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Introduction

The purpose of this thesis is to give an introduction to the theory of infinite dimen-
sional Hamiltonian systems and infinite dimensional symplectic reduction. These
topics often arise in applications, when dealing with Hamiltonian PDEs. In the first
part, we will see how most of the standard constructions of differential geometry and
Hamiltonian systems extend naturally from the finite dimensional to the infinite di-
mensional Banach setting, while, in the last part, an example of infinite dimensional
symplectic reduction is presented.

The first introductory chapter contains a brief review of the theory of calculus
and of multilinear forms on Banach spaces. These notions will be crucial in chapter
2, where we give a description of smooth manifolds modeled on Banach spaces.
Here, after introducing some basic notions, we will focus on equivalence relations
and smooth tensor fields, that will be two equally important topics for symplectic
reduction. The third chapter focuses on the notion of Banach Lie group and smooth
actions of Lie groups on smooth manifolds. Again, up to some technicalities, the
standard theory of finite dimensional Lie groups extends naturally to the Banach
setting. This chapter is complemented by Appendix A, which contains a formulation
of a slice theorem for smooth actions of infinite dimensional Banach Lie groups on
Banach manifolds.

After these preliminaries, in chapter 4 we present the Hamiltonian formalism
in the infinite dimensional Banach setting, focusing on symplectic geometry and
Hamiltonian systems with symmetries. In the same context we present an infinite
dimensional extension of the celebrated symplectic reduction theorem of Marsden,
Weinstein [18]. Chapter 5 concludes the first part of the thesis by recalling (only in
the finite dimensional setting) the symplectic reduction of cotangent bundles, namely
the symplectic reduction procedure for finite dimensional mechanical systems with
symmetries.

Finally, chapter 6 presents an infinite dimensional example of symplectic reduc-
tion. The aim is to understand the classical Kirchhoff equations of hydrodynamics,
that regulate the dynamics of a rigid body moving in a perfect fluid, as the reduced
equations obtained after a two-stage Hamiltonian reduction procedure. However, we
will see how the infinite dimensional manifolds taken in consideration in this chapter
are way more general topological spaces than a Banach manifold and so, in virtue
of that, chapter 6 is complemented by Appendix B which gives a brief introduction
and a review of some important properties of these topological spaces.

The main references about theory of smooth manifolds and Lie groups that are
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used in this thesis are the books [20] and [1], while the Hamiltonian formalism in the
infinite dimensional case is is an adaptation of the one presented in the first chapters
of [19] following the book [4]. We note that the core of chapter 4, namely the infinite
dimensional extension of the symplectic reduction theorem of Marsden, Weinstein
and its technical lemmas are taken from the unpublished notes [16]. Finally, the
main references for chapter 6 are the papers [26] and [25], while Appendix B follows
the book [13].
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Chapter 1

Remarks of calculus on Banach
spaces

We recall some basic notions of calculus on Banach spaces and of multilinear forms,
stating the main definitions and some theorems like the inverse function theorem
and the implicit function theorem that (implicitly) play an important part in the
theory of manifolds modeled on Banach spaces which will be considered ahead. Our
reference will be chapter 2 of [20].

Definition 1.1. Let E be a real vector space. A norm on E is a function ∥ ⋅ ∥ ∶
E Ð→ R, such that

• for each v ∈ E we have ∥v∥ ≥ 0 and ∥v∥ = 0 if and only if v = 0;

• for each v ∈ E and λ ∈ R we have ∥λv∥ = ∣λ∣ ∥v∥;

• for each v,w ∈ E we have ∥v +w∥ ≤ ∥v∥ + ∥w∥.

The pair (E, ∥ ⋅∥) is called a Banach space if it is a complete metric space with
respect to the distance induced by the norm:

d(v,w) ∶= ∥v −w∥.

We proceed to recall some notions about spaces of linear and continuous trans-
formations between Banach spaces. Let E and F be Banach spaces, we denote the
set of all linear and continuous maps between E and F as L(E,F ). This set is a
Banach space if equipped with the operator norm

∥f∥ ∶= sup
∥x∥≤1

∥f(x)∥.

In particular, if F = R the set E′ ∶= L(E,R) is called the topological dual of E.
This construction can be iterated in order to define the bidual space associated to
E

E′′ ∶= L(E′,R),
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that is the topological dual of E′. It is clear that there exists a natural inclusion of
E into E′′ given by the evaluation map:

ev ∶ E Ð→ E′′

xz→ evx ∶ E′ Ð→ R,

defined as:
evx(f) ∶= f(x).

Definition 1.2. If the evaluation map is an isometry of Banach spaces (i.e. a vector
space isomorphism which preserves the norm) then E is called a reflexive space.

1.1 Differentiability and differentiable maps

The aim of this section is to recall the concept of differentiability for maps between
Banach spaces.

Definition 1.3. Let E, F be Banach spaces and f ∶ U ⊆ E Ð→ F where U is open
in E. The map f is called (Fréchet) differentiable at x ∈ E, if there exists a linear
and continuous operator Lx ∈ L(E,F ) such that the following limit exists:

lim
y→x

∥f(y) − f(x) −Lx(y − x)∥
∥y − x∥ = 0. (1.1)

The operator Lx is called the derivative of f at x.

Remark 1.4. The condition (1.1) is equivalent to require that for y → x in E:

f(y) = f(x) +Lx(y − x) + o(∥y − x∥).

In particular, if f is differentiable at x, then f is also continuous in x.

If a map f ∶ U ⊆ E Ð→ F is differentiable at any point of its domain U , then it is
called differentiable. Its derivative can be represented through the map between
Banach spaces

Df ∶ U ⊆ E Ð→ L(E,F )
xz→Df(x) ∶= Lx.

Proposition 1.5. The following properties hold:

• let f ∶ U ⊆ E Ð→ V ⊆ F and g ∶ V ⊆ F Ð→ G be two differentiable maps, then
the composition g ○ f ∶ U ⊆ E Ð→ G is differentiable and

D(g ○ f)(x) =Dg(f(x)) ○Df(x);
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• let fi ∶ U ⊆ E Ð→ R (i=1,2) be differentiable maps. Then f1f2 ∶ U ⊆ E Ð→ R
is differentiable and

D(f1f2)(x) ⋅ v = f2(x)Df1(x) ⋅ v + f1(x)Df2(x) ⋅ v,
where g ⋅v denotes the evaluation of the linear continuous map g ∈ L(E,F ) on
the vector v ∈ E.

In the case that Df is differentiable we are able to define the second derivative
of f as the derivative of Df :

D2f ∶=D(Df) ∶ U ⊆ E Ð→ L(E,L(E,F )).
By Remark 1.4, if D2f exists, then the derivative Df is a continuous function
between U and L(E,F ) (equipped with the operator norm). Iterating this con-
struction, fixed a positive integer k ≥ 1, we say that a map f ∶ U ⊆ E Ð→ F is
differentiable k-times if it is differentiable and, for each integer 1 ≤ s ≤ k − 1,
the map Dsf is differentiable. Again, thanks to Remark 1.4, if f is differentiable
k-times, then, for each integer 1 ≤ s ≤ k − 1, the derivative Dsf is a continuous map.
In addition, if f is differentiable k-times and the k-derivative Dkf is a continuous
map between Banach spaces, then f is called a Ck map.

Definition 1.6. If f ∶ U ⊆ E Ð→ F is a Ck map for each k ∈ N, then f is called
a smooth map between Banach spaces. Moreoever if a smooth map f is bijective
with a smooth inverse, then f is called a smooth diffeomorphism.

Smooth maps between Banach spaces behave similarly to smooth maps in Rn. In
particular the classical formulations of the inverse function theorem and the implicit
function theorem still hold.

Theorem 1.7 (Inverse function theorem). Let f ∶ U ⊆ E Ð→ F be a smooth map,
x0 ∈ U and suppose that Df(x0) ∈ L(E,F ) is a linear isomorphism of Banach spaces,
then there exists an open neighborhood U0 of x0 in E and an open neighborhood V0
of y0 ∶= f(x0) in F such that the map

f ∶ U0 Ð→ V0

is a smooth diffeomorphism and the derivative of f−1 satisfies

Df−1(y) = [Df(f−1(y))]−1,
for y ∈ V0.
Theorem 1.8 (Implicit function theorem). Let E, F , G be Banach spaces, U be
open in E and V be open in F . Let f ∶ U ×V Ð→ G be a smooth map. Assume that
for some x0 ∈ U and y0 ∈ V , D2f(x0, y0) ∶ F Ð→ G is an isomorphism of Banach
spaces. Then there exist neighborhoods U0 of x0 and W0 of f(x0, y0) and a unique
smooth map g ∶ U0 ×W0 Ð→ V such that, for all (x,w) ∈ U0 ×W0,

f(x, g(x,w)) = w.
These theorems will guarantee, similarly to the theory of finite dimensional man-

ifolds, the existence of an inverse function theorem and an implicit function theorem
for smooth maps between Banach manifolds.
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1.2 Multilinear k-forms

We conclude the chapter with a brief introduction to multilinear k-forms over a
Banach space. This will be crucial at a later stage in order to introduce tensor fields
over Banach manifolds.

Let E be a Banach space and k be a positive integer. Then the Cartesian product
Ek is a Banach space (endowed with the product norm1). A multilinear k-form
over E is a linear and continuous map τ ∶ Ek Ð→ R. The space of all multilinear
k-forms is the Banach space

Tk(E) ∶= L(Ek,R).

We point out two particular classes of multilinear k-forms over a Banach space
E.

Definition 1.9. Let E be a Banach space, let τ ∈ Tk(E) be a multilinear k-form
over E and σ ∶ {1, . . . , k} Ð→ {1, . . . , k} be a permutation of indexes, then τ is called
skew-symmetric if for each v1, . . . , vk ∈ E it holds

τ(v1, . . . , vk) = sgn(σ)τ(vσ(1), . . . , vσ(k)).

Definition 1.10. Let E be a Banach space, let τ ∶ E ×E Ð→ R be a bilinear form
(i.e. a multilinear 2-form) over E, then τ is called an inner product over E if it
is:

• positive definite: if for each 0 ≠ v ∈ E we have that τ(v, v) > 0;

• symmetric: if for every v1, v2 ∈ E we have that τ(v1, v2) = τ(v2, v1);

• weakly non degenerate: if, fixed v ∈ E and supposed that for each w ∈ E,
τ(v,w) = 0, we have that v = 0.

In general, given a bilinear form τ over a Banach space E, and a vector v ∈ E there
exists a unique linear and continuous map τ v ∶ E Ð→ R such that τ v(w) ∶= τ(v,w).
This fact yields a linear map between E and E′:

τ ♭ ∶ E Ð→ E′

v z→ τ v.

In addition, one can prove that if τ is weakly non degenerate, then the map B
is injective. Moreover if τ is weakly non degenerate and the map B is a linear
homeomorphism of Banach spaces, then τ is called (strongly) non degenerate.

1That is the norm on Ek defined as ∥(v1, . . . , vk)∥ ∶=max{∥v1∥, . . . , ∥vk∥}
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Hilbert spaces. Let H be a Banach space. If there exists an inner product
τ ∈ T2(H) such that, for each v ∈ E

∥v∥ =
√
τ(v, v),

then the pair (H,τ) is called a Hilbert space. One can prove that for the inner
product τ , the map B ∶ H Ð→ H ′ defined above is an isometry of Banach spaces.
This yields that every Hilbert space H is reflexive (see Definition 1.2).
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Chapter 2

Banach manifolds

In general, given a topological vector space V where some concept of differentiation
exists, we are able to define what an abstract manifold modeled on V is. In this
chapter we wish to look into the theory of smooth manifolds modeled on Banach
spaces. Firstly we give the very basic definitions, after that several topics of classical
differential geometry will be extended to this context.

The main reference is chapter 3 of [20], which also contains, in full details, all
the omitted proofs of the claims given below.

Definition 2.1. Let M be an Hausdorff topological space and E be a Banach space.
A smooth atlas of M modeled on E is a collection A = {(Ui, φi) ∶ i ∈ I} such that:

• for each i ∈ I, Ui is an open subset of M and M = ⋃
i∈I
Ui;

• for each i ∈ I, the map φi ∶ Ui Ð→ E is a homeomorphism onto its image
Vi ∶= φi(Ui) which is open in E;

• for every i, j ∈ I such that Ui ∩Uj ≠ ∅ the overlap map

φij ∶= φj ○φ−1i ∶ φi(Ui ∩Uj) Ð→ φj(Ui ∩Uj),

is a smooth diffeomorphism between open sets of E.

A pair (M,A) is called a Banach manifold (modeled on E).

If M is a Banach manifold and N is an open subset of M , it is clear that
there exists a relative atlas modeled on E (induced by the atlas of M) that turns
N into a Banach manifold. But, in general, there exist topological subspaces1 of
M that cannot be endowed with a smooth atlas modeled on some Banach space.
The following definition states a condition that, if satisfied, allow us to endow a
topological subspace N ⊆ M with a smooth atlas modeled on some Banach space
F ⊆ E.

1That is a subset N endowed with the relative topology from M . Namely a subset A ⊆ N is
open if and only if there exists an open set U ⊆M such that A = U ∩N
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Definition 2.2. Let M be a Banach manifold. A subset N ⊆ M is called a sub-
manifold of M if for each n ∈ N there exists a chart (U,φ ∶ U Ð→ V ) in M with
n ∈ U and a closed subspace F ⊆ E such that

φ(U ∩N) = V ∩ F.

We also introduce the idea of smooth maps between Banach manifolds, that are
continuous maps that are “locally” represented by smooth maps between Banach
spaces.

Definition 2.3. Let M and N be Banach manifolds modeled on the Banach spaces
E and F . A continuous function f ∶ M Ð→ N is called a smooth map between
Banach manifolds if, for each couple of charts φM ∶ U Ð→ V ⊆ E and ψN ∶
W Ð→K ⊆ F , the map

ψN ○ f ∣U ○φM ∶ V Ð→K

is a smooth map between Banach spaces. If, in addition, the map f ∶ M Ð→ N is
invertible with smooth inverse, then f is called a smooth diffeomorphism between
Banach manifolds.

2.1 Tangent spaces

This section covers the idea of tangent vectors and tangent spaces to a Banach
manifold at a point. Before starting we give a remark about derivatives of curves
with values in Banach spaces.

Remark 2.4. Let 0 ∈ I ⊆ R be an open interval and E be a Banach space, let
c ∶ I Ð→ E be a smooth map. Then the derivative of c at t ∈ I can be identified with
an element of E through the limit:

c′(t) ∶= lim
s→0

c(t + s) − c(t)
s

∈ E.

Now, let M be a Banach manifold and m ∈ M . A smooth curve at m is a
smooth map c ∶ I Ð→M , where 0 ∈ I ⊆ R is an open interval, such that c(0) = m.
Any two smooth curves at m, c1 and c2, for which there exists a chart (U,φ) of M ,
with m ∈ U , such that

(φ ○ c1)′(0) = (φ ○ c2)′(0),
are called tangent at m. The following lemma assures that, for two smooth curves
at m, the previous definition does not depend on the chart φ chosen.

Lemma 2.5. LetM a Banach manifold, m be an element ofM and c1, c2 be smooth
curves that are tangent at m. Then, for each chart φ ∶ U Ð→ E, with m ∈ U , we
have that

(φ ○ c1)′(0) = (φ ○ c2)′(0).
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Let c ∶ I Ð→M be a smooth curve at m. The tangent vector (associated to
c) to M at m is defined by

[c]m ∶= {c̃ ∶ I Ð→M ∶ c̃ and c are smooth curves tangent at m}.

The set of all tangent vectors to M at m is denoted as

TmM ∶= {[c]m ∶ c ∶ I Ð→M is a smooth curve at m},

and it is called the tangent space to M at m.
The following proposition shows that every tangent space TmM is a real vector

space isomorphic to the model space ofM . In particular, it allows us to endow TmM
with the norm of E turning it into a Banach space.

Proposition 2.6. Let M be a Banach manifold modeled on the Banach space E.
Then, for each m ∈M , the set TmM is a real vector space and there exists a vector
spaces isomorphism between TmM and E.

In the following, a tangent vector toM at m will be often denoted as vm ∈ TmM .

Remark 2.7. Following the classical theory, we wish to understand the tangent
space to M at m, as a vector space in some sense “attached” to m. With this aim
we define the tangent bundle of M

TM ∶= ⋃
m∈M
{m} × TmM,

and its canonical projection (that is a surjective map of sets) onto M

pM ∶ TM Ð→M

(m,vm) z→m.

Notice that, formally, a typical element of TM is a pair (m,vm), but it is customary
to write the only vector vm.

Proposition 2.8. Let TM be the tangent bundle of a Banach manifold M (modeled
on the Banach space E). Then TM is a Banach manifold (modeled on E ×E) and
the map pM is smooth.

2.1.1 The tangent map of a smooth map

For a smooth map between Banach manifolds, we use tangent spaces to give a
definition of its derivative.

Definition 2.9. Let M , N be Banach manifolds and f ∶ M Ð→ N be a smooth
map. For each m ∈M the tangent map of f at m is a linear and continuous map
between Banach spaces

Tmf ∶ TmM Ð→ Tf(m)N

[c]m z→ [f ○ c]f(m).
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It is clear that the tangent map defined above can be naturally extended to a
function between TM and TN

Tf ∶ TM Ð→ TN

(m, [c]m) z→ (f(m), Tmf([c]m)),

that is called the tangent map of f .
The following proposition states some important properties related to the idea

of tangent map.

Proposition 2.10. Let f ∶ M Ð→ N and g ∶ N Ð→ K be smooth maps between
Banach manifolds, then the following hold:

• g ○ f ∶ M Ð→K is a smooth map between Banach manifolds and

T (g ○ f) = Tg ○ Tf ;

• if N = M and f ∶ M Ð→ M is the identity map, then Tf ∶ TM Ð→ TM is
the identity map too;

• if f ∶ M Ð→ N is a smooth diffeomorphism, then Tf is a bijection and
(Tf)−1 = T (f−1).

As anticipated in chapter 1, the classical formulations of the inverse function
theorem and the implicit function theorem hold for smooth maps between Banach
manifolds.

Theorem 2.11 (Inverse function theorem). Let M , N be smooth manifolds, f ∶
M Ð→ N be a smooth map, and m ∈ M . Suppose that Tmf ∶ TmM Ð→ Tf(m)N
is an isomorphism of Banach spaces. Then there exist an open neighborhood Um of
m ∈M and an open neighborhood Wf(m) of f(m) ∈ N such that

f ∶ Um Ð→Wf(m)

is a smooth diffeomorphism between Banach manifolds.

Theorem 2.12 (Implicit function theorem). Let M1, M2, N be smooth manifolds
(modeled on E1, E2, F ), let f ∶ M1×M2 Ð→ N be a smooth map and (p, q) ∈M1×M2

such that T2f(p, q) ∶ TqM2 Ð→ Tf(p,q)N is an isomorphism of Banach spaces, then
there exist an open neighborhoods U of p ∈ M1, W of f(p, q) ∈ N , and a unique
smooth map g ∶ U ×W Ð→M2 such that, for all (x,w) ∈ U ×W

f(x, g(x,w)) = w.
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2.1.2 Vector fields over a Banach manifold

We proceed to say something about smooth sections of the tangent bundle of a
Banach manifold, namely the smooth vector fields, that will play a very important
role at a later stage.

Let M be a Banach manifold and TM be its tangent bundle. A (smooth)
vector field over M is a smooth function

X ∶ M Ð→ TM

such that pM ○X = idM . The space of all vector fields over M is usually denoted
as X(M). Although it is clear that the set X(M) is a real vector space, it is more
difficult to see that it can be equipped with a Lie algebra structure. In order to do
that we need to recall two crucial concepts covered by the following definitions.

Definition 2.13. Let M , N be Banach manifolds, φ ∶ M Ð→ N be a smooth
diffeomorphism and Y ∈ X(N) be a vector field over N . The pull-back of Y by φ
is the vector field φ∗Y ∈ X(M) such that

(φ∗Y )(m) ∶= Tφ(m)φ−1(Y (φ(m))).

It is verified in [20] that φ∗Y ∶ M Ð→ TM as defined above is smooth.

Definition 2.14. Let M be a Banach manifold and X ∈ X(M). An integral curve
of X at m ∈M is a smooth curve at m, c ∶ I Ð→M , such that c′(t) =X(c(t)) for
each t ∈ I (where we denote c′(t) ∶= Ttc(1)).

The classical theory of ODE on finite dimensional manifolds can be adapted to
the Banach setting, and one can prove that, given a smooth vector field X ∈ X(M),
for each m ∈ M there exists an open neighborhood Um of m and an open interval
Im = (−εm, εm) for some εm > 0 such that, for each m′ ∈ Um there exists an integral
curve cm′ ∶ Im Ð→ M of X at m′. This implies that, for each t ∈ I, there exists a
smooth diffeomorphism onto its image:

FX
t ∶ Um Ð→M

m′ z→ cm′(t)

called the flow of X at t ∈ I around m ∈M .
We are finally ready to define a Lie algebra structure on X(M), namely a bracket

[⋅, ⋅] ∶ X(M) ×X(M) Ð→ X(M) that is a bilinear, skew-symmetric map over X(M)
and satisfies Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Definition 2.15. Let M be a Banach manifold and X,Y ∈ X(M). Then the Lie
bracket of X and Y is a vector field [X,Y ] over M defined by:

[X,Y ](m) ∶= d

dt
∣
t=0
((FX

t )
∗
Y ) (m).
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2.2 Immersions, submersions and regular values

Now, we present a review about smooth maps whose images or level sets are Banach
manifolds or submanifolds. We start with a definition that will be crucial in a short
time.

Definition 2.16. Let E be a Banach space and A ≤ E be a closed vector subspace.
We say that A splits in E, if there exists a closed vector subspace B ≤ E (called a
topological complement of A) such that

E = A⊕B.

2.2.1 Immersed and embedded submanifolds

Firstly, the idea of immersion is presented. These are the maps whose images can
be endowed with a differential structure.

Definition 2.17. Let M , N be Banach manifolds, m ∈ M and f ∶ M Ð→ N
be smooth map between Banach manifolds. f is called an immersion at m if the
tangent map Tmf is injective with closed split image in Tf(m)N . If f is an immersion
at each m in M , f is called an immersion.

Let M and N be Banach manifolds modeled on E and F , and f ∶ M Ð→ N be
an injective immersion. The image f(M) can be endowed with the final topology2

induced by f , turning f(M) into an Hausdorff topological space. In addition, there
exists a smooth atlas (modeled on some closed subspace of F ) over f(M) turning
it into a Banach manifold. However, since the quotient topology and the relative
topology from N might be not compatible, f(M) isn’t always a submanifold of
N (according to Definition 2.2). So, in general, f(M) is called an immersed
submanifold of N . But, if the two topologies are compatible, then the concepts of
immersed and standard submanifold coincide.

Definition 2.18. Let f ∶ M Ð→ N be smooth immersion between Banach man-
ifolds. If f is an homeomorphism onto f(M) (endowed with the relative topology
from N), then f is called an embedding. In this case, the immersed submanifold
f(M) is also a submanifold (see Definition 2.2) of N , and it is called an embedded
submanifold.

The following proposition gives a sufficient condition for an injective immersion
between Banach spaces to be an embedding.

Proposition 2.19. Let f ∶ M Ð→ N be an injective smooth immersion between
Banach manifolds. If f is either an open or closed map3, then f is an embedding.

2Namely, we define that U ⊆ f(M) is open if and only if f−1(U) is open in M
3Namely, it has the property that images of open (respectively closed) subsets are open (respec-

tively closed) subsets
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2.2.2 Weakly regular values

Now, given a smooth map between Banach manifolds f ∶ M Ð→ N , we wish to
search values n ∈ N such that:

• the level set f−1(n) is a submanifold of M ;

• for each m ∈ f−1(n) the tangent spaces satisfy:

Tmf
−1(n) = ker (Tmf).

An element n ∈ N satisfying these two properties is called a weakly regular value
for f . In order to easily identify these values, the concept of submersion was devel-
oped.

Definition 2.20. Let M and N be Banach manifolds and f ∶ M Ð→ N be a smooth
map between Banach manifolds. Let n ∈ N , then f is called a submersion at n if
for each m ∈ f−1(n) the tangent map Tmf is surjective with split kernel. If f is a
submersion at each n ∈ N , then f is called a submersion.

The following proposition states that if f is a submersion at n ∈ N then n is a
weakly regular value for f .

Proposition 2.21. Let M , N be Banach manifolds and f ∶M Ð→ N be a smooth
map between Banach manifolds. Let n ∈ N , if f is a submersion at n ∈ N , then the
level set f−1(n) is a submanifold of M and for each m ∈ f−1(n), we have Tmf−1(n) =
ker(Tmf).

2.3 Equivalence relations on manifolds

Let M be a set, which for our purposes should be thought of as a Banach manifold.
We recall that a subset R ⊆M ×M is an equivalence relation over M if:

• for each x ∈M , it holds (x,x) ∈ R;

• if (x, y) ∈ R, then (y, x) ∈ R;

• and if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

If (x, y) ∈ R we say that x and y are related by R and write x ∼R y. Let x be an
element of M , the equivalence class of x with respect to the relation R is the
subset

[x]R ∶= {y ∈M ∶ x ∼R y} ⊆M.

The collection of all equivalence classes is called the quotient space of M with
respect to the relation R and it is denoted as

M/R ∶= {[x]R ∶ x ∈M};
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there exists a natural projection (surjective map of sets) from M onto M/R:

πR ∶ M Ð→M/R
xz→ [x]R.

If the set M is actually a Banach manifold, it will be interesting for us to ask
under which assumptions on the relation R the quotient space M/R is a Banach
manifold.

Definition 2.22. Let M be a Banach manifold. An equivalence relation R over M
is called regular if the quotient space M/R is a Banach manifold and the natural
projection πR ∶ M Ð→M/R is a submersion.

In the case of a regular equivalence relation, M/R is called the quotient man-
ifold associated to M with respect to R. The following proposition characterize
smooth maps between Banach manifolds whose domain is a quotient manifold.

Proposition 2.23. Let M be a Banach manifold and R be a regular equivalence
relation over M . Then the following hold:

• a map f ∶ M/R Ð→ N is smooth, if and only if f ○ πR ∶ M Ð→ N is smooth;

• any smooth map g ∶ M Ð→ N that satisfies g(x) = g(y) if x ∼R y, defines a
unique smooth map ĝ ∶ M/R Ð→ N such that ĝ ○ πR = g.

We conclude the section by stating a theorem that gives necessary and sufficient
conditions for a relation to be regular.

Theorem 2.24. Let M be a Banach manifold and R ⊆ M ×M be an equivalence
relation over M . Then R is regular if and only if:

• R is a submanifold of M ×M

• and the projection onto the first factor p1 ∶ R Ð→ M , p1(x, y) ∶= x is a
submersion.

2.4 Tensor fields over a Banach manifold

In this last section of the chapter we introduce the theory of smooth tensor fields over
Banach manifolds, extending the theory about multilinear k-forms over a Banach
space recalled in section 1.2 of chapter 1. Out of the class of tensor fields, we will
focus on symplectic forms and Riemannian metrics.

Let M be a Banach manifold. We fix a positive integer k and we define a k-
tensor over M as an element of the following disjoint union

Tk(M) ∶= ⋃
m∈M
{m} × Tk(TmM).
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We notice that there exists a natural projection from Tk(M) onto M ,

πk,M ∶ Tk(M) Ð→M

(m,τm) z→m.

Using this projection one can endow Tk(M) with the initial topology4 induced by
πk,M . But something more can be said:

Proposition 2.25. Let M a Banach manifold modeled on E. Then Tk(M) endowed
with the initial topology is a Banach manifold modeled on Ek and the projection πk,M
is a submersion.

Similar to the discussion in Section 2.1.2 for vector fields over a manifold, a
smooth section of Tk(M), namely a smooth map τ ∶ M Ð→ Tk(M) such that
πk,M ○ τ = idM , is called a (smooth) tensor field over M .

Cotangent bundle. We want to point out the very particular case when k =
1. Indeed the space of 1-tensors over a Banach manifold M takes the name of
cotangent bundle of M ,

T ∗M ∶= T1(M).
And the projection π1,M ∶ T1(M) Ð→M will be simply denoted as πM ∶ T ∗M Ð→M .
Moreover, a 1-tensor field ω ∶ M Ð→ T ∗M is called a differential 1-form over
M .

We continue by giving some definitions of classical differential geometry that will
be very useful in later chapters. Let τ be a k-tensor field and X be a vector field
over the Banach manifold M , we can define the interior product between X and
τ as the (k−1)-tensor field overM such that, for every m ∈M and v1, . . . , vk ∈ TmM :

(iX τ)m(v1, . . . , vk−1) ∶= τm(X(m), v1, . . . , vk−1).

Now, let M , N be Banach manifolds and φ ∶ M Ð→ N a smooth map between
M and N . Let τ1 be a k-tensor field over N , then the unique k-tensor field over M
such that, for every m ∈M and v1, . . . , vk ∈ TmM :

(φ∗τ1)m(v1, . . . , vk) = (τ1)φ(m)(Tmφ(v1), . . . , Tmφ(vk))

is called the pull-back of τ1 by φ. Moreover, if τ2 is a k-tensor field over M and
the smooth map φ is a smooth diffeomorphism between M and N , then we define
the push-forward of τ2 by φ as the k-tensor field over N :

φ∗τ2 ∶= (φ−1)∗τ2.
4A ⊆ Tk(M) is open if and only if there exists U ⊆M open such that A = π−1k,M(U)
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We conclude with the idea of the Lie derivative. Let M be a Banach manifold
and τ be a k-tensor field over M and X ∈ X(M). The Lie derivative of τ along
X is the k-tensor field over M defined by

(LXτ)(m) ∶=
d

dt
∣
t=0
((FX

t )
∗
τ) (m),

where FX
t is the flow of X around m (defined above).

We conclude the section giving some important examples of k-tensor fields over
a Banach manifold.

Differential k-forms. LetM be a Banach manifold, then a differential k-form
over M is a k-tensor field ω such that ωm is an skew-symmetric multilinear k-form
over the Banach space TmM for each m ∈M . The set of all differential k-forms over
M is denoted by Ωk(M).

As in the classical theory of differential geometry, one may introduce the idea of
exterior derivative of a differential k-form. It is an operator d ∶ Ωk(M) Ð→ Ωk+1(M)
such that:

• d is a linear map;

• for every differential k-form ω we have that d(dω) = 0;

• for every smooth map between Banach manifolds φ ∶ M Ð→ N we have that
φ∗(dω) = d(φ∗ω);

• for each vector field X ∈ X(M) we have LXω = d(iX ω) + iX(dω) and d ○LX =
LX ○ d.

We refer to [20] for a possible technical definition of d. Interestingly, the standard
definition of the exterior derivative cannot be adapted (without a lot of difficulties)
to the infinite dimensional case.

Riemannian metrics. A weak Riemannian metric over a Banach manifold
M is a 2-tensor field ⟪⋅, ⋅⟫ ∶ M Ð→ T2(M) such that for each m ∈ M , ⟪⋅, ⋅⟫m is an
inner product on TmM (Definition 1.10). We also recall that for each m ∈M there
exists a linear and continuous map between Banach spaces Bm ∶ TmM Ð→ T ∗mM ∶=
L(TmM,R) that is injective due to weak non degeneracy of the inner product. This
map can be globalized to a smooth map between Banach manifolds:

F ∶ TM Ð→ T ∗M

(m,vm) z→ (m,Bm(vm)).
Proposition 2.26. Let M be a Banach manifold and ⟪⋅, ⋅⟫ be a weak Riemannian
metric over M . Then the map F defined above is a smooth diffeomorphism onto its
image.

Moreover, if ⟪⋅, ⋅⟫m is strongly non degenerate for each m ∈ M (see discussion
after Definition 1.10), then (TmM,⟪⋅, ⋅⟫m) is a Hilbert space and ⟪⋅, ⋅⟫ is called a
(strong) Riemannian metric.
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Symplectic forms LetM be a Banach manifold. A differential 2-form ω ∈ Ω2(M)
is called a weak symplectic form over M if dω = 0 and for each m ∈M , ωm is a
skew-symmetric, weakly non degenerate bilinear form over TmM . The pair (M,ω) is
called a (Banach)weak symplectic manifold. Similarly to the case of Riemannian
metrics, for every m ∈M we can build a linear and continuous map of Banach spaces

Ω♭m ∶ TmM Ð→ T ∗mM

that is also injective due to the weak non degeneracy of ωm. A weak symplectic form
ω is called a (strong) symplectic form if the map Ω♭m is a linear homeomorphism
of Banach spaces for every m ∈M .

Let M be a Banach manifold. We already know that the cotangent bundle
T ∗M = T1(M) is a Banach manifold. We proceed to indicate that it can be endowed
with a weak symplectic structure. Firstly we build a differential 1-form over T ∗M :

θcan ∶ T ∗M Ð→ T ∗(T ∗M)

defined by
⟨θcan(αm), Vαm⟩ ∶= ⟨αm, TmπM(Vαm)⟩,

where Vαm ∈ Tαm(T ∗M) and πM ∶ T ∗M Ð→M is the canonical projection.

Proposition 2.27 ([14], Theorem 2.4). The differential 2-form Ωcan ∶= −d θcan is a
weak symplectic form over T ∗M and it is a strong symplectic form if and only if the
model space E is a reflexive Banach space.
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Chapter 3

Banach Lie groups

The aim of this chapter is to introduce the idea of Lie groups modeled on Banach
spaces. Also, some theory about actions of Lie groups on Banach manifolds is
treated. We refer to the books [20] and [1] for all the proofs omitted in this chapter.

We start with the basic definitions and some relevant observations.

Definition 3.1. Let G be a Banach manifold (modeled on a Banach space E) which
is a group with respect to some multiplication. If the group operation

µ ∶ G ×GÐ→ G

(g, h) z→ gh−1

is a smooth map between Banach manifolds, then G is called a Banach Lie group
modeled on E.

For any Banach Lie group G, given g ∈ G, the maps Lg ∶ G Ð→ G, h z→ gh
and Rg ∶ G Ð→ G, h z→ hg are called the left and right translations by g. In
particular it is easy to see that both Lg and Rg are diffeomorphisms of G into itself.
So is the composition Cg ∶= Lg ○Rg−1 , called the conjugation map by g.

The Lie algebra of a Lie group

The tangent space at the identity TeG is usually denoted by g and it is called the
Lie algebra of the Lie group G. It is equipped with a natural Lie algebra structure
that is constructed through a procedure, explained below, that involves the following
definition.

Definition 3.2. Let ξ ∈ g be a tangent vector to G at e. The right invariant
vector field associated to ξ is the unique vector field Xξ ∈ X(G) defined by

Xξ(g) ∶= TeRg(ξ) ∈ TgG,

for each g ∈ G.
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Remark 3.3. For each right invariant vector field Xξ associated to ξ ∈ g, and for
every g ∈ G, it holds R∗g Xξ =Xξ, namely

(ThRg)(Xξ(h)) =Xξ(hg),

where h ∈ G.

One can prove that the set

XR(G) ∶= {Xξ ∈ X(G) ∶ ξ ∈ g} ⊆ X(G)

is a real vector space and, moreover, it is a closed Lie subalgebra of X(G) if equipped
with the Lie bracket of vector fields (see Definition 2.15). In addition, the natural
vector space isomorphism

α ∶ gÐ→ XR(G)
ξ z→Xξ,

induces a Lie bracket on g, defined by

[[ξ, η]] ∶= −[Xξ,Xη](e),

for each ξ, η ∈ g.

Remark 3.4. There exists a formula useful to compute the Lie bracket of two
elements ξ, η ∈ g. Indeed, one can prove that, for any cξ ∶ I1 Ð→ G and cη ∶ I2 Ð→ G
smooth curves at e such that c′ξ(0) = ξ and c′η(0) = η, we have

[[ξ, η]] = d

dt

d

ds
∣
t=0,s=0

cξ(t)cη(s)cξ(t)−1

Exponential map of a Lie group

Let G be a Banach Lie group and g be its Lie algebra. Let ξ ∈ g and Xξ be the right
invariant vector field associated to ξ. Then there exists a unique integral curve of
Xξ at e ∈ G (see Definition 2.14), γξ ∶ RÐ→ G, such that, for every t, s ∈ R, we have

γξ(s + t) = γξ(s)γξ(t).

The exponential map of the group G is defined by:

expG ∶ gÐ→ G

ξ z→ γξ(1),

The following proposition states the most important properties that the expo-
nential map of a Banach Lie group satisfies.

Proposition 3.5. The following hold:

24



1. expG ∶ gÐ→ G is a smooth map between Banach manifolds (where g is under-
stood as a Banach manifold modeled on itself with the identity chart).

2. For every ξ ∈ g and t ∈ R, we have expG(tξ) = γξ(t).

3. The tangent map of expG at 0 ∈ g is the identity of g, namely for every ξ ∈ g,

T0 expG(ξ) = ξ

(Sometimes this result may be denoted as d
dt
∣
t=0 expG(tξ) = ξ).

Thanks to Proposition 3.5, the exponential map satisfies the hypothesis of the
inverse function theorem for smooth maps between Banach manifolds, and then
it is a smooth diffeomorphism from an open neighborhood of 0 ∈ g onto an open
neighborhood of e ∈ G.

Lie subgroups

Let G be a Banach Lie group and H ⊆ G a subgroup, we say that H is a Lie
subgroup of G if it is an injectively immersed submanifold of G which is itself
a Lie group. If it is also an embedded submanifold of G, it is called a regular
Lie subgroup. And, moreover, the Lie algebra and the exponential map of a Lie
subgroup are characterized by the following proposition.

Proposition 3.6. Let H be a Lie subgroup of a Banach Lie group G. Then the Lie
algebra h associated to H is a closed subalgebra of g, and the following hold:

• h = {ξ ∈ g ∶ expG(tξ) ∈H for all t ∈ R};

• the exponential maps satisfy

expH = expG ∣h.

We recall that in the finite dimensional case any closed subgroup H ⊆ G is
indeed a regular Lie subgroup. However, we stress that this result does not hold in
the infinite dimensional case.

3.1 Actions of Banach Lie groups on Banach man-

ifolds

This section presents an introduction to the theory of smooth actions of Banach Lie
groups on Banach manifolds. Also, at the end of the section, we recall one of the
most well known slice theorems for smooth actions of finite dimensional Lie groups
on finite dimensional manifolds and we briefly discuss the difficulties in extending
such a theorem to the infinite dimensional setting.
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Definition 3.7. Let M be a Banach manifold and G be a Banach Lie group. A
right action of G on M is a smooth map Φ ∶ M ×GÐ→M such that:

• Φ(m,e) =m for all m ∈M (where e ∈ G is the identity of the group);

• Φ(Φ(m,h), g) = Φ(m,hg) for all g, h ∈ G, m ∈M .

A left action is a smooth map Ψ ∶ G ×M Ð→ M such that Ψ(e,m) = m and
Ψ(g,Ψ(h,m)) = Ψ(gh,m) for every g, h ∈ G and m ∈M .

We notice that, for each g ∈ G, the map Φg ∶ M Ð→ M , m z→ Φ(m,g) is a
smooth diffeomorphism of M , and its smooth inverse is

(Φg)−1 = Φg−1 .

Also, fixed m ∈M , the smooth map Φm ∶ G Ð→M , g z→ Φ(m,g) is called the
orbit map of Φ through m. In particular, the image

OrbG(m) ∶= {Φm(g) ∶ g ∈ G} ⊆M,

is called the orbit of Φ through m, while the preimage Gm ∶= (Φm)−1(m) is called
the isotropy group of Φ at m. It is clear that Gm = {g ∈ G ∶ Φg(m) = m} and
that Gm is a subgroup of G that is closed with respect to its topology. Moreover, if
Gm is a Lie subgroup of G, then its Lie algebra is denoted by gm and it is called the
isotropy algebra at m.

The following definition recalls some basic properties that an action can possess.

Definition 3.8. Let Φ ∶ M ×G Ð→M be a right action of a Banach Lie group on
a Banach manifold M . It is called:

• transitive: if there exists only one orbit, namely if for every m1,m2 ∈ M
there exists g ∈ G such that Φg(m1) =m2;

• free: if for each m ∈M the isotropy group at m is Gm = {e};

• proper: if for any sequence (mn)n∈N that is convergent in M and for any
sequence (gn)n∈N in G such that the sequence (Φgn(mn))n∈N converges in M ,
then gn admits a convergent subsequence in G.

3.1.1 Infinitesimal generators

Let Φ be an action of a Banach Lie group G on a Banach manifoldM and ξ ∈ g. The
infinitesimal generator of the action associated to ξ is the vector field ξM ∈ X(M)
defined as

ξM(m) ∶=
d

dt
∣
t=0

ΦexpG(tξ)(m) = TeΦm(ξ).

We know that, for each m ∈M , there exists a unique integral curve of ξM . One
can prove that it is actually the smooth curve at m:

R ∋ tz→ ΦexpG(tξ)(m) ∈M.
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Also, one can prove that if the isotropy group Gm of Φ is a Lie subgroup of G,
then its Lie algebra gm is characterized by the following:

gm ∶= TeGm = {ξ ∈ g ∶ ξM(m) = 0}.

We proceed by recalling some important examples of actions that can be con-
structed for any Banach Lie group G.

Adjoint action. Fix g ∈ G. Recall the conjugation map by g,

Cg ∶ GÐ→ G, hz→ ghg−1.

We denote its tangent map at the identity e ∈ G as Adg ∶= TeCg ∶ g Ð→ g. One can
prove that the map

Ad ∶ G × gÐ→ g

(g, ξ) z→ Adg(ξ),

is a left action of G on g, called the adjoint action of G on g.

Coadjoint action. Let g∗ be the topological dual of g and ⟨µ, ξ⟩ denote the eval-
uation of µ ∈ g∗ onto ξ ∈ g. Then, the coadjoint action of G on g∗ is the right
action Ad∗ ∶ g∗×GÐ→ g∗, (g, µ) z→ (Ad∗)g(µ), where (Ad∗)g ∶ g∗ Ð→ g∗ is defined
by

⟨(Ad∗)g(µ), ξ⟩ ∶= ⟨µ,Adg(ξ)⟩,
for each µ ∈ g∗ and ξ ∈ g.

We notice that, for each µ ∈ g∗, the isotropy group at µ of the coadjoint action
is

Gµ = {g ∈ G ∶ Ad∗g(µ) = µ},
and, in the case it is a Lie subgroup of G, its Lie algebra is gµ = {ξ ∈ g ∶ ξg∗(µ) = 0}.

3.1.2 The orbit space of an action, the finite dimensional
case

For this last part, we consider a smooth right action Φ ∶ M ×G Ð→ M of a finite
dimensional Lie group G on a finite dimensional manifold M . We notice, that it
determines an equivalence relation on M , defined by the following

m1 ∼G m2 if and only if there exists g ∈ G such that Φg(m1) =m2.

The quotient space, with respect to this equivalence relation, is called the orbit
space of M with respect to the action of G and it is denoted M/G. The natural
projection associated to this equivalence relation is the map

πG ∶ M Ð→M/G
mz→ [m] ∶= OrbG(m).
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From [1] we report the statement of a classical theorem that states some sufficient
conditions that turn this relation into a regular equivalence relation (according to
Definition 2.22).

Theorem 3.9. In the finite dimensional setting above, if the action Φ is free and
proper, then M/G is a smooth (finite dimensional) manifold and the natural projec-
tion πG is a smooth submersion.

In addition, the following proposition gives a characterization of tangent spaces
(and their duals) to M/G at some [m] ∈M/G, that will play a role ahead.

Proposition 3.10. Under the assumptions of Theorem 3.9, the following hold

1. for each [m] ∈M/G there exists a vector space isomorphism between the tan-
gent space T[m](M/G) and the quotient of vector spaces TmM/TmOrbG(m);

2. every cotangent vector α[m] ∈ T ∗[m](M/G) is represented by a linear continuous

functional αm ∶ TmM Ð→ R, such that αm∣Tm OrbG(m)
= 0.

For further reference, we explicitly write the isomorphism in item 1 as the map

β ∶ T[m](M/G) Ð→ TmM/TmOrbG(m), v[m] z→ [vm],

where vm ∈ TmM such that TmπG(vm) = v[m].

Infinite dimensional extensions of Theorem 3.9

Finally, we present a brief discussion about the extension of Theorem 3.9 to the
Banach setting, namely, to the case of a infinite dimensional Banach Lie group
acting on a infinite dimensional Banach manifold M .

We first notice that the theorem is false in this general Banach setting, a coun-
terexample is presented in [6]. We now indicate some infinite dimensional general-
izations that hold, adding some extra hypothesis, which however are rarely satisfied
in applications:

• we first note Corollary 2.5 in [9] which states that for a free and proper smooth
action of a Banach Lie group on a Hilbert manifold (namely a Banach manifold
modeled on a Hilbert space), the orbit space M/G carries a unique Hilbert
structure that turns the natural projection πG ∶ M Ð→ M/G into a smooth
submersion.

• Also, under appropriate hypothesis, [6] contains a sophisticated slice theorem
that implies a generalized version of Theorem 3.9 that holds beyond the Banach
setting.

• Finally, we note that Appendix A contains an more accessible set of hypothe-
ses, but not the sharpest, under which an extension of the theorem can be
stated.
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Chapter 4

Infinite dimensional symplectic
reduction

This chapter presents an extension of the celebrated symplectic reduction of Marsden
and Weinstein [18] to the case of Banach manifolds. In general, we refer to the
standard references [4] and [19], but the contents of sections 4.1 and 4.3 follow some
unpublished notes which were kindly shared to us by Professor Ratiu [16]. We start
with the following hypotheses:

(SR) 1. Let M be a Banach manifold modeled on a Banach space E, and Ω a weak
symplectic form on M .

We recall from section 2.4 of chapter 2 that this implies the existence of a linear
continuous injective map

Ω♭m ∶ TmM Ð→ T ∗mM

such that ⟨Ω♭m(vm),wm⟩ ∶= Ωm(vm,wm) for every vm,wm ∈ TmM , for all m ∈M .

(SR) 2. Let G be a Banach Lie group that acts symplectically on M by a right
action Φ ∶ M ×GÐ→M , i.e., for each g ∈ G, it holds

Φ∗g Ω = Ω.

Assume also that the orbit space M/G is a Banach manifold and the natural pro-
jection πG ∶ M Ð→M/G is a smooth submersion.1

4.1 Symplectic linear algebra on Banach spaces

In this section we introduce some results of symplectic linear algebra over Banach
spaces that will be crucial for symplectic reduction. Some preliminaries on locally
convex topological vector spaces are required, for which we refer to Appendix B.1
and its references. The next theorem is an adaptation of some results of Kriegl [12],

1As explained in section 3.1.2 there is no simple set of hypothesis which guarantees this as-
sumption which is useful in applications.
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presented as Lemma B.2, Lemma B.3 and Theorem B.4 reported in Appendix B.
The concepts appearing in its statement are also reviewed in Appendix B.

Theorem 4.1. Let V be a locally convex real vector space, whose topology is gener-
ated by the family of seminorms P.

• Let α ∶ V Ð→ R be a linear continuous map, then there exist p1, . . . , pn ∈ P
and a positive constant C > 0 such that, for every x ∈ V ,

∣α(x)∣ ≤ C max{p1(x), . . . , pn(x)};

• letW ⊆ V be a closed subspace, and v ∉W , then there exists a linear continuous
functional α ∶ V Ð→ R, such that α∣

W
= 0 and α(v) = 1.

Now, let E be a Banach space and Ω a skew-symmetric, weakly non degenerate
bilinear form. By definition, there exists an injective, linear continuous map Ω♭ ∶
E Ð→ E′ such that, for every v,w ∈ E,

⟨Ω♭(v),w⟩ = Ω(v,w).

In this context, one can prove that for each y ∈ E, the map py ∶ E Ð→ R,
x z→ ∣Ω(x, y)∣ is a seminorm over E. Due to the weakly non-degeneracy of Ω, the
family {py}y∈E defines a locally convex Hausdorff topology on E, which, following
[16], will be called the Ω-topology.

Now, we recall the idea of symplectic orthogonal and we prove a very pleasant
property concerning the symplectic orthogonal of any closed subspace of E.

Definition 4.2. Let F ⊆ E be a closed subspace, then the set

FΩ ∶= {v ∈ E ∶ Ω(v,w) = 0 ∀w ∈ F},

is a closed subspace of E and it is called the symplectic orthogonal to F with
respect to Ω.

The following lemma and the subsequent Proposition 4.4 are taken from [16].
The lemma will be used in section 4.3 and the proposition is needed for its proof.

Lemma 4.3. Let E be a Banach space and Ω be a skew-symmetric, weakly non-
degenerate bilinear form on E. Then for each closed subspace F ⊆ E, we have

F = (FΩ)Ω.

Proposition 4.4. Let α ∶ E Ð→ R be a linear continuous map with respect to the
Ω-topology on E, then there exists a y ∈ E such that α(x) = Ω(x, y) for all x ∈ E.
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Proof. From Theorem 4.1 we know that there exist y1, . . . , yn ∈ E and a positive
constant C > 0 such that

∣α(x)∣ ≤ C max
1≤i≤n

∣Ω(x, yi)∣.

Then, α vanishes on

F ∶=
n

⋂
i=1

ker Ω♭(yi) = (span{y1, . . . , yn})Ω;

F is clearly closed with respect to the Banach space topology on E and its codimen-
sion is less than n. Now, let F̂ be an algebraic complement to F in E, since F is
finite codimensional, every algebraic complement must be finite dimensional vector
subspace, and hence closed in the norm topology, i.e. the closed subspace F splits
in E.

In this setting, it is clear that the dual space F̂ ∗ is finite dimensional vector space
and it is spanned by {Ω♭(y1)∣F̂ , . . . ,Ω

♭(yn)∣F̂} and thus we can write

α∣
F̂
=

n

∑
k=1

αkΩ
♭(yk)∣F̂ = Ω

♭ (
n

∑
k=1

αkyk) ∣F̂ .

Moreover, since both sides of this equality vanish on F , we get α = Ω♭ (∑nk=1 αkyk)
and so the proposition is proved.

Proof of Lemma 4.3. By definition it is clear that F ⊆ (FΩ)Ω. We prove the other
inclusion by showing that E ∖ F ⊆ E ∖ (FΩ)Ω. Suppose v ∈ E ∖ F . Theorem 4.1
implies the existence of a linear continuous functional α ∶ E Ð→ R (with respect
to the Ω-topology on E), such that α(w) = 0 for all w ∈ F and α(v) = 1; moreover,
Proposition 4.4 implies that there exists a y ∈ E such that α(x) = Ω(x, y) for all
x ∈ E. Thus, Ω(v,w) ≠ 0 and Ω(w, y) = 0 for all w ∈ F . In other words Ω(v, y) ≠ 0
and y ∈ FΩ, i.e., v ∉ (FΩ)Ω.

4.2 Hamiltonian systems and symmetries

Under the assumption (SR) 1., a Hamiltonian system is a pair (M,XH) where
XH ∈ X(M) is the Hamiltonian vector field associated to a smooth function
H ∶ M Ð→ R, i.e. a smooth vector field over M that satisfies

iXH
Ω = −dH,

where dH ∶ M Ð→ T ∗M , mz→ TmH is a differential 1-form2.

2We remark that, as discussed in section 1 and 4 of [4], in the infinite dimensional setting, given
a smooth function H on a weak symplectic manifold, an associated Hamiltonian vector field XH

need not exist. In virtue of that, whenever we deal with Hamiltonian functions on weak symplectic
manifolds, we are also implicitly assuming that an associated Hamiltonian vector field actually
exists.
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A right action Φ of a Banach Lie group G defined as in (SR) 2. is called a
symmetry of the Hamiltonian system (M,XH) if it is Φ-invariant, namely, for
each g ∈ G, we have

Φ∗g XH =XH .

One can check that this condition is equivalent to requiring that H is Φ-invariant,
namely H(m) =H(Φg(m)) for each g ∈ G and m ∈M .

Now, let (M,XH) be a Hamiltonian system and Φ ∶ M×GÐ→M be a symmetry.
Assume that for each ξ ∈ g the infinitesimal generator ξM ∈ X(M) of the action Φ
is a Hamiltonian vector field with Hamiltonian function Jξ ∶ M Ð→ R. Assume,
moreover, that there exists a smooth map J ∶ M Ð→ g∗ such that

⟨J(m), ξ⟩ ∶= Jξ(m),

for each m ∈M and ξ ∈ g. If the map J is a smooth map between Banach manifolds,
it is called a momentum map associated to Φ. We say that J is equivariant
if for each m ∈M and g ∈ G we have

J(Φg(m)) = (Ad∗)g(J(m)), (4.1)

where Ad∗ ∶ g∗ ×GÐ→ g∗ is the coadjoint action of G on g∗ defined in chapter 3.

Proposition 4.5. For any equivariant momentum map associated to Φ, J ∶ M Ð→
g∗, fixed µ ∈ g∗, for each ξ ∈ g and m ∈ J−1(µ) we have

TmJ(ξM(m)) = ξg∗(µ),

where ξg∗ is the infinitesimal generator of Ad∗.

Proof. Fixed any m ∈ M , the claim is proved by differentiating formula (4.1) at
e ∈ G.

We conclude the section with a remark about the level sets of an equivariant
momentum map J . Fixed µ ∈ g∗ a weakly regular value (see section 2.2.2 of chapter
2) for the smooth map J ∶ M Ð→ g∗, the following proposition will prove that the
restriction of the Hamiltonian vector field XH ∣J−1(µ) is actually a vector field on the

manifold J−1(µ).

Proposition 4.6. In the setting given above, the following hold.

1. For each ξ ∈ g, vm ∈ TmM , we have

Ωm(vm, ξM(m)) = ⟨TmJ(vm), ξ⟩.

2. For every weakly regular value for an equivariant momentum map J ∶ M Ð→
g∗, µ ∈ g∗, m ∈ J−1(µ) and Φ-invariant Hamiltonian vector field XH ∈ X(M),
we have

XH(m) ∈ Tm(J−1(µ)).
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Proof.

1. To conclude we just observe that:

⟨TmJ(vm), ξ⟩ = TmJξ(vm) = ⟨dJξ(m), vm⟩ = ⟨−(iξM Ω)m, vm⟩ = Ωm(vm, ξM(m)),

because ξM is the Hamiltonian vector field associated to Jξ by definition.

2. Since µ is a weakly regular value for J , we know that XH(m) ∈ Tm(J−1(µ)) if
and only if TmJ (XH(m)) = 0g∗ . For each ξ ∈ g, by point 1., we have

⟨TmJ (XH(m)), ξ⟩ = Ωm(XH(m), ξM(m)) = −TmH (ξM(m)).

Now, by invariance of XH , that is equivalent to Φ-invariance of the Hamilto-
nian H, we have H(ΦexpG(tξ)(m)) = H(m) for every t ∈ R. Differentiation at
t = 0 gives

TmH(ξM(m)) = 0,
which proves 2.

4.3 Symplectic reduction

Let (M,XH) a Hamiltonian system with a symmetry Φ ∶ M ×GÐ→M that admits
an equivariant momentum map J ∶ M Ð→ g∗. We fix a weakly regular value µ ∈ g∗
for the smooth map J and we recall, from section 3.1 of chapter 3, the definition of
isotropy group Gµ with respect to the coadjoint action

Gµ ∶= {g ∈ G ∶ Ad∗g µ = µ} ≤ G,

which, for this section, is assumed to be a Lie subgroup of G with associated Lie
algebra gµ. Moreover, we define the smooth map

Φµ ∶= Φ∣J−1(µ)×Gµ
∶ J−1(µ) ×Gµ Ð→M,

which can be checked to be a smooth right action of Gµ on J−1(µ), due to the
equivariance of the momentum map. In addition, one can prove that the vector
field XH ∣J−1(µ) ∈ X(J

−1(µ)) is Φµ-invariant.

In the setting above, we assume that the orbit space (related to the action Φµ)

Mµ ∶= J−1(µ)/Gµ,

is a Banach manifold and the natural projection πµ ∶ J−1(µ) Ð→ Mµ is a smooth
submersion. Under these hypotheses, the following theorem shows that this quotient
manifold can be endowed with a unique weak symplectic form.

Theorem 4.7 (Symplectic reduction theorem).
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1. There exists a unique weak symplectic form Ωµ over the Banach manifold Mµ,
that satisfies

i∗µΩ = π∗µΩµ, (4.2)

where iµ ∶ J−1(µ) Ð→M is the inclusion.

2. Moreover if Ω is a strong symplectic form on M , then so is Ωµ.

Remark 4.8. Point 1. of this theorem and its proof may be found in standard
references like [18] and [19]. On the other hand, point 2. and its proof is less known
and is taken from the unpublished notes [16].

Lemma 4.9 (Reduction lemma). In the setting of Theorem 4.7, let µ ∈ g∗ and
m ∈ J−1(µ), then:

1. OrbGµ(m) = OrbG(m) ∩ J−1(µ);

2. it holds
TmOrbGµ(m) = TmOrbG(m) ∩ Tm(J−1(µ));

3. Tm(J−1(µ)) is the symplectic orthogonal to TmOrbG(m) with respect to Ωm.

Proof. 1. We just observe that Φg(m) ∈ J−1(µ) if and only if µ = J(Φg(m)) =
(Ad∗)g(J(m)) = (Ad∗)g(µ) (by equivariance of J) if and only if g ∈ Gµ.

2. Suppose that vm ∈ TmOrbG(m) ∩ Tm(J−1(µ)). Then we know vm = ξM(m) for
some ξ ∈ g and TmJ(vm) = 0. Thanks to Proposition 4.5 we deduce that

0 = TmJ(ξM(m)) = ξg∗(µ),

i.e., ξ ∈ gµ. So, vm = ξM(m) with ξ ∈ gµ and so vm ∈ TmOrbGµ(m). The reverse
inclusion is immediate since by point 1., OrbGµ(m) is included in both OrbG(m)
and J−1(µ).

3. Fix ξ ∈ g and vm ∈ TmM . Point 1. of Proposition 4.6 implies

⟨TmJ(vm), ξ⟩ = Ωm(vm, ξM(m)).

Thus vm ∈ ker(TmJ) if and only if Ωm(vm, ξM(m)) = 0 for all ξ ∈ g, that is equivalent
to ask Ωm(vm,wm) = 0 for all wm ∈ TmOrbG(m).

In virtue of Lemma 4.3 and item 3 of the above lemma, we conclude that
TmOrbG(m) and Tm(J−1(µ)) are one the symplectic orthogonal of the other with
respect to Ωm, namely

TmOrbG(m)Ωm = Tm(J−1(µ)) and Tm(J−1(µ))Ωm = TmOrbG(m) (4.3)

This will be used in the proof below.
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Proof of Theorem 4.7. Since πµ is a surjective submersion, if Ωµ exists, it is uniquely
determined by the condition π∗µΩµ = i∗µΩ. This relation also defines Ωµ in the follow-
ing way. According to Proposition 3.10 we denote by [v] ∈ Tm(J−1(µ))/TmOrbGµ(m)
a tangent vector to Mµ at [m] ∈Mµ. Then π∗µΩµ = i∗µΩ is equivalent to saying that

(Ωµ)[m]([v], [w]) = Ωm(v,w)

for all v,w ∈ Tm(J−1(µ)). We proceed to prove that Ωµ is a weak symplectic form
over Mµ.

First of all, we fix m ∈ J−1(µ), and we consider v′,w′ ∈ Tm(J−1(µ)) such that
[v′] = [v] and [w′] = [w]. This is equivalent to the existence of ξ, η ∈ gµ such that
v′ = v + ξM(m) and w′ = w + ηM(m). We observe that

Ωm(v′,w′) = Ωm(v + ξM(m),w + ηM(m))
= Ωm(v,w) +Ωm(v, ηM(m)) +Ωm(ξM(m),w) +Ωm(ξM(m), ηM(m))
= Ωm(v,w).

Indeed Ωm(v, ηM(m)) = Ωm(ξM(m),w) = Ωm(ξM(m), ηM(m)) = 0 by (4.3). More-
over, if [m′] = [m], there exists g ∈ G such that Φg(m) =m′, and we have

Ωm′(TmΦg(v), TmΦg(w)) = (Φ∗gΩ)m(v,w) = Ωm(v,w),

where the last identity uses the fact that Φ is symplectic.
Thus Ωµ is well-defined. Also, it is smooth since π∗µΩµ is smooth and, since

dΩ = 0, it holds

π∗µ(dΩµ) = d(π∗µΩµ) = d(i∗µΩ) = i∗µ(dΩ) = 0.

Since πµ is a surjective submersion, we conclude that dΩµ = 0.
Finally, we prove that it is weakly non-degenerate. Fix v ∈ Tm(J−1(µ)) and

assume that (Ωµ)[m]([v], [w]) = 0 for all w ∈ Tm(J−1(µ)). Then

Ωm(v,w) = Ω[m]([v], [w]) = 0,

and by weak non-degeneracy of Ωm we obtain v = 0, that implies [v] = 0. Then, by
definition, Ωµ is a weak symplectic form over Mµ.

Now, suppose that Ω is a strong symplectic form and let α ∈ T ∗[m]Mµ. Ac-
cording to Proposition 3.10, it can be represented by a linear continuous map
α ∶ Tm(J−1(µ)) Ð→ R vanishing on the closed subspace TmOrbGµ(m), i.e., α([w]) =
α(w) for all w ∈ Tm(J−1(µ)). Since Ω is strongly non degenerate, there exists a
v ∈ TmM such that Ωm(v,w) = α(w) for all w ∈ Tm(J−1(µ)). Finally, from Lemma
4.9, it follows that v ∈ (TmOrbGµ(m))Ω ⊆ Tm(J−1(µ)) and so

(Ωµ)[m]([v], [w]) = α([w]),

for all w ∈ Tm(J−1(µ)). Then Ωµ is a strong symplectic form over Mµ.
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4.3.1 Symplectic reduction of the Hamiltonian dynamics

In the setting of previous sections, from the restriction XH ∣J−1(µ) of the Hamiltonian

vector field XH we can build the reduced vector field, X̃ ∶ Mµ Ð→ T (Mµ), defined
by

X̃(πG(m)) = TmπG(X(m)),
that is a smooth vector field overMµ due to the fact that πµ is a smooth submersion.
In the following, we prove that the reduced vector field is a Hamiltonian vector field
with respect to the weak symplectic form Ωµ on Mµ.

Proposition 4.10. The reduced vector field X̃ ∈ X(Mµ) defined above is a Hamil-
tonian vector field over Mµ with respect to the weak symplectic form Ωµ.

Proof. We define the unique smooth function H̃ ∶ Mµ Ð→ R that satisfies

H̃ ○ πµ =H ∣J−1(µ).

We proceed to show that iX̃ Ωµ = −d H̃. Firstly we observe that

(iX̃ Ωµ)[m] ([v]) = (Ωµ)[m] (X̃([m]), [v])
= (Ωµ)[m] (Tmπµ(XH(m)), [v])
= Ωm(XH(m), v)
= (iXH

Ω)m (v)
= −(dH)m(v).

Also it holds

(d H̃)[m]([v]) = T[m]H̃([v])
= T[m]H̃ ○ Tmπµ(v) (thanks to the chain rule)

= Tm(H̃ ○ πµ)(v)
= TmH(v) = (dH)m(v).

So we obtain that X̃, by definition, is the Hamiltonian vector field associated to H̃
with respect to the weak symplectic form Ωµ.

The Hamiltonian system (Mµ, X̃) is called the reduced system of (M,XH)
with respect to the symmetry Φ and the momentum µ ∈ g∗.
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Chapter 5

Cotangent bundle reduction

The main topic of the chapter is one of the most known cases of symplectic reduction,
namely the symplectic reduction of cotangent bundles. This procedure is largely
used in applications, as we will exemplify in chapter 6.

In contrast to previous content of the thesis, here we will limit the discussion
to the finite dimensional setting. Section 5.1 is based on chapter 4 of the standard
reference [15], while the general ideas concerning symplectic reduction are taken
from section 2.2 of [19].

5.1 Mechanical G-systems

A mechanical G-system consists of a configuration manifold Q with a kinetic
energy that is invariant under the action of a Lie group G. The kinetic energy
T ∶ TQÐ→ R is geometrically interpreted in terms of a Riemannian metric ⟪⋅, ⋅⟫ on
Q. More precisely,

T (q, vq) ∶=
1

2
⟪vq, vq⟫2q,

for vq ∈ TqQ. The associated flat map (see section 2.4 of chapter 2)

F ∶ TQÐ→ T ∗Q

is a diffeomorphism of smooth manifolds and it is called the Legendre transfor-
mation of the mechanical system. Here, we refer to the image T ∗Q ∶= F(TQ) of the
Legendre transformation as the phase space1 of the system, that, for our purposes,
is always endowed with its canonical symplectic form Ωcan.

We recall that the kinetic energy pulls-back via F−1 to a Hamiltonian function
on the phase space H ∶ T ∗QÐ→ R, defined by

H(q,αq) = T (F−1(q,αq)).
1We stress that we labeled the image of the Legendre transformation as the phase space of

the system, indeed, although in the finite dimensional case the map F ∶ TQ Ð→ T ∗Q is always a
diffeomorphism and it seems to make sense to label in such a way the cotangent bundle T ∗Q, we
will see in chapter 6, that for infinite dimensional systems the Legendre transformation may be
not surjective.
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At this stage, we define what a symmetry of the mechanical system is. It is
understood as a free, smooth right action of a finite dimensional Lie group G (with
associated Lie algebra g) on the configuration space Q,

Φ ∶ Q ×GÐ→ Q,

such that the orbit space Q/G is a smooth manifold and the natural projection
πG ∶ QÐ→ Q/G is a smooth submersion; also, we suppose that for every g ∈ G, the
diffeomorphism Φg ∶ Q Ð→ Q preserves the metric on Q, namely, for each q ∈ Q,
vq,wq ∈ TqQ, we have

⟪TqΦg(vq), TqΦg(wq)⟫Φg(q) = ⟪vq,wq⟫q.

Remark 5.1. Under these hypotheses, we know that there exists a well defined
Riemannian metric on the quotient manifold Q/G, called the quotient metric
(and also denoted ⟪⋅, ⋅⟫), that is defined by

⟪[v], [w]⟫[q] = ⟪v,w⟫q

with associated Legendre transformation (namely the associated flat map):

F̃ ∶ T (Q/G) Ð→ T ∗(Q/G)

that will be useful at a later stage.

It is well known that the symmetry Φ lifts to a symplectic action of G on the
phase space T ∗Q through cotangent lift2. Namely, the map

ΦT ∗Q ∶ T ∗Q ×GÐ→ T ∗Q, (αq, g) z→ T ∗(Φg)(αq),

is a free, smooth symplectic right action of G on the phase space T ∗Q, called the
cotangent lifted action of Φ. We recall from the standard reference [19] that
the cotangent lifted action admits an equivariant momentum map J ∶ T ∗Q Ð→ g∗

defined by
⟨J(αq), ξ⟩ = ⟨αq, ξQ(q)⟩, (5.1)

for each ξ ∈ g and αq ∈ T ∗q Q ⊂ T ∗Q.

5.2 Symplectic reduction of cotangent bundles

In this section, we perform symplectic reduction for the Hamiltonian system (T ∗Q,XH)
associated to a mechanical system. The proofs of the statements reported below can
be found in section 2.2 of [19].

2Given a diffeomorphism of finite dimensional manifolds f ∶ M Ð→ N , it induces a sym-
plectic diffeomorphism between the cotangent bundles with their canonical symplectic forms,
T ∗f ∶ T ∗N Ð→ T ∗M , defined by ⟨T ∗f(αn), vm⟩ = ⟨αn, Tmf(vm)⟩ for each αn ∈ T

∗

nN , vm ∈ TmM
and n = f(m).
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Let Q be the configuration space of a mechanical system with a symmetry Φ ∶
Q ×G Ð→ Q. We notice that, since we supposed Φ to be a free action, 0 ∈ g∗ is a
regular value for the canonical momentum map J ∶ T ∗Q Ð→ g∗ associated to the
cotangent lifted action of Φ. Also, we recall that the isotropy group at 0 ∈ g∗ of the
coadjoint action Ad∗ ∶ g∗ ×G Ð→ g∗ is the whole group G and equivariance of the
momentum map yields an induced action of G on the zero level set J−1(0),

Φ0 ∶ J−1(0) ×GÐ→ J−1(0), (αq, g) z→ ΦT ∗Q
g (αq).

Here, Proposition 4.6 of chapter 4 implies that XH ∣J−1(0) is a Φ0-invariant smooth

vector field on J−1(0).
Provided that the orbit space J−1(0)/G is a smooth manifold and the natural

projection π0 ∶ J−1(0) Ð→ J−1(0)/G is a smooth submersion, Theorem 4.2 of chapter
4 implies the existence a reduced symplectic form Ω0 on the quotient manifold
J−1(0)/G, namely a symplectic form Ω0 such that

π∗0Ω0 = i∗0Ωcan,

where i0 ∶ J−1(0) Ð→ T ∗Q is the inclusion. In addition, the following theorem
implies that the reduced space J−1(0)/G is symplectomorphic to a cotangent bundle,
that will be called the reduced phase space of the system.

Theorem 5.2 ([19], Theorem 2.2.2). There is a symplectic diffeomorphism between
J−1(0)/G and T ∗(Q/G) with its canonical symplectic structure.

5.2.1 Reduction of the Hamiltonian dynamics

Here, we focus on the reduction of the Hamiltonian vector fieldXH . Proposition 4.10
of chapter 4 implies that the restricted vector field XH ∣J−1(0) is related through the

projection π0 ∶ J−1(0) Ð→ J−1(0)/G to a Hamiltonian vector fieldXH̃ ∈ X(J−1(0)/G)
(with respect to the reduced symplectic form Ω0) and the reduced Hamiltonian is
the unique smooth map H̃ ∶ J−1(0)/GÐ→ R such that

H̃ ○ π0 =H ∣J−1(0).

Here, the symplectic diffeomorphism α0 ∶ J−1(0)/G Ð→ T ∗(Q/G), whose exis-
tence is guaranteed by Theorem 5.2, yields a Hamiltonian vector field

Xh ∶= (α0)∗XH̃ ∈ X(T ∗(Q/G)),

with associated Hamiltonian function h ∶ T ∗(Q/G) Ð→ R, called the reduced
Hamiltonian, uniquely determined by the relation h ○ α0 = H̃.

From a Lagrangian point of view, the reduction of the Hamiltonian dynamics
corresponds to a reduction of the kinetic energy T ∶ TQÐ→ R. One can prove (see
for example the standard reference [15]) that the kinetic energy Tred ∶ T (Q/G) Ð→ R
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associated to the quotient metric on Q/G introduced in Remark 5.1, namely the
smooth function on T (Q/G) such that

T = Tred ○ TπG,

where πG ∶ QÐ→ Q/G is the canonical projection, is related to the reduced Hamil-
tonian h ∶ T ∗(Q/G) Ð→ R by the formula

Tred = h ○ F̃,

where F̃ ∶ T (Q/G) Ð→ T ∗(Q/G) is the Legendre transformation associated to the
quotient metric on Q/G.
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Chapter 6

The fluid-solid problem

In this chapter, we study the equations of motion for a planar rigid body moving in
a potential two dimensional fluid in absence of external forces from the perspective
of symplectic reduction. During the chapter we will refer to the setting described
above as the fluid-solid system.

The equations of motion for such a rigid body were first described by Kirchhoff
[10] and are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k̇ = Vypx − Vxpy
ṗx = Ωpy
ṗy = −Ωpx

(6.1)

where V = (Vx, Vy)T ∈ R2 and Ω ∈ R are the linear and angular velocity of the
body, while k ∈ R and p = (px, py)T ∈ R2 in classical hydrodynamics are known as
“impulsive pair” and “impulsive force” respectively. They are defined by (k,p)T =
M (Ω,V)T where

M ∶=Mb +Ma (6.2)

is the total mass matrix of the rigid body, consisting of the mass matrix of the
body

Mb = (
I 0
0 mI2

) ,

where m is its mass, I its moment of inertia about its center of mass and I2 is
the 2 × 2 identity matrix. The matrix Ma in (6.2) is called the matrix of added
masses and inertia induced by the fluid, whose components only depends on the
geometry of the rigid body.

We will see that, from a geometrical point of view, the fluid-solid system can
be seen as an “infinite dimensional” mechanical system on which we can apply two
commuting reduction procedures. As we will see, the assumption for the fluid to
be potential fixes the motion of the system on the zero level set of an equivariant
momentum map that is associated to an infinite dimensional symmetry. At this
stage, performing the symplectic reduction yields a finite dimensional mechanical
system which can be treated in an analogous way to the geometrical description of
inertial motions of a free rigid body. Indeed, we will perform a Lie-Poisson reduction
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and we will notice that the reduced equations of motion are exactly the Kirchhoff
equations (6.1).

6.1 The classical formulation of the fluid-solid prob-

lem

Consider a planar rigid body that occupies a simply connected smooth region of the
plane B ⊂ R2, moving inside a two dimensional perfect fluid (with constant density
ρ) that fills the complement of the plane F ∶= R2 ∖ B.

We introduce an orthonormal inertial frame {e1,e2,e3} where {e1,e2} span the
plane of motion of the body and e3 is perpendicular to it, and a moving frame
{b1,b2,b3} attached to the body, which is is determined by a rotation of angle
θ ∈ [0,2π[ around the perpendicular axis e3 and whose origin is chosen to be a fixed
point of the body, x0 = x0e1 + y0e2 ∈ B, which we take to be the center of mass.

The scalar angular velocity of the body and translational velocity of its
center of mass relative to the inertial frame are respectively

ω = θ̇ and v = ẋ0e1 + ẏ0e2 = vxe1 + vye2,
where dots denote derivatives with respect to time. Also, Ω ∶= ω ∈ R and V ∶= RT

θ v =

(Vx, Vy) ∈ R2, with Rθ ∶= (
cos θ − sin θ
sin θ cos θ

), represents the scalar angular velocity of

the body and the translational velocity of its center of mass with respect to the body
frame. We recall that the kinetic energy of the body is given by the quadratic form

Tbody(Ω,V) ∶=
I

2
Ω2 + m

2
(V 2

x + V 2
y ).

The Lie group SE(2). From a geometrical point of view, Euler’s approach to
the description of a free rigid body says that a configuration of the body (θ,x0) ∈
[0,2π[×R2 determines an element of the Lie group of special Euclidean transforma-
tions of the plane, SE(2), given by

g = (R x0

0 1
) ∈ SE(2), Rθ = (

cos θ − sin θ
sin θ cos θ

) .

In this context, a scalar angular velocity of the body ω and a translational velocity of
its center of mass v = vxe1+vye2 determines a tangent vector to SE(2) at g ∈ SE(2):

ġ =
⎛
⎜
⎝

− sin θ ω − cos θ ω vx
cos θ ω − sin θ ω vy

0 0 0

⎞
⎟
⎠
∈ TgSE(2),

while the same quantities expressed with respect the body frame Ω and V = Vxb1 +
Vyb2 are associated to the 3 × 3 matrix

ξ =
⎛
⎜
⎝

0 −Ω Vx
Ω 0 Vy
0 0 0

⎞
⎟
⎠
= g−1ġ.
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Clearly, such a matrix ξ is an element of the Lie algebra se(2), which we recall to
be

se(2) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

0 −Ω Vx
Ω 0 Vy
0 0 0

⎞
⎟
⎠
∶ Ω, Vx, Vy ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

and whose associated Lie bracket is the standard commutator of matrices. For future
computations, it is convenient to identify the Lie algebra se(2) with the space of
angular and translational velocities of the body (Ω,V) ∈ R3 expressed with respect
the body frame, endowed with the Lie bracket

[[(Ω,V), (Ω̃, Ṽ)]]se(2) ∶= (0,−ΩṼy + Ω̃Vy,ΩṼx − Ω̃Vx) ∈ R3.

Next, we consider the perfect fluid surrounding the body, whose formal geometri-
cal description is given in the following section. We remark that the fluid’s Eulerian
velocity field, u, is represented by a smooth divergence free vector field on F which
we assume to decay at infinity. In order to avoid cavitation or penetration of the
fluid into the body, we impose the condition that the normal component of u at a
point of the boundary of F agrees with the normal component of the total velocity
of the body at the same point. Namely, we require u to be a solution of the following
problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div u = 0 on F ,
u(x) ⋅ n(x) = (v + ω J(x-x0)) ⋅ n(x) for x ∈ ∂F ,
∥u(x)∥ Ð→ 0 as ∥x∥ → ∞

(6.3)

where J ∶= (0 −1
1 0

), x0 represents the center of mass of the body and n is the outer

normal to ∂F expressed with respect to the inertial frame {e1,e2,e3}.
The kinetic energy of the fluid is hence given by

Tfluid ∶=
ρ

2 ∫F ∥u(x)∥
2 dx,

where dx is the the standard Euclidean area element of R2 restricted to F .
The total kinetic energy of the system is given by the sum of the kinetic energies

of the rigid body and the fluid:

T = Tbody + Tfluid =
I

2
Ω2 + m

2
(V 2

x + V 2
y ) +

ρ

2 ∫F ∥u(x)∥
2 dx.

The particle relabeling symmetry. It is well known that the kinetic energy of
the fluid is invariant under the so called particle relabelling symmetry (see for
example [17]) that is represented by a smooth right action of the Lie group of volume
preserving diffeomorphisms, Diffvol(F), on the configuration space of the system Q.
We will show that this action makes the configuration space Q into the total space
of a trivial principal fiber bundle over SE(2). In other words, the orbit space of the
action Q/Diffvol(F) is actually a smooth manifold diffeomorphic to SE(2).
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Vorticity and circulation. In classical fluid dynamics, for a two dimensional
fluid the scalar vorticity µ of the fluid is defined as the module of the curl of
the Eulerian velocity field u and the circulation around the rigid body is the line
integral of u along any closed curve C encircling it:

∇× u = µ e3, Γ = ∫
C
u ⋅ dl.

For our purposes, the crucial observation is that if we assume that the fluid is
potential at the initial instant t = 0 of any motion of the system, then it must satisfy
the same property for all subsequent times. This observation will be justified in the
following sections where the Hamiltonian formalism is introduced. The assumption
that the flow is potential means that we may write u = ∇ϕ for some potential ϕ. In
particular the scalar vorticity µ and the circulation Γ must vanish. Equations (6.3)
become:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆ϕ = 0 on F ,
∇ϕ(x) ⋅ n(x) = (v + ω J(x-x0)) ⋅ n(x) for x ∈ ∂F ,
∥∇ϕ(x)∥ Ð→ 0 as ∥x∥ → ∞

(6.4)

which admits a unique (up to an additive constant) smooth solution ϕ ∶ F Ð→ R.
Moreover, following Kirchhoff’s original idea (see [10]), we note that a solution ϕ to
the above problem clearly depends linearly by ω, v and hence it can be written as:

ϕ = ω ϕω + vx ϕx + vy ϕy, (6.5)

where ϕω, ϕx, ϕy are smooth solutions of the Laplace equation that vanish at infinity
and satisfy the Neumann type boundary conditions:

∇ϕω(x) ⋅ n(x) = (x × n(x)) ⋅ e3 ∇ϕx(x) ⋅ n(x) = n(x) ⋅ e1

∇ϕy(x) ⋅ n(x) = n(x) ⋅ e2
for any x ∈ ∂F . Finally, we observe that the smooth functions ϕω, ϕx, ϕy depend
only of the shape of the body, which does not change through any motion of the
system.

The reduced dynamics of the system. From a dynamical point of view, we
observe that for a potential velocity of the fluid u = ∇ϕ, formula (6.5) allows us to
rewrite the kinetic energy of the fluid in terms of the total velocity of the body:

Tfluid =
ρ

2 ∫F ∥∇ϕ(x)∥
2 dx = ρ

2
(Ω V)Ma (

Ω
V
) ,

where the entries of the matrix Ma depends only on the shape of the body. This
observation implies that the total energy of the system T = Tbody + Tfluid drops to a
quadratic form on the Lie algebra se(2),

Tred(Ω,V) =
1

2
(Ω V)M(Ω

V
) ,
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where M ∶=Mb +Ma is the total mass matrix of the body. Clearly, we have that the
quadratic form Tred is associated to kinetic energy Lagrangian L ∶ TSE(2) Ð→ R
which is invariant under the lifted action of left multiplication on SE(2). This
invariance corresponds to the freedom of choice of origin and orientation of the
inertial frame.

We note that the obtained mechanical system may be interpreted as describing
the motions of a planar rigid body with added masses and inertia. In virtue of that,
Lie-Poisson theory says that any motion of the body is associated to a unique solu-
tion of the so called Lie-Poisson equations on se(2)∗, which corresponds precisely
to the classical Kirchhoff’s equations of hydrodynamics (6.1) as we explicitly show
below.

We recall that any element ν ∈ se(2)∗ of the dual of the Lie algebra se(2) can be
identified with a vector of R3:

ν = (k, px, py),
and the dual pairing with se(2) ≃ R3 is given by the Euclidean scalar product of
R3 itself. We recall that the classical Lie-Poisson equations for a Lie group are
ν̇ = ad∗ξ(ν), where ad∗ is the standard coadjoint representation of the Lie group
SE(2) and ν =M ξ, ξ ∈ se(2). As anticipated, these equations become the classical
Kirchhoff’s equations of hydrodynamics:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k̇ = pxVy − pyVx
ṗx = pyΩ
ṗy = −pxΩ

where we stress ν = (k, px, py), ξ = (Ω, Vx, Vy) =M−1ν and

ad∗ξ(ν) = (pxVy − pyVx, pyΩ,−pxΩ).

6.2 The geometry of the fluid-solid system

In this section we give some insights about the configuration space Q of the fluid-
solid system. The geometrical description of a perfect fluid presented below is taken
from the work [25], which presents an adaptation of the classical description given
by Arnold in his celebrated paper [2], in order to consider the fact that the body
moves inside the fluid.

The configuration and kinetic energy of a perfect fluid. Following section
2.1 of [25], we consider a configuration of the fluid as a smooth embedding φ ∶ F Ð→
R2 of the reference configuration F into R2. We require the embedding φ to be
volume preserving to reflect the fact that the fluid is taken to be incompressible,
namely if dx is the Euclidean area element on R2, then we require

φ∗ dx = i∗F dx,
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where iF ∶ F Ð→ R2 is the inclusion. In order to deal with a realistic fluid, we require
that it is stationary at infinity. Mathematically, we assume that the embedding φ
approaches the identity at infinity “suitably fast”, namely such that the following
integral converges:

∫
F
∥φ(x) − x∥2 dx < +∞.

The collection of such volume-preserving embeddings, that is denoted by Embvol(F ,R2),
is called the manifold of volume-preserving embeddings1.

Given a configuration of the fluid φ ∈ Embvol(F ,R2), a motion of the fluid
through φ is a smooth curve t z→ φt ∈ Embvol(F ,R2) such that φ0 = φ. Moreover,
associated to a motion φt through φ, the material velocity field of the fluid is
defined as φ̇t ∶= d

dtφt, that is the smooth map

φ̇t ∶ F Ð→ R2, Xz→ d

dt
φt(X) ∈ Tφt(X)R2 = R2.

In contrast, the Eulerian velocity field of the fluid is given by

ut ∶= φ̇t ○φ−1t ,

which is a divergence free smooth vector field over the smooth manifold φt(F)2.
Physically, ut(x) is the velocity of the material of the fluid located at the current
position x ∈ φt(F). In order to avoid confusions, in what follows we will omit the t.

Now, we define the kinetic energy of the fluid that is given by the function:

Tfluid(φ, φ̇) =
ρ

2 ∫φ(F) ∥u(x)∥
2 dx,

where we recall u = φ̇ ○ φ−1 and ∥ ⋅ ∥ is the Euclidean norm in R2. We remark
that, under the assumption for the embedding φ to approach the identity at infinity
suitably fast, the integral that defines the kinetic energy always converges for any
admissible velocity field u = φ̇ ○φ−1.

We notice that the kinetic energy Tfluid induces a weak Riemannian metric on
the manifold Embvol(F ,R2), called the L2 metric:

⟪(φ, φ̇1), (φ, φ̇2)⟫Emb ∶= ρ∫
φ(F)

u1 ⋅ u2 dx.

where ui = φ̇i ○φ−1, for i = 1,2.

The configuration and kinetic energy of the fluid-solid system. We con-
tinue to follow [25] and define the configuration space for the fluid-solid system as
the subset Q of SE(2) ×Embvol(F ,R2) given by

Q = {(g,φ) ∈ SE(2) ×Embvol(F ,R2) ∶ g(∂B) = φ(∂F)} . (6.6)

1such space is shown to be a Fréchet manifold for compact F in [21].
2which, as remarked in section 6.1 is represented by a smooth divergence free vector field on F ,

φ∗tut.
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Physically, since the region B occupied by the body is complementary to F which
is filled with the fluid, we are asking that at any configuration of the system there
is no cavitation or penetration of the fluid into the body.

We remark that the “no-penetration” condition imposed above is equivalent to
require that the normal velocity of the fluid coincides with the normal velocity of the
body when computed at a point of the boundary of it, while the tangential velocity
can be arbitrary corresponding to the fact that there is no viscosity in the fluid. In
other words, given a configuration of the system (g,φ) ∈ Q and a tangent vector
ġ ∈ TgSE(2) associated to a pair of angular and translational velocities of the body
expressed in the body frame

(Ω
V
) = g−1ġ,

then any admissible velocity field of the fluid u = φ̇ ○ φ must satisfy the following
problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div u = 0 on φ(F),
u(x) ⋅ n = (V +Ω Jx) ⋅ n for x ∈ ∂(φ(F)),
∫φ(F) ∥u(x)∥2 dx < +∞

(6.7)

as anticipated in section 6.1.
One can check that the configuration space Q is a submanifold of the product

SE(2) ×Embvol(F ,R2) and, in this context, we describe the tangent bundle of Q:

TQ = {(g, ġ, φ, φ̇) ∶ (g,φ) ∈ Q and u = φ̇ ○φ−1 satisfies (6.7)} .

Finally, we define the kinetic energy of the fluid-solid system as the sum of the
kinetic energies of the rigid body and the fluid, T ∶ TQÐ→ R,

T (g, ġ, φ, φ̇) = Tbody(g−1ġ) + Tfluid(φ, φ̇)

= I
2
Ω2 + m

2
(V 2

x + V 2
y ) +

1

2 ∫φ(F) ∥u(x)∥
2 dx,

which induces a weak Riemannian metric on the configuration space Q, given by

⟪(g, ġ1, φ, φ̇1), (g, ġ2, φ, φ̇2)⟫Q ∶= I Ω1Ω2 +m V1 ⋅V2 + ∫
φ(F)

u1 ⋅ u2 dx,

where (Ωi,Vi) = g−1ġi and ui = φ̇i ○φ−1 for i = 1,2.

6.3 The Lie group of volume preserving diffeo-

morphisms

In this section, we briefly recall the basic notions of the Lie group of volume preserv-
ing diffeomorphisms of F that will play a crucial role in the definition of a symmetry
for the fluid at a later stage.
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It is well known that the following set of diffeomorphisms of F :

Diffvol(F) = {ψ ∈ Diff(F) ∶ ψ∗ dx = i∗F dx and ∫
F
∥ψ(x) − x∥2 dx < +∞}

is a group with the composition of functions as multiplication. The unit element of
the group is clearly the identity map idF ∶ F Ð→ F .

The group Diffvol(F) can be endowed with an infinite dimensional Lie group
structure but its description is beyond the scope of this thesis. Indeed, the explicit
construction of an atlas is very complicated and it deeply depends on the Euclidean
metric induced on F from R2. Moreover, in our case, one has to face two more tech-
nical difficulties. The first one is the fact that F is chosen to be non-compact, in
contrast to the compact case where, as shown in [24], a canonical differential struc-
ture is given. We refer to [21] and [8] for an abstract description of the most used
differential structures concerning manifolds of smooth mappings over unbounded lo-
cally compact manifolds. The second difficulty is that F is understood as a manifold
with boundary. We refer to [7] for some details about the diffeomorphism group of
a Riemannian compact manifold with boundary.

The Lie algebra of divergence free vector fields and its dual. The Lie
group Diffvol(F) has an associated Lie algebra, denoted Xdiv(F) and consisting of
divergence free vector fields which are tangent to the boundary of F and such that
the following integral converges:

∫
F
∥X(x)∥2 dx < +∞.

The Lie bracket is the negative of the usual bracket for vector fields, namely for each
X,Y ∈ Xdiv(F) we have

[[X,Y ]] ∶= −[X,Y ].
As a topological vector space, the Lie algebra Xdiv(F) is a Fréchet space (see Ap-

pendix B.2) whose topology cannot be induced by any norm. Hence, the topological
dual of Xdiv(F), denoted X′div(F) and consisting of all linear continuous functionals
T ∶ Xdiv(F) Ð→ R, cannot be a Fréchet space and it does not exists any suitable
topology on X′div(F) such that the dual pairing

⟨⋅, ⋅⟩ ∶ X′div(F) ×Xdiv(F) Ð→ R, (T,X) z→ T (X)
is continuous.

In the following, we define the so called smooth part of the dual, X∗div(F),
which is actually a Fréchet vector subspace of X′div(F) and carries a continuous dual
pairing with Xdiv(F). We refer to section 3.B and section 8 of [3] for a rigorous
geometrical description with proofs of the following construction.

Firstly, we observe that every bounded differential 1-form α ∈ Ω1(F)3 induces a
linear continuous functional Tα ∶ Xdiv(F) Ð→ R given by

Tα(X) = ∫
F
α(X) dx,

3Namely a differential one form over F whose euclidean norm is bounded in F .
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and we notice that exact 1-forms give rise to the zero functional; one can check
that the Stokes’ theorem implies Td f(X) = 0 for all X ∈ Xdiv(F) and f ∈ Ω0(F) ∶=
C∞(F). In virtue of that, any equivalence class [α] of the quotient of vector spaces
Ω1(F)/dΩ0(F) induces a well defined linear continuous functional on the Lie alge-
bra. So, this quotient of vector spaces, which can be proved to be a Fréchet space,
is immersed in the topological dual through this identification. We denote it

X∗div(F) ∶= Ω1(F)/dΩ0(F) ↪ X′div(F),

and it carries a well defined continuous dual pairing, namely:

⟨⋅, ⋅⟩g ∶ X∗div(F) ×Xdiv(F) Ð→ R, ⟨[α],X⟩g = ∫
F
α(X) dx.

Also, since the domain F is just connected and not simply connected, there exists
an isomorphism of vector spaces between X∗div(F) and dΩ1(F) ×R, namely

[α] z→ (dα,∫
∂F
α) . (6.8)

which will be very useful at a later stage.

Adjoint and Coadjoint action. Even if we will not be use them during this
thesis, for completeness we point out the standard adjoint and coadjoint actions of
the Lie group Diffvol(F). One can check that the adjoint action is represented by
the smooth left action:

Ad ∶ Diffvol(F) ×Xdiv(F) Ð→ Xdiv(F), (ψ,X) z→ ψ∗X,

where ψ∗X denotes the push-forward of the vector field X ∈ Xdiv(F) by the volume
preserving diffeomorphism ψ ∈ Diffvol(F). Due to technical reasons, the coadjoint
action is not defined on the whole dual space X′div(F) but only on the smooth part
of the dual, X∗div(F), and it is represented by the smooth right action:

Ad∗ ∶ X∗div(F) ×Diffvol(F) Ð→ X∗div(F), ([α], ψ) z→ [ψ∗α].

6.4 The particle relabelling symmetry of the fluid-

solid system

We observe that the Eulerian velocity field of the fluid is invariant if we replace φ
by φ ○ ψ and φ̇ by φ̇ ○ ψ, where ψ is a volume preserving diffeomorphism of the
reference configuration F . This invariance represents the existence of a symmetry
of the system, the so called particle relabeling symmetry, that corresponds to
the fact that we can label any particle of fluid in the reference configuration as we
like to.
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As anticipated in section 6.1, this symmetry is represented by a smooth right
action of the Lie group Diffvol(F) on the configuration space Q, defined by (6.6)

Φ ∶ Q ×Diffvol(F) Ð→ Q, ((g,φ), ψ) z→ (g,φ ○ ψ).

The algebraic and geometric structure of this action was studied, for instance, in
[25] and [26] and, from these references, we report some facts that will be important
in the following sections.

• The particle relabeling symmetry Φ is a free action.

• For any fixed (g0, φ0) ∈ Q, the orbit of Φ through (g0, φ0) ∈ Q is

Orb(g0, φ0) = {(g,φ) ∈ Q ∣ g = g0 and φ ∶ F Ð→ φ0(F) is a diffeomorphism}.

• Given any X ∈ Xdiv(F), the infinitesimal generator of the particle relabeling
symmetry associated to X is the smooth vector field XQ ∈ X(Q) defined by

XQ(g,φ) = TeΦ(g,φ)(X) = (0, Tφ ○X) ∈ T(g,φ)Q,

where Tφ ∶ TF Ð→ TR2 is the tangent map of the embedding φ ∶ F Ð→ R2.

However, it is well known that the action Φ is not proper. Unfortunately, as
in many applications, this prevents us to apply any general slice theorem in order
to equip the orbit space with a differential structure. Despite that, in Proposition
6.2 below we will construct a finite dimensional smooth structure for the quotient
Q/Diffvol(F) such that the natural projection π ∶ Q Ð→ Q/Diffvol(F) will be a
smooth submersion. But before of that, we shall give a technical lemma.

Lemma 6.1. The projection onto the first factor p ∶ Q Ð→ SE(2), (g,φ) z→ g
is a surjective smooth submersion, and, in particular, it is a principal bundle, with
structure group Diffvol(F), that is isomorphic to the trivial bundle pr1 ∶ SE(2) ×
Diffvol(F) Ð→ SE(2).

Proof. We start the proof by saying that there exists a smooth map

σ ∶ SE(2) Ð→ Q,

such that p ○ σ = idSE(2), namely a global section for p ∶ QÐ→ SE(2). The proof of
this claim is quite technical and we refer to section 4.5.3 of [22] for it.

The existence of a map σ ∶ SE(2) Ð→ Q such that p ○ σ = idSE(2) implies
that p is surjective. Also, p is smooth since it is the composition of the smooth
maps p = pr1 ○ iQ where iQ ∶ Q Ð→ SE(2) × Embvol(F ,R2) is the inclusion and
pr1 ∶ SE(2)×Embvol(F ,R2) Ð→ SE(2), (g,φ) z→ g, is the projection onto the first
factor.

At this stage, we consider the smooth right action Φ of Diffvol(F) on Q. The
action is free and, since a typical fiber of p is a orbit of Φ (namely p−1(g) =
{g}×Diffvol(F , g(F))), it is clear that Diffvol(F) acts transitively on the fibers of p.
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Finally, the existence of a global section σ ∶ SE(2) Ð→ Q, implies that the bundle
p ∶ Q Ð→ SE(2) is a globally trivial fibration and so it is a principal bundle with
structure group Diffvol(F). The global trivialization is the diffeomorphism

SE(2) ×Diffvol(F) Ð→ Q, (g,ψ) z→ Φψ(σ(g)).

Now, we are able to imply the submersion property for p, namely we will prove
that, for each (g,φ) ∈ Q, the tangent map

T(g,φ) p ∶ T(g,φ)QÐ→ TgSE(2), (ġ, φ̇) z→ ġ,

is surjective4. Let ġ ∈ TgSE(2) and (g,φ) ∈ Q, we consider the tangent vector

v = Tg (Φψ ○ σ)(ġ) ∈ T(g,φ)Q,

where ψ ∈ Diffvol(F) is the unique volume preserving diffeomorphism such that
(g,φ) = Φψ(σ(g)). By definition of σ, we know that T(g,φ)p (v) = ġ, that concludes
the proof.

As mentioned before, the following proposition will give a finite dimensional
smooth structure to the orbit space Q/Diffvol(F) which turns the natural projection
π ∶ QÐ→ Q/Diffvol(F) into a smooth submersion.

Proposition 6.2. The orbit space of the particle relabeling symmetry Q/Diffvol(F)
can be endowed with a finite dimensional smooth manifold structure diffeomorphic
to SE(2) such that the natural projection π ∶ Q Ð→ Q/Diffvol(F) is a smooth
submersion.

Proof. Let
β ∶ Q/Diffvol(F) Ð→ SE(2), [g,φ] z→ g

and use the global section σ ∶ SE(2) Ð→ Q, introduced in the proof of Lemma 6.1,
to define

γ ∶ SE(2) Ð→ Q/Diffvol(F), g z→ [σ(g)].
Clearly, it holds β ○ γ = idSE(2) and γ ○ β = idQ/Diffvol(F) and then γ is a bijection of
sets, with β = γ−1.

Now, we equip the quotient Q/Diffvol(F) with the final smooth structure that
turns the bijection γ into a smooth diffeomorphism of finite dimensional manifolds
and we prove that the natural projection π ∶ Q Ð→ Q/Diffvol(F) is a smooth
submersion using the following commuting diagram:

4Even if, for a general smooth map f ∶ M Ð→ N between infinite dimensional manifolds, the
surjectivity of the tangent map may be not enough to prove the submersion property, paragraph
1.56 of [23] showes that this is actually enough if the codomain N is a finite dimensional manifold
(as in our case).

51



Q

Q/Diffvol(F) SE(2)

π p

γ

Indeed p ∶ Q Ð→ SE(2) is a smooth submersion (as shown in Lemma 6.1) and
γ ∶ SE(2) Ð→ Q/Diffvol(F) is a diffeomorphism.

6.5 The Hamiltonian formulation of the fluid-solid

system and the symplectic reduction

In this section we give some technical insights about the Hamiltonian formulation
associated to the fluid-solid system. The main goal here is to geometrically con-
textualize the fact that if the fluid is initially potential, it will remain potential
throughout the motion. This will be a direct consequence of Noether theorem that
will explicit the conservation of the circulation around the body and the advection
of the scalar vorticity of the fluid.

Before starting let us fix the notation. Let Q be the configuration space of the
fluid-solid system given in section 6.2, TQ its tangent bundle and

T ′Q ∶= ⊔
(g,φ)∈Q

(T(g,φ)Q)′

its dual bundle. Since Q is endowed with a weak Riemannian metric ⟪⋅, ⋅⟫Q, we
define the Legendre transformation F ∶ TQÐ→ T ′Q, given by

⟨F(g, ġ, φ, φ̇), (g, ġ1, φ, φ̇1)⟩T ′Q = ⟪(g, ġ, φ, φ̇), (g, ġ1, φ, φ̇1)⟫Q,

which we stress not to be a surjective map.

6.5.1 The phase space of the fluid-solid system

We say that the phase space of the fluid-solid system is a cotangent bundle of the
weak Riemannian manifold Q given by the image of the Legendre transformation

T ∗Q ∶= {(g, pg, φ, pφ) ∶= F(g, ġ, φ, φ̇) ∶ for some (g, ġ, φ, φ̇) ∈ TQ},

which is a smooth vector bundle over Q (isomorphic to the tangent bundle TQ) with
vector bundle projection

τ ∶ T ∗QÐ→ Q, (g, pg, φ, pφ) z→ (g,φ).

Here, the dual pairing between T ∗Q and TQ is determined by the Riemannian
metric ⟪⋅, ⋅⟫Q:

⟨(g, pg, φ, pφ), (g, ġ1, φ, φ̇1)⟩T ∗Q = ⟪(g, ġ, φ, φ̇), (g, ġ1, φ, φ̇1)⟫Q,
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where (g, pg, φ, pφ) = F(g, ġ, φ, φ̇).
Similar to the theory of finite dimensional manifolds, we know that there exists

a canonical symplectic form Ωcan over the phase space T ∗Q, that is the infinite di-
mensional analogous of the canonical symplectic form defined on a finite dimensional
cotangent bundle. We refer to Appendix B.2 (and its references) for some details
about cotangent bundles in infinite dimension and their symplectic structures.

6.5.2 The momentum map of the fluid solid system and
symplectic reduction

We know that the particle relabelling symmetry Φ ∶ Q×Diffvol(F) Ð→ Q lifts to an
action of the Lie group Diffvol(F) on the phase space T ∗Q through cotangent lift.
The cotangent lifted action will also be denoted Φ ∶ T ∗Q ×Diffvol(F) Ð→ T ∗Q and
it is well known that it is a smooth free right action, which preserves the canonical
symplectic form Ωcan of the phase space T ∗Q.

In finite dimension, we know that any cotangent lifted action admits a canonical
momentum map J , defined by formula (5.1) of chapter 5, which takes values on the
dual of the Lie algebra. In our context formula (5.1) becomes

⟨J(g, pg, φ, pφ),X⟩g = ⟨(g, pg, φ, pφ),XQ(g,φ)⟩T ∗Q. (6.9)

In what follows we will show that formula 6.9 defines a canonical momentum map
J ∶ T ∗Q Ð→ X∗div(F) for the cotangent lifted action Φ, which takes values in the
smooth part of the dual of the Lie algebra Xdiv(F), X∗div(F) (see section 6.3).

We observe that, given a momentum of the system (g, pg, φ, pφ) ∈ T ∗Q associated
to some (g, ġ, φ, φ̇) ∈ TQ, we have

⟨(g, pg, φ, pφ),XQ(g,φ)⟩T ∗Q = ∫
φ(F)

u♭(φ∗X) dx = ∫
F
(φ∗u♭)(X) dx,

where u♭ = ux dx + uy dy ∈ Ω1(φ(F)) is the differential one form associated to the
smooth vector field u = φ̇ ○φ−1 =∶ (ux,uy). In virtue of that, we define the map

T ∗Q ∋ (g, pg, φ, pφ) z→ J(g, pg, φ, pφ) ∶= [φ∗u♭] ∈ X∗div(F),

which, by definition of the dual pairing ⟨⋅, ⋅⟩g (see section 6.3), satisfies formula (6.9)
above.

According to Noether theorem, the momentum map J defined above is conserved
through any motion of the fluid-solid system. Moreover, isomorphism (6.8) implies
that both

dφ∗u♭ and Γ = ∫
∂F
φ∗u♭

are conserved. From a physical point of view, we have that dφ∗u♭ = µ ○ φ dx ∧ dy,
where µ = e3 ⋅(∇×u) ∈ C∞(φ(F)) is a scalar vorticity of the fluid, and Γ = ∫∂φ(F)u⋅dl.
Clearly, the conservation of these quantities yields the conservation of the circulation
Γ around the body of the fluid and the advection of its vorticity for any motion of
the fluid-solid system.
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In particular, the assumption to deal with a potential fluid is equivalent to require
both to be 0. Geometrically speaking, we proved that any motion of the body in a
potential perfect fluid lies on the zero level set of the momentum map J−1(0).

Symplectic reduction and reduced kinetic energy. The reduction of the ki-
netic energy made in section 6.1 is well justified by a symplectic reduction procedure.
Formally, as recalled in chapter 5, the reduction of the kinetic energy corresponds
to a Hamiltonian reduction of the dynamics by a symplectic reduction procedure,
that identifies the quotient manifold J−1(0)/Diffvol(F) with the reduced phase space
T ∗(Q/Diffvol(F)) ≃ T ∗SE(2) endowed with its canonical symplectic form. We recall
that the reduced Hamilton’s equations, which determine the motions of the body
in a potential fluid, are equivalent to the Euler-Lagrange equations of the reduced
kinetic energy Tred.
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Appendix A

An infinite dimensional version of
Theorem 3.9

As anticipated in section 3.1.2 of chapter 3, in this appendix we provide a suitable set
of hypotheses that extends Theorem 3.9 to the infinite dimensional Banach setting.

We briefly recall the notation. Let G be a Banach Lie group with associated
Lie algebra g, M be a Banach manifold and Φ ∶ M ×G Ð→ M be a smooth right
action of G on M which is free and proper according to Definition 3.8 given in
chapter 3. Moreover, we recall from section 3.1.2 that the action Φ induces an
equivalence relation ∼G on the Banach manifold M with quotient space M/G and
natural projection πG ∶ M Ð→M/G.

Before starting, we prove a technical lemma.

Lemma A.1. Let Φ ∶ M ×G Ð→M be a smooth, free and proper right action of a
Banach Lie group G on a Banach manifold M . Then, for each m ∈M , the tangent
map

TeΦ
m ∶ gÐ→ TmM

is injective and its image is a closed vector subspace of TmM .

Proof. Firstly we prove the injectivity, it is enough to prove that ker(TeΦm) = {0}.
Let ξ ∈ g such that TeΦm(ξ) = 0, namely we have

ξM(m) = TeΦm(ξ) = 0.

The discussion on infinitesimal generators made in section 3.1.1 of chapter 3 im-
plies that the unique integral curve to ξM at m is the constant curve R ∋ t z→
ΦexpG(tξ)(m) =m, and, since the action is free, we have that expG(tξ) ⊆ Gm = {e} for
all t ∈ R. It clearly implies expG(tξ) = e for every t ∈ R. Differentiating this identity
at t = 0 we obtain

ξ = d

dt
∣
t=0

expG(tξ) = 0,

that concludes the proof.
Finally, we refer to Theorem 2.1 of [9] which guarantees that the image of the

linear continuous map TeΦm is a closed vector subspace of TmM .
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In virtue of Lemma A.1, for every m ∈ M , the there exists a vector space iso-
morphism, TeΦm ∶ g Ð→ TmM , between the Lie algebra g and the closed vector
subspace of TmM which is the image of the linear map TeΦm. Using this fact, we
state the following definition.

Definition A.2. Fix m ∈M , we say that g splits in TmM if and only if the closed
subspace Im(TeΦm) splits in TmM (see Definition 2.16).

We now prove that under the additional hypothesis that g splits in TmM for each
m ∈ M an infinite dimensional version of Theorem 3.9, stated as Theorem (A.5),
holds. The first steps of this generalization are coded in the following proposition and
subsequent lemma. We stress that the proof of Proposition (A.3) is an adaptation
of Corollary 4.1.22 of the standard reference [1].

Proposition A.3. Let Φ ∶ M ×GÐ→M be a smooth, free and proper right action
of a Banach Lie group G on a Banach manifold M , that satisfies assumption (H).
Then, for each m ∈M , the orbit OrbG(m) is an embedded submanifold of M , which
is diffeomorphic to G.

Proof. It is enough to show that, for any m ∈ M , the orbit map through m, Φm ∶
GÐ→M , is an embedding (see Definition 2.18 of chapter 2).

Lemma A.1 (toghether with assumption (H)) implies that the tangent map TeΦm

is injective and has a closed split image. In the following we prove the same property
for every TgΦm ∶ TgGÐ→ TΦg(m)M , g ∈ G. Indeed, let g ∈ G, then, since Φ is a right
action, the following identity holds:

Φm ○Rg = Φg ○Φm. (A.1)

We differentiate identity (A.1) at e ∈ G and, due to the chain rule, we obtain

TgΦ
m ○ TeRg = TmΦg ○ TeΦm,

where both TeRg and TmΦg are Banach space isomorphisms (because both Rg and
Φg are diffeomorphisms), and TeΦm is an injective linear map with closed split image
in TmM . Here, it is clear that also the map TgΦm in injective and its image is closed
and splits, for all g ∈ G. So, according to Definition 2.17 of chapter 2, the orbit map
Φm is an immersion. In addition, it is injective due to the freeness of the action Φ.

Finally, we use the properness of the action to deduce that Φm is a closed map,
namely images of closed subsets of G are mapped in closed subsets ofM , and hence,
by Proposition 2.19, it is an embedding.

Let A be a closed subset of G and {gn}n∈N ⊆ A a sequence of elements of A such
that {Φm(gn)}n∈N converges to some m ∈ M . Then, the properness of Φ implies
that there exists a subsequence {gnk

} ⊆ {gn} ⊆ A that converges to some g ∈ G, but,
since A is closed in G, we have g ∈ A and, by continuity of the map Φm, we have
Φm(gn) Ð→ Φm(g) for n→ +∞, which implies that Φm(A) is closed in M .
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Lemma A.4. Let E be a Banach space and F ⊆ E be a closed vector subspace of E
that splits. Let also ∆E ⊆ E ×E be the vector subspace

∆E ∶= {(v, v) ∈ E ×E ∶ v ∈ E}.

Then, the linear subspace

X ∶=∆E + {0} × F ⊆ E ×E

is closed in E ×E and splits.

Proof. We first show that X is closed. For this we prove that, given a sequence
{(vn, vn + fn)}n∈N ⊆ X that it is convergent to some (v,w) in E ×E, then the limit
(v,w) is actually an element of X.

It is clear that (vn, vn+fn) Ð→ (v,w) in E×E implies vn Ð→ v in E for n→ +∞,
and we check also fn Ð→ (w − v) in E:

∥fn − (w − v)∥ = ∥fn −w + v + vn − vn∥ ≤ ∥(vn + fn) −w∥ + ∥vn − v∥ Ð→ 0 as n→ +∞.

Now, the closedness of F implies (w − v) ∈ F . In particular we notice that the limit
can be written as (v,w) = (v, v + (w − v)) that is an element of X.

Finally, to prove that X splits in E ×E we exhibit a topological complement of
X in E ×E. Let F̂ be a topological complement of F in E (namely a closed vector
subspace of E such that E = F + F̂ and F ∩ F̂ = {0}) and we consider the linear
subspace

X̂ ∶= {0} × F̂ ⊆ E ×E.
It is clearly a closed subspace of E×E and we notice that, for any pair (v,w) ∈ E×E,
since E = F + F̂ , we have w − v = f + f̂ for some f ∈ F and f̂ ∈ F̂ . Hence we have

E ×E ∋ (v,w) = (v, v + (w − v)) = (v, v + f + f̂) = (v, v + f) + (0, f̂) ∈X + X̂,

and so E ×E = X + X̂. To show that the sum is direct, we need to prove X ∩ X̂ =
{(0,0)}. Let (v, v + f) ∈ X, we notice (v, v + f) ∈ X̂ if and only if v = 0 and f ∈ F̂ ,
but since F ∩ F̂ = {0}, we deduce f = 0, namely

X ∩ X̂ = {(0,0)}.

Finally, we are ready to state and prove the main theorem of this appendix. The
proof presented below is inspired by Theorem 4.1.20 of [1].

Theorem A.5. Let Φ ∶ M ×G Ð→M be a smooth, free and proper right action of
a Banach Lie group G on a Banach manifold M that satisfies (H). Then the orbit
space M/G is a Banach manifold and the natural projection πG ∶ M Ð→M/G is a
smooth submersion.
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Proof. We notice that the claim is equivalent to prove that ∼G is a regular equivalence
relation, i.e. it satisfies the hypotheses of Theorem 2.24 from chapter 2.

Firstly, we show that ∼G is an embedded submanifold of M ×M . We need to
prove that the map

Φ̃ ∶ G ×M Ð→M ×M
(g,m) z→ (m,Φm(g))

is an embedding.
According to Theorem 2.19 of chapter 2, it is enough to show that Φ̃ is an

injective immersion and a closed map. Due to the freeness of Φ it is easy to see that
Φ̃ is injective and due to the properness, we know from the proof of Proposition A.3
that, since Φm is a closed map for each m ∈M , so is Φ̃.

Finally, we show that Φ̃ is an immersion. Through an explicit computation, the
tangent map at any pair (e,m) (where e is the identity of G and m ∈M) of Φ̃ is

T(e,m)Φ̃ ∶ g × TmM Ð→ TmM × TmM
(ξ, vm) z→ (vm, vm + TeΦm(ξ)).

Moreover, Lemma A.1 (together with hypothesis (H)) implies that, for any m ∈M ,
the tangent map TeΦm is injective with closed split image. We get the same result
for T(e,m)Φ̃ by observing:

• ker(T(e,m)Φ̃) = {0} × ker(TeΦm) = {0} × {0}, and

• Im(T(e,m)Φ̃) =∆TmM + {0} × Im(TeΦm).

Here, Lemma A.4 guarantees that, since Im(TeΦm) is a closed vector subspace of
TmM and admits a topological complement, then Im(T(e,m)Φ̃) is a closed vector sub-

space of TmM ×TmM and admits a topological complement. So, Φ̃ is an immersion
at each (e,m).

In order to conclude, we need to prove that Φ̃ is an immersion at any (g,m) ∈
G ×M . With this aim, we fix g ∈ G and we define the following diffeomorphisms:

Λg ∶ M ×M Ð→M ×M, (m1,m2) z→ (m1,Φg(m2)),
Σg ∶ G ×M Ð→ G ×M, (h,m) z→ (hg,m).

Since Φ is a right action, we observe that the following identity holds

Λg ○ Φ̃ = Φ̃ ○Σg.

We differentiate the identity above at (e,m) ∈ G×M and, due to the chain rule, we
get

T(m,m)Λg ○ T(e,m)Φ̃ = T(g,m)Φ̃ ○ T(e,m)Σg. (A.2)

Similar to the proof of Proposition A.3, we observe that T(m,m)Λg and T(e,m)Σg are

Banach space isomorphisms, and the linear map T(e,m)Φ̃ is injective with closed split
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image. Hence, also the linear map T(g,m)Φ̃ is injective with a closed split image. In
addition, the identity (A.2) implies

Im(T(g,m)Φ̃) = {(vm, TmΦg(vm) + TgΦm(ξg)) ∶ vm ∈ TmM, ξg ∈ TgG} .

The second, and last, assumption of Theorem 2.24 requires that the projection
onto the first factor pr1 ∶ Im(Φ̃) Ð→M is a smooth submersion. We observe that
the tangent map,

T(m,Φm(g)) pr1 (vm, TmΦg(vm) + TgΦm(ξg)) = vm,

is clearly surjective, with kernel

ker(T(m,Φm(g)) pr1) = {0} × Im(TgΦm),

which admits a topological complement in TmM × TΦm(g)M (e.g. the closed sub-
space E × F , where F is a topological complement of Im(TgΦm), is a topological
complement of {0} × Im(TgΦm)).
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Appendix B

Remarks on locally convex spaces
and Fréchet manifolds

In this appendix we make a brief review of a particular class of topological vector
spaces, namely the class of Fréchet spaces, with the aim of complementing section
4.1 of chapter 4 and to contextualize some functional analytical issues presented in
chapter 6.

B.1 Locally convex and Fréchet spaces

First of all we recall some basic definitions. We refer to the lecture notes [12] and
the standard reference [13] for a detailed description of these notions. Also, some
results and examples given in this section are taken from [5].

Definition B.1. Let E be a real vector space, a function p ∶ E Ð→ R is called a
seminorm on E if

• for each v ∈ E and λ ∈ R we have p(λv) = ∣λ∣ p(v), and

• for each v,w ∈ E we have p(v +w) ≤ p(v) + p(w).

According to section 1.4.1 of [12], a family of seminorms P ∶= {pi}i∈I defines a
vector space topology on E and we call this topological vector space a locally con-
vex vector space. In the following we report some well known results concerning
locally convex vector spaces, that we recalled in section 4.1 of chapter 4.

Lemma B.2 ([12], Lemma 1.4.2, item 2). A seminorm p ∶ E Ð→ R is continuous
in the topology generated by P if and only if there exist p1, . . . , pn ∈ P, and C > 0
such that, for each v ∈ E,

p(v) ≤ Cmax{p1(v), . . . , pn(v)}.

Lemma B.3 ([12], Lemma 3.4.2). Let E be a real locally convex vector space and
f ∶ E Ð→ R a linear functional. Then f is continuous in the locally convex topology
if and only if the map xz→ ∣f(x)∣ is a seminorm on E.
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Theorem B.4 ([12], Corollary 5.1.8). Let E be a real locally convex space, F ⊆ E
be a closed vector subspace and a ∈ E ∖ F . Then there exists a linear continuous
functional f ∶ E Ð→ R such that f ∣

F
= 0 and f(a) = 1.

Now, let E be a locally convex real vector space whose topology is generated
by a countable family of seminorms P = {pi}i∈N, then Theorem 2.1.5 of [5] implies
that the locally convex topology is metrizable, with associated translation invariant
metric

d(v,w) ∶=
+∞
∑
i=0

2−i
pi(v −w)

1 + pi(v −w)
.

Definition B.5. A locally convex real vector space E whose topology is generated
by a countable family of seminorms is called a Fréchet space if its topology is
complete (with respect to the metric d described above).

Example B.6. Let F ⊆ R2 be an open submanifold of R2 and {Ki}i∈N a family of
compact sets in R2 such that Ki ⊆ Ki+1 and F = ⋃i∈NKi. We recall that the vector
space of smooth vector fields over F , X(F), is isomorphic to the space of all smooth
functions from F to R2. Let X ∶ F Ð→ R2 be a smooth vector field over F and
consider the family of norms:

∥X∥i = sup
x∈Ki, ∣α∣≤i

∣DαX(x)∣ + ∫
F
∣X(x)∣2 dx,

for i ∈ N and α ∈ Nn multiindex. One can prove that the vector subspace

Xb(F) ∶= {X ∈ X(F) ∶ ∥X∥i < ∞ for each i ∈ N}

is a Fréchet space.

In the context of Fréchet spaces some good topological properties are preserved
like the following fact.

Lemma B.7 ([11], Lemma 1.7). Let E be a Fréchet space and F ⊆ E be a closed
vector subspace. Then both F and the quotient of vector spaces E/F are Fréchet
spaces.

Example B.8. In the setting of Example B.6 we consider the standard Euclidean
area element of R2 and we observe that the vector subspace of divergence free vector
fields

Xdiv(F) ∶= {X ∈ Xb(F) ∶ div(X) = 0} ⊂ Xb(F)
is closed with respect to the Fréchet topology of Xb(F) and so it is a Fréchet space.

However, it is well known that even the very basic notions of calculus on Fréchet
spaces could be very difficult to develop. The main issue is represented by the
following theorem, that states that the strong dual

E′ = {f ∶ E Ð→ R ∶ is linear and continuous},

if endowed with the topology of uniform convergence on bounded sets, is never a
Fréchet space when E is a non-Banach Fréchet space.
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Theorem B.9 ([5], Theorem 2.1.12). The strong dual E′ of a Fréchet space is
metrizable if and only if E is normable. In particular, duals of non-Banach Fréchet
spaces are not Fréchet.

Another critical issue is that the natural dual pairing ⟨⋅, ⋅⟩ ∶ E′ × E Ð→ R,
(f, v) z→ f(v), is not continuous with respect to any suitable topology on E′.
However, as indicated in chapter 6, in applications we often have to deal with some
dual space and pairing in the Fréchet realm. A very natural solution to this situation
is to choose, in place of E′, a suitable vector subspace, often denoted E∗ ⊆ E′, which
can be endowed with a Fréchet vector space topology and carries a continuous dual
pairing ⟨⋅, ⋅⟩E∗ ∶ E∗ ×E Ð→ R.

Remark B.10. A very classical example of this construction is given by fixing an
inner product on E. Indeed, let τ ∶ E ×E Ð→ R be an inner product on E (see, for
instance, Definition 1.10 of chapter 1) and let τ ♭ ∶ E Ð→ E′, v z→ τ v, be its flat
map. We recall that for any v ∈ E we have

τ v ∶ E Ð→ R, w z→ τ(v,w).

We know that, in general, the map τ ♭ is an injective (but not surjective) linear map
of vector spaces. Here, we choose E∗ ∶= τ ♭(E) ⊂ E′ and one can easily check that,
since τ ♭ ∶ E Ð→ E∗ is an isomorphism of vector spaces, E∗ can be endowed with a
Fréchet topology (induced by E itself), turning the map τ ♭ into an isomorphism of
Fréchet spaces. Moreover, E∗ carries a continuous dual pairing with E with respect
to this topology, that is:

⟨⋅, ⋅⟩τ ∶ E∗ ×E Ð→ R, (f, v) z→ τ ((τ ♭)−1(f), v) .

As we know, before dealing with smooth manifolds, one needs to develop a theory
of calculus on the topological vector spaces one wish to model the manifolds on.
Unfortunately, in our case, Theorem B.9 forbids the existence of a Fréchet derivative
for a map between Fréchet spaces as it is defined for maps between Banach spaces,
and, for this reason, in the literature there are several, non equivalent theories of
calculus on Fréchet spaces. All of these are characterized by the loss of some very
important theorems of classical calculus, like the classical formulation of the inverse
function theorem and the implicit function theorem. In this appendix we refer to
the theory of Bastiani calculus, based on the concept of directional derivatives (an
introduction to the topic can be found in [23]).

B.2 Fréchet manifolds

Up to a choice of concept of calculus on Fréchet spaces, one can define in the very
classical sense what an abstract manifold M modeled on a Fréchet space E is. We
refer to [23] and [5] for a detailed discussion about the topic.
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Here, we recall that a Hausdorff topological space M , which possesses a smooth
atlas modeled on a Fréchet space E, namely a collection of homeomorphisms φi ∶
Ui ⊆M Ð→ Vi ⊆ E, such that any change of charts φi ○φ−1j is a smooth map between
Fréchet spaces, is called a Fréchet manifold. We know that some of the standard
constructions of finite dimensional and Banach differential geometry still hold in the
Fréchet realm, like the definition of the tangent bundle

TM = ⊔
m∈M

TmM,

which is actually a Fréchet vector bundle over M .

The cotangent bundle of a Fréchet manifold. In constrast to the tangent
bundle, Theorem B.9 deeply affects the construction of the dual bundle of a Fréchet
manifold M ,

T ′M = ⊔
m∈M
(TmM)′,

which cannot be even endowed with a suitable differential structure.
In virtue of that, we say that a cotangent bundle of a Fréchet manifold M is

a subset of the dual bundle T ′M , denoted T ∗M ⊂ T ′M , which can be endowed with
a Fréchet vector bundle structure and carries a continuous dual pairing with TM .
An example of such a choice is given in section 6.5.1 of chapter 6.

Differential forms over a Fréchet manifold. At this stage it is clear that
the standard definition of differential forms over a smooth manifold M as smooth
sections of the dual bundle is meaningless in the infinite dimensional Fréchet case.
We refer to Appendix E of [23] and its references for the details of the alternative
definition presented below. Briefly, we define a differential k-form as a smooth map

ω ∶ TM ⊕ ⋅ ⋅ ⋅ ⊕ TM Ð→ R,

which induces a multilinear skew symmetric k-form ωm ∶ (TmM)k Ð→ R for each
m ∈M . In order to build a full theory of differential forms, one adapts the definitions
of the classical operators of differential geometry (like the exterior derivative, the Lie
derivative, the pull-back and push-forward of differential forms) in order to deal with
the alternative definition above. One can check that the resulting theory works in a
similar way to the theories of differential forms over finite dimensional and Banach
manifolds.

Symplectic structures on Fréchet manifolds. Let M be a Fréchet manifold
and T ∗M be a cotangent bundle of M with vector bundle projection τM ∶ T ∗M Ð→
M and continuous dual pairing ⟨⋅, ⋅⟩M . In this case, descriptions developed in Ap-
pendix A of [6] and in section 48 of [13] construct a canonical weak symplectic form
over the Fréchet manifold T ∗M .
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The procedure is an infinite dimensional adaptation of the standard finite di-
mensional one. Indeed, we define the differential one form θcan ∶ T (T ∗M) Ð→ R,
given by

θcan(p, V ) = ⟨p, TpτM(V )⟩M
and one can check that the negative of its exterior derivative Ωcan ∶= −d θcan is a weak
symplectic form over T ∗M (adapting the standard definition of weak symplectic form
to this setting).
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