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Abstract

Scheduling updates from sensors is an important task for various network systems, especially

for Internet of Things (IoT) scenarios where resources are scarce. The freshness of received

data is often described using the mathematical concept of Age of Information (AoI). Therefore,

this research represents nodes of networks as players in a game-theoretic framework to find an

optimal schedule and achieve equilibrium, which is the optimized value of Age of Information

(AoI). The players have a common goal to decrease the average AoI by transmitting over the

network, but they cannot communicate with each other, and they are not sure if one of them

has updated the information. We investigate what happens in the system when N players

transmit with or without coordination. Further, we apply Harsanyi’s equilibrium selection

principle to identify strategies that collectively minimize AoI in the network. We evaluate

the Price of Anarchy, which quantifies the inefficiency of selfish management of the sources.

We also propose practical implementations to improve the distributed management of status

updates by multiple IoT nodes.
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Chapter 1

Introduction

The growth of the Internet from its humble origins as a research network to a ubiquitous

global infrastructure serving billions of users over the past five decades has been remarkable.

Now, with the continued miniaturization and cost reduction of electronic components, the

Internet is expanding into a new realm: the Internet of Things (IoT). In this paradigm, everyday

physical objects are enhanced by small electronic devices, allowing them to connect to the

digital world. These smart objects serve as cyber-physical systems, bridging the gap between

physical entities and the information world by processing sensor data and establishing wireless

connections to the Internet.

As the Internet continues to rapidly expand, the global shift towards the Internet of Things

(IoT) is poised to significantly alter our daily lives soon [1, 2, 3]. Beyond traditional devices

like computers, laptops, smartphones, and tablets, a diverse array of smart devices is now con-

necting to the Internet and interconnecting with each other. From household appliances such

as refrigerators and microwave ovens to large-scale industrial machinery, virtually everything

is becoming ”smart.” This transformation has been dubbed by some as the ”Next Digital Rev-

olution” or the ”Next Generation of Internet,” signifying its profound impact on technology

and society [2].

The graph presented in Figure 1.1 illustrates the global count of connected devices, rep-

resenting the IoT, spanning from 2019 to 2023. Beyond this period, projections indicate an

anticipated trend for IoT devices from 2024 to 2030. Forecasts suggest a doubling of connected

devices by the end of 2030 compared to the figures observed in 2023, which stood at approxi-

mately 15 billion devices.

The development and adoption of the IoT are propelled by several key drivers. Firstly, ad-

vancements in technology, particularly in the miniaturization and cost reduction of electronic

3



Figure 1.1: Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023, with forecasts
from 2024 to 2030 (in billions) [Graph], Transforma Insights, Exploding Topics, July 1, 2023. [Online]. Available:
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

devices [2], have enabled the embedding of computational capabilities into everyday objects.

This has ushered in a new era where objects can connect to the Internet and interact with each

other seamlessly. Moreover, the emergence of low-power wireless communication technolo-

gies has facilitated wireless connectivity between smart objects and the Internet. Physical

objects are being outfitted with RFID tags or other electronic barcodes. These tags can be

scanned by smart devices such as smartphones or small embedded RFID scanners. Each object

has a unique identity, and specific information related to that object is stored within the RFID

tags [1, 3].

Further, the widespread availability of GPS signals plays a crucial role in enabling smart

objects to determine their location and time [2], thereby enhancing context awareness and en-

abling location-based services. Additionally, IoT devices can leverage domain-specific knowl-

edge bases and reasoning capabilities to autonomously navigate and operate within specific

application domains. This empowers smart objects to make informed decisions and perform

tasks efficiently. Furthermore, the autonomic management and self-organization capabilities

of IoT networks empower smart objects to dynamically adapt to environmental changes [3, 2].

This enables them to optimize their behavior without requiring human intervention[4].

These factors, combined with elements like data mash-up and information fusion, as well

as the anticipated impact on the global economy and society, are driving the continuous ex-
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pansion of IoT. This trajectory is shaping a future where interconnected smart objects will

revolutionize various facets of our lives [1, 3, 2].

1.1 Applications of Internet of Things

In our modern world, smart devices have become ubiquitous, permeating almost every aspect

of our lives. It is challenging, if not impossible, to identify an area without the application of

various Internet-connected devices. Among the myriad applications of IoT, a few key areas

stand out for their widespread application and impact:

• Smart Homes: IoT technologies have transformed home automation, leading to the

emergence of smart homes equipped with a variety of connected devices including ther-

mostats, lighting systems, security cameras, and appliances [5, 3, 1]. These devices offer

remote control capabilities via smartphone apps or voice commands, enhancing conve-

nience, energy efficiency, and security for homeowners.

• Medical IoT: IoT has transformed healthcare delivery through the development of wear-

able health monitoring devices, remote patient monitoring systems, and smart medical

devices [1, 6]. These technologies enable continuous monitoring of vital signs, early

detection of health issues, and remote consultation with healthcare professionals, im-

proving patient outcomes and reducing healthcare costs.

• Transportation: IoT plays a crucial role in optimizing transportation and logistics op-

erations through vehicle telematics, asset tracking systems, and smart traffic manage-

ment solutions. These technologies enhance fleet efficiency, route optimization, real-

time monitoring of goods in transit, and traffic flow management [7], leading to reduced

congestion, fuel consumption, and emissions.

• Smart Cities: IoT is instrumental in the development of smart cities by integrating var-

ious infrastructure components such as smart streetlights, waste management systems,

public transportation networks, and environmental monitoring sensors [3, 1]. These

interconnected systems enable efficient resource management, enhanced public safety,

improved urban mobility, and sustainable urban development. Projections suggest a

significant rise in smart home device adoption, with an estimated 1.4 billion devices

expected by 2026[3].
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• Industrial IoT (IIoT): In the industrial sector, IoT technologies are driving the adop-

tion of Industry 4.0 initiatives, leading to the creation of smart factories and intelligent

manufacturing processes [1, 2, 8]. IIoT solutions enable predictive maintenance, asset

tracking, remote monitoring of equipment, and real-time data analytics, resulting in in-

creased productivity, reduced downtime, and optimized resource utilization.

Various examples of IoT device usage demonstrate common positive effects from the user’s

perspective. Utilizing connected devices that enable real-time communication, users experi-

ence benefits such as increased energy efficiency through smart home technologies, enhanced

safety measures, heightened security measures, and improved product quality [3].

1.2 Challenges of IoTwith growthofArtificial Intelligence

As the number of connected devices continues to expand and Artificial Intelligence advances,

the Internet of Things (IoT) encounters various challenges, both present and anticipated. The

proliferation of billions or even trillions of connected smart objects presents novel technical

and societal hurdles. These challenges encompass authentic identification, autonomous net-

work management, diagnostics and maintenance, context awareness, and privacy intrusion, as

highlighted in [2]. Moreover, key challenges outlined in [1] shed light on additional obstacles

faced by IoT:

• Naming and Identity Management: With billions of objects connecting to the IoT,

an efficient system for assigning and managing unique identities is essential to ensure

seamless communication and service delivery [2].

• Information Privacy: As IoT devices collect and share vast amounts of data, protect-

ing privacy becomes paramount. Proper measures must be implemented to safeguard

sensitive information and prevent unauthorized access[6, 2].

• Objects Safety and Security: With the proliferation of IoT devices, ensuring the phys-

ical safety and security of these objects against intrusions and tampering is imperative

to prevent potential damage or disruptions [3, 6].

• Data Confidentiality and Encryption: Strong encryption mechanisms are essential

to protect data integrity and confidentiality as it is transmitted and processed within the

IoT ecosystem, safeguarding sensitive information from unauthorized access.
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• Network Security: Securing the transmission network against data loss [3], external

interference, and unauthorized monitoring is crucial for maintaining the integrity and

reliability of IoT communications.

• Spectrum Management: Efficient allocation of spectrum resources is necessary to

accommodate the communication needs of billions of IoT devices, requiring dynamic

cognitive spectrum allocation mechanisms to mitigate congestion and ensure reliable

connectivity [4].

• Interoperability and Standardization: Standardizing IoT technologies is crucial for

ensuring compatibility and interoperability among devices from different manufactur-

ers, thus facilitating seamless integration and communication.

• Greening of IoT: Given the escalating energy consumption associated with IoT in-

frastructure, adopting energy-efficient technologies [4, 9] and practices is essential to

mitigate the environmental impact and ensure sustainability in the long term.

1.3 Motivation

The proliferation of IoT promises numerous benefits, including enhanced efficiency and con-

venience across various domains [2, 1, 3, 5, 6, 7]. However, it also brings about concerns

regarding power dynamics [4] and information control, particularly concerning data access

[2]. Many IoT sensors operate with constrained battery capabilities and are often situated in

hard-to-reach locations [9, 10]. Optimizing transmissions to obtain fresh information while

conserving energy is a significant challenge, particularly in critical applications like medical

IoT [6], where up-to-date information is vital.

Efforts to tackle these challenges have spurred the development of diverse techniques

aimed at minimizing Age of Information (AoI) and optimizing resource utilization in con-

strained device networks [10, 11]. A notable research direction involves minimizing AoI over

finite horizons, recognizing the paramount importance of conserving energy resources while

ensuring information freshness [9, 12].

This research endeavors to apply concepts from game theory to analyze AoI in multi-source

communication scenarios which corresponds to many IoT networks [13, 12]. Its objectives

include understanding AoI dynamics in such environments, identifying strategies to minimize

AoI, and assessing how the strategic behavior of information sources influences information

freshness in the network[14, 13, 15].
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The implications of this research are significant for devising effective information man-

agement strategies in complex IoT networks. Leveraging game theory offers a deeper under-

standing of AoI dynamics and aids in identifying optimal strategies for minimizing AoI in

multi-source scenarios. By contributing valuable insights, this research informs future devel-

opment efforts aimed at enhancing information freshness in communication networks.

The structure of the work is outlined as follows: In Chapter 2, we delve into the concept of

the Age of Information, explore various applications of game theory in computer networks,

and discuss Harsanyi’s theory of equilibrium selection. Additionally, we provide an overview

of relevant literature, highlighting our unique contribution to the field. Chapter 3 constitutes

the central part of our work, where we develop the model. This chapter encompasses the for-

mulation and presentation of our model, detailing its components and underlying principles.

Following the model development, Chapter 4 is dedicated to the discussion of results. Here,

we analyze and interpret the findings obtained from our model, providing insights into its

implications and potential applications. Finally, Chapter 5 serves as a summary of the most

significant results obtained throughout the study, encapsulating key findings and their sig-

nificance. Additionally, we outline avenues for future research, identifying areas for further

studies and development in the field.
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Chapter 2

Background

In this chapter, we will delve into the concept of the Age of Information, a metric that has

recently captured the interest of many researchers due to its relevance in modern networked

systems. We will provide an overview of this metric, discussing its significance and implica-

tions in various contexts.

Following our discussion on the age of information, we will shift our focus to the applica-

tion of game theory in networks. We will explore some of the most typical examples where

game theory has been utilized to model strategic interactions among network entities, shed-

ding light on the dynamics of decision-making and resource allocation in such environments.

Next, we will provide an account of Harsanyi’s theory of equilibrium selection, a founda-

tional framework in game theory that offers insights into how rational agents make decisions

in non-cooperative settings. We will discuss the principles underlying this theory and its rel-

evance to our understanding of strategic behavior in networked systems.

Finally, we will refer to the relevant literature that has informed our discussion throughout

this chapter. We will highlight key papers and studies that have contributed to the advance-

ment of research in the areas of information age metrics and game theory in networks. Addi-

tionally, we will discuss our own contribution to this body of work, emphasizing the insights

and findings that we have brought to the field.

2.1 Age of Information

Efforts to minimize the AoI in communication networks have garnered significant attention

in recent years [14, 8, 16, 17, 18], particularly in the context of the generation of time-sensitive

data [6]. AoI is a metric used to quantify the freshness or timeliness of information in a commu-

nication system. It measures the elapsed time from when a piece of information is generated
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or updated at its source until it is received or observed by the intended recipient. In other

words, AoI indicates how outdated the latest received information is compared to the most re-

cent available data. AoI is a more suitable metric for remote sensing applications [9, 13] rather

than traditional metrics such as throughput, delay, or latency. Researchers have explored var-

ious techniques and methodologies to mitigate AoI and enhance the freshness of information

delivery, addressing the unique challenges posed by constrained devices [12].

2.1.1 AoI in queue theory

In addition to investigating AoI dynamics, researchers have turned to queue theory to dis-

sect the complexities of constrained device networks [19, 20, 21]. In the study by Kaul et al.

[19], queueing models were leveraged to explore optimal update policies tailored for energy-

constrained devices, aiming to strike a delicate balance between information update frequency

and energy consumption. The research encompassed diverse assumptions regarding arrival

and service processes, as well as the queue discipline of first-come-first-served (FCFS), ul-

timately emphasizing the importance of mitigating packet waiting times while maximizing

server utilization.

Similarly, Yates et al. [16] extended this investigation to FCFS M/M/1 queues, expanding

the analysis to accommodate multiple independent sources. Additionally, in their study [22],

Kaul et al. further extended their exploration to address the same problem within Last Come

First Served (LCFS) queues. This extension contributed to a deeper understanding of opti-

mal update strategies in resource-constrained communication environments, highlighting the

nuances of queueing dynamics in optimizing information update processes.

In [20], the authors delve into the tradeoff between the frequency of status updates and

queueing delay within a system featuring heterogeneous users, modeled as a multi-class M/G/1

queue. Specifically, the study considers systems where only one packet can be kept at a time,

reflecting a single packet management system denoted as M/G/1/1. The research scenario

involves entities generating status messages with varying lengths, characterized by diverse

service time distributions. Notably, the authors depart from the conventional focus on AoI and

instead emphasize optimizing the Peak of Age of Information (PoAoI). This shift is motivated

by recognizing that different entities may have distinct service requirements for their status

updates. By centering the analysis on PoAoI, which captures the maximum AoI experienced

by any entity at any given time, the study aims to better capture the performance dynamics of

systems with heterogeneous user needs. This approach sheds light on the nuanced interplay
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between update frequency, queueing delay, and the specific service requirements of individual

entities, contributing to a deeper understanding of system optimization in such environments.

In [21], the focus lies on packet management at the source node, particularly in scenar-

ios where the source node receives random updates but retains the ability to control which

samples are transmitted through the network, potentially discarding certain samples before

transmission. The study employs models resembling M/M/1/1 and M/M/1/2 queue scenarios,

where only one packet can be in service at a time, with the latter allowing for the possibility of

a single sample to be kept in a queue. In these models, samples arrive according to a Poisson

process, and the time taken for packet transmission follows an exponential distribution.

Similar to the findings in [23], the authors observed that the average age can be improved,

particularly with high sampling rates, by discarding packets that encounter a busy source node

rather than storing them in a queue for later transmission. In their work, [18] investigated the

impact of various packet management policies on the average values of both AoI and PAoI

within an M/M/1 queuing model. This insight highlights the importance of strategic packet

management strategies in optimizing AoI dynamics, particularly in scenarios where resources

are limited and packet processing capabilities are constrained.

These endeavors underscore the pivotal role of queue theory in elucidating the intricacies

of device networks, offering insights into effective update policies and resource management

strategies.

2.1.2 Threshold-based scheduling policies and AoI

In one group of works, AoI is integrated as a threshold constraint within scheduling frame-

works, giving rise to diverse formalizations of optimization problems. These problems are

approached from various perspectives, including linear programming techniques, alongside

the development of practical policies such as greedy or consecutive scheduling strategies.

In the realm of real-world IoT systems, where the dynamics and characteristics of each

physical process can vary significantly, researchers have delved into optimizing the AoI by in-

corporating various constraints and policies. One notable avenue is the introduction of thresh-

old constraints, such as packet deadlines, to regulate scheduling and processing times. For in-

stance, [23] examined the impact of different packet deadlines on the average AoI in queuing

systems, distinguishing between fixed and random exponential deadlines. Their analysis was

conducted within an M/M/1/2 queue framework similar to what is done in [21]. If a packet

remains in the queue beyond the deadline, it is discarded from the system adding the con-
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straint on time sensitivity where packets must be processed within a certain time window.

The authors revealed that an optimal deadline exists, with its value inversely proportional to

the arrival rate. Overall, their work demonstrates that incorporating packet deadlines can of-

fer a new dimension for optimizing age performance, ensuring the freshness of information in

real-time applications. This work underscores the importance of time sensitivity in processing

packets within prescribed timeframes to maintain their relevance.

The authors of [24] focused on understanding how scheduling policies affect AoI dynam-

ics within energy harvesting systems. Their investigation centered on devising optimal on-

line status update policies for an energy harvesting source across various battery sizes in

continuous-time settings. Building upon the assumptions of instantaneous package gener-

ation and transmission if sufficient energy is available at the source, akin to previous works

[25, 17].

By leveraging insights from prior research, particularly the work by [26], [24] crafted dis-

tinct (asymptotically) optimal sensing policies based on battery size considerations. For sce-

narios involving infinite battery capacity, they advocated for a best-effort uniform status up-

date policy, demonstrating its efficacy in minimizing long-term average AoI. Conversely, in

cases of finite battery capacity, they proposed an energy-aware adaptive status update policy,

showcasing its asymptotic optimality as battery size tends towards infinity.

In scenarios where battery size is constrained to a single unit, [24], introduced a novel

threshold-based update policy. This policy mandates that upon energy influx into an empty

battery if the AoI falls below a predefined threshold, the sensor defers update transmission un-

til the threshold is met; otherwise, it proceeds with an immediate update. Other authors also

have done studies related to the minimization of AoI in the energy harvesting systems, for ex-

ample, [27] highlights the significance of adopting a cautious approach in energy-harvesting

wireless networks, advocating for updates to be dispatched only when the server is available

to mitigate queuing delays. Contrary to conventional wisdom, a proactive strategy of updat-

ing immediately upon system idleness proves less efficient. Instead, a ’lazy’ update policy,

introducing inter-update delays, demonstrates superior performance. Despite these insights,

the quest for identifying the optimal update policy persists, even within these circumstances.

Furthermore, [17] delves into an exploration of threshold-based update policies in energy har-

vesting networks, establishing their optimality under specific contextual conditions.

Study [28] employed a threshold-ALOHA approach, wherein terminals defer transmission

until the AoI of their status updates surpasses a predefined threshold Γ. Once this threshold

is reached, terminals initiate transmission with a constant probability τ per time slot, akin to
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standard-slotted ALOHA. The investigation focused on analyzing the time-average expected

AoI achieved by this policy and exploring its scalability with network size, denoted as n. Simi-

larly, [29] introduced a threshold-based lazy variant of Slotted ALOHA. In this approach, each

node transmits with a certain probability once its age exceeds the threshold, aiming to mini-

mize the overall AoI in the system.

Furthermore, researchers have sought to determine a Maximum AoI Threshold (MAT) to

address scheduling challenges at the network edge, as explored by Li et al. [30]. The pri-

mary objective of this endeavor is to assess the schedulability of a vector containing MATs for

the source nodes and, if feasible, identify an appropriate scheduler capable of meeting these

requirements. These studies collectively contribute to the advancement of threshold-based

transmission strategies in optimizing AoI dynamics and addressing scheduling complexities

in networked systems.

In essence, these collective efforts underscore the critical role of incorporating threshold

constraints and adaptive policies to optimize AoI in different network scenarios with infor-

mation criticality offering new dimensions for enhancing information freshness and system

performance.

2.1.3 AoI in zero-wait policy

Ensuring timely updates to a destination regarding a remote system is a complex task, distinct

from maximizing communication system utilization or minimizing update delay, as noted by

Kosta et al. [31]. One potential approach to mitigate delay is adjusting the update rate to

alleviate congestion within the communication system. However, reducing the update rate

introduces the risk of providing outdated status information to the destination, as updates

may not occur frequently enough to capture real-time changes in the system.

The zero-wait policy, where a fresh update is submitted immediately after the delivery of

the previous update, is often considered reasonable as it maximizes throughput and minimizes

delay. However, it is noteworthy that this policy does not always minimize the AoI, as also

observed by Kadota et al. [15]. They point out that policies optimized for throughput and delay

may not necessarily minimize AoI. Interestingly, they find that average-age optimal scheduling

policies often coincide with throughput-optimal ones, but the reverse is not always true.

This counterintuitive observation has prompted further investigation into optimal control

strategies for information updates to maintain data freshness. Researchers, such as [32], seek

to understand the conditions under which the zero-wait policy is optimal, shedding light on
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the intricate trade-offs between system throughput, delay, and data freshness.

2.1.4 AoI in networks with limited transmission opportunities

In practical scenarios, sensing devices often face constraints that can limit their functionality,

such as finite battery life or component deterioration over time. A significant area of research

focuses on minimizing the AoI over a finite horizon in the presence of energy-constrained

devices [10, 9]. Given that these devices rely on limited batteries, optimizing AoI performance

becomes crucial for extending network lifetime while ensuring information freshness. In [9],

the authors investigated the role of discounted AoI in energy-constrained networks, high-

lighting the trade-offs between information freshness and energy consumption. Similarly, [12]

considered energy harvesting with finite-size batteries, collecting status updates from multiple

heterogeneous information sources, and examined how combinations of cost and age distribu-

tion impact average AoI. In a related study [33], different policies were explored to minimize

AoI in setups with finite batteries and energy harvesting networks, addressing the trade-off

between information freshness and energy cost.

Numerous works have explored AoI performance in energy harvesting networks [17, 34,

35]. Authors. [24] examined the impact of different battery horizons on AoI performance,

providing insights into optimal update strategies under energy constraints. These studies col-

lectively contribute to understanding and optimizing AoI performance in energy-constrained

environments, with implications for enhancing the efficiency and longevity of IoT networks.

2.2 GameTheory for Networks

While game theory traditionally analyzes social dynamics and conflicts between participants,

its relevance extends to computer networks and telecommunications. In these domains, a

game refers to situations where the outcome for each participant depends not just on their

own choices but also on those of others. Networks often mirror such scenarios, with nodes

acting as players competing or collaborating to improve their service quality. This approach is

driven by the significant interdependence among network actions, such as resource utilization,

with wireless interference serving as a prime example.

While a player in a game can encompass various entities such as machines, programs,

persons, or even molecules, it is crucial to recognize that a game primarily serves as a mathe-

matical construct designed to model and analyze interactive scenarios. Despite being a repre-
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sentation of real systems, mathematical modeling, particularly through game theory, proves

to be a potent tool in network applications. It effectively portrays various conflict scenar-

ios involving system performance and associated costs, offering insight into system defense

mechanisms against unwanted attacks and optimizing the utilization of shared resources.

2.2.1 Different forms for modeling Network Scenarios

Study [36] applied game theory to various digital signal processing scenarios, highlighting the

distinction between strategic and coalition-form modeling approaches. The authors illustrated

this difference through two wireless sensor dilemmas: the classical Prisoner’s Dilemma, where

sensors decide whether to share information at a cost, and the Cognitive Radio Dilemma,

where nodes must choose between transmitting over narrow or wide frequency bands inde-

pendently and simultaneously.

Strategic-form representations typically address non-cooperative scenarios, assuming play-

ers act selfishly without cooperation or communication exchange [13, 10, 36]. However, many

signal processing applications necessitate cooperation among players, such as in cooperative

networking where devices may route packets collectively. In such cases, players may form

coalitions to improve their position. While players within coalitions still select strategies, the

focus shifts to analyzing coalition formation and considering communication possibilities.

In coalition-form games [36], two key features for solutions are stability and fairness. The

solution must ensure that formed coalitions resist individual or subgroup deviations while

also ensuring fairness in utility division among coalition members. Achieving a balance be-

tween fairness and stability is challenging and relies heavily on factors like the value function

structure, player goals, and the specific application under study.

Indeed, while both static and dynamic forms of game models have their merits, for model-

ing network security games, the dynamic form playing Bayesian game emerges as the supe-

rior choice [37, 38, 39]. This dynamic approach aligns more closely with scenarios involving

defenders and attackers in network security. Dynamic game models, particularly Bayesian

games [38], offer a more realistic representation of the evolving nature of security threats and

defenses in dynamic network environments. By accounting for uncertainty and information

asymmetry among players, Bayesian games provide a flexible framework to model and an-

alyze complex interactions, making them well-suited for dynamic security scenarios where

both defenders and attackers continuously adapt their strategies based on observed outcomes

and new information
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2.2.2 Network Security and GameTheory

The work by [40] addresses the shortcomings of traditional solutions for network security, par-

ticularly focusing on Intrusion Detection Systems (IDSs). These systems monitor network or

computer events to identify potential attacks using methods like attack signature identification

and statistical analysis. The authors provide a survey of game-theoretic approaches applied

to enhance network security, emphasizing the role of IDSs in security game modeling. They

highlight that the accuracy of IDSs influences whether the security game should be modeled

as one with perfect, in cases when IDS is error-free, or imperfect information. The existing

game models for security encounter several limitations, like scalability where the game is rep-

resented as a two-player game, simplifying scenarios with multiple attackers and defenders

into a single player for each side. They criticized static model representation, because many

scenarios involve dynamic interactions between attackers and defenders, yet existing models

often adopt static frameworks. In their works [37] they agreed that these scenarios are better

to be modeled as dynamic games, therefore, in addition to static representation they provided

a dynamic form of the game. The proposed approach [37] introduces a Bayesian hybrid de-

tection strategy for the defender, combining both lightweight and heavyweight monitoring

systems. The lightweight system serves to estimate the opponent’s actions, while the heavy-

weight system acts as a final line of defense. Through dynamic game analysis, the strategy

yields energy-efficient monitoring tactics for the defender, enhancing the overall effective-

ness of hybrid detection. Additionally, [40] argued about zero-sum game assumptions. Some

stochastic game models consider attacking and defending as zero-sum games, which may not

accurately capture the dynamics of real-world scenarios. A more realistic approach involves

considering general-sum games.

In paper [38], authors study the jamming problem in underwater acoustic sensor networks,

where nodes try to communicate despite a jammer’s interference. In these scenarios, nodes

lack advanced signal processing, so jamming just increases noise. They placed the problem as

a Bayesian zero-sum game where the sensor network tries to maximize transmission capacity

while the jammer minimizes it. Authors were interested in how sensor and jammer place-

ments impact the game, considering Bayesian methods due to imperfect knowledge about the

network structure. They did a similar setup in [41] for the radio network.

Puzzle-based defense mechanisms have emerged as a potential solution against flooding

denial-of-service (DoS) attacks in networks. This paper [42] employs game theory to propose

optimal puzzle-based strategies for combating increasingly sophisticated flooding attack sce-
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narios. Utilizing the Nash equilibrium solution concept, the defender’s role is to craft an opti-

mal defense against rational attackers. The study addresses distributed attacks from unknown

sources by modeling the interaction between attackers and defenders as an infinitely repeated

game of discounted payoffs. Four defense mechanisms are proposed: PDM1, PDM2, PDM3,

and PDM4, each tailored to different attack scenarios. These mechanisms leverage open-loop

and closed-loop solution concepts to effectively counter single-source and distributed attacks,

including cases where the size of the attack coalition is unknown..

2.2.3 Resouce Management and GameTheory

In order to ensure quality of service for users required by the delay-sensitive and bandwidth-

intensive multimedia data, authors [43] utilized bargaining methods to distribute bandwidth

equitably and optimally among multiple collaborative users. Specifically, they were investigat-

ing two bargaining solutions: the Nash bargaining solution (NBS) and the Kalai-Smorodinsky

bargaining solution (KSBS). The NBS is aimed at maximizing system utility, while the KSBS

ensures that all users experience a similar utility penalty relative to the maximum achievable

utility. These strategies are implemented through a resource manager within the network, tak-

ing into account application-specific distortion for bandwidth allocation. They demonstrate

that these bargaining solutions adhere to crucial properties and propose criteria for determin-

ing bargaining powers, considering factors such as visual quality impact and spatiotemporal

resolutions. Additionally, they assess the complexity of these solutions and evaluate their

performance across various scenarios.

The authors proposed a game theory model with multi-agent games to address resource

allocation challenges in radio networks with device-to-device (D2D) communication [44]. In

their article, they discussed various game models tailored for D2D direct communication and

D2D local area networks (LANs), categorizing them based on game types. For D2D direct

communication, noncooperative and auction game models were identified as suitable for re-

source allocation. In contrast, cooperative game models like coalition formation games were

deemed appropriate for D2D LANs, where collaboration among mobile devices is necessary.

They elaborated on an auction model and a coalitional game model, presenting them in de-

tail. Furthermore, they outlined potential research directions for developing game-theoretic

models to address key radio resource management challenges in D2D communication.

The authors of the study [45] investigated resource allocation in cloud infrastructure under

uncertain task specifications, aiming to minimize wastage while configuring services preemp-
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tively before actual requests occur. They adopted a coalition form game model, where servers

act as agents with varying resource capabilities based on compute, memory, and storage ca-

pacities. Host machines have the flexibility to participate in multiple coalitions as long as they

adhere to specified maximum participation limits. Additionally, coalitions are not constrained

to a predefined number of members, allowing for dynamic composition based on resource

requirements and availability.

2.2.4 AoI in game-theoretic framework

In recent years, many authors have been interested in the study of AoI optimization in the

context of game theory related to different network scenarios, for example[14, 4, 46, 39]. In

his work [14], the author analyzes a system comprising two independent players who make

individual decisions regarding transmission without coordination. In this system, sources are

required to periodically transmit updates, each associated with an individual cost. However,

the overarching goal is to optimize the global benefit of the receiver’s AoI. This scenario reflects

a decentralized communication environment where each player must weigh the trade-offs

between the cost of transmitting updates and the resultant improvement in the receiver’s AoI.

In their recent study [13], the authors employ a game theory approach to demonstrate that

even uncoordinated contention-based access protocols can exhibit a degree of efficiency. They

show that a relatively efficient Nash equilibrium (NE) can be achieved when players’ individual

objectives combine their local AoI with a transmission cost term. While their work primarily

focuses on slotted ALOHA, a protocol known for its low access efficiency due to collisions

leading to wasted transmission slots, they introduce a novel aspect. In addition to the previous

work [47], slotted ALOHA is analyzed with capture effect that refers to the enhancement in the

probability of successful transmission due to stronger signals surviving collisions and being

correctly decoded despite interference from other signals. Together, these studies shed light

on the potential efficiency of contention-based access protocols, particularly in dense network

environments. Other authors also conducted research of selfish behavior with game theory

framework in ALOHA protocol [48, 49, 50].

Despite plenty of work done with games with complete information, there is interesting

work regarding scenarios with a lack of communication and coordination. In their work [39],

authors evaluated the performance of a queuing system with multiple strategic servers with

Bayesian game-theoretic formulation in which players can be of different types, and each

type has its utility. Having different types is common in a network with a large number of
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nodes, which are often heterogeneous and have severe constraints in terms of power and

computational capabilities. This is a way to capture that the players may behave in different

ways and it represents a Bayesian game with incomplete information.

Authors [46] did research on game-theoretic approaches for non-cooperative resource al-

location in relay-assisted interference channels and they focused on optimizing physical layer

energy efficiency. In the context of the Internet of Medical Things (IoMT), the study by. [6]

tackled the challenge of efficient resource allocation for health monitoring networks. Specifi-

cally, for intra-wireless Body Area Networks (WBANs), they devised a cooperative game aimed

at allocating wireless channel resources effectively. However, for networks extending beyond

WBANs, where individual rationality and potential selfishness come into play, they proposed a

decentralized non-cooperative game. This approach was designed to address the complexities

arising from the diverse nature of devices and the need to balance resource allocation with in-

dividual incentives and behaviors in IoMT environments. Researchers in the study [4] tackle

the challenges of resource allocation in large Internet of Things (IoT) networks using game

theory. They introduce non-conventional game theory models such as specific approaches

such as mean-field games or minority games, tailored to better fit the characteristics of these

setups.

2.3 Harsanyi’s theory for equilibrium selection for games

with complete information

Harsanyi’s theory of equilibrium selection [51], developed by Nobel laureate John Harsanyi,

addresses the issue of how players in a game with complete information can select among

multiple Nash equilibria to coordinate on a particular outcome.

Harsanyi’s new theory [51]introduces a departure from the traditional approach to equi-

librium selection in non-cooperative games. Instead of focusing on bilateral risk comparisons

between pairs of equilibria, as in his previous work with Selten [52], he proposes the concept

of multilateral risk dominance. The essence of multilateral risk dominance lies in determining

the equilibrium that minimizes risk across all equilibria with relevant properties. By compar-

ing the risks associated with various equilibria, players aim to identify the one that offers the

lowest level of strategic risk. In this context, strategic risk pertains to the likelihood that a

player’s chosen strategy will not yield the best possible outcome given the strategies chosen

by other players. While it may be impossible for players to entirely eliminate strategic risk,
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they can mitigate it significantly by selecting strategies that lead to equilibria with the highest

theoretical probability of realization. In other words, players seek strategies that are robust

and resilient against deviations by other players, thereby increasing the likelihood of achiev-

ing favorable outcomes. The equilibrium that emerges as the least risky choice,is considered

the solution of the game according to Harsanyi’s new theory.

Harsanyi’s new theory challenges the notion of subgame consistency by highlighting how

pre-subgame moves can compel players to deviate from strategies that would otherwise be

consistent within subgames. Subgame consistency posits that strategies chosen at any stage

of a game should remain consistent with optimal play in subsequent subgames. However, pre-

subgame moves, made before reaching a specific subgame, can influence players’ decisions

and lead them to adopt strategies that are not subgame-consistent.

Building upon this rejection of subgame consistency, Harsanyi introduces base dominance

and inferiority relations between strategies at the level of the game as a whole. These relations

enable players to evaluate the relative strength of different strategies in achieving favorable

outcomes across the entire game, rather than solely within specific subgames. Base dominance

refers to the superiority of one strategy over another in achieving better overall outcomes

across the entire game. Conversely, inferiority relations identify strategies that are weaker or

less effective compared to others in achieving favorable results. By focusing on base domi-

nance and inferiority relations, Harsanyi’s theory [51] provides a comprehensive framework

for evaluating strategies based on their performance throughout the entire game, rather than

being limited to subgame considerations.

Harsanyi involves the modification of the equilibrium selection criterion from a combi-

nation of payoff and risk dominance to solely relying on risk dominance. This adjustment

is made in response to the nature of non-cooperative games and aligns with Aumann’s the-

ory [53], which emphasizes the limitations of achieving payoff dominant equilibria in such

contexts.

In non-cooperative games, players act independently and pursue their own interests with-

out coordinated agreements or communication. Aumann’s theory [53] underscores that even

with the possibility of preplay communication, players cannot reliably enforce agreements to

achieve payoff-dominant equilibria. This is because there is no mechanism to ensure compli-

ance with agreements, and players may have incentives to deviate from agreed-upon strategies

to maximize their individual gains.

Given these constraints, Harsanyi’s theory [51] opts to focus solely on risk dominance as

the criterion for equilibrium selection. Risk dominance prioritizes equilibrium choices that
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minimize strategic risk and offer more stable outcomes, making them more feasible and real-

istic in the context of non-cooperative games.

Further, Harsany incorporates tie-breakers to address disparities between different equi-

libria. Prior theory [52], suggests that for symmetric games, should be selected a symmetric

equilibrium which often leads to suboptimal outcomes characterized by low stability and poor

payoffs. Consequently, in the updated theory[51], Harsanyi advocates for an alternative ap-

proach. At least in scenarios where preplay communication is permitted, he argues that the

optimal solution should manifest as a correlated equilibrium. This correlated equilibrium re-

flects a probability distribution across all possible Nash equilibria, allowing for a more nuanced

representation of strategic interactions and potentially yielding improved outcomes.

In scenarios where preplay communication is not feasible, achieving a correlated equilib-

rium becomes impossible. In such cases, players can strive for what Harsanyi terms a ”quasi

solution.” Harsanyi illustrates this concept with an example from the Battle of the Sexes game,

which features three equilibria: two in pure strategies and one in mixed strategies.

Traditionally, under the previous theory, the solution would lean towards the mixed strat-

egy equilibrium, primarily due to its symmetry. However, Harsanyi’s theory suggests a dif-

ferent approach. He proposes that the solution should reflect a correlated equilibrium that

combines the strengths of two persistent equilibria, the equilibrium in pure strategies. This

equilibrium yields to higher outcomes compared to symmetric equilibria, making it a more

appealing choice despite its asymmetry.

Indeed, both of Harsanyi’s theories, as outlined in his works from 1988 and 1995, maintain

Nash properties for nondegenerate unanimity games. These properties ensure that equilibria

possess certain stability and optimality characteristics crucial for strategic decision-making.

Harsanyi’s approach involves an assumption that players will strategically limit their choices

to equilibria demonstrating acceptable stability properties. Specifically, he emphasizes equi-

libria categorized as proper and persistent, which he refers to as eligible equilibria. Proper

equilibria [54] represent strategic outcomes where no player has an incentive to unilaterally

deviate from their chosen strategy. Persistent equilibria [55] further reinforce this stability by

ensuring that players continue to adhere to their strategies even under various perturbations

or changes in the game’s environment.
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2.3.1 Definition of the solution of the game in terms of theoretical

probabilities

In Harsanyi’s theory, the set of all eligible equilibria is denoted as S∗. The theory offers a

solution only for games in which S∗ is a finite set, indicating a limited number of equilibria to

consider. Harsanyi defines the solution of the game, denoted as s∗, as the eligible equilibrium

with the highest theoretical probability of occurrence.

If S∗∗ represents the set of all eligible equilibria s∗, then three distinct cases can be distin-

guished:

• If S∗∗ contains only one equilibrium s∗, s∗ will be defined as a solution.

• If S∗∗ contains two or more equilibria, and the game allows preplay communication

among players, then the solution is defined as the correlated equilibrium representing

an equal-probability mixture s∗∗ of all equilibria s∗ in S∗.

• If S∗ contains two or more equilibria, and the game does not permit preplay communi-

cation, then the solution is left undefined. However, a unique Nash equilibrium s chosen

by the tracing procedure when the centroid of set S∗∗ is used as the starting point will be

defined as a quasi-solution for the game. The term ”quasi-solution” refers to a solution

that is not formally defined but serves as a practical approximation or benchmark.

In games with complete information, players have full knowledge of the game structure,

including the payoffs associated with each possible combination of strategies chosen by the

players. Despite this complete information, there may still be multiple Nash equilibria, each

representing a possible outcome where no player has an incentive to unilaterally deviate from

their chosen strategy.

In summary, while Harsanyi’s theory aligns with the standard theory in its foundation

within noncooperative games and its consideration of Nash equilibria, it diverges by empha-

sizing a stronger concept of strategic rationality. Moreover, it shares certain aspects with co-

operative solution theories by focusing on fundamental game parameters, thereby providing a

more comprehensive framework for analyzing strategic interactions and selecting equilibrium

solutions.
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2.4 Related work and contribution

Given the extensive attention directed towards the minimization of the AoI, we aim to con-

tribute to this vibrant field with innovative insights. While numerous scholars have explored

various scheduling policies to reduce data age within networks, only a handful have ap-

proached this challenge through the lens of game theory.

In our research, we tackle the problem of minimizing the AoI by framing it as a static game

with complete information, building upon previous work such as [14]. However, we extend

the analysis to scenarios involving multiple players and nodes, addressing the critique from

[40] that many network scenarios are better represented as multi-agent games rather than just

two-player games. Inspired by the limited transmission opportunities in constrained devices

discussed in [9], we model the scenario as a game in the finite horizon.

Unlike previous studies that consider various information processing times such as expo-

nentially [16, 20, 19], we simplify our model by assuming instantaneous processing, similar to

[9]. Additionally, we focus on collision-free scenarios, unlike [8, 13, 50], and therefore, we do

not introduce the influence of feedback in case transmission fails, as discussed in [9]. Further-

more, we neglect the cost of transmission to isolate the impact of non-cooperative behavior

on the AoI, unlike [14].

Our work stands out for its integration of Harsanyi’s equilibrium selection theory with

the well-established problem of minimizing data age. Harsanyi’s framework, rooted in the

selection of equilibria in games with complete information, directly aligns with a subsection

of our research problem. In our investigation, we leverage this theory by introducing preplay

communication mechanisms. This strategic maneuver enables us to move beyond the confines

of symmetric equilibria, which often exhibit poor stability and yield low payoffs. Instead, we

explore the realm of correlated equilibria, which offer more desirable properties and lead to

superior payoffs, ultimately resulting in a reduction in the AoI.

To our knowledge, our study is the first to connect the concept of minimizing the AoI

with Harsanyi’s equilibrium selection theory in non-cooperative games. This novel approach

sheds new insights into strategies for improving information freshness in networks, opening

avenues for future research in both game theory and information age optimization.
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Chapter 3

Implementation

This chapter will present a game-theoretic framework that models the network scenario. The

aim is to simulate the real scenario, representing it as a game with N players with the common

goal of keeping the information as fresh as possible. Therefore, at the beginning, we are going

to represent the basic model to find Nash equilibrium in pure strategies and the domain of

mixed strategies. Later, we will introduce some model adjustments aimed at attaining more

efficient equilibria.

3.1 Model

The initial game is formulated as an N -player game operating over a finite horizon, where

each player corresponds to an independent information source. Within this framework, each

player is allowed to transmit within one of N slots over the game horizon. Consequently, each

player is constrained to a single transmission during the game. Given that all players share

the common objective of minimizing the AoI, with each transmission resetting this metric to

zero, the overarching goal is to collectively reduce the freshness of information as much as

possible.

This game bears resemblance to the concept of Public goods games in game theory, albeit

with a notable difference: here, players lack any incentive to abstain from transmitting. Unlike

traditional Public goods games [56] where participants may withhold contributions to reap

individual benefits, the absence of transmission holds no advantage for either the system or

the players themselves in this scenario. Furthermore, the absence of any associated costs for

updates further diminishes any rational reason for players to remain idle indefinitely.

All players possess an equal capacity to initiate an update within any of the N available

slots, but they are also aware that sending multiple updates is inefficient in terms of resource
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Figure 3.1: System model for N players over finite horizons with τN possible chance to update

utilization (Fig.3.1). The utility of the game is presented by the AoI, which is a metric to mea-

sure the freshness of information in the network system. This aspect distinguishes the game

from conventional game theoretic paradigms, as the optimal outcome is attained when the av-

erage AoI is minimized [14]. Furthermore, all players receive identical payoffs, incentivizing

them to strive for minimal AoI values. Consequently, their behavior mirrors that of a static

game with complete information, where players are not coordinated but rather synchronized

[8].

For the N players, we can represent the problem by defining a static game of complete

information denoted as follows:

G = {N ,S,U} (3.1)

In the game scenario, N represents the set of N independent sources, where each source is

a player in the game. Mathematically, N = {1, 2, ..., N}. We model the game scenarios with

three up to eight homogeneous agents.

S = {πj}, 0 ≤ j ≤ N (3.2)

Another crucial component is S which denotes the set of possible strategies of players. In

this context, S encompasses the probabilities associated with a player selecting a particular
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slot for transmission. In the realm of pure strategies, the value πj is equal to 1 for the j-th slot

in which the player updates, while for all other slots, this value is equal to 0. Therefore, we

can transform it to a set of actions A: A = {0, 1}.

A single player’s action space A comprises only two options: 0, representing the player’s

decision to remain idle, and 1, representing the choice to update. Each player independently

selects their action in the current slot τj , 0 ⩽ j ⩽ i, and i depends on N number of players.

The last component, denoted as U encompasses the payoffs associated with games involv-

ing varying numbers of players n ∈ N , contingent upon the actions chosen by the agents.

The overarching objective of the defined model is to minimize the average AoI across the fi-

nite horizon, which serves as the payoff metric for different game scenarios. In assessing data

freshness, we define the instantaneous AoI [9] for a given information source at time t as

A(t) = t− τ(t), we calculate the time difference between the present moment t and the most

recent slot where the update is received by the receiver. Our focus is on understanding the

average AoI within a specific time window, i.e.

∆ :=
1

N

∫︂ N

0

A(t)dt (3.3)

In Fig 3.5 and Fig.3.4, we observe a potential timeline illustrating the evolution of the AoI.

Notably, ∆ can be calculated as the area beneath the AoI curve A(t) within the interval [0, N],

with normalization relative to the overall time horizon.

A key constraint in our model is the maximum updates in the single slot denoted as M ,

which may be smaller than the total number of available updates ( M ≤ N ) and depends on

the updates that occurred in the slots before the current one. Therefore, we can say that we

model a dynamical system that depends on the previous states [57]. In total, the maximum

capacity of updates in the whole network can not exceed N . In the model implementation,

this constraint arises because our players independently decide when to update. Consequently,

there are instances where multiple updates occur within a single time slot, resulting in missed

opportunities for updates in other slots.

The minimization of the average AoI value over the finite horizon can be represented by

the modified formula, as follows:

∆y =
1

N

M∑︂
i=0

[︄
y2i
2

+
M∑︂

j=i+1

yiyj(1− p)j−i

]︄
, (3.4)

where the first contribution within brackets represents the area of the triangle with side yi,
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which is always associated with the i-th update. The subsequent summation captures the area

of parallelograms with sides yi and yj that contribute to the AoI only in case of zero updates

in i-th (and possibly subsequent) transmissions (see Fig. 3.4) slot or when occurs multiple

updates and till the end of the horizon we do not have any chance to transmit (see Fig.3.5).

3.1.1 Equilibrium in pure strategies

Pure strategies refer to strategies where players make specific, predetermined choices without

any randomness or uncertainty involved. These strategies represent a single, definite course of

action chosen by each player in a game. In the model that has been developed, each participant

is presented with a binary choice: they can either choose to transmit or to remain idle.

Figure 3.2: Optimal AoI in pure strategies when Nash equilibrium is reached

Definition 1. An Nash equilibrium NE of the game G = (N, (Sn)n∈N(un)n∈N) is a strategy

profile sNE=(sNE
1 , . . . , s

NE)
n = (sNE

n , sNE
−n) such that

∀n ∈ N,∀ sn ∈ Sn, un(s
NE
n , sNE

−n) ≥ un(sn, s
NE
−n). (3.5)

The minimization of AoI is realized when each player chooses to transmit in distinct slots

Fig 3.2. This essentially means that the players are in a state of anti-coordination. In other

words, Nash equilibrium, a state of optimal strategy for all players, is only reached when each

player selects a unique slot for transmission. This scenario reflects the dynamics observed in

the classic game theory example, the Battle of the Sexes [56].
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When players optimally play a game, the above formula is transformed into:

∆(y) =
1

N

N∑︂
i=0

[︃
yi
2

2
]︃

(3.6)

3.1.2 Equilibrium in mixed strategies

Since we have defined the game with the final number of strategies, we need to find a solution

in mixed strategies:

Theorem 1. [58] In a strategic-form game G = (N, (Sn)n∈N(un)n∈N), if N is finite and Sn is

finite for every n, then there exists at least one NE, possibly involving mixed strategies.

In game theory, when agents play a game with mixed strategies they have to apply the

indifference theorem [56] that the player’s decision probabilities should be such that the other

players are indifferent between their own set of actions. This concept is crucial in higher-order

game theory, where agents think about the actions of other agents.

Definition 2.: Player n’s mixed strategy πn ∈ ∆(Sn) is a distribution that assigns a proba-

bility πj(sn) to each strategy sn, such that
∑︁

sn∈Sn
πnsn = 1. For mixed strategies, the joint

probability distribution over the strategy profile s is, by definition, the product of the marginals

πn, n ∈ N .

The set of actions S is defined for all players in terms of their update probability, πj which

represents the likelihood of a player making an update in the j-th slot. Owing to the symmetry

of the game, all players share identical probabilities when choosing the j-th slot to update. An

additional implication of this game symmetry is that πj = πn−j effectively reduces the size of

the set by half.

Definition 3. A mixed strategy of the game G = (N, (Sn)n∈N(un)n∈N) is a mixed strategy

profile πNE=(πNE
1 , . . . , π

NE)
n = (πNE

n , πNE
−n) such that

∀n ∈ N,∀πn ∈ ∆Sn, ũn, (π
NE
n , πNE

−n) ≥ ũn(πn, π
NE
−n). (3.7)

where

ũn(πn, π−n) = E(un) =
∑︂
s∈S

(︄∏︂
j∈N

πj(sj)

)︄
un(s) (3.8)

is the expected utility of player n when selecting the mixed strategy πn, and S = S1. . .Sn.

The significance of mixed strategies lies in their generality and their ability to capture more

complex decision-making scenarios [59]. In many games, players may benefit from introduc-

ing randomness into their choices to achieve better outcomes or to make their strategies less
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predictable to opponents. Note that playing a game in pure strategies is just a specific case

of mixed strategies where the player chooses one strategy with certainty, assigning one to a

particular strategy and zero to all others.

One key advantage of mixed strategies is the availability of existence results for mixed Nash

equilibria. A mixed NE occurs when each player’s mixed strategy is optimal given the mixed

strategies chosen by all other players. In other words, no player can unilaterally deviate from

their chosen mixed strategy to improve their payoff. However, this symmetrical NE also has

some undesirable properties as lower payoffs and instability, in our particular case, mixed NE

results in higher average AoI. Existence results for mixed Nash equilibria provide theoretical

guarantees that in many games, there is at least one equilibrium where players randomize

their strategies. This is particularly important because it assures analysts that a solution to a

game exists, even if it involves players using randomization in their decision-making.

Now we can redefine our objective function as :

∆y = arg min
sn∈Sn

un(sn, s−n). (3.9)

The Principle of Indifference, also known as the Principle of Insufficient Reason, suggests

that if there are n possible outcomes and there is no reason to view one as more likely than

another, then each should be assigned a probability of 1
N

[59]. However, we have strong beliefs

that our probabilities are not uniformly distributed and that ”central” probabilities πn/2 are

slightly higher than π1 or πn.

3.2 Price of Anarchy

Price of Anarchy (PoA) is a concept in economics and game theory that quantifies the decline

in system efficiency caused by the self-interested actions of its participants [60, 61]. It is an

idea applicable to various systems and definitions of efficiency. Various interpretations of Nash

equilibrium give rise to different understandings of the PoA, including Pure PoA (deterministic

equilibria), Mixed PoA (for equilibria involving randomness), and Bayes-Nash PoA (relevant to

games with incomplete information) [60]. Authors, Elias Koutsoupias and Christos Papadim-

itriou introduced the term PoA, but the idea of measuring the inefficiency of equilibrium is

older.

The PoA captures the inefficiency that arises due to the lack of coordination among in-

dependent, selfish agents. It is a measure that describes how efficient a system could be if
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Algorithm 1 An algorithm for implementing Indifference theorem
Require: N random probability vectors pj with the same length

tempdev = 100 ▷ Initialize a temporary deviation variable with a high value
Ensure:∑︁N

j=1 pj = 1 ▷ Constraint that sum of all probabilities must be one
pj ≥ 0
pj = pn−1 ▷ Ensure symmetry
pj ≤ pj+1 ≤ ... ≤ pN/2, where0 ≤ j ≤ N ▷ Constraint that requires that subsequent slots
probabilities must be greater than previous
while Loop over the length of random probability vector do

Calculate the coefficients of the polynomial using probabilities
Calculate expected values for different outcomes
u1(1, coef) = u1(2, coef) = .... = u1(N/2, coef) ▷ Due symmetry we have to

calculate only N/2 expected values
Calculate the average value of expected payoffs
dev = abs(u1(1, coef)− average)
if tempdev ≥ dev then

tempdev = dev
results = [u1(1, coef), p] ▷ If the condition is satisfied, then keep results of the

expected value and probabilities
end if

end while

its agents could be coordinated by a central authority, as opposed to each agent acting in its

self-interest[61]. The PoA is the ratio between the worst Nash Equilibrium versus the payoff

for the players in the optimal scenario[56], [62]. One of the key factors driving the relevance

of the PoA in computer networks is the inherent tension between individual and collective

interests. Each node or participant in a network typically seeks to optimize its own objectives,

whether it be maximizing throughput, minimizing latency, or conserving resources. However,

in doing so without regard for the overall network’s well-being, these self-interested actions

can lead to suboptimal outcomes for the network as a whole.

PoA =

maxs∈S
∑︁
n∈N

un(s)

mins∈SNE

∑︁
n∈N

un(s)
, (3.10)

where SNE represents sets of all NE in the game.

In our model all players are the same utility function; minimal AoI in the network is the

common value for all of them, therefore we can simplify the above function representing PoA

as:

PoA =
maxs∈S un(s)

mins∈SNE un(s)
(3.11)
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where n ∈ N .

Networks, particularly dynamic ones like the Internet, are seldom perceived as static mod-

els. Their inherent volatility means that patterns within them can undergo rapid and substan-

tial changes, particularly in the event of failing routers or other network disruptions [57] as

a result of selfish routing. PoA is frequently utilized to signify the cost incurred due to the

absence of cooperation in dynamic network flows [63]. In the realm of routing algorithms,

selfish routing strategies can result in increased congestion, longer transmission delays, and

inefficient resource utilization. Research [64] emphasizes the importance of considering the

PoA when designing routing protocols and network topologies. Their work underscores how

the PoA provides valuable insights into the trade-offs between individual incentives and col-

lective welfare in decentralized network environments.

The introduction of this concept into our model aims to quantify the extent to which the

”anarchy” resulting from the absence of coordination can adversely impact information fresh-

ness. It will furnish us with invaluable insights into system efficiency and highlight the deriva-

tion between perfect coordination, characterized by all players updating in distinct slots, and

spontaneous coordination, which may lead to multiple updates and an increase in data age

within the channel. Models are inherently static representations, while the real world is dy-

namic [57].

3.3 Finding Nash equilibrium in pure and mixed strate-

gies

After introducing the concepts of equilibrium in both, pure and mixed strategies, as well as

the price of anarchy, we will delve a bit deeper into the methodology behind these results. For

solving a game in pure strategies, we are going to introduce the concept of the Best response

(BR) [58]:

Definition 4. Player n’s best response BRn(s−n) to the vector of strategies s−n is the set-

valued function

BRn(s−n) = argmaxsn∈Sun(sn, s−n). (3.12)

Definition 5. Let set G = (N, (Sn)n∈N(un)n∈N) be a strategic-form game. A strategy profile

sNE is an NE if and only if

sNE ∈ BR(sNE). (3.13)
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In pure strategies, our equilibrium is determined by each player selecting the best response

given the strategies chosen by others. In our scenario, this equilibrium occurs when each

router transmits in a different time slot, resulting in the lowest AoI value being achieved.

On the other hand, in mixed strategies, players randomly select strategies to ensure their

opponents are indifferent between their available choices. If players mix their strategies cor-

rectly, opponents receive equal payoffs regardless of which strategy they choose, Indifference

theorem [56]. In our case, since all players have the same payoff structure, mixing strategies

entails choosing a combination of strategies that yield equal payoffs across all options.

After identifying the equilibria in both pure and mixed strategies, we utilize the concept of

the PoA to quantify the inefficiency resulting from the lack of coordination within the model.

This measurement helps us understand whether the system requires enhancements to optimize

the transmission schedule. Given that we have a cost of anarchy of approximately 1.5 for a

three-player game (which means we lose 50% in efficiency), and that inefficiency tends to grow

with an increasing number of players, it justifies enhancements to the model based on these

findings. Moreover, Harsanyi’s theory [51] suggests that the outcome of a non-cooperative

game should ideally surpass that of the mixed strategy equilibrium if preplay communica-

tion is allowed. Therefore, these results further support the justification for implementing

improvements in our model to optimize performance.

3.4 Equlibrium selection in practice

Following the inefficiency results derived from the PoA, we aim to introduce several modifica-

tions to our model to explore the effects of different initial conditions. These adjustments are

particularly meaningful in the context of a finite horizon, as our model is defined within such

constraints. This finite horizon aligns with scenarios involving numerous energy-constrained

devices, as highlighted in studies such as [9, 10].

One way to improve efficiency and decrease PoA is to transform the game, which is known

as mechanism design [65]. It consists of applying different transformations to utility functions

to obtain NE which is more efficient than the one considered in the original game. Another

possibility to improve efficiency is to keep the game unchanged but to modify the solution

concept. This may be a correlated equilibrium (CE) which Harsanyi has discussed in his theory

as a solution for non-cooperative games with preplay communication [51]. A CE is a joint dis-

tribution over the possible actions or pure strategy profiles of the game from which no player

has an interest in deviating unilaterally. More formally, we have the following definition.
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Definition 6.[58]: Correlated Equilibrium CE is a joint probability distribution qCE ∈ ∆(S),

which verifies

∀n ∈ N ,∀σn,
∑︂
s∈S

qCE(sn, s−n)un(sn, s−n) ≥
∑︂
s∈S

qCE(sn, s−n)un(σn(sn), s−n), (3.14)

where σn : Sn ↦→ Sn can be any mapping, and Sn = S1 × . . . × Sn1 × Sn+1 × . . . × SN .

In our model, the introduced modifications entail the capability for routers to listen to a

channel within the network and react accordingly based on the prevailing situation. This setup

aligns with Aumann’s concept of an ”exogenous public signal,” where such a signal allows the

game to attain new equilibria within the convex hull of the set of mixed Nash equilibria of the

game [58]. Here, ”public” denotes that all players can observe this signal, while ”exogenous”

signifies that the signal is unrelated to the players’ actions.

Throughout these discussions, we will explore several enhancements aimed at approximat-

ing the optimal solution, especially within the realm of pure strategies. While achieving Nash

equilibrium in pure strategies stands as the most efficient solution, it proves challenging in

static games played in a single shot. Consequently, we establish these two equilibria as bench-

marks for adaptive strategies, thereby setting the lower and upper bounds of our analysis.

Figure 3.3: Possible scenarios of the number of updates in the slots during the game

3.4.1 Possible scenarios in the game

Since we are talking now about practical strategies, we will define ”milestone” as discrete

moments where players have the option to update or stay idle. A milestone is nothing less

than the beginning of an interval where players make their decisions with the assumption
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that players can only transmit in them. From now on, we will refer to these milestones in the

context of our work. At the outset, all milestones are initially set at intervals of 1
n+1

, where n

represents the number of players in the game. Since we have n milestones and n+1 intervals,

this division ensures uniform spacing. In an ideal scenario, we have one transmission over

time which corresponds to Round Robin division [58].

In our model, individual players autonomously select their update schedules. However,

this method may lead to redundant updates for certain slots while leaving other slots without

updates (see Fig. 3.3). Unfortunately, this leads to an increase in the average AoI, which is

contrary to our desired outcome. To address this issue, we propose implementing mechanisms

to prevent AoI escalation. Some adaptations focus on optimizing the current situation, while

others aim to proactively avoid undesired states. However, adjustments are necessary based

on the transmission behavior:

1. No Update/Transmission: In cases where no updates occur, we need to shift the mile-

stones which are time scheduled for transmission. This adjustment ensures that the

remaining milestones align with the number of players, making the shifting that results

in setting the next milestone earlier than planned.

Figure 3.4: Illustration for the AoI evolution over time. In the specific scenario, no updates were initiated by the
players during the third temporal slot; however, a transmission occurred in the subsequent fourth slot. Failure
to capitalize on the opportunity resulted in an escalation of the AoI, symbolized by the delineation of a dashed
surface

In the event of the worst-case scenario where no update occurs, continuous shifting

is not a viable solution. Instead, we adjust the interval to the right until reaching the

final slot, which corresponds to the 1
n+1

of the initial interval. This signifies the final

opportunity for an update, and if reached, transmission must occur.
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2. Single Transmission: If only one update is transmitted per milestone, we maintain

the existing milestones without modification. The desired objective is to encounter this

specified scenario throughout the game. At the game’s outset, our probabilities align

with the outcomes of the indifference theorem implementation. Upon entering this sce-

nario, we adjust the current probabilities in the following manner:

pj =
pj

1− pi
where i = t, i < j ≤ n

where pi corresponds to the probability of the current slot where an update has occurred,

and pj represents the probabilities of subsequent slots until the end of the horizon.

3. Multiple Updates: When multiple updates are transmitted, some opportunities for up-

dates have been missed. To rectify this, we adjust the milestones to create uniform

intervals from the remaining opportunities. This involves widening the intervals to ac-

commodate the available slots.

Figure 3.5: Illustration for the AoI evolution over time. Within the context under examination, multiple updates
occurred during the third temporal slot, resulting in the forfeiture of an opportunity for transmission until the end
of the observational horizon. Consequently, the AoI experiences an increase as depicted by the dashed surface.

Not only do we need to update the intervals, but we also need to adjust the probabilities

of future updates. In cases of multiple updates, these probabilities are recalculated based

on the corresponding scenario of a reduced n − k players’ game. For instance, if we

initially play a game with six players and encounter a situation with only one update

in the first slot, followed by multiple updates of three transmissions in the second slot,

we are left with only two remaining opportunities to transmit. Consequently, we adjust

both the horizon and the probabilities to match the scenario of a game with four players.
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We take the probabilities p3 and p4 in the game of four players and use their values to

determine p3̇ and p4̇ and in our game.

3.4.2 Adjustment following the rest of horizon

In this model enhancement, our players adapt to situations where an update is missed in the

current time slot t, which corresponds to cases with zero transmission. This information is

shared among all players listening to the channel, enabling them to adjust their planning hori-

zon. The adjustment is based on the remaining length of the horizon. Specifically, we calculate

the shift and reschedule the rest of the intervals and define the factor to postpone schedule

adjust as follows:

adjust =
1− horizon[t]

(n+ 1)

.

This shift is applied from the current until the end of the horizon but without a change at

the end of the last interval which remains 1. Players continue to play the game until they do

not reach the end.

3.4.3 Adjustment following the initial interval

An alternative approach to enhance the average AoI in instances where transmission is absent

in the current time slot t is to introduce adjustments for rescheduling transmission slots based

on the initial interval divided by the number of players augmented by one. The change in

transmission schedule when an update is missed, introduced in this model, can be expressed

as follows by changing the planned schedule for :

adjust =
1

(n+ 1)2

.

Subsequently, this resulting adjustment is applied from the current interval until the con-

clusion of the planning horizon, excluding the final interval, which retains its original value

of 1.

Nevertheless, akin to its predecessor, this method fails to preclude scenarios where no

transmission occurs or where multiple updates take place. While it does signify an enhance-

ment, it does not ensure immunity from these states within the models.
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3.4.4 Adjustment to prevent no update case with delay

The preceding adjustments mentioned lack an assurance that transmission will indeed take

place in the newly adjusted slot shifted to the right. Consequently, there arises a necessity to

devise a mechanism aimed at compelling transmission within the slot should it remain vacant.

Upon the realization by other participants of the absence of transmission in the current epoch,

a rescheduling process ensues, wherein precisely one player transmits in the current slot after

the adjustment. The adaptation of slots involves shifting the current slot accordingly forced

transmission delay:

Td = tdetection + tdecision + tinitiation (3.15)

However, this adaptive mechanism does not prevent us from the scenario when we have mul-

tiple updates and waste resources.

Algorithm 2 Pseudocode for adjusting horizon when transmission does not occur
Require:

horizon
n - number of players
k - current milestone
rest number of players ▷ all of these arguments as input
Calculating adjustment according to different approaches:
adjust = criterion
i = milestone

Adjust the horizon starting from the current milestone where transmission did not occur
until the end, except the last one which stays 1

while i ≤ length(horizon)− 1 do
horizon[i]+ = adjust

end while
if horizon[i] >= (n/(n+ 1)) then ▷ we are checking if the last interval is reached; in
case it is, we need to transmit because it is the last chance

if i == 0 then
aoi = 0.5 · horizon[i]2 + n · 0.5 · (adjust)2

else
aoi = 0.5 · (horizon[i]− horizon[i− 1])2 + (rest) · 0.5 · (adjust)2

end if
end if
return aoi

3.4.5 Adjustment to prevent no update case without delay

This approach bears a striking resemblance to the previous one, with a notable distinction:

the absence of any delay. Remarkably, our players possess the capacity to discern, before its
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Algorithm 3 Pseudocode for scenarios when transmission happened with horizon and prob-
abilities adjustment in case of multiple updates, and calculating AoI
Require:

horizon
n - number of players
k - current milestone
p - represents the probabilities
rest number of players
updates - how many updates have occurred in the current slot
▷ all of these arguments as input

i = k
if i == 0 then

aoi = 0.5 · horizon[i]2
else

aoi = 0.5 · (horizon[i]− horizon[i− 1])2

end if ▷ Transmission has happened, therefore we need to calculate AoI

In case more than one update happens, we need to re-adjust the horizon, because we face the
case when we are left withn− numupdates andn− k slots, we have fewer chances to update,
therefore, we need to spread evenly rest of the horizons divided with rest opportunities
augmented with 1
adjust

Adjust the horizon starting from the next milestone because we had more than one update
in the current milestone

if updates > 1 and rest > 1 then ▷ check condition if we are left with more than
one opportunity and if more than one update happened

for j = k; j <= length(horizon)− rest; j ++ do
hoziron[j + 1]+ = adjust

end for
Recalculate probabilities, for example, if we are left after the first milestone with three

opportunities more, then we behave as if we are playing game with four players
end if
if update == 1 then

pj =
pj

1− pi
where i = slotcurrent, i < j ≤ n

end if

If we are left with only one opportunity or if without any after the current slot, then we
need to calculate AoI and finish the game

if rest == 0 then
aoi+ = 0.5 · (1− horizon[i])2

end if
if rest == 1 then

adjust =
(1− horizon[i])

2
aoi+ = adjust2 i+ = 1

end if 39



Algorithm 4 The main function for adaptive strategies
Require:

p - represents the probabilities
▷ take probabilities as input

n = len(p) ▷ it is equal to the number of players
rest = n ▷ on the beginning we have all players/possibilities to transmit
interval = 1/(n+ 1) ▷ inital interval depending on the number of players
n

horizon = [interval + i · intervalforiinrange(n+ 1)] ▷ initial horizon
i = 0 ▷ we initialize current milestone to be zero
aoi = 0 ▷ initialize aoi, our goal to calculate
while (i < n and rest > 0) do

We ask each player if it wants to transmit and store it in
updates ▷ how many players want to transmit in the current

slot
if updates > 0 then

rest− = updates
call the function for transmission and calculate AoI ▷ Algorithm 3
aoi + = Algorithm 3
i+=1 ▷ increase milestone

end if
if above condition is not met then

call the function for no transmission ▷ Algorithm 2
end if

end while
return aoi
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occurrence, the absence of intent to transmit in a specific slot. Consequently, one player, and

only one, undertakes the decision to update. This simplified model, in contrast to its predeces-

sor, retains the horizon unchanged, while endowing players with additional insights into the

game’s dynamics. Thus, we enforce the transmission obligation on a single player should the

situation warrant, ensuring the prevention of scenarios characterized by zero updates.

3.4.6 Adjustment to prevent no update case with non-evenly spread

intervals

In this effort to enhance the model, we aim to avoid situations where a state with zero updates

attempts, compensating it by using intervals depending on the factor α instead of evenly dis-

tributed ones.

x · αi, where 0 ≤ i ≤ n

x ·
n∑︂

i=0

αi = 1 (3.16)

from where we get x value that depends on sum of geometric serie of α

x =
1∑︁n

i=0 α
i

(3.17)

While we acknowledge the possibility of multiple updates occurring within a slot, our focus

lies in investigating the potential influence of the factor α on such occurrences. We aim to

modulate the α factor to observe its impact on multiple updates, thereby altering the distribu-

tion of intervals to be either more dispersed initially and denser later, or vice versa.

3.4.7 Adjustment designed to facilitate an ideal scenario within un-

evenly spread intervals with a cost parameter β

In the latest proposed mechanism, our objective is to enforce precisely one update per time slot,

commencing from the onset of the horizon. Through the implementation of this adjustment,

we aim to mitigate instances of both zero transmissions and multiple transmissions. This

strategy endeavors to instigate comprehensive coordination among participants, albeit at a

discernible cost, given the inherent challenge of attaining complete coordination. Thus, we

introduce a parameterized cost determined by the factor β using geometric sequences of the
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form

x · βi where 0 ≤ i ≤ n.

By modulating the cost with the factor β our intention is to foster full coordination while

striving to ascertain the optimal price to pay, enabling us to approach the optimal solution as

closely as feasible.
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Chapter 4

Results

This section will present the outcomes derived from the model implementation outlined in

Chapter 3. Initially, we generated results pertaining to the basic game model, wherein we

identified Nash equilibrium points both in pure and mixed strategies. Subsequently, we en-

riched the model by introducing several adaptive strategies. The first two enhancements fo-

cused on modifying the slot by shifting it to the right if no transmission occurred. Following

this, we introduced two adaptations where transmission is compelled to occur after a certain

delay, either with evenly spread intervals or without delay and with non-evenly spread inter-

vals; both adaptations do not incorporate mechanisms to prevent multiple updates. The final

adjustment aimed to foster coordination among players by stipulating that only one transmis-

sion is permitted per slot, thereby eliminating scenarios involving no transmission or multiple

transmissions, with a cost of β imposed in the latter case.

4.1 Results in pure strategies

To derive results concerning pure strategies, we employed (3.6), which computes the surface

area of equilateral triangles with sides measuring 1
(n+1)

, corresponding to the initial interval

size, where n denotes the number of players participating in the game. In the scenario of

pure strategies, there exist n + 1 such triangles. By summing their individual surface areas,

we determined the average AoI for a system comprising n agents. Thus, the acquisition of

results depicted in Fig. 4.1 for any given number of players, n, is facilitated through this

straightforward computation.

In the realm of pure strategies, the Nash equilibrium signifies a set of actions taken by

individual players, representing a collection of distinct chosen slots. Within this framework,

none of the players possess any incentive to deviate from this equilibrium. In essence, players
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Figure 4.1: Average value of AoI in pure strategies

attain the optimal outcome only when all opt to transmit in unique slots, achieving perfect

coordination, or rather, anti-coordination. From the insights gleaned from Fig. 4.1, it becomes

evident that as the system comprises a greater number of fully coordinated players adhering to

the optimal scenario, the overall freshness of information diminishes correspondingly. How-

ever, a significant question arises concerning how to come close to this optimal state, because

achieving outcomes equivalent to an NE in pure strategies without any form of coordination

in a static game is exceedingly challenging, if not impossible in certain contexts[36]. Without

coordination mechanisms or communication among players, at least preplay, reaching such a

state where each player independently selects their optimal strategy can be highly unlikely,

particularly in complex environments like networks [48].

4.2 Results in mixed strategies

Implementing the Indifference theorem with more than two players in the game presents a

more challenging task [56]. This challenge arises because, as the number of players increases,

the polynomial degree and the number of variables also increase. Specifically, the polynomial

takes the form (p1+p2+ ...+pn)
(n−1), where pi represents the probability of a player choosing

a certain strategy i, and n is the number of players. Initially, we assumed that players do not

distribute their probabilities equally across distinct slots; rather, they are more likely to choose

slots closer to the center of the horizon. As a consequence of game symmetry, we have the

following equality pi = pn−i, respecting that
∑︁n

i=0 pi = 1.
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Our initial approach begins with uniformly distributed probabilities [59], which are subse-

quently adjusted by decreasing outer probabilities and increasing inner ones. Before advancing

to the next stage of probability enhancement, we assess whether the value of u1(1, p) aligns

with the average value of other utilities. If this criterion is not met, we proceed with further

iterations, continuing to refine the probabilities. Conversely, if the condition is satisfied, we

revert to the previous probabilities and compute the average AoI value in mixed strategies

across varying numbers of players.

In practice, probabilities are not uniformly distributed; players show preferences for cer-

tain slots over others. However, despite this deviation from uniformity when speaking about

probabilities, the average AoI closely approximates the value obtained when utilizing uni-

formly distributed probabilities from the outset which can be seen in Fig. 4.2. Therefore, we

justified that players have preferences among certain slots.

Figure 4.2: Value of average AoI in pure, mixed, and uniform strategies

Figure?? demonstrates the resulting average AoI in scenarios where players are perfectly

coordinated and coordinated with probabilities corresponding to the mixed equilibrium across

varying numbers of players. The blue curve, representing the Nash equilibrium in mixed

strategies, exhibits a similar trend to the optimal solution: as the number of players increases,

the average information freshness decreases. However, it diverges from the optimal solution

depicted by the grey surface. Equilibria in mixed strategies are known not to be persistent,

and in our case, they yield unfavorable values for average information freshness.
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Figure 4.3: Value of average AoI in pure, mixed, and uniform strategies

To avoid symmetrical solutions in the mixed strategies which are more likely in real-life

scenarios, introducing preplay communication can lead to a more attractive solution. This

approach results in a probability mixture of pure Nash equilibria [51], defining a solution

known as correlated equilibrium (3.14) [66]. Such a solution is expected to yield a lower value

of the AoI compared to that in mixed strategies.

4.3 PoA results

As discussed, PoA refers to the inefficiency that can arise when users in a network act self-

ishly to optimize their objectives without considering the overall network performance. It

quantifies the degradation in network efficiency caused by selfish behavior, compared to an

idealized scenario where users cooperate for the common good [60]. Specifically, it examines

how network performance metrics AoI which is used in our study is impacted (Fig.4.4) when

users independently make decisions, such as selecting slots based solely on their decision not

taking into account the actions of other players. In our context, the PoA serves as a metric

to quantify the extent to which coordination among players benefits the system. It aids in

the development of mechanisms aimed at incentivizing coordination or mitigating its adverse

effects through the establishment of preplay agreements. These agreements are designed to

encourage strategic alignment among players, thereby fostering more favorable outcomes for

the system as a whole.
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Figure 4.4: PoA for different number of players

Figure4.4 studies the impact on the network performance metric AoI in the absence of any

coordination mechanism, in both, equal and mixed probabilities. Although we acknowledge

that players may not engage in the game with equal probabilities, it is crucial to demonstrate

the inefficiency of playing the game with equal probabilities. Hence, we also present results

when players choose strategies with probabilities of 1
n

. The penalty for non-cooperative be-

havior escalates with an increasing number of players in the system, which aligns with ex-

pectations. In systems with a higher number of players, the likelihood of anarchy arising also

increases. Consequently, the upward trend observed in the PoA curve in Fig. 4.4 is anticipated;

the penalty incurred for eight players without a coordination mechanism surpasses that of sce-

narios involving only three players. This observation underscores the escalating inefficiency

stemming from individualistic decision-making in larger networks.

Moreover, the trend suggests that as the network scales up, the disparity between optimal

and non-cooperative outcomes becomes more pronounced. This indicates the importance of

promoting cooperation and coordination among network participants to mitigate the detri-

mental effects of selfish behavior. Additionally, the results confirm our beliefs that it is neces-

sary to introduce some changes in the model to approach the optimal solution.
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4.4 Results for implementing horizon shifting when no

update occurs

Firstly, we will delve into the outcomes derived from implementing mechanisms for horizon

shifting in scenarios where no transmission occurs. We introduced adjustments dictating how

players should adapt to this situation. Our observation suggests that players should not wait

until the next milestone to transmit; rather, transmission should occur earlier. The extent to

which this shift should occur compared to the planned milestone varies, and we explored two

different mechanisms to address this.

In the first scenario, we shifted the horizon according to the remaining time divided by

the total number of opportunities increased by one. In the subsequent scenario, we increased

the horizon by the initial interval, which corresponds to 1
(n+1)

, and augmented the remaining

opportunities by one.

4.4.1 Mechanism following the rest of the horizon

At the onset of each slot, we modeled the players’ decision-making process regarding whether

to update or not based on their preferences. Subsequently, we implemented various scenarios:

no transmission has occurred, only one occurred, or multiple updates. In the scenario where

updates have occurred, either one or more, we calculated the AoI and adjusted the number

of players accordingly, updating the selection probabilities for subsequent slots. In scenarios

where multiple transmissions occurred, we also modified the horizon making it evenly spread

after we were left with fewer opportunities to update. Our adjustment mechanism is used to

shift the horizon to the right according to the rest of it to achieve better results than the one

we have achieved in mixed strategies, playing without any additional protocol.

Upon implementing the first algorithm and conducting 10,000 iterations for different num-

bers of players, we got the following results:

The yellow curve in Fig. 4.5 illustrates the value achieved after incorporating the possibility

for players to adjust the next milestones when no transmission occurs in the current slot. As

anticipated, we observe progress following the integration of this adjustment into the model.

However, it remains closer to the solution in mixed strategies than to the optimal one depicted

in Fig. 4.6. Undoubtedly, by shifting the current horizon to the right and enabling the next

transmission to take place there, we witness improvements in the system’s performance.
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Figure 4.5: AoI after applying mechanism adjustment according rest of horizon shift

((a)) Distance from the optimal solution ((b)) Distance from solution in mixed strategies

Figure 4.6: Difference between optimal and actual Nash equlibrium

4.4.2 Mechanism following the initial interval

After introducing the next improvement, which aims to reorganize the horizon when trans-

mission does not occur, such that the opportunity for the next update is shifted by the initial

interval divided by the total number of players increased by 1, we maintained the same behav-

ior in scenarios where multiple or only one update occurs. Upon running the code for 10,000

iterations, we got the following results:

In Fig. 4.9, we observe a clear improvement with the introduction of the adjustment in the

model, positioning the performance almost midway between the upper bound, represented

by mixed NE, and the lower bound, an optimal NE. However, despite adapting the model to

react in this manner, we find ourselves much closer to the worst-case scenario depicted by the

red surface in Fig. 4.8(a) than to the optimal one. If the cost of implementing this adaptive
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Figure 4.7: AoI after applying mechanism adjustment according initial interval shift

((a)) Distance from the optimal solution ((b)) Distance from solution in mixed strategies

Figure 4.8: Difference between optimal and actual Nash equilibrium

behavior in the model is not prohibitive, it still presents a promising solution.

4.4.3 Comparative analysis of the first group adjustmentmechanisms

Both introduced mechanisms exhibit improvements, but adjusting by taking the initial inter-

val and dividing it by (n + 1) proves to be a significantly better approach. Shifting the next

possibility to adjust just slightly before the next slot may not be the most effective mechanism

to apply. However, if no better alternative is available, it should still be considered. With the

other adjustment, we find average data freshness closer to the middle of the bounds. If the only

agreed-upon action at the outset of the game is to react in case transmission does not occur

by recalculating new slots for potential updates, then it becomes imperative to consider alter-

native mechanisms. However, it remains of interest to explore whether further mechanisms
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can enhance these results or not.

Figure 4.9: AoI after applying mechanism for shifting slots when no update occurs

4.5 Results for mechanisms that prevent cases of non -

transmission

Within this category of mechanisms, the aim is to avoid the potential for transmission fail-

ure meaning slots without any update, thereby ensuring that every time slot is actively uti-

lized. The sole admissible states within this framework encompass either singular or multiple

updates occurring within the allocated slot. Various iterations of these models have been

introduced, each entailing distinct adaptations of scheduling algorithms aimed at mitigating

instances of idle time slots.

4.5.1 Mechanism to prevent no update case with delay

The initial approach entails adjusting the temporal scope to accommodate the forced trans-

mission time, which encompasses detection, decision-making, and initialization intervals, fol-

lowed by the computation of information age. For experimental validation, a delay of 0.01 was

designated. Upon executing the algorithm for 10,000 iterations, the ensuing outcomes were

recorded and analyzed.

After implementing this approach, we observe notable progress 4.10. The results now fall

within the range between the upper and lower limits, but they are closer to the lower limit,
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Figure 4.10: AoI after applying mechanism to force transmission with delay in the case when no update occurs

((a)) Distance from the optimal solution ((b)) Distance from solution in mixed strategies

Figure 4.11: Difference between optimal and actual Nash equlibrium

which corresponds to the optimal result. This inference is also supported by the shaded areas

depicted in the graphs Fig. 4.13. We can see if the forced delay time remains sufficiently low

and allows players to react in the event of non-transmission, thereby enabling the selection

of a singular player willing to transmit, this approach proves advantageous. Facilitating com-

munication among players and establishing coordination in these scenarios, lowers average

AoI.

4.5.2 Mechanism to prevent no update case without delay

In this adaptation, we circumvent the occurrence of a transmission-less scenario by employing

a mechanism that iteratively prompts players to update until a participant opts to do so. While
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this strategy effectively precludes the loss of transmission opportunities due to empty slots, it

lacks resilience against the occurrence of multiple updates within the same interval. After 10

000 we have the following results:

Figure 4.12: AoI after applying mechanism avoid no transmission state

We can deduce that the introduced mechanism while demonstrating an enhancement over

a model lacking responsiveness, is not the optimal solution for minimizing the average age of

data. Despite observing an improvement compared to a non-responsive model, the average

age (Fig. 4.12) of data computed using this mechanism tends to align more closely with the

upper bound rather than achieving optimal performance. In comparison to the preceding

mechanism, this approach yields inferior results.

((a)) Distance from the optimal solution ((b)) Distance from solution in mixed strategies

Figure 4.13: Difference between optimal and actual Nash equlibrium

53



4.5.3 Mechanism to prevent no update case with non-evenly spread

intervals

This mechanism endeavors to address the absence of transmission scenarios by introducing

unequally distributed transmission intervals. The degree of unevenness in the interval distri-

bution is contingent upon the alpha factor, which, in practical terms, may signify the trade-off

incurred by implementing this mechanism. Specifically, in network contexts characterized by

limited energy resources, where energy is a scarce commodity, the alpha factor may encapsu-

late the additional energy consumption associated with this approach. Thus, a pertinent in-

quiry arises regarding the threshold values of the alpha factor deemed acceptable in exchange

for achieving coordination.

Figure 4.14: AoI after applying mechanism avoid no transmission state

Observing the graphical representation Fig. 4.14, it becomes evident that the alpha fac-

tor significantly influences the degree of improvement attained. Upon integrating this adap-

tive mechanism, optimal enhancements are observed at alpha values of 0.85 and 0.80. For

larger disparities in the alpha factor (alpha=0.70), it becomes evident that the results converge

towards values similar to those observed in mixed strategies for more players in the game.

Interestingly, optimal outcomes are achieved at an alpha factor of 0.80 compared to 0.95. Fur-

thermore, when no alpha price is introduced (corresponding to alpha = 1), and intervals are

not distributed evenly as more transmissions occur, the results deteriorate compared to sce-

narios where a penalty factor of alpha = 0.95 or 0.80 is applied. However, excessive deviation

in the distribution of intervals leads to less favorable outcomes. These observations highlight

54



the delicate choice in price alpha we are supposed to pay for achieving this preplay agreement.

4.5.4 Comparative analysis of the second group mechanisms

Upon comparing all mechanisms within this group, it becomes apparent that the most favor-

able outcomes are achieved by implementing a forced transmission delay in instances without

transmission, coupled with precisely one update occurring within each time slot. In contrast,

the approach of prompting players for updates until at least one participant commits to trans-

mission proves to be less effective, regardless of whether it involves no delay introduction,

equal interval distribution, or the incorporation of an alpha-dependent pricing mechanism

dictating uneven interval settings. Among the latter two mechanisms, superior performance

is observed when the alpha factor exhibits minimal deviation, particularly at values of 0.80

or 0.85. Thus, it is evident that the strategy of awaiting player decisions for updates is com-

paratively less efficient (Fig. 4.15), underscoring the advantage of mechanisms that enforce

precisely one transmission with a specified delay.

Figure 4.15: AoI after applying mechanism to prevent no update state
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4.6 Results for amechanismdesigned to facilitate an ideal

scenario within unevenly spread intervals, consider-

ing a cost parameter β

In the last introduced mechanism, the objective is to preempt all unfavorable scenarios, specif-

ically those involving zero or multiple updates, by instating coordination from the outset of

the game. Even in the scenario of complete coordination, or what we term anti-coordination

in our context, which represents the ideal gameplay approach, a cost is incurred for enforc-

ing this predefined rule, denoted by the parameter β. The beta factor dictates the degree of

unevenness in interval distribution, where values below one indicate a prevalence of evenly

distributed intervals at the outset. Conversely, values exceeding one signify a scenario where

intervals are more densely concentrated initially. When β assumes an exact value of one, we

depart from the ideal scenario, albeit acknowledging that the beta factor necessitates a devia-

tion from unity to elicit distinct behavioral patterns within the model.

Observing the impact of varying beta values on the system’s average AoI, we note that

for a marginal deviation from unity, such as β = 0.95, indicative of minimal departure from

equally distributed intervals, the resultant average age closely approximates the ideal value.

However, as the deviation increases, exemplified by β = 0.85 or β = 1.15 — representing

equivalent deviations but in opposing directions—we observe slightly superior outcomes with

β = 1.15. This suggests that, for a consistent degree of deviation, the mechanism performs

better when initial intervals are more densely distributed, followed by narrower subsequent

intervals. This trend becomes more pronounced with larger deviations, such as β = 0.70 and

β = 1.30, where the discrepancy in results intensifies due to significantly unequal intervals,

with wider initial intervals followed by substantially narrower subsequent ones, or vice versa

in the case of β = 1.30. Consequently, we can infer that this mechanism yields favorable

outcomes when beta exhibits minimal deviation, and the gameplay entails slightly broader

initial intervals followed by marginally narrower subsequent ones (Fig. 4.16).

4.7 Comparative analysis of proposed adjustments

To facilitate comparative analysis across all mechanisms, we introduce an efficiency ratio,

comparing the performance of each adaptive approach against the optimal solution. The ini-

tial graphical representation delineates the efficacy of various strategies. Notably, leveraging
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Figure 4.16: AoI after applying mechanism to apply preplay communication with different β factor

pre-game communication opportunities [51] exhibits the potential for enhancing the average

AoI. The introduction of diverse tiebreaker mechanisms yields varying degrees of efficiency

(Fig.4.17). Particularly, the incorporation of a beta factor set at beta=0.95 emerges as the clos-

est approximation to the optimal solution, thus constituting a preferred choice if feasible for

implementation. However, constrained by network limitations, alternative beta factor values

such as 1.15 or 0.85 warrant consideration. Subsequently, the mechanism enforcing transmis-

sion with slight delay in the absence thereof presents a viable intermediate solution. While

other mechanisms demonstrate varying degrees of efficiency relative to the mixed strategies

solution, they generally gravitate towards this benchmark rather than the optimal one. The

efficacy of mechanisms contingent upon the alpha and beta factors hinges significantly on the

prudent selection of these parameters. Hence, careful consideration is imperative in selecting

these factors, ensuring that the associated costs lead to improved rather than compromised

solutions.

The figures (Fig. 4.19, 4.20, 4.21) show the efficiency ratio by the groups of introduced

mechanisms.
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Figure 4.17: Efficiency ratio choosing different adaptive machanisms

Figure 4.18: Simplified presentation of efficiency ratios for different strategies
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Figure 4.19: Efficiency ratio for the first group of adaptive mechanisms

Figure 4.20: Efficiency ratio for the second group of adaptive mechanisms
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Figure 4.21: Efficiency ratio for the third group of adaptive mechanisms
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Chapter 5

Conclusions and Future Work

Our analysis has revealed valuable insights into the effectiveness of various adaptive mech-

anisms for improving the average age of information in communication systems. We have

demonstrated that leveraging pre-game communication opportunities holds promise for en-

hancing performance and finding more persistent equilibrium [51]. Obtain results have shown

that adaptation mechanisms yield more favorable outcomes compared to scenarios devoid of

pre-game agreements. This observation resonates with Harsanyi’s theory, which underscores

the significance of strategic coordination in achieving optimal results.

Three distinct categories of mechanisms were introduced: first, those rescheduling hori-

zons to react on cases without transmission; second, those mandating at least one transmission

per slot, either with a minimal delay or through iterative player prompting; and finally, those

enforcing singular transmissions per slot while modulating interval distribution via the beta

factor which represents the cost of this solution. Our findings underscore the efficacy of these

mechanisms, particularly noting the favorable outcomes observed with a beta factor of 0.95.

However, it is imperative to acknowledge the importance of addressing network con-

straints and associated costs when parameterizing these mechanisms. Prudent calibration of

alpha and beta factors is indispensable for optimal performance, as significant deviations may

yield suboptimal results. Notably, the mechanism enforcing delayed transmission has shown

promising results, warranting further exploration across a spectrum of delay values.

Future research avenues include investigating additional mechanisms, such as those induc-

ing full coordination with random number selection among players, while carefully managing

scenarios prone to multiple updates. Additionally, exploring alternative probability adjust-

ment techniques, perhaps leveraging machine learning or reinforcement learning approaches[36],

is warranted, especially in scenarios where transmission probabilities vary across slots.
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Furthermore, incorporating constraints such as collisions or unsuccessful updates[9, ?], as

well as considering decision costs associated with transmission [47], could enrich our under-

standing of system behavior. Additionally, exploring the impact of exponential packet pro-

cessing [16, 19, 20] compared to instantaneous processing would offer valuable insights.

In conclusion, our study underscores the significance of pre-game communication in sce-

narios lacking established coordination. By enabling the sources to monitor the channel and

proactively respond to observed conditions, our proposed mechanisms demonstrate signifi-

cant improvements, resulting in a lower AoI. Mathematically, these outcomes exhibit greater

stability and yield lower objective function values than the symmetric solution in mixed strate-

gies when coordination or pre-agreement is absent. Despite inherent limitations, our findings

offer valuable insights into the design and optimization of communication systems, empha-

sizing the critical role of preplaycommunication in non-cooperative scenarios to uphold data

freshness within the network.
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