figure 3.1: Example of characteristics of the unique Lipschitz solution that pro-
duces w at time T . In this case, a compression wave produces a shock at the point
x.

3.2. Preliminaries and main theorem

Here we prove the result concerning exact controllability at time T > 0 for
the discontinuous problem{

ut + f(u, x)x = 0, x ∈ R, t ≥ 0
u(x, 0) = u0(x), x ∈ R

(3.15)

with flux function satisfying the hypothesis already stated in the previous
chapter. In particular we are going to characterize the set AAB(T ) (3.1).
Throughout the following

D−ω(x) = lim inf
h→0

ω(x+ h)− ω(x)
h

, D+ω(x) = lim sup
h→0

ω(x+ h)− ω(x)
h

(3.16)
will denote, respectively, the lower and the upper Dini derivative of a func-
tion ω at x. Moreover, we introduce the following sets that characterize
the left and right traces of an AB-entropy solution at the flux-discontinuity
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interface:

T1 =
{

(ul, ur) ∈ (θl,+∞)× (θr,+∞); ul ≥ πl,+(A), B ≤ ur ≤ πlr,+(ul)
}

T2 =
{

(ul, ur) ∈ (−∞, θl)× (−∞, θr); πrl,−(ur) ≤ ul ≤ A, ur ≤ B̄
}

T3,− =
{

(ul, ur) ∈ [θl,+∞)× (−∞, θr); Ā ≤ ul ≤ πrl,+(ur), ur ≤ B̄
}

T3,+ =
{

(ul, ur) ∈ (θl,+∞)× (−∞, θr]; ul ≥ Ā, πlr,−(ul) ≤ ur ≤ B̄
}
(3.17)

x

L

L− T f ′l (u)

t = tu
A

Figure 3.2: A curve xu(t).

Now fix L ≤ 0 and a state u. Consider the differential equationẏu(s) = −λl
(
(f ′l )−1

(
y(s)−L+Tf ′l (u)

T−t

)
, A
)
, s > 0

yu(0) = L
(3.18)

where λl(u1, u2) is the Rankine-Hugoniot speed for the flux fl of the shock
with states u1, u2. By local uniqueness theorems and geometrical considera-
tions, the solution yu cannot escape in finite time; then (3.18) has a unique
smooth solution yu : [0, T ) → R. We set xu(t) = yu(T − t). The function
xu(t) has a unique maximum in a point tu ∈ (0, T ]. Consider the function

[L/T,+∞) 3 u 7→ xu(tu) (3.19)

One can easily see that u 7→ xu(tu) is strictly decreasing, continuous, and
that for u ≥ Ā one has xu(tu) = xu(T ) = L < 0. Define

ūL
·= min{u ≥ L/T | xu(tu) ≤ 0} (3.20)
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Analogously, for R ≥ 0, one defines xu(t) = yu(T − t) whereẏu(s) = −λr
(
B, (f ′r)−1

(
y(s)−R+Tf ′r(u)

T−t

))
, s > 0,

yu(0) = R.
(3.21)

and λr(u1, u2) is the Rankine-Hugoniot speed for the flux fr of the shock
with states u1, u2. Consider the map

(−∞, R/T ] 3 u 7→ xu(tu). (3.22)

The map u 7→ xu(tu) as defined here is decreasing, continuous, and if ū ≤ B̄
it holds xu(tu) = xu(T ) = R > 0. Then we define

ūR
·= max{u ≤ R/T : xu(tu) ≥ 0} (3.23)

Remark 3.5. If A = θl, it’s easy to see that ūL = (f ′l )−1(L/T ). Analogously,
if B = θr, ūR = (f ′r)−1(R/T ).

Let
tL = T − f ′l (ω(L+))

L , tR = T − f ′r(ω(R−))
R ,

LA = (T − tūR)f ′l (A), RB = (T − tūL)f ′r(B),
(3.24)

and

ϕ1(x) ·=


x− f ′l (ω(x))T x < 0
−f ′l ◦ f

−1
l,+ ◦ fr(ω(x))

(
T − x

f ′r(ω(x))

)
0 < x < R

x− f ′r(ω(x))T x > R

(3.25)

ϕ2(x) ·=


x− f ′l (ω(x))T x < L

−f ′r ◦ f−1
r,− ◦ fl(ω(x))

(
T − x

f ′
l
(ω(x))

)
L < x < 0

x− f ′r(ω(x))T x > 0
(3.26)
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ϕ3,A(x) ·=


x− f ′l (ω(x))T x < L

−f ′r ◦ f−1
r,− ◦ fl(ω(x))

(
T − x

f ′
l
(ω(x))

)
L < x < LA

x− f ′r(ω(x))T x > R

(3.27)

ϕ3,B(x) ·=


x− f ′l (ω(x))T x < L

−f ′l ◦ f
−1
l,+ ◦ fr(ω(x))

(
T − x

f ′r(ω(x))

)
RB < x < R

x− f ′r(ω(x))T x > R

(3.28)

ϕ3(x) ·=
{
x− f ′l (ω(x))T x < L

x− f ′r(ω(x))T x > R
(3.29)

where we agree that if LA ≤ L or R ≤ RA, we delete the second line of
(3.27) or (3.28), respectively.

Moreover, for a point x such that

|fu(ω(x±), x)| ≤ |x/T | (3.30)

where f(u, x) is the discontinuous flux and fu is the derivative with respect
to the first entry, we define the line θx,± : [0, T ]→ R to be respectively the
minimal/maximal backward characteristic from (x, T ). If instead

|fu(ω(x±), x)| > x/T, (3.31)

this means that the minimal/maximal characteristic impact the interface in
positive time and the time of impact is

tx,±
·= T − f ′l (w(x±))

x
(3.32)

In this last case, if x < 0 we let

θx,±(t) =

x− (T − t)f ′l (ω(x±)) t ∈ (tx,±, T ) ,
− (tx,± − t)

(
f ′r ◦ πlr,−(ω(x±))

)
t ∈ (0, tx,±) ,

(3.33)
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while if x > 0 we let

θx,±(t) =

x− (T − t)f ′r(ω(x±)) t ∈ (tx,±, T ) ,
− (tx,± − t)

(
f ′l ◦ πrl,+(ω(x±))

)
t ∈ (0, tx,±) ,

(3.34)

The next theorem is a reformulation of the one in [4]. The theorem in
[4] characterizes only the profiles reachable with a Lipschitz solution in the
semiplanes {x < 0} and {x > 0}. But, as firstly noticed in [2], there are
profiles that are reachable only with solutions that contain at least a shock
in one of the quadrants I, II. Here we extend the result obtained in [4] and
characterize also the profiles that are reachable with a solution that has
a shock in at least one of the semiplanes {x < 0}, {x > 0}. In order to
do this, further conditions must be added (see in particular (3.37), (3.39),
(3.41)). Since, as mentioned above, some profiles might be reachable only
with solutions that contain a shock, the role of these new conditions is to
ensure that such shocks can indeed be constructed. The difficult part of
the proof is to prove that (3.37), (3.39), (3.41) are actually also necessary
conditions: we prove this in Section 3.4. Let us now state the main theorem
of this chapter, that completely characterizes the attainable set AAB(T ).

Theorem 3.6. Let (A,B) be a connection and T > 0. Then the set AAB(T )
is given by

AAB(T ) = A1(T ) ∪ A2(T ) ∪ AAB3 (T ), (3.35)

where A1(T ),A2(T ),AAB3 (T ) are sets of function ω ∈ L∞(R) having essen-
tial left and right limits at x = 0, defined as follows.

A1(T ) is the set of all functions ω that satisfy (ω(0−), ω(0+)) ∈ T1, and
for which there exists R > 0 such that the following conditions hold.

ω(x) ≥ max
{

(f ′r)−1(x/T ), B
}
, ∀x ∈ (0, R),

ω(R+) < (f ′r)−1(R/T ),
(3.36)

the map ϕ1 is nondecreasing and

ω(R+) ≤ ūR (3.37)

A2(T ) is the set of all functions ω that satisfy (ω(0−), ω(0+)) ∈ T2, and for
which there exists L < 0 such that the following conditions hold.
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ω(L−) > (f ′l )−1 (L/T ) ,

ω(x) ≤ min
{

(f ′l )−1 (x/T ) , A
}
, ∀x ∈ (L, 0),

(3.38)

the map ϕ2 is nondecreasing and

ω(L−) ≥ ūL (3.39)

AAB3 (T ) is the set of all functions ω for which there exists L ≤ 0 ≤ R, such
that the following conditions hold.

(ω(0−), ω(0+)) ∈
{
T3,− ∪ T3,+ if L = R = 0,
{(A,B)} otherwise,

(3.40)

if L = 0 = R the map ϕ3 is nondecreasing,

otherwise:

ω(L−) ≥ ūL, ω(R+) ≤ ūR, (3.41)

and, if (A,B) is not critical

• if tL ≥ tR, the map ϕ3,B is nondecreasing, and

ω(x) = A ∀ x ∈ (L, 0), ω(x) = B ∀ x ∈ (0,min{R,RB}),

ω(x) ≥ B ∀x ∈ (RB, R), ω(R+) ≤ x
T ,

if RB < R : ω(RB+) = B
(3.42)

• if tL ≤ tR, the map ϕ3,A is nondecreasing, and

ω(x) = A ∀ x ∈ (max{L,LA}, 0), ω(x) = B ∀ x ∈ (0, R),

ω(x) ≤ A ∀x ∈ (L,LA), ω(L+) ≤ x
T ,

if L < LA : ω(LA−) = A
(3.43)
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if instead (A,B) is critical, the map ϕ3 is nondecreasing, and

ω(x) = A ∀ x ∈ (L, 0), ω(x) = B ∀ x ∈ (0, R), (3.44)

Remark 3.7. Consider the set A1(T ) and the condition on the monotonicity
of the map ϕ1. It is proved in [4] that this is equivalent to require that

D+ω(x) ≤



1
f ′′
l

(ω(x))T ∀ x ∈ (−∞, 0),

h1(x)
h2(x) ∀ x ∈ (0, R),

1
f ′′r (ω(x))T ∀ x ∈ (R,+∞),

(3.45)

with
h1(x) = f ′r

[
f ′l ◦ f−1

l,+ ◦ fr(ω(x))
]2

and

h2(x) =
[
f ′′ ◦ f−1

l,+ ◦ fr(ω(x))
]

[f ′r(ω(x))]2(f ′r(ω(x))T − x)

+ x
[
f ′l ◦ f−1

l,+ ◦ fr(ω(x))
]2
f ′′r (ω(x))

In light of this, since the functions fl, fr are supposed to be uniformly
convex, we deduce that the right hand side (3.45) is always nonnegative and
it’s bounded on any set bounded away from zero. This implies that every
element in A1(T ) has (a representative in it’s equivalence class that has)
finite total increasing variation (and hence finite total variation as well) on
all bounded subsets of R bounded away from x = 0. This, together with the
assumption that ω admits left and right limits at x = 0, implies that every
element ω ∈ A1(T ) has (essential) left and right limits at every point x ∈ R.

3.3. Some technical lemmas

The aim of this section is to prove that for a given ω ∈ AAB(T ), the left and
right limits (ω(0−), ω(0+)) fall into one of the four classes (3.17) and that no
rarefaction waves can be crated at time t > 0 from a point of the interface.
Notice that, knowing that ω = u(·, T ) for some solution u, the existence
the limits (ω(0−), ω(0+)) can be easily established using the property of
non-intersection of genuine characteristics. Everything follows quite easily
once we proved the following technical lemma.
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Lemma 3.8. For every t̄ ≥ 0 the temporal unidirectional limits of the fluxes
of the traces fl(ul(t̄±)) = fr(ur(t̄±)) exist.

Proof. We prove that the limit fl(ul(t̄+)) exists, the other cases being en-
tirely similar. If for some δ > 0 we have that ul(t) ≥ θl for every t ∈ (t̄, t̄+δ),
we conclude that the limit ul(t̄+) exists. In fact, if it didn’t exist we could
find two sequences tn, sn ↓ t̄ such that ul(tn), ul(sn) ≥ θl and converge to
different limits. But it is easy to see that this is not possible since backward
genuine characteristics from the points (0, sn), (0, tn) would intersect for a
big enough n.

Assume that such a δ does not exist. Define two sets E1, E2 as

E1 = {t > t̄ : ul(t) < θl}, E2 = {t > t̄ : ul(t) ≥ θl} (3.46)

It is easy to see that E1 is open (actually, it is easy to see is that its com-
plement, E2, is closed). As of the set E2, with the same arguments as above
we actually get that the limit

lim
t→t̄
t∈E2

ul(t) (3.47)

exists. Analogously, define two sets F1, F2 as

F1 = {t > t̄ : ul(t) > θr}, F2 = {t > t̄ : ul(t) ≤ θr} (3.48)

The set F1 is open and the limit

lim
t→t̄
t∈F2

ur(t) (3.49)

exists.
We have to show that the limits

li
·= lim
t→t̄
t∈Ei

fl(ul(t)), i = 1, 2 (3.50)

exist and they coincide.
The intersection E1 ∩ F1 is still open and thanks to the interface condi-

tions we find that (ul(t), ur(t)) = (A,B) for a.e. t ∈ E1 ∩ F1. Actually, it
holds for every t ∈ E1 ∩ F1. In fact since the values ul(t) are just the limits
u(0−, t), for a fixed t ∈ E1 ∩ F1, tracing the backward characteristics (with
negative slope) from a sequence of points (xn, t), xn ↑ 0, since E1 ∩ F1 is
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open, we find that the limit u(0−, t) must actually be equal to A. Therefore
the limit of ul restricted to E1 ∩ F1 exists and

lim
t→t̄

t∈E1∩F1

ul(t) = A (3.51)

Now we have some cases:

t

tn

sn

x = 0

Figure 3.3: Case 1. There exists a δ > 0 such that E1 ∩B(t̄, δ) ⊂ F1.

Case 1: The intersection E1 ∩ F2 ∩B(t̄, δ) is empty for some δ > 0.
Since E1 is open, it is an at most countable union of disjoint intervals, say

E1 = ∪n(tn, sn), that accumulate in a right neighborhood of t̄. For each n
and each such interval (tn, sn) there must be a shock (tn, sn) 3 t 7→ (yn(t), t)
such that yn(t) < 0 for every t ∈ (tn, sn), yn(tn) = yn(sn) = 0, with right
state equal to A, because E1 ⊂ F1. By non-intersection of backward genuine
characteristics, the limit of the left state of the shock yn(·) exists and it is
equal to the limit of ul in the set E2, in the sense that

∀ ε > 0 ∃ n̄ ∈ N : sup
t∈(tn,sn)

∣∣∣∣∣∣u(yn(t)−, t)− lim
t→t̄
t∈E2

ul(t)

∣∣∣∣∣∣ < ε ∀ n ≥ n̄ (3.52)

Therefore the velocities of the shocks yn converge uniformly in n to the
value

λl

 lim
t→t̄
t∈E2

ul(t), A

 (3.53)

But of course since for every n we have yn(sn) = yn(tn) = 0, the only choice
for the limit speed is the zero speed. Therefore we obtain

lim
t→t̄
t∈E2

= Ā



3.3 Some technical lemmas 56

and this implies that the limit fl(ul(t̄+)) exists.

t

tn

sn

x = 0

Figure 3.4: Case 2. There exists a δ > 0 such that E1 ∩B(t̄, δ) ⊂ F2.

Case 2: The intersection E1 ∩ F1 ∩ B(t̄, δ) is empty for some δ > 0. Then
the limit of ur restricted to the set E1 = E1 ∩ F2 ⊂ F2 exists (since the
limit of ur restricted to F2 exists). Therefore the limit of ul restricted to E1
exists: in fact ul(t) = πrl,−(ur(t−)) for every t ∈ E1 ∩F2. As above the limit
of the left state of the shocks yn(·) exists in the sense (3.52), but since the
limit of ul restricted to E1 exists also the right state converges. Therefore
the velocities of the shocks converge uniformly in n to the value

λl

 lim
t→t̄
t∈E2

ul(t), lim
t→t̄
t∈E1

ul(t)

 (3.54)

and since the only possible limit speed is the zero speed obtain

lim
t→t̄
t∈E2

ul(t) = (fl|[θl,+∞))−1 ◦ fl

 lim
t→t̄
t∈E1

ul(t)

 (3.55)

so that the limit fl(ul(t̄+)) exists.

Case 3: The intersections E1∩F1∩B(t̄, δ) and E1∩F2∩B(t̄, δ) are non-
empty for every δ > 0. It’s clear that for every t ∈ E1∩F1 we have ul(t) = A.
The set F2 is open and hence an at most countable union of intervals (Tn, Sn)
(assume Tn ≥ Sn+1) and as above there is, for each n, a shock Yn(·) such
that Yn(Tn) = Yn(Sn) = 0 and Yn(t) > 0 for every t ∈ (Tn, Sn). There is a
sequence of points Tn or Sn such that Tn or Sn belongs to (tk, sk) for some
k: without loss of generality assume there is a sequence of Tn such that for
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t

tk

Tn

sk
Sn

x = 0

Figure 3.5: Case 3. E1 ∩ F1 ∩B(t̄, δ) 6= 0, E1 ∩ F2 ∩B(t̄, δ) 6= 0 for every δ > 0.

each n exists k such that Tn ∈ (tk, sk). From each point (0, Tn) emerges a
shock with positive slope with left state equal to B. Then by the Rankine-
Hugoniot conditions it must hold ur(Tn) ≥ B̄. Assume by contradiction
that ur(Tn) > B̄. Then we have three cases. Firstly, it could happen that
for a small ε > 0 we have (Tn, Tn − ε) ⊂ F2: a contradiction because from
the interface conditions, in this last set, it must hold ur(t) ≤ B̄ a.e. and this
leads to intersection of backward genuine characteristics. Secondly it could
be that Tn = Sn+1. This is again a contradiction since at (0, Sn+1) a shock
with negative slope and left state equal to B arrives, by the R-H conditions
we must have ur(Sn+1) = ur(Tn) ≤ B̄. Finally, it could happen that there
is a sequence Snk ↑ Tn, at each Snk , as above, it holds ur(Snk) ≤ B̄ and this
leads to intersection of backward characteristics: a contradiction. Then at
each Tn it must hold ur(Tn) = B̄. This means that the limit of ur in the set
F2 must be equal to B̄ since 1) it exists and 2) limk→∞ ur(Tnk) = B̄. Then
of course also the limit of ur in the smaller set E1 ∩ F2 exists and is equal
to B̄. Moreover, the limit of ur in the set E1∩F1 is clearly equal to B, with
the same arguments as above. We deduce that the limit of the flux

lim
t→t̄+
t∈E1

fr(ur(t)) (3.56)

exists. Since for a.e. t ∈ E1 it holds ul(t) = (fl|(−∞,θl])−1 ◦ fr(ur(t)), also
the essential limit

ess limt→t̄+
t∈E1

ul(t) (3.57)

exists. Actually, the limit (3.57) exists in classical sense. In fact, tracing
the backward characteristics (with negative slope) from a sequence (xn, t),
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xn ↑ 0, for times t belonging to sequences converging to t̄+ with different
limits, we would deduce that also the essential limit of the flux in E1 does
not exist, a contradiction.

We showed that the limits ul|Ei(t̄+), i = 1, 2 exist, and therefore we
conclude the proof exactly as in the previous two cases.

Lemma 3.9. Let ω ∈ AAB(T ). Then backward genuine characteristics
cannot intersect at the interface. In particular, there are no rarefaction
waves that start from a point of the interface.

Proof. Assume that from a point (0, t̄) a rarefaction wave opens in quadrant
I and let ζ1 < ζ2 be two forward genuine characteristics from the point (0, t̄)
lying in quadrant I, and defined at least in (t̄, t̄ + δ). We know that the
unidirectional limits fl(ul(t̄±)) and fr(ur(t̄±)) exist. If we show that the
limits ul(t̄±) and ur(t̄±) exist, then one can conclude as in [4].

First we show that ur(t̄) ≥ θr. Assume by contradiction that ur(t̄) ≤ θr.
Then a shock emerges from (0, t̄) in quadrant I lying at the right of the
characteristic ζ2. Then the minimal backward characteristics from the points
of the shock all impact the interface at the point (0, t̄), but this implies that
the solution is unbounded, and this is a contradiction. Then since the limit
fr(ur(t̄−)) exists and it holds ur(t) ≥ θr for t ∈ (t̄, t̄ − ε), for some ε > 0,
the limit ur(t̄−) exists. Moreover from the interface conditions we obtain
ur(t̄−) ≥ B and, by tracing the backward minimal characteristics (with
positive slope) from a sequence of points (xn, t̄) with xn ↓ 0, we obtain that
ur(t̄−) = u(0+, t̄).

Moreover, since the limit fr(ur(t̄+)) exists, and since by non-intersection
of genuine characteristics it holds ur(t) ≥ θr for t ∈ (t̄, t̄+δ) (in fact, if it was
ur(t) < θr, the maximal backward characteristic from (0, t) would intersect
ζ1 and ζ2), we conclude that the limit ur(t̄+) ≥ B exists.

Now we have some cases:

1. ur(t̄+) = ur(t̄−) = B (= u(0+, t̄)). Then from (0, t̄) would emerge a
single genuine characteristic: a contradiction.

2. ur(t̄+) > B and ur(t̄−) = B (= u(0+, t̄)). In this case a single shock
would emerge in quadrant I from (0, t̄): again a contradiction.

3. ur(t̄+) = B and ur(t̄−) > B (ur(t̄−) = u(0+, t̄)). By the inter-
face conditions, this implies that the limit ul(t̄−) exists and ul(t̄−) =
πrl,+(ur(t̄−)). Then, if the limit ul(t̄+) exists, we showed that all the
four limits ul(t̄±), ur(t̄±) exist, and therefore we can use the analysis
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of [4] and conclude. If ul(t̄+) does not exist, in any case we know
that the limit fl(ul(t̄+)) exists and is equal to fl(A). Therefore there
exists a sequence of points tn ↓ t̄ such that the minimal backward
characteristics from (0, tn) have slopes converging to f ′l (Ā). Moreover,
consider a sequence of points sn ↑ t̄ and trace the backward minimal
characteristics from (0, sn). Their slopes converge to f ′l (ul(t̄−)) > Ā.
Then there exists a n̄ big enough such that the characteristics from
(0, tn) and (0, sn) intersect each other in the interior of the domain:
contradiction.

4. ur(t̄+) > B and ur(t̄−) > B (ur(t̄−) = u(0+, t̄). In this case the limits
ul(±̄) exist thanks to the interface conditions and they are equal to
πrl,+(ur(t̄±)), so that we can use the analysis of [4].

Lemma 3.10. Let ω ∈ AAB(T ). Then

(ω(0−), ω(0+)) ∈ T1 ∪ T2 ∪ T3,− ∪ T3,+ ∪ {(A,B)} (3.58)

Proof. The lemma was proved in [4] in the case the limits ul(T±) and
ur(T±) exist. The fact that the limits (ω(0−), ω(0+)) belong to one of the
sets (3.17) also in the general case can be deduced with small adaptations
to the analysis in [4], together with Lemma 3.8 and Lemma 3.9 .

3.4. The sets A1(T ), A2(T )

Let u0 be an initial data that produces a profile ω ·= STu0 at time T . By
Lemma 3.10 we know that the pair (ω(0−), ω(0+)) belongs to one of the
sets (3.17). We start by assuming that (ω(0−), ω(0+)) ∈ T2. We want to
prove that then (3.38), (3.39) and the monotonicity properties of the map
ϕ2 hold. Everything was proved in [4] except (3.39) and the fact that ϕ2 is
nondecreasing in (L, 0). First we prove this last property.

3.4.1. The map ϕ2 is nondecreasing in (L, 0). We prove that ϕ2
is nondecreasing in (L, 0). Notice that if ω(x+) < A for all x ∈ (L, 0),
the monotonicity of ϕ2 in (L, 0) is trivial, by non-intersection of backward
characteristics. In fact, if this is the case, for every x ∈ (L, 0) the maximal
backward characteristic from (x, T ) is the polygonal line θx,+, that changes
slope when crossing the interface. The problem arises when for some x ∈
(0, L) it holds ω(x+) = A. In fact, in this case, it might happen that at
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the point tx,+ of impact of the maximal backward characteristic from (x, T )
with the interface, it holds ur(tx,+) = B, so that the characteristic cannot be
prolonged on the other side of the interface, and this in turn prevents us to
prove Oleinik-type estimates in the usual way, and some extra considerations
are needed. Let’s prove that in any case

ϕ2(x1) ≤ ϕ2(x2), ∀ L < x1 < x2 < 0 (3.59)

As already said, if ω(xi+) 6= A, i = 1, 2, inequality (3.59) is clearly true, as
well as if ω(xi+) = A, i = 1, 2. Otherwise, only one of them is equal to A.

Case 1. ω(x1+) = A, ω(x2+) 6= A (and therefore smaller than A, by
the interface conditions). Assume ur(tx1,+) = B (otherwise the result is
clear). Then since ω(x2+) < A = ω(x1+), for fixed x, the map

u 7→ −f ′r ◦ f−1
r,+− ◦ fl(u)

(
T − x

f ′l (u)

)

is decreasing in u, we have

ϕ2(x1) < −f ′r ◦ f−1
r,+− ◦ fl(ω(x2+))

(
T − x1

f ′l (ω(x2+))

)

< −f ′r ◦ f−1
r,+− ◦ fl(ω(x2+))

(
T − x2

f ′l (ω(x2+))

)
= ϕ2(x2) (3.60)

and the estimate (3.59) follows.

x

t

ω

t̄

tx1,+

tx2,+

x1 x2

Figure 3.6: The situation described in Case 2.
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Case 2. ω(x2+) = A, ω(x1+) 6= A (and therefore smaller than A, by
the interface conditions). Assume ur(tx2,+) = B (otherwise the result is
clear). Let (see Figure 3.6)

t̄
·= inf{t : (ul(s), ur(s)) = (A,B), ∀s ∈ (t, tx2,+)}

Notice that t̄ ∈ (tx1,+, tx2,+). Then at the point (0, t̄) emerges a shock
with zero slope, lying in quadrant I, and ur(t̄) = B̄. By non-intersection of
genuine characteristics, it must hold

ϕ2(x1+) ≤ −t̄f ′r(B̄)

Moreover, since t̄ ≤ −tx2,+,

−t̄f ′r(B̄) ≤ −tx2,+f
′
r(B̄) = ϕ2(x2+)

and this concludes the proof.

3.4.2. Condition (3.39) holds. We let

Ω =
{

(x, t) | θL,−(t) < x < θL,+(t)
}

(3.61)

Assume by contradiction that (3.39) does not hold. Then

Claim: There is a solution u that yields ω at time T with a shock y :
(s̄, T )→ R such that for t ∈ (s̄, T )

u(y(t)+, t) ≤ A, u(y(t)−, t) ≥ y(t)/t (3.62)

and y(s̄) = 0.

Proof. (Claim) Step 1: The profile ω cannot be reached with a Lipschitz/
compression wave-like solution in Ω. Indeed, assume by contradiction that
ω is reachable with a Lipschitz solution in Ω. Then it must be a compression
wave, partially reflected by the interface. But for this to be admissible, by
the interface conditions, it must hold L/T ≤ f ′l (A). However in this case,
the curve (xω(L−)(t), t), t ∈ (0, T ), is always strictly negative, so that (3.39)
holds, and this is a contradiction.

Step 2: There is ε > 0 and a solution u that yields ω at time T with a shock
(y(t), t), t ∈ (T − ε, T ), such that (3.62) holds for t ∈ (T − ε, T ). To prove
this, notice that by Step 1., every solution leading to ω must have a shock
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arriving at (L, T ), since it cannot be Lipschitz. Moreover, assume there is a
genuine backward characteristic ζ from (L, T ) with slope L/T . Then, since
L/T > f ′l (A), from (0, 0) emerges a shock y(t) with negative slope that has
the desired properties (of the claim). Accordingly, in the following we assume
that there is not a genuine backward characteristic from (L, T ) with slope
L/T . Let ζL,±(t) be the minimal and maximal backward characteristics
from (L, T ). Consider the set

S =
{
ζ : [tζ , T ] → R, ζ(tζ)tζ = 0 | ζ back. genuine char. from (L, T )

}
(3.63)

The set S is totally ordered by ”<”. Let

ζ1 = max{ζ ∈ S | tζ = 0}, ζ2 = min{ζ ∈ S | ζ(tζ) = 0}

The lines ζi, i = 1, 2, are genuine characteristics, because they are uniform
limits of genuine characteristics. Moreover, since there are no genuine char-
acteristics from (L, T ) with slope L/T , it must hold tζ1 = 0, ζ(tζ1) < 0 and
tζ2 > 0. This implies that there is a shock arriving at (L, T ) with the desired
properties.

Step 3: Assume condition (3.62) holds for t ∈ (T − ε, T ). Then we have

xω(L−)(t) ≤ y(t), t ∈ (T − ε, T )

Indeed, for every t ∈ (T − ε, T )

ẋω(L−)(t) = λl

(
(f ′l )−1

(
x(t)− L+ Tf ′l (ω(L−))

t

)
, A

)
and

ẏ(t) = λl
(
u(y(t)−, t), u(y(t)+, t)

)
Assume by contradiction at some point t1 > T−ε it holds xω(L−)(t1) > y(t1).
Then there is a point t2 > t1 in which xω(L−)(t2) > y(t2), their derivatives
exist and ẏ(t2) > ẋω(L−)(t2). But this is a contradiction. In fact, by (3.62)
and non-crossing of backward genuine characteristics,

u(y(t2)+, t2) ≤ A (3.64)

u(y(t2)−, t2) ≤ (f ′l )−1
(
y(t2)− L+ Tf ′l (ω(L−))

t2

)
≤ (f ′l )−1

(
xω(L−)(t2)− L+ Tf ′l (ω(L−))

t2

)
(3.65)
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so that, since u1 7→ λl(u1, u2) and u2 7→ λl(u1, u2) are both increasing by
convexity of fl, one has

ẋω(L−)(t2) = λl

(
(f ′l )−1

(
xω(L−)(t2)− L+ Tf ′l (ω(L−))

t2

)
, A

)
≥ λl (u(y(t2)−, t2), u(y(t2)+, t2)) = ẏ(t2) (3.66)

and this is a contradiction.
Step 4: Prolong backwards the shock y(t) until the point s̄ in which it can’t
be prolonged anymore without violating the condition (3.62). By contradic-
tion, assume that s̄ > 0 and y(s̄) < 0 (notice that since y(t) ≥ xω(L−)(t) and
xω(L−) by assumption impacts the interface in positive time, it must hold
s̄ > 0). Then, consider the same set S and lines ζi, i = 1, 2, defined in Step
2., but replacing (L, T ) with (y(s̄), s̄). Since by Step 3. xw(L−)(s̄) ≤ y(s̄),
one has y(s̄)/s̄ ≥ L/T > f ′l (A). Therefore, with the same arguments of Step
2., it must hold tζ1 = 0, ζ(tζ1) < 0 and tζ2 > 0 and, since y(s̄)/s̄ > f ′l (A),
the solution cannot be Lipschitz in the region{

(x, t) | ζ1(t) < x < ζ2(t)χ(0,tζ2 )
}

Therefore, with the same arguments of Step 2., we find an ε such that for
t ∈ (s̄ − ε, s̄) the shock y(t) can be prolonged backwards and (3.62) holds,
and this is a contradiction, so the claim is proved.

x

t

t = T
L

ϕ(L−)

s̄

tω(L−)

Figure 3.7: The situation in case (3.39) does not hold. In red the curve (xω(L−)(t), t)
and in black the shock of the solution, (y(t), t). However this cannot happen because
two genuine characteristics would intersect.

By the arguments of Step 3., we find that y(t) ≥ xω(L−)(t) for every
t ∈ (s̄, T ). Since xω(L−)(tω(L−)) > 0, we must have s̄ ≥ tω(L−) > 0 and
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y(s̄) = 0. This is a contradiction, because, since the shock y(t) starts from
(0, s̄) with negative (or zero) slope, by the interface conditions we must have
ul(s̄) < Ā, but then (see Figure 3.7)

L − Tf ′l (ω(L−)) = xω(L−)(tω(L−)) − tω(L−)f
′
l (Ā) > −s̄f ′l (ul(s̄)) (3.67)

and this contradicts the fact that genuine characteristics do not cross in the
interior of the domain.

3.4.3. Construction of a solution that yields ω. Now we prove that
the conditions of Theorem 3.6 on the set A2(T ) are also sufficient to guaran-
tee that ω ∈ A2(T ) is attainable. Let ω satisfy the conditions (3.38), (3.39),
and the conditions on the monotonicity of the map ϕ2. It is clear how to
build the solution outside the region Ω (3.61), and this is done in [4]. In
the region Ω, the compression-wave solution defined in [4] is AB-entropy
admissible if and only if L/T ≤ f ′l (A). If instead L/T > f ′l (A), there is no
hope of having a Lipschitz solution in Ω. To prove attainability also in this
case, we build a solution using the shock xūL(t). For the definition of ūL
see (3.20). By definition, this is the ”limit shock” that touches the interface
with slope zero in positive time, so that xūL(tūL) = 0. Condition (3.39) tells
us precisely that the final point of the minimal backward characteristic from
(L, T ) is smaller than the starting point of the rarefaction wave generating
the shock xūL , and therefore we can use it to build the solution (see Figure
(3.8)). For a point x < 0 and a ”state” v ∈ R, we define the following
polygonal lines. If f ′l (v) ≤ x/T let

ζx,v(t) =

x− (T − t)f ′l (v) t ∈
(
T − f ′l (v)

x , T
)

(
f ′l (v)
x + t− T

) (
f ′r ◦ πlr,−(v)

)
t ∈

(
0, T − f ′l (v)

x

) (3.68)

If instead f ′l (v) > x/T let

ζx,v(t) = x− f ′l (v), t ∈ (0, T ). (3.69)

Let
γ(t) = xūL(t)χ(tūL ,T ) − (tūL − t)f ′l (Ā)χ(0,tūL )

We define a partition of Ω as follows.

Σ ·=
{

(x, t) ∈ Ω | x ≤ L− (T − t)f ′l (ūL)
}

(3.70)

Π ·=
{

(x, t) ∈ Ω | x ≤ γ(t)
}
\ Σ (3.71)



3.4 The sets A1(T ), A2(T ) 65

x

t

t = T
L

ϕ2(L−) ϕ2(L+)

t = tūL

Figure 3.8: The characteristics of the solution defined in (3.74)

Ξ ·=
{

(x, t) ∈ Ω | −(tūL − t)f ′l (Ā) < x < 0, 0 < t < tūL

}
(3.72)

Λ ·=
{

(x, t) ∈ Ω | x ≤ ζL,A(t)
}
\ (Σ ∪Π ∪ Ξ) (3.73)

The solution in Ω is defined as

u∗(x, t) =



(f ′l )−1
(
L−x
T−t

)
(x, t) ∈ Σ,

(f ′l )−1
(
x−ϕ(L−)

t

)
(x, t) ∈ Π,

Ā (x, t) ∈ Ξ,
A (x, t) ∈ Λ, x < 0,
B̄ (x, t) ∈ Λ, x > 0,
v x = ζL,v(t), ω(L−) ≤ v ≤ A, x < 0,
πlr,−(v) x = ζL,v(t), ω(L−) ≤ v ≤ A, x > 0

(3.74)
and the initial datum u0 that generates the solution above is

u∗0(x) =


(f ′l )−1

(
L−x
T

)
x ∈ (ϕ2(L−), L− Tf ′l (ūL)),

Ā x ∈ (L− Tf ′l (ūL), 0),
B̄ x ∈ (0, ζL,A(0)),
πlr,−(v) x ∈ (ζL,A(0), ϕ2(L+)), x = ζL,v(0)

(3.75)

The analysis for the set A1(T ) is entirely symmetric and thus it’s omitted.
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3.5. The set AAB3 (T )

Let ω ∈ L∞(R) such that ω((0−), ω(0+)) = (A,B). Assume (A,B) is not a
critical connection (if it is critical the proof follows similarly and it is easier).
Let

L = inf{x | f ′l (ω(x+)) ≤ x/T}, R = sup{x | f ′r(ω(x−)) ≥ x/T}

We want to prove that all the conditions in the theorem for the set AAB3
hold. The proof that condition (3.41) holds is entirely similar to what done
in the previous section for condition (3.39).

3.5.1. Condition (3.43) holds. Assume that tL ≤ tR. If tūR ≤ tL (and
therefore LA ≤ L), we have to prove that

w(x) = A ∀ x ∈ (L, 0), w(x) = B ∀ x ∈ (0, R), (3.76)

The fact that ul(t) = A, ur(t) = B for t ∈ (T − δ, T ) for some δ > 0 is clear
using the same arguments in [4]. Moreover, we know that in the first point
in which the traces ul, ur change their value must emerge a shock with zero
slope. Since tūR ≤ tL, and since there cannot be shocks emerging from a
point (0, t) for t > max{tūl , tūR} ≤ tL

1, we find that (ul(t), ur(t)) = (A,B)
for t ∈ (tL, T ). Then condition (3.41) holds.

Assume now tL < tūR < tR (this is the situation represented in Figure
(3.9)). As above, since there are no shocks that emerge from the inter-
face from times bigger then max{tūl , tūR} = tūR , the traces have values
(ul(t), ur(t)) = (A,B) for every t ∈ (tūR , T ), so that ω is forced to be A in
(LA, 0) and B in (0, R). The fact that ϕ3,A is increasing in (L,LA) follows
exactly in the same way in which we proved in the previous section that ϕ2
is increasing, therefore we are done.

3.5.2. Construction of a solution that yields ω. To prove that they
are also sufficient, for a function ω satisfying the conditions of Theorem
3.6, we explicitly construct a solution u and an initial data u0 such that
SABt u0(x) = u(x, t) and SABT u0 = ω. We do it in the case tL < tūR < tR,

1Assume by contradiction a shock (y(t), t) emerges from a point t̄ > max{tūl , tūR} in
quadrant I with slope zero and with left state B. Then at every point t ≥ t̄ the speed of
the shock y(t) is strictly smaller then the speed of xūR (t), hence contradicting the fact
that it must be y(T ) = xūR (T ) = R.
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(A,B) non critical connection, L/T ≤ f ′l (A), R/T < f ′r(B), the other cases
being entirely analogous. First define the set

Ω ·=
{

(x, t) | L− (T − t)f ′l (ω(L−)) < x < R− (T − t)f ′r(ω(R+))
}

(3.77)

It will be sufficient to build the solution in Ω, since in the other regions
the construction was done in [4] and it is entirely similar to the continuous-
convex flux case. Since tL < tūR , it holds L ≤ LA.

The set of points θx,±(0), x ∈ (L,LA), covers the interval (θL,+(0), θLA,+(0))
with the exception of at most a countable number of disjoint intervals
(x−n , x+

n ), where the initial data will be defined so as to produce a com-
pression wave generating a shock at the point yn ∈ (L,LA) such that
θyn,±(0) = x±n . Since we are assuming L/T ≤ f ′l (A), at the left of the inter-
face the solution can be constructed using the compressione wave, partially
refracted by the interface. At the right of the interface, since R/T < f ′r(B),
the solution cannot be Lipschitz and will be constructed using the shock
xūR , in similar way to what done for the profiles in A2(T ).

Define the following sets

Ξ ·=
{

(x, t) ∈ Ω | x ≤ θL,+(t)
}

(3.78)

Λ ·=
{

(x, t) ∈ Ω | θL,+(t) < x < θLA,+(t)
}

(3.79)

∆ ·=
{

(x, t) ∈ Ω | 0 < x < xūR(t), t ∈ (tūR , T )
}

(3.80)

Υ ·=
{

(x, t) ∈ Ω | xūR(t)χ(tūR ,T )(t)− (tūR − t)f ′r(B̄)χ(0,tūR )(t)

< x < ζR,ūR(t)
}

(3.81)

For a set S we define S− = {(x, t) ∈ S | x < 0} and S+ = {(x, t) ∈ S | x >
0}. Moreover let R̄ = R− Tf ′r(ūR). Then we define
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ϕ(L−)
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ϕ(R+)
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tūR
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Figure 3.9: The characteristics of the solution defined in (3.82)

u∗ =



v (x, t) ∈ Ξ−, x = ζL,v(t),
πlr,−(v) (x, t) ∈ Ξ+, x = ζL,v(t),
ω(y±) (x, t) ∈ Λ−, x = θy,±(t), y ∈ (L,LA),
πlr,−(ω(y±)) (x, t) ∈ Λ+, x = θy,±(t), y ∈ (L,LA),
v (x, t) ∈ Λ−, x = ζyn,v(t), ω(yn−) < v < ω(yn+),
πlr,−(v) (x, t) ∈ Λ+, x = ζyn,v(t), ω(yn−) < v < ω(yn+),
A LA − (T − t)f ′l (A) < x < 0, t ∈ (tūR , T ),
B (x, t) ∈ ∆,
(f ′r)−1

(
x−R̄
t

)
(x, t) ∈ Υ,

v ζR,ūR(t) < x < θR,+(t), x = ζR,v(t),
(3.82)

and the initial data that produces the solution u∗ is, with L̄ = ϕ3,A(L+),
L̄A = ϕ3,A(LA+),

u∗0 =



v ϕ3,A(L−) < x < 0, x = ζL,v(0),
πlr,−(v) 0 < x < L̄, x = ζL,v(0)),
πlr,−(ω(y±)) L̄ < x < L̄A, x = θy,±(0), y ∈ (L,LA),
πlr,−(v) L̄ < x < L̄A, x = ζyn,v(0), ω(yn−) < v < ω(yn+),
v ζR,ūR(0) < x < ϕ3,A(R+), x = ζR,v(t),

(3.83)
Remark 3.11. By the previous analysis, a profile ω ∈ A2(T ) is attainable
with a locally Lipschitz solution (separately in the I and II quadrants) if
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and only if L/T ≤ f ′l (A). Analogously, a profile ω ∈ A1(T ) is attainable
with a Lipschitz solution if and only if R/T ≥ f ′r(B). A profile ω ∈ AAB3 (T ),
is reachable with a Lipschitz solution if and only if (ω(0−), ω(0+)) 6= (A,B)
or, in the case (ω(0−), ω(0+)) = (A,B), if and only if L/T = f ′l (A) and
R/T = f ′r(B). In any case, every profile is attainable with a solution that
has at most two shocks, one at the left and one at the right of the interface.

Example 3.12. Let’s see what ū is if fl = x2/2. Let’s fix a state u ∈
[L/T,+∞) (or, equivalently, ζL,u(0)). Solving the ode one finds that xu(t)
is given by

xu(t) = c
√
t+ tA+ ζL,u(0)

with
c = L− ζL,u(0)− TA√

T

With an explicit calculation one finds that

ūL = −A− 2
√
A
L

T

It holds ū > L/T (unless L/T = A), so that the condition ω(L−) ≥ L/T is
not sufficient, in general, to guarantee that the profile ω is attainable.



Chapter 4

Initial data identification

Abstract. The aim of this chapter is to study the problem of initial
data identification for the conservation law with discontinuous flux{

ut + f(u, x)x = 0, x ∈ R, t ≥ 0
u(x, 0) = u0(x), x ∈ R

(4.1)

where f = H(x)fl(u) + (1 − H(x))fr(u), fl, fr are uniformly convex
and H is the Heaviside function. The result will be achieved by an
adaptation of the method of generalized characteristics [11] to the set-
ting of AB-entropy solutions of (4.1), and represents a generalization
of what done in [10], [19] for the case of a strictly convex flux. We
prove that, as in the strictly convex flux case, the set of initial data

IABT ω = {u0 ∈ L∞ : SABT u0 = ω}

is an infinite dimensional cone that however it is not, in general, a
convex cone. This represents a major difference with respect to the
continuous flux case, where the set of initial data that yield a profile
ω at time T > 0 is always convex.

4.1. Generalized characteristics

In this section we introduce a new object, that in some sense generalizes the
concept of characteristic firstly introduced by Dafermos in [11] for conserva-
tion laws with strictly convex flux. Recall that a generalized characteristic
for a conservation law with convex flux f in the sense of [11] is a Lipschitz
continuous curve ζ : [0, T ]→ R such that for almost all t ∈ [0, T ],

ζ̇(t) ∈ [f ′(u(ζ(t)+, t)), f ′(u(ζ(t)−, t))]. (4.2)

The following Lemma, that provides a straightforward generalization of
Lemma 3.2 in [11], will be fundamental through the rest of the chapter.

Lemma 4.1. Assume u is an admissible (A,B) entropy solution. Let a, b ∈
[0, T ] with a < b and let α, β : [a, b]→ R be two Lipschitz maps with α ≤ β.
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Then for t1 ≤ t2 holds

ˆ β(t2)

α(t2)
u(t2, x) dx−

ˆ β(t1)

α(t1)
u(t1, x) dx

=
ˆ t2

t1

f(u(t, α(t)−), α(t)−)− α̇(t)u(t, α(t)−) dx−
ˆ t2

t1

f(u(t, β(t)+), β(t)+)− β̇(t)u(t, β(t)+) dx (4.3)

Proof. Since u satisfies the conservation law with convex flux fl, fr at the
left and at the right of the discontinuity interface x = 0, it will be sufficient
to apply Lemma 3.2 twice (one time at the left and one time at the right of
x = 0) and use the existence of the left and right traces at x = 0.

Remark 4.2. An almost straightforward consequence of Lemma 4.1 is the
following. Consider the set of all connections Cf ⊂ R2 for the fluxes fl, fr.
Fix an initial datum u0 and consider the map

Cf 3 (A,B) 7→ Φu0(A,B) = (ul, ur) ∈ L∞(R+)× L∞(R+) (4.4)

where ul, ur are the left and right traces at x = 0 of the solution u =
SAB(·) u0(·). Then there exists M > 0 depending on ‖u0‖L∞ such that for
every (A,B) ∈ Cf with (A,B) ∈ BR2(0,M)c it holds

Φu0(A,B) = (A,B) (4.5)

where A and B in the right hand side represent two constant functions
R+ → R with values respectively A, B. This might be useful if someone
wants to minimize some cost depending only on the traces ul, ur. In fact
in light of what said above it might be not (too) restrictive to work on a
compact set of connections.

The proof follows in the following way: take a connection (A,B) ∈ Cf
and assume at some point t ∈ (0, T ] it holds ul(t) > θl or ur(t) < θr.
Without loss of generality assume ul(t) > θl, the other case being entirely
symmetric. Then the minimal backward genuine characteristic from the
point (0, t) has slope f ′l (ul(t)) > 0 and we apply Lemma 4.1 with t2 = t,
t1 = 0, α(s) = −(t − s)f ′l (ul(t)), β(s) = 0. Let I = (−tf ′l (ul(t)), 0). Then
by the interface conditions and by inequality (4.14) we find
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ˆ
I
u0(x) dx =

ˆ t

0
fl(ul(s)) ds

−
ˆ t

0
fl(u(α(s)−, s))− α̇(s) · u(α(s)−, s) ds

≥
ˆ t

0
fl(Ā)−

ˆ t

0
fl(Ā)− α̇(s) · Ā ds = Ātα̇ (4.6)

Since tα̇ = |I|, we find  
I
u0(x) dx ≥ Ā (4.7)

and this implies that ‖u0‖L∞ ≥ Ā.

Definition 4.3. Let v : R × [0, T ] be an L∞ function such that the limits
v(x−, t), v(x+, t) exist for every x ∈ R and t ∈ (0, T ]. Let α : [0, T ]→ R be
a Lipschitz curve. We define

Ft(v, α±) :=
ˆ T

t
f(v(α(t)±, t), α(t)±)− α̇(t)v(α(t)±, t) dt (4.8)

where f(u, x) is the flux of the problem (4.1). We let also F(v, α±) :=
F0(v, α±).

Now we define the object that generalizes, in some sense that we will see
below, the characteristics in the sense of [11] to the setting of AB-entropy
solutions.

Definition 4.4. For a solution u of the problem (4.1) and x ∈ R we say that
a Lipschitz (polygonal) curve ζ : [0, T ]→ R such that ζ(T ) = x, belongs to
C(u, x) if for a.e. t ∈ [0, T ] one of the following holds:

1. ζ(t) 6= 0 and

ζ̇(t) = f ′(u(ζ(t)−, t, ), ζ(t)) = f ′(u(ζ(t)+, t), ζ(t)) (4.9)

2. ζ(t) = 0 and

fl(u(ζ(t)−, t) = fl(A) = fr(B) = fr(u(ζ(t)+, t)). (4.10)

We also define
C0(u, x) = {ζ(0) : ζ ∈ C(u, x)} (4.11)
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x

L RA Bx̄ ω

Figure 4.1: There are no backward generalized characteristics with time of existence
[0, T ] from the point x̄. If, instead, we consider elements in C0(u∗, x̄) (the blue line),
we see that, also if at the time at which the characteristic reaches the interface it
cannot be prolonged on the other side in classical sense, there is at least an element
in C0(u∗, x̄) that is defined on the whole [0, T ].

In other words, ζ(t) ∈ C(u, x) if and only if it is a classical gener-
alized characteristic [11] for the fluxes fl, fr in the regions, respectively,
x < 0 and x > 0, with the additional freedom that ζ(t) can ”travel”
along the discontinuity interface x = 0 in some intervals of time, but only
if at those points the flux of the solution is the minimum possible, i.e.
fl(ul(ζ(t)) = fr(ur(ζ(t)) = fl(A) = fr(B), where we recall that ul, ur are
the left and right traces of u at x = 0. Notice that in any case ζ is made of
(up to) three segments. If |x| is big enough, elements in C(u, x) coincide with
backward genuine characteristics from the point x. Finally, the set C0(u, x)
is closed. A quick way to see this is that every sequence {ζn}n∈N ⊂ C(u, x) is
uniformly bounded and uniformly Lipschitz (with Lipschitz constant equal
to max{Ll, Lr} with Ll, Lr Lipschitz constants of fl, fr on some bounded
set K), so that there exists a uniformly converging subsequence ζnk whose
limit will be an element of C(u, x) (uniform limit of genuine characteristics
is still a genuine characteristic).
Remark 4.5. Let us briefly discuss the problem of initial data identification
in the case of the conservation law (4.12) where f is a uniformly convex flux.
As already mentioned, this problem was recently completely solved in [10],
[19] using two different approaches. In [10], the proof is based on the Lax-
Oleinik formula, while in [19] the authors used the method of generalized
characteristics. When the flux f is continuous and uniformly convex the
”special” solution u∗ to the problem

ut + f(u)x = 0 (4.12)

that yields ω at time T is always Lipschitz (see the previous chapter) and
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it is easy to prove that the initial datum u∗0 that produces u∗ is completely
identified among the elements of ITω by property (i) below. This solution
was used in [10], [19] to characterize all the other elements of of the set ITω
and it played a fundamental role because it was proved that ITω is always
a convex cone having u∗0 at its vertex.

If one looks at the proof of [19], it is possible to single out the three
properties that make this kind of characterization possible.

(i) For every y ∈ R there exists x ∈ R and a genuine characteristic ζ :
[0, T ]→ R of u∗ such that ζ(0) = y and ζ(T ) = x.

(ii) For every solution u of (4.12) such that u(·, T ) = ω, for every x ∈ R,
u∗ and u share at least one genuine characteristic ζ : [0, T ]→ R such
that ζ(T ) = x.1

(iii) Let u, v be solutions of (4.12). For every genuine characteristic ζ :
[0, T ]→ R for u:

Ft(v, ζ±) ≥ Ft(u, ζ±)

Here we would like to generalize (i), (ii), (iii) to the setting of entropy
solutions of type AB. This is not straightforward for two main reasons.
The first one is that, while in the convex flux case it is clear that there is a
privileged solution u∗ (the Lipschitz one) that plays a key role in the initial
data identification, in our case it is not so clear what solution should replace
the role that u∗ played in the convex case. Secondly, in the convex case
a genuine characteristic can always be prolonged until time t = 0. In the
discontinuous case this is cleary not anymore true, but we already gave a
hint on how to generalize this property using the elements of C(u, x̄).

The following section will be dedicated to proving that the set C(u, x)
allows to generalize the previous three properties to the discontinuous prob-
lem (4.1). Elements of C(u, x) will take the role of genuine characteristics.
We will see below that there is a solution that generalizes, in some sense,
the solution u∗ to our discontinuous setting. More precisely, we will see that
the following three properties hold:

(i)∗ For every y ∈ R there exists x ∈ R and an element ζ ∈ C(u∗, x) such
that ζ(0) = y

(ii)∗ For every solution u such that u(·, T ) = ω, for every x ∈ R, C(u∗, x)∩
C(u, x) 6= 0.

1Actually this property is true also if we replace u∗ with any other element v ∈ ITω,
but this is not important in the initial data identification
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(iii)∗ Let v, v∗ be solutions of (4.1). For every element ζ ∈ C(x, v∗):

Ft(v, ζ±) ≥ Ft(v∗, ζ±)

Hopefully, as in the convex flux case, there exists a unique solution u∗

that satisfies (i)∗. In this case the initial data u∗0 that produces u∗ will be
a good candidate for being the vertex of the cone IABT ω (although at this
point we still do not know if IABT ω is a cone, but it will become clear later).
In the following section we will see that this is the case and prove these facts.

4.2. Properties of C(u, x)

In the next lemmas we prove, respectively, (iii)∗, the existence (and unique-
ness) of the special solution u∗, and (ii)∗. Property (iii)∗ is true essentially
because of the same reasons that make property (iii) true, plus the fact
that if ζ ∈ C(u, x), in the interval in which ζ travels along the interface, the
flux of the solution is the minimum possible in that interval (i.e. precisely
the flux of the connection). The existence of u∗ is proved in the previous
chapter. Property (ii)∗ is deeper and has it’s roots on the specific structural
properties of an AB-entropy solution as well as the specific properties of the
solution u∗. The following Lemma proves that (iii)∗ holds.
Lemma 4.6. Let v, v∗ : R × [0, T ] be solutions to the problem (4.1). Fix a
point x ∈ R and let α ∈ C(x, v∗). Then it holds

Ft(v, α±) ≥ Ft(v∗, α±) (4.13)
Proof. We write the integral F as the sum of three parts depending on the
sign of α. Then the proof follows from the following two observations:

1. In the segment (t1, t2) where α(t) = 0, the integrand in F(v∗, α±) is
almost everywhere equal to fl(A), and by the interface conditions for
v it holds fl(A) ≤ fl(vl(t)) for t ∈ (t1, t2).

2. In a segment (t1, t2) 3 t where α 6= 0 (assume it’s negative for fixing
the ideas), using the convex estimate

fl(u)− f ′l (w)u ≥ fl(w)− f ′l (w)w, ∀ u,w ∈ R (4.14)
one finds that (recall that since α is genuine for v∗ one has v∗(α(t), t) =
(f ′l )−1(α̇(t))

fl(v(α(t), t))− α̇(t)v(α(t), t)
≥ fl(v∗(α(t), t))− f ′l (v∗(α(t), t))v∗(α(t), t) (4.15)

that is what we need to prove the Lemma.
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Figure 4.2: ζ and ζ∗ do not intersect (left) and intersect (right).

Lemma 4.7. Fix ω ∈ AAB(T ). There exists a unique u∗0 ∈ IABT ω such that
property (i)∗ holds.

Proof. Existence is proved in the previous chapter, where u∗0 and the solution
u∗ produced by the initial datum u∗0 are explicitly defined and are used to
prove the characterization of the reachable set ω ∈ AAB(T ). Therefore we
only have to prove uniqueness.

Assume u0 ∈ IABT ω satisfies (i)∗. Let y1 < y2. Then there exist ζ ∈
C(u, x1) and ζ∗ ∈ C(u∗, x2) such that ζ(0) = y1 and ζ∗(0) = y2 (see Figure
4.2). Assume that ζ and ζ∗ do not intersect (if they intersect, the proof
follows similarly integrating only up to the time τ of intersection, see the
proof of Theorem 4.9 for a similar argument). Applying Lemma 4.1 to the
curves ζ1, ζ2 and the solution u, and Lemma 4.6, we find that
ˆ y2

y1

u0(x) dx =
ˆ x2

x1

ω(x) dx+ F(u, ζ∗+)−F(u, ζ−)

≥
ˆ x2

x1

ω(x) dx+ F(u∗, ζ∗+)−F(u, ζ−) (4.16)

Analogously, applying Lemma 4.1, this time to the solution u∗, and Lemma
4.6, we find
ˆ y2

y1

u∗0(x) dx =
ˆ x2

x1

ω(x) dx+ F(u∗, ζ∗+)−F(u∗, ζ−)

≤
ˆ x2

x1

ω(x) dx+ F(u∗, ζ∗+)−F(u, ζ−) (4.17)
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and subtracting (4.17) from (4.16) one obtainsˆ y2

y1

u0(x)− u∗0(x) dx ≥ 0 (4.18)

With the symmetric argument, with y1 < y2, ζ∗ ∈ C(u∗, x1) and ζ ∈ C(u, x2),
we find that also the opposite inequality holds, so thatˆ y2

y1

u0(x)− u∗0(x) dx = 0, ∀ y1 < y2 (4.19)

that proves, thanks to Lebesgue differentiation theorem, that u0 = u∗0 as
elements of L∞.

Now we pass to the proof of property (ii)∗. In the following we will often
use the following fact:

Fact: Assume that for a solution u of (4.1) at some time it holds ul(t) =
u(0−, t) = A and ur(t) = u(0+, t) = B. Then there exists a δ > 0 such that
(ul(s), ur(s)) = (A,B) for every t ∈ (t− δ, t). Moreover, if one of the traces
ul, ur changes its value for the first time at some point t̄ with t > t̄ > 0, it
holds ul(t̄) = Ā and from the point (0, t̄) emerges a shock with zero slope
lying in quadrant II if ul changed its value, while it holds ur(t̄) = B̄ and
emerges a shock with zero slope lying in quadrant I if ur changed its value.

Lemma 4.8. Fix ω ∈ AAB(T ). Let u∗ = S(·)u
∗
0(·), with u∗0 ∈ IABT ω the

unique element that satisfies (i)∗, and let u any other solution such that
u(·, T ) = ω. Let x̄ ∈ R. Then

C(u∗, x̄) ∩ C(u, x̄) 6= 0 (4.20)

Proof. Without loss of generality assume x̄ > 0. Assume first that f ′r(ω(x̄+)) ≤
x/T . Let θx̄,+ : [0, T ] → R be the maximal backward characteristic from
(x̄, T ). Then clearly

θx̄,+ ∈ C(u∗, x̄) ∩ C(u, x̄)
Now let f ′r(ω(x̄+)) > x/T . Let

tx̄,− = T − f ′r(ω(x̄−))
R

the time at which the minimal backward characteristic from (x̄, T ) impacts
the interface. If ω(x̄−) 6= B, it must be ul(tx̄,−) = πrl,+(ω(x̄−)) = u∗l (tx̄,−)
and the line

θx̄,−(t) =
{
x̄− f ′r(ω(x̄−)), tx̄,− < t < T,

−(tx̄,− − t)f ′l ◦ πrl,+(ω(x̄−)) 0 < t < tx̄,−,
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is such that
θx̄,− ∈ C(u∗, x̄) ∩ C(u, x̄)

It remains to prove the Lemma in the case ω(x̄−) = B. In this case,
by the interface conditions, since the maximal backward characteristic from
(x̄, T ) has slope smaller or equal than f ′r(B), and by f ′r(ω(x̄+)) > x/T it
impacts the interface in positive time, we deduce that ω is continuous in x̄
(and ω(x̄±) = B). Then we rename tx̄,− = tx̄. We have two cases:

Case 1. ω ∈ A1(T )AB. By the observations above it must be 0 < x̄ < R.
By definition of u∗ we have u∗l (tx̄) = Ā. Therefore, if ul(tx̄) = Ā, we are done
because as before the line θx̄,− is in C(u∗, x̄)∩C(u, x̄). Otherwise, ul(tx̄) = A
(and of course ur(tx̄) = B). Let

t̄ = inf{t ≤ tx̄ | (ul(s), ur(s)) = (A,B) ∀ s ∈ (t, tx̄)}

We have two sub-cases:

1.a. t̄ > tR,−. Then a shock for u lying in quadrant II starts from (0, t̄)
with zero slope and ul(t̄) = Ā. We claim that ω(x) = B for x ∈
(x̄, (T − t̄)f ′r(B)). In fact, assume that there is a point x ∈ (x̄, (T −
t̄)f ′r(B)) such that f ′r(ω(x−)) > B. Then it must be tx,− ∈ (t̄, tx̄) and
ur(tx,−+) > B: a contradiction with the definition of t̄. Then the line

α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′l (Ā), 0 < t < t̄,

is in C(u∗, x̄) ∩ C(u, x̄).

1.b. t̄ ≤ tR,−. This implies with same arguments above, that ω(x) = B for
all x ∈ (x̄, R), and then ω(R−) = B. If t̄ = 0, the line

α(t) =
{
x̄− (T − t)f ′r(B), tx̄ < t < T,

0, 0 < t < tx̄,

is in C(u∗, x̄) ∩ C(u, x̄). If instead t̄ > 0, the solution u has a shock
starting with zero slope from (0, t̄), and either the shock lies in the I
or in the II quadrant. If the shock lies in the second quadrant, the
curve
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α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′l (Ā), 0 < t < t̄,

is in C(u∗, x̄) ∩ C(u, x̄). If the shock lies in the first quadrant, and
t̄ ≤ tūR , the curve

α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′r(B̄), 0 < t < t̄,

is in C(u∗, x̄)∩C(u, x̄). We now prove that the last case cannot happen,
namely, the case in which t̄ ∈ (tūr , tR,−) and the shock starting from
(0, t̄) lies in the first quadrant. If this is the case, call y(t) such shock.
It must have left state equal to B and right state strictly bigger than
the right state of the shock xūR(t), for each t ≥ t̄. Then y(t) < xūR(t)
for t ∈ (t̄, T ) but this is a contradiction since it must happen that
y(T ) = xūR(T ) = R.

Case 2. ω ∈ AAB3 (T ) and (ω(0−), ω(0+)) = (A,B). Again it must be
0 < x̄ < R, and let

t̄ = inf{t ≤ tx̄ | (ul(s), ur(s)) = (A,B) ∀ s ∈ (t, tx̄)}

We have some different cases:

2.a . tūR ≤ tL ≤ tR. Of course we also have tūL ≤ tL ≤ tR. In this case
ω(x) = A, x ∈ (L, 0) and ω(x) = B, x ∈ (0, R). Therefore the traces
of u∗ satisfy

u∗l (t) = A, t ∈ (tūL , T ), u∗l (t) = Ā, t ∈ (0, tūL ],
u∗r(t) = B, t ∈ (tūR , T ), u∗r(t) = B̄, t ∈ (0, tūR ],

(4.21)

We know that at (0, t̄) a shock with zero slope emerges for the solution
ū. If the shock emerges in the quadrant I, it must be t̄ ≤ tūR , since, as
above, xūR(t) is the minimal of all the possible shocks of solutions that
yield ω with left state equal to B. Therefore in this case the curve

α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′r(B̄), 0 < t < t̄,
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is in C(u∗, x̄) ∩ C(u, x̄). If instead the shock emerges in quadrant II,
for the same, but specular, reason it must be t̄ ≤ tūL and the curve

α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′l (Ā), 0 < t < t̄,

is in C(u∗, x̄) ∩ C(u, x̄).

2.b . tL ≤ tūR ≤ tR. If t̄ ≤ tL, we deduce that ω(x) = A, x ∈ (L, 0) and
ω(x) = B, x ∈ (0, R), and we conclude in the same way of Case 2.a.
Otherwise, it must be t̄ ∈ (tL, tūR ]. Then since the left trace is A for
t ∈ (t̄, T ) we deduce, as in Case 1, that ω(x) = A, x ∈ (T − t̄)f ′l (A).
This means by definition of u∗ that u∗r(t̄) = B̄ and therefore the line

α(t) =


x̄− (T − t)f ′r(B), tx̄ < t < T,

0, t̄ < t < tx̄,

−(t̄− t)f ′r(B̄), 0 < t < t̄,

is in C(u∗, x̄) ∩ C(u, x̄).

2.c,d . tūL ≤ tR ≤ tL (Case 2.c) or tR ≤ tūL ≤ tL(Case 2.d). The result
in this two cases follows in exactly the same way as in the previous
two cases, therefore the proof is omitted.

4.3. Examples

Here we provide some examples and figures that hopefully will help to better
understand how the sets C(u, x) behave and their structure. In order to do
this, we use a relatively simple profile ω, but that in our opinion already
captures the essence and the key points of Definition 4.4. In particular we
let

ω(x) =


v x < L,

A L < x < 0,
B̄ 0 < x

(4.22)

with
f ′l (A) < L/T < f ′l (ūl) < f ′l (v) (4.23)
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so that ω is attainable (see the previous chapter) but it is not attainable with
a Lipschitz solution. The ”special” solution u∗ is represented in Figure 4.3.
In particular there is a compression wave that creates the shock at (L, 0),
a rarefaction wave that meets a shock with right state equal to A, and the
left and right traces u∗l , u∗r are always equal to A and B̄ respectively.

x

t

ω

v B̄

L x̄

tūL

Figure 4.3: The solution u∗.

Now consider a point x̄ ∈ (L, 0). There is a unique backward genuine
characteristic with slope f ′l (A) until it meets the interface. At that point
we can prolong it on the other side with slope f ′r(B̄), but another possible
choice is to travel along the interface for some time and then go the right
at any time, or go to the left at times t ≤ tūl (the time at which the shock
emerges from the interface). Therefore we will have distinct minimal and
maximal lines in the set C(u∗, x̄), represented by the blue lines in Figure 4.3,
while all the other blue dashed lines are the other elements in C(u∗, x̄).

If we consider other initial data u0 ∈ IABT ω, we produce different so-
lutions u with different sets C(u, x̄) and C0(u, x̄). Consider for example a
solution like u1 as in Figure 4.4. The red line at the left of the interface
is a shock with left state v and right state A. Of course such a solution
is admissible if and only if L − Tλl(v,A) ≤ 0. For simplicity assume this
condition holds (it will be sufficient to take v big enough). In this case the
set C(u1, x̄) is smaller since the left trace ul is always equal to A.

In the case of a solution like u2 (see Figure 4.5), it is easy to see that the
set C0(u2, x̄) is not an interval. In fact, at time tūL the traces change their
value due to two rarefaction waves arriving at the interface from both sides.

Finally, let’s have a look at a solution u3 for which max C0(u∗, x̄) 6=
max C0(u3, x̄) (see Figure 4.6). Here a shock emerges from a point of the
interface and is reabsorbed by the interface itself after an interval of time.
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Figure 4.4: The solution u1.
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Figure 4.5: The solution u2.

4.4. The set IABT ω

In this section we prove a characterization of the set IABT ω in terms of some
integral inequalities. The result is a generalization to the discontinuous flux
setting of the corresponding results obtained in the convex case in [10], [19].

Let X (ω) be the set of continuity points of ω, namely

X (ω) = {x ∈ R : ω(x−) = ω(x+)} (4.24)

The limits ω(x±) are well defined for every x if ω is assumed to be an
element of the attainable set AAB(T ).

Theorem 4.9. Let (A,B) be a connection. Then SABT u0 = ω if and only if
for every x̄ ∈ X (ω) there exists ȳ ∈ C0(u∗, x̄) such that

ˆ ȳ

y
u0(x) dx ≤

ˆ ȳ

y
u∗0(x) dx, ∀ y < min C0(u∗, x̄) (4.25)
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and ˆ y

ȳ
u0(x) dx ≥

ˆ y

ȳ
u∗0(x) dx, ∀ y > max C0(u∗, x̄) (4.26)

Proof. We prove that the conditions (4.25), (4.26) are necessary: assume
that for a solution u we have u(·, T ) = ω = u∗(·, T ) and u = SAB(·) u0(·).
Take x̄ as in the statement of (4.25). Now, using Lemma 4.8, choose ζx̄ ∈
C(u∗, x̄) ∩ C(u, x̄) and set ȳ ·= ζx̄(0). Choose any y < min C0(u∗, x̄). From
the structure of u∗ (see property (i)∗ above), we know that there is some
x < x̄ such that y = ζx(0), ζx ∈ C(u∗, x). From Lemma 4.6, we deduce that

F(u, ζx−) ≥ F(u∗, ζx−) (4.27)

Moreover, since ζx̄ ∈ C(u∗, x̄) ∩ C(u, x̄), we have

F(u∗, ζx̄) = F(u, ζx̄) (4.28)

Applying Lemma 4.1 one obtains
ˆ x̄

x
ω(x) dx−

ˆ ȳ

y
u∗0(ξ) dξ = F(u∗, ζx−)−F(u∗, ζx̄) (4.29)

and, again, thanks to Lemma 4.1 and (4.27), (4.28),
ˆ x̄

x
ω(x) dx−

ˆ ȳ

y
u0(ξ) dξ = F(u, ζx−)−F(u, ζx̄) ≥ F(u∗, ζx−)−F(u∗, ζx̄)

(4.30)
Taking the difference of the two above equations one gets (4.25). The proof
of (4.26) is entirely symmetric and therefore is omitted.
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tūL

Figure 4.6: The solution u3.
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Figure 4.7: Case 2: max C0(u, x1) < min C0(u∗, x2) (left); Case 1: max C0(u, x1) ≥
min C0(u∗, x2) (right)

Now we prove that if u0 ∈ L∞(R) satisfies (4.25), (4.26), then SABT u0 =
ω. What we are going to prove is the following:

ˆ x2

x1

ω(x)− STu0(x) dx = 0, ∀ x1 < x2, xi ∈ X (ω), i = 1, 2 (4.31)

By Lebesgue differentiation theorem this is enough to conclude that ω and
SABT u0 coincide as elements of L∞(R). We split the proof into two parts, in
which we prove respectively the two opposite inequalities needed to obtain
(4.31). We start with proving

ˆ x2

x1

ω(x)− STu0(x) dx ≥ 0, ∀ x1 < x2, xi ∈ X (ω), i = 1, 2 (4.32)

Take any two points x1 < x2. We have two cases

Case 1. max C0(u, x1) ≥ min C0(u∗, x2). Then choose ζ1 ∈ C0(u, x1) and
ζ2 ∈ C0(u∗, x2) such that ζ2(0) ≤ ζ1(0). By continuity there is a point
τ ∈ [0, T ) in which ζ1(τ) = ζ2(τ). Apply Lemma 4.1 to the curves ζi|[τ,T ],
i = 1, 2 and Lemma 4.6 to obtain

ˆ x2

x1

ω(x) dx = Fτ (u∗, ζ1−)−Fτ (u∗, ζ2+) ≥ Fτ (u, ζ1−)−Fτ (u∗, ζ2+)

(4.33)
andˆ x2

x1

STu0(x) dx = Fτ (u, ζ1−)−Fτ (u, ζ2+) ≤ Fτ (u, ζ1−)−Fτ (u∗, ζ2+)

(4.34)
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Taking the difference of the two above inequalities, one obtains (4.32).

Case 2. max C0(u, x1) < min C0(u∗, x2). Choose any ζ1 ∈ C0(u, x1), and set
y
·= ζ1(0). Since y < min C0(u∗, x2), the first condition of the Theorem gives

us a y2 ∈ C0(u∗, x2)(and then a ζ2 ∈ C(u∗, x2) such that ζ2(0) = y2) such
that ˆ y2

y
u0(x) dx ≤

ˆ y2

y
u∗0(x) dx (4.35)

Apply Lemma 4.1 to the curves ζi, i = 1, 2 and Lemma 4.6 to obtain
ˆ x2

x1

ω(x) dx = F(u∗, ζ1−)−F(u∗, ζ2+) +
ˆ y2

y
u∗0(x) dx

≥ F(u, ζ1−)−F(u∗, ζ2+) +
ˆ y2

y
u∗0(x) dx (4.36)

and
ˆ x2

x1

STu0(x) dx = F(u, ζ1−)−Fτ (u, ζ2+) +
ˆ y2

y
u0(x) dx

≤ F(u, ζ1−)−F(u∗, ζ2+) +
ˆ y2

y
u0(x) dx (4.37)

Taking the difference of the two above equations and using (4.35), one ob-
tainsˆ x2

x1

ω(x) dx−
ˆ x2

x1

STu0(x) dx ≥
ˆ y2

y
u∗0(x) dx−

ˆ y2

y
u0(x) dx ≥ 0 (4.38)

and this proves (4.32) also in Case 2.

The proof of the opposite inequality is entirely symmetric and is accord-
ingly omitted.

Example 4.10. Let us apply the Theorem for a couple of simple profiles
ω. Let’s start with

ω(x) =
{
v1 x < 0,
v2 x > 0,

(4.39)

with v1 < A and v2 = πlr,−(v1). The solution u∗ in this case is

u∗(x, t) =
{
v1 x < 0,
v2 x > 0,

(4.40)
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Figure 4.8: The second profile ω considered in Example (4.10)

Of course, for every x > 0, C(u∗, x) is a singleton and it’s unique element is
precisely the unique backward characteristic with slope f ′r◦πlr,−(v1) = f ′r(v2).
The same holds for x < L. Thanks to the fact that v1 < A, we can say that
for every L < x < 0

C(u∗, x) = {θx,+ = θx,−}

so that the initial data in this case is uniquely determined.
Now we take v1 = A, v2 = v2 = πlr,−(v1) = B̄ (see Figure 4.8). In

this particular case, the initial datum is not uniquely determined. With
the same arguments as above, we know that the initial datum is uniquely
determined in the regions x < 0 and x > −Tf ′r(B̄). This is true essentially
because C(u∗, x) is a singleton and coincides with the unique genuine back-
ward characteristic for every x < L and x > 0. Now we want to find out
what C0(u∗, x) is for x ∈ (L, 0). Fix such an x. It is clear that

C0(u∗, x) = [0, θx(0)]

with θx being the polygonal line that changes slope at the interface, with
slopes A and B̄ at the left and at the right. Consider some x̄ ∈ (L, 0) and
any y /∈ C(u∗, x̄). Then the statement of the theorem in this case is trivial,
because one can choose always ȳ = 0, so that no additional conditions are
added. This is true because, (if y < 0 is trivial, therefore assume y > θx(0))
one can always take a sequence of points xn ↑ L and apply condition (4.25)
with x̄ equal to those points (and y as y) in the limit obtaining the needed
inequality. Then, what the Theorem says is that u0 ∈ L∞(R) is such that
STu0 if and only if

u0(x) =


A x < 0,
v0 0 < x < −Tf ′r(B̄),
B̄ −Tf ′r(B̄) < x,

(4.41)
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with v0 ∈ L∞(0,−Tf ′r(B̄)) such that
ˆ −Tf ′r(B̄)

y
v0(x) dx ≤ B̄(y + Tf ′r(B̄)), y ∈ (0, T f ′r(B̄)), (4.42)

ˆ y

0
v0(x) dx ≥ B̄y, y ∈ (0, Tf ′r(B̄)), (4.43)

Notice that if B = B̄ = θr, the initial data is uniquely identified also in this
second case.

4.5. Geometrical and topological properties of IABT (ω)

From Theorem 4.9 we can deduce some geometrical and topological proper-
ties of the set IABT ω, that we collect in the following theorem.

Theorem 4.11. Let ω ∈ AAB(T ). Then, with respect to the L1
loc topology,

the following holds:

(i) For every M > 0, the set IABT ω ∩ {u0 : ‖u0‖L∞ ≤M} is closed;

(ii) IABT ω is an Fσ set and has empty interior;

(iii) IABT ω reduces to a singleton if and only if |C0(u∗, x)| = 1 (see Definition
4.4) for every x ∈ R. In particular only if (but not “if”) ω is continuous
outside the origin.

(iv) The set IABT ω is an affine cone having u∗0 as its vertex and unique
extremal point.

(v) If |C0(u∗, x)| = 1 for every x ∈ X (ω), the set IABT ω is convex; in
particular, it is a convex affine cone having u∗0 as its vertex and unique
extremal points. Otherwise, it could be non-convex.

Remark 4.12. It is noteworthy that in the discontinuous flux setting the
convexity properties of IABT ω are, in general, lost. In fact, in the convex
flux case, it was proved in [10], that the set of initial data is always convex.
The property of being a cone, instead, remains true also in the discontinuous
flux case.

Proof. The proof of (i) follows immediately from the semigroup properties
of SABT . The fact that IABT ω is an Fσ set follows from (i).

We prove that IABT ω has empty interior. Take two points 0 < x1 < x2 in
X (ω) such that the unique backward (genuine) characteristics, respectively
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θx1 , θx2 , from x1, x2, do not interact with the interface. We can also choose
them in such a way that θx1(0) < θx2(0). Notice that in this case C0(u∗, xi) =
{θxi(0)}. Apply condition (4.25) with x̄ = x2, y = θx1(0) to find that any
element in IABT ω satisfies

ˆ θx2 (0)

θx1 (0)
u0(x) dx ≤

ˆ θx2 (0)

θx1 (0)
u∗0(x) dx (4.44)

Now apply condition (4.26) with x̄ = x1, y = θx2(0) to find that any element
in IABT ω satisfies

ˆ θx2 (0)

θx1 (0)
u0(x) dx ≥

ˆ θx2 (0)

θx1 (0)
u∗0(x) dx (4.45)

Inequalities (4.44), (4.5) together imply that every element u0 ∈ IABT ω sat-
isfies ˆ θx2 (0)

θx1 (0)
u0(x) dx =

ˆ θx2 (0)

θx1 (0)
u∗0(x) dx (4.46)

From condition (4.46) one clearly sees that the set IABT ω has always empty
interior.

Let’s prove (iii). First assume that |C0(u∗, x)| = 1 for every x ∈ R.
Notice that this immediately implies that ω is continuous outside the origin.
Take any two points y1 < y2 ∈ R. By the property (i)∗ of the solution u∗

there exist ζ2 ∈ C(u∗, x2) such that ζ2(0) = y2, and by our assumption x2 is
a continuity point of ω (or zero) and C(u∗, x2) is a singleton. Without loss
of generality we can assume that neither y1 nor y2 are in C0(u∗, 0) (since it
is a singleton by assumption). Then, by (4.25),

ˆ y2

y1

u0(x) dx ≤
ˆ y2

y1

u∗0(x) dx (4.47)

Now we exchange the role of y1 and y2. In particular, with the symmetrical
argument (this time using (4.26)) we find the opposite inequality

ˆ y2

y1

u0(x) dx ≥
ˆ y2

y1

u∗0(x) dx (4.48)

We discovered that any initial data u0 that leads to ω satisfies
ˆ y2

y1

u0(x) dx =
ˆ y2

y1

u∗0(x) dx, a.e. y1 < y2 ∈ R (4.49)
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This uniquely identifies u0 as an element of L∞(R), therefore IABT ω is a
singleton.

Conversely, assume that IABT ω is a singleton. By contradiction assume
there is some x ∈ R such that |C0(u∗, x)| 6= 1. If the elements in C(u∗, x) do
not interact with the interface, this means that x is a discontinuity point of
ω and it is clear how to build another element in IABT ω following the argu-
ments used in the convex flux case in [10]. Then assume that the elements in
C(u∗, x) interact with the interface. Without loss of generality assume x < 0.
It might happen that x is a discontinuity point of ω with both the minimal
and maximal characteristic that impact the interface. Then, instead of u∗,
that creates the shock at (x, T ) with a compression wave, we can use single
shock with left state ω(x−) and right state ω(x+) at the left of the inter-
face, and the corresponding values πlr,−ω(x±) at the right of the interface.
Therefore IABT ω is not a singleton. If instead only the maximal character-
istic impacts the interface in positive time, if u∗ is made of a compression
wave we can build another solution with a shock as above. If instead u∗

has the shock that starts with slope zero from the interface, we can always
modify the traces of the solution in a similar way to what done in point
(v) below for the solution u2

0 (see Figure 4.10). The last case to analyze is
when ω is continuous at x. Since C(u∗, x) is not a singleton it must hold
ω(x) = A. There must be a positive δ such that ω(y) = A, y ∈ (x − δ, x):
this holds because, since C(u∗, x) is not a singleton, there must be a positive
ε such that ul(t) = A for t ∈ (tx − ε, tx). Then we can modify u∗ to obtain
a different admissible solution creating a shock with slope zero at the point
tx − ε, lying in quadrant I, that is re-absorbed by the interface at time tx
(as in Figure 4.6). If x = 0, with similar arguments one can prove that the
same holds. The proof of (iii) is concluded.

To prove property (iv), notice that for every u0 ∈ IABT ω and λ ≥ 0 it
holds u∗0 +λ(u0−u∗0) ∈ IABT ω. To see this, it’s sufficient to prove that (4.25),
(4.26) of Theorem 4.9 hold. Take x̄ ∈ X (ω) and y < inf C0(u∗, x̄). Since
u0 ∈ IABT ω there is some ȳ such that (4.25) holds. Then one has

ˆ ȳ

y
u∗0 + λ(u0 − u∗0) dx ≤

ˆ ȳ

y
u∗0 + λ(u∗0 − u∗0) dx =

ˆ ȳ

y
u∗0 dx (4.50)

as wanted. The proof that also (4.26) holds is entirely symmetric.
Now we prove that u∗0 is an extremal point. Take any x̄ ∈ X (ω) such

that C0(u∗, x̄) is a singleton and call its unique element ȳ. Assume by con-
tradiction that there exists a λ ∈ (0, 1) such that u∗0 = λu1

0 + (1− λ)u2
0 with
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u∗0 6= ui0 ∈ IABT ω, i = 1, 2. In particular it holds

λ

ˆ y

ȳ
u1

0 dx+ (1− λ)
ˆ y

ȳ
u2

0 dx =
ˆ y

ȳ
u∗0 dx, ∀ y ∈ R (4.51)

Then, since u1
0, u

2
0 are different from u∗0, there must be some y ∈ R such that

ˆ y

ȳ
u1

0 dx 6=
ˆ y

ȳ
u∗0 dx 6=

ˆ y

ȳ
u2

0 dx (4.52)

Assume that y > ȳ. Then by condition (4.26) of Theorem 4.9,
ˆ y

ȳ
u1

0 dx >
ˆ y

ȳ
u∗0 dx <

ˆ y

ȳ
u2

0 dx (4.53)

but this is in contradiction with (4.51). If instead y < ȳ, by condition (4.25)
of Theorem 4.9, ˆ y

ȳ
u1

0 dx <
ˆ y

ȳ
u∗0 dx >

ˆ y

ȳ
u2

0 dx (4.54)

that is, again, a contradiction with (4.51). This proves that u∗0 is an extremal
point (and of course it is unique).

Finally, let’s prove (v). Let u1
0, u

2
0 ∈ IABT ω and θ ∈ (0, 1). Let x̄ ∈ X (ω)

and y < inf C0(u∗, x̄). By hypothesis there exist ȳ1, ȳ2 ∈ C0(u∗, x̄) such that
ˆ ȳ1

y
u1

0(x) dx ≤
ˆ ȳ1

y
u∗0(x) dx,

ˆ ȳ2

y
u2

0(x) dx ≤
ˆ ȳ2

y
u∗0(x) dx (4.55)

At this point (and only at this point) we use that C0(u∗, x̄) is a singleton,
deducing that ȳ1 = ȳ2. Then, for ȳ = ȳ1 = ȳ2, using (4.55),

ˆ ȳ

y
θu1

0(x) + (1− θ)u2
0(x) dx ≤

ˆ ȳ

y
u∗(x) dx (4.56)

so that θu1
0 + (1 − θ)u2

0 satisfies (4.25). The proof that also (4.26) holds is
entirely similar and is accordingly omitted.

Now we give an example in which the set IABT ω is not convex. We assume
fl, fr = u2/2. Let

ω(x) =


Ā x ≤ L,
A x ∈ (L, 0),
v x > 0,

(4.57)

with v < B̄ negative enough. The strategy is to find two initial data u1
0, u

2
0 ∈

IABT ω and show that for some θ ∈ (0, 1), θu1
0 + (1− θ)u2

0 /∈ IABT ω. We know,
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with some calculations, that ūL = −A−2
√
AL
T . In order to deal with easier

calculations, we choose T = 1 and A,L such that ūL = 0. One finds that in
this case it must be A = 4L. With this choice, it also holds Ā = −4L = B
and B̄ = 4L = A. We recall that for this profile ω, the ”special” initial data
u∗0, that produces the solution u∗, has the form (see Figure 4.9)

u∗0(x) =



Ā x < 5L,
L− x 5L < x < L,

Ā L < x < 0,
B̄ 0 < x < −4L,
−x −4L < x < −v,
v −v < x,

(4.58)

Now we define u1
0(x) as (see Figure 4.11)

u1
0(x) =


Ā x < L,

A L < x < 0,
B 0 < x < −λ(B, v),
v −λ(B, v) < x,

(4.59)

We choose v negative enough in order to have −λ(B, v) > −4L. Finally, let,
with γ > 1 (see Figure 4.10),

u2
0(x) =



Ā x < 5L,
L− x 5L < x < L,

γĀ L < x < 0,
γB̄ 0 < x < −L,
B̄ −L < x < −4L,
−x −4L < x < −v,
v −v < x,

(4.60)

It’s easy to see that ui0 ∈ IABT ω, i = 1, 2 (see Figures 4.9, 4.10, 4.11).
Fix any θ ∈ (0, 1) and let uθ0

·= θu1
0 + (1 − θ)u2

0. We claim that if
uθ0 ∈ IABT ω then there is some ȳ ∈ [L,−3L] such that (4.25) holds with
y = 5L. In fact, consider a sequence of points x̄n ↓ L. Since they are points
of continuity for ω, for each n there exists ȳn ∈ C0(u∗, x̄n) = [L, x̄n − 4L]
such that (4.25) holds with y = 5L and ȳ = ȳn. Since the sequence yn
is bounded we can extract a converging subsequence, that we still call yn.
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Clearly the limit point (call it ȳ) of the sequence must be in [L,−3L] and
for this ȳ it holds ˆ ȳ

5L
uθ0(x) dx ≤

ˆ ȳ

5L
u∗0(x) dx (4.61)

Now we assume that uθ0 ∈ IABT ω and we see that this is in contradiction
with what we have just proved. In particular we prove that

ˆ ȳ

5L
uθ0(x)− u∗0(x) dx > 0, ∀ȳ ∈ [L,−3L] (4.62)

First assume that ȳ ∈ [L, 0]. With some easy calculations we find
ˆ ȳ

5L
u1

0(x) dx = 12L2 + 4Lȳ,
ˆ ȳ

5L
u2

0(x) dx = 8L2 − 4Lγ(ȳ − L) (4.63)

and ˆ ȳ

5L
u∗0(x) dx = 8L2 − 4L(ȳ − L) (4.64)

so that for every ȳ ∈ [L, 0],
ˆ ȳ

5L
uθ0 − u∗0 dx = θ8Lȳ + (1− θ)[4L(L− ȳ)(γ − 1)] > 0. (4.65)

Analogously, for every ȳ ∈ [0,−L],
ˆ ȳ

5L
uθ0 − u∗0 dx = θ(−8Lȳ) + (1− θ)[4L(L− ȳ)(γ − 1)] > 0. (4.66)

Finally, if ȳ ∈ [−L,−3L],
ˆ ȳ

5L
uθ0 − u∗0 dx = θ[8L2 − 8L(ȳ + L)] > 0. (4.67)

and this is a contradiction with the fact that uθ0 ∈ IABT ω, proving that IABT ω
is not, in general, convex.

Remark 4.13. If for some x̄ the set C0(u∗, x̄) is not a singleton, nothing can
be said about convexity of the set IABT ω. In fact, it could also be convex.
An easy example in which IABT ω is convex also if C(u∗, x) is not always a
singleton, x ∈ X (ω), is the second profile considered in Example 4.10. It
is easy to see that in this case the set of initial data is convex because it
is essentially characterized by conditions (4.42), (4.43), that clearly define a
convex set by linearity of the integral.
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Ā v

Ā
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Figure 4.9: The solution produced by the initial datum u∗0.
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L

5L −4L −v

Ā v

γĀ γB̄
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Figure 4.10: The solution produced by the initial datum u2
0.
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L

−v

vĀ A B
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Figure 4.11: The solution produced by the initial datum u1
0.
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4.6. Final remarks

We want to remark another major structural difference between the set
IABT ω, of the discontinuous case, and the set ITω of the classical convex
case, that helps to understand from an intuitive point of view why the set
IABT ω might be non-convex.

Let’s consider, for a convex flux, a profile ω, whose set of discontinuity
points is {xi}i∈N. For each xi consider the piece of initial data between the
endpoints of the minimal/maximal backward characteristics from xi, that
is (θxi,−(0), θxi,+(0)) = Ii. The conditions that ensure that u0 leads to ω at
time T can be viewed as acting separately on each interval Ii, that is: what
the initial data is in Ii does not influence what the initial data can be in Ij ,
i 6= j. In other words, with IiTω being the set

IiTω = {u0|Ii : u0 ∈ ITω} (4.68)

we can write
ITω ∼=

∏
i

IiTω (4.69)

Since each IiTω is clearly convex by the characterization of [10], and since
products of convex sets is again convex, one deduces the convexity of ITω.

In the discontinuous case this is not anymore true. In fact, for some,
say, x < 0 such that θx,+(0) > 0 and θx,−(0) < 0, there might be interaction
between what the solution is in the region between θx,−(t) and θx,+(t), and
the solution at the right of θx,+ , in the sense that they are not independent
blocks that can be glued as one likes.

Of course it is the fact that the sets C0(u∗, x̄)∩ C0(u1
0, x̄) and C0(u∗, x̄)∩

C0(u2
0, x̄) are disjoint that allows us to prove that a convex combination of

u1
0, u

2
0 is not in the set of initial data that lead to ω. Indeed if for every fixed

x̄, we can always choose the same ȳ for every u0 ∈ IABT ω, we could prove
that the set IABT ω is convex, using the same proof of point (v) of Theorem
4.11. In our case (of the proof of point (v) of Theorem 4.11) it’s easy to see
that for x̄ ∈ (L, 0) (see Figures 4.9, 4.10, 4.11)

C0(v, x̄) =


[L, x̄− 4L] if v = u∗0,

{0} if v = u1
0,

{L} ∪ [−L, x̄− 4L] if v = u2
0

(4.70)

so that it’s not possible to choose ”a priori” a ȳ that works for both u1
0 and u2

0.
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The sufficient condition for the convexity of Theorem 4.9, that is, the
cardinality of C0(u∗, x̄) is 1 for every x̄ ∈ X (ω), that is a pretty strong
condition, can be refined to a weaker condition as follows. Let

X̃ (ω) ·= X (ω) ∩ {x : |C0(u∗, x)| = 1} (4.71)

Then the set IABT ω is convex if

C0(u∗, x̄) ∩ cl(X̃ (ω)) 6= 0, ∀x̄ ∈ X (ω) (4.72)

In fact, notice the following. For each initial datum u0 ∈ IABT ω, and for each
x̄, Theorem 4.9 gives us a ȳ that works when plugged into (4.25), (4.26).
The possibility to prove that IABT ω is convex with same proof of point (v)
of Theorem 4.11, depends on the ability to choose ȳ depending only on x̄
and independently from the particular initial datum u0. Of course whenever
C0(u∗, x̄) is a singleton the choice of ȳ is forced to be the only element of
C0(u∗, x̄), so that it depends only on x̄. The problem is that when C0(u∗, x̄)
is not a singleton, different initial data u0 ∈ IABT ω might require different
ȳ ∈ C0(u∗, x̄). However, for such x̄, if (4.72) holds, we are always able to
choose ȳ(x̄) ∈ C0(u∗, x̄)∩ cl(X̃ (ω)) independently from the initial datum u0.
In fact, in order to show that (4.25), (4.26) hold for x̄ and ȳ(x̄), it is sufficient
to write (4.25), (4.26) for a sequence of points x̄n, {ȳn} = C0(u∗, x̄n), with
x̄n ∈ X̃ (ω) and x̄n → x̄ for n→∞. Since C0(u∗, x̄) is closed, the limit point
of the sequence {yn}n∈N will be in C0(u∗, x̄), and the proof is concluded.

It’s easy to check that the profile in Example 4.10 satisfies property
(4.72), and in fact the set of initial data is convex. At this point one might
suspect that this is also a necessary condition for convexity, but this is not
so clear, and the proof seems complicated.
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